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Abstract
Autosomal recessive mutations in RAB27A are associated with Griscelli syndrome type 2 (GS2), characterized by hypo-
pigmentation and development of early-onset, potentially fatal hemophagocytic lymphohistiocytosis (HLH). We describe a 
35-year old male who presented with recurrent fever, was diagnosed with Epstein-Barr virus-driven chronic lymphoprolif-
eration, fulfilled clinical HLH criteria, and who carried a novel homozygous RAB27A c.551G > A p.(R184Q) variant. We 
aimed to evaluate the contribution of the identified RAB27A variant in regard to the clinical phenotype as well as cellular 
and biochemical function. The patient displayed normal pigmentation as well as RAB27A expression in blood-derived cells. 
However, patient NK and  CD8+ T cell exocytosis was low. Ectopic expression of the RAB27A p.R184Q variant rescued 
melanosome distribution in mouse Rab27a-deficient melanocytes, but failed to increase exocytosis upon reconstitution of 
human RAB27A-deficient  CD8+ T cells. Mechanistically, the RAB27A p.R184Q variant displayed reduced binding to SLP2A 
but augmented binding to MUNC13-4, two key effector proteins in immune cells. MUNC13-4 binding was particularly strong 
to an inactive RAB27A p.T23N/p.R184Q double mutant. RAB27A p.R184Q was expressed and could facilitate melanosome 
trafficking, but did not support lymphocyte exocytosis. The HLH-associated RAB27A variant increased Munc13-4 binding, 
potentially representing a novel mode of impairing RAB27A function selectively in hematopoietic cells.

Keywords Griscelli syndrome type 2 · Hemophagocytic lymphohistiocytosis · Lymphocyte cytotoxicity · Inborn errors of 
immunity · Late-onset

Introduction

Griscelli syndrome type 2 (GS2) is a pigmentation disorder 
associated with autosomal recessive mutations in RAB27A 
[26]. In contrast to other forms of GS, GS2 patients typi-
cally develop early-onset, life-threatening hemophagocytic 

lymphohistiocytosis (HLH), a hyperinflammatory syndrome 
[40]. Familial forms of HLH are associated with defective 
lymphocyte cytotoxicity, which requires exocytosis of cyto-
toxic granules, a form of specialized lysosomes [8].

RAB27A encodes RAB27A, a 25 kDa member of the Rab 
family of small GTPases [28]. The C-terminus can be pre-
nylated by Rab geranylgeranyltransferase (RGGTase) acting 
on cysteine-containing motifs, thereby anchoring RAB27A Timo C.E. Zondag and Lamberto Torralba-Raga have equal 
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to the membrane [21, 33, 34]. GTPase are activated by gua-
nin exchange factors (GEFs), which induce an active, effec-
tor protein-binding conformation through exchange of GDP 
for GTP. In turn, GTPase-activating proteins (GAPs) inac-
tivate GTPases [2]. These forms are mimicked by RAB27A 
Q78L (active) and T23N (inactive) substitutions. In melano-
cytes, the dispersal of pigment-containing melanosomes is 
driven by RAB27A, which coordinates the melanophilin-
myosin-Va motor complex and an actin filament assembly 
complex, as a prelude to melanin exocytosis [1, 40]. In 
hematopoietic cells, secretory lysosome trafficking, dock-
ing, and exocytosis is mediated by RAB27A interactions 
with SLP2A and MUNC13-4 [9, 12]. The RAB27A/SLP2A 
complex has been crystalized, revealing that the RAB27A 
α5-helix interacts with SLP2A [5]. In contrast, HLH-asso-
ciated RAB27A missense variants that disrupt MUNC13-4 
binding have been mapped to the RAB27A α4-helix [4]. The 
RAB27A interaction with MELANOPHILIN has not been 
mapped but does not interfere with MUNC13-4 binding 
[4]. These observations can explain how certain previously 
reported RAB27A variants specifically impair MUNC13-4 
binding and exocytosis in hematopoietic cells, without 
affecting pigmentation in melanocytes [4, 31].

We describe an adult-onset HLH patient from consan-
guineous parents harboring a novel homozygous RAB27A 
c.551G > A p.(R184Q) variant. Our results suggest a novel 
mode of selective disruption of RAB27A function in hemat-
opoietic cells.

Methods

Patient and Control Samples

This study was approved by the ethic committees of the 
Board of Stockholm. Informed consents from the individu-
als included in the study were obtained according to the 
Declaration of Helsinki. The patient was diagnosed accord-
ing to the HLH-2004 criteria. Clinical data, laboratory find-
ings, and genetics were collected from the patient’s medical 
records. Peripheral blood mononuclear cells (PBMCs) and 
hair were collected and analyzed. Six siblings were unavail-
able or did not consent to genetic analyses.

DNA Extraction, Amplification, and Sequence 
Analysis

DNA was enriched using Agilent SureSelect Clinical 
Research Exome V2 capture and paired‐end sequenced 
on the Illumina platform. The aim was to obtain 8.1 Giga 
base pairs per exome with a mapped fraction of 0.99. The 
average coverage of the exome was ~ 50 × . Duplicate reads 
were excluded. Data were demultiplexed with bcl2fastq 

Conversion Software from Illumina. Reads were mapped 
to the genome using the BWA‐MEM algorithm (reference: 
http://bio‐bwa.sourceforge.net/). Variant detection was 
performed by the Genome Analysis Toolkit Haplotype-
Caller (reference: http:// www. broad insti tute. org/ gatk/). 
The detected variants were filtered and annotated with 
Cartagenia software and classified with Alamut Visual.

Sequence variants were searched in a primary immu-
nodeficiency panel covering > 300 genes. Homozy-
gous VPS13B c.2471C > T p.(S824F) and heterozygous 
CARD11 c.2711G > A p.(S904N) variants of uncertain 
significance were also identified. No known pathogenic 
variants were identified.

Immunophenotyping and Cytotoxic Lymphocyte 
Function Analysis

Lymphocyte subset numbers were quantified by flow 
cytometry (FACS Symphony instrument, BD Biosciences) 
using BD IMK kit with TruCount tubes (BD Biosciences) 
according to the manufacturer’s instructions. Lymphocyte 
phenotype and function were further assessed upon stimu-
lation and staining of freshly isolated PBMC [7]. Briefly, 
fluorochrome-conjugated anti-CD3 (BioLegend), anti-CD4 
(Invitrogen), anti-CD8 (BioLegend), anti-CD16 (BD Bio-
science), anti-CD56 (BD Bioscience), and anti-CD107a 
(BioLegend) monoclonal antibodies were used. Functional 
testing of cytotoxic lymphocytes was performed incubat-
ing PBMC in vitro with murine P815 cells together with 
anti-CD16 or anti-CD3 antibodies for stimulation of NK 
cells and T cells, respectively. Natural cytotoxicity was 
tested using K562 cells. Exocytosis was quantified using 
 CD107a+ surface expression. Flowjo v.9.9 (BD Bio-
sciences) was used for analysis of the flow data.

Western Blot for RAB27A in Primary Cells

One million PBMCs per donor were lysed in RIPA buffer 
supplemented with 1 × protease inhibitor cocktail (Santa 
Cruz Biotechnology) for 30 min on ice. Supernatants were 
mixed with 4 × NuPage loading buffer (Invitrogen) added 
10 mM DTT (Invitrogen), run on a 4–12% Bis–Tris gel 
(Invitrogen), and transferred to a nitrocellulose membrane 
(iBlot, Invitrogen). Rabbit polyclonal anti-RAB27A (Pro-
teintech Group) and HRP-conjugated goat anti-rabbit sec-
ondary antibodies (Invitrogen) were used for detection. 
A directly HRP-conjugated mouse anti-actin antibody 
(Sigma) was used as loading control. Blocking buffer and 
antibodies were diluted in 5% non-fat dry milk (Biorad) 
in TBS-Tween 0.2%.
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Sequence Alignment and 3D Structure Visualization

RAB27A protein sequences of different organisms were 
downloaded from the NCBI database (https:// www. ncbi. nlm. 
nih. gov/) and aligned using CLC Main Workbench software 
(version 7.0, Qiagen). The 3D structure of RAB27A interact-
ing with SLP2A (PDB 3BC1) was downloaded and visual-
ized using Chimera 1.13 software.

Plasmid Constructs

Plasmids encoding RAB27A WT, p.Q78L, and p.T23N were 
kindly provided by Dr. Genevieve de Saint Basile [24]. PCR 
amplification was performed to shuttle cDNA to a modi-
fied pMax backbone with an N-terminal 3xFLAG tag using 
NheI and AgeI restriction sites. The RAB27A c. 551G > A 
(p.R184Q) variants were generated by site-directed 
mutagenesis. The plasmid sequences were confirmed by 
Sanger sequencing. A SLP2A-hem containing vector was 
kindly provided by Dr. G. de Saint Basile and transferred to a 
vector with an N-terminal MYC-tag [25]. N-terminal MYC-
tagged MUNC13-4 and MELANOPHILIN constructs were 
also generated. Adenovirus vectors allowing expression of 
the RAB27A p.R184Q mutant as a fusion to monomeric 
red fluorescent protein (mRFP) were generated as previ-
ously described [14]. For the lentiviral constructs, RAB27A 
WT and p.R184Q were cloned into pLeGO-G2 (Addgene 
plasmid #25,917) using BamHI and EcoRI restriction sites. 
Later, viral particles (VSV-G) from supernatant of packing 
HEK-293FT cells were added to stimulated  CD8+ T cells 
from healthy individuals or GS2 patients.

Melanosome Distribution

Immortal Rab27a-deficient murine ashen melanocytes were 
cultured as previously described [13]. For analysis of mela-
nosome distribution, 2.5 ×  104 cells were plated on 13-mm 
glass coverslips. Twenty-four hours later, the cells were 
transduced with adenovirus expression vectors, and after a 
further 24 h of incubation, these were fixed and stained to 
detect the localization of RAB27A wild-type and p.R184Q 
proteins as previously described [13]. Intracellular distribu-
tion of melanosomes and RAB27A was recorded as previ-
ously described [13].

Reconstitution Experiments in CD8.+ T Cells 
from RAB27A‑Deficient Patients

CD8+ T cells were isolated from PBMC of selected GS2 
patients by negative magnetic selection (Miltenyi Biotech), 
stimulated with 10 µL anti-CD3/CD28 immunocomplexes 
(STEMCELL Technologies) and 100 IU/mL of recombinant 
IL-2 for 48 h. Cells were thereafter transduced with VSV-G 

viral particles containing constructs encoding either N-ter-
minally mCherry tagged RAB27A wild-type or p.R184Q. 
The next day, the cells were washed and cultured in complete 
medium supplemented with 100 UI/mL IL-2. After 3 days of 
culture, cells were assessed for exocytosis by surface expres-
sion of CD107a as previously described. Cells were cultured 
in RPMI medium (Hyclone) supplemented with 10% FCS 
at 37 °C, 5%  CO2.

Co‑immunoprecipitation of Effector Proteins

HEK-293FT cells were chemically transfected (Lipo-
fectamine 2000, Invitrogen) according to the manufacturers’ 
protocol. After 24 h, cells were lysed in 25 mM Tris–HCl pH 
8.0, 150 mM NaCl, 1 × protease inhibitor cocktail (HALT), 
250 U/mL benzonase (Invitrogen), 10 mM DTT, 1% Tri-
tonX-100, 5 mM EDTA, and 0.5 × sodium orthovanadate. A 
goat anti-FLAG tag antibody (Abcam) was used for immu-
noprecipitation, with magnetic protein G beads used to 
harvest the immunocomplexes (Dynabeads, Thermo). This 
was then eluted in the presence of NuPAGE LDS buffer 
(Invitrogen), run on a 4–12% Bis–Tris gel (Invitrogen), and 
transferred to a nitrocellulose membrane (iBlot, invitrogen). 
Mouse anti-Myc (Invitrogen) and mouse anti-FLAG (Sigma) 
antibodies were used to blot for the recombinant proteins.

Statistical Analysis

Mean values, standard deviation, and p-values (paired par-
ametric t-test) were calculated using GraphPad Prism 7.0 
software (GraphPad Prism Inc.). The threshold for statistical 
significance was set at p ≤ 0.05.

Results

A Novel Homozygous RAB27A p.(R184Q) Variant 
Identified in a HLH Patient

A 35-year-old male with a history of recurrent sinopulmo-
nary infections and schizophrenia initially presented with 
recurrent fever and dry coughs. He was from consanguineous 
parents of Turkish origin and had eight siblings (Fig. 1A). 
He was initially diagnosed with EBV-driven lymphoprolif-
eration based on high EBV copy numbers (9929 IU/mL) and 
pathology. In spite of rituximab therapy, the fever persisted. 
Initially, only a mild anemia was present and ferritin levels 
were low. However, 3 months after the diagnosis of chroni-
cally active EBV disease, the patient developed overt inflam-
mation, fulfilling the HLH-2004 criteria (Table 1) [11]. 
Ferritin peaked at 67,938 μg/L. Despite extensive efforts, 
lymphoma was excluded, and no other underlying cause of 
HLH besides EBV infection was identified. The patient was 
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treated with corticosteroids, intravenous immunoglobulin, 
etoposide, rituximab, and alemtuzumab, but the HLH repeat-
edly relapsed. Almost 2 years after initial presentation with 
EBV-driven lymphoproliferation, the patient developed pul-
monary aspergillosis and died of pulmonary insufficiency in 
anticipation of a hematopoietic stem cell transplant.

Whole-exome sequencing uncovered a homozy-
gous missense variant in RAB27A:NM_004580.4 
(RAB27A):c.551G > A, p.(R184Q) (Fig. 1A), which has 
a population frequency of < 0.0001 according to public 
databases (gnomAD v3.1.1) [15], is predicted damag-
ing (CADD score 25.20) [16, 35], and has not previously 
been associated with HLH. Representing a change from a 

positively to a negatively charged amino acid in the C-ter-
minal α5-helix of RAB27A, the R184 position is highly 
conserved among vertebrates (Fig. 1B). In addition, rare 
homozygous VPS13B c.2471C > T p.(S824F) and a het-
erozygous CARD11 c.2711G > A p.(S904N) variants of 
uncertain significance were also identified (CADD scores 
3.54 and 23.0, respectively). Autosomal recessive VPS13B 
variants cause Cohen syndrome, characterized by obesity, 
hypotonia, mental deficiency, and facial, oral, ocular, and 
limb anomalies [19]. Leukopenia, especially neutropenia, 
is also a feature of Cohen syndrome [30]. Apart from mild 
cognitive impairment, the patient did not present clinical 
features characteristic of Cohen syndrome illustrated by a 
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Fig. 1  A novel homozygous RAB27A c.551G > A (p.R184Q) vari-
ant in a fatal HLH case. A Pedigree of family. Six out of eight sib-
lings were not available for genetic analysis. B RAB27A amino 
acid evolutionary conservation in mammals, birds, frogs, and fish 
of the sequence surrounding the p.R184Q variant. C Expression of 
RAB27A determined by western blot of freshly isolated PBMC 
lysates from the patient, siblings, and healthy controls, as indicated. 
Actin was used as loading control. Blots are representative of two 
independent experiments. D Western blot of HEK-293FT cells tran-
siently transfected with plasmids encoding FLAG-RAB27A wild-
type (WT), patient-derived p.R184Q, or truncating p.R184X variants. 
Results are representative of three independent experiments. E Hema-

toxylin–eosin staining of skin biopsies from a healthy control (indi-
cating normal melanocytes with arrowheads), a typical GS patient 
(displaying characteristic hyperpigmented oval melanocytes indicated 
with filled arrowheads), and the patient. Bars indicate 20 mm. F His-
tograms show exocytosis (quantified on the basis of CD107a surface 
expression) of cytotoxic lymphocyte subsets from the patient as well 
as a healthy transport control, as specified. PBMCs were stimulated 
with target cells and antibodies as indicated, for 2 h. The cells were 
analyzed by flow cytometry, gating on  CD3–CD56+ NK cells or 
 CD3+CD8+CD57.+ T cells. Data are representative of two independ-
ent experiments
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body mass index (BMI) between 20 and 25, normal mus-
cle tone, absent psychomotor retardation, and no syndro-
mic appearances/anomalies. Germline CARD11 mutations 
are associated with different primary immune disorders in 
humans [22]. The patient’s history of recurrent sinopulmo-
nary infections and persistent EBV infection overlaps with 
clinical manifestations of heterozygous CARD11 mutations 
causing B-cell expansion with NF-κB and T-cell anergy 
(BENTA). Of note, heterozygous CARD11 variants associ-
ated with BENTA are typically located in the N-terminal 
CARD and LATCH domains and not in the C-terminus as 
was the case in this patient. In addition, B-cell expansions 
were not observed in our patient. Given a paucity of features 
associated with Cohen syndrome, yet association of autoso-
mal recessive RAB27A variants with HLH, we focused fur-
ther on evaluating the potential contribution of the predicted 
damaging RAB27A variant to disease.

Rab27a Expression and Patient Characteristics

In order to examine the expression of the RAB27A vari-
ant protein, we performed western blots of peripheral blood 
mononuclear cell lysates. The patient expressed RAB27A 
(Fig. 1C), indicating that the protein was not degraded. 
Furthermore, ectopic expression of RAB27A wild-type 
(WT), p.R184Q, and p.R184X constructs in 293FT cells 
also revealed comparable expression of RAB27A WT and 
p.R184Q, whereas the p.R184X was degraded (Fig. 1D). 
The RAB27A p.R184X mutant cannot be C-terminally pre-
nylated and hence is unstable [27].

Our patient developed gray hair from age 20  years, 
but microscopic examination lacked typical GS features 
(large uneven clumps of pigment) (data not shown). Fur-
thermore, in contrast to typical GS patients that display 
hyperpigmented oval melanocytes without adjacent tissue 

pigmentation [18], a skin biopsy from the patient indicated 
normal distribution of melanin throughout the epidermis 
(Fig. 1E). RAB27A-deficiency is associated with defective 
cytotoxic lymphocyte exocytosis [10, 26]. Patient NK cells 
as well as  CD8+CD57+ T cells displayed reduced exocy-
tosis (Fig. 1F; normal range (mean ± 2SD) for induction 
of CD107a on NK cells was for K562 cell or anti-CD16 
stimulation 9–41% and 30–66%, respectively, and for that 
on  CD8+CD57+ T cells 28–76%, in healthy adults), but not 
abolished as frequently observed in FHL [3, 7]. Further-
more, in the patient, both NK cells and  CD8+CD57+ T cells 
undergoing exocytosis displayed low intensity of CD107a 
surface expression, as previously reported in a patient with 
hypomorphic UNC13D variants associated with late-onset 
HLH [36].

Thus, the RAB27A p.R184Q was expressed at the protein 
level. Furthermore, evaluation of the patient suggested that 
the RAB27A variant may not affect melanosome trafficking 
of pigment but impair lymphocyte exocytosis.

Rab27a p.R184Q Displays Unperturbed Function 
in Melanocytes While It Leads to Defective Cytotoxic 
Function in Lymphocytes

To understand if the RAB27A p.R184Q variant could cause 
disease, we evaluated its function in melanocytes and lym-
phocytes. Adenoviral RAB27A wild-type or p.R184Q variant 
constructs with an N-terminal mRFP fluorescent tag were 
generated for expression of RAB27A in melanocytes. These 
constructs were expressed in melanocytes from ashen mice 
that are homozygous for a Rab27a variant that disrupts exon 
splicing [41]. The RAB27A p.R184Q variant rescued pig-
ment dispersion in Rab27a-deficient melanocytes in a man-
ner comparable to RAB27A wild-type constructs (Fig. 2A). 
Furthermore, to evaluate if the patient-derived RAB27A 
variant could rescue lymphocyte exocytosis, we selected 
GS2 patients with biallelic RAB27A variants that resulted 
in defective RAB27A expression (Suppl Table 1) [32] and 
isolated peripheral blood  CD8+ T cells and transduced 
them with lentiviral constructs encoding either N-terminal 
mCherry tagged RAB27A wild-type or p.R184Q proteins. 
After transduction, exocytosis was evaluated following anti-
CD3 antibody stimulation. Untransduced  CD8+ T cells from 
healthy volunteers demonstrated a robust increase in exocy-
tosis upon anti-CD3 stimulation. The transduction efficiency 
of the mCherry-RAB27A WT constructs was higher in GS2 
patient  CD8+ T cells in all individuals (Suppl Fig S1A, S1B, 
S1C). The expression levels of the mCherry-RAB27A WT 
relative to mCherry-RAB27A p.R184Q were also consist-
ently higher in GS2 patient  CD8+ T cells in all individuals 
(Suppl Fig S1D). Importantly, anti-CD3 antibody stimula-
tion significantly increased exocytosis by GS2 patient  CD8+ 

Table 1  HLH-2004 criteria at diagnosis

Fever Yes
Splenomegaly Yes
Cytopenias (affecting ≥ 2 of 3 lineages)
   Haemoglobin < 90 g/L 77
   Platelets < 100 ×  109/L 75
   Neutrophils < 1.0 ×  109/L 2.17

Hypertriglyceridemia and/or hypofibrinogenemia
   Fasting triglycerides ≥ 3.0 mmol/L 3.07
   Fibrinogen ≤ 1.5 g/L 5.4

Hemophagocytosis in bone marrow or spleen or lymph 
nodes

Yes

Low or absent NK-cell activity Yes
Ferritin ≥ 500 µg/L 2135
sIL-2 receptor ≥ 2400U/ml 82,606
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T cells transduced with RAB27A wild-type, but not those 
with RAB27A p.R184Q constructs (Fig. 2B).

Taken together, these results support the notion that 
RAB27A p.R184Q facilitates melanosome pigmentation but 
does not efficiently support cytotoxic lymphocyte exocytosis.

Altered Effector SLP2A/MUNC13‑4 Binding Affinity 
for RAB27A p.R184Q

To determine how the patient-derived RAB27A variant 
might interfere with lymphocyte exocytosis, we assessed 
the capacity of the RAB27A p.R184Q variant to interact 
with the effector proteins expressed in immune cells. FLAG-
tagged RAB27A wild-type, “active” p.Q78L, or “inactive” 
p.T23N constructs, encoding the wild-type or p.R184Q 
variant, were co-expressed with plasmids encoding MYC-
tagged, full-length SLP2A, MUNC13-4 in HEK-293FT 
cells. Co-immunoprecipitation of SLP2A, MUNC13-4 
with tagged RAB27A variants was quantified in cell lysates 
(Fig. 3A). Relative to RAB27A wild type, the RAB27A 
p.R184Q variant displayed around 25% reduced binding to 
SLP2A (Fig. 3A, B). A reduction of more than 30% was 
observed when the RAB27A p.R184Q variant also carried 
the constitutive p.Q78L mutation (Fig. 3A, C). Further-
more, relative to RAB27A wild type, the RAB27A p.R184Q 
variant displayed tenfold increased binding to MUNC13-4 
(Fig. 3D, E). The RAB27A p.R184Q variant also carrying 
the p.T23N mutation displayed 100-fold greater MUNC13-4 
binding, whereas the p.Q78L mutation construct displayed 
only mildly increased MUNC13-4 binding (Fig. 3D, E). 
In contrast to previously published reports, the inactive 
RAB27A p.T23N mutant bound MUNC13-4 with higher 

propensity than the active p.Q78L mutant in our experi-
mental setting (Fig. 3D, E). Similar co-immunoprecipitation 
experiments of MUNC13-4 in cells expressing melanophi-
lin revealed equal binding of RAB27A WT and p.R184Q 
to melanophilin (Fig. 3F), whereas the constitutive active 
RAB27A p.Q78L variant displayed increased and the inac-
tive p.T23N variant displayed decreased binding, respec-
tively (Fig. 3F).

In summary, relative to RAB27A WT, the RAB27A 
p.R184Q variant displayed decreased binding to SLP2A and 
increased binding to MUNC13-4. This data suggests that the 
RAB27A p.R184Q variant displays an imbalance in effec-
tor binding, specifically disrupting MUNC13-4-mediated 
exocytosis.

Discussion

Biallelic loss-of-function variants in RAB27A cause hypo-
pigmentation and development of HLH [26], but atypical 
forms of GS2 lacking hypopigmentation have also been 
described. RAB27A missense mutations that selectively 
impair RAB27A binding to MUNC13-4 or non-coding 
rearrangements affecting a lymphocyte-specific promoter 
have previously been identified in GS2 patients, selectively 
displaying immunological features of the disease [4, 29, 31, 
39]. We describe an adult-onset HLH patient from consan-
guineous parents harboring a novel homozygous RAB27A 
c.551G > A p.(R184Q) variant. Our results suggest a novel 
mode of selective disruption of RAB27A function in hemat-
opoietic cells, leaving pigment dispersion intact.
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Fig. 2  Reconstitution of RAB27A-deficient melanocytes and T cells 
with RAB27A WT and p.R184Q variants. A Rab27a-deficient mouse 
ashen melanocytes transduced with adenoviruses encoding mRFP-
tagged RAB27A WT or p.R184Q variants. Fluorescence images 
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RAB27A WT or p.R184Q variants. Untransduced  CD8+ T cells from 
healthy donors represent controls. For GS2 patient cells, the graph 
depicts the frequency of CD8.+ T cells with surface CD107a expres-
sion according to gating on mCherry expression, as indicated. Dots 
represent individual patients, bars represent mean values with SD. 
Statistics: ns non-significant P > 0.05; *P ≤ 0.05, **P ≤ 0.01
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Fig. 3  RAB27A p.R184Q displays altered binding to effector pro-
teins present in immune cells. A 293FT cells co-transfected with 
MYC-SLP2A and FLAG-RAB27A WT p.Q78L (active mutant) 
or p.T23N (inactive mutant) in combination with patient-derived 
p.R184Q variant, as indicated. Immunoprecipitates (IPs) or whole 
cell lysates (WCLs) were probed by western blotting (IB) with anti-
bodies, as indicated. B Quantification of SLP2A binding following 
anti-FLAG immunoprecipitation for RAB27A p.R184Q variant. C 
Quantification of Slp2a binding following anti-FLAG immunopre-
cipitation for Rab27a p.Q78L + p.184Q constructs. D 293FT cells 
co-transfected with MYC-MUNC13-4 and FLAG-RAB27A WT, 
p.Q78L (active mutant), or p.T23N (inactive mutant) in combination 

with patient-derived p.R184Q variant, as indicated. E Quantifica-
tion of MUNC13-4 binding following anti-FLAG immunoprecipita-
tion for the different RAB27A constructs in transfected HEK-293FT 
cells. F 293FT cells co-transfected with MYC-MELANOPHILIN 
and FLAG-RAB27A WT, p.Q78L (active mutant) or p.T23N (inac-
tive mutant) in combination with patient-derived p.R184Q variant, as 
indicated. G Quantification of MELANOPHILIN binding following 
anti-FLAG immunoprecipitation for different RAB27A constructs in 
transfected HEK-293FT cells. Data are representative of at least three 
independent experiments, except in G, which displays results from 
two independent experiments. Statistics: ns, non-significant P > 0.05; 
*P ≤ 0.05, **P ≤ 0.01
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The structure of RAB27A p.Q78L variant in com-
plex with the SLP2A has been solved (Fig. 4) [5], while 
RAB27A/MELANOPHILIN and RAB27A/MUNC13-4 
complexes have not been reported. SLP2A interacts with 
the RAB27A α5-helix where the R184 residue is located 
[5]. The RAB27A R184 residue maintains electrostatic 
stability required for Slp2a binding, potentially explaining 
why exchange of charge impaired SLP2A binding in our 
experiments. The N-terminus of RAB27A can bind MEL-
ANOPHILIN, with the Rab27b/melanophilin structure 
indicating that the β1/β2-sheets and α2-helix of the closely 
structurally related RAB27A likely mediate binding of 
MELANOPHILIN [20]. A few HLH-associated RAB27A 
variants in GS2 patients with normal pigmentation selec-
tively abolish MUNC13-4 but not MELANOPHILIN bind-
ing (Fig. 4) [4, 29, 31]. The RAB27A p.R141_V142delinsI 
and p.Y159C variants have indicated that the α4-helix 
may interact with MUNC13-4 [4]. Remarkably, our 
data indicates that the RAB27A p.R184Q variant binds 
MUNC13-4 significantly more strongly than RAB27A 
WT, with the affinity further increased by combination 
with the RAB27A p.T23N mutation predicted to mimic a 
GDP-bound inactive confirmation. MUNC13-4 was orig-
inally identified as an effector of GTP-bound RAB27A 
[38], and active RAB27A p.Q78L bound MUNC13-4 more 
strongly than inactive RAB27A p.T23N in the NK cell 
line YTS [23]. In our experiments in transfected HEK-
293FT cells, RAB27A p.Q78L displayed higher binding to 
MELANOPHILIN and SLP2A than to RAB27A p.T23N, 
as expected. However, surprisingly, MUNC13-4 displayed 
higher binding to RAB27A p.T23N than to RAB27A 
p.Q78L. The combination of the RAB27A p.T23N and 
p.R184Q variants leads to a dramatic increase in bind-
ing, suggesting that an inactive, patient-derived RAB27A 
variant may be exceedingly efficient at binding and poten-
tially sequestering MUNC13-4. Our results warrant fur-
ther studies into the interplay between RAB27A binding 

to effectors SLP2A versus MUNC13-4 in the context of 
nucleotide binding, and how the affinities of these inter-
actions may determine the efficiency of cytotoxic granule 
exocytosis and lymphocyte cytotoxicity.

Our results show an inability of patient-derived 
RAB27A p.R184Q to rescue exocytosis by RAB27A-
deficient  CD8+ T cells. RAB27A is required for docking 
and priming of the cytotoxic granules via interactions with 
SLP2A and MUNC13-4 [9, 12]. It is not clear what may 
contribute the most to the patient phenotype, (i) reduced 
expression of RAB27A p.R184Q relative to RAB27A 
WT in lymphocytes, (ii) decreased binding to SLP2A, 
(iii) increased binding to MUNC13-4, or a combina-
tion of these three factors. In 293FT cells, RAB27A WT 
and p.R184Q were similarly expressed, while RAB27A 
p.R184Q displayed lower expression in primary human 
 CD8+ T cells. These data suggest a reduced stability of 
the patient-derived RAB27A variant in a physiological 
setting. Still, the reduced level of RAB27A is unlikely to 
fully explain the severe reduction in lymphocyte exocy-
tosis. Overexpression of a SLP2A Slp homology domain 
construct has revealed an important role for RAB27A–SLP 
family protein interactions for  CD8+ T cell granule exocy-
tosis [12, 25]. In our biochemical experiments, the reduc-
tion of RAB27A binding to SLP2A was quite modest and 
may thus not explain the strong impairment in cytotoxic 
lymphocyte degranulation. Ménasché and colleagues 
demonstrated that overexpression of RAB27A p.Q78L in 
a  CD8+ T cell line diminished granule exocytosis [24]. 
Thus, active RAB27A or strong RAB27A-MUNC13-4 
interactions may result in decreased granule exocytosis 
and target cell killing. A priori, strong binding between 
RAB27A and MUNC13-4 leading to sequestration of 
MUNC13-4 might be expected to cause dominant forms of 
disease. The observations in this family, so far, do however 
not suggest a dominant mode of inheritance. Hopefully, 
identification of additional patients and families with this 

N-terminus

C-terminus

R184Q
90°

A76

R82

V143

S163

Y159

R141

N-terminus

C-terminus

Fig. 4  Contribution of the RAB27A α5-helix to effector protein 
interactions. Model of the RAB27A structure highlighting the R184 
residue (green) located in α5-helix as well as other disease-causing 

RAB27A variants selectively associated with defective lymphocyte 
cytotoxicity but normal pigmentation that disrupt MUNC13-4 bind-
ing (red) (references #12, 13, 27). GTP is colored in blue
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RAB27A variant can shed light on this important ques-
tion. These results hopefully can spur further studies of the 
interaction of RAB27A with its distinct effectors.

Presenting at 35 years of age, to the best of our knowl-
edge, this patient may represent the latest onset of GS2 
reported to date [37, 39]. Directions on clinical penetrance 
of the RAB27A c.551G > A p.(R184Q) variant are lacking in 
this late-onset HLH patient. The family encompassed eight 
siblings, six of which did not consent or were not avail-
able to genetic testing. Further analyses of this family or 
other individuals homozygous for this variant that impairs 
RAB27A function in lymphocytes can hopefully provide 
further insights into the clinical penetrance. Nonetheless, 
the low cytotoxic T and NK cell exocytosis in the patient, the 
failure of the patient-derived RAB27A variant to reconsti-
tute T cell exocytosis, and the degree of aberrant binding of 
RAB27A to MUNC13-4 suggest a significant impact of this 
variant on attenuating lymphocyte cytotoxicity and causing 
hyperinflammation. Similarly, autosomal loss-of-function 
PRF1 missense mutations that severely impair perforin 
expression and lymphocyte cytotoxicity have been associ-
ated with development of HLH [6]. Notably, the patient also 
carried rare homozygous VPS13B missense and heterozy-
gous CARD11 missense variants of uncertain significance. 
The patient did however not display typical clinical features 
of Cohen syndrome associated with autosomal recessive 
VPS13B deficiency [17]. The clinical phenotype of hete-
rozygous gain of function CARD11 variants causes BENTA, 
a disease with susceptibility to viral infections and occa-
sionally HLH [22], but CARD11 variants previously associ-
ated with BENTA have been localized to the N-terminal 
domains of the protein whereas the CARD11 variant in our 
patient was located at the C-terminus. Nonetheless, we can-
not exclude that these variants in genes also expressed in 
immune cells might have modified disease in our patient.

In conclusion, our results indicate that the HLH 
patient–derived RAB27A p.R184Q variant maintains 
melanin distribution, yet displays dysregulated interac-
tions with MUNC13-4 and SLP2A that impaired lym-
phocyte cytotoxicity. As such, this variant represents the 
first disease-associated RAB27A variant with increased 
MUNC13-4 binding. Together, these results suggest that 
the RAB27A p.R184Q variant can predispose to disease, 
potentially explain late-onset HLH in our patient, and 
advance insight into protein interactions causing patho-
physiology. In addition, this case highlights the relevance 
of genetic testing in adults for relapsing HLH patients, 
especially when associated with a chronically active EBV 
infection or other immune anomalies. Further studies are 
warranted to develop rationale for targeted drug therapy.
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