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Abstract

High-quality precipitation forecasts are key to ensure the public and economic safety
during severe precipitation events, and the process of validating these forecasts is a con-
tinuous effort. But with Norway’s varied climate and landscape, this can pose a challenge.
In this thesis, the precipitation forecast data from the post-processed AROME-MetCoOp
model were validated against observational data over a period from 1. December 2019
- 31. April 2022 in these six locations: Bergen, Oslo, Trondheim, Tromsg, Kristiansand
and Nesbyen.

The results were split into a climatology part and verification part. For climatology,
Bergen and Tromsg forecasted way too little total precipitation, with the biggest deviation
during summer for Bergen and winter for Tromsg. This was not due to a bias on mean
precipitation amount in the model, but it could be due to the model underestimating the
orographic enhancement. The model predicted a bit too much winter precipitation Oslo,
Kristiansand and Nesbyen, which could be related to wind-induced undercatch of solid

precipitation, although more research is needed.

Precipitation distribution seemed to be somewhat narrow overall, forecasting too many
low-intensity precipitation events, but struggling to forecast enough extreme precipita-
tion. For verification results, forecast quality remained fairly constant with increasing
forecast lengths (up to +48h ahead), and improved slightly with longer accumulation
lengths (also up to 48h). It looks like the model performs better when the (high) hourly

variability gets averaged out.

All in all, Kristiansand was the best-performing location, while Tromsg saw the poorest

results.
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Chapter 1

Introduction

Precipitation forecasts are very important in areas like hydropower companies, agricul-
ture, weather warnings, and society in general, and it is therefore crucial to make them
as accurate as possible (Kgltzow et al., |2020). Over the past decades, forecast quality
has greatly improved, and a 7-day forecast is now roughly as good as a 5-day forecast 20
years ago (Figure This is mainly due to better models, more data available, better

data assimilation (like 4D-Var), and more computational power (Bauer et al., 2015).

Norway spans about 1700 km from the northernmost to southernmost tip, covering several
different climate zones. In addition to its long coastline, Norway’s topography is varied,
complex and highly irregular, with numerous fjords, mountain ranges, valleys but also
some flatter areas. All these factors contribute to large local variations in weather, which
poses an extra challenge for weather forecasts (including precipitation) in Norway (Miiller
et al., 2017).

Norway is also unusually warm compared to other places at the same latitude. The two
main reasons for this are the Gulf Stream transporting warm water across the North
Atlantic towards the Norwegian Sea and beyond, and low-pressure systems frequently
bringing warm and moist air towards the Norwegian mainland. This makes Norway one
of the wettest places in Europe, and much wetter than other regions at similar latitudes.
(Seager et al.l 2002; Villa, [2021)).

Figure illustrates pretty nicely the differences in annual precipitation amount across
Norway. The map on the left uses the current climate normal (1991-2020), while the
map on the right shows the relative difference from the old normal (1961-1990). The

western coast receives the most precipitation, up to 3000-4000 mm in some places, while
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Figure 1.1: Forecast skill improvements (500 hPa height) through history for 3-10 day
range forecasts over the extra-tropical northern (NH) and southern hemispheres (SH).
From the early 2000s, the use of satellites measurements vastly improved the SH
forecast skill (Bauer et al., 2015).

Nordland county is also quite wet. The driest places are the most inland parts of Eastern
Norway and Finnmark county. It is clear Norway has gotten wetter overall since the last
climate normal, and in fact the annual precipitation the last 100 years has increased by
18% (Hanssen-Bauer et al., 2015).

It is the Norwegian Meteorological Institute (MET Norway) who is responsible for provid-
ing weather forecasts in Norway and releasing them to the public. They currently use the
regional high-resolution AROME-MetCoOp numerical weather prediction (NWP) model
when forecasting within the Nordic region, and the AROME-Arctic model for Svalbard

and the Norwegian mainland above the Arctic circle.

Publications on previous AROME-MetCoOp precipitation validations seem to mostly be
confined to various MET Norway reports, which are written and published on a quarterly
basis. Although their structure are more informational and less analytical than a typical

science article, consisting mostly of a short written summary along with lots of figures

and tables. Koltzow et al. (2020) did a study on verification of solid precipitation in

Norway with focus on wind-induced undercatch (too low precipitation measurements

than reality in windy and snowy conditions), and found this had a substantial impact on

the verification results.
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Figure 1.2: Annual precipitation in Norway from 1991-2020 (left) and the relative
difference (%) from 1961-1990 (right). Figure from Norwegian Climate Service Center.

The main goal of this thesis is to validate the post-processed AROME-MetCoOp pre-
cipitation forecast against observed measurements from weather stations in these six
locations: Bergen, Oslo, Trondheim, Tromsg, Kristiansand and Nesbyen. Data is taken
from 1. December 2019 - 31. April 2022. The validation process will be divided into
two parts, climatology and dichotomous forecast verification results. For climatology,
the objectives are to find any anomalies in total precipitation amount (both overall and
seasonal), precipitation distribution (how good is the forecast at predicting dry, light rain
and heavy rain hours), as well as validating both the forecasted frequency and amount for
extreme precipitation events. Verification results look at how well AROME-MetCoOp is
able to correctly predict the precipitation at the right time, and this is done with various

verification methods, forecast lengths, and accumulation lengths.

The thesis structure going forward is as follows: Chapter 2 contains theory of vari-
ous forecast verifications methods, along with precipitation types. Chapter 3 lists all
the methods used to obtain and process the forecasted and observed precipitation data.
Chapter 4 contains the most important climatology and dichotomous forecast verification
results. Chapter 5 discusses the main findings from these results (and Appendix results)
in greater detail, and Chapter 6 conclude the work with a brief summary of the results

at each location, and where the model performed the best overall.



Chapter 2

Theory

This chapter starts with defining what is considered a good forecast, before outlining
the various methods of forecast verification. Finally, the main precipitation formation

processes are listed.

2.1 Forecast Verification

2.1.1 What is a good forecast?

Before we want to validate a forecast, we need to establish what the desired outcome
should be first. The understanding of what counts as a good forecast is not entirely clear,
and the answer given depends on who you ask. A forecaster may say the goodness comes
from similarities between the forecaster’s judgement and the observations, while the user
could be more concerned about whether or not the forecast leads to favourable outcomes

of their decisions.

Murphy| (1993) discussed three types of goodness: Consistency (type 1), quality (type 2)
and value (type 3). High forecast consistency is achieved when there is correspondence
between the forecast and the forecaster’s best judgement derived from their knowledge
base. As an example, a weather forecaster might intentionally overstate the seriousness

of a storm (poor consistency) because they think people would otherwise under-prepare.
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Table 2.1: Forecast quality attributes (Murphy, 1993; |cawcr, 2015)).

Attribute Description

Accuracy Level of agreement between the forecast and observations

Association Strength of the linear relationship between the forecasts and obser-
vations

Bias Correspondence between the mean forecast and mean observation

Discrimination 1 | Correspondence between the conditional mean forecast and condi-
tioning observation, averaged over all observations

Discrimination 2 | Difference between the conditional mean forecast and unconditional
mean forecasts, averaged over all observations

Reliability Average agreement between the forecast values and the observed
values

Resolution Ability of the forecast to sort or resolve the set of events into subsets
with different frequency distributions

Sharpness Tendency of the forecast to predict extreme values

Skill Relative accuracy of the forecast over some reference forecast

Uncertainty Variability of the observations. The greater the uncertainty, the

more difficult the forecast will tend to be

High forecast quality is achieved when the forecast matches the observed conditions at the
time it was forecasted, and is probably the most intuitive goodness type. If the predicted

storm turns out to be less severe than anticipated, then the forecast has poor quality.

High forecast value is achieved when the forecast allows the user to make the best decisions
for increased economic, safety and/or other benefits. Although the storm turned out to
be less serious, lives and properties were saved because people were more prepared than
what they otherwise would have been (good value). A forecast can also be high quality
but have little to no value. For instance, a forecast never predicting hurricanes to form
would likely get close to 100% accuracy, but in the rare occasions where such an even do
happen, the consequences could be devastating and this forecast would be of no value to
the public.

In this thesis, it is the forecast quality that is validated, although forecast value is also
of importance when choosing the locations. Murphy| (1993) describes ten attributes that
contribute to the quality of a forecast, listed in Table [2.1]
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Figure 2.1: Schematic representations of the various spatial verification methods
(except point verification) (Gilleland et al., [2009).

field deformation

2.1.2 Spatial verification methods

When verifying a forecast, an important decision to make is whether the model grid point

corresponding to an observation source (weather station, buoy etc.) should be influenced
by nearby grid points, and in that case how this should be done.

Point verification is the simplest form for spatial verification, and is the method used in
this thesis. Only one model grid point is validated against observations at a time, without
considering nearby grid points. It is a well known and fairly straight-forward method to
produce forecast verification results, although it is also generally more error-prone and
may provide incomplete information about the forecast quality. If a forecast feature is
displaced slightly in space but is otherwise correct, it can still yield poor verification

results. Moreover, as horizontal model resolution increases over time, the model needs to
hit within a smaller range (Gilleland et al., [2009).

Neighbourhood is a filter-based method where a smoothing filter is applied to the

forecast field and sometimes also the observed field. The field is upscaled by averaging
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the values of neighbouring grid points within a certain radius of each other. The result is
a smoothed version of the original field. Most filters than can be applied preserve peak

values, which is important in capturing extreme event features.

Scale separation/decomposition is another filter-based method where each field is
decomposed using some type of spatial bandpass filter, e.g. Fourier transforms. By
isolating the various forecast features by scale (like large-scale frontal systems or small-
scale convective showers), it is now easier to find which scale the main sources of error
originate from, and assess the capability of the forecast to reproduce the observed scale

structure in the observations.

Features-based approach identifies individual structures/features within a field and
analyse these structures separately, finds the best matches of features across these fields,
and compares these matched features based on various attributes (spatial displacement,

orientation, size, average intensity, etc.)

Field deformation verification attempts to manipulate the forecast field to resemble the
observed field in the best possible way (for instance by minimizing the accuracy or bias
score difference). The resulting product is a vector field that describes which adjustments
were made, that are then evaluated either diagnostically (why the field looks like it does)
or analytically (Gilleland et al., 2009} 2010).

Schematics of these spatial verification methods can be seen in Figure 2.1}

2.1.3 Deterministic forecast verification

A forecast is said to be deterministic when there is only one possible solution, e.g. it will
precipitate 2 mm tomorrow. If the forecast contains continuous variables (can be any
value within a physically realistic range), the goal is to measure how the forecast values

differ from the values of the observations.

Two common verification metrics in this category are Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE).

N
1
MAE = N;|Fk—0k| (2.1)
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1 & )
RMSE = | + > (F = Oy) (2.2)

k=1

Fy and O, are forecast and observations, respectively, of a given pair number k with N
total values. Their score ranges from 0 to oo, with a perfect score of 0 (no deviation for
any k). Both seek to find the average magnitude of the forecast errors, although neither
of them indicate the direction of the deviations. Since the values are squared for RMSE,
it is more sensitive to major errors than MAE, which can be very useful if large errors
are particularly undesirable. RMSE will always be equal to or larger than MAE, and the
relative difference can say something about if the forecast is dominated by small or larger

CITOorS.

2.1.4 Dichotomous forecast verification

A deterministic forecast can be reduced to a binary (dichotomous) forecast where there
are only two possible outcomes for an event: Yes, it did happen, or no, it did not happen.
The boundary between these is determined with a specific threshold value, for instance
all hourly forecast and observed values above 0.1 mm/h counts as rain events, while those
under it are considered no rain events. With two datasets (forecast and observation) as
well as two outcomes (yes and no), we can set up a 2 x 2 contingency table which shows

the occurrence of all possible outcomes, seen in Table [2.2]

Table 2.2: A 2 x 2 Contingency table.

Observed
Yes No
Yes | Hit False alarm

Forecast
No | Miss | Correct negative

This contingency table acts as a basis for several different verification scores. While each
have their own strengths and weaknesses, they are able to give a quite coherent forecast
verdict when combined. The ones presented below will be part of the dichotomous forecast

verification results later on.

Accuracy is the overall fraction of forecasts that were correct. Score ranges from 0 to 1,

with 1 as the perfect result. It is a simple measure of forecast quality, although it can be
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misleading in situations with very rare events, where correct negatives would completely

dominate the contingency table outcome.

Hits 4+ Correct negatives
Total

Accuracy = (2.3)
Bias frequency says something about the forecast frequency of ”yes” events compared to
the observed frequency of "yes” events. Score ranges from 0 to oo, with 1 as the perfect
result. This metric indicates whether the forecast has a tendency to overforecast (score
> 1) or underforecast (score < 1) events, e.g. if the number of forecasted rain hours is
higher or lower than the total observed rain hours. Bias does not measure how well the

forecast events correlate with the observation events, only relative frequencies.

Hits + False alarms
Hits + Misses

Bias frequency = (2.4)
Hit rate gives the fraction of observed ”yes” events that were correctly forecast. Score
ranges from 0 to 1, with 1 as the perfect result. It is sensitive to hits, but ignore false
alarms, and thus is best applied together with the false alarm ratio below. It is also quite

good for rare events, since only observed yes events are considered.

Hits
Hit rate = 2.5
wrate Hits + Misses (2:5)

False alarm ratio provides the fraction of observed "yes” events that actually did not
occur. Score ranges from 0 to 1, with 0 as the perfect result. It is sensitive to false

alarms, but ignore misses.

False alarms
ol l I 2.6
alse alarm ratio Hits + False alarms (2:6)

Success ratio represents the fraction of forecasted "yes” events that were correctly ob-
served. Score ranges from 0 to 1, with 1 as the perfect result. Success ratio is also equal

to 1 - False alarm ratio.

Hits
S tio = 2.7
HeCess Tano = i + False alarms (27)
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2.1.5 Probabilistic forecast verification

The opposite of deterministic is a probabilistic forecast, which expresses the chance of an
even occurring, e.g. there is a 40% chance it will precipitate at least 2 mm tomorrow. The
effect of this can be two-fold: On one hand, a probabilistic forecast allows the forecaster
to better express the inherent uncertainly all weather forecasts have. On the other hand,
it is only probabilistic up until the time of the observation, which (in these settings) are
always deterministic. It also requires longer periods of data to verify these forecast to

make sure if the forecasted probabilities turned out right.

Brier score (BS) is the probabilistic equivalent of mean squared error, and seeks to find

the magnitude of the probability forecast errors. It is therefore defined as

N

1 2
zme3ﬁ§:uk—&) (2.8)

k=1

where f* is the forecast probability, while o* is observed. k is the number of the N total

forecast event pairs. Score ranges from 0 to 1, where a perfect score is 0.

In our case, the post-processed AROME-MetCoOp forecast is deterministic, which means
f¥ and o* can only either be 0 or 1. If both are 0 (correct negative), the bracket number
is 0 for that pair number k, and the same is true if both are 1 (hit). This means the
only non-zero options left are miss and false alarm, where the value inside the bracket
equals one for that pair number. With this information, we can derive a simplified BS

for dichotomous forecasts.

BS — Miss + False alarm
Total

(2.9)

Brier Skill Score (BSS) evaluates the relative skill of the forecast over that of climatology

(BSyer), in terms of predicting whether or not an event occurred, and is defined as

BS —BS,; _, __BS

BSS = -
0— BS,e, BS,es

(2.10)

Score ranges from —oo to 1, where a perfect score is 1. BSS = 0 indicates a forecast with
no skill over the reference/climatology forecast (BS = BS,.y), and a negative BSS would
tell it is better to trust the climatology than looking at the forecast. Climatology could
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for instance be the average observed temperature on a given day over the last 30 years
(continuous), or the probability of rainfall on a given day based on observations over the

last 30 years (probabilistic) (cawcr, 2015).

2.2 Precipitation formation

Precipitation formation can be divided into three categories: Frontal precipitation, con-
vective precipitation and orographic precipitation. These are not mutually exclusive and

may occur at the same time.
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2.2.1 Frontal precipitation

Warm front
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Figure 2.2: Tllustrations of a warm front (top) and cold front (bottom) (Ahrens, 2014).

A front is the boundary between two air masses of different densities (temperature and
humidity), and is associated with a moving cyclone (low pressure system). In the front of
the cyclone, a warm front causes advancing warm and moist air to slowly rise above the
retreating cold and dry air, since warm air is lighter than cold air. This causes relatively

moderate and uniform precipitation in quite a large area ahead of the front.

Further back in the cyclone, there is a cold front advancing much quicker, where the cold
air undercuts and displaces the warm air ahead. The resulting sharp inclination (slope)
at the front usually leads to more intense precipitation, or even thunderstorms in extreme

cases. If the cold front catches up to the warm front (which often happens), the end result
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is an occluded front (Rafferty, 2012). Figure [2.2]illustrates both a warm front (top) and
cold front (bottom). Frontal precipitation is the most common precipitation type at our

latitudes.

2.2.2 Convective precipitation

B Convective Precipitation
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Figure 2.3: Ilustration of convective precipitation qStuart—HaéntjensL |2018[).

Convective precipitation occurs when the surface is heated, causing a shallow layer of
air above to warm up and rise (convection) due to higher buoyancy (Figure . If the
heated air is moist and the vertical transport is strong enough, it will gradually cool down
due to lower pressure, and the water vapour will condense, form clouds and eventually
precipitate (Ahrens| 2014)). These rain shower can be quite local and very intense, but
usually dissolve after a few hours. In Norway, convective precipitation is most common
during hot summer days in the afternoon, after the sun has heated up the ground for
several hours. These conditions are most favourable in the eastern part of Norway. During
winter, convective showers may also happen when very cold air is advected over relatively

warm water and heated up.
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2.2.3 Orographic precipitation

OROGRAPHIC EFFECT

WARM OCEAN

Figure 2.4: Mlustration of orographic precipitation , 2022]).

Orographic precipitation happens when moist air is forced upwards by mountains, causing
the air to cool and eventually form clouds (Figure . Precipitation usually falls on the
windward side, although for lower mountain ranges it is possible for some precipitation
to be carried over to the leeward side. With little moisture left, the air mass reaching
the leeward side is very dry, causing it to heat up faster when descending than the rate it
cooled on the way up. The leeward side is often called the rain shadow due to experiencing
vastly less precipitation than the windward side , . Orographic precipitation
tends to occur during a low pressure and then acts as orographic enhancement of front
precipitation. These conditions are very common in Western Norway, and is one of the

main reasons why the precipitation map in Figure looks the way it does.



Chapter 3

Methods

This chapter describes some general properties of a weather station and the various
instruments used in precipitation measuring, the AROME-Met-CoOp numeric weather
prediction model, how, where and which data from these sources were obtained, and how
they were processed to output the results in this thesis. All data were downloaded and
processed in MATLAB® R2021b.

For the record, the terms precipitation, rain, rainfall and similar will be written inter-
changeably for the sake of variety, although in all cases these always refer to precipitation

as a whole, all types included.

3.1 Observations

3.1.1 Measuring precipitation at weather stations

There are roughly 200 professional weather stations in Norway, largely owned and oper-
ated by MET Norway (Nipen et al., [2020). While manual weather stations that required
on-site personnel to operate and send in data were the norm in the past, more and more
Automatic Weather Stations (AWS) have replaced them in later years. These are mea-
suring precipitation every hour (and sometimes every minute), in contrary to manual

stations where precipitation is usually measured 1-4 times per day (snl, 2020).

The use of private weather stations have gotten increasingly more attention lately, as

15
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they vastly outnumber MET Norway’s own stations by a factor of about 50. Some of
these stations are produced by Netatmo, a french company specialising in smart home de-
vices, and where local weather data recorded from each individual station can be shared
online and pooled together in their Weathermap service (MET Norway, 2018)). Even
though their data quality are highly variable due to not following the World Meteorolog-
ical Organization (WMO) standards for weather observations (WMO), 2018) and lack of
information about how they are maintained, their inclusion in weather forecasting have
shown to improve overall forecast quality, especially for short-term temperature forecasts
(Nipen et al., 2020). Bardossy et al. (2021)) found that using private weather stations

(with sufficient quality control) could improve temporal precipitation interpolation.

Pluviometres (commonly referred to as rain gauges) are the standard way of measuring
precipitation intensity, which is the amount of precipitation measured over a certain
period. For manual stations, the rain content is poured into a graduated cylinder and
measured to give the total rainfall (in case of snow, the content is first melted then
measured). For automatic stations, several different methods are currently used. One
of them is weighing rain gauges, where the weight of the collected water is measured

(typically by a weight cell or a string of vibrating wire) as a function of time and converted

into rainfall depth. (AMS, 2012; snl, 2017)).

A low-cost but more inaccurate alternative is tipping bucket rain gauges, where a funnel
collects and channels the precipitation into a seesaw-like container. Once a pre-defined
amount of precipitation falls, the lever tips, emptying the container in the process, and
an electric signal is sent indicating a rainfall increase. However, these gauges are less
accurate than weighing rain gauges, since rainfall may stop before the lever has tipped,
and the stored water would then give the next rain period a ”head start” by only requiring
a tiny amount of rain to tip the lever and thus indicate more rain has fallen than the
actual amount. During intense rain, some moisture may be lost between the time it takes
from the lever to tip until a new bucket is ready to collect rain. They also struggle with
measuring snowfall as it may just cover the funnel like a blanket, and installing a heater
to melt the snow will lose too much moisture to evaporation for the measurement to be

accurate (Groisman and Legates, (1994)).

Disdrometres and hotplates precipitation gauges are more modern instruments which uses
other techniques than collecting rainfall. Disdrometres measure drop size distribution
and falling velocity of precipitation, which can be used to estimate kinetic energy of
raindrops and thus their potential effect on soil erosion and pollution in surface water

flows. That said, measurements tend to be more error-prone during heavy rainfall and
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when measuring very large droplets, as well as in windy conditions (ARM; Kathiravelu

et al., 2016)).

Hotplates consist of two thermally isolated aluminium plates (one facing upwards and one
facing downwards) which are heated up with electricity to about 75°C'. Precipitation rate
is estimated by calculating the power required to either melt snow, evaporate snow, or
evaporate rain on the upward-facing plate, compensated for wind effects by subtracting
out the power on the lower, downward-facing plate. Hotplates provide wind speed, tem-
perature and precipitation intensity data every minute, making them ideal for real-time
applications like aircraft de-icing and road weather conditions. They are also considered
low-maintenance (albeit quite power hungry) and very accurate even in windy and snowy
conditions. Although, they struggle a bit more in conditions with hail and graupel as
the ice pellets tend to bounce off the plates before they can be melted (Rasmussen et al.,
2011).

Images of various pluviometre types can be seen in Figure [3.1

3.1.2 Obtaining observational data

Naturally, it is not feasible to perform a full-scale point verification for all Norwegian
weather stations, meaning only the stations deemed the most relevant and impactful
were picked based on a few criteria. First, places assumed to give the highest forecast
value were looked at, i.e. the biggest cities in the country. Next, places with different
geographic and climatic features (coastal, inland, mountain etc.) were desired, since some
of the major cities like Oslo/Drammen, or Stavanger/Sandnes are very close to each other
and experience mostly the same weather. And lastly, if there were more than one AWS
within these regions, the one with the most complete time series was chosen so that the

validation results were as accurate as possible.

As such, we chose six AWS based on these criteria, where all of them having weighing
rain gauges installed. Figure [3.2 shows where these stations are located in Norway, and
Table lists their location data, how long they have been operating, and missing data
(if any). Hourly observed precipitation data for the analysis period (1. December 2019 to
31. April 2022, or 882 days/21168 hours in total) were downloaded at each station from
https://seklima.met.no/. Resolution of observed precipitation data was 0.1 kg m 2

(equivalent to millimetre rain).


https://seklima.met.no/
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Figure 3.1: Images of different pluviometre types: a) Weighing rain gauge, b) Tipping
bucket rain gauge (upper - exterior, lower - interior), ¢) Optical disdrometre, and d)
Hotplate precipitation gauge.
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Figure 3.2: Location of all six weather stations used.
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Table 3.1: Local topography maps and meta data for the chosen weather stations.

Bergen (Florida)

Oslo (Blindern)

Trondheim (Lade)

BT B @ « (@ e
Model latitude 60.3824° N 59.9414° N 63.4465° N
Model longitude 5.3391° E 10.7216° E 10.4409° E
Model altitude 9m 93 m 25 m
Station latitude 60.3830° N 59.9423° N 63.4428° N
Station longitude 5.3327° E 10.7200° E 10.4428° E
Station altitude 12 m 94 m 13 m
Operational since 1949 1931 2004

Missing observation

0 of 21168 (0%)

0 of 21168 (0%)

461 of 21168
(2.18%) over 5

values .
periods
Tromsg Kristiansand
] o Nesbyen (Todokk)
(Vervarslinga) (Kjevik)

. °. 8

. F w '{.:ﬂk f))’ ‘.‘lo ‘
Model latitude 69.6566° N 58.2009° N 60.5640° N
Model longitude 18.9456° E 8.0731° E 9.1332° E
Model altitude 77 m 9m 173 m
Station latitude 69.6537° N 58.2000° N 60.5670° N
Station longitude 18.9368° E 8.0767° E 9.1323° E
Station altitude 100 m 12 m 166 m
Operational since 1895 1939 2003

Missing observation

values

7 of 21168 (0.03%)

over 1 period

592 of 21168
(2.80%) over 3

periods

0 of 21168 (0%)
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3.2 AROME-MetCoOp

3.2.1 Introduction to AROME

AROME-MetCoOp is a high-resolution NWP model operated by Meteorological Cooper-
ation on Operational Numerical Weather Prediction (MetCoOp), and is based on Appli-
cations of Research to Operations at Mesoscale (AROME-France) model by Météo-France
(Seity et al., [2011; Muller et al., 2017)). MetCoOp started in 2010 as a collaborative effort
between the Norwegian Meteorological Institute (MET Norway) and Swedish Meteoro-
logical and Hydrological Institute (SMHI), and since when AROME-MetCoOp became
operational in 2014, the departments have benefited from operating, developing and moni-
toring the same weather model. Finnish Meteorological Institute (FMI) joined MetCoOp
in 2017, and the Baltic countries Estonia, Lithuania and Latvia is set to join in 2022
(Kristiansen and Blaauboer, 2018; MET Norway)).

AROME-MetCoOp domain covers the Nordic countries as well as the North Sea and
Baltic Sea (see Figure with a 2.5 x 2.5 km horizontal resolution and 65 vertical lev-
els, where the vertical resolution decreases by height up until the vertical boundary layer
located at roughly 33 km altitude. The model is forced by the lateral and upper bound-
ary conditions of the large-scale European Center for Medium-Range Weather Forecast
(ECMWF) model (Miiller et al., 2017).

To improve scenarios less suited for deterministic forecasts, like resolving the stochastic
nature of rapidly-growing convective cells (Miiller et al., 2017), an ensemble version of
AROME-MetCoOp named MEPS (MetCoOp Ensemble Prediction System, operative
since 2016) is currently used. As of 2022, it contains 30 ensemble members; one control
member (AROME-MetCoOp with unperturbed initial and boundary conditions), while
the rest are perturbed members. The control member is updated every 3 hours, with a 66-
hour forecast produced every main cycle (00, 06, 12, 18 UTC). The 3-hour intermediate
forecasts (03, 09, 15, 21 UTC) are used for data assimilation for the following main cycle
(Frogner et al., 2019; Homleid et al., 2021)).

The raw forecasts are then post-processed (also known as the MET Nordic dataset), which
takes a limited number of surface variables from MEPS and perform bias corrections
based on real-time observations from Netatmo stations, WMO-stations from MET and
FMI, non-WMO stations in Norway, and radar. Unlike MEPS, the output product is

deterministic (only one solution), and it is also downsized to 1 km horizontal grid spacing.
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MET Nordic forms the basis of operational forecasts delivered by MET Norway, like
https://www.yr.no (MET Norway NWP Wiki)).

The cloud microphysics is based on the Kessler scheme for warm (liquid) processes, and
the three-class ice parametrization (ICE3) scheme for cold processes. ICE3 includes cloud
ice, snow and graupel, and more than 25 processes are parametrized by the scheme (Pinty
and Jabouille), [1998). AROME-MetCoOp contains some modifications to ICE3, mainly
to account for its weaknesses during winter season, e.g. Ty, being too low due to low-level

clouds decaying too quickly in cold conditions (Miller et al., 2017).

For simplicity, AROME-MetCoOp and by its extension MEPS will just be denoted as
AROME going forward.


https://www.yr.no
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o

Figure 3.3: Model domain of MEPS (green square), post-processed (red square) and
AROME-Arctic (blue square) (MET Norway NWP Wiki).
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Table 3.2: Forecast hours and accumulated precipitation lengths used in the verification
results. For example, forecast hour +4 from a 00:00 UTC run denotes the accumulated
precipitation predicted from 03:00 until 04:00.

Accumulation length Forecast hours
1 hour +4h, +13h, +48h
6 hours +4h-9h, +13h-18h, +25h-30h
24 hours +4h-27h, +13h-36h, +25h-48h
48 hours +1h-48h

3.2.2 Obtaining post-processed AROME forecast data

Post-processed hourly forecast precipitation data (from MEPS version cy43) were ob-
tained from https://thredds.met.no/thredds/catalog/metpparchive/catalog.html,
a public site ran by MET Norway with readily available data as NetCDF files. Then,
we chose the closest available model grid point to each station’s location. Resolution of
forecast precipitation data was at least 0.0000001 kg m~2, or 1 000 000 times higher than

for observed data, which is way more than needed for all practical purposes.

While the main cycle of the AROME model is ran every 6 hours, only forecasts ran
at 00 and 12 UTC were used here, reducing the size of downloaded forecast data by
half. This resulted in 1764 unique forecasts considering an 882 days long analysis period
(1. December 2019 to 31. April 2022). For climatology results, the first 12 forecast
hours were used to ensure no overlapping forecast periods when comparing with observed
data, while Table [3.2] shows the various forecast hours and accumulation lengths chosen
for the dichotomous forecast verification. Forecast hours ranging from +49h to +66h
often contained missing data, which was the main reason these times were discarded.
Nevertheless, picking different accumulation lengths taken at different forecast hours is a
key part to determine if the model quality changes with forecast length, and if verification
results for individual precipitation hours differs from accumulated rainfall over several

hours.


https://thredds.met.no/thredds/catalog/metpparchive/catalog.html
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3.3 Processing the data

3.3.1 Missing values

Both forecasted and observed datasets were sometimes incomplete, and these missing
values were treated as not-a-number (NaN) to make sure there were no ”holes” in the
datasets and all precipitation values appeared at their correct time stamps. NaN-values in
observed data were displayed in Table whereas 19 of the 1764 forecasts were missing
from the MET database and thus filled with NaN. This was true for all six locations.

NaN values in general need to be dealt with properly to avoid flawed results. In this case,
a ”zero-tolerance policy” was conducted to be on the safe side: If any section of a dataset
contained at least 1 NaN value, then the whole section was considered as NaN and ignored
from the calculations. A section could for instance refer to daily precipitation in climatol-
ogy (all 24 hourly values must be valid for that day to be accepted), or 48h accumulated
precipitation in verification results. The exception was for monthly precipitation where
NaN values were set to 0 instead to avoid entire months of data being overwritten and
lost. While this resulted in some months losing rainfall to NaNs and underestimating the
"real” precipitation amount, this applied both to forecasted and observed data, meaning

the relative difference between the two were not affected that much.

In addition, all neighbouring observation values part of any given 12-hour cycle (01:00 to
12:00, and 13:00 to 00:00) that contained at least one NaN value were replaced with NaN.
For example, the missing Tromsg data lasted from 09.02.2021 15:00 to 09.02.2021 21:00.
Following the rule above, all data from 13:00 including 00:00 the next day were filled with
NaN. This way, observed data can be considered as 1764 unique 12-hour sets where each
set solely contains either real or NaN values, which was identical to how forecast data
was structured except they contained 48-hour sets instead of 12-hour. It is not strictly
necessary to do it like this, but having both datasets on compatible formats makes them
easier to keep track of and compute the results later on. The downside is some more data
were lost, though it can be argued the relative increase in NaN values was small enough

to not have any noticeable effect.
e Tromsg: +5 NaN values, 12 in total
e Kristiansand: +31 NaN values, 492 in total

e Trondheim: +56 NaN values, 648 in total
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e Bergen, Oslo and Nesbyen are unaffected since they did not contain any NaN values

Lastly, NaN values occurring at different times in forecast and observed data were over-
lapped. For instance, if forecast data contained NaNs at 3. February 2021 while observed
data contained NaNs at 21. March 2020, both datasets would now contain NaN values at
both dates. This is important both for climatology results (same number of data points
when comparing rainfall amount) and forecast verification (guarantee that real values

from one dataset are never compared against NaN values from the other).

3.3.2 Precipitation thresholds

In cases where we only evaluated whether it precipitated or not (binary outcome), all
values > 0.1 mm/hour (mm/h for short) or > 0.1 mm/day were treated as precipitation,
and otherwise as no precipitation. Since forecast data resolution is way higher than
observed data, it is possible the accumulated forecast rainfall for a given duration indicates
precipitation, even though none of the individual hours gathered enough rain to pass the
threshold. Forecast values were only ever rounded down if hourly/daily precipitation was
still below 0.1 mm (treated as no rain for statistical purposes), and only in situations

where total precipitation amount was not being considered.

3.4 Custom-made forecasts

Part of the task in this thesis is to evaluate how well AROME performs against simple
custom-made forecast, both originating from AROME data itself and recent observations.

Three such forecasts were created:

e fcfix: Bias-corrected AROME forecast by taking the relative difference in forecasted
and observed mean value of all data points throughout the analysis period (1.
December 2019 - 31. April 2022). For example, if total forecasted precipitation
was 20% lower than total observed precipitation, then each hourly forecast value
was multiplied by a factor of 1/(1 — 0.2) = 1.25. Used in climatology, extreme

precipitation, and dichotomous forecast verification.

e fcday: Use yesterday’s hourly observations to forecast today’s weather for that

respective hour of the day. For example, if it rained 0.7 mm yesterday from 12:00
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to 13:00, then fcday will predict 0.7 mm precipitation today from 12:00 to 13:00.

Only used in dichotomous forecast verification.

e fcpersist: Use last hour’s observation and forecast that the weather will remain
unchanged the next 12 hours. Updated twice a day (two 12-hour periods). For
example, if it precipitated 1.6 mm from 23:00 to 00:00, fcpersist will forecast 1.6
mm rainfall every hour for the next 12 hours. Only used in dichotomous forecast

verification.

These forecasts served different purposes depending on how they were created. fcday and
fcpersist were made using available observations at the time, and acted as low-quality
benchmark forecasts that AROME is expected to outperform overall. fcpersist was also
used to examine how persistent the weather is at each location, and if the nowcasting
(first few hours into the forecast) of fcpersist can match or even outperform AROME.
Fcfix on the other hand is technically an improvement over AROME by removing the
bias of forecasting too little/too much total precipitation. That said, the main goal here
is not to create a better forecast than AROME, but to use fcfix as a tool to check if

AROME suffers from any mean precipitation bias.

3.5 Climatology

This section outline the methods of deriving a location’s climatology from forecasted and

observed data over the analysis period.

3.5.1 Weather persistence

This part was based purely on observed data, hence the step of overlapping NaN values
between forecast and observed data was not performed, as it would have lost some data

for no good reason.

Weather persistence says something about how often the weather changes at a given
location, i.e. weather stability. One way to approach this is to look at average rain
weather duration and average dry weather duration. To find these, we need two variables:
total rain/dry hours, and total rain/dry weather periods. The former was found simply

by evaluating all hourly observed precipitation values against the > 0.1 mm/h threshold
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value, and count the number of occurrences for each outcome. The latter was found when
counting the amount of times it changed between rain and no rain between subsequent
hours/days, marking the end of a rain/dry weather period and the start of a new. A rough
schematic of this process can be seen in Figure [3.4 In this example, the average rain
weather duration would be 3.5 hours (7 rain hours divided by 2 rain periods). Average
rain/dry weather duration was calculated for hourly and daily precipitation data, both

with the same method of procedure.

Precipitation . )
amount Rain period 1 Rain period 2
N

1.0 mm

0.6 mm

0.3 mm|
0.3 mm
0.1 mm y II 0.1 mm

threshold I 0.0 mmf 0.0 mm I

Time

Figure 3.4: Schematic of how rain/dry weather periods were counted.

In some instances, periods may start or end rather abruptly due to limitations in the
dataset. The first real value after an arbitrary long string of NaN values was always
considered to be the start of a new period. This was done because the number of changes
between dry/rainy weather (if any) is unknown to the observer, and to protect against
NaN periods that may last for weeks from erroneously increasing the perceived average
rain/dry weather duration. In our updated schematic (Figure [3.5)), there is now an extra
rain period and one less rain hour. Notice how the average rain weather duration has

decreased from 3.5 hours to 2 hours just by substituting a rain hour with NaN.

When dividing the data into seasons, the first value for each season was also treated as a
new period. E.g. even if it precipitated on both 31. August 2020 and 1. September 2020,
they were considered as two separate precipitation periods since they belonged in two
different seasons. One rather obvious downside were the calculated total rain/dry weather

periods being slightly higher than "reality”, with the most ”split-up” scenarios like daily
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precipitation divided by seasons being impacted the most (potentially generating an extra
period once every 90 data points or so). By adding up total rain rain/dry weather periods
for each season and compare that number to total periods without any seasonal division,

the increase came out to be roughly 2-5% for daily data, and >0.4% for hourly data.

Precipitation
amount Rain period 1 Rain period 2 Rain period 3
4

1.0 mm

0.6 mm

0.3 mm
0.1 mm y h\ y II 0.1 mm |

threshold I 0.0 mm | 0.0 mm I

NaN

e
Time

Figure 3.5: Schematic of how rain/dry weather periods were counted if NaN values are
present.

3.5.2 Precipitation distribution

The next step was to look at the distribution of hourly and daily precipitation values to
tell something about a location’s precipitation pattern and whether it is dominated by
no rain, light rain or heavy rain. This time, observed precipitation distribution were also

compared against data from the AROME forecast and the custom-made fcfix forecast.

Precipitation values were sorted into various groups based on the quantity (frequency
distribution). Table shows the specific values and intervals used. Values less than 0.1
mm were treated as no rain, and therefore displayed as 0 mm. 0.1-1 mm/h for instance
means 0.1 < mm/h < 1, while all other intervals listed, e.g. ”1-2 mm/h”, stand for 1 <

mm/h < 2. NaN values were given their own separate section.

Other common statistical scores used were the mean value, precipitation intensity and
percentiles. The mean was calculated as the average precipitation amount when including
all non-NaN data points (all observed values, and the non-rounded values from the first

12 forecast hours from AROME and fcfix). Precipitation intensity is the average rainfall
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Table 3.3: Specific numbers and intervals used for frequency distribution and percentile

calculations
Hourly frequency distribution | Daily frequency distribution | Percentiles
0 mm/h 0 mm/day 25
0.1-1 mm/h 0.1-5 mm/day 50 (median)
1-2 mm/h 5-10 mm/day 75
2-3 mm/h 10-15 mm/day 90
3-4 mm/h 15-20 mm/day 99
4-5 mm/h 20-25 mm/day
5-6 mm/h 25-30 mm/day
6-7 mm/h 30-35 mm/day
7-8 mm/h 35-40 mm/day
>8 mm/h 40-45 mm/day
45-50 mm /day
>50 mm/day

amount when we only include rain hours/days (> 0.1 mm) and ignore the rest.

Percentile (also knows as k-th percentile) is the precipitation intensity value where a given
percentage k of all rain hour/day values are less than or equal to. E.g. if there were 5176
rain hours in total at one location, the 90 percentile rainfall amount would be rank 517 of
5176 (rounded down), and thus higher than 90% of all rainfall values. Table |3.3| displays

all percentiles used (identical for hourly and daily data).

3.5.3 Extreme precipitation

What counts as an extreme precipitation event can be a complex and subjective discussion
where not only the actual rainfall amount matters, but also the time- and spatial scale of
the event, intensity, return period/frequency, and any consequences for human life and
the surrounding wildlife and infrastructure (Barlow et al., [2019). Nevertheless, the total
measured precipitation should be seen in relation to the climatological normal (30 year
moving period, currently lasts from 1991-2020) for that area in order to decide if it could
qualify as an extreme event. For example, although 50 mm rain over 24 hours in Bergen
is uncommon, it is hardly enough to be seen as an extreme event on its own. However,
50 mm precipitation in 24 hours inside the polar desert at Longyearbyen, Svalbard, could
cause some truly devastating effects, because the frequency of such an event would be
extremely low, and the local landscape and society would very likely not be able to

withstand such amounts.



Chapter 3. Methods 31

One definition used for extreme precipitation is all days above the 99.5 percentile of rain
days from the current climatological normal for that area. With the ongoing climate
changes, this threshold value could change over time, pushing the boundaries of what
can be characterized as an extreme event. This is something that should be kept in mind

when designing infrastructure in the future (Sorteberg, [2012).

Using the 99.5 percentile with our dataset would only return 4 out of 882 daily values,
so to give ourselves a bit more data to work with we slackened this definition somewhat.
Instead, the mean value of top 10%, 1% and 0.1% of all hours, and top 10%, 5% and 1%
of all days were used to classify extreme precipitation events (including dry hours/days,

but excluding NaN hours).

While comparing these results between observed and forecast (plus fefix) would give a
good indication on how accurately AROME can predict extreme precipitation AMOUNTS,
they do not tell anything about how good it is at forecasting extreme events at the correct
TIME. To do that, two new terms were introduced: Top x% shared extreme hours/days,

and top x% shared extreme hours with 6 hour tolerance.

For the first term, the wettest top 1% and top 0.1% of all hourly precipitation values
(top 5%/1% for daily values) were identified and ranked for both forecasted and observed
data, along with their recorded time and date of occurrence. These times were then cross-
checked between each dataset to find how many values they had in common within the
top rankings. In other words, how many of the forecasted extreme precipitation values
also turned out to appear among the top observed extremes? Any top x% ranking here
would suffice to count as a hit, meaning if the 14th wettest forecast hour didn’t end up
being the 14th wettest observed hour, it would still count as a hit as long as both hours
were within the wettest top x% of all hours. All hits were summed up and divided by
the total data points within the top x% bracket to get a "hit rate” score ranging from 0

to 1, with 1 being perfect score. Figure illustrates how this process was done.

Since these requirements of getting a hit are quite harsh (e.g. forecast extreme could be
off by only one hour and it would still count as a miss), especially during convective-
driven extreme precipitation events, a separate category with a 6 hour tolerance period
were also added for hourly data. l.e. forecasting the extreme event up to 6 hours too
early or too late would now be deemed as acceptable. A few rules needed to be set before
these new calculations could be made. First, each forecast/observed value could only be
used once. This was to prevent scenarios like forecasting extreme rainfall several hours

in a row but only one of them were observed, scoring several hits in the process as they
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technically all were within the 6 hour tolerance period. Second, the closest matching
hours were given priority in the following order: +0h (exact same time), +1h (forecasted

one hour too late), -1h (forecasted one hour too early), +2h, -2h and so on up until -6h.

While neither of these methods are able to tell the whole story on their own, they should
still complement each other well. If the model was extremely good at forecasting the
correct amount, but never at the correct time, it would be very noticeable by reading the
shared extreme hours results. Likewise, if the model always forecasted extreme events
right when it should, but consistently predicted way too little precipitation, the mean

extreme precipitation values would show a clear deviation.

Lastly, any seasonal variations in extreme precipitation events were looked at. We used
two parameters, mean extreme precipitation amount for top 1% of hourly values (top 5%
for daily values), and frequency of forecasted and observed extreme precipitation events
(return values). Considering some seasons contained more data points than others, and
extreme rainfall tend to be very season-dependant, using the above method of shared
extreme days could run into some issues at drier locations without any notable extreme
precipitation during certain seasons. The top x% ranks could get very "muddy” with lots
of similar low-end values, making the hit rate requirements borderline unfair to overcome.

Instead, a frequency-based metric was selected, as it functions independent of sample size.

Seasonal return values for extreme precipitation were calculated by taking the top 1% /5%
of all hours/days and distribute them by which season they were recorded. This meant
the list of extreme precipitation events by each season could have varying lengths, where

the shorter lists could have some extra uncertainty due to low sample size.
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Forecast: Observed:
Rank Amount: Day: Amount: | Day:
f 1 72.6573 523 84.6 468 )
2 54.5165 623 83.8 9
3 59.8462 525 67.4 395
4 58.1246 42 66.6 97
Top 0.1% 5 56.8432 2 63.9 176
o] 53.1686 158 63.1 523
7 53.0987 Fao 62.4 Jal
8 52.7613 737 59.9 737
9 43.4682 542 58.0 768
\ 10 47.3156 202 54.1 810 J
11 45.7215 420 51.6 69
1z 41.8344 591 47.2 42
3 hits: 523 9 FET
7 misses:
Score: 0.2

Figure 3.6: Schematic of how top x% shared extreme hours/days were calculated. In
this hypothetical example, the 10 wettest days constitute all values above the top 0.1%
threshold. Day means which day in the dataset the rainfall was recorded, with day 1
being 1. December 2019 and then counting upwards. Day 42 barely does not make the
cut for observed data and thus ends up as a miss. Overall, with 3 hits and 7 misses, this
location gets a score of 0.3. Also notice how the forecast consistently underestimates
the extreme rainfall amount.
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3.6 Dichotomous forecast verification

This section explains how the forecast verification methods outlined in Chapter 2.1 were
used to calculate the results of dichotomous forecasts. Using the various scenarios listed
in Table [3.2] a contingency table was created for each scenario (10 in total) and for each
location. This was done for both AROME and fcday forecasts. Given that fcday only
forecasts 24 hours into the future, only the +4h and +13h (1 hour accumulation length)
as well as +4h-9h and +13h-18h (6 hour accumulation length) were valid.

To produce a contingency table, each individual precipitation forecast (AROME and
custom-made) was compared against its respective observed precipitation value to de-
termine if that forecast was a hit, miss, correct negative or false alarm based on the
0.1 mm threshold value (same for all accumulation lengths). Each outcome was added
up and sorted into its own category, with NaNs as a 5th, unused category for all fore-
casts/observations containing at least one NaN value. This meant for longer accumulation
lengths like 24h and 48h, some more data were lost as NaN since the longer the accumu-

lation length is, the more likely it is to overlap with at least one NaN value.

For fcpersist data, this process was done slightly different. Since this forecast is only 12
hour long, a contingency table was made for each of the 12 forecast hours, in addition
to two accumulated forecasts from +1h-6h and +7h-12h forecast hours (14 scenarios
in total). This was done to more accurately analyse the hourly evolution of fepersist
forecast quality compared to AROME (which also received the same treatment). The 6

hour accumulation forecasts served to reduce the variance between each individual hour.

After all contingency table outcomes were summed up to get the total number of hits,
misses, false alarms and correct negatives for each scenario (NaNs excluded), these were
used to calculate the various verification methods explained in Chapter 2.1. In the case
of Brier skill score, we needed to make a new contingency table for a ”background” or
”climatology” forecast to function as the reference Brier score (BS,.y) in order to compare
its relative skill with AROME, fcday and fepersist. One alternative would be to randomly
guess the occurrence of rain and no rain, and in a binary forecast setting with only two
possible outcomes, this reference forecast would be correct 50% of the time, resulting in
a BS,ey score of 0.5.

Instead, the reference forecast was set to always predict the most common outcome of

rain or no rain based on the observed data for a given scenario, thus lowering the BS,.;
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score and making it harder to beat. Using the reduced version of Brier score in Equation
2.9 we get two possible solutions. The first solution is where the reference forecast always
predicts rain, resulting in all misses converting to hits (observed rain), and all correct
negatives would be changed to false alarms (no observed rain). With miss being an

impossible outcome, the Brier score equation is reduced to Equation |3.1]

False alarm
BS) = —— 3.1
! Total (3-1)
Likewise for the second solution, in scenarios where no rain was observed most often,
the reference forecast would always predict dry weather. All hits/false alarms would be
converted to misses/correct negatives respectively, and with no false alarms left, we get

Equation |3.2

Miss

BSy = ——
27 Total

(3.2)

The chosen BS,.; was set to whichever the lowest value of BS; and BS; was at a given

scenario, and is always between 0 and 0.5.
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Results

This chapter will present the most important results found in this thesis. Given the
sheer amount of data involved and the numerous methods used, this chapter’s figures
will mostly be limited to hourly data, since with a sample size of over 20 000 hours they
should generally be more accurate. Other results like for daily data will also be covered,
though mostly by referring to tables and figures in the Appendix. For the most part,

daily data results show the same pattern as hourly results.

The structure in this chapter is mostly the same as the last part of Methods chapter,
starting with climatology which includes weather persistence, precipitation distribution

and extreme precipitation, followed by dichotomous forecast verification results.

4.1 Climatology

Table shows the total recorded precipitation for AROME forecast and observed data
during the analysis period at each location, as well as their ratio. Keep in mind this is
accumulated precipitation after NaN values from the two data sets were overlapped with
each other (as explained in section 3.3.1), meaning the actual observed rainfall is a little
bit lower. For example, Bergen (Florida) recorded 6386.6 mm, thus roughly 50 mm rain

was removed to provide a fair basis of comparison with forecasted precipitation.

36
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Table 4.1: Total recorded precipitation for AROME forecast (using first 12 forecast
hours) and observed data from 1. December 2019 to 31. April 2022. The ratio listed on
the right is the same ratio fcfix uses to bias-correct the mean forecast precipitation, and

thus the total fcfix precipitation is equal to observed.

Total forecasted Total observed .
precipitation precipitation fefix ratio
Bergen 4924.3 mm 6336.0 mm 0.777
Oslo 2076.2 mm 1914.9 mm 1.084
Trondheim 2482.5 mm 2171.2 mm 1.143
Tromsg 2431.5 mm 3090.7 mm 0.787
Kristiansand 3242.3 mm 3219.6 mm 1.007
Nesbyen 1287.1 mm 1059.6 mm 1.214

The main talking point is the AROME model in Bergen and Tromsg seem to substan-
tially underestimate the total rainfall, only recording 78% and 79% of observed rainfall,
respectively. Especially given the wet climate in Bergen, the AROME model generating
1400 mm less rain during a 2.5 year timespan is quite remarkable. Oslo, Trondheim and
Nesbyen on the other hand forecasts more precipitation that what was observed, but the
total quantity is not too far off. Nesbyen has the biggest discrepancy where AROME
predicts 21% too much rain, although Nesbyen is also by far the driest location here,
thus even a relatively small difference in absolute precipitation could have a big impact
on the ratio. Kristiansand almost gets a perfect match with only a 0.7% difference. This
means AROME and fcfix forecast will by all intents and purposes act as the same forecast

here and reflect as such in the figures below.

4.1.1 Weather persistence

Figure[4.1| presents the average rain/dry weather duration in hours for each location, both
overall and seasonal. The numbers themselves are listed in Figure [A.1l When looking at
the overall duration, there seem to be three "pairs” developing. The average rain weather
duration in Bergen/Tromsg is 4.5 hours, a bit less than 4 hours at Oslo/Kristiansand,
while Trondheim/Nesbyen experience the shortest rain periods, right above 3 hours on

average.

When examining the seasonal variance, it is clear summer rainfall is generally very brief,
while winter and especially autumn months experience longer sessions of precipitation,
with 5.5 hours on average in Bergen as the highest. This feature fits well with the per-

ception of autumn/winter being dominated by larger low-pressure systems precipitating
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Figure 4.1: Average rain/dry weather duration in hours for each location, separated by
season. Total is average of all seasons. Data from 1. December 2019 - 31. April 2022.
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over a longer period of time, while summer rain often originates from short-lived convec-
tive systems. This is further backed up by the stations located in southern and eastern
part of Norway (Oslo, Nesbyen and Kristiansand), where convective precipitation is most

common, experiences the shortest rain weather durations during summer.

Since total rain/dry weather periods for a given location necessarily must be practically
identical, the average rain/dry weather duration is also directly proportional to the num-
ber of rain/dry hours. Interestingly, there only seem to be a weak correlation between
total precipitation amount and how long the average rain shower lasts. We can see Bergen
and Tromsg get about the same number of rain hours, despite Tromsg receiving less than
50% of Bergen’s total rainfall amount. Same story can be seen for Trondheim and Nes-
byen, where Trondheim recorded twice as much rainfall even though the average rain

weather duration is barely any longer than in Nesbyen.

The average dry weather duration do in some ways follows the opposite pattern of average
rain weather duration. Note the scale on the y-axis is different. Nesbyen tops the over-
all duration, expecting about 30 hours of dry weather between each rain shower, while
Tromsg and Bergen have to settle with only 10 hours on average. Spring sees a clear
distinction between the south-eastern locations and the rest of Norway, where Nesbyen
can anticipate almost 60 hours (2.5 days) of continuous dry weather on average before
any significant rain is recorded. These three locations also experience the highest sea-
sonal variation in general, whereas Bergen and Tromsg in particular see less variance in

weather stability through the year.

This data was also calculated for daily weather duration periods (Figure in the
Appendix), and the results mostly show the same features as for hourly data. Tromsg
experiences the longest rain weather duration by far during spring and summer, with
6.2 days during spring as clear stand-out point, being 2.5 days longer than Trondheim
in second place. Not surprisingly, Bergen sees the longest rain periods during autumn,
where it rains (more than 0.1 mm) for almost 9 days straight on average followed by only

2 days of dry weather.
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4.1.2 Precipitation distribution

Where Table showed whether AROME predicted too little or too much rain over
the whole analysis period, the figures in this subsection will look at where the deviation
(if any) takes place when distributing by precipitation quantity, and if fcfix can fix this

deviation.

When looking at hourly data (see Figure in the Appendix), the majority falls into
the 0 mm category (ranging from 69% (Tromsg) to 90% (Nesbyen) of all observed hours).
0.1-1 mm sits in a clear second place (8% (Nesbyen) - 26% (Tromsg)), and generally
speaking, the more intense rainfall, the rarer they become. For instance, it rains less
than 1 mm/h in 98.8% of all non-NaN hours observed at Nesbyen, meanwhile the same

number for Bergen on the other side of the scale is 90.9%.

For values > 5 mm/h (heavy rainfall), Bergen observes by far the most cases, with 125
hours in total. Kristiansand observes 63 hours, while the others range from roughly 10-
30 hours. Tromsg is placed last with only 11 hours recorded, and none of them above
8 mm/h. Regarding Oslo, 10 out of 27 hours above 5 mm/h are also above 8 mm/h,
a fraction much higher than for the other locations. This shows the occurrence of very
heavy rainfall (even way higher than 8 mm/h) is more common relative to "moderately”

heavy rainfall.

Figure [4.2| displays the ratio of total forecasted (AROME/fcfix) to observed precipitation
hours for each quantity bracket, where a ratio of 1 is the preferred outcome. Starting in
Bergen, AROME forecasts too many dry hours (+11%) and thus too few rain hours, and
fcfix is not able to reduce the amount of dry hours in a significant way. The same can
be seen in Tromse, where the difference is 15%, or 2197 extra dry hours. Even with fefix
increasing AROME precipitation by 27% for every single hour, this was still only enough

to convert 399 of the excess dry hours into rain hours.

Likewise, AROME severely under-predicts number of hours in the 0.1-1 mm bracket for
Bergen (30% less) and Tromsp (37% less), and again fefix is not able to correct this in
any capacity, likely due to most of the extra hours gained from the 0 mm/h bracket were
pushed further into the 1-2 mm /h bracket, resulting in almost no net gain. Kristiansand’s
AROME forecast on the other hand seems to perform very well, staying close to the black
dashed line up until 6 mm/h, which accounts for >99.8% of all non-NaN hours.

Past the >4 mm/h brackets or so, the ratios start to become highly irregular, but most
of this should probably be blamed on the low sample size at such high intensities. Bergen
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Precipitation distribution ratio of AROME and fcfix forecasts compared to observed data
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Figure 4.2: Ratio of hourly precipitation distribution amount between forecast (AROME
(red lines) and fefix (blue lines)) and observed data for each location. Black dashed line
highlights a ratio of 1, which is the ideal outcome where both forecasted and observed
data recorded the same number of hours within a specific quantity bracket. Tromsg has
one value off-chart at 3.2 (blue arrow) to keep the y-range consistent. Data from 1.
December 2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.
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fcfix seem to overcompensate quite significantly and shifts way too many hours from
lower brackets into the highest ones. This should also be quite reliable unlike for other
locations since heavy rain in Bergen is a relatively common event. The general pattern
for AROME during heavy rain seems to be a slight overall underestimation (although
with some uncertainty), and that fefix, despite with the total precipitation forecast bias

removed, is not able to produce a reasonably more accurate precipitation distribution.

When looking at daily data (Figure , the deviation seen between AROME and ob-
served hourly data in Bergen is now reduced for daily data (279 vs. 264 days), but very
much remains in Tromsg (286 vs. 242 days). AROME predicts way too few heavy rain
days (> 30 mm/day) in Bergen, but unlike with hourly data, fcfix now manages to correct
this underestimation quite nicely, and is all in all a very good precipitation distribution
forecast here. A rather peculiar fact that really showcases the variety in heavy rain days
across the country is that Bergen registers 31/46 of all observed days above 35 mm rain

across all locations, where not a single day comes from Tromsg or Nesbyen.

Figure 4.3 shows how the AROME and fcfix hourly forecasts perform compared to ob-
served data at various percentiles, as well as for overall precipitation intensity. The main
difference here is dry hours are ignored completely, meaning this figure only says some-
thing about the distribution whenever it rains. Broadly speaking, the higher the rainfall
amount is, the more trustworthy these ratios are, as dividing two small numbers with

each other may lead to wildly varying results.

AROME precipitation intensity is in general slightly higher than observed, but not too
far off. Kristiansand and Bergen have the highest observed intensity values with 1.04
mm/h and 1.02 mm/h, respectively (Figure in the Appendix). Tromsg receives the
least amount of precipitation when raining with only 0.49 mm/h on average. This can
be explained by being the location with the highest number of rain hours (dragging the
average down), while only getting a moderate amount of precipitation overall compared

to other locations.

25th percentile shows a very distinct spike almost everywhere, and many locations end up
with a ratio approaching 2. This however can largely be attributed to the low resolution
of observed data. As the Appendix results show, four of the six locations have a 25th
percentile of 0.1 mm, while Kristiansand and Bergen have 0.2 mm. Since percentiles only

look at a single value, it cannot know what the values around it are, and if the value
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Percentile ratios for AROME and fcfix forecasts compared to observed data
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Figure 4.3: Ratio of hourly precipitation intensity and various percentiles between
forecast (AROME (red lines) and fefix (blue lines)) and observed data for each location.
Black dashed line highlights a ratio of 1, which is the ideal outcome where both
forecasted and observed data recorded the same rainfall amount for a given percentile.
Data from 1. December 2019 - 31. April 2022. Forecast data taken from the first 12
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ranked above it (the 25.01th percentile if we want) happens to be 0.2 mm instead of 0.1

mm, this would obviously have a huge impact on the resulting ratio.

The general trend seems to be too high ratio at lower percentiles (forecast precipitation
higher than observed), but it decreases towards higher percentiles and even goes below
1 at some locations. This would suggest the model predicts a bit too much precipitation
during light rain, but at some locations may struggle to generate enough precipitation
during more extreme events. In other words, the overall AROME precipitation distri-
bution might be too narrow. Apart from the 25th percentile spike at Tromsg, the ratio
development towards higher percentiles in Bergen and Tromsg does not see much of a

change.

Fefix results in general reflect the total precipitation ratios listed in Figure [4.1] where
Bergen and Tromsg see a relatively large adjustment, while AROME and fcfix forecasts
in Kristiansand once again show practically identical results. Fcfix adjusts the ratio in
the right direction (towards 1) in Oslo, Trondheim and Nesbyen, but worsens the ratio in
Bergen and Tromsg. This indicates the quantity distribution when raining is already quite
good for AROME Bergen and Tromsg despite predicting significantly less rain overall,
however AROME forecasting too few rain hours overall as seen above also plays a role

here.

Looking at daily data in Figure [A.6] precipitation intensity appears to follow the fefix
ratio pattern on total precipitation (i.e. too low values in Bergen and Tromsg). The
AROME ratio for these two locations tend to be too low for percentiles, but unlike with
hourly values, the extra precipitation in fcfix improves ratio closer to 1 rather than make
it worse. For the other locations the pattern seem to repeat itself with high ratio at
the 25th percentile (though not as spiky as for hourly data), before gradually decreasing

when approaching higher percentiles.

Figure shows the monthly precipitation ratios between AROME /fcfix and observed
data, with Figure to displaying all the numbers. The singular high spikes during
spring in Oslo, Nesbyen and Kristiansand are a result of unusual dry months where only
a couple of millimetres difference can cause the ratio to sky-rocket. For instance, Oslo
registered 3.5 mm precipitation during the whole of March 2022, and while the forecasted

rainfall was only 8.5 mm too much, this nevertheless results in a very high ratio.
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Monthly precipitation ratios for AROME and fcfix forecasts compared to observed data
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Figure 4.4: Monthly precipitation ratio between forecast (AROME (red lines) and fefix
(blue lines)) and observed data for each location. Black dashed line highlights a ratio of
1, which is the ideal outcome where both forecasted and observed data recorded the
same rainfall amount for a given month. Note the y-axis range may vary. Data from 1.
December 2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.



Chapter 4. Results 46

Even with some irregularities, Oslo and Kristiansand forecasts seem to perform the best,
with Nesbyen not too far off given the majority of these months only recorded about
10-30 mm. Trondheim ratios alter quite rapidly between each month, and this station
experiences enough months with rainfall surpassing ~50 mm for the ratios to be relatively
trustworthy. AROME forecasts too little precipitation in 27/29 months in Bergen and
25/29 months in Tromsg, which is to be expected with the model not forecasting a

sufficient amount in the first place.

A recurring trend however is that AROME in most cases forecasts too much precipitation
during very dry months (ratio approaches 2-4), but very rarely underestimates it. Another
notable deviation is October 2021 in Bergen when the weather stations measures a record-
high 647 mm rain, but the AROME model only manages to predict 387 mm, a difference
of 260 mm or 40%.

As a side note, Trondheim (Lade) lost about 18 days in April 2020, and Kristiansand
(Kjevik) lost about 10 days in October and November 2021 due to missing observed data.
As explained in the Methods chapter, these values were also removed from forecast data
to provide parity. While this means we do not know the "true” ratio for these months,

they should nevertheless have very little effect on the wider picture.

Figure in the Appendix lists the seasonal precipitation ratios. AROME forecasts
the least amount of rain during summer in Bergen, with only 66% of total observed
rainfall, closely followed by autumn. This pattern is also prevalent for the south-eastern
stations Oslo, Kristiansand and Nesbyen. In Tromsg however, AROME struggles the
most during spring (66% of observed precipitation) and winter, while getting fairly close
to the preferred ratio during summer and autumn. Trondheim’s pattern share some

similarities to Tromsg’s, but with less variation and all seasons having a ratio above 1.

4.1.3 Extreme precipitation

This subsection discusses how the AROME and fcfix forecasts perform during extreme
precipitation events, here defined as values within the top x% of all non-NaN data points.
This involves if forecasts are able to both predict the correct precipitation amount, and
do so at the correct time. Both of these parameters are particularly important to get right
to maximise the forecast value. If forecasters fail to announce an extreme precipitation
event due to the model missing it entirely, it may cause more serious damage than if local
authorities could react and implement safety features ahead of time. Correspondingly,
forecasting an extreme precipitation event either way too early or too late could catch

the public by surprise and hinder society’s ability to plan around the event.
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Mean extreme precipitation values and ratios for AROME and fcfix forecasts vs. observed data
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lines show the ratio of said precipitation between AROME/fcfix forecasts and observed
data, while blue lines display the actual precipitation amount for the various top x%

categories for AROME forecast and observed data (no fcfix). Black dashed line

highlights a ratio of 1, which is the ideal outcome where both forecasted and observed
data ended up with the same hourly mean extreme precipitation amount. Data from 1.
December 2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.
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Figure is two-fold; the red graphs show the AROME/fcfix ratio, while the blue
graphs display the actual hourly mean extreme precipitation amount (top 10/1/0.1%)
for AROME and observed data (no fefix). Keep in mind these results also include dry

hours, unlike with percentiles.

Starting with AROME ratios, the general downward trend towards higher rainfall levels
is prevalent here as it was in Figure 4.3, and all locations end up with a ratio below 1
for the top 0.1% bracket. Bergen and Tromsg are once again outliers here with a slightly
increasing ratio with higher rainfall levels. Oslo appears to achieve the best results, while
Bergen, Tromsg and partially Kristiansand underestimate hourly extreme precipitation
for all brackets.

Fcfix does not seem to improve the extreme precipitation forecast, but rather make it
worse. Bergen and especially Tromsg overshoots the black dashed line too much, and
Oslo, Trondheim and Nesbyen all remove precipitation compared to AROME which as
mentioned already struggles reaching very high precipitation values to some extent. This

suggests the general mean bias for AROME is not the main issue here.

When analysing the mean precipitation amount, the desired outcome is the blue solid
and dashed line overlapping each other, signifying no difference in AROME and observed
results. Oslo, Tromsg and Trondheim performs the best here, while Kristiansand takes a
somewhat surprising win with the highest top 0.1% mean observed precipitation amount
ahead of Bergen and Oslo. Tromsg in particular experiences fairly low extreme values,
together with by far the lowest 90th and 99th percentile values. This showcases a place
where it rains quite often, but very rarely reaches values that can reasonably be defined

as extreme precipitation events.

The steepness of the blue line and whether it is smooth or breaks midway, can say
something about the distribution of moderately (top 10%) to very extreme events (top
0.1%), because each bracket step reduces data volume by the same amount (90%). In
Bergen, the seemingly straight line indicates a very even distribution; lots of hours with
heavy rain that sort themselves pretty nicely. Oslo on the other hand measures relatively
low top 10/1% mean values, but a very high top 0.1% mean value. This implies the
extreme rainfall here is very "top-heavy” and dominated by a small group of incredibly

wet hours, which is also consistent with the results found for precipitation distribution.

For daily extreme precipitation (Figures|A.13|and [A.14)), the main findings are AROME

ratios for Kristiansand and Nesbyen are pretty much spot on, Bergen and Trondheim

fcfix the same, and the downward ratio trend in hourly extreme data is essentially gone.
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Figure illustrates to which degree the AROME forecast is able to predict extreme
precipitation events at the correct time, by looking at the top 1/0.1% shared extreme
hours with observed data, both with and without a 6h tolerance window. In the top 1%
bracket, Nesbyen achieves the most hits and thus the highest score (0.63 with tolerance
and 0.39 without), closely followed by Kristiansand. In the no tolerance category, Tromsg
obtains by far the lowest score with 0.12, only getting 26 hits out of 211 values, less than
half the number of hits Trondheim in fifth place manages to get. Tromsg catches up
somewhat when including the tolerance window, but is still placed last with 83/211 hits

and a score of 0.39.

The top 0.1% bracket only consists of the 21 wettest hours recorded, and as such the
requirements for getting a hit is tougher. Oslo and Kristiansand achieve 3 hits each as
the two best performers in the no tolerance category, while Trondheim and Nesbyen (the
winner of the top 1% bracket) did not get a single hit. With tolerance, Oslo’'s AROME
forecast delivers the most accurate extreme precipitation forecast at the appropriate time.
Tromsg performs quite well relative the top 1% category results, while Trondheim only
manages to get a single hit even with 6h tolerance. Given it also gets the second worst
score in top 1%, it can be argued AROME in Trondheim lacks some ability to forecast

hourly extreme events at the right time.

Daily data for top 5% shared extreme days (Figures [A.13] and |A.14) show all locations

perform very evenly, ranging from 25 to 32 out of 44 possible hits. For top 1% category,
5 of the 8 wettest days in Oslo share the same date for both AROME and observed
data, followed by Bergen and Trondheim at 4 hits each. Tromsg only has a single day in
common, and get the worst results for shared extreme days by also receiving the lowest

score in the top 5% category.

Figure shows the seasonal variation in top 1% hourly mean extreme precipitation
amount for AROME and observed data (red lines), as well as return value of these extreme
events (blue lines). When comparing AROME and observational mean precipitation,
Trondheim displays the least deviation, while Bergen, Nesbyen and Kristiansand are
not forecasting quite enough precipitation to match the observed amount regardless of
season. If we focus on the seasons where extreme events appear most often (usually
summer and autumn), it is rather clear the AROME model slightly underestimates the

rainfall intensity pretty much everywhere.
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Top 1/0.1% shared extreme precipitation hours (with 6h tolerance)
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Figure 4.6: Top 1% (top) and 0.1% (bottom) shared extreme hours between AROME
forecast and observed data, with a 6h tolerance window (right side) and without (left
side). Bars show the number of hits for each location, and the black dashed lines
indicate score thresholds of 0.25 and 0.5. The ideal score is 1 (all 211 hits for top 1%
and all 21 hits for top 0.1%). For more details, see Figure Data from 1. December
2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.
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Figure 4.7: Seasonal mean for the top 1% extreme precipitation hours (red lines), and
average number of hours (return value) between each occurrence of a top 1% extreme
event (blue lines) for both AROME forecast and observed data. Overlapping red/blue
solid and dashed line means forecast results match observed results, which is desirable.

Black dashed line indicates a return value of 100 hours, which is the average when
including all seasons. The higher the return value is, the more unlikely it is for an
extreme precipitation event to happen during that season relative to other seasons.

Data from 1. December 2019 - 31. April 2022. Forecast data taken from the first 12
forecast hours.
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Summer months see the highest mean extreme precipitation, and this is especially notable
in the south-eastern locations and Trondheim. This is likely the result of intense rain
showers from convective-driven extreme rainfall events. Bergen and Tromsg see less
seasonal variation, and Bergen is also the only location where observed extremes are

most intense during autumn with 6 mm/h on average.

When studying the return values, an important feature is the relative difference between
seasons, not necessarily the hourly return value in itself. Spring is by far the least likely
season to experience an extreme precipitation event (highest number of hours elapsed on

average per extreme event), and this is true for all locations.

Interestingly, observed values in Tromsg show almost no seasonal variation neither for
mean values nor return values. From Figure we saw AROME heavily underestimat-
ing spring precipitation here, and the effects of this can be seen again as a clear deviation
between AROME and observed results. Less forecasted spring precipitation overall leads
to lower mean extreme values, which again lowers the number of spring hours making the

top 1% cut, and ultimately increases the return value.

Nesbyen experiences the most drastic variations, where an observed extreme precipitation
event is about 15 times less likely to happen during spring than during summer and
autumn. While AROME argues a spring extreme hour should come about every 350
hours on average compared to 750 hours for observed data, this is another example
where low sample size can exaggerate the results. That said, while only 8 extreme hours
were observed during spring, the same number for AROME is 17 hours, which still can

be considered a significant difference.

Figure from the Appendix shows daily results for top 5% values (44 days), and share
many of the same main findings as for hourly data. For example, not a single extreme day
was observed during spring in Nesbyen (which also records by far the lowest mean values
of around 10-13 mm/day), and Bergen sees an extreme event (by our lenient definition)
every 9 days during the autumn months (average return value is 20 days). The biggest
difference is the prevalent hourly summer extreme events are all but gone from daily data,

where most locations now experiencing a much more even distribution.
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4.2 Dichotomous forecast verification

This subsection presents the forecast verification results as explained in Chapter 2.1 and
3.6. A total of nine different verification methods were used, and all results for the
various forecast hours and accumulation lengths are listed in Figure and onwards

in the Appendix.

Since there are a lot of numbers to be crunched, only the parameters deemed the most
important are present in the figures below, and only for 1h and 6h accumulated precip-
itation. The other results will only be discussed very briefly, in particular mean square
error (MAE) and root mean square error (RMSE) as the ratio between these can say
something about the average size of each precipitation error. If the values are relatively
close to each other (low ratio), the error are mostly small. If the values are far away from

each other (high ratio), then there are considerable amount of large errors.

e Accuracy - fraction of forecasts that are correct, and a way to describe the forecast

quality in itself.

e Bias frequency - ratio of forecasted rain events compared to observed rain events,
and shows whether the forecast has any bias towards too few or too many rain

events.

e Brier skill score - the relative skill of a forecast compared to the climatology, and
takes into account the difficulty of forecasting the weather at each location. For
instance, forecasting dry weather at a very dry location will most often be correct

and yield a high accuracy score, but that does not mean that forecast has high skill.

4.2.1 AROME, fcfix and fcday forecast verification

Figures and show the accuracy (red), bias frequency (blue) and Brier skill score
(yellow) for 1h accumulated precipitation at each location. There are three forecast
lengths for AROME and fcfix, and two for fcday. There is also an accompanying table
(Figure where all numbers are listed.

The three south-eastern stations achieve the highest AROME +4h forecast accuracy with
around 0.90, followed by Trondheim (0.84), Bergen (0.82), while Tromsg gets the lowest
score with 0.79. Accuracy also seem to keep up fairly well as forecast lengths are increased,

with only a small reduction in the range of 0.02 - 0.04 (no reduction in Trondheim).
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Forecast verification results for 1Th accumulated precipitation
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Figure 4.8: Accuracy, bias frequency and Brier skill score verification results for 1 hour
accumulated precipitation at Bergen, Oslo and Trondheim. Forecast lengths were +4h,
+13h and +48h, using forecast models AROME, fcfix and feday (no +48h forecast).
The ideal score for all parameters are 1, shown as a black dashed line. Brier skill scores
below 0 (black dash-dotted line) signify that the forecast model quality is worse than the
reference forecast based on climatology. Data from 1. December 2019 - 31. April 2022.
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Forecast verification results for 1h accumulated precipitation
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Figure 4.9: Accuracy, bias frequency and Brier skill score verification results for 1 hour
accumulated precipitation at Tromsg, Kristiansand and Nesbyen. Forecast lengths were
+4h, +13h and +48h, using forecast models AROME; fefix and feday (no +48h
forecast). The ideal score for all parameters are 1, shown as a black dashed line. Brier
skill scores below 0 (black dash-dotted line) signify that the forecast model quality is
worse than the reference forecast based on climatology. Data from 1. December 2019 -
31. April 2022.
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Do fcfix increase the accuracy? Not really. There are only tiny differences to be seen,
and none of them are significant enough to warrant any attention. Fcday however reveals
itself as a very poor forecast (as expected), with a clear drop in accuracy for all locations,
with the biggest drop in Bergen (0.82 to 0.68).

Bias frequency results see some more fluctuations. Tromsg (0.68) and Bergen (0.72) have
a notably low bias score for +4h AROME forecast, showing a clear underforecast tendency
of rain events (negative bias). Nesbyen is the only location with a considerably high bias
score (1.33), indicating false alarm events are more prevalent than miss events. When
increasing the AROME forecast hours, the bias frequency tendency seems quite erratic
depending on location. Bergen sees a slightly less negative bias, Oslo has no bias any
more compared to +4h, Tromsg’s negative bias actually amplifies a bit, and Kristiansand

goes from a slight positive bias to a slight negative bias.

Fcfix bias share mostly the same patterns as AROME, without changing the numbers
much. Nevertheless, it seems to remove a little bit of the negative bias in Bergen and
Tromsg, which is likely related with the rather big increase in fcfix rainfall amount, and
therefore it gains some extra false alarms and fewer misses (AROME dry hour values
pushed over the 0.1 mm threshold). Feday shows practically no bias whatsoever in any

location.

Brier skill score in Bergen and Tromsg display a clear falling trend towards higher fore-
cast hours, while the south-eastern stations (especially Nesbyen) show a rather interest-
ing pattern of highest BSS from the +13h forecast (highest skill) and lowest from +48h.
Trondheim’s AROME forecast is barely more skilful than the reference climatology fore-
cast, and Nesbyen’s +48h forecast is actually slightly worse overall than the climatology
forecast. Although to be fair, since Nesbyen is such a dry place, it makes the background
forecast really hard to beat. One can essentially never predict rain, and based on these
hourly data, it would produce an accuracy score as high as 0.90, which is higher than

many AROME forecasts elsewhere.

Looking at MAE and RMSE (see Figure , their values are mostly proportional to
the total precipitation for each location, which makes senses since they look at the average
forecast error per event. Their values and therefore the average errors increase slightly
with longer forecast hours for about every location, which is to be expected. RMSE
to MAE ratio in Oslo is somewhat higher than places like Trondheim and especially
Tromsg. This indicates there are more severe forecast errors present here than in Tromsg,

which sees more low-value errors as the norm. This coheres with previous results giving
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| 1h accumulated precipitation 6h accumulated precipitation |
AROME ffix fcday AROME fefix fcday
BERGEN +h  +13h +48h | +4h +13h +48h | +4h +13h +4-8h +13-18h +25-30h| +4-9h +13-18h +25-30h| +4-8h +13-18h
Accuracy 0.82 0.80 078 0.83 0.80 0.8 0.68 0.69 0.84 0.85 0.83] 0.84 0.85 0.84| 0.67 0.68
Bias frequency 0.72 078 078 077 082 082 100 1.01 0.92 0.93 0.92] 0.95 0.96 0.95 1.00 1.00
Brier skill score 042 030 0.23] 043 029 0.22] -0.04 -0.09 0.67 0.69 0.65| 0.68 0.69 0.66| 0.31 0.33
0OSLO +4h  +13h +48h | +4h  +13h +48h | +4h  +13h +4-0h +13-18h +25-30h| +4-9h +13-18h +25-30h| +4-9h +13-18h
Accuracy 091 052 0.5 051 052 0.83 0.80 0.81 0.87 0.87 0.86( 0.87 0.87 0.86| 0.70 0.71
Bias frequency 0.91 1.00 0599 088 053 057 059 098 0.91 0.91 0.93| 0.89 0.89 0.93| 100 1.00
Brier skill score 0.32 040 015 0.33 040 015 -0.53 -0.50 0.51 0.51 0.46| 0.52 0.52 0.47| -0.14 -0.12
TRONDHEIM +h  +13h +48h | +4h +13h +48h | +4h +13h +4-8h +13-18h +25-30h| +4-9h +13-18h +25-30h| +4-8h +13-18h
Accuracy 0.84 0.84 0.84( 0.84 084 084 075 077 0.82 0.82 0.82] 0.83 0.82 0.82| 0.66 0.68
Bias frequency 0.93 101 092 089 098 089 101 1.00 1.07 1.11 1.13] 1.05 1.08 1.09 1.00 1.00
Brier skill score 0.07 0.01 0.09 0.09 004 0.08] -0.46 -0.36 0.51 0.46 0.48] 0.51 0.47 0.48| 0.05 0.07
TROMS@ +4h  +13h +48h | +4h  +13h +48h | +4h  +13h +4-0h +13-18h +25-30h| +4-9h +13-18h +25-30h| +4-9h +13-18h
Accuracy 079 077 074 079 077 075 0.69 0.68 0.80 0.80 0.78| 0.81 0.81 0.78| 0.64 0.65
Bias frequency 0.68 0.6 061 074 072 067 100 1.00 0.85 0.84 0.83( 0.88 0.88 0.86| 1.00 1.00
Brier skill score 0.28 0.22 0.6 0.27 0.22 017 -0.06 -0.10 0.60 0.60 0.55| 0.61 0.61 0.57| 0.27 0.30
KRISTIANSAND | +4h  +13h +48h | +4h  +13h +48h | +4h +13h +4-8h +13-18h +25-30h| +4-9h +13-18h +25-30h| +4-8h +13-18h
Accuracy 0.0 0.89 087 090 0.8% 087 079 0.78 0.88 0.86 0.86) 0.88 0.86 0.86| 0.69 0.69
Bias frequency 1.08 102 0.88 108 1.02 0.88 101 1.00 1.06 1.07 1.04|] 1.06 1.07 1.04| 1.00 1.00
Brier skill score 0.260 031 0.21] 0.27 0.31 0.21] -0.48 -0.45 0.58 0.53 0.50[ 0.58 0.53 0.51| -0.08 -0.06
NESBYEN +4h  +13h +48h | +4h  +13h +48h | +4h  +13h +1h +13h +48h +1h +13h +48h +4h +13h

Accuracy 092 053 0590 0532 0593 050 0.86 0.5 0.89 0.88 0.87] 0.83 0.88 0.87| 0.73 0.74
Bias frequency 1.33 107 117 126 0.9% 109 0599 0.99 1.17 1.13 1.21| 112 1.08 1.17| 1.00 1.00
Brier skill score 0.10 0.26 -0.07 0.13 0.23 -0.03] -0.58 -0.56 0.47 0.41 0.33] 047 0.43 0.33| -0.25 -0.28

Figure 4.10: Accuracy, bias frequency, and Brier skill score verification results (number
format) for 1h and 6h accumulated precipitation at each location. Forecast lengths were
+4h, +13h and +25/+48h, using forecast models AROME, fcfix and feday (no

+25h/+48h forecast). Data from 1. December 2019 - 31. April 2022.

the notion of Oslo, while relatively dry, has a clear extreme precipitation structure, in

contrast to Tromsg where it tends to rain often but mostly with very low intensity.

Figure and also show the accuracy (red), bias frequency (blue) and BSS (yel-

low), but for 6h accumulated rainfall at each location. Overall, there is less accuracy

variation between stations compared to 1h rainfall, ranging from 0.89 (Nesbyen) to 0.80
(Tromsg) for +4h AROME forecast, and the accuracy also seem to hold up slightly better

with later forecast hours. This might be because having a 6h window reduces the vari-

ability somewhat when verifying the forecast, as each hourly value are of less importance

compared to 1h verification where the model only has one attempt to get it right.
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Forecast verification results for 6h accumulated precipitation
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Figure 4.11: Accuracy, bias frequency and Brier skill score verification results for 6 hour
accumulated precipitation at Bergen, Oslo and Trondheim. Forecast lengths were +4h,
+13h and +25h, using forecast models AROME, fcfix and feday (no +25h forecast).
The ideal score for all parameters are 1, shown as a black dashed line. Brier skill scores
below 0 (black dash-dotted line) signify that the forecast model quality is worse than the
reference forecast based on climatology. Data from 1. December 2019 - 31. April 2022.
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Forecast verification results for 6h accumulated precipitation
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Figure 4.12: Accuracy, bias frequency and Brier skill score verification results for 6 hour
accumulated precipitation at Tromsg, Kristiansand and Nesbyen. Forecast lengths were
+4h, +13h and +25h, using forecast models AROME; fefix and feday (no +25h
forecast). The ideal score for all parameters are 1, shown as a black dashed line. Brier
skill scores below 0 (black dash-dotted line) signify that the forecast model quality is
worse than the reference forecast based on climatology. Data from 1. December 2019 -

31. April 2022.
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Furthermore, bias frequency also sees reduced variance across stations, i.e. values are
closer to 1. Trondheim’s overall negative bias for 1h precipitation has now changed to
a slight positive bias. Bergen and Tromsg show considerably less negative bias; while
number of misses and false alarms have not changed much, a sizeable chunk of correct
negatives are now converted into hits, since it only needs to rain at least one of the six

hours for that period to count as a rain event.

All in all, there are not a whole lot of differences for 6h verification results. Fcfix results
are by all means identical to AROME, meaning adjusting the total mean precipitation
essentially does nothing to improve AROME verification results. Increasing accumulation

length does not help fcday the slightest either.

Brier skill scores on the other hand show a substantial increase across the board, however
as the accuracy score highlights, this is not because the forecast in itself have improved
much, but the background forecast (BS,.s) is now much easier to beat. When looking
at Bergen and Tromsg, the distribution of observed rain/dry events for 6h accumulated
rainfall is basically 50/50, thus it is like flipping a coin for the background forecast when
it tries to predict the correct outcome. Even fcday with a BSS of around 0.3 has no issues

beating it.

When studying 24h and 48h accumulation results (Figure [A.25) and |A.26]), Bergen be-

comes the overall best performing station. This entails the highest accuracy score (0.89

for 24h and 0.92 for 48h), almost bias-free, very high hit rate and low false alarm ratio,
best Brier score as well as a decent BSS. Kristiansand takes a close second place, helped
among other things by a very respectable BSS (0.75 for 24h and 0.66 for 48h). Oslo and
Nesbyen seem to perform the worst, although it should be stated none of the locations

are showing particularly bad results.

In general, the longer the accumulation length is, the easier is it to forecast the correct
outcome. For instance, roughly 75% of 48h accumulated forecasts in Bergen are hits,
which after all only requires at least 0.1 mm rain in total for both data sets. And in
cases of correct negatives (no rain in either forecast or observed data), the weather has
to be stable enough for at least 48h straight to not precipitate, and the results show that
AROME is generally quite good in these situations and avoids predicting any rainfall.
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4.2.2 AROME and fcpersist forecast comparison

Figure and present the evolution of accuracy and Brier skill scores through the
first 12 forecast hours for AROME and fcpersist forecasts. The purpose with these figures
is pretty simple: Find how many hours into the forecast where the solid (AROME) and
dashed (fcpersist) graphs cross each other. The result marks the turning point where
AROME starts to outperform fcpersist.

To recap, fcpersist is the equivalent of watching the current weather outside and foresee
it is going to stay exactly the same for the next 12 hours. And due to there being
some slowness in the atmosphere, meaning it usually takes some time to switch from one
weather condition to another, fcpersist is actually a really good forecast initially, but only
for the first couple of hours before it falls off hard. As we already have seen with fcday,
basing the future weather solely on a single forecast gets (not surprisingly) less and less

accurate as time goes on.

After examining the figures and with the help from some interpolations, here are the
number of hours for each location after which one should stop looking out the window
and instead trust AROME to provide the best forecast.

e Bergen: 2.5 hours

Oslo: 2 hours (2.5 for BSS, 1.5 for accuracy)

Trondheim: 2 hours (although they follow each other closely until +4h)

Tromsg: 3.5 hours

Kristiansand: 1 hours (technically 0 hours since they are pretty much equal at +1h)
e Nesbyen: 1.5 hours

Another thing to notice is the modest score variability from hour to hour in the AROME
forecast. As the figures (and verification data in general) in the previous subsection use
very distinct forecast hours (4+4h, +13h etc.), these figures show quite well how that
might have an effect on whether the forecast is perceived as good or not, and therefore

is something to be cautious about when analysing the results.
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AROME vs. fcpersist verification results for 1Th accumulated precipitation
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Figure 4.13: Accuracy and Brier skill score verification result comparison between
AROME and fepersist forecasts for 1 hour accumulated precipitation at Bergen, Oslo
and Trondheim. The 12 first forecast hours were used for both forecasts. The ideal score
for accuracy and Brier skill score is 1, shown as a black dashed line. Brier skill scores
below 0 (black dash-dotted line) signify that the forecast model quality is worse than the
reference forecast based on climatology. Data from 1. December 2019 - 31. April 2022.
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AROME vs. fcpersist verification results for 1Th accumulated precipitation
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Figure 4.14: Accuracy and Brier skill score verification result comparison between
AROME and fepersist forecasts for 1 hour accumulated precipitation at Tromsg,
Kristiansand and Nesbyen. The 12 first forecast hours were used for both forecasts. The
ideal score for accuracy and Brier skill score is 1, shown as a black dashed line. Brier
skill scores below 0 (black dash-dotted line) signify that the forecast model quality is
worse than the reference forecast based on climatology. Data from 1. December 2019 -
31. April 2022.
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Discussion

5.1 Climatology

5.1.1 Dataset properties

All climatology results uses the first 12 forecast hours from AROME, because that is
also the time span between each unique forecast starting point that was downloaded.
This also means forecast hour +13-48h only appear for verification results. The model
may take some time to "spin up” and generate the right atmospheric state, which could
in theory affect the precipitation forecast the first couple of hours. Therefore, the total
precipitation when using forecast hours +13-24h, +25-36h and +37-48h were also looked

at.

No major deviation is found for any location, and the difference is mostly only a few
percentage points, which is not enough to alter the results in any significant way. There
also does not seem to be any clear precipitation amount trend for later forecast hours, and
some locations for example even received the highest rainfall amount for middle forecast

hours and a bit less for early and late hours.

The analysis period lasted 29 months, and while there is still a lot of data to process, it is
not really a long period of time on a climatic time-scale. A question that could be asked
is "Were these data representative for the climate at each location?” Did the datasets
contain lots of unusual weather, events and similar that could have skewed the results in

any way compared to what they would have been in different weather?

64
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Honestly, it is not really meaningful to answer these questions, as the thesis’s main
objective is to verify AROME forecast against observations for this specific period. If
the results here are poor, then chances are this would be the case anyway if we chose
any other analysis period. If the model cannot reasonably handle all the various weather
conditions we typically see in Norway, then it is simply not a good forecast. Another
point is that AROME is updated and improved on a frequent basis, and starting the
analysis period (given all data were available) several years earlier would involve data
from older AROME versions. This would make it harder to objectively compare forecast

results between earlier and recent years.

This thesis deals with point verification (as explained in Chapter 2.1), which only consid-
ers forecasts and observations for that specific place. Given some areas experience high
local variation in weather, the results shown here does not really say anything about the
forecast quality of the immediate surrounding areas. For instance, a forecasted extreme
precipitation event might contain just the right amount of rainfall and appear at the
correct time, but the forecast location was just a few kilometres off. This could produce
some bad results since there was only a (small) spatial error, and the verification used

here only considers temporal and quantity errors.

The addition of other variables like temperature, wind speed, wind direction and geopo-
tential, as well as raw AROME forecast data could further help explaining the various
forecast deviations, though that was outside the scope of this thesis. In that case, it would
now be possible to determine in greater detail if the precipitation form (rain, snow, hail
etc.) and wind speed/direction has any correlation with forecast quality, and perhaps
identify certain conditions where AROME deviates the most from observed results. This

is either way a potential topic for further research.

5.1.2 Seasonal weather duration

In Chapter 3.5.1 about weather persistence, there was a section explaining how rain/dry
weather durations were counted when going from one season to another. The method
used was to always treat the start of a new season as the beginning of a new period,
no matter if the weather remained unchanged when switching into the new season. At
first glance this seemed like an obvious weakness, and it was shown this approach did
increase the number of total periods by 2-5% for daily data, and slightly lower the average

rain/dry weather duration as a result.

As such, an alternative approach could be to only let the start date of a rain/dry weather

period determine which season it belongs to, no matter how far into the next season it
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continues. However, this method could run into some issues with long spells of extremely
stable weather. Theoretically, there could be a drought beginning in late February (con-
sidered a winter dry weather period) and extend far into spring. All these dry hours would
still contribute to the average dry weather duration for spring, but not be considered as
a spring dry weather period since the drought started in February. We could now end
up with an extraordinary long winter dry weather period on paper even though most of
it took place during spring, and few to none spring dry weather periods although these

conditions had evidently been present.

To conclude, each method seems to have its advantages and disadvantages, but they both
appear to have a potential weakness for stable weather (most applicable to Nesbyen)
where the likelihood of a natural weather change right at a season boundary is very low,

splitting that period in two.

Nevertheless, the general features shown in Figure turn out as expected. Dry weather
duration is highest during spring, (especially for the south-eastern stations), which from
monthly data also sees the least amount of precipitation overall. Spring usually sees less
low-pressure activity in the Atlantic Ocean due to lower latitudinal temperature gradient,
and the air is still not warm enough for significant convective systems to form, leading to
less overall rainfall in these months. Convective systems also depend on sufficient ground
heating from the sun for hot air to rise up and form clouds, but the sun during spring is

still fairly low on the horizon.

Nesbyen and Oslo are located in what is called the rainshadow of the major mountain
ranges in Southern Norway. Any moist air coming from the west need to rise and pass
over these first, and by doing so enough moisture is usually depleted from the air that
it is no longer able to precipitate when arriving in the eastern part of Norway. Bergen,
Trondheim and Tromsg on the other hand are all coastal cities facing the Atlantic, and

are surrounded by mountains with potential for orographic enhancement.

5.1.3 Variability in AROME precipitation distribution

Bergen and Tromsg are the clear outliers when it comes to AROME forecast climatology.
First, it does not predict enough rainfall with only 77% and 78% of observed rainfall. In-
terestingly, AROME forecasted 51 mm more total rainfall in Trondheim than Tromsg, yet
the observations say the actual difference is over 919 mm in favour of Tromsg. The stark
difference between Trondheim and Tromsg/Bergen is not immediately obvious, although
Trondheim is situated a bit further inland where the surrounding (mountainous) coastline

follows a southwest-northeast direction that might provide some extra rainshadow.
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Second, AROME precipitation distribution shows way too many 0 mm hours, and way
too few 0.1-1mm hours compared to what we see from observations. At the same time,
when it rains, the percentile value ratios are honestly quite good, albeit a tad too high.
Since the pool of AROME rain hours is much lower than the pool of observed hours,
the 50th percentile value (median) could be ranked at number 2500/21000 for AROME
and 3000/21000 for observed data. This works in favour of AROME for precipitation
intensity ratio, because even with less rain overall, there are less rain hours to divide
the precipitation between as well. This shows the under-prediction in total precipitation

mostly happens independent of quantities.

AROME predicts less summer rainfall relative to other seasons, although it is hard to
find a definitive pattern. For south-eastern stations, this is mostly due to too much win-
ter/spring precipitation, not necessarily too little summer rain. One possible explanation
could be AROME underestimating the rainshadow effect, and that less moisture crosses
the mountains than anticipated. Tromsg struggles particularly with forecasting enough
winter and spring precipitation, which normally falls as snow. This could indicate some
issues with AROME winter moisture generation in the Arctic, like in situations where
very cold air is heated above the relatively warm coastal sea, resulting in often short-lived
convective winter precipitation. This could also explain why Nesbyen, which has an inland
climate and thus does not experience these conditions, overestimates total winter/spring

precipitation instead.

There are actually not that many hours from post-processed AROME forecast data that
show exactly 0 mm, instead a fair share of them show trace amount of precipitation that
does not pass the 0.1 mm/h threshold (this is observed in real life too). While these
are included in the total precipitation calculations, they are nevertheless considered as
dry hours elsewhere. It could seem that AROME precipitation distribution is too narrow
when generating these hours with a trace of rainfall. In other words, not enough AROME
forecast hours with very light rain passes the threshold value, while in reality the variation

might be bigger and hence more values are likely to count as rain hours.

As mentioned, why this issue only seems to occur in Bergen/Tromsg and not anywhere else
is unclear (Oslo shows minor signs of this too, but on a much smaller scale). Orographic
effects not being fully resolved could be an option, where moisture advecting from the

ocean is more affected by the local topography than first anticipated.

Another option is the air (when approaching a mountain range) not being forced upwards

early enough due to the local high pressure anomaly that will form upstream. This would
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Figure 5.1: Net precipitation effect in Bergen city centre (red dotted area) by removing

Lovstakken (black-gridded area) from the model. Numbers are control member (reality)

minus no-mountain member, meaning positive values show a relative decrease in rainfall
when removing Lgvstakken.

shift the model precipitation field closer to the mountain than what the observations tell.

Jonassen et al.| (2013]) showed that artificially removing Lovstakken (one of Bergen’s seven

mountain ranges, located west-southwest of the city centre) from their model would in
fact increase the precipitation amount on the leeward-side. This suggests Lovstakken
(with a summit of 477 m) creates a so-called spillover effect, where some of the extra

precipitation generated by orographic enhancements on the windward side is carried over
to the leeward-side (see Figure |5.1)).

The purpose of fcfix is to check if removing the mean bias could improve AROME forecast
quality, and for Bergen/Tromsg (where the fcfix ratio is highest), this does not seem to
be the case. Fcfix is not able to do anything about the imbalance between dry and very
light rain hours, and instead for Bergen adds way too many heavy rain and extreme hours
and thus a too high mean extreme value. Having the same total precipitation amount as
observed data, but barely any more rain hours than AROME, results as seen in too high

percentile values.

Fcfix data for Bergen improves with daily results for precipitation distribution and per-
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centiles, though some of this could be explained by the nature of mean values. The longer
the time span is for each value, the better fcfix becomes. For total rainfall, it is a perfect
match with observed results. For monthly data, it is still a clear improvement, but it
cannot do (and is not designed to do) anything with the inherent monthly ratio variability

of AROME. And for daily data, we see it make a really good precipitation distribution.

When considering the hourly trace rainfall from above, chances are high they will pass
the 0.1 mm threshold when accumulated into 24 hours. Days that record less rainfall
than 0.1 mm would very often consist of relatively stable weather that does not offer
good opportunities for rainfall to form, which likely lowers the difficulty for AROME to
predict the correct daily forecast. With hourly variability getting evened out, the increase

in mean rainfall from fcfix becomes proportionally more important.

5.1.4 Underestimation of AROME extreme precipitation

As stated in the Results, the overall trend is the hourly forecast to observed ratio decreases
as precipitation events get more extreme, i.e. less sharpness. This could indicate an issue
with enough moisture generating and precipitating fast enough. The deviation is arguably
highest for autumn months in Bergen, which again could be linked to an underestimation
of orographic effects. AROME mean summer extreme values in Oslo and Trondheim on
the other hand matches observations quite well, and these events are also fairly common

with a return value below 100 hours which makes these results more reliable.

AROME also seems to improve a bit when the time interval is increased from hours
to days (except for Bergen), for instance the downward ratio trend with more intense
rainfall is mostly gone. Daily extremes are usually more variable, where not all 24 hours
are just as intense as others, and it could very well be some dry hours in there as well. If
AROME’s resolution (the ability to distribute precipitation into different categories) is a
bit too low overall, then increasing the time window could have the same effect as with
trace precipitation where the average rainfall matters more, and where the hard-to-predict

observed extreme peaks will be averaged out.

How distinct extreme precipitation values are for each location might explain some of
the results in Figure [4.6] In other words, areas where top extremes are rare but intense,
and not common but relatively moderate and thus blends inn with other medium rainfall
hours. Tromsg is definitely the best example here of the latter category, with plenty of low-
intensity rain hours but very few heavy rainfall hours. It is also the only Arctic location
included with the coldest weather overall, and it is known from Clausius-Clapeyron’s

equation that colder air can hold less moisture than warmer air.
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This should in theory make it harder to score hits for shared extreme hours if the boundary
for what and what does not count as an extreme event is hard to distinguish between.
Hence, only small variations in precipitation amount between forecast and observations
could see the forecast value ranked at 100th place plummet down to 600th place for
observed values and fall outside the top x% bracket. Tromsg basically sees no seasonal
variation in extreme precipitation either, meaning the time window for when such an
event may reasonably appear is spread out over the entire year, making it harder to
pinpoint the exact hour of the extreme. These are all plausible reasons why it is not

performing very well here.

5.2 Forecast verification

Overall forecast quality only sees a very small decrease for longer forecast hours, and
some of it might be due to the inherent variability from hour to hour seen in Figure [4.13
and [£.14. How AROME would perform as a medium or long-range forecast would be
interesting to witness, though the extra computational power needed for such a high-

resolution grid would be immense.

Not surprisingly, it is the south-eastern stations that performs best for 1h accumulated
precipitation, as less rain hours overall and relatively stable weather makes it easier to get
hits and correct negatives. Kristiansand perform really well here given it is the second
wettest place after all, with only a slightly worse accuracy and BSS than Oslo which
only receives about 60% of the total rainfall. It also achieved the second highest hit rate

(ability to forecast observed rain events), only behind Nesbyen.

Brier skill scores show the relative skill of a forecast compared to the climatology, and
is directly related to the difficulty of forecasting at a location, in this case the ratio of
rain and dry hours. Bergen earns the highest BSS (0.42) as it is a rather difficult place
to forecast (high uncertainty), and although the climatology results are not particularly
great, AROME delivers a reasonably good forecast verification result compared to the
reference forecast. Tromsg’s AROME forecast show about the same relative skill as
Kristiansand, but this does not take into account how Kristiansand’s climatology forecast
is much harder to beat. Trondheim and Nesbyen’s BSS scores are barely positive. For
Nesbyen, this is sort of understandable consider how ”easy” it to get a high accuracy

score there, whereas for Trondheim it is a rather poor result, as only Bergen and Tromsg
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got an easier BS,.; to beat.

Increased accumulation lengths (especially +24h and +48h) see an overall increase in
accuracy and BSS, which again shows how hourly forecasts are by far the hardest to get
right. Interestingly, Bergen, Tromsg and Trondheim are now among the top performers
for accuracy, while Oslo and Nesbyen show a clear decrease. This has to do with how the
ratio of rain/dry hours shift with longer accumulation length. Where dry places like Oslo
and Nesbyen approach a 50/50 split (harder to get a high accuracy score and hit rate,
and a low false alarm ratio), other stations start to see a clear majority of rain events.
BSS takes this into account, and shows that AROME in Kristiansand delivers the most

skilful forecast, with Tromsg in a definitive last place.

Fcday forecast was made as a low-quality challenger to AROME, and it is safe to say it has
very little to contend with. It performs significantly worse than AROME in pretty much
every verification metric, and shows that the weather in Norway is just too unstable
to rely on yesterday’s observations as the sole method to forecast the future weather.
Much of the same can be said about fcpersist, however it also played an important role
in quantifying after how long AROME becomes better than purely relying on current
observations. Both fcday and fcpersist are based solely on observations, which is why

they show no bias at all against observed data.

As with hourly climatology results, fcfix does not really change much regarding verifi-
cation results, which shows the hourly forecast variability is far more important than

removing the bias on mean precipitation.

5.3 Choosing the precipitation threshold

Depending on the precipitation distribution of your data, the chosen precipitation thresh-
old value could be important for the results. This thesis uses a threshold value of 0.1
mm /h and 0.1 mm/day, but especially the daily limit is quite forgiving since 0.1 mm pre-
cipitation over 24 hours really is not much. For instance, thresholds like > 0.2 mm /h and
> 1 mm/day are often used as well, the latter one is the definition of a wet day in WMO’s
guidelines on calculating climate normals (WMO, 2017). Increasing the threshold value

adds an extra buffer and reduces some variability from the very light rain hours.
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Tromsg would arguably be the most interesting location to look at if threshold values
were increased to those above, since it experienced a very high amount of light rain hours
and a very low fcfix ratio. To give an idea, Tromsg observed 6325 rain hours in total.
1807 of those (28.6%) were exactly 0.1 mm, while 1079 (17%) recorded 0.2 mm. This
means close to half of all observed rain hours only recorded 0.2 mm or less. If the hourly
precipitation threshold was > 0.2 mm, the total number of rain hours would now be
2992 (AROME), 3376 (fcfix) and 4518 (observed), which is an AROME vs. observed
rain hours ratio of 0.66. This is almost identical to the 0.1 mm/h ratio (0.65), showing
that increasing the threshold would not have any significant impact here. If we do the
same experiment for daily data with a new threshold of > 1 mm, the new AROME vs.
observed rain days ratio is 92.5%, slightly down from 93%.

Oslo also forecasts a bit too few rain hours as seen in Figure [4.3] but the new threshold
values from above are now pretty close to 1, which could have some follow-up effects
on percentiles. Either way, keeping the threshold at 0.1 mm allows us to better spot
precipitation distribution anomalies, and provides more information about very light

rain hours since less of them are ”lost” as dry hours.

5.4 How trustworthy are observed data?

All precipitation observations have associated uncertainties with them (see Chapter 3.1.1),
which makes it harder to assess the true forecast quality. Koltzow et al. (2020) found that
wind-induced undercatch of solid precipitation in cold regions in Norway has a significant
impact on verification results, and that the verification process ideally should be split
between liquid and solid precipitation. A transfer function was applied to counteract the
undercatch, and increase the observed measurements closer to the ”"true” value, although

this process also brings its own uncertainties.

Since neither wind data nor temperature data is included in this thesis, it is not really
possible to determine when it rains and when it snows. That said, an estimate can still
be made by taking the general climate for each location into consideration. The most
relevant data to look at is winter precipitation ratio between AROME and observed data
(Figure in the Appendix), particularly in Tromsg, Oslo and Nesbyen.
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As mentioned before, Tromsg forecasts way too little winter
precipitation (ratio of 0.67), which gives the opposite effect of
precipitation undercatch. This does not mean no undercatch
is present here (if it is, the true ratio would be even lower),
just that it is unlikely to be the main reason why AROME
underperforms during winter. Oslo and Nesbyen looks more
promising, as the winter ratios are among the highest for
any season, and well above 1. Although neither of them
are known for being very windy during winter months, it
is definitely possible there could be some undercatch issues,

but that remains as speculations for now.

Figure[5.2|is an example of a small section of observed hourly
precipitation values in Tromsg. It shows two single low-
intensity rain hours among lots of dry hours, and none of
these hours contained any rainfall in the forecast. This pe-
culiar pattern is found rather commonly in observed data,
and it might look a bit strange for single hours with very
light rain to appear seemingly out of nowhere before vanish-
ing the next hour. This does not mean these observations are
wrong, but it would be interesting to see if nearby stations on
Tromsgya (e.g. at Langnes airport and Tromsg Holt) show
a similar pattern. In fact, these rain hours do add up quite

a bit over time, and are also the cause of many rain days.
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Figure 5.2: A sequence of
observed precipitation
hours in Tromsg. It was
not uncommon see one or
two low-intensity rain
hours right in the middle
of longer dry weather
periods.
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Conclusion

The goal of this thesis was to validate the AROME precipitation forecast at specific
locations deemed to provide the best forecast value. Both post-processed AROME and
observed precipitation data were downloaded, with an analysis period from 1. December
2019 to 31. April 2022, before being processed to produce a series of climatology and
verification results. Based on these results and their discussion, here is a list ranking the

overall AROME forecast quality from best to worst location, including their reasoning.

1. Kristiansand - Some really solid results for almost all parameters. Virtually no
fefix ratio deviation, and close to ideal precipitation distribution and percentile
ratios for almost all values. Some monthly rainfall ratio disparity is present, but is
still among the best performers. A bit too low top 0.1% mean extreme precipitation
ratio overall (though this was the case everywhere) and during summer, but achieves
one of the best results for shared extreme hours. It is also among the top accuracy
and BSS scores performers for every accumulation length, which is really strong as

the second wettest location. On par with fcpersist even after just one hour.

2. Oslo - Pretty good fefix ratio with 1.08. Decent precipitation distribution ratio
other than extreme values, though low percentile ratios are way too high and high
percentiles ratios a bit too low. Reasonably good monthly ratio. Perhaps the best
overall mean extreme precipitation ratio, and one of few locations that get the
average summer extreme rainfall right. Third place for top 1% shared extreme

hours, but wins the top 0.1% category. Solid verification results all around.

3. Nesbyen - Somewhat too high fcfix ratio, however it is also the driest location

by far. Precipitation distribution ratio is rather variable, and with a downward

74
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trend towards higher values. Decent percentile results, but with the same trend.
Some very notable spikes for monthly ratio results, but this is mostly due to very
low precipitation values. Too low mean values for the highest extremes (for all
seasons), but pretty much spot on for daily mean extremes. Best hit rate of all
stations for top 1% shared extreme hours. Highest accuracy for 1h accumulated

precipitation, however BSS tells us the relative skill is not that high.

4. Trondheim - Fcfix ratio a bit too high (1.14). Forecasts too many mid-intensity
rain hours but to few extremes, although percentiles ratios are quite good apart from
25th. Highly variable monthly ratio. Quite good overall mean extreme precipitation
ratio, albeit with the same downward trend as the others. Arguably the best forecast
for seasonal mean extreme ratios, but quite poor score for shared extreme hours.
Mediocre 1h accuracy, and BSS shows it is barely better than reference forecast.

Pretty decent results for longer accumulation lengths.

5. Bergen - Way too low fcfix ratio given how wet Bergen is, and generally too
few forecasted rain hours overall (and too many dry hours). Very good percentile
ratios, but because the low total precipitation amount is offset by the low total
rain hours. Monthly ratio is generally irregular and too low. Also too low mean
extreme precipitation ratios, both overall and seasonal. Average performance in
shared extreme hours. Low accuracy and bias frequency, but fairly high BSS. Both

accuracy and bias improves greatly with longer accumulation lengths.

6. Tromsg - Very low fcfix ratio, way too few rain hours and likewise way too many
dry hours. Precipitation distribution ratio for heavy rain hours is highly variable
(although low sample size). Quite good percentile ratios apart from 25th. Decent
mean extreme ratio, but AROME adds more seasonal extreme variation than ob-
served. By far the worst results for top 1% shared extreme hours, but decent for
top 0.1%. Very low accuracy and bias frequency, BSS is not that good either, and

verification results remain quite poor also for longer accumulation lengths.

As for future work, including other variables like wind and temperature data could help
getting an even more detailed forecast validation for more locations, and better quality
control of observed data. This might also give more definitive answers to how and why
AROME seem to underperform in some areas. Another point is to cross-check Tromsg
observed data with other nearby stations, and by its extension figure out why AROME

is not able to produce enough winter precipitation here.
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Appendiz A. Data

BERGEN Total Winter Spring Summer Autumn
Total rain hours 6240 2496 1206 794 1744
Total dry hours 14528 4007 4675 3622 2624
Total NaM hours 0 0 0 0 0
Total rain weather periods 1409 531 322 241 317
Total dry weather periods 1409 531 323 243 319
Avg. rain weather duration in hours 4,429 4,701 3.745 3.295 5.502
Avg. dry weather duration in hours 10.595 7.546 14,474 14.905 8.226
0sLO Total Winter Spring Summer Autumn
Total rain hours 2757 1074 435 510 6738
Total dry hours 18411 5429 5386 3906 36590
Total NaM hours 0 0 0 0 0
Total rain weather periods 736 248 143 197 150
Total dry weather periods 737 249 145 199 151
Avg. rain weather duration in hours 3.746 4,331 3.462 2.589 4,520
Avg. dry weather duration in hours 24,981 21.803 37.145 19.628 24,437
TRONDHEIM Total Winter Spring Summer Autumn
Total rain hours 3668 1221 930 530 987
Total dry hours 17008 5282 4483 3386 3357
Total NaM hours 432 0 468 0 24
Total rain weather periods 1152 358 337 179 279
Total dry weather periods 1156 359 342 181 281
Avg. rain weather duration in hours 3.184 3.411 2.760 2.961 3.538
Avg. dry weather duration in hours 14.713 14.713 13.108 21.470 11.947
TROMS@ Total Winter Spring Summer Autumn
Total rain hours 6401 2138 2144 893 1206
Total dry hours 14755 4333 3737 3523 3162
Total NaM hours 12 12 0 0 0
Total rain weather periods 1433 425 458 269 284
Total dry weather periods 1431 423 459 269 284
Avg. rain weather duration in hours 4,467 5.078 4.681 3.320 4,246
Avg. dry weather duration in hours 10.311 10.243 8.142 13.097 11.134
KRISTIANSAND Total Winter Spring Summer Autumn
Total rain hours 3101 1521 485 472 673
Total dry hours 17419 4982 5372 3898 3167
Total NaM hours 643 0 24 96 528
Total rain weather periods 857 382 130 160 186
Total dry weather periods 360 384 132 163 189
Avg. rain weather duration in hours 3.618 3.982 3.731 2.638 3.618
Avg. dry weather duration in hours 20.255 12.974 40.697 23.914 16.757
NESBYEN Total Winter Spring Summer Autumn
Total rain hours 2019 755 287 439 548
Total dry hours 15145 5748 5594 3987 3820
Total NaM hours 0 0 0 0 0
Total rain weather periods 548 249 94 155 151
Total dry weather periods 549 251 96 157 153
Avg. rain weather duration in hours 3.116 3.032 3.053 2.768 3.629
Avg. dry weather duration in hours 29.505 22.900 58.271 25.3595 24,967

Figure A.1: Total rain/dry weather periods as well as average rain/dry weather
duration in hours for observed data at each location.
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BERGEN Total Winter Spring Summer Autumn
Total rain days 614 208 147 111 148
Total dry days 268 63 98 73 34
Total NaM days 0 0 0 0 0
Total rain weather periods 112 27 42 28 17
Total dry weather periods 112 27 42 30 17
Avg. rain weather duration in days 5.482 7.704 3.500 3.964 8.706
Avg. dry weather duration in days 2.393 2.333 2.333 2.433 2.000
0sLO Total Winter Spring Summer Autumn
Total rain days 422 141 85 97 99
Total dry days 460 130 160 87 a3
Total NaM days 0 0 0 0 0
Total rain weather periods 146 45 39 34 30
Total dry weather periods 147 a5 40 35 30
Avg. rain weather duration in days 2.890 3.133 2.179 2.853 3.300
Avg. dry weather duration in days 3.129 2.826 4.000 2.486 2.767
TRONDHEIM Total Winter Spring Summer Autumn
Total rain days 510 160 131 96 123
Total dry days 350 111 94 38 57
Total NaM days 22 0 20 0 2
Total rain weather periods 126 40 35 33 22
Total dry weather periods 127 38 37 34 21
Avg. rain weather duration in days 4.048 4,000 3.743 2.909 5.591
Avg. dry weather duration in days 2.756 2.921 2.541 2.588 2.714
TROMS@ Total Winter Spring Summer Autumn
Total rain days 637 191 188 128 130
Total dry days 244 79 57 56 52
Total NaM days 1 1 0 0 0
Total rain weather periods 107 34 30 26 23
Total dry weather periods 105 30 28 26 22
Avg. rain weather duration in days 5.953 5.618 6.267 4.523 5.652
Avg. dry weather duration in days 2.324 2.633 2.036 2.154 2.364
KRISTIANSAND Total Winter Spring Summer Autumn
Total rain days 422 173 76 76 97
Total dry days 432 98 168 103 63
Total NaM days 28 0 1 5 22
Total rain weather periods 135 40 33 35 29
Total dry weather periods 134 41 33 37 27
Avg. rain weather duration in days 3.126 4.325 2.303 2171 3.345
Avg. dry weather duration in days 3.224 2.390 5.091 2.784 2.333
NESBYEN Total Winter Spring Summer Autumn
Total rain days 367 127 56 91 93
Total dry days 515 144 189 93 39
Total NaM days 0 0 0 0 0
Total rain weather periods 141 43 32 35 33
Total dry weather periods 142 45 33 36 33
Avg. rain weather duration in days 2.602 2.953 1.750 2.600 2.818
Avg. dry weather duration in days 3.627 3.200 5.727 2.583 2.697

Figure A.2: Total rain/dry weather periods as well as average rain/dry weather
duration in days for observed data at each location.
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BERGEN TROMS® |
Forecast Observed  fcfix Forecast Observed fcfix
0 mm 16397 14770 16073 16788 14591 16389
0.1-1 mm 2979 4273 2974 3531 2607 3669
1-2 mm 8238 991 904 436 263 605
2-3 mm 372 424 423 104 107 166
3-4mm 177 228 237 24 32 a7
4-3 mm 98 129 137 2 3 16
-6 mm a1 69 91 1 &
6-7 mm 24 23 39 2 2
-8 mm 8 17 32 1 3
=3 mm 5] 16 a0 1 0
# MaM values 228 228 228 252 252 252
Total hours 21168 21168 21168 21168 21168 21168
0s5L0 KRISTIANSAND
Forecast Observed  fcfix Forecast Observed  fcfix
0 mm 18424 18218 18492 17203 17251 17212
0.1-1 mm 18350 2173 1881 2120 2077 2121
1-2 mm 429 355 400 a72 219 a66
2-3mm 121 119 108 221 256 220
3-4mm 45 34 34 100 115 99
4-3 mm 13 14 10 a0 a7 45
-6 mm a4 9 3 27 29 28
-7 mm 4 3 3 20 14 15
7-2mm 3 3 1 10 8 9
=3 mm 7 10 5] ] 12 5
# MaM values 228 228 228 240 240 240
Total hours 21168 21168 21168 21168 21168 21168
TROMNDHEIM MNESBYEN
Forecast Observed  fcfix Forecast Observed fcfix
0 mim 16918 16823 17067 18720 18945 18887
0.1-1 mm 2838 3026 2818 1928 1752 1841
1-2 mm 489 a411 410 220 150 164
2-3 mm 117 90 96 45 a7 26
3-4mm a4 35 a7 10 16 11
4-3 mm 19 18 12 7 & 5
-6 mm 5] 5] a4 a4 3 3
6-7 mm a4 a4 2 3 3 1
-8 mm 1 2 1 1 3 1
=8 mm 2 3 1 2 3 1
# MaM values 720 720 720 228 228 228
Total hours 21168 21168 21168 21168 21168 21168

Figure A.3: Distribution of hourly precipitation amount for AROME, observed and fcfix
data at each location.
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BERGEN TROMS@
BERGEN Forecast Observed fcfix Forecast Observed fcfix
0 mm 279 264 272 286 242 279
0.1-5 mm 309 275 275 398 397 357
5-10 mm 107 97 104 127 121 139
10-15 mm 64 76 73 30 B3 32
13-20 mm a0 61 37 15 28 18
20-25 mm 30 33 28 ] ) 11
25-30 mm 11 13 32 1 3 a
30-35 mm 8 15 13 0 1 2
35-40 mm 4 11 10 1 ] 1]
40-45 mm 6 6 4 0 ] 1
45-50 mm 4 2 ] ] ]
=30 mm 3 12 15 0 0 1]
# NaM values 17 17 17 19 19 19
Total days 882 882 882 382 382 882
0OsL0 KRISTIANSAND
0SLO Forecast Observed fcfix Forecast Observed fefix
0mm 488 453 4591 404 423 404
0.1-5 mm 242 297 244 264 236 264
5-10 mm 67 56 70 63 75 64
10-15 mm 34 29 32 40 29 40
15-20 mm 16 9 13 26 20 25
20-25 mm 3 10 3 12 14 13
23-30 mm 4 7 i ! 2 18 7
30-35 mm 6 2 ! 10 11 10
35-40 mm 2 1 1 5 5 5
A0-45 mm 1 1 1 1
45-50 mm 0 0 ] 3
=50 mm 0 0 0 0
# NaM values 17 17 17 43 43 43
Total days 882 882 882 882 882 282
TRONDHEIM NESBYEN
TRONDHEIM | Forecast Observed fcfix Forecast Observed fcfix
0mm 324 343 330 479 207 489
0.1-5 mm 358 354 373 307 295 312
5-10 mm 98 91 28 53 36 438
10-15 mm 38 33 30 16 15 11
15-20 mm 11 12 12 5 5 3
20-25 mm 5 2 2 3 5 1
25-30 mm 2 3 5 1 1 ]
30-35 mm 4 1 2 0 1 1
35-40 mm 2 3 0 0 0 1]
AQ-45 mm ] 1 ] 1 ] 1]
45-50 mm 0 0 0 0 0 1]
=50 mm 1 0 1 0 0 1]
#MNaN values 39 39 35 17 17 17
Total days 882 882 882 882 882 882

Figure A.4: Distribution of daily precipitation
data at each location.

amount for AROME, observed and fcfix
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BERGEN Mean Precip intensity 25 percentile = 50 percentile = 75 percentile 90 percentile = 99 percentile  # of rain hours
Forecasted data 0.235 1.059 0.247 0.582 1.392 2.641 5.773 4543
Observed data 0.303 1.027 0.200 0.500 1.300 2.700 5.900 6170
Ratio 0.777 1.031 1.234 1.164 1.071 0.978 0.979 0.736
ffix 0.303 1.279 0.263 0.669 1.684 3.245 7.361 4867
0SL0 Mean Precip intensity 25 percentile = 50 percentile 75 percentile 90 percentile = 99 percentile  # of rain hours
Forecasted data 0.099 0.796 0.224 0.472 0.991 1.7%6 4.358 2516
Observed data 0.091 0.703 0.100 0.200 0.800 1.700 5.100 2722
Ratio 1.084 1.132 2.240 1.574 1.239 1.056 0.855 0.924
fefix 0.091 0.752 0.219 0.456 0.937 1.679 4.121 2448
TRONDHEIM Mean Precip intensity 25 percentile = 50 percentile = 75 percentile 90 percentile = 99 percentile  # of rain hours
Forecasted data 0.121 0.673 0.207 0.385 0.832 1.523 3.951 3530
Observed data 0.106 0.599 0.100 0.300 0.700 1.400 3.900 3625
Ratio 1.143 1.123 2.070 1.282 1.188 1.088 1.013 0.974
fefix 0.106 0.610 0.197 0.357 0.748 1.359 3.478 3381
TROMS@ Mean Precip intensity 25 percentile 50 percentile 75 percentile 90 percentile 99 percentile  # of rain hours
Forecasted data 0.116 0.557 0.190 0.350 0.682 1.256 2.896 4128
Observed data 0.148 0.489 0.100 0.300 0.600 1.100 2.800 6325
Ratio 0.787 1.141 1.300 1.167 1.136 1.142 1.034 0.653
fefix 0.148 0.656 0.199 0.395 0.792 1.516 3.608 4527
KRISTIANSAND Mean Precip intensity 25 percentile = 50 percentile = 75 percentile 90 percentile = 99 percentile  # of rain hours
Forecasted data 0.159 1.013 0.246 0.546 1.285 2,442 6.090 3125
Observed data 0.158 1.046 0.200 0.600 1.400 2.600 6.400 3077
Ratio 1.007 0.968 1.232 0.910 0.918 0.939 0.951 1.016
ffix 0.158 1.009 0.247 0.544 1.277 2.427 6.048 3116
NESBYEN Mean Precip intensity 25 percentile = 50 percentile 75 percentile 90 percentile 99 percentile  # of rain hours
Forecasted data 0.061 0.544 0.183 0.316 0.641 1.152 3.047 2220
Observed data 0.051 0.531 0.100 0.200 0.600 1.200 4.100 1995
Ratio 1.214 1.024 1.834 1.581 1.068 0.960 0.850 1.113
fefix 0.051 0.477 0.170 0.284 0.559 1.019 3.141 2053

Figure A.5: Mean, precipitation intensity and various percentiles for hourly AROME,
observed and fcfix data at each location. Ratio is forecast divided by observed data.
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BERGEN Mean Precip intensity 25 percentile = 50 percentile = 75 percentile = 90 percentile = 99 percentile  # of rain days
Forecasted data 5.644 8.323 1.439 4.475 11.480 21.137 49.599 586
Observed data 7.284 10.454 1.500 6.000 15.200 24,700 54.500 601
Ratio 0.775 0.754 0.960 0.746 0.755 0.856 0.910 0.975
ffix 7.262 10.584 1.760 5.712 14.532 27.114 63.818 5893
0SL0 Mean Precip intensity 25 percentile 50 percentile = 75 percentile = 90 percentile = 99 percentile  # of rain days
Forecasted data 2.380 5.466 0.711 2.858 7.245 14.080 35.843 377
Observed data 2.206 4.631 0.400 1.800 6.100 13.600 31.000 412
Ratio 1.079 1.180 1.777 1.588 1.188 1.035 1.156 0.915
fefix 2.1395 5.081 0.690 2.697 6.756 12.987 33.061 374
TRONDHEIM Mean Precip intensity 25 percentile = 50 percentile = 75 percentile = 90 percentile = 99 percentile  # of rain days
Forecasted data 2.914 4,705 0.929 2.705 6.250 11.489 31.911 513
Observed data 2.553 4.304 0.600 2.500 5.900 10.600 31.600 500
Ratio 1.141 1.093 1.549 1.082 1.059 1.084 1.010 1.038
fefix 2.548 4.162 0.885 2.450 5.601 10.047 27.906 513
TROMS@ Mean Precip intensity 25 percentile 50 percentile 75 percentile 90 percentile 99 percentile  # of rain days
Forecasted data 2.790 4.174 0.947 2.669 5.756 9.738 21.321 577
Observed data 3.554 4.939 0.900 2.700 7.400 12.800 23.900 621
Ratio 0.785 0.845 1.053 0.989 0.778 0.761 0.892 0.929
fefix 3.547 5.244 1.162 3.299 7.283 12.130 27.104 584
KRISTIANSAND Mean Precip intensity 25 percentile = 50 percentile = 75 percentile = 90 percentile = 99 percentile  # of rain days
Forecasted data 3.828 7.381 1.041 3.596 10.022 19.963 42.146 435
Observed data 3.804 7.672 0.900 3.500 9.900 22.500 44.000 416
Ratio 1.006 0.962 1.157 1.027 1.012 0.887 0.958 1.046
ffix 3.802 7.330 1.034 3.571 9.953 19.826 41.857 435
NESBYEN Mean Precip intensity 25 percentile = 50 percentile = 75 percentile = 90 percentile = 99 percentile  # of rain days
Forecasted data 1.475 3.254 0.599 1.746 4,339 8.308 23.763 386
Observed data 1.212 2.928 0.200 1.300 3.400 7.200 24.700 358
Ratio 1.218 1.125 1.957 1.343 1.276 1.154 0.962 1.078
fefix 1.215 2.783 0.531 1.473 3.648 6.902 19.570 376

Figure A.6: Mean, precipitation intensity and various percentiles for daily AROME,
observed and fcfix data at each location. Ratio is forecast divided by observed data.
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BERGEN 0s5L0
Forecasted Observed . . Forecasted Observed . .
data data Ratio  fcfix data data Ratio  fcfix
'Dec-2019" 281.244 368.700 0.763 361.370 35.402 57.000 1498 T78.772
"Jan-2020' 340.047 470,700 0,722 437531 92.135 73,600 1.219 84.983
'Feb-2020' 328.154 330,500 0.992 422229 65.768 38.900 1.091  ©60.663
"Mar-2020' 210.908 257400 0.819 271.371 459,153 39.100 1.257  45.337
"Apr-2020' 132.134 172,300 0.767 170.014 36.069 35.000 1.031 33.269
"May-2020' 73.998 114.500 0.646 95.212 48.953 42,800 1.144  45.153
"Jun-2020' 44188 46.300 0954  56.356 135.029 119.400 1.131 124.547
"Jul-2020' 168.576 222,400 0.758 216.903 120.784 146.600 0.824 111.407
‘Aug-2020' 100.162 171700 0583 128.876 40.789 24.600 0747 37.004
'Sep-2020' 256.417 383.600 0.6068 329926 70.842 76.600 0.925 65.343
'Oct-2020' 216.153 193.100 1.119 278.120 200.181 206.200 0,971 184.641
'Mov-2020' 309.217 452,000 0.669 397.863 102.491 85.300 1.202 94.534
'Dec-2020" 1658.454 207.300 0.813 216.735 161.535 135.000 1.162 148.995
'Jan-2021' 115.929 117.700 1.019 154.310 54.887 47.100 1.165  50.626
'Feb-2021" 81.734 114.400 0.714 105.166 37.920 28.600 1.326 34.976
‘Mar-2021" 153.130 219.300 0.698 197.029 41.480 33900 1.224 38.260
"Apr-2021' B7.785 879500 0999 112951 16.771 13.700 1.224 15.469
"May-2021' 45.097 53.500 0.843 58.026 114.530 96.700 1.184 105.639
Jun-2021' 83.193 109.100 0.763 107.043 389.565 62.300 0.635 36.493
Jul-2021' 45.355 105.700 0.439  59.645 112.268 126.900 0.885 103.553
"Aug-2021' 38.127 66.700 0.572  49.057 17.981 13900 1.294  16.585
'Sep-2021' 127.358 180.200 0.707 163.869 71.910 62.100 1.1583 066.327
'Oct-2021' 387.612 647.600 0599 498,732 143.081 136.200 1.051 131.974
"Nov-2021" 273.919 325.300 0.842 352.447 49.080 43,000 1.141 45.270
'Dec-2021" 131.847 141,100 0.934 169.645 27.010 32900 0.821 24913
'Jan-2022' 321.072 344,600 0932 413.117 28.745 23400 1.228 26.513
'Feb-2022' 292,219 305.100 0.958 375.993 26.440 64,900 1.332 79.730
‘Mar-2022' 58.418 59.800 0.977  75.166 12.059 3.500  3.445 11.122
"Apr-2022' 40.826 57.100  0.820 o©0.250 13.335 9.700 1.375 12.303

Figure A.7: Monthly precipitation for AROME, observed and fcfix data at Bergen and
Oslo. Ratio is forecast divided by observed data.
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| TRONDHEIM TROMSS |
Forecasted Observed . . Forecasted Observed . .
data data Ratio  fcfix data data Ratio  fcfix
'Dec-2019" 94,767 115.100 0.823 82.875 97.435 129.200 0.754 123.863
"Jan-2020' 110.587 121.100 0.913 96.711 133.153 152.400 0.874 169.269
'Feb-2020' 112.161 101.100 1.109 98.087 97.209 148.400 0.655 123.576
"Mar-2020' 50.692 45,700 1.241 49578 1259.929 187.000 0.695 165.170
"Apr-2020' 19.540 18.000 1.086 17.088 78.302 121.800 0.643 99.540
"May-2020' 57.781 65.200 0.886  50.531 48.398 78.400 0.617 61.525
"Jun-2020' 51.510 30.000 1.717 45.047 16.757 24.300 0.690 21.302
"Jul-2020' 112.456 83.000 1.355 98.345 74,284 Fr.A00 0.960 94,433
‘Aug-2020' 51.717 76,700 0.674 45,228 143.521 157400 0,912 182.450
'Sep-2020' 132.384 96.700 1.369 115.772 175.440 146.600 1.197 223.027
'Oct-2020' 08.722 53.800 1.275 60.099 50.979 77.800 0.655 64.800
'Mov-2020' 93.515 84,100 1.112 81.781 111.124 121.400 0.915 141.265
'Dec-2020" 15.288 16.200 05944 13.3269 35.634 33.300 1.070  45.299
'Jan-2021' 34,963 23.600 1481 30.576 28.821 44,900 0.042  36.639
'Feb-2021" 18.473 15.100 1.223 16.155 97.419 149.800 0.650 123.843
‘Mar-2021" 123.034 126.200 0.975 107.596 107.380 166.000 0.647 136.506
"Apr-2021' J7.288 63.100 1.235 B67.589 102.436 182,700 0.561 130.221
"May-2021' 33.913 33.300 1.018  29.658 18.186 15900 1.144 23,119
Jun-2021' 45.0594 45.500 0.983  40.310 55.088 63.600 0.806  70.030
Jul-2021' 63.830 56.000 1.140  55.338 24,182 87.400 0.963 107.016
"Aug-2021' 150.692 115.200 1.308 131.733 51.965 44,900 1.157  66.060
'Sep-2021' 130.674 71.500 1.828 114.277 72.377 95.800 0.756  92.008
'Oct-2021' 183.713 154.300 1.191 160.660 55.520 73,500 0.735 70.587
"Nov-2021" 159.635 156.600 1.019 139.603 83.106 92.200 0901 105.647
'Dec-2021" 82.625 65.900 1.254 72257 87.543 112,200 0.780 111.288
'Jan-2022' 160.138 132,200 1.211 140.043 157.927 201400 0.784 200.764
'Feb-2022' 116.444 79.000 1.474) 101.832 B6.174 69.500 0.952 84,124
‘Mar-2022' 63.916 69.000 0.926  55.896 117.726 152,400 0,772 149.658
"Apr-2022' 59.940 56.500 1.061 52418 53.463 81.100 0.659 67.964

Figure A.8: Monthly precipitation for AROME, observed and fcfix data at Trondheim
and Tromsg. Ratio is forecast divided by observed data.
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| KRISTIANSAND NESBYEN
Forecasted Observed . . Forecasted Observed . .
data data Ratio  fcfix data data Ratio  fcfix
'Dec-2019" 213.319 216.600 0.985 211.855 35.191 38.200 0,921 28.980
"Jan-2020' 154.658 189.800 1.026 193.322 32.960 29.200 1.129 27.144
'Feb-2020' 271.922 229.800 1.183 270.055 47.780 28,500 1.676  39.348
"Mar-2020' 127.201 122,500 1.035 126.328 26.317 10,400 25300 21.673
"Apr-2020' 65.664 49.400 1.329 65.213 19.996 8.200 2.439 16.467
"May-2020' 30.264 25400 1.191 30.056 24.076 15.300 1.574 19.827
"Jun-2020' 132.915 114.200 1.164 132.002 97.029 103.100 0.941 79.906
"Jul-2020' 156.234 172,300 0.907 155.162 59.914 63.000 0.942 49,341
‘Aug-2020' 53.032 61.100 0.868  52.668 33.999 30,800 1.104  27.999
'Sep-2020' 78.378 129.400 0.606  77.340 51.878 23.000 0.979 42,723
'Oct-2020' 244,607 206.000 1.187 242928 124.365 123.500 1.007 102.418
'Mov-2020' 178.870 182.500 0.980 177.642 54.611 40,100 1.362 44,973
'Dec-2020" 303.700 373.500 0.812 301.621 71.220 51400 1.386  58.052
'Jan-2021' 74,957 78.000 0.901 74.443 28.133 22,900 1.229 23.168
'Feb-2021" 79.776 64.800 1.231 79.229 18.353 17.700 1.037 15.114
‘Mar-2021" 7E.638 FrA4A00 1.016 78.099 20.623 11.9500 1.733 16.984
"Apr-2021' 18.329 17.600 1.041 18.203 14.858 4.300 3455 12.236
"May-2021' 175.856 167.800 1.048 174.649 58.700 34.600 1.697 48.341
Jun-2021' 69.837 69.900 0.999 69.377 20.188 50,500 1.588  66.037
Jul-2021' 57.544 68.100 0.845 57.149 114.464 130,400 0.878 94.264
"Aug-2021' 29.676 64.000 0.404 29472 27.273 12,100 2.254 22,460
'Sep-2021' 06.080 49,200 1.343 63.632 50.006 48.300 1.035 41.181
'Oct-2021' 83.900 95.900 0.875 83.324 71.336 51.200  1.393  58.747
"Nov-2021" 55.958 67.100 0.834 55.574 41.140 28.800 1.428 33.880
'Dec-2021" 96.293 82.300 1.170 95.632 15.732 12,200 1.290 12.956
'Jan-2022' 96.163 FrA00  1.242 95.502 10.627 7100 1.497 8.752
'Feb-2022' 161.561 141,900 1.139 160.452 44,010 25700 1.712 36.243
‘Mar-2022' 26.148 15,400 1.698  25.968 4,153 1.900 2186 3.421
"Apr-2022' 20.745 9.500 2.184  20.603 8.217 4,700 1.748 6.767

Figure A.9: Monthly precipitation for AROME, observed and fcfix data at Kristiansand
and Nesbyen. Ratio is forecast divided by observed data.
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BERGEN Forecasted data Observed data Ratio fcfix
Winter 2064.7 2400.5 0.860 2656.6
Spring B808.3 1021.8 0.791 1040.0
Summer 430.6 721.9 0.666 618.4
Autumn 1570.7 2191.8 0.717 2021.0
0sLO Forecasted data Observed data Ratio fcfix
Winter 639.8 507.4 1.261 590.2
Spring 3324 2744 1.211 306.6
Summer 466.4 523.7 0.891 430.2
Autumn 637.6 609.4 1.046 S88.1
TROMNDHEIM Forecasted data Observed data Ratio fcfix
Winter 745.4 669.3 1114 651.9
Spring 492.1 a477.0 1.032 430.4
Summer 476.3 407.8 1.168 416.6
Autumn ToE.0 617.1 1.246 672.2
TROMS@ Forecasted data Observed data Ratio fcfix
Winter 801.3 1041.1 0.770 1018.7
Spring 055.8 985.3 0.666 833.7
Summer 425.8 455.0 0.936 541.3
Autumn S48.6 609.3 0.900 697.3
KRISTIANSAMND | Forecasted data Observed data Ratio fcfix
Winter 14592.4 1454.5 1.026 1482.1
Spring 5428 485.4 1.118 5339.1
Summer 499.3 549.6 0.908 495.8
Autumn JO7.8 730.1 0.969 J02.9
MNESBYEM Forecasted data Observed data Ratio fcfix
Winter 304.0 232.9 1.305 250.4
Spring 176.9 91.3 1.938 145.7
Summer 412.9 390.5 1.057 340.0
Autumn 393.3 344.9 1.140 323.9

Figure A.10: Total seasonal precipitation for AROME, observed and fcfix data at each
location. Ratio is forecast divided by observed data.
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BERGEN Mean Mean Mean Top forecast Top observed
- Top 10% precip Top 1% precip Top 0.1% precip extreme extreme
Forecasted data 1.942 5.039 7.971 14,735 3.450
Observed data 2.343 5.740 9.190 0.600 13.700
Ratio 0.829 0.878 0.867 24.559 0.252
fefix 2.498 6.4584 10.256 18.960 4,439
Top 1% shared Top 1% shared Top 0.1% shared Top 0.1% shared

extreme hours

extreme hours with
1 bh tolerance

extreme hours

extreme hours with
1 bh tolerance

Total forecast hits 58 106 1 &
Total data points 211 211 21 21
Ratio 0.275 0.502 0.048 0.286
fcfix hits 28 106 1 7]
0sLOo Mean Mean Mean Top forecast Top observed
- Top 10% precip Top 1% precip Top 0.1% precip extreme extreme
Forecasted data 0.930 3.258 8.072 26.677 0.176
Observed data 0.584 3.354 8.385 1.000 14.100
Ratio 1.051 0.960 0.963 20.677 0.013
ffix 0.858 3.005 7.445 24.606 0.163
Top 1% shared Top 1% shared Top 0.1% shared Top 0.1% shared

extreme hours

extreme hours with
1 bh tolerance

extreme hours

extreme hours with
1 bh tolerance

extreme hours

extreme hours with
1 bh tolerance

extreme hours

extreme hours with
1 bh tolerance

Total forecast hits 64 116 3 8
Total data points 211 211 21 21
Ratio 0.303 0.550 0.143 0.381
fcfix hits 64 116 3 8
Mean Mean Mean Top forecast Top observed

TRONDHEIM i . i

- Top 10% precip Top 1% precip Top 0.1% precip extreme extreme
Forecasted data 1.022 3.127 5.855 9.414 0.000
Observed data 0.954 3.013 6.515 0.000 15.800
Ratio 1.072 1.038 0.899 Inf 0.000
fefix 0.894 2.735 5121 8.233 0.000

Top 1% shared Top 1% shared Top 0.1% shared Top 0.1% shared

Total forecast hits 54 94 i} 1
Total data points 211 211 21 21
Ratio 0.256 0.445 0.000 0.048
fcfix hits 54 94 0 1
Figure A.11: Hourly mean precipitation amount for top 10/1/0.1% of all non-NaN

hours, in addition to top 1/0.1% shared extreme hours with and without 6h tolerance
for AROME, observed and fcfix data at Bergen, Oslo and Trondheim. Ratio is forecast
divided by observed data. Top forecast extreme is the highest forecasted rainfall
amount in one hour (using the first 12 forecast hours), with the corresponding observed

value for that hour below. Vice versa for top observed extreme.
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TROMSS Mean Mean Mean Top forecast Top observed
- Top 10% precip Top 1% precip Top 0.1% precip extreme extreme
Forecasted data 0.907 2.517 4,926 11.592 0.550
Observed data 1.061 2.692 5.250 0.000 7.200
Ratio 0.855 0.935 0.938 Inf 0.076
fefix 1.153 3.199 6.262 14.736 0.700
Top 1% shared Top 1% shared Top 0.1% shared Top 0.1% shared

extreme hours

extreme hours with
1 bh tolerance

extreme hours

extreme hours with
1 bh tolerance

Total forecast hits 26 83 2 5
Total data points 211 211 21 21
Ratio 0.123 0.393 0.095 0.238
fcfix hits 20 83 2 2
Mean Mean Mean Top forecast Top observed

KRISTIANSAND i . i

— | Top 10% precip Top 1% precip Top 0.1% precip extreme extreme
Forecasted data 1.451 4.673 8.149 13.979 0.019
Observed data 1.503 4.833 9.590 1.300 14.600
Ratio 0.965 0.967 0.850 10.753 0.001
ffix 1.441 4.641 8.093 13.883 0.019

Top 1% shared Top 1% shared Top 0.1% shared Top 0.1% shared

extreme hours

extreme hours with
1 bh tolerance

extreme hours

extreme hours with
1 bh tolerance

Total forecast hits 80 129 3 5
Total data points 211 211 21 21
Ratio 0.379 0.611 0.143 0.238
fcfix hits 80 129 3 2
Mean Mean Mean Top forecast Top observed

NESBYEN i . i

- Top 10% precip Top 1% precip Top 0.1% precip extreme extreme
Forecasted data 0.570 2.138 5.573 10.558 0.626
Observed data 0.506 2.429 6.515 0.700 12.100
Ratio 1.126 0.880 0.855 15.084 0.052
fefix 0.467 1.761 4,589 8.695 0.516

Top 1% shared Top 1% shared Top 0.1% shared Top 0.1% shared

extreme hours

extreme hours with
1 bh tolerance

extreme hours

extreme hours with
1 bh tolerance

Total forecast hits 82 134 i} 5
Total data points 211 211 21 21
Ratio 0.389 0.635 0.000 0.238
fcfix hits 82 134 0 5
Figure A.12: Hourly mean precipitation amount for top 10/1/0.1% of all non-NaN

hours, in addition to top 1/0.1% shared extreme hours with and without 6h tolerance
for AROME, observed and fcfix data at Tromsg, Kristiansand and Nesbyen. Ratio is
forecast divided by observed data. Top forecast extreme is the highest forecasted
rainfall amount in one hour (using the first 12 forecast hours), with the corresponding
observed value for that hour below. Vice versa for top observed extreme.
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BERGEN Mean Mean Mean Top forecast Top observed
- Top 10% precip  Top 5% precip  Top 1% precip extreme extreme
Forecasted data 27.908 35.271 52.903 69.912 59.048
Observed data 34.642 44,738 71.288 51.200 103.200
Ratio 0.806 0.787 0.742 1.365 0.578
ffix 35.909 45.382 68.069 89.954 76.748
Top 5% shared  Top 1% shared
extreme days extreme days
Total forecast hits 27 4
Total data points 44 8
Ratio 0.614 0.500
fcfix hits 27 4
0SLO Mean Mean Mean Top forecast Top observed
- Top 10% precip  Top 5% precip Top 1% precip extreme extreme
Forecasted data 15.794 21.293 35.331 44,792 20,048
Observed data 15.281 20.765 31.500 26.400 44.500
Ratio 1.034 1.025 1122 1.697 0.451
fefix 14.568 19.640 32.589 41.314 18.491
Top 5% shared Top 1% shared
extreme days extreme days
Total forecast hits 27 3
Total data points 44 8
Ratio 0.614 0.625
fcfix hits 27 3
Mean Mean Mean Top forecast Top observed

TRONDHEIM . . .

- Top 10% precip Top 5% precip Top 1% precip extreme extreme
Forecasted data 15.286 20.238 37.052 66.129 38.563
Observed data 13.892 18.340 33.413 31.600 41.800
Ratio 1.100 1.106 1.109 2.093 0.923
fefix 13.368 17.742 32.402 57.831 33.724

Top 5% shared Top 1% shared

extreme days extreme days
Total forecast hits 28 4
Total data points 44 8
Ratio 0.636 0.500
fcfix hits 28 4

Figure A.13: Daily mean precipitation amount for top 10/5/1% of all non-NaN days, in
addition to top 5/1% shared extreme days for AROME, observed and fefix data at
Bergen, Oslo and Trondheim. Ratio is forecast divided by observed data. Top forecast
extreme is the highest forecasted rainfall amount in one day (using the first 12 forecast
hours), with the corresponding observed value for that day below. Vice versa for top
observed extreme.
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TROMS® Mean Mean Mean Top forecast Top observed

- Top 10% precip  Top 5% precip  Top 1% precip extreme extreme
Forecasted data 12.763 16.313 23.647 35.040 27.221
Observed data 15.804 159.134 25.450 20.400 30.300
Ratio 0.805 0.850 0.929 1.718 0.898
ffix 16.225 20.738 30.061 44,545 34.605

Top 5% shared  Top 1% shared
extreme days extreme days
Total forecast hits 25 1
Total data points 44 8
Ratio 0.568 0.125
fcfix hits 25 1
Mean Mean Mean Top forecast Top observed

KRISTIANSAND ) ) )

— | Top10% precip Top 5% precip Top 1% precip extreme extreme
Forecasted data 23.742 31.585 43.365 48.366 43.026
Observed data 24.495 31.656 41.725 33.700 48.300
Ratio 0.963 0.993 1.033 1.450 0.994
fefix 23.579 31.368 43.067 48.531 47.696

Top 5% shared Top 1% shared
extreme days extreme days
Total forecast hits 32 3
Total data points 44 8
Ratio 0.727 0.375
fcfix hits 32 3
Mean Mean Mean Top forecast Top observed

NESBYEN . . .

- Top 10% precip Top 5% precip Top 1% precip extreme extreme
Forecasted data 9.576 13.032 23.913 40.561 29.830
Observed data 8.960 13.067 23.388 20.900 33.100
Ratio 1.069 0.997 1.022 1.941 0.903
fefix 7.880 10.732 19.693 33.403 24.615

Top 5% shared Top 1% shared

extreme days extreme days
Total forecast hits 32 3
Total data points 44 8
Ratio 0.727 0.375
fcfix hits 32 3

Figure A.14: Daily mean precipitation amount for top 10/5/1% of all non-NaN days, in
addition to top 5/1% shared extreme days for AROME, observed and fefix data at
Tromsg, Kristiansand and Nesbyen. Ratio is forecast divided by observed data. Top
forecast extreme is the highest forecasted rainfall amount in one day (using the first 12
forecast hours), with the corresponding observed value for that day below. Vice versa
for top observed extreme.
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BERGEN Mean top 1% Mean top 1% Avg. hours pertop 1%  Avg. hours per top 1%
- forecasted extremes observed extremes forecast extreme observed extreme
Winter 5.012 5.536 71.462 86.707
Spring 4,596 4,892 420.071 452,385
summer 5.169 5.553 184.000 147.200
Autumn 5.074 6.054 53.268 46.968
0SL0 Mean top 1% Mean top 1% Avg. hours pertop 1%  Avg. hours per top 1%
I forecasted extremes observed extremes forecast extreme observed extreme
Winter 2.446 2.456 166.744 203.219
Spring 3.465 2.964 294,050 267.318
summer 4.342 4.337 74.847 62.197
Autumn 2.837 3.043 46.968 50.791
TRONDHEIM Mean top 1% Mean top 1% Avg. hours pertop 1%  Avg. hours per top 1%
— | forecasted extremes observed extremes forecast extreme observed extreme
Winter 2.853 2.492 104.887 104.887
Spring 2.877 2.809 193.321 159.206
summer 3.824 3.918 105.143 86.588
Autumn 2.960 2.773 54.987 67.875
TROMS® Mean top 1% Mean top 1% Avg. hours pertop 1%  Avg. hours per top 1%
- forecasted extremes observed extremes forecast extreme observed extreme
Winter 2.396 2.557 87.716 84.299
Spring 2.270 2.712 183.781 99.678
summer 3.074 2.926 113.231 126.171
Autumn 2.418 2.673 66.182 109.200
KRISTIANSAND Mean top 1% Mean top 1% Avg. hours pertop 1%  Avg. hours per top 1%
— | forecasted extremes observed extremes forecast extreme observed extreme
Winter 4.224 4.126 89.082 79.305
Spring 4,329 4,541 150.179 216.926
summer 5.183 5.721 96.000 91.915
Autumn 4,858 5.018 71.111 69.818
NESBYEN Mean top 1% Mean top 1% Avg. hours pertop 1%  Avg. hours per top 1%
- forecasted extremes observed extremes forecast extreme observed extreme
Winter 1.395 2.363 500.231 406.438
Spring 1.757 2.088 345.941 735.125
summer 2.574 2.824 44,160 46.000
Autumn 1.776 2.026 53.926 48.000

Figure A.15: Mean of the top 1% hourly forecasted /observed extremes, and average
hours between each occurrence of a top 1% extreme precipitation event for forecast and
observed data at each location. Data is divided into seasons.
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BERGEN Mean top 5% Mean top 5% Avg. days pertop 5%  Avg. days per top 5%
- forecasted extremes observed extremes forecast extreme observed extreme
Winter 37.486 44.672 14.263 15.056
Spring 30.853 44,033 49,000 81.667
summer 39.656 35.567 92.000 61.333
Autumn 33.075 45.710 10.111 9.100
0SL0 Mean top 5% Mean top 5% Avg. days pertop 5%  Avg. days per top 5%
I forecasted extremes observed extremes forecast extreme observed extreme
Winter 20.343 19.600 22.583 33.875
Spring 17.137 16.960 35.000 49,000
summer 23.943 21.500 16.727 12.267
Autumn 21.465 21.381 13.000 11.375
TRONDHEIM Mean top 5% Mean top 5% Avg. days pertop 5%  Avg. days per top 5%
— | forecasted extremes observed extremes forecast extreme observed extreme
Winter 18.266 16.613 20.846 16.938
Spring 15.799 19.720 28.125 45,000
summer 24.029 18.410 26.286 18.400
Autumn 21.526 18.846 11.250 13.846
TROMS® Mean top 5% Mean top 5% Avg. days pertop 5%  Avg. days per top 5%
- forecasted extremes observed extremes forecast extreme observed extreme
Winter 15.068 19.779 15.882 19.286
Spring 14.830 19.114 24.500 17.500
summer 20.984 18.183 36.800 30.667
Autumn 16.902 18.620 15.167 18.200
KRISTIANSAND Mean top 5% Mean top 5% Avg. days pertop 5%  Avg. days per top 5%
— | forecasted extremes observed extremes forecast extreme observed extreme
Winter 30.539 29.576 13.550 12.505
Spring 33.067 34,438 24.400 30.500
summer 31.971 29.129 35.800 25.571
Autumn 28.223 32.938 17.778 20.000
NESBYEN Mean top 5% Mean top 5% Avg. days pertop 5%  Avg. days per top 5%
- forecasted extremes observed extremes forecast extreme observed extreme
Winter 11.435 8.840 67.750 54.200
Spring 9.010 MaM 81.667 Inf
summer 13.816 13.877 9.200 8.364
Autumn 12.899 12.865 10.706 10.706

Figure A.16: Mean of the top 5% daily forecasted/observed extremes, and average days
between each occurrence of a top 5% extreme precipitation event for forecast and
observed data at each location. Data is divided into seasons.
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1h accumulated precipitation
BERGEN +1h forecast  +4hfcfix =~ +lhfcday +13h forecast +13hfcfix  +13h fcday +48h forecast +48h fcfix
Hit 307 322 258 267 274 227 245 252
Miss 229 214 278 228 221 270 243 236
False Alarm 21 29 278 119 132 274 134 147
Correct negative 1123 1115 926 1111 1098 969 1099 1086
MaN values 19 19 19 34 34 19 38 38
0SsLO +1h forecast +4hfcfix = +dhfcday +13h forecast +13hfcfix +13h fcday +48h forecast +48h fcfix
Hit 137 135 51 157 155 54 131 129
Miss 86 88 172 66 68 171 99 101
False Alarm 66 61 170 67 66 166 97 95
Correct negative 1451 1456 1347 1435 1436 1349 1354 1396
MaN values 19 19 19 34 34 19 38 38
TROMDHEIM | +4h forecast +4hfcfix = +4hfcday +13h forecast +13hfcfix +13hfcday +48h forecast +48h fcfix
Hit 149 146 32 144 143 90 148 141
Miss 147 150 214 136 137 191 144 151
False Alarm 127 113 217 140 132 191 122 118
Correct negative 1276 1285 1130 1261 1269 1221 1258 1262
NaN values 60 60 66 78 78 66 87 87
TROMS@ +1h forecast +dhfcfix = +dhfcday +13hforecast +13hfcfix +13hfcday +48h forecast +48h fcfix
Hit 245 261 239 222 235 231 201 218
Miss 269 253 274 282 269 278 323 306
False Alarm 102 120 272 112 126 280 117 121
Correct negative 1122 1104 952 1105 1091 948 1076 1062
NaN values 21 21 22 38 38 22 42 42
KRISTIANSAND | +1h forecast +dhfcfix = +lhfcday +13hforecast +13hfcfix  +13h fcday +48h forecast +48h fcfix
Hit 159 159 62 169 169 70 147 147
Miss 77 77 173 26 26 185 122 122
False Alarm 97 96 175 91 90 185 91 90
Correct negative 1356 1357 1273 1326 1327 1243 1305 1306
MaN values 70 70 76 87 87 76 94 94
MNESBYEN +1h forecast +4hfcfix  +dhfcday +13h forecast +13hfcfix  +13h feday  +48h forecast  +48h fefix
Hit 112 109 32 110 101 36 90 87
Miss 44 a7 124 56 65 121 74 77
False Alarm 96 88 122 67 63 130 102 92
Correct negative 1438 1496 1462 1492 1496 1443 1455 1465
MaN values 19 19 19 34 34 19 38 38

Figure A.17: Contingency table results for 1h accumulated precipitation for AROME,
fcfix and feday against observed data.
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6h accumulated precipitation
BERGEN +4-0h forecast +4-0h fcfix  +4-0h feday +13-18h forecast  +13-18h fcfix +13-18h fcday +25-30h forecast  +25-30h fefix
Hit 661 680 546 673 685 556 653 668
Miss 174 155 289 159 147 281 176 161
False Alarm 105 115 289 101 110 282 111 117
Correct negative 800 750 616 792 783 621 783 777
MaM values 19 13 19 34 34 13 36 36
0sLO +1-0h forecast +4-0h fcfix  +4-0h fcday +13-18h forecast +13-18h fcfix +13-18h fcday +25-30h forecast  +25-30h fefix
Hit 323 321 154 315 314 197 310 310
Miss 133 135 262 131 132 252 135 135
False Alarm 92 26 260 29 84 250 104 102
Correct negative 1192 1198 1024 1130 1195 1041 1174 1176
MaM values 19 19 19 34 34 19 36 36
TRONDHEIM | +4-9h forecast +4-9h fcfix +4-0h fcday +13-18h forecast  +13-18h fcfix +13-18h fcday +25-30h forecast  +25-30h fcfix
Hit 480 476 319 452 4438 310 461 451
Miss 129 133 290 124 128 269 112 122
False Alarm 170 164 289 185 175 263 184 176
Correct negative 520 526 795 520 930 845 919 527
MaM values 60 60 66 78 78 66 83 83
TROMS@® +4-0h forecast +4-9h fcfix  +4-9h fcday +13-18h forecast +13-18h fcfix +13-18h feday +25-30h forecast  +25-30h fefix
Hit 622 639 544 626 644 573 601 618
Miss 238 221 315 238 220 301 264 247
False Alarm 108 115 316 104 114 304 117 124
Correct negative 770 763 562 753 743 559 737 730
NaN values 21 21 22 38 38 22 40 40
KRISTIANSAND | +4-0h forecast +4-9h fcfix  +4-9h fcday +13-18h forecast  +13-18h fcfix  +13-18h feday +25-30h forecast  +25-30h fofix
Hit 398 398 224 389 389 231 373 373
Miss a7 a7 260 99 99 258 111 111
False Alarm 117 117 261 131 131 260 130 128
Correct negative 1087 1087 938 1053 1053 934 1054 1056
MaM values 70 70 76 &7 a7 76 91 91
MNESBYEN +1-0h forecast +4-0h fcfix  +4-0h fcday +13-18h forecast +13-18h fcfix +13-18h fcday +25-30h forecast  +25-30h fefix
Hit 309 2993 141 270 265 126 268 260
Miss 67 77 235 81 86 226 79 87
False Alarm 132 123 236 125 115 225 152 145
Correct negative 1232 1241 1128 1245 1259 1163 1224 1231
MaM values 19 19 19 34 34 19 36 36

Figure A.18: Contingency table results for 6h accumulated precipitation for AROME,
fcfix and feday against observed data.
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24h accumulated precipitation
BERGEM +4-27h forecast +4-27h fcfix  +13-36h forecast  +13-36h fcfix +25-48h forecast  +25-48h fcfix
Hit 1075 1083 1074 1086 1058 1060
Miss 111 103 113 101 127 125
False Alarm 84 96 76 83 92 101
Correct negative 440 428 447 440 431 422
MaM values 45 43 43 43 51 51
asL0 +4-27h forecast +4-27h fcfix  +13-36h forecast  +13-36h fcfix  +25-48h forecast  +25-48h fcfix
Hit 640 637 644 642 644 42
Miss 177 180 171 173 170 172
False Alarm 99 94 123 121 121 116
Correct negative 794 799 772 74 773 778
MaM values 45 49 49 45 51 51
TRONDHEIM |+4-27h forecast +4-27h fcfix  +13-36h forecast +13-36h fcfix  +25-48h forecast  +25-48h fcfix
Hit 891 888 893 389 280 875
Miss 87 90 84 28 95 100
False Alarm 148 143 135 127 144 140
Correct negative 537 542 551 559 539 543
MaM values 96 96 96 96 101 101
TROMS@E +4-27h forecast  +4-27h fcfix  +13-36h forecast  +13-36h fcfix  +25-48h forecast  +25-48h fcfix
Hit 1058 1068 1048 1060 1041 1047
Miss 162 152 175 163 181 175
False Alarm 75 82 76 85 83 95
Correct negative 409 402 405 396 397 385
MaM values 55 55 55 55 57 57
KRISTIANSAND |+4-27h forecast +4-27h fcfix  +13-36h forecast  +13-36h fcfix +25-48h forecast  +25-48h fcfix
Hit 760 760 742 742 725 725
Miss 79 79 100 100 115 115
False Alarm 117 117 128 126 124 121
Correct negative 699 699 685 687 687 690
MaM values 104 104 104 104 108 108
MNESBYEN +4-27h forecast  +4-27h fcfix  +13-36h forecast  +13-36h fcfix  +25-48h forecast  +25-48h fcfix
Hit 611 600 597 592 554 590
Miss 100 111 118 123 120 124
False Alarm 174 160 167 156 172 158
Correct negative 825 839 828 839 822 836
NaM values 49 49 49 49 51 51
Figure A.19: Contingency table results for 24h accumulated precipitation for AROME

and fcfix against observed data.
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48h accumulated precipitation

BERGEN +1-48h forecast  +1-48h fcfix TROMSED +1-48h forecast  +1-48h fcfix
Hit 1303 1305 Hit 1287 1290
Miss 84 82 Miss 128 125
False Alarm 54 62 False Alarm 58 67
Correct negative 254 246 Correct negative 214 205
MaN values 64 64 NaN values 72 72

osLO +1-48h forecast  +1-48h fcfix KRISTIANSAND | +1-48h forecast +1-48h fcfix
Hit 893 BEE Hit 979 979
Miss 154 159 Miss 100 100
False Alarm 105 93 False Alarm 39 39
Correct negative 503 509 Correct negative 470 470
MaN values B4 B4 MNaN values 121 121

TRONDHEIM +1-48h forecast  +1-48h fcfix NESBYEN +1-48h forecast  +1-48h fcfix
Hit 1150 1144 Hit 865 260
Miss b7 73 Miss 117 122
False Alarm 95 92 False Alarm 165 156
Correct negative 333 336 Correct negative 548 557
MaN values 114 114 NaN values b4 b4

Figure A.20: Contingency table results for 48h accumulated precipitation for AROME
and fcfix against observed data.
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1h accumulated precipitation

forecast fepersist

BERGEN +1h  +2h +3h +ah +5h  +6h  +7h  +8h +8h +10h +11h +12h +1h  +2h +3h +ah  +5h  +6h  +7h  +8h +9h +10h +11h +12h
Hit 277 272 304 308 280 290 282 283 278 267 257 233 395 362 325 324 304 296 280 262 282 261 252 239
Miss 221 219 213 229 239 221 243 231 262 241 248 244 103 129 192 213 215 215 245 252 258 247 253 258
False Alarm 93 107 102 81 94 98 98 99 107 895 101 105 103 136 173 174 194 202 218 236 216 237 246 259
Correct negative | 1148 1146 1125 1126 1131 1135 1121 1131 1097 1141 1138 1142 1143 1117 1054 1033 1031 1031 1001 994 988 993 993 938
NaN values 19 19 13 19 19 19 13 19 19 13 19 19 19 19 19 13 19 19 13 19 19 13 19 19
0sL0 +1h  +2h +3h +ah +5h +6h  +7h  +8h +9h +10h +11h +12h +1h  +2h +3h +ah +5h  +6h  +7h  +8h  +9h +10h +11h +12h

Hit 143 140 150 137 147 145 143 149 141 151 155 136 165 142 131 112 103 99 91 91 80 73 72 77
Miss 77 85 91 a6 82 85 90 73 73 67 Ei 75 60 83 110 111 126 131 142 136 134 143 154 154
False Alarm 63 66 45 66 51 61 57 70 71 62 61 77 63 91 102 121 130 134 142 142 153 158 161 156
Correct negative | 1456 1453 1454 1455 1464 1453 1454 1447 1459 1464 1457 1436 1451 1428 1401 1400 1385 1380 1369 1375 1377 1368 1357 1357
NaN values 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
TRONDHEIM +1h  +2h +3h +ah  +5h  +6h  +7h  +8h +9h +10h +11h +12h +1h  +2h +3h +h  +5h  +6h  +7h  +8h +9h +10h +11h +12h
Hit 146 165 176 149 166 185 178 177 169 170 164 159 197 167 169 159 148 138 136 136 115 120 116 117
Miss 137 126 118 148 128 132 145 145 123 142 133 140 8 124 125 138 146 179 187 186 177 182 181 182
False Alarm 134 127 117 127 131 111 128 134 140 127 120 124 104 134 132 142 153 163 165 165 186 181 185 184
Correct negative | 1286 1285 1292 1279 1278 1275 1252 1247 1271 1264 1286 1280 1313 1275 1274 1261 1253 1220 1212 1213 1222 1207 1218 1217
NaN values 60 60 60 60 60 60 60 60 60 60 60 60 63 63 63 63 63 63 63 63 63 63 63 63
TROMS@ +1h  +2h +3h +ah  +5h  +6h  +7h  +8h +9h +10h +11h +12h +1h  +2h +3h +h  +5h  +6h  +7h  +8h +9h +10h +11h +12h
Hit 231 245 248 247 269 257 265 265 226 236 232 239 400 373 349 332 316 326 306 292 294 282 277 271
Miss 280 276 272 270 262 299 268 262 298 281 292 295 110 148 171 185 215 229 226 234 230 235 247 263
False Alarm 32 24 50 102 93 85 107 97 107 116 105 91 129 156 180 157 213 203 223 237 235 247 252 258
Correct negative | 1149 1137 1132 1123 1118 1101 1102 1118 1111 1109 1113 1117 1102 1064 1041 1027 997 983 986 978 982 977 965 949
NaN values 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 22
KRISTIANSAND | +1h  +2h +3h +4h  +5h +6h +7h  +8h +9h +10h +11h +12h +1h  +2h +3h +h  +5h  +6h  +7h  +8h +9h +10h +11h +12h
Hit 177 160 166 159 166 166 173 178 169 186 174 175 189 158 139 130 119 122 122 109 106 107 102 93
Miss 30 97 87 77 77 87 91 74 85 80 96 97 67 99 114 106 124 131 142 143 148 158 167 179
False Alarm 70 79 78 97 95 96 90 92 107 86 90 96 83 114 133 142 153 150 150 163 166 165 170 179
Correct negative | 1366 1357 1362 1360 1355 1344 1339 1349 1332 1341 1333 1325 1351 1319 1304 1312 1294 1287 1276 1275 1270 1260 1251 1239
NaN values 70 70 70 70 70 70 70 70 70 70 70 70 73 73 73 73 73 73 73 73 73 73 73 73
MNESBYEN +1h  +2h +3h +h  +5h  +6h  +7h  +8h +0h +10h +11h +12h +1h  +2h +3h +4h +5h  +6h +7h  +8h +0h +10h +11h +12h
Hit 110 9% 114 112 108 107 111 101 104 102 112 113 109 93 86 77 67 67 61 43 44 36 43 36
Miss 57 56 52 a4 53 61 65 69 67 63 59 51 58 62 80 79 94 101 115 122 127 134 123 128
False Alarm 70 65 65 96 97 86 88 86 71 70 70 63 54 70 77 86 96 9 102 115 119 127 120 127
Correct negative | 1507 1524 1513 1492 1486 1490 1480 1488 1502 1504 1503 1517 1523 1519 1501 1502 1487 1480 1466 1459 1454 1447 1453 1453
NaN values 139 19 19 13 139 19 13 19 19 13 139 19 13 139 19 13 19 19 13 139 19 19 13 139

Figure A.21: Contingency table results for 1h accumulated precipitation at each for the
first 12 forecast hours, for AROME and fcpersist against observed data.
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| 6h accumulated precipitation

forecast fcpersist

BERGEMN +1-6h +7-12h +1-6h +7-12h
Hit 687 647 467 401
Miss 151 207 Eyal 453
False Alarm 92 97 30 96
Correct negative 811 790 873 791
MaN values 19 19 19 19

Os5L0 +1-6h +7-12h +1-6h +7-12h
Hit 327 336 193 135
Miss 122 97 256 298
False Alarm 85 93 40 93
Correct negative 1207 1210 1252 1210
MaN values 19 19 19 19

TROMNDHEIM +1-6h +7-12h +1-6h +7-12h
Hit 467 s01 272 218
Miss 113 114 3ns 397
False Alarm 176 152 28 82
Correct negative 944 933 1089 1000
MaN values 60 60 63 63

TROMSE +1-6h +7-12h +1-6h +7-12h
Hit 631 658 488 400
Miss 245 211 387 468
False Alarm 93 104 33 126
Correct negative 765 766 825 744
MaN values 21 21 22 22

KRISTIANSAND | +1-6h +7-12h +1-6h +7-12h
Hit 400 395 234 178
Miss 91 93 256 309
False Alarm 101 114 38 94
Correct negative 1098 1088 1159 1106
MaN values 70 70 73 73

NESBYEN +1-6h +7-12h +1-6h +7-12h
Hit 279 283 138 a7
Miss 73 a2 214 278
False Alarm 127 125 25 76
Correct negative 1262 1251 1364 1300
MaN values 19 19 19 19

Figure A.22: Contingency table results for 6h accumulated precipitation for AROME
and fcpersist against observed data.
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1h accumulated precipitation

BERGEN +1h forecast  +4hfcfix =~ +dhfcday +13h forecast +13hfcfix = +13h fcday +48h forecast  +48h fefix
Accuracy 0.8218 0.8259 0.6805 0.7988 0.7954 0.6874 0.7809 0.7775
Bias frequency 0.7239 0.7668 1.0000 0.7798 0.8202 1.0080 0.7766 0.8176
Hit rate 0.5728 0.6007 0.4813 0.5394 0.5535 0.4567 0.5020 0.5164
False alarm ratio 0.2088 0.2165 0.5187 0.3083 0.3251 0.5469 0.3536 0.3684
Success ratio 0.7912 0.7835 0.4813 0.6917 0.6743 0.4531 0.6464 0.6316
Brier score 0.1782 0.1741 0.3195 0.2012 0.2046 0.3126 0.2151 0.2225
Brier skill score 0.4214 0.4347 -0.0373 0.2990 0.2871 -0.0945 0.2274 0.2154
MAE 0.2860 0.3173 0.4347 0.2970 0.3269 0.5303 0.3074 0.3437
RMSE 0.7492 0.8204 1.1422 0.8058 0.5002 1.2362 0.8546 0.9622

0sL0 +1h forecast +dhfcfix =~ +4hfcday +13h forecast +13hfcfix  +13h fcday +48h forecast  +48h fcfix
Accuracy 0.9126 0.9144 0.8034 0.9229 0.9223 0.3063 0.3861 0.3861
Bias frequency 0.9103 0.8739 0.9910 1.0045 0.9910 0.9778 0.9913 0.9739
Hit rate 0.6143 0.6054 0.2287 0.7040 0.6951 0.2400 0.5696 0.5609
False alarm ratio 0.3251 0.3112 0.7692 0.2991 0.2986 0.7545 0.4254 0.4241
Success ratio 0.6749 0.6888 0.2308 0.7009 0.7014 0.2455 0.5746 0.5759
Brier score 0.0874 0.0856 0.1966 0.0771 0.0777 0.1937 0.1139 0.1139
Brier skill score 0.3183 0.3323 -0.5335 0.4037 0.3991 -0.4981 0.1475 0.1475
MAE 0.0912 0.0885 0.1764 0.1011 0.0968 0.1407 0.1251 0.1229
RMSE 0.4110 0.4040 0.6431 0.4915 0.4604 0.4817 0.5668 0.5483

TRONDHEIM | +4h forecast  +4hfcfix ~ +4h feday +13h forecast +13h fcfix  +13h fcday  +48h forecast  +48h fefix

Accuracy 0.8387 0.8423 0.7454 0.8358 0.8400 0.7744 0.8409 0.8391
Bias frequency 0.9324 0.8919 1.0101 1.0143 0.9821 1.0000 0.9247 0.8870
Hit rate 0.5034 0.4932 0.2770 0.5143 0.5107 0.3203 0.5068 0.4829
False alarm ratio 0.4601 0.4470 0.7258 0.4930 0.4800 0.6797 0.4519 0.4556
Success ratio 0.5399 0.5530 0.2742 0.5070 0.5200 0.3203 0.5481 0.5444
Brier score 0.1613 0.1577 0.2546 0.1642 0.1600 0.2256 0.1591 0.1609
Brier skill score 0.0741 0.0947 -0.4565 0.0144 0.0396 -0.3530 0.0838 0.0785
MAE 0.1263 0.1181 0.1683 0.1212 0.1115 0.1411 0.1433 0.1338
RMSE 0.4229 0.3849 0.4796 0.3818 0.3462 0.3914 0.4486 0.4244

TROMS@E +h forecast  +4h fcfix ~ +dhfeday  +13h forecast +13hfcfix  +13h feday  +48h forecast  +48h fefix

Accuracy 0.7865 0.7854 0.6857 0.7711 0.7705 0.67388 0.7437 0.7455
Bias frequency 0.6751 0.7412 0.9961 0.6627 0.7163 1.0039 0.6069 0.6660
Hit rate 0.4767 0.5078 0.4659 0.4405 0.4663 0.4538 0.3836 0.4160
False alarm ratio 0.2939 0.3150 0.5323 0.3353 0.3430 0.5473 0.3679 0.3754
Success ratio 0.7061 0.6850 0.4677 0.6647 0.6510 0.4521 0.6321 0.6246
Brier score 0.2135 0.2146 0.3143 0.2289 0.2295 0.3212 0.2563 0.2545
Brier skill score 0.2780 0.2743 -0.0643 0.2185 0.2165 -0.0962 0.1602 0.1661
MAE 0.1575 0.1755 0.2244 0.1596 0.1782 0.2208 0.1680 0.1895
RMSE 0.4033 0.4537 0.5266 0.4731 0.5458 0.5335 0.4739 0.5592

KRISTIANSAND | +4h forecast  +4hfcfix =~ +4hfcday +13h forecast +13hfcfix  +13h fcday +48h forecast  +48h fcfix

Accuracy 0.3970 0.8976 0.7932 0.8541 0.5947 0.7802 0.8721 0.8727
Bias frequency 1.0847 1.0805 1.0085 1.0196 1.0157 1.0000 0.3848 0.3810
Hit rate 0.6737 0.6737 0.2638 0.6627 0.6627 0.2745 0.5465 0.5465
False alarm ratio 0.2789 0.3765 0.7384 0.3500 0.3475 0.7255 0.2824 0.3797
Success ratio 0.6211 0.6235 0.2616 0.6500 0.6525 0.2745 0.6176 0.6203
Brier score 0.1030 0.1024 0.2068 0.1059 0.1053 0.2198 0.1279 0.1273
Brier skill score 0.2627 0.2670 -0.4814 0.3056 0.3095 -0.4508 0.2085 0.2123
MAE 0.1395 0.1389 0.2386 0.1402 0.1399 0.2854 0.1677 0.1672
RMSE 0.5211 0.5182 0.7369 0.5184 0.5177 0.9041 0.5718 0.5700

NESBYEN +4h forecast  +4hfcfix ~ +dhfcday +13h forecast +13hfcfix  +13h fcday +48h forecast +48h fefix

Accuracy 0.9195 0.9224 0.8586 0.9287 0.9258 0.8500 0.8977 0.9018
Bias frequency 1.3333 1.2628 0.9872 1.0663 0.9880 0.9940 1.1707 1.0915
Hit rate 0.7179 0.6987 0.2051 0.6627 0.6084 0.2156 0.5488 0.5305
False alarm ratio 0.4615 0.4467 0.7922 0.3785 0.3841 0.7831 0.5313 0.5140
Success ratio 0.5385 0.3533 0.2078 0.6215 0.6159 0.2169 0.46838 0.4360
Brier score 0.0805 0.0776 0.1414 0.0713 0.0742 0.1500 0.1023 0.0982
Brier skill score 0.1026 0.1349 -0.5764 0.2588 0.2287 -0.5625 -0.0735 -0.0304
MAE 0.0673 0.0595 0.0818 0.0704 0.0654 0.1196 0.0875 0.0810
RMSE 0.3414 0.3085 0.3716 0.4349 0.4307 0.6744 0.4668 0.4476

Figure A.23: Forecast verification results for 1h accumulated precipitation for AROME;,
fcfix and feday against observed data.
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6h accumulated precipitation

BERGEN +1-0h forecast +4-0h fcfix  +4-0h fcday +13-18h forecast  +13-18h fcfix +13-18h feday +25-30h forecast  +25-30h fefix
Accuracy 0.8397 0.2448 0.6678 0.8493 0.8510 0.6764 0.8334 0.8387
Bias frequency 0.9174 0.9521 1.0000 0.9303 0.9555 1.0012 0.9216 0.9469
Hit rate 0.7916 0.8144 0.6539 0.8089 0.8233 0.6643 0.7877 0.8058
False alarm ratio 0.1371 0.1447 0.3461 0.1305 0.1384 0.3365 0.1453 0.1450
Success ratio 0.8629 0.8553 0.6539 0.8695 0.8616 0.6635 0.8547 0.8510
Brier score 0.1603 0.1552 0.3322 0.1507 0.1490 0.3236 0.1666 0.1613
Brier skill score 0.6660 0.6766 0.3078 0.6875 0.6911 0.3272 0.6537 0.6647
MAE 1.1157 1.2207 2.5229 1.1944 1.2726 2.5641 1.2354 1.3448
RMSE 2.4757 2.6543 5.2403 2.6714 2.7590 5.5050 2.7856 2.9599

0sL0 +1-0h forecast +4-9h fcfix +4-h fcday +13-18h forecast +13-18h fcfix +13-18h fcday +25-30h forecast  +25-30h fefix
Accuracy 0.8707 0.8730 0.7000 0.8725 0.5748 0.7115 0.8613 0.3624
Bias frequency 0.9101 0.8925 0.9956 0.9058 0.8924 0.9955 0.9303 0.9258
Hit rate 0.7083 0.7039 0.4254 0.7063 0.7040 0.4388 0.6960 0.6966
False alarm ratio 0.2217 0.2113 0.5727 0.2203 0.2111 0.5593 0.2512 0.2476
Success ratio 0.7783 0.7887 0.4273 0.7797 0.7389 0.4407 0.7488 0.7524
Brier score 0.1293 0.1270 0.2000 0.1275 0.1252 0.2885 0.1387 0.1376
Brier skill score 0.5067 0.5155 -0.1446 0.5070 0.5159 -0.1182 0.4630 0.4673
MAE 0.3726 0.3527 0.8701 0.4405 0.4189 0.8646 0.4753 0.4539
RMSE 1.1991 1.1513 2.3164 1.5763 1.5050 2.4609 1.7764 1.6834
TRONDHEIM | +4-9h forecast +4-9h fcfix  +4-9h fcday +13-18h forecast  +13-18h fcfix +13-18h feday +25-30h forecast  +25-30h fefix
Accuracy 0.8240 0.8252 0.6580 0.8162 0.8198 0.6822 0.8234 0.8222
Bias frequency 1.0673 1.0509 0.9984 1.1059 1.0816 1.0000 1.1257 1.0942
Hit rate 0.7882 0.7816 0.5238 0.7847 0.7778 0.5354 0.8045 0.7871
False alarm ratio 0.2615 0.2563 0.4753 0.2904 0.2809 0.4646 0.2853 0.2807
Success ratio 0.7385 0.7438 0.5247 0.7096 0.7191 0.5354 0.7147 0.7193
Brier score 0.1760 0.1748 0.3420 0.1838 0.1302 0.3178 0.1766 0.1778
Brier skill score 0.5089 0.5123 0.0432 0.4637 0.4742 0.0708 0.4835 0.4300
MAE 0.5643 0.5211 1.0376 0.5593 0.5163 0.8985 0.53541 0.5169
RMSE 1.5521 1.4350 2.5116 1.2804 1.2632 2.1465 1.2941 1.2022
TROMS® +1-0h forecast  +4-9h fcfix  +4-0h fcday +13-18h forecast  +13-18h fcfix +13-18h feday +25-30h forecast  +25-30h fcfix
Accuracy 0.8009 0.8067 0.6367 0.8013 0.8059 0.6517 0.7734 0.7842
Bias frequency 0.8488 0.8767 1.0012 0.8449 0.8773 1.0034 0.8301 0.8578
Hit rate 0.7233 0.7430 0.6333 0.7245 0.7454 0.6556 0.6948 0.7145
False alarm ratio 0.1479 0.1525 0.3674 0.1425 0.1504 0.3466 0.1630 0.1671
Success ratio 0.8521 0.8475 0.6326 0.8575 0.8496 0.6534 0.8370 0.8329
Brier score 0.1991 0.1933 0.3633 0.1987 0.1941 0.3483 0.2216 0.2158
Brier skill score 0.5976 0.6093 0.2653 0.6010 0.6102 0.2989 0.5539 0.5656
MAE 0.6302 0.6866 1.1346 0.6640 0.7301 1.1268 0.7225 0.7961
RMSE 1.3014 1.4461 2.1140 1.4330 1.5763 2.2038 1.5706 1.7383
KRISTIANSAND | +4-9h forecast +4-9h fcfix +4-9h fcday +13-18h forecast  +13-18h fcfix +13-18h fcday +25-30h forecast  +25-30h fcfix
Accuracy 0.8792 0.8792 0.6504 0.3624 0.8624 0.6922 0.8555 0.8567
Bias frequency 1.0619 1.0619 1.0021 1.0656 1.0656 1.0041 1.0393 1.0351
Hit rate 0.8206 0.8206 0.4628 0.7971 0.7971 0.4724 0.7707 0.7707
False alarm ratio 0.2272 0.2272 0.5381 0.2519 0.2519 0.5295 0.2584 0.2555
Success ratio 0.7728 0.7728 0.4619 0.7481 0.7481 0.4705 0.7416 0.7445
Brier score 0.1208 0.1208 0.3096 0.1376 0.1376 0.3078 0.1445 0.1433
Brier skill score 0.5794 0.5794 -0.0765 0.5286 0.5286 -0.0592 0.5021 0.5062
MAE 0.3581 0.5562 1.5195 0.5938 0.5919 1.5212 0.7215 0.7191
RMSE 1.6984 1.6933 3.9720 1.7265 1.7231 3.9041 2.2528 2.2440
NESBYEN +1-9h forecast +4-9h fcfix  +4-9h fcday +13-18h forecast  +13-18h fefix +13-18h feday +25-30h forecast  +25-30h fefix
Accuracy 0.8856 0.8851 0.7293 0.8806 0.8835 0.7408 0.8659 0.8654
Bias frequency 1.1729 1.1223 1.0027 1.1254 1.0826 0.9972 1.2104 1.1671
Hit rate 0.8218 0.7952 0.3750 0.7692 0.7550 0.3580 0.7723 0.7493
False alarm ratio 0.2993 0.2915 0.6260 0.3165 0.3026 0.6410 0.3619 0.3580
Success ratio 0.7007 0.7085 0.3740 0.6835 0.6974 0.3590 0.6381 0.6420
Brier score 0.1144 0.1149 0.2707 0.1154 0.1165 0.2592 0.1341 0.1346
Brier skill score 0.4706 0.4683 -0.2527 0.4133 0.4275 -0.2813 0.3342 0.3317
MAE 0.2571 0.2236 0.4451 0.2881 0.2555 0.5084 0.2089 0.2789
RMSE 0.8126 0.7277 1.3250 1.0550 0.9696 1.6939 1.0451 1.0066

fcfix and feday against observed data.

Figure A.24: Forecast verification results for 6h accumulated precipitation for AROME;,
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24h accumulated precipitation

BERGEN +1-27h forecast +4-27h fcfix  +13-36h forecast +13-36h fcfix  +25-48h forecast  +25-48h fcfix
Accuracy 0.8860 0.8836 0.8895 0.8924 0.8718 0.8677
Bias frequency 0.9772 0.9941 0.9688 0.9848 0.9705 0.9797
Hit rate 0.9064 0.9132 0.5048 0.9149 0.8928 0.8945
False alarm ratio 0.0725 0.0814 0.0661 0.0710 0.0800 0.0870
Success ratio 0.9275 0.9186 0.9339 0.9290 0.9200 0.9130
Brier score 0.1140 0.1164 0.1105 0.1076 0.1282 0.1323
Brier skill score 0.6279 0.6201 0.6387 0.6481 0.5813 0.5679
MAE 3.3447 3.4420 3.4779 3.6344 3.5843 3.65949
RMSE 6.4460 6.3837 6.7029 6.7173 6.9803 7.0906

0SLO +1-27h forecast +4-27h fcfix  +13-36h forecast +13-36h fcfix +25-48h forecast +25-48h fcfix
Accuracy 0.8386 0.8398 0.8281 0.8281 0.8296 0.8314
Bias frequency 0.9045 0.8347 0.5411 0.9362 0.9398 0.9312
Hit rate 0.7834 0.7797 0.7902 0.7877 0.7912 0.7887
False alarm ratio 0.1340 0.1286 0.1604 0.1586 0.1582 0.1530
Success ratio 0.8660 0.8714 0.8396 0.8414 0.8418 0.8470
Brier score 0.1614 0.1602 0.1719 0.1719 0.1704 0.1686
Brier skill score 0.6622 0.6647 0.6393 0.6393 0.6425 0.6462
MAE 1.1725 1.0958 1.2875 1.2072 1.3850 1.3118
RMSE 2.9952 2.8351 3.3207 3.1710 3.41%6 3.2851
TRONDHEIM | +4-27h forecast +4-27h fcfix  +13-36h forecast +13-36h fcfix +25-48h forecast +25-48h fcfix
Accuracy 0.8587 0.8599 0.8683 0.8707 0.8559 0.8552
Bias frequency 1.0624 1.0542 1.0522 1.0399 1.0503 1.0410
Hit rate 0.9110 0.9080 0.9140 0.9099 0.9026 0.8974
False alarm ratio 0.1424 0.1387 0.1313 0.1250 0.1406 0.1379
Success ratio 0.8576 0.8613 0.8687 0.8750 0.8554 0.8621
Brier score 0.1413 0.1401 0.1317 0.1293 0.1441 0.1448
Brier skill score 0.6570 0.6599 0.6807 0.6865 0.6502 0.6485
MAE 1.5359 1.4153 1.5828 1.4655 1.7139 1.5962
RMSE 3.1713 2.9385 3.1692 2.9902 3.3483 3.1597
TROMS@ +1-27h forecast +4-27h fcfix  +13-36h forecast +13-36h fcfix  +25-48h forecast  +25-48h fefix
Accuracy 0.8609 0.8627 0.8527 0.8545 0.2449 0.8414
Bias frequency 0.9287 0.9426 0.9191 0.9362 0.9158 0.9345
Hit rate 0.8672 0.8754 0.8569 0.8667 0.8519 0.8568
False alarm ratio 0.0662 0.0713 0.0676 0.0742 0.0738 0.0832
Success ratio 0.9338 0.9287 0.9324 0.9258 0.9262 0.9168
Brier score 0.1351 0.1373 0.1473 0.1455 0.1551 0.1586
Brier skill score 0.5102 0.5165 0.4782 0.4846 0.4500 0.4376
MAE 1.8459 1.9186 1.9732 2.0412 21217 2.2623
RMSE 3.2807 3.4204 3.5421 3.7061 3.8356 4,0957
KRISTIANSAND |+4-27h forecast +4-27h fcfix  +13-36h forecast +13-36h fcfix +25-48h forecast +25-48h fcfix
Accuracy 0.8816 0.8816 0.8622 0.8634 0.8552 0.8571
Bias frequency 1.0453 1.0453 1.0333 1.0309 1.0107 1.0071
Hit rate 0.9058 0.9058 0.8812 0.8812 0.8631 0.8631
False alarm ratio 0.1334 0.1334 0.1471 0.1452 0.1461 0.1430
Success ratio 0.8666 0.8666 0.8529 0.8548 0.8539 0.8570
Brier score 0.1184 0.1184 0.1378 0.1366 0.1448 0.1429
Brier skill score 0.7599 0.7599 0.7195 0.7219 0.7052 0.7091
MAE 1.6441 1.6350 1.8414 1.8371 2,0556 2.0539
RMSE 3.6846 3.6761 4.1396 41281 4.5631 4,5524
NESBYEN +4-27h forecast +4-27h fcfix  +13-36h forecast +13-36h fcfix +25-48h forecast +25-48h fcfix
Accuracy 0.8398 0.8415 0.8333 0.8368 0.8250 0.8349
Bias frequency 1.1041 1.0689 1.0685 1.0462 1.0728 1.0476
Hit rate 0.8554 0.8439 0.8350 0.8280 0.8319 0.8263
False alarm ratio 0.2217 0.2105 0.2186 0.2086 0.2245 0.2112
Success ratio 0.7783 0.7895 0.7814 0.7914 0.7755 0.7388
Brier score 0.1602 0.1585 0.1667 0.1632 0.1710 0.1651
Brier skill score 0.6147 0.6188 0.6013 0.6097 0.5909 0.6050
MAE 0.8070 0.7216 0.8570 0.7749 0.8919 0.8068
RMSE 1.9596 1.8385 2.1111 1.9705 2.1926 2.0389

and fcfix against observed data.

Figure A.25: Forecast verification results for 24h accumulated precipitation for AROME
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48h accumulated precipitation

BERGEN +1-48h forecast  +1-48h fcfix TROMSED +1-48h forecast  +1-48h fcfix
Accuracy 0.9186 0.9150 Accuracy 0.8897 0.8862
Bias frequency 0.9784 0.9856 Bias frequency 0.9505 0.9590
Hit rate 0.9354 0.9409 Hit rate 0.9095 0.9117
False alarm ratio 0.0398 0.0454 False alarm ratio 0.0431 0.0494
Success ratio 0.9602 0.9546 Success ratio 0.9569 0.9506
Brier score 0.0814 0.0850 Brier score 0.1103 0.1138
Brier skill score 0.5520 0.5322 Brier skill score 0.3158 0.2940
MAE 5.8163 5.7844 MAE 3.2995 3.3327
RMSE 10.2717 9.7218 RMSE 5.3788 54488

0sLD +1-48h forecast  +1-48h fcfix KRISTIANSAND | +1-48h forecast +1-48h fcfix
Accuracy 0.8236 0.8242 Accuracy 0.83846 0.83846
Bias frequency 0.9181 0.9080 Bias frequency 0.9898 0.9898
Hit rate 0.8215 0.8169 Hit rate 0.9073 0.9073
False alarm ratio 0.1052 0.1003 False alarm ratio 0.0833 0.0833
Success ratio 0.8948 0.8937 Success ratio 0.9167 0.9167
Brier score 0.1764 0.1758 Brier score 0.1154 0.1154
Brier skill score 0.5082 0.5059 Brier skill score 0.6619 0.6619
MAE 2.0967 1.9610 MAE 2.9517 2.9442
RMSE 4,4497 4,2551 RMSE 5.7004 5.6865

TRONDHEIM +1-48h forecast  +1-48h fcfix MESBYEN +1-48h forecast  +1-48h fcfix
Accuracy 0.9015 0.8937 Accuracy 0.8336 0.8360
Bias frequency 1.0230 1.0156 Bias frequency 1.0489 1.0346
Hit rate 0.9449 0.95400 Hit rate 0.2809 0.8758
False alarm ratio 0.0763 0.0744 False alarm ratio 0.1602 0.1535
Success ratio 0.9237 0.9256 Success ratio 0.8398 0.3465
Brier score 0.0985 0.1003 Brier score 0.1664 0.1640
Brier skill score 0.6214 0.6145 Brier skill score 0.6044 0.6101
MAE 2.6571 2.4581 MAE 1.4713 1.3011
RMSE 4,8028 44721 RMSE 3.13594 2.8493

Figure A.26: Forecast verification results for 48h accumulated precipitation for AROME
and fcfix against observed data.
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1h accumulated precipitation

forecast
BERGEN +1h +2h +3h +1h +5h +6h +7h +8h +0h  +10h +11h  +12h
Accuracy 0.8171 0.8131 0.8154 0.8222 0.8091 0.8171 0.8045 0.8108 0.7884 0.8073 0.7999 0.7999
Bias frequency | 0.7530 07719 0.7853 0.7244 0.7206 0.7593 0.7238 0.7432 0.7130 0.7126 0.7089 0.7203
Hit rate 0.5562 0.5540 0.5880 0.5736 0.5395 0.5675 0.5371 0.5506 0.5148 0.5256 0.5089 0.5091

False alarm ratio | 0.2613 0.2823 0.2512 0.2082 0.2513 0.2526 0.2579 0.2582 0.2779 0.2624 0.2821 0.2933
Success ratio 0.7387 0.7177 0.7488 0.7918 0.7487 0.7474 0.7421 0.7408 0.7221 0.7376 0.7179 0.7067

Brier score 0.1830 0.1870 0.1810 0.1780 0.1910 0.1830 0.1960 0.1850 0.2120 0.1530 0.2000 0.2000
Brier skill score | 0.3550 0.3360 0.3890 0.4220 0.3580 0.3750 0.3450 0.3590 0.3150 0.3370 0.3050 0.2980
MAE 0.2684 0.2622 0.2753 0.2856 0.2695 0.2776 0.2731 0.2683 0.2798 0.2567 0.2723 0.2822
RMSE 0.7845 0.7058 0.7649 0.7484 0.7157 0.7187 0.71%6 0.7307 0.7648 0.6800 0.7142 0.8017

0sLO +1h +2h +3h +1h +5h +bh +7h +8h +9h  +10h +11h +12h
Accuracy 0.9197 0.9134 0.9197 0.9128 0.9237 0.9163 0.9157 0.9151 0.9174 0.9260 0.9243 0.9123
Bias frequency 0.9378 09156 0.8257 0.9103 0.8646 0.8957 0.8584 0.9648 0.9%07 0.9771 0.9558 1.0087
Hit rate 0.6578 0.6222 0.6224 0.6143 0.6419 0.6304 0.6137 0.6564 0.6589 0.6927 0.6858 0.6753
False alarm ratio | 0.2986 0.3204 0.2462 0.3251 0.2576 0.2961 0.2850 0.3196 0.3349 0.2911 0.2824 0.3305
Success ratio 0.7014 0.6796 0.7538 0.6749 0.7424 0.7039 0.7150 0.6804 0.6651 0.7089 0.7176 0.6695
Brier score 0.0800 0.0870 0.0800 0.0870 0.0760 0.0840 0.0840 0.0850 0.0830 0.0740 0.0760 0.0870
Brier skill score | 0.3800 0.3260 0.4210 0.3200 0.4210 0.3630 0.3710 0.3470 0.3240 0.4080 0.4140 0.3430
MAE 0.0307 0.0870 0.0882 0.0910 0.0932 0.0831 0.0988 0.0851 0.0915 0.0855 0.1040 0.0966
RMSE 0.4081 0.3811 0.4213 0.4106 0.4374 0.3804 0.5232 0.4931 0.3924 0.6935 0.5014 0.4386

TRONDHEIM +1h +2h +3h +1h +5h +6h +7h +8h +9h  +10h  +11h  +12h

Accuracy 0.8409 0.8514 0.8620 0.83385 0.8479 0.8573 0.8397 0.8362 0.8456 0.8420 0.8514 0.8450
Bias frequency | 0.9894 1.0034 0.9966 0.9293 1.0102 0.9338 0.9474 0.9658 1.0582 0.9519 0.9562 0.9465
Hit rate 0.5159 0.5670 0.5986 0.5017 0.5646 0.5836 0.5511 0.5497 0.5788 0.5449 0.5522 0.5318
False alarm ratio | 0.4786 0.4345 0.3993 0.4601 0.4411 0.3750 0.4183 0.4309 0.4531 0.4276 0.4225 0.4382
Success ratio 0.5214 0.5651 0.6007 0.5399 0.5589 0.6250 0.5817 0.5691 0.5469 0.5724 0.5775 0.5618
Brier score 0.1550 0.14%0 0.1380 0.1610 0.1520 0.1430 0.1600 0.1640 0.1540 0.1580 0.14%0 0.1550
Brier skill score 0.0430 0.1280 0.2000 0.0770 0.11%0 0.2320 0.1570 0.1330 0.1020 0.1330 0.1460 0.1170
MAE 0.1146 0.1128 0.1188 0.1263 0.1343 0.1265 0.1410 0.1582 0.1368 0.1352 0.1229 0.1316
RMSE 0.3524 0.3628 0.3659 0.4225 0.3970 0.4335 0.4469 0.6409 0.4617 0.4471 0.4092 0.4249

TROMS@ +1h +2h +3h +1h +5h +6h +7h +8h +0h +10h  +11h  +12h
Accuracy 0.7922 0.7933 0.7922 0.7865 0.7962 0.7796 0.7847 0.7939 0.7675 0.7721 0.7721 0.7784
Bias frequency | 0.6125 0.6315 0.6500 0.6750 0.6817 0.6151 0.6979 0.6869 0.6355 0.6809 0.6431 0.6180
Hit rate 0.4521 0.4702 0.4769 0.4778 0.5066 0.4622 0.4972 0.5028 0.4313 0.4565 0.4427 0.4476

False alarm ratio | 0.2620 0.2553 0.2663 0.2923 0.2569 0.2485 0.2876 0.2680 0.3213 0.3295 0.3116 0.2758
Success ratio 0.7380 0.7447 0.7337 0.7077 0.7431 0.7515 0.7124 0.7320 0.6787 0.6705 0.6884 0.7242

Brier score 0.2080 0.2070 0.2080 0.2140 0.2040 0.2200 0.2150 0.2060 0.2320 0.2280 0.2280 0.2220
Brier skill score | 0.2910 0.3080 0.3030 0.2790 0.3310 0.3110 0.2970 0.3190 0.2290 0.2320 0.2420 0.2760
MAE 0.1459 0.1479 0.1469 0.1576 0.1593 0.1538 0.1495 0.1554 0.1441 0.1564 0.1472 0.1486
RMSE 0.4333 04327 0.4229 0.4032 0.4252 0.3805 0.3628 0.4661 0.3652 0.39504 0.3582 0.3544

KRISTIANSAND | +1h +2h +3h +1h +5h +6h +7h +8h +9h +10h  +11h  +12h

Accuracy 0.9114 0.8960 0.9025 0.8972 0.8984 0.8519 0.3931 0.9019 0.3866 0.9019 0.3901 0.8860
Bias frequency 0.9611 0.9300 0.9644 1.0847 1.0741 1.0356 0.9962 1.0714 1.0866 1.0226 0.9778 0.9963
Hit rate 0.6887 0.6226 0.6561 0.6737 0.6831 0.6561 0.6553 0.7063 0.6654 0.6992 0.6444 0.6434
False alarm ratio | 0.2834 0.3305 0.3197 0.3739 0.3640 0.3664 0.3422 0.3407 0.3877 0.3162 0.3409 0.3542
Success ratio 0.7166 0.6695 0.6803 0.6211 0.6360 0.6336 0.6578 0.6593 0.6123 0.6838 0.6591 0.6458
Brier score 0.0890 0.1040 0.0970 0.1030 0.1020 0.1080 0.1070 0.0980 0.1130 0.0980 0.1100 0.1140
Brier skill score | 0.4140 0.3150 0.3510 0.2610 0.2890 0.2770 0.3140 0.3410 0.2470 0.3760 0.3100 0.2910
MAE 0.1353 0.1452 0.1574 0.1392 0.1306 0.1349 0.1413 0.1509 0.1489 0.1501 0.1456 0.1656
RMSE 0.5239 0.5398 0.6302 0.5205 0.5046 0.5031 0.5828 0.6302 0.5159 0.5478 0.5223 0.5772
NESBYEN +1h +2h +3h +1h +5h +6h +7h +8h +0h  +10h  +11h +12h
Accuracy 0.9272 09306 0.9329 0.9197 0.9140 0.9157 0.9123 0.9111 0.9209 0.9209 0.9260 0.9346
Bias frequency 1.0778 1.0581 1.0783 1.3333 1.2733 1.1488 1.1307 1.1000 1.0234 1.0118 1.0643 1.0732
Hit rate 0.6587 0.6387 0.6867 0.7179 0.6708 0.6369 0.6307 0.5941 0.6082 0.6000 0.6550 0.6850
False alarm ratio | 0.3885 0.3963 0.3631 0.4615 0.4732 0.4456 0.4422 0.4599 0.4057 0.4070 0.3846 0.3580
Success ratio 0.6111 0.6037 0.6369 0.5385 0.5268 0.5544 0.5578 0.5401 0.5943 0.5930 0.6154 0.6420
Brier score 0.0730 0.06%0 0.0670 0.0800 0.0860 O0.0840 0.0880 0.08%0 0.0790 0.0730 0.0740 0.0650
Brier skill score 0.2380 0.2240 0.2960 0.1050 0.0680 0.1280 0.1280 0.0870 0.1950 0.1900 0.2460 0.3090
MAE 0.0685 0.0635 0.0632 0.0671 0.0626 0.0549 0.0564 0.0535 0.0589 0.0631 0.0581 0.0623
RMSE 0.4588 0.3622 0.3675 0.3410 0.2766 0.2264 0.2292 0.2168 0.2548 0.3950 0.3229 0.3756

Figure A.27: Forecast verification results for 1h accumulated precipitation at each for
the first 12 forecast hours, for AROME against observed data.
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1h accumulated precipitation

fcpersist
BERGEN +1h +2h +3h +1h +5h +6h +7h +8h +0h  +10h +11h +12h
Accuracy 0.8819 0.8481 0.7907 0.7781 0.7655 0.7609 0.7345 0.7202 0.7282 0.7225 0.7139 0.7036
Bias frequency | 1.0000 1.0143 0.9632 0.9274 0.9595 0.9746 0.9486 0.9689 0.9222 0.9803 0.9861 1.0020
Hit rate 0.7932 0.7373 0.6286 0.6034 0.5857 0.5793 0.5333 0.5097 0.5222 0.5138 0.4990 0.4809

False alarm ratio | 0.2068 0.2731 0.3474 0.3494 0.3896 0.4056 0.4378 0.4735 0.4337 0.4759 0.4%40 0.5201
Success ratio 0.7932 0.7269 0.6526 0.6506 0.6104 0.5944 0.5622 0.5261 0.5663 0.5241 0.5060 0.4799

Brier score 0.1180 0.1520 0.2090 0.2220 0.2350 0.2390 0.2650 0.2800 0.2720 0.2780 0.2860 0.2960
Brier skill score | 0.5870 0.4600 0.2950 0.2790 0.2100 0.1840 0.1200 0.0500 0.1210 0.0460 0.0120 -0.0350
MAE 0.2514 0.3023 0.3511 0.3826 0.4145 0.4118 0.4281 0.4318 0.4442 0.4364 0.4522 0.4632
RMSE 0.7327 0.8760 0.9639 1.0049 1.0475 1.0538 1.0854 1.0668 1.1251 1.0811 1.1108 1.1670

0sL0 +1h +2h +3h +1h +5h +6h +7h +8h +9h  +10h +11h +12h
Accuracy 0.9266 0.9002 0.8734 0.8670 0.8532 0.3481 0.3372 0.8406 0.8354 0.83274 0.3194 0.3222
Bias frequency 1.0356 1.0356 0.9668 1.0448 1.0175 1.0130 1.0000 1.0264 1.0888 1.0688 1.0310 1.0087
Hit rate 0.7333 0.6211 0.5436 0.5022 0.4493 0.4304 0.3906 0.4009 0.3738 0.3440 0.3186 0.3333
False alarm ratio | 0.2918 0.3906 0.4378 0.5193 0.5579 0.5751 0.6094 0.6094 0.6567 0.6781 0.6910 0.6695
Success ratio 0.7082 0.6094 0.5622 0.4807 0.4421 04249 0.3906 0.3906 0.3433 0.3219 0.2090 0.3305
Brier score 0.0730 0.1000 0.1220 0.1330 0.1470 0.1520 0.1630 0.1550 0.1650 0.1730 0.1810 0.1780
Brier skill score | 0.4340 0.2250 0.1170 -0.0400 -0.1200 -0.1520 -0.2200 -0.2210 -0.3450 -0.3840 -0.3970 -0.3430
MAE 0.0876 0.1108 0.1292 0.1303 0.1295 0.1425 0.1548 0.1486 0.1533 0.1641 0.1682 0.1765
RMSE 0.4425 0.5133 0.5552 0.5674 0.5288 0.5804 0.6601 0.6902 0.6199 0.6395 0.7081 0.7095

TRONDHEIM +1h +2h +3h +1h +5h +6h +7h +8h +9h  +10h  +11h  +12h

Accuracy 0.8882 0.8482 0.8488 0.8353 0.8241 0.7988 0.7929 0.7935 0.7865 0.7806 0.7847 0.7847
Bias frequency 1.0636 1.0344 1.0238 1.0135 1.0238 0.9495 0.9319 0.9348 1.0308 0.9647 1.0135 1.0067
Hit rate 0.6961 0.5739 0.5748 0.5354 0.5034 0.4353 0.4211 0.4224 0.3938 0.3846 0.3906 0.3913
False alarm ratio | 0.3455 0.4452 0.4385 0.4718 0.5083 0.5415 0.5482 0.5482 0.6179 0.6013 0.6146 0.6113
Success ratio 0.6545 0.5548 0.5615 0.5282 0.4917 0.4585 0.4518 0.4518 0.3821 0.3987 0.3854 0.3837
Brier score 0.1120 0.1520 0.1510 0.1650 0.1760 0.2010 0.2070 0.2060 0.2140 0.2190 0.2150 0.2150
Brier skill score 0.3270 0.1120 0.1270 0.0560 -0.0180 -0.0780 -0.08%0 -0.0880 -0.2460 -0.1930 -0.2310 -0.2220
MAE 0.0929 0.1367 0.1413 0.1423 0.1605 0.1618 0.1781 0.1884 0.1805 0.1834 0.1771 0.1775
RMSE 0.3258 0.4748 0.4650 0.4440 0.5021 0.4785 0.5520 0.6706 0.5847 0.5502 0.5466 0.5568
TROMS® +1h +2h +3h +1h +5h +6h +7h +8h +0h  +10h  +11h  +12h
Accuracy 0.8627 0.8254 0.7984 0.7806 0.7542 0.7519 0.7421 0.7295 0.7329 0.7231 0.7134 0.7007
Bias frequency 1.0373 1.0154 1.0173 1.0232 0.9962 0.9532 0.9944 1.0057 1.0095 1.0232 1.0095 0.9906
Hit rate 0.7843 0.7159 0.6712 0.6422 0.5951 0.5874 0.5752 0.5551 0.5611 0.5455 0.5286 0.3075

False alarm ratio | 0.2439 0.2945 0.3403 0.3724 0.4026 0.3837 0.4216 0.4430 0.4442 0.4669 0.4764 0.4877
Success ratio 0.7561 0.7051 0.6597 0.6276 0.5974 0.6162 0.5784 0.5520 0.5558 0.5331 0.5236 0.5123

Brier score 0.1370 0.1750 0.2020 0.2130 0.2460 0.2480 0.2580 0.2710 0.2670 0.2770 0.2870 0.2930
Brier skill score | 0.5320 0.4150 0.3240 0.2630 0.1930 0.2220 0.1560 0.1030 0.1130 0.0670 0.0470 0.0250
MAE 0.1315 0.1451 0.1569 0.1733 0.1819 0.1859 0.1994 0.1985 0.1969 0.1930 0.1952 0.2071
RMSE 0.3921 04214 0.4237 0.4526 0.4870 0.4606 0.5002 0.4506 0.5082 0.5086 0.4821 0.5188

KRISTIANSAND | +1h +2h +3h +1h +5h +6h +7h +8h +9h +10h  +11h  +12h

Accuracy 0.9112 0.8740 0.8538 0.8533 0.8361 0.3337 0.3272 0.8189 0.8142 0.303% 0.3006 0.7882
Bias frequency 1.0625 1.0584 1.0751 1.1525 11193 1.0751 1.0303 1.0794 1.0709 1.0264 1.0112 1.0000
Hit rate 0.7383 0.6148 0.5454 0.5508 0.4897 0.4822 0.4621 0.4325 0.4173 0.4038 0.3792 0.3419

False alarm ratio | 0.3051 0.4191 0.4890 0.5221 0.5625 0.5515 0.5515 0.5993 0.6103 0.6066 0.6250 0.6581
Success ratio 0.6945 0.5809 0.5110 0.4779 0.4375 0.4485 0.4485 0.4007 0.3897 0.3934 0.3750 0.3419

Brier score 0.0890 0.1260 0.1460 0.1470 0.1640 0.1660 0.1730 0.1810 0.1860 0.1910 0.19%0 0.2120
Brier skill score | 0.4130 0.1720 0.0250 -0.0530 -0.1400 -0.1090 -0.1080 -0.2140 -0.2380 -0.2180 -0.2500 -0.3180
MAE 0.1292 0.1679 0.2072 0.2033 0.2266 0.2327 0.2399 0.2683 0.2534 0.2603 0.2663 0.2742
RMSE 0.5210 0.6012 0.7584 0.6739 0.7737 0.7688 0.7733 0.9047 0.7922 0.8281 0.3455 0.3056
NESBYEN +1h +2h +3h +1h +5h +6h +7h +8h +0h  +10h  +11h +12h
Accuracy 0.9358 0.9243 0.9100 0.9054 0.8911 0.8870 0.8756 0.8641 0.8589 0.8503 0.3578 0.3538
Bias frequency 0.9760 1.0516 0.9819 1.0449 1.0124 0.9702 0.9261 0.9588 0.9532 0.9588 0.9532 0.9939
Hit rate 0.6527 0.6000 0.5181 0.4936 0.4161 0.3988 0.3466 0.2824 0.2573 0.2118 0.2515 0.2195
False alarm ratio | 0.3313 0.4294 0.4724 0.5276 0.5890 0.5830 0.6258 0.7055 0.7301 0.7791 0.7362 0.7791
Success ratio 0.6687 0.5706 0.5276 0.4724 0.4110 0.4110 0.3742 0.2945 0.2699 0.2209 0.2638 0.2209
Brier score 0.0640 0.0760 0.0900 0.0950 0.10950 0.1130 0.1240 0.1360 0.1410 0.1500 0.1420 0.1460
Brier skill score 0.3320 0.1450 0.0550 -0.0630 -0.1810 -0.1730 -0.2290 -0.3950 -0.4370 -0.5380 -0.4480 -0.5530
MAE 0.0685 0.073% 0.0832 0.0829 0.0788 0.0890 0.0937 0.0905 0.0929 0.0987 0.0987 0.1109
RMSE 0.4848 0.4522 0.4710 0.4743 0.4352 0.4715 0.4819 0.4683 0.4732 0.5130 0.5164 0.5923

Figure A.28: Forecast verification results for 1h accumulated precipitation at each for
the first 12 forecast hours, for fcpersist against observed data.
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| 6h accumulated precipitation |

forecast fepersist forecast fepersist
BERGEN +1-6h  +7-12h +1-6h  +7-12h TROMS@ +1-6h  +7-12h +1-6h  +7-12h
Accuracy 0.8604 0.3254 0.7697 0.6847 Accuracy 0.8028 0.8129 0.7555  0.6582
Bias frequency 0.9296  0.8712 0.5931  0.5820 Bias frequency 0.8322 0.87689 0.6011  0.6060
Hit rate 0.8198 0.7576 0.5573 0.46%96 Hit rate 0.7203 0.7572 0.53577  0.4608
False alarm ratio | 0.1181  0.1304 0.0604 0.1932 False alarm ratio | 0.1344  0.1365 0.0722  0.2395
Success ratio 0.8819 0.3696 0.93%6  0.8063 Success ratio 0.8656  0.8635 0.9278  0.7605
Brier score 0.1400  0.1750 0.2300 0.3150 Brier score 0.1970 0.1810 0.2450  0.3420
Brier skill score 0.7090  0.6430 0.5220 0.3580 Brier skill score 0.6030  0.6380 0.5070  0.3150
MAE 1.1367 1.13%6 1.8605  2.4856 MAE 0.6364  0.6255 0.8203  1.0920
RMSE 2.3809  2.6138 47825  5.9185 RMSE 1.3825 1.2714 2.0821 2.6022
forecast fcpersist forecast fcpersist
0sL0 +1-6h  +7-12h +1-6h  +7-12h KRISTIANSAND | +1-6h = +7-12h +1-6h  +7-12h
Accuracy 0.8811  0.B880 0.8300 0.7725 Accuracy 0.8864  0.8775 0.8257 0.7611
Bias frequency 0.9176  1.0023 0.5183 0.5381 Bias frequency 1.0204  1.0430 0.3551 0.5585
Hit rate 0.7283  0.7760 04298 0.3118 Hit rate 0.8147  0.8054 0.4776  0.3655
False alarm ratio [ 0.2063  0.2258 0.1717 0.4206 False alarm ratio | 0.2016  0.2240 0.1397  0.3456
Success ratio 0.7937  0.7742 0.8283 05754 Success ratio 0.7984  0.7760 0.8603  0.6544
Brier score 0.1190 0.1120 0.1700  0.2270 Brier score 0.1140  0.1220 0.1740  0.2390
Brier skill score 0.5390 0.5500 0.3410 0.0870 Brier skill score 0.6080 0.5780 0.4010 0.1720
MAE 0.3%65 0.3831 0.6615 0.9160 MAE 0.5576  0.5667 1.0296  1.4972
RMSE 1.3738 1.2011 2.7557  3.4557 RMSE 1.7189 1.6375 3.3472 4.2194
forecast fepersist forecast fepersist
TRONDHEIM +1-6h  +7-12h +1-6h  +7-12h MNESBYEN +1-6h  +7-12h +1-6h  +7-12h
Accuracy 0.8300 0.8435 0.8020 0.7177 Accuracy 0.8851 0.8811 0.8627  0.7967
Bias frequency 1.1086  1.0618 0.5172 0.4878 Bias frequency 11534 1.1178 0.4631  0.4466
Hit rate 0.8052 0.3146 0.4690  0.3545 Hit rate 07926 0.7733 0.3920 0.2334
False alarmratio | 0.2737 0.2328 0.0933  0.2733 False alarm ratio | 0.3128  0.3064 0.1534  0.4663
Success ratio 0.7263 0.7672 0.9067  0.7267 Success ratio 0.6872 0.6936 0.8466  0.5337
Brier score 0.1700  0.1560 0.1980  0.2820 Brier score 0.1150 01130 0.1370 0.2030
Brier skill score 0.5020  0.5650 0.4210 0.2220 Brier skill score 0.4310 0.4320 0.3220 0.0210
MAE 0.4803 0.5671 0.7561 1.0269 MAE 0.2747  0.2540 0.4222  0.5666
RMSE 1.2237 1.6236 2.2674 28772 RMSE 1.1081 1.0012 2.3838 2.7293

Figure A.29: Forecast verification results for 6h accumulated precipitation for AROME
and fcpersist against observed data.
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