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Abstract

This thesis investigate the sensitivity of rotational symmetric Boolean functions

up to five variables, this means the difference in output created by comple-

menting one of the input entries. The programs designed for creating Boolean

functions, filtering out rotational symmetric Boolean functions and testing for

sensitivity are all explained in the thesis. The complete analysis of the result

are shown in tables, and the functions with sensitivity close to 1
2 are listed in

its short algebraic normal form (SANF).
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Chapter 1

Introduction

The study of Boolean functions in relation to cryptography has been of interest

since they were introduced for use in combination with Linear Feedback Shift

Registers (LFSRs). Today Boolean functions are relevant and central in several

cryptographic algorithms, both in stream and block ciphers – represented by

combinations of LFSRs and substitution boxes (S-boxes, cf. AES, DES, and

more). Some fundamental concepts in achieving secure communication today

are confusion and diffusion. It has been shown that Boolean functions provide

both confusion and diffusion. Confusion is achieved by the complexity of the

related functions, which can be described by several properties, but the two most

important are: the algebraic degree and the nonlinearity of said functions. These

criteria describe, in their own way, the difference between any given function and

the set of affine functions – that is, linear functions with or without a constant

– as Claude Carlet phrased it, in [1]. Affine functions are considered ineffective

for cryptographic purposes and should be avoided as much as possible – in fact,

Carlet states that all cryptographic functions must have high algebraic degree

and high nonlinearity. Through this thesis, an additional known complexity

criteria is going to be discussed, the concept of sensitivity.

1



1.1 Research question and expected results

Research question

- The goal of this master thesis is to measure and map the sensitivity of rotation

symmetric Boolean functions for highest possible values of n.

Expected Results

The obtained results from this master thesis will shed some light on the above

research question. The searching space for the different values of n when talking

about Boolean functions is 22
n

. For n = 2 the search space is 16. The first

expected result will be to find all rotation symmetric function in n = 2, then

map and measure the sensitivity of these functions. Next will be to increase n as

much as possible and try to find a good method to find the rotation symmetric

functions and check the functions’ sensitivity.

For n = 4, the space has size 26; for n = 5, the space has size 28; for n = 6,

the space has size 214; for n = 7 the space has size 220.
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1.2 Structure of thesis

A summary of the thesis structure.

Chapter 1 - Introduction:

Introduces the circumstances of the research and questions.

Chapter 2 - Background:

Describes the context of the research and the fundamental mathematics

used to accomplish it.

Chapter 3 - Calculating sensitivity on rotation symmetric func-

tions for n = 2,3,4:

Describing the method, programs and code used to calculating Rots for

n = 2, 3, 4

Chapter 4 - Calculating sensitivity on rotation symmetric func-

tions for n = 5:

Describing the method, programs and code used to calculating Rots for

n = 5.

Chapter 5 - Results and Discussion:

Results and analysis of n ≤ 5.

Chapter 6 - Conclusion:

Conclusion of the work, its contribution and future work.
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Chapter 2

Background

This chapter shows an overview of some of the mathematical concepts used in

this thesis. In particular, rotation symmetric Boolean functions, and sensitivity

for Boolean functions are two key factors in this thesis and will be explained in

this section.

2.1 Mathematical Foundations

2.1.1 Set theory

Set theory is widely used for providing a language for describing concepts in both

mathematics and computer science. A set – in simple terms – is a collection

of objects of any kind, which are referred to as the elements of the set; e.g.

A = {1, 2, 3} is a set referenced to set A. Set A contains the numbers 1, 2 and

3. Although sets can contain elements of all sorts of characters, most sets used

in this thesis will be comprised of numbers, or other mathematical elements.

Elements in a set are separated with commas, and the elements are contained

within braces { }.

The order of the elements is irrelevant. If we define B = {2, 1, 3}, B contains

numbers 2, 1 and 3, and therefore sets A and B contains exactly the same values.

Therefore they are the same set (i.e. A = B).

Claiming that an object is contained within a set is one of the fundamental

statements in set theory, and is represented by ∈. For set A used above, 2 ∈ A
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is true, but 4 ∈ A is not true. If an element is not in the set, this is represented

by /∈; i.e. 4 6∈ A.

Example 2.1. Some commonly used sets in mathematics are

the natural numbers N = {1, 2, 3, . . . },

the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . },

the rational numbers Q =
{a
b
| a, b ∈ Z

}
, and

the real numbers R,

where the latter includes both the rational and irrational numbers (e.g. π,
√
2,

etc.). Note that some texts may include 0 in N.

Two sets can be merged into a third set by the use of different operators. The

union ∪ operator, also called the or operator, forms a new set that contains all

elements in the first set and all the elements in the second set. The intersection

operator ∩, also known as the and operator, combines two sets to create a set

with all elements included in both sets.

If we have two sets A and B, and all elements of A are in B, then A is a

subset of B. This is written as A ⊆ B. Note that, if A ⊆ B and B ⊆ A, then

A = B. If not all elements of A are in B, then we write A 6⊆ B. Given two sets

A and B, if A is not equal to B, we denote this by A 6= B.

Example 2.2. Let a, b, c be elements of some set S, and let A = {x, y}, B =

{y, z}, and C = {z} be subsets of S. Then,

A ∪B = {x, y, z},

A ∩B = {y},

A× C = {(x, z), (y, z)}.

Also, C ⊆ B and C ⊆ A ∪B, but C 6⊆ A ∩B.

An ordered pair is an object of the form (a, b), where a is an element of a

set A and b is an element of a set B. The set of all ordered pairs of this form

is called the Cartesian product of two sets A and B and is denoted by A × B.

Therefore, A × B = (a, b) : a ∈ A and b ∈ B. This operation is particularly

important since it lead to the concept of relations and functions, that play a
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important role in computer science. A binary relation between A and B is an

association between elements a ∈ A and b ∈ B, and is given by a subset of

A×B. We have then that a is related to b if and only if the pair (a, b) is in the

set that defines the relation.

Definition 2.1. (Function) [2]

A function from a set A to a set B is a binary relation in which every element

of A is associated with a uniquely specified element of B. In other words, for

each a ∈ A, there is precisely one pair of the form (a, b) in the set that defines

the relation.

A function f from a set A to a set B is denoted as

f : A→ B,

where A, in this case, is called the domain of the function f , and B is called the

co-domain. The range of f is the set of images of all the elements of A under

f , the range is denoted by f(A), defined f(A) = {f(x) | x ∈ A}.

There are some properties of functions that are important to note. A

function f : A → B is called injective (or one-to-one) if, for a1, a2 ∈ A,

f(a1) = f(a2) implies a1 = a2. If the range of f is equal to the co-domain of

f , then f is called surjective (or onto). If f is both injective and surjective,

f is called bijective, and then f is invertible – i.e. there exists a function

f−1 : B → A such that f−1(f(a)) = a and f(f−1(b)) = b. The function

f−1 is called the inverse of f .

Given two functions f : A → B and g : B → C, the composite relation

g ◦ f between A and C consists of pairs of the form (a, c), where a ∈ A, c ∈ C,

such that, for some b ∈ B, (a, b) ∈ f and (b, c) ∈ g. Since both of f, g are

functions, b = f(a) is uniquely determined by a, and c = g(b) is uniquely

determined by b. Thus, c = g(f(a)) is uniquely determined by a, and therefore

the composition of f and g is also a function, denoted by g ◦ f : A → C, such

that (g ◦ f)(x) = g(f(x)) [2].

2.1.2 Boolean algebra

The simplest Boolean algebra consist of the set B = {0, 1} together with the

operations of disjunction (∨), conjunction (∧) and negation (¬). The effect of
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the operations (∨) and (∧) on the symbols 0 and 1 is given in Table 2.1, which

represents the truth table of these operations (which shows a column for every

input element, and a column for the output of each operation).

p q ¬p p ∨ q p ∧ q

0 0 1 0 0

0 1 1 1 0

1 0 0 1 0

1 1 0 1 1

Table 2.1: Examples operations disjunction (∨), conjunction (∧) and negation

(¬).

The process of negation is defined by ¬0 = 1 and ¬1 = 0. If p and q are

two Boolean variables, in other words each of p and q can take the value 0 or 1,

then the Table shown in 2.1 can be constructed [2].Truth tables can be used to

establish the following equivalences which are called the laws of Boolean algebra:

Commutative laws

p ∧ q = q ∧ p

p ∨ q = q ∨ p

Associative laws

p ∧ (q ∧ r) = (p ∧ q) ∧ r

p ∨ (q ∨ r) = (p ∨ q) ∨ r

Distributive laws

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ q)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ q)

Idempotent laws

p ∧ p = p

p ∨ p = p

Absorption laws

p ∧ (p ∨ q) = p

p ∨ (p ∧ q) = p

De Morgan‘s laws
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¬(p ∧ q) = ¬p ∨ ¬q

¬(p ∨ q) = ¬p ∧ ¬q

Minterm in Boolean algebra is a product term, in which each variable appears

once. Minterms can be used to express any Boolean functions of Boolean

variables uniquely as a a disjunction of minterms. This is called the disjunctive

normal form of the Boolean expression. Consider the Boolean expression f(p, q,

r) whose truth table is given in Table 2.2. The ones in this table correspond to

the three minterms: ¬p ∧ ¬q ∧ r, ¬p ∧ q ∧ r and p ∧ ¬q ∧ ¬r. The truth table

of f can be obtained by overlaying the truth table for these three minterms.

p q r f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Table 2.2: Example Boolean expression

Since disjunction with 1 has the effect of overwriting any zero, f is the

disjunction of these three miniterms, and so f(p, q, r) = ¬p ∧ ¬q ∧ r ∨ ¬p ∧ q

∧ r ∨ p ∧ ¬q ∧ ¬r. This is the disjunctive normal form of f . Clearly, the same

reasoning can be applied to a Boolean expression of any number of variables.

We have seen that every Boolean function has a unique representation as a

disjunction of miniterms. Hence any Boolean function can be represented in

terms of the operators ∨, ∧ and ¬. [2]
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2.2 Boolean functions

Boolean functions are named after George Boole (1815-1864), who laid the

foundation for what is now called Boolean Algebra [3], and are usable in a range

of fields not only in mathematics, cf. logic gates in Electrical Engineering. This

thesis revolves around the complexity of Boolean functions as cryptographic

tools, the following section serves to define such functions.

Let Vn be the vector space of dimension n over the two-element field F2. For

two vectors in Vn, say a = (a1, ..., an) and b = (b1, ..., bn), we define the scalar

product a ·b = a1b1⊕ ...⊕anbn, where the multiplication and addition ⊕ (called

xor) are over F2 (it should not be confused with the direct product of vector

spaces, but that will be clear from context). We also define the operation ? by

a ? b = (a1b1, ..., anbn).[3]

Definition 2.2. Boolean functions [3]

A Boolean function f in n variables is a map from Vn to F2. The

(0, 1)−sequence defined by (f(v0), f(v1), ..., f(v2n−1)) is called the truth table

of f , where v0 = (0, ..., 0, 0), v1 = (0, ..., 0, 1), ..., v2n−1 = (1, ..., 1, 1), written

in lexicographical order. The (1,−1)−sequence of f (or simply sequence) is

defined by ((−1)f(v0), ..., (−1)f(v2n−1)). The algebra of all Boolean functions on

Vn will be denoted by Bn.

Definition 2.3. Algebraic Normal Form [4]

Among the most common representations of Boolean functions is the Algebraic

Normal Form (in brief the ANF), most usually used in cryptography and coding.

ANF is an n-variable polynomial representation over F2, of the form:

f(x) =
⊕
u∈Fn

2

cu

(
n∏

i=1

xui
i

)
=
⊕
u∈Fn

2

cux
u,

where each cu ∈ F2, u = (u1, . . . , un) and x = (x1, . . . , xn).

An affine function `u,c is a function with algebraic degree at most 1, which

takes the form

`u,c(x) = u · x⊕ c = u1x1 ⊕ · · · ⊕ unxn ⊕ c, (2.1)

9



where u = (u1, . . . , un) ∈ Fn
2 and c ∈ F2. If c = 0, such that `u,0 only consists of

monomials of algebraic degree 1, and no constant, then it is a linear function [3].

Every Boolean function f has a unique representation in its algebraic normal

form. Most Boolean functions discussed in this thesis will be presented in

its corresponding ANF. For the particular set of Boolean functions known

as rotation symmetric Boolean functions (Rots), defined in Section 2.3, the

functions will be sometimes shown and discussed in their short algebraic normal

form (SANF), explained also in Section 2.3.

Definition 2.4. Affine Transformation [5]

An affine transformation T : Fn
2 → Fn

2 is a transformation of the form T (x) =

Ax+ b, with A an n× n matrix, and b in Fn
2 .

By matrix multiplication, the affine transformations map each xi in =

(x1, . . . , xn) to an affine function given by xj =
∑
ai,jxi + bj , for each i, j ≤ n,

where ai,j is the entry of A in column i, row j.

When discussing affine transformations, only matrices that are invertible are

included, meaning no information is lost in the transformation.

2.3 Rotation symmetric Boolean functions

In this section, we introduce a crucial concept for this thesis, the concept of

rotation symmetric Boolean functions.

Let Vn(= Fn
2 ) be the vector space of dimension n over two-element field F2.

Let xi ∈ (0, 1) for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define

P k
n (xi) = xi+k if i+ k ≤ n,= xi+k−n if i+ k < n.

Let (x1, x2, ..., xn−1, xn) ∈ Vn. Then we extend the definition as

P k
n (x1, x2, ..., xn−1, xn) = (P k

n (x1), P
k
n (x2), ..., P

k
n (xn−1), P

k
n (xn)).

A Boolean function on n variables may be viewed as a mapping from

Vn into V1. A Boolean function f(x1, ..., xn) can be explained as the
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output column of its truth table, i.e., a binary string of length 2n, f =

[f(0, 0, ..., 0), f(1, 0, ..., 0), f(0, 1, ..., 0)f(1, 1, ..., 1)]. The table below shows a

truth table of 3-variable Boolean functions.

Definition 2.5. Rotation Symmetric Boolean functions [6]

A Boolean function f is Rotation symmetric (RotS) if and only if for any

(x1, ..., xn) ∈ Vn

f(P k
n (x1, ..., xn)) = f(x1, ..., xn) for any 1 ≤ k ≤ n.

x3 x2 x1 f No. x3 x2 x1 f

0 0 0 1 1 0 0 0 0

0 0 1 0 2 0 0 1 0

0 1 0 0 2 0 1 0 0

0 1 1 0 3 0 1 1 1

1 0 0 1 2 1 0 0 0

1 0 1 1 3 1 0 1 1

1 1 0 0 3 1 1 0 1

1 1 1 0 4 1 1 1 0

Table 2.3: Truth table of Boolean functions

For a Boolean function there are 2n different input values. From the

definition above, a functions that possesses the same value for each of the subsets

generated from the rotational symmetry is a RotS function. For n = 3 the

subsets that needs to yield the same output are:

{(0, 0, 0)}

{(0, 0, 1), (0, 1, 0), (1, 0, 0)}

{(0, 1, 1), (1, 0, 1), (1, 1, 0)}

{(1, 1, 1)}

There are four different subsets which partition the 8 input patterns, and any 3-
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variable RotS Boolean function can have a specific value corresponding to each

subset. Thus there are 24 = 16 rotation symmetric functions on 3 variables.

In Table 2.3, the left one is a function which is not RotS, the right one is a

RotS function (each different subset is numbered). Information, formulas and

definitions in this section are taken from [6].

2.3.1 Short algebraic normal form (SANF)

Short algebraic normal form will be used later in this thesis for making a more

compressed list of sensitivity for RotS functions.

Definition 2.6. SANF [3]

A rotation symmetric function f(x1, ..., xn) can be written as

a0 ⊕ a1x1 ⊕
n⊕

j=1

a1jx1xj ⊕ ...⊕ a12...nx1x2...xn,

where the coefficients a0, a1, a1j , ..., a12...n ∈ F2, and the existence of a

representative term x1xi2...xi` implies the existence of all the terms from

Gn(x1xi2...xil) in the algebraic normal form. This representation of f is called

the short algebraic normal form (SANF) of f .

As an example, consider the ANF of a 4-variable rotation symmetric Boolean

function x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x1x2x3 ⊕ x2x3x4 ⊕ x3x4x1 ⊕ x4x1x2. Its SANF is

x1 ⊕ x1x2x3.

2.4 Sensitivity of Boolean functions

The sensitivity set of a Boolean function at a particular input is the set of

input positions where changing that one bit changes the output. The sensitivity

of the Boolean function at a particular input is then the cardinality of the

sensitivity set, while the sensitivity of the function is defined as the maximum

of its sensitivity over all possible inputs.

Definition 2.7. (Sensitivity of Boolean functions) [7]

Let f : {0, 1}n → {0, 1} be a Boolean function, where n is the input
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dimension of f . We define the sensitivity of f at x by

s(f, ~x) = |{i ∈ {1, . . . , n}/f(~x⊕ ~ei)⊕ f(~x) = 1}|,

where ~ei i the standard unity vector with 1 in position i. The sensitivity of f at

a particular input x is then the number of input positions where changing that

one bit changes the output.

Tables 2.4 below shows the method used in this thesis for calculating

sensitivity for RotS functions. In the example below function f given by its

truth table 0001, which is in the set for rots functions for n = 2, is tested for

sensitivity. Here ~x = (x1, x2). The full set of RotS functions for n = 2 and their

sensitivity can be found in the Appendix A.

f(~x) = (0001)

~e1 = (1, 0)

~e2 = (0, 1)

x1 x2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e1) f(~x)⊕ f(~x⊕ ~e1)

0 0 0 1 0 0 0

0 1 0 1 1 1 1

1 0 0 0 0 0 0

1 1 1 0 1 0 1

x1 x2 f(~x) ~x⊕ ~e2 f(~x⊕ ~e2) f(~x)⊕ f(~x⊕ ~e2)

0 0 0 0 1 0 0

0 1 0 0 0 0 0

1 0 0 1 1 1 1

1 1 1 1 0 0 1
~x = (0, 0) : S(f(0, 0)) = 0

~x = (0, 1) : S(f(0, 1)) = 1

~x = (1, 0) : S(f(1, 0)) = 1

~x = (1, 1) : S(f(1, 1)) = 2

Table 2.4: Sensitivity for f = 0001
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2.5 Methodology

How to measure and map the sensitivity of rotation symmetric functions for

different values of n?

This project is a quantitative simulation case study, and concerns analysis

and calculations of mathematical concepts. The goal of this thesis is measuring

and mapping the sensitivity of rotation symmetric functions for the highest

possible value of n, by using mathematics and code. The method used for

achieving this goal is to separate the programming parts into three different

blocks and working iteratively with these blocks. The first block concerns the

method for creating the Boolean functions for the different values of n. These

programs are shown in Sections 3.1 and 4.1. The second block covers the way

to filter out the RotS functions from the list of Boolean functions created in the

first block. The program used for this is shown in Sections 3.2 and 4.1. The last

block is to use the result from block two (the RotS functions) and testing the

functions for sensitivity; these programs can be seen in Sections 3.3 and 4.2.

By making and following these blocks the goal is also separated into three

sub goals, something that made the main goal easier to achieve.

2.5.1 Coding setup

The coding, development, and testing of these technologies is done in Python

with some help from other frameworks and softwares. Following is a shortlist of

the most important libraries and tools used in these experiments:

• Programming language Python 3.8

• SageMath 9.0

• Essential Libraries: numpy, BooleanFunctions, pbori and itertools

• Workspace: CoCalc and SageMath Notebook

The main reason these technologies is selected is because of SageMath

existing interfaces for interaction with Boolean rings and Boolean functions,

and the built-in matrix manipulation. SageMath contains a package for Boolean

functions sage.crypto.boolean_function and pbori -package. The pbori-package
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is used for creating ANF. These packages have been essential for working with

Boolean functions in this thesis. SageMath [8] is an open-source mathematics

software system, which builds on several existing open-source packages, and runs

on Python. So that is why Python are selected as programming language for

this thesis. For this thesis two workplaces are used. Cocalc is a online virtual

workspace, which is used for collaborating with my supervisors regarding the

code. Cocalc is not suitable for heavy calculations, such as creating Boolean

functions for n = 5, because of Cocalc‘s lack of memory. SageMath Notebook

is a offline workspace and the memory and CPU of the computer it runs on

is used. Sagemath Notebook is used for the more heavy calculations in this

project. Python’s Itertool is a module that provides various functions that

work on iterators to produce complex iterators. This module works as a fast,

memory-efficient tool that is used either by themselves or in combination to

form iterator algebra [9].
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2.6 Related work

In, [10] written in 1999, Pieprzyk and Qu studied some functions, which they

called rotation symmetric (RotS) as components in the rounds of a hashing

algorithm. This is a desirable feature when effective evaluation of the function

is important, for example in the implementation of MD4, MD5 or HAVAL, since

one can reuse evaluations from previous iterations. In 2008 Pantelimon Stănică

and Subhamoy Maitra wrote a paper on rotation symmetric Boolean functions

[6]. There they provided a complete enumeration result for these functions

including the number of such functions with specific degree. Pantelimon Stănică

and Subhamoy Maitra studied the rotation symmetric bent functions completely

up to 8 variables. Further, they observed that up to 10 variables, and found

out there is no homogeneous rotation symmetric bent function of degree > 2.

They also checked the cryptographic properties of rotation symmetric functions

up to 7 variables. This paper [6] have helped a lot to get a good understanding

of rotation symmetric Boolean functions.
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Chapter 3

Calculating sensitivity on

RotS Boolean functions for n

= 2,3,4

In this chapter, the program used for calculating sensitivity on rotation

symmetric functions for n = 2, 3, 4 is explained and shown in Figures 3.1-

3.5. The Chapter is divided into three sections: Constructing all Boolean

functions for n = 2, 3, 4, filtering out rotation symmetric Boolean functions

and calculating sensitivity on rotation symmetric Boolean functions.
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1 def generate_lower_functions(n_var , R, x):

2 temp_functions = [R(0), R(1), x[0], x[0] + 1]

3

4 for i in range(2, n_var +2):

5 new_x = x[i-1]

6 new_functions = []

7 add_function = new_functions.append

8 for f1 in temp_functions:

9 for f2 in temp_functions:

10 add_function(f1*new_x +f2)

11 temp_functions = new_functions

12

13 return temp_functions

14

15 n = 2

16 ring = BooleanPolynomialRing(n, "x")

17 x = ring.gens()

18 x_map = Arrangements(x, n)

19

20 functions = generate_lower_functions(n-1, ring , x)

21 new_x = x[n-1]

Figure 3.1: Generating functions for n = 2, 3, 4

3.1 Constructing all Boolean functions

Method generate_lower_functions shown in Fig 3.1 has been used to generate

all Boolean functions for n ≤ 4 in this project. For n = 5 the method was

modified (see next section). The method in fig 3.1 uses three inputs, n choosing

an integer for numbers of variables, ring setting up the Boolean polynomial ring

with the built-in concept of SageMath and last the x a generated list of x1, x2, ..

The method generates all possible Boolean functions in algebraic normal form

for n variables, building on the set containing all possible Boolean functions

in (n − 1) variables Bn−1, and the new variable for Bn: xn; together with

multiplication (∗) and addition (⊕) in F2. Then,
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Bn = {g ∗ xn ⊕ h | g, h ∈ Bn−1}. (3.1)

where B0 = {0, 1}.

The result will be a variable containing a list of every Boolean function in

algebraic normal form for the given n. Fig 3.2 shows what the variable functions

contains for n = 3. The variable functions is what the program in Fig 3.1 returns

as a result.

1 functions

2 [0,

3 1,

4 x0 ,

5 x0 + 1,

6 x1 ,

7 x1 + 1,

8 x0 + x1,

9 x0 + x1 + 1,

10 x0*x1 ,

11 x0*x1 + 1,

12 x0*x1 + x0,

13 x0*x1 + x0 + 1,

14 x0*x1 + x1,

15 x0*x1 + x1 + 1,

16 x0*x1 + x0 + x1,

17 x0*x1 + x0 + x1 + 1

Figure 3.2: Result from generating functions n = 2, 3, 4

3.2 Finding rotation symmetric Boolean func-

tions

The method used for filtering out the rotation symmetric Boolean function is

based on testing every Boolean function with the method shown below. Fig 3.3

shows the test for n = 3.
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1 def generate_rots(f):

2 rots_functions = []

3 for i in range(len(f)):

4 s1=f[i](0,0,1)

5 s2=f[i](1,0,0)

6 s3=f[i](0,1,0)

7 b1=f[i](0,1,1)

8 b2=f[i](1,0,1)

9 b3=f[i](1,1,0)

10 if((s1==s2==s3)&(b1==b2==b3)):

11 rots_functions.append(f[i])

12 return rots_functions

Figure 3.3: Filtering out RotS Boolean functions for n = 2, 3, 4

The method shown in Fig 3.3 takes a list variable in this case a list of Boolean

functions created from the method in 3.1, and tests every Boolean function to

find and filter out the rotation symmetric Boolean functions. The list variable

is shown in Fig 3.2

This is done by testing if the function f possesses the same value corre-

sponding to each of the subsets generated from the rotational symmetry. The

method will filter out the functions of interest by checking which value function

f got in every entry in its truth table. Boolean functions have 2n entries in their

truth table. Fig 3.3 shows the test for n = 3, where the entries will be 23 = 8.

However, it is only necessary to test for 6 entries, because the entries (0, 0, 0)

and (1, 1, 1) are two unique subsets and will always have the same corresponding

value. The other 6 entries are tested. Entry (0, 0, 1) is stored in s1, entry (1, 0, 0)

is stored in s2, entry (0, 1, 0) is stored in s3, entry (0, 1, 1) is stored in b1, entry

(1, 0, 1) is stored in b2 and entry (1, 1, 0) is stored in b3. Then the if sentence

tests if s1, s2 and s3 contains the same value and if b1, b2 and b3 contains the

same value. If one functions passes this test the functions will be added to the

list variable rots_functions. The method returns a list of rotation symmetric

Boolean functions.
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3.3 Calculating sensitivity on RotS Boolean func-

tions

The method for calculating the sensitivity takes a list of RotS functions and

prints out all the functions with their sensitivity. This is shown in Fig 3.4.
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1 def sens(f):

2 x=[(0,0,0) ,(0,0,1) ,(0,1,0) ,(0,1,1) ,(1,0,0) ,(1,0,1) ,(1,1,0)

,(1,1,1)]

3 x_pluss_e1 =[(1,0,0) ,(1,0,1) ,(1,1,0) ,(1,1,1) ,(0,0,0) ,(0,0,1)

,(0,1,0) ,(0,1,1)]

4 x_pluss_e2 =[(0,1,0) ,(0,1,1) ,(0,0,0) ,(0,0,1) ,(1,1,0) ,(1,1,1)

,(1,0,0) ,(1,0,1)]

5 x_pluss_e3 =[(0,0,1) ,(0,0,0) ,(0,1,1) ,(0,1,0) ,(1,0,1) ,(1,0,0)

,(1,1,1) ,(1,1,0)]

6

7

8 sum_list = []

9 for i in range(len(f)):

10 s1=[]

11 s2=[]

12 s3=[]

13 for j in range(len(x_pluss_e1)):

14 s1.append(f[i](* x_pluss_e1[j])+f[i](*x[j]))

15 s2.append(f[i](* x_pluss_e2[j])+f[i](*x[j]))

16 s3.append(f[i](* x_pluss_e3[j])+f[i](*x[j]))

17

18

19 integer_map1 = map(int , s1)

20 integer_map2 = map(int , s2)

21 integer_map3 = map(int , s3)

22

23 l1 = list(integer_map1)

24 l2 = list(integer_map2)

25 l3 = list(integer_map3)

26

27 sum_list.append ([a + b + c for a, b, c in zip(l1 , l2 , l3)])

28

29 for i in range(len(f)):

30 print(’For function (’ + str(f[i]) + ’) the sensitivity is:

’)

31 for j in range(len(x)):

32 print(’x = (’ + str(x[j]) +’) : S(f(’+ str(x[j]) +’)) =

’ + str(sum_list[i][j]))

Figure 3.4: Testing for sensitivity for n = 2, 3, 4
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The sens method for calculating n = 2, 3, 4 uses a lot of hard coded values

like the x list, x_pluss_e1, x_pluss_e2 and x_pluss_e3. For n = 5, this will

be done automatically, because of the length of the values. When it comes

to calculating the sensitivity for each function, a double "for loop" is used to

calculate f(~x)⊕ f(~x⊕~e1), f(~x)⊕ f(~x⊕~e2) and f(~x)⊕ f(~x⊕~e3) for each entry

the functions have in its corresponding truth table. The result gets stored in

three different arrays, that further down in the method gets converted to a two-

dimensional list. The last two "for loops" print out the result for each RotS.

An example is show in Fig 3.5.

1 For function (x0*x1*x2 + x0 + x1 + x2 + 1) the sensitivity is:

2 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

3 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 3

4 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 3

5 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 2

6 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 3

7 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 2

8 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 2

9 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

Figure 3.5: Result for sensitivity n = 2, 3, 4
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Chapter 4

Calculating sensitivity on

RotS Boolean functions for

n=5

In this chapter, the program used for calculating sensitivity on rotation

symmetric functions for n = 5 is explained, and displayed in Figures 4.1-4.3. The

chapter is divided into two sections. The first section concerns the construction

of all Boolean functions for n = 5 and the filtering out of rotation symmetric

Boolean functions. The next section covers the calculation of sensitivity on

rotation symmetric Boolean functions for n = 5.

4.1 Constructing all Boolean functions and find-

ing rotation symmetric Boolean functions
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1 from sage.crypto.boolean_function import BooleanFunction

2 import numpy as np

3 import itertools

4

5 def generate_lower_functions(n_var , R, x):

6 f = [R(0), R(1), x[0], x[0] + 1]

7

8 for i in range(2, n_var +2):

9 new_x = x[i-1]

10 new_functions = []

11 new2_functions= []

12 add_function = new_functions.append

13 add2_function = new2_functions.append

14 for f1 in f:

15 for f2 in f:

16 g= (f1*new_x + f2)

17 if(i<5):

18 add_function(g)

19

20 if((g(0,0,0,0,1)==g(1,0,0,0,0)==g(0,1,0,0,0)==g

(0,0,1,0,0)==g(0,0,0,1,0))and(g(0,0,0,1,1)==g(1,0,0,0,1)==g

(1,1,0,0,0)==g(0,1,1,0,0)==g(0,0,1,1,0))and(g(0,0,1,0,1)==g

(1,0,0,1,0)==g(0,1,0,0,1)==g(1,0,1,0,0)==g(0,1,0,1,0))and(g

(0,0,1,1,1)==g(1,0,0,1,1)==g(1,1,0,0,1)==g(1,1,1,0,0)==g

(0,1,1,1,0))and(g(1,0,1,0,1)==g(1,1,0,1,0)==g(0,1,1,0,1)==g

(1,0,1,1,0)==g(0,1,0,1,1))and(g(0,1,1,1,1)==g(1,0,1,1,1)==g

(1,1,0,1,1)==g(1,1,1,0,1)==g(1,1,1,1,0))):

21 add2_function(g)

22 f = new_functions

23 func = new2_functions

24 return func

25

26 n = 5

27 ring = BooleanPolynomialRing(n, "x")

28 x = ring.gens()

29 x_map = Arrangements(x, n)

30

31 functions = generate_lower_functions(n-1, ring , x)

32 new_x = x[n-1]

Figure 4.1: Generating functions for n = 5
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The fundamentals for creating the functions is the same for n = 2, 3, 4 and

for n = 5. The method used for generating Boolean functions for n = 5 is shown

i Fig 4.1. One of the differences is that this method generates functions and

filters out the RotS Boolean functions in the same method. This means that the

generate_rotsmethod used for n = 2, 3, 4 shown in Fig 3.3 is not used here. One

other difference is that this method does not append all the 22
5

= 4294967296

functions created. This is done because when trying to append the functions

the program is trying to store all the 4 294 967 296 functions. When trying

to store that many functions the program would crash, because of insufficient

memory. The functions for n = 5 are still created, but not stored. Because the

functions for n = 5 can not be stored, the RotS test had to be implemented

inside this method. The RotS test is done similarly to the test for n = 2, 3, 4

shown in Fig 3.3. For n = 5 there are 25 = 32 entries, and, after discarding

(0, 0, 0, 0, 0) and (1, 1, 1, 1, 1), the method will test 30 entries. These 30 entries

are divided into 6 subsets with 5 entries in each subset. For a function to pass

the test, it must have the same value for each of the 5 entries in the subsets.

After passing the test, the list of RotS Boolean functions is stored. A list of all

RotS Boolean functions for n = 5, which has 256 functions, is returned.

4.2 Calculating sensitivity on RotS Boolean func-

tions for n = 5
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1 def sens(f):

2 n=5

3 t = list(itertools.product ([(0) , (1)], repeat=n))

4 e1=[(1,0,0,0,0)]

5 e2=[(0,1,0,0,0)]

6 e3=[(0,0,1,0,0)]

7 e4=[(0,0,0,1,0)]

8 e5=[(0,0,0,0,1)]

9 x_p_e1 =[]

10 x_p_e2 =[]

11 x_p_e3 =[]

12 x_p_e4 =[]

13 x_p_e5 =[]

14

15 for i in range(len(t)):

16 for j in range(n):

17 x_p_e1.append(e1[0][j] ^^ t[i][j])

18 x_p_e2.append(e2[0][j] ^^ t[i][j])

19 x_p_e3.append(e3[0][j] ^^ t[i][j])

20 x_p_e4.append(e4[0][j] ^^ t[i][j])

21 x_p_e5.append(e5[0][j] ^^ t[i][j])

22

23 x_pluss_e1 =[ x_p_e1[i:i + n] for i in range(0, len(x_p_e1), n)]

24 x_pluss_e2 =[ x_p_e2[i:i + n] for i in range(0, len(x_p_e2), n)]

25 x_pluss_e3 =[ x_p_e3[i:i + n] for i in range(0, len(x_p_e3), n)]

26 x_pluss_e4 =[ x_p_e4[i:i + n] for i in range(0, len(x_p_e4), n)]

27 x_pluss_e5 =[ x_p_e5[i:i + n] for i in range(0, len(x_p_e5), n)]

28

29 sum_list = []

30 for i in range(len(f)):

31 s1=[]

32 s2=[]

33 s3=[]

34 s4=[]

35 s5=[]

36 for j in range(len(x_pluss_e1)):

37 s1.append(f[i](* x_pluss_e1[j])+f[i](*t[j]))

38 s2.append(f[i](* x_pluss_e2[j])+f[i](*t[j]))

39 s3.append(f[i](* x_pluss_e3[j])+f[i](*t[j]))

40 s4.append(f[i](* x_pluss_e4[j])+f[i](*t[j]))

41 s5.append(f[i](* x_pluss_e5[j])+f[i](*t[j]))

Figure 4.2: Testing for sensitivity for n = 5 (1)
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1 integer_map1 = map(int , s1)

2 integer_map2 = map(int , s2)

3 integer_map3 = map(int , s3)

4 integer_map4 = map(int , s4)

5 integer_map5 = map(int , s5)

6

7 l1 = list(integer_map1)

8 l2 = list(integer_map2)

9 l3 = list(integer_map3)

10 l4 = list(integer_map4)

11 l4 = list(integer_map4)

12

13 sum_list.append ([a + b + c + d + e for a, b, c, d, e in zip

(l1 , l2 , l3, l4, l5)])

14

15 my_array = np.array(sum_list)

16 #print(sum_list)

17 for i in range(len(f)):

18 print(’For function (’ + str(f[i]) + ’) the sensitivity is:

’)

19 for j in range(len(t)):

20 print(’x = (’ + str(t[j]) +’) : S(f(’+ str(t[j]) +’)) =

’ + str(sum_list[i][j]))

Figure 4.3: Testing for sensitivity for n = 5 (2)

The method used for calculating the sensitivity for the RotS Boolean

functions for n = 5 is less hard coded than for n = 2, 3, 4. The values for the

truth table is auto generated with the use of itertools. The truth table values

are stored in the variable with name t. The five different unit vectors called

~e1, ~e2, ~e3, ~e4 and ~e5 are still hard coded. The first double for loop in the method

calculates the five different x_pluss_e needed for finding the sensitivity. In the

previous programs x_pluss_e was hard coded, this is now done automatically.

The rest of the program is done the same way as shown in chapter for n = 2, 3, 4.

The method is shown in Fig 4.2 and 4.3.
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Chapter 5

Result and Discussion

After the completion of the execution of the program explained in Section 3, a

full sensitivity test for each rotation symmetric function in B3, B4 and B5 was

stored in text, where each file consisted of 144, 1088 and 8448 lines each. The

full data set for n = 3 is given in Appendix B.

The full data set for B4 and B5 are too large to be shown in this thesis –

however, an attempt to summarize the interesting details of the result of n = 5

are given in the following Sections 5.1).
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5.1 Results and analysis

Sensitivity n = 3 n = 4 n = 5

0 2 2 2

1 - - -

2 2 4 -

3 12 4 18

4 - 54 22

5 - - 214

Sum 16 64 256

Max sensitivity 3 4 5

Table 5.1: Sensitivity result

The full distribution of sensitivity for rotation symmetric functions in n ≤ 5

variables is given in Table 5.1, summarizing the results of data collection

conducted by use of program explained in Chapter 3 and 4. Table 5.1 displays

how many functions exist with the different sensitivity for n = 3, 4, 5. The Sum-

row of Table 5.1 shows the total amount of Rots functions for the different values

of n. The columns for variable n = 3 is manually calculated from watching the

result of the program shown in Fig 3.4.

The columns for variable n = 4, 5 are done by making a text file with the results

from Fig 4.2 for n = 5 and one text file for n = 4, then running the text files

through a program that counts how many functions have the different sensitivity.

We can see from the results and Table 5.1 that most Rotation Symmetric

Boolean functions have the highest possible sensitivity, that is, the sensitivity

is equal to the number of variables n. We can conclude that most of these

functions are not optimal from the cryptographic point of view, since it is more

desirable to use those that have sensitivity close to 1
2 , in order to avoid biases.

For better overview, we present here the distribution of the sensitivity of the

functions for the different values of n shown by percentages: for n = 3, 12.5%
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of the functions have sensitivity 0, while 12.5% have sensitivity 2 and 75% have

sensitivity 3. For n = 4, we see that 3.125% of the functions have sensitivity 0,

6.25% have sensitivity 2, 6.25% have sensitivity 3 and 84.375% have sensitivity

4. For n = 5, we see that 0.78125% of the functions have sensitivity 0, 7.03125%

have sensitivity 3, 8.5937% have sensitivity 4 and 83.59375% have sensitivity 5.

Here we present a complete list of Rots functions with sensitivity less than

n (the number of variables). We discard the trivial cases f = 0 and f = 1

which always get sensitivity 0, and discarding f + 1 for every f because f and

f + 1 always have the same sensitivity. We simplify the notation by identifying

variable xj with j. So, for instance, 0123 = x0x1x2x3. A SANF (short algebraic

normal form) is one of the possible choices of the terms that generate the other

terms in the ANF so that f is rotation symmetric. For instance, for n = 3, if

the term 01 is present, then by rotation the terms 02 and 12 have to be present

as well. Hence, a SANF of 01, 02, 12 for n = 3 is 01. More on SANF in Section

2.3.

n = 3

Sensitivity 2:

01, 02, 12

SANF:

01

n = 4

Sensitivity 2:

0123, 02, 13

0123, 012, 013, 023, 123, 01, 03, 12, 23

SANF:

0123, 02

0123, 012, 013, 023, 123, 01, 03, 12, 23

Sensitivity 3:
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0123, 01, 02, 03, 12, 13, 23

0123, 012, 013, 023, 123

SANF:

0123, 01, 02

0123, 012

n = 5

Sensitivity 3:

012, 013, 014, 023, 024, 034, 123, 124, 134, 234, 02, 03, 13, 14, 24

012, 013, 014, 023, 024, 034, 123, 124, 134, 234, 01, 04, 12, 23, 34

0123, 0124, 0134, 0234, 1234, 012, 013, 014, 023, 024, 034, 123, 124, 134, 234

0123, 0124, 0134, 0234, 1234, 012, 013, 014, 023, 024, 034, 123, 124, 134, 234, 02, 03, 13, 14, 24

0123, 0124, 0134, 0234, 1234, 012, 013, 014, 023, 024, 034, 123, 124, 134, 234, 01, 04, 12, 23, 34

01234, 013, 023, 024, 124, 134, 02, 03, 13, 14, 24

01234, 012, 014, 034, 123, 234, 01, 04, 12, 23, 34

01234, 0123, 0124, 0134, 0234, 1234, 013, 023, 024, 124, 134

01234, 0123, 0124, 0134, 0234, 1234, 012, 014, 034, 123, 234

SANF:

012, 013, 02

012, 013, 01

0123, 012, 013

0123, 012, 013, 02

0123, 012, 013, 01

01234, 013, 02

01234, 012, 01

01234, 0123, 013

01234, 0123, 012

Sensitivity 4:

02, 03, 13, 14, 24

01, 04, 12, 23, 34
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01, 02, 03, 04, 12, 13, 14, 23, 24, 34

0123, 0124, 0134, 0234, 1234

0123, 0124, 0134, 0234, 1234, 02, 03, 13, 14, 24

0123, 0124, 0134, 0234, 1234, 01, 04, 12, 23, 34

0123, 0124, 0134, 0234, 1234, 01, 02, 03, 04, 12, 13, 14, 23, 24, 34

01234, 013, 023, 024, 124, 134, 01, 02, 03, 04, 12, 13, 14, 23, 24, 34

01234, 012, 014, 034, 123, 234, 01, 02, 03, 04, 12, 13, 14, 23, 24, 34

01234, 0123, 0124, 0134, 0234, 1234, 013, 023, 024, 124, 134, 02, 03, 13, 14, 24

01234, 0123, 0124, 0134, 0234, 1234, 012, 014, 034, 123, 234, 01, 04, 12, 23, 34

SANF:

02

01

01, 02

0123

0123, 02

0123, 01

0123, 01, 02

01234, 013, 01, 02

01234, 012, 01, 02

01234, 0123, 013, 02

01234, 0123, 012, 01
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One can investigate theoretically the sensitivity of some Rots. For instance,

for any n ≥ 3, we can see that the Rots with SANF 01 (i.e. x0x1) has sensitivity

at least n− 2:

f(~x⊕ ~e0) +⊕f(~x) = x1 + xn−1

f(~x⊕ ~e1) +⊕f(~x) = x0 + x2

. . .

f(~x⊕ ~en−3) +⊕f(~x) = xn−4 + xn−2

f(~x⊕ ~en−2) +⊕f(~x) = xn−3 + xn−1

This implies that, for 0 ≤ i ≤ n− 2, we are adding a new variable with each i,

so that we get an independent system, and thus, the equation

f(~x⊕ ~ei) +⊕f(~x) = 1

has a solution.
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Chapter 6

Conclusions

In this thesis we have investigated sensitivity for rotation symmetric Boolean

functions. We provided a complete enumeration results for up to n = 5. Our

results show that most of the rotation symmetric Boolean functions have the

highest possible sensitivity of n. This makes a large subset of these functions

is not optimal from the cryptographic point of view. When it comes to the

expected result, where we indicated it would be possible to find a way to examine

rotation symmetric Boolean functions for a relatively high values of n, this was

harder then expected because of the difficulty to create all the Boolean functions

for n < 5.

In summary, the main results and definite conclusions of this thesis, are

summarized in Table 5.1.

6.1 Further Work

By having a program that can create all functions, find RotS functions and

testing for sensitivity up to n = 5, the obvious future project of interest would

be to see if the same can be done for n = 6, 7, 8.

The first change that is needed is finding a way to store all functions for

n = 5 such that functions for n = 6 can be created. One idea is to distribute

the generate_functions method shown in Fig 4.1 into several methods, such that

the methods can run on different computers at the same time. Another idea is

to just create Rotation symmetric Boolean functions from the start, if possible,
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such that there is no need to create all Boolean functions for the given n.

Also, it would be desirable to find (theoretically) a formula for functions

whose sensitivity is close to 1
2 , in order to be able to construct these functions

for a large value of n.

One idea that would make the code easier to work further with is removing

the test for RotS function from inside the method for creating functions for

n = 5, but rather have a specific method for filtering out RotS functions. The

method used for generating functions can be seen in Fig 4.1.
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Appendix A

Calculating Sensitivity for

RotS functions for n = 2

The following is discussed in Chapter 2 in subsection 2.3. Here is a full

calculation of sensitivity for Rots functions for n = 2

f(~x) = (0001)

~e1 = (1, 0)

~e2 = (0, 1)

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e1) f(~x)⊕ f(~x⊕ ~e1)

0 0 0 1 0 0 0

0 1 0 1 1 1 1

1 0 0 0 0 0 0

1 1 1 0 1 0 1
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X1 X2 f(~x) ~x⊕ ~e2 f(~x⊕ ~e2) f(~x)⊕ f(~x⊕ ~e2)

0 0 0 0 1 0 0

0 1 0 0 0 0 0

1 0 0 1 1 1 1

1 1 1 1 0 0 1
~x = (0, 0) : S(f(0, 0)) = 0

~x = (0, 1) : S(f(0, 1)) = 1

~x = (1, 0) : S(f(1, 0)) = 1

~x = (1, 1) : S(f(1, 1)) = 2

Table A.1: Sensitivity for f = 0001

f(~x) = (0110)

~e1 = (1, 0)

~e2 = (0, 1)

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e1) f(~x)⊕ f(~x⊕ ~e1)

0 0 0 1 0 1 1

0 1 1 1 1 0 1

1 0 1 0 0 0 1

1 1 0 0 1 1 1

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e2) f(~x)⊕ f(~x⊕ ~e2)

0 0 0 0 1 1 1

0 1 1 0 0 0 1

1 0 1 1 1 0 1

1 1 0 1 0 1 1
~x = (0, 0) : S(f(0, 0) = 2

~x = (0, 1) : S(f(0, 1) = 2

~x = (1, 0) : S(f(1, 0) = 2

~x = (1, 1) : S(f(1, 1) = 2

Table A.2: Sensitivity for f = 0110
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f(~x) = (0111)

~e1 = (1, 0)

~e2 = (0, 1)

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e1) f(~x)⊕ f(~x⊕ ~e1)

0 0 0 1 0 1 1

0 1 1 1 1 1 0

1 0 1 0 0 0 1

1 1 1 0 1 1 0

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e2) f(~x)⊕ f(~x⊕ ~e2)

0 0 0 0 1 1 1

0 1 1 0 0 1 1

1 0 1 1 1 0 0

1 1 1 1 0 0 0
~x = (0, 0) : S(f(0, 0) = 2

~x = (0, 1) : S(f(0, 1) = 1

~x = (1, 0) : S(f(1, 0) = 1

~x = (1, 1) : S(f(1, 1) = 0

Table A.3: Sensitivity for f = 0111
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f(~x) = (1000)

~e1 = (1, 0)

~e2 = (0, 1)

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e1) f(~x)⊕ f(~x⊕ ~e1)

0 0 1 1 0 0 1

0 1 0 1 1 0 0

1 0 0 0 0 1 1

1 1 0 0 1 0 0

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e2) f(~x)⊕ f(~x⊕ ~e2)

0 0 1 0 1 0 1

0 1 0 0 0 1 1

1 0 0 1 1 0 0

1 1 0 1 0 0 0
~x = (0, 0) : S(f(0, 0) = 2

~x = (0, 1) : S(f(0, 1) = 1

~x = (1, 0) : S(f(1, 0) = 1

~x = (1, 1) : S(f(1, 1) = 0

Table A.4: Sensitivity for f = 1000
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f(~x) = (1001)

~e1 = (1, 0)

~e2 = (0, 1)

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e1) f(~x)⊕ f(~x⊕ ~e1)

0 0 1 1 0 0 1

0 1 0 1 1 1 1

1 0 0 0 0 1 1

1 1 1 0 1 0 1

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e2) f(~x)⊕ f(~x⊕ ~e2)

0 0 1 0 1 0 1

0 1 0 0 0 1 1

1 0 0 1 1 1 1

1 1 1 1 0 0 1
~x = (0, 0) : S(f(0, 0) = 2

~x = (0, 1) : S(f(0, 1) = 2

~x = (1, 0) : S(f(1, 0) = 2

~x = (1, 1) : S(f(1, 1) = 2

Table A.5: Sensitivity for f = 1001

43



f(~x) = (1110)

~e1 = (1, 0)

~e2 = (0, 1)

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e1) f(~x)⊕ f(~x⊕ ~e1)

0 0 1 1 0 1 0

0 1 1 1 1 0 1

1 0 1 0 0 1 0

1 1 0 0 1 1 1

X1 X2 f(~x) ~x⊕ ~e1 f(~x⊕ ~e2) f(~x)⊕ f(~x⊕ ~e2)

0 0 1 0 1 1 0

0 1 1 0 0 1 0

1 0 1 1 1 0 1

1 1 0 1 0 1 1
~x = (0, 0) : S(f(0, 0) = 0

~x = (0, 1) : S(f(0, 1) = 1

~x = (1, 0) : S(f(1, 0) = 1

~x = (1, 1) : S(f(1, 1) = 2

Table A.6: Sensitivity for f = 1110
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Appendix B

Full data set for n = 3

The following is a complete data set for n = 3, after using the method shown

in chapter 3 and fig 3.4.
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1 For function (0) the sensitivity is:

2 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

3 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 0

4 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 0

5 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 0

6 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 0

7 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 0

8 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 0

9 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

10 For function (1) the sensitivity is:

11 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

12 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 0

13 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 0

14 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 0

15 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 0

16 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 0

17 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 0

18 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

19 For function (x0 + x1 + x2) the sensitivity is:

20 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

21 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 3

22 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 3

23 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 3

24 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 3

25 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 3

26 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 3

27 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

28 For function (x0 + x1 + x2 + 1) the sensitivity is:

29 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

30 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 3

31 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 3

32 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 3

33 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 3

34 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 3

35 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 3

36 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

37 For function (x0*x1 + x0*x2 + x1*x2) the sensitivity is:

38 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

39 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 2

40 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 2

41 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 2

42 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 2

43 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 2

44 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 2

45 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

Figure B.1: Data set for n = 3 (1)
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1 For function (x0*x1 + x0*x2 + x1*x2 + 1) the sensitivity is:

2 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

3 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 2

4 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 2

5 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 2

6 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 2

7 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 2

8 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 2

9 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

10 For function (x0*x1 + x0*x2 + x0 + x1*x2 + x1 + x2) the sensitivity

is:

11 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

12 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 1

13 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 1

14 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 1

15 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 1

16 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 1

17 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 1

18 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

19 For function (x0*x1 + x0*x2 + x0 + x1*x2 + x1 + x2 + 1) the

sensitivity is:

20 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

21 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 1

22 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 1

23 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 1

24 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 1

25 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 1

26 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 1

27 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

28 For function (x0*x1*x2) the sensitivity is:

29 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

30 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 0

31 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 0

32 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 1

33 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 0

34 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 1

35 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 1

36 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

Figure B.2: Data set for n = 3 (2)
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1 For function (x0*x1*x2 + 1) the sensitivity is:

2 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

3 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 0

4 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 0

5 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 1

6 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 0

7 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 1

8 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 1

9 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

10 For function (x0*x1*x2 + x0 + x1 + x2) the sensitivity is:

11 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

12 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 3

13 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 3

14 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 2

15 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 3

16 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 2

17 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 2

18 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

19 For function (x0*x1*x2 + x0 + x1 + x2 + 1) the sensitivity is:

20 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

21 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 3

22 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 3

23 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 2

24 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 3

25 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 2

26 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 2

27 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

28 For function (x0*x1*x2 + x0*x1 + x0*x2 + x1*x2) the sensitivity is:

29 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

30 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 2

31 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 2

32 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 3

33 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 2

34 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 3

35 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 3

36 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

Figure B.3: Data set for n = 3 (3)
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1 For function (x0*x1*x2 + x0*x1 + x0*x2 + x1*x2 + 1) the sensitivity

is:

2 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 0

3 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 2

4 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 2

5 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 3

6 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 2

7 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 3

8 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 3

9 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 3

10 For function (x0*x1*x2 + x0*x1 + x0*x2 + x0 + x1*x2 + x1 + x2) the

sensitivity is:

11 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

12 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 1

13 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 1

14 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 0

15 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 1

16 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 0

17 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 0

18 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

19 For function (x0*x1*x2 + x0*x1 + x0*x2 + x0 + x1*x2 + x1 + x2 + 1)

the sensitivity is:

20 x = ((0, 0, 0)) : S(f((0, 0, 0))) = 3

21 x = ((0, 0, 1)) : S(f((0, 0, 1))) = 1

22 x = ((0, 1, 0)) : S(f((0, 1, 0))) = 1

23 x = ((0, 1, 1)) : S(f((0, 1, 1))) = 0

24 x = ((1, 0, 0)) : S(f((1, 0, 0))) = 1

25 x = ((1, 0, 1)) : S(f((1, 0, 1))) = 0

26 x = ((1, 1, 0)) : S(f((1, 1, 0))) = 0

27 x = ((1, 1, 1)) : S(f((1, 1, 1))) = 0

Figure B.4: Data set for n = 3 (4)
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Appendix C

Calculating sensitivity on

RotS functions for n = 5

The following is a list of Rots functions and there Sensitivity for n = 5 after

discarding f = 0, f = 1 and f + 1.

n = 5 Sensitivity 3:

• x0 ∗ x1 ∗ x2+ x0 ∗ x1 ∗ x3+ x0 ∗ x1 ∗ x4+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗ x4+ x0 ∗

x2 + x0 ∗ x3 ∗ x4 + x0 ∗ x3 + x1 ∗ x2 ∗ x3 + x1 ∗ x2 ∗ x4 + x1 ∗ x3 ∗ x4 +

x1 ∗ x3 + x1 ∗ x4 + x2 ∗ x3 ∗ x4 + x2 ∗ x4

• x0 ∗ x1 ∗ x2+ x0 ∗ x1 ∗ x3+ x0 ∗ x1 ∗ x4+ x0 ∗ x1+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗

x4 + x0 ∗ x3 ∗ x4 + x0 ∗ x4 + x1 ∗ x2 ∗ x3 + x1 ∗ x2 ∗ x4 + x1 ∗ x2 + x1 ∗

x3 ∗ x4 + x2 ∗ x3 ∗ x4 + x2 ∗ x3 + x3 ∗ x4

• x0∗x1∗x2∗x3+x0∗x1∗x2∗x4+x0∗x1∗x2+x0∗x1∗x3∗x4+x0∗x1∗

x3+ x0 ∗ x1 ∗ x4+ x0 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗ x4+ x0 ∗ x3 ∗

x4+x1∗x2∗x3∗x4+x1∗x2∗x3+x1∗x2∗x4+x1∗x3∗x4+x2∗x3∗x4

• x0 ∗ x1 ∗ x2 ∗ x3+ x0 ∗ x1 ∗ x2 ∗ x4+ x0 ∗ x1 ∗ x2+ x0 ∗ x1 ∗ x3 ∗ x4+ x0 ∗

x1 ∗ x3+ x0 ∗ x1 ∗ x4+ x0 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗ x4+ x0 ∗

x2+x0 ∗x3 ∗x4+x0 ∗x3+x1 ∗x2 ∗x3 ∗x4+x1 ∗x2 ∗x3+x1 ∗x2 ∗x4+

x1 ∗ x3 ∗ x4 + x1 ∗ x3 + x1 ∗ x4 + x2 ∗ x3 ∗ x4 + x2 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3+ x0 ∗ x1 ∗ x2 ∗ x4+ x0 ∗ x1 ∗ x2+ x0 ∗ x1 ∗ x3 ∗ x4+ x0 ∗
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x1 ∗ x3+ x0 ∗ x1 ∗ x4+ x0 ∗ x1+ x0 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗

x4+x0 ∗x3 ∗x4+x0 ∗x4+x1 ∗x2 ∗x3 ∗x4+x1 ∗x2 ∗x3+x1 ∗x2 ∗x4+

x1 ∗ x2 + x1 ∗ x3 ∗ x4 + x2 ∗ x3 ∗ x4 + x2 ∗ x3 + x3 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x1 ∗ x3+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗ x4+ x0 ∗ x2+

x0 ∗ x3 + x1 ∗ x2 ∗ x4 + x1 ∗ x3 ∗ x4 + x1 ∗ x3 + x1 ∗ x4 + x2 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x1 ∗ x2+ x0 ∗ x1 ∗ x4+ x0 ∗ x1+ x0 ∗ x3 ∗ x4+

x0 ∗ x4 + x1 ∗ x2 ∗ x3 + x1 ∗ x2 + x2 ∗ x3 ∗ x4 + x2 ∗ x3 + x3 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3 ∗ x4 + x0 ∗ x1 ∗ x2 ∗ x3 + x0 ∗ x1 ∗ x2 ∗ x4 + x0 ∗ x1 ∗ x3 ∗

x4+ x0 ∗ x1 ∗ x3+ x0 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗ x4+ x1 ∗ x2 ∗

x3 ∗ x4 + x1 ∗ x2 ∗ x4 + x1 ∗ x3 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x1 ∗ x2 ∗ x3+ x0 ∗ x1 ∗ x2 ∗ x4+ x0 ∗ x1 ∗ x2+

x0 ∗ x1 ∗ x3 ∗ x4+ x0 ∗ x1 ∗ x4+ x0 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x3 ∗ x4+ x1 ∗ x2 ∗

x3 ∗ x4 + x1 ∗ x2 ∗ x3 + x2 ∗ x3 ∗ x4

n = 5 Sensitivity 4:

• x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x1 ∗ x4 + x2 ∗ x4

• x0 ∗ x1 + x0 ∗ x4 + x1 ∗ x2 + x2 ∗ x3 + x3 ∗ x4

• x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x0 ∗ x4 + x1 ∗ x2 + x1 ∗ x3 + x1 ∗ x4 + x2 ∗

x3 + x2 ∗ x4 + x3 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3+ x0 ∗ x1 ∗ x2 ∗ x4+ x0 ∗ x1 ∗ x3 ∗ x4+ x0 ∗ x2 ∗ x3 ∗ x4+

x1 ∗ x2 ∗ x3 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3+ x0 ∗ x1 ∗ x2 ∗ x4+ x0 ∗ x1 ∗ x3 ∗ x4+ x0 ∗ x2 ∗ x3 ∗ x4+

x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x2 ∗ x3 ∗ x4 + x1 ∗ x3 + x1 ∗ x4 + x2 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3+ x0 ∗ x1 ∗ x2 ∗ x4+ x0 ∗ x1 ∗ x3 ∗ x4+ x0 ∗ x1+ x0 ∗ x2 ∗

x3 ∗ x4 + x0 ∗ x4 + x1 ∗ x2 ∗ x3 ∗ x4 + x1 ∗ x2 + x2 ∗ x3 + x3 ∗ x4

• x0 ∗ x1 ∗ x2 ∗ x3+ x0 ∗ x1 ∗ x2 ∗ x4+ x0 ∗ x1 ∗ x3 ∗ x4+ x0 ∗ x1+ x0 ∗ x2 ∗

x3 ∗ x4 + x0 ∗ x2 + x0 ∗ x3 + x0 ∗ x4 + x1 ∗ x2 ∗ x3 ∗ x4 + x1 ∗ x2 + x1 ∗

x3 + x1 ∗ x4 + x2 ∗ x3 + x2 ∗ x4 + x3 ∗ x4

51



• x0 ∗ x1 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x1 ∗ x3+ x0 ∗ x1+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗ x4+

x0 ∗ x2 + x0 ∗ x3 + x0 ∗ x4 + x1 ∗ x2 ∗ x4 + x1 ∗ x2 + x1 ∗ x3 ∗ x4 + x1 ∗

x3 + x1 ∗ x4 + x2 ∗ x3 + x2 ∗ x4 + x3 ∗ x4

• (x0 ∗ x1 ∗ x2 ∗ x3 ∗ x4 + x0 ∗ x1 ∗ x2 + x0 ∗ x1 ∗ x4 + x0 ∗ x1 + x0 ∗ x2 +

x0 ∗ x3 ∗ x4 + x0 ∗ x3 + x0 ∗ x4 + x1 ∗ x2 ∗ x3 + x1 ∗ x2 + x1 ∗ x3 + x1 ∗

x4 + x2 ∗ x3 ∗ x4 + x2 ∗ x3 + x2 ∗ x4 + x3 ∗ x4

• x0∗x1∗x2∗x3∗x4+x0∗x1∗x2∗x3+x0∗x1∗x2∗x4+x0∗x1∗x3∗x4+

x0 ∗ x1 ∗ x3+ x0 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x2 ∗ x3+ x0 ∗ x2 ∗ x4+ x0 ∗ x2+ x0 ∗

x3+x1∗x2∗x3∗x4+x1∗x2∗x4+x1∗x3∗x4+x1∗x3+x1∗x4+x2∗x4

• x0∗x1∗x2∗x3∗x4+x0∗x1∗x2∗x3+x0∗x1∗x2∗x4+x0∗x1∗x2+x0∗

x1 ∗ x3 ∗ x4+ x0 ∗ x1 ∗ x4+ x0 ∗ x1+ x0 ∗ x2 ∗ x3 ∗ x4+ x0 ∗ x3 ∗ x4+ x0 ∗

x4+x1∗x2∗x3∗x4+x1∗x2∗x3+x1∗x2+x2∗x3∗x4+x2∗x3+x3∗x4

52


	Introduction
	Research question and expected results
	Structure of thesis

	Background
	Mathematical Foundations
	Set theory
	Boolean algebra

	Boolean functions
	Rotation symmetric Boolean functions
	Short algebraic normal form (SANF)

	Sensitivity of Boolean functions
	Methodology
	Coding setup

	Related work

	Calculating sensitivity on RotS Boolean functions for n = 2,3,4
	Constructing all Boolean functions
	Finding rotation symmetric Boolean functions 
	Calculating sensitivity on RotS Boolean functions 

	Calculating sensitivity on RotS Boolean functions for n=5
	Constructing all Boolean functions and finding rotation symmetric Boolean functions
	Calculating sensitivity on RotS Boolean functions for n=5 

	Result and Discussion
	Results and analysis

	Conclusions
	Further Work

	Calculating Sensitivity for RotS functions for n = 2
	Full data set for n = 3
	Calculating sensitivity on RotS functions for n = 5

