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Abstract

Closed high-utility itemset mining (CHUIM) and top-k high-utility itemset min-
ing (top-k HUIM) are techniques extensively applied in data analysis to discover
patterns or relationships with potentially valuable information. Although these
processes are helpful in various decision-making problems, it is challenging to
retrieve the solutions in a short amount of time. One way of alleviating this is to
find approximate results through heuristic models. However, few heuristics are
currently available, and the previous works also suffer performance limitations
that impede their overall usability.

This thesis addresses these issues by introducing two distinct algorithms de-
scribed in respective research papers—CHUI-PSO for CHUIM and TKU-PSO
for top-k HUIM. Both algorithms are heuristic techniques based on particle
swarm optimization and incorporate several unique strategies aimed at reduc-
ing the computational complexity associated with earlier methods. To evaluate
the contribution of the models, we compare performance characteristics against
the current state-of-the-art approaches. Experimental results indicate that the
proposed algorithms outperform previous works in terms of precision and effi-
ciency.

i



Acknowledgements

First and foremost, I would like to thank my supervisor Jerry Chun-Wei Lin for
his professional and passionate guidance throughout this project. I could not
have completed this work without you. I also want to express my gratitude to
my brother, Carl-Martin, who has provided invaluable feedback. Finally, a big
thanks to my friends and family for their encouragement and support.

ii



List of papers

1. An Efficient PSO-based Evolutionary Model for Closed High-Utility Item-
set Mining

- Submitted to: Applied intelligence - The International Journal of Re-
search on Intelligent Systems for Real Life Complex Problems.

- Status: under review.

2. TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-k
High-Utility Itemset Mining

- Submitted to: IJIMAI - The International Journal of Interactive Multi-
media and Artificial Intelligence.

- Status: under revision.

iii

https://www.springer.com/journal/10489
https://www.springer.com/journal/10489
https://www.ijimai.org/journal/
https://www.ijimai.org/journal/


Contents

1 Motivation 1

2 Background 2
2.1 Transactional data mining . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Particle swarm optimization . . . . . . . . . . . . . . . . . . . . . 3
2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Exact algorithms for HUIM . . . . . . . . . . . . . . . . . 4
2.3.2 Exact algorithms for CHUIM . . . . . . . . . . . . . . . . 5
2.3.3 Exact algorithms for top-k HUIM . . . . . . . . . . . . . . 6
2.3.4 Heuristic algorithms for HUIM . . . . . . . . . . . . . . . 7
2.3.5 Heuristic algorithms for CHUIM and top-k HUIM . . . . 8

2.4 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Results 11
3.1 An Efficient PSO-based Evolutionary Model for Closed High-

Utility Itemset Mining . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 TKU-PSO: An Efficient Particle Swarm Optimization Model for

Top-k High-Utility Itemset Mining . . . . . . . . . . . . . . . . . 12

4 Conclusion 13

5 Further work 14

Bibliography 15

A Source code 19

B An Efficient PSO-based Evolutionary Model for Closed High-
Utility Itemset Mining 20

C TKU-PSO: An Efficient Particle Swarm Optimization Model
for Top-k High-Utility Itemset Mining 49

iv



List of Tables

2.1 Summary of algorithms for CHUIM and top-k HUIM . . . . . . . 9

v



Chapter 1

Motivation

We live in a data-driven society where unfathomable amounts of digital infor-
mation are formed in every facet of business and life. New data sources are
continuously introduced, and data warehouses grow by the minute. This has
created opportunities for those who can successfully interpret and transform
data into relevant and usable knowledge, and a need for automatic analytical
tools has thus emerged.

Data mining algorithms are specialized procedures for finding patterns or rela-
tionships within massive datasets. Their ultimate purpose is to extract informa-
tion regarding potentially useful data characteristics in an easily comprehensible
format. This way, raw data can be efficiently utilized to expand domain knowl-
edge and aid decision-making processes. There is a wide variety of applications
for these algorithms, such as weather forecasting [1], earthquake prediction [2],
crime prevention [3], and medical analysis [4]. However, the work in this thesis
is specifically aimed at patterns in transactional data.

High-utility itemset mining (HUIM) [5] is a data mining technique used to dis-
cover valuable groups of items in transactional databases and is applied for
various analytical purposes. For example, businesses employ HUIM to identify
profitable product combinations based on historical customer purchases and
use the knowledge to predict future trends and drive further sales. Although
HUIM algorithms are useful, they tend to return an overwhelming amount of
information, making them unintuitive in practical use. For this reason, closed
high-utility itemset mining (CHUIM) [6] and top-k high-utility itemset mining
(top-k HUIM) [7] have been suggested. These procedures aim to reduce the
complexity associated with result interpretation by finding a more concise and
significant set of patterns, which has been proven successful in several studies
[6, 8, 9, 10, 11]. However, finding these itemsets is computationally expensive,
and existing methods can require substantial execution times and memory usage
due to combinatorial explosion. In order to keep up with rapid data growth,
more efficient algorithms are needed.
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Chapter 2

Background

This chapter briefly introduces the relevant data mining techniques that inspired
CHUIM and top-k HUIM before the traditional particle swarm optimization is
described and related works are reviewed.

2.1 Transactional data mining

Mining patterns in transactional data is a concept popularized by Agrawal et
al. [12] with the introduction of frequent itemset mining (FIM). FIM is a tech-
nique used to identify groups of items (itemsets) with at least a minimum sup-
port count, where the support count describes the number of transactions that
contain the itemset. Suppose a transaction is a list of products bought by a
customer at a supermarket. FIM may then be applied to identify the products
commonly purchased together within a collection of transactions (database).
The rationale behind finding these itemsets is that they frequently occur in
the data and thus reveal valuable associations. For instance, placing correlated
products in the same store aisles or using them in promotional campaigns may
induce further sales. This type of data analysis is referred to as market basket
analysis [13], which retailers use to understand customer purchasing behaviors.
However, FIM has also been applied to other real-world problems, such as find-
ing connections between educational resources and students’ learning, genes and
the risk of cancer, and geolocation and the spread of diseases [14].

Although FIM can be a helpful tool, it assumes the value of a pattern is defined
by its frequency, which may not be the case. In market basket analysis, busi-
nesses typically want to identify the product combinations that yield the most
profit, and these patterns are not necessarily among the frequent purchases.
For example, the itemset {champagne, beef} may be rarely bought but can
contribute overall more revenue than a common itemset such as {bread,milk}.
For this reason, Yao and Hamilton [5] introduced itemset mining based on util-
ities (HUIM).

Whereas FIM discovers patterns based on support, HUIM finds patterns with
utility over a user-specified minimum utility threshold, called high-utility item-
sets (HUIs). HUIM differs from FIM by mining quantitative databases in which
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items can occur several times in the same transaction, represented by a quan-
tity. In addition, each item has a weight that expresses its relative importance
compared to other items. The utility of an itemset is based on its item weights
and quantities and reflects the overall interestingness of the pattern. A key
property of this strategy is that the weights can change according to the user’s
goals. For example, the weights can represent the profit generated by a product,
the time spent on a website, or the effectiveness of a medical procedure [15].
This way, HUIs can fit a wider variety of analytical problems than the frequent
patterns produced by FIM. However, a significant challenge in HUIM is to se-
lect an appropriate minimum utility threshold, as the optimal value depends on
data characteristics that are typically unknown to the user. As a result, the al-
gorithms tend to produce massive numbers of HUIs, which requires substantial
computational resources and makes the results difficult to interpret.

To address these issues, Tseng et al. [6] proposed CHUIM. CHUIM reduces
the number of relevant HUIs without information loss by applying the concept
of closed itemsets, originally introduced for FIM [16]. A closed itemset is an
itemset that does not have any immediate superset with the same support count
in the data. In other words, an itemset is not closed if a superset appears in
the same number of transactions. The rationale is that non-closed patterns are
unnecessary to maintain as a superset holds their exact information. This way,
the algorithm stores less redundant data and finds a smaller but significant set
of HUIs. Thus, the minimum utility threshold is more forgiving in CHUIM than
in HUIM, making it easier to obtain a suitable number of patterns.

Although CHUIM lessens the limitations of HUIM, the minimum utility thresh-
old still needs to be appropriately tuned, which is generally achieved by trial and
error. To solve this inconvenience, Wu et al. [7] suggested top-k HUIM to find
HUIs without the minimum utility threshold. In top-k HUIM, the minimum
utility threshold is replaced with an input parameter k that specifies a desired
number of patterns. The algorithm then locates the k HUIs with the largest
utilities in the database. This approach is arguably more intuitive than HUIM
and CHUIM, as it is easier to select a suitable value for k. However, finding
these itemsets are more demanding as the minimum utility threshold enables
candidate pruning. Generally, the larger the threshold, the fewer candidates
the algorithm has to consider. The initial search space in top-k HUIM is thus
equivalent to traditional HUIM with the threshold set to zero. Nonetheless, all
types of utility mining are computationally expensive procedures.

2.2 Particle swarm optimization

Evolutionary computation (EC) [17] is a sub-field of heuristic optimization tech-
niques that utilize biological theories to find approximate solutions to large
search problems. Generally, EC models stochastically optimize a set of candi-
date solutions by inheriting features from the most promising solutions discov-
ered. This process repeats for a limited number of iterations, which can enable
the model to find optimal solutions without exploring the search space exhaus-
tively. One such method applied in data mining problems is particle swarm
optimization (PSO) [18, 19]. Many versions of the algorithm exist, but its basic
principles are described below.
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PSO generates an initial population of randomized candidates called particles.
Each particle is associated with a position vector (X) that describes the candi-
date’s location in the solution space, and a velocity vector (V ) that determines
the movement direction of the coordinates in the position vector. At each iter-
ation t, the velocity and position of a particle i are updated according to the
following equations:

V j
i (t+ 1) = wV j

i (t) + c1r1(pBestji −Xj
i (t)) + c2r2(gBestj −Xj

i (t)) (2.1)

Xj
i (t+ 1) = Xj

i (t) + V j
i (t+ 1) (2.2)

In Eq. (2.1) and Eq. (2.2), j is the current index in X or V ; r1 and r2 are
random numbers between 0 and 1; c1, c2, and w are constants; pBesti are the
best previous position of particle i, and gBest are the best previous position of
all particles in the population.

pBest and gBest are historic positions maintained by the algorithm. They are
determined using an objective function that evaluates particle positions in re-
lation to some quality measure. The individual factor c1 and social factor c2
control the amount of influence each particle receives from pBest and gBest,
and the inertia parameter w decide to which degree each particle should main-
tain its current velocity. After a particle is updated, the algorithm evaluates
the new position and reselects pBest and gBest based on the result from the
objective function. The population thus moves towards the optimal value(s)
by continuously adjusting particle positions according to the most promising
candidates evaluated.

2.3 Related work

The algorithms proposed for utility mining can be categorized as exact or heuris-
tic. The exact algorithms are deterministic and always find the correct solutions,
whereas the heuristic methods cannot give such a guarantee. This section in-
troduces the most relevant exact works for HUIM, CHUIM, and top-k HUIM
before reviewing the heuristic alternatives.

2.3.1 Exact algorithms for HUIM

The main challenge of developing efficient HUIM models is to overcome poten-
tially large search spaces. A database with n distinct items contains 2n-1 HUI
candidates, meaning some form of candidate pruning typically must be applied
to discover the solutions within a reasonable time frame. In this regard, Liu et
al. [20] provided one of the leading studies with the Two-Phase algorithm. They
developed a pruning strategy based on transaction-weighted utilities (TWU) to
avoid assessing each itemset in the database. The TWU is an upper bound on
the utility of an itemset. Any candidate with TWU less than the minimum
utility threshold is thus unnecessary to evaluate, as it cannot be a HUI. In the
first phase of the algorithm, candidates are gradually composed by combining
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the items satisfying the TWU constraint. In the second phase, the HUIs are
determined by calculating the actual candidate utilities. A limitation of this ap-
proach is that the algorithm may produce candidates that do not appear in the
input database. For this reason, pattern-growth algorithms such as IHUP [21],
UP-Growth [22] and MU-Growth [23] have been proposed. These models are
based on the two-phase concept but utilize a tree structure during candidate
generation. The tree describes valid item combinations based on transaction
occurrences and is initialized before the mining process starts.

Although the two-phase algorithms establish boundaries to the search space,
they often cannot reduce the number of candidates sufficiently. In addition,
the models are subject to computationally expensive database scans during the
evaluation phase of the candidates. Newer models thus employ a more efficient
one-phase approach without candidate generation, introduced to utility mining
with HUI-Miner [24].

HUI-Miner proposed a utility-list data structure to store information required
for calculating itemset utilities, allowing much faster evaluations than with
database scans. The model performs two database scans to construct the ini-
tial utility-lists before identifying the HUIs through utility-list join-operations.
This way, the HUIs are revealed directly without a dedicated phase for candi-
date generation. Moreover, utility-lists provide a new upper bound through the
concept of remaining utility, reducing the number of necessary itemset evalua-
tions. Benchmarks showed that the model was up to two orders of magnitude
faster than the existing two-phase algorithms. Several improved variants of
HUI-Miner has later been proposed, some of which are FHM [25], HUP-Miner
[26] and UBP-Miner [27]. These methods apply strategies to reduce the overall
cost surrounding utility-list operations, such as estimated utility co-occurrence
structure (EUCS), PU-Prune, LA-Prune and utility bit partition.

Like in the two-phase paradigm, one-phase algorithms may generate irrelevant
candidates. To address this, Zida et al. [28] proposed EFIM, a one-phase,
pattern-growth algorithm based on a utility array structure. The model intro-
duced subtree utility and local utility as new pruning upper bounds and used
fast utility counting to calculate them in linear time and space. In addition,
they applied transaction merging and database projection techniques to reduce
the cost of database scans. EFIM demonstrated two to three orders of mag-
nitude faster runtime than existing one-phase and two-phase algorithms while
consuming less memory.

2.3.2 Exact algorithms for CHUIM

The field of CHUIM consists of algorithm extensions of previous HUIM and FIM
works. The first model introduced was CHUD [6], a two-phase, pattern-growth
approach using TWU pruning and a tree structure for candidate generation.
The model is similar to IHUP and UP-Growth but is based on a closed frequent
itemset mining algorithm called DCI-Closed [29]. In contrast to the HUIM
methods, each node in the tree contains a tidset expressing all transactions a
candidate appears. This way, the algorithm can filter non-closed HUIs during
the exploration phase of the tree. Although CHUD demonstrated the usefulness
of CHUIM, it inherited the same limitations as its two-phase HUIM relatives.
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For this reason, Wu et al. [30] adopted the one-phase concept and proposed
CHUI-Miner.

CHUI-Miner is a HUI-Miner extension using an extended utility-list to accom-
modate itemset support counts. It performs pruning based on TWU and re-
maining utility and reveals the solutions through a divide-and-conquer process.
Comparisons against CHUD proved that CHUI-Miner was superior regarding
execution time and memory usage. Subsequently, Fournier-Viger et al. [8] con-
verted EFIM to CHUIM with EFIM-Closed. Compared to the HUIM model,
EFIM-Closed introduced closure jumping, forward closure checking, and back-
ward closure checking to identify relevant closed itemsets. The approach was
not evaluated against CHUI-Miner but showed an overall larger improvement
against CHUD. The most recent exact CHUIM algorithm is CLS-Miner [9].
It is another utility-list-based approach but applies additional pruning strate-
gies compared to CHUI-Miner. More specifically, chain-estimated utility co-
occurrence pruning, lower branch pruning, and pruning by coverage. CLS-Miner
is more efficient than CHUI-Miner but cannot compete with EFIM-Closed in
dense datasets due to the effectiveness of transaction merging.

2.3.3 Exact algorithms for top-k HUIM

HUIM and CHUIM prune unpromising candidates based on various utility up-
per bounds compared to the minimum utility threshold. Top-k HUIM does not
receive a minimum utility threshold as input and thus faces additional search
space challenges. These algorithms rely on threshold-raising strategies to grad-
ually increase the minimum utility threshold during runtime. However, like in
CHUIM, the underlying mining logic is adopted from HUIM.

Top-k HUIM was introduced with TKU [7], a two-phase model based on UP-
Growth. TKU generates a pattern-growth tree with valid item combinations
and applies five threshold-raising strategies to remove candidates with TWU
pruning. Ryang and Yun [10] later improved the approach by developing another
two-phase model called REPT. REPT is an extension of MU-Growth that uses
more effective threshold-raising than TKU during the tree construction process,
thus reducing the number of candidates. Although the model is superior to
TKU, it requires an input parameter N , which is non-trivial to select.

The other algorithms in top-k HUIM are one-phase approaches. TKO [11] is
a HUI-Miner extension that combines novel threshold-raising with the stan-
dard utility-list strategies. The model thus avoided the two-phase limitations of
TKU and REPT and was shown to outperform both in experiments. Duong et
al. [31] then introduced kHMC based on FHM. They applied three threshold-
raising strategies together with EUCS and pruning by coverage to reduce utility-
list join-operations compared to TKO, further reducing runtime and memory
consumption. Later, TKEH [32] incorporated the strategies of EFIM and was
shown to be up to three orders of magnitude faster than kHMC and TKO.
Finally, THUI [33] introduced a leaf itemset utility structure to enhance the
effectiveness of threshold-raising and pruning over earlier methods, which also
provided huge advancements compared to kHMC and TKO.
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2.3.4 Heuristic algorithms for HUIM

Whether using HUIM, CHUIM, or top-k HUIM, finding itemsets based on util-
ities is time-consuming. Although the algorithms mentioned in the previous
sections can find the exact solutions, they depend on pruning strategies to re-
duce the search space. If pruning is ineffective, the algorithms are typically
unable to complete within a reasonable time frame, regardless if the approach
belongs to the one-phase or two-phase paradigm. For this reason, several heuris-
tic methods have been developed for utility mining. The proposed heuristics are
predominantly for traditional HUIM, and they all use TWU pruning as the sole
search space reduction.

Particle swarm optimization (PSO) was introduced to HUIM by Lin et al. [19]
with HUIM-BPSO. They adopted a binary particle encoding where each index in
the position vector determines the presence or absence of a specific item, and the
velocity vector expresses item probabilities based on previous evaluations. The
algorithm starts by initializing the population using roulette wheel selection,
which probabilistically chooses items based on their TWU. This means that
items with a large TWU are more likely to appear in the initial candidates.
During the iterative process, the model modifies each particle using the velocities
and a sigmoid update function that ensures binary item values. Each particle
is then evaluated through database scans to reveal any potential HUIs. The
algorithm was later enhanced with a OR/NOR tree [34] to ensure each particle
occurs in at least one transaction, inspired by the pattern-growth models. The
tree increased accuracy, but both models struggle with premature convergence
to local optima and tend to miss many relevant solutions.

Song and Huang [35] then proposed Bio-HUIF-PSO, which improves the earlier
models in several aspects. Bio-HUIF-PSO applies roulette wheel selection on
the set of discovered HUIs to determine gBest each iteration. The rationale
here is that all solutions do not necessarily resemble the best solution. It is thus
desirable to occasionally change gBest to explore a broader range of particles,
which can alleviate local optima when the best solution is found. The authors
also suggested particle updates with bit difference rather than the traditional
velocity logic. Compared to the velocity, bit difference selects a set of items
to change based on distinct dissimilarities between particles and pBest/gBest.
While the velocity may modify all items in a particle, bit difference only consid-
ers the most promising changes, which typically promotes faster convergence.
In addition, the individual factor, social factor, and inertia parameters are no
longer required, reducing the complexity of the model. Finally, Bio-HUIF-PSO
introduced a procedure called promising encoding vector check (PEV-check) to
identify valid item combinations, similar to the OR/NOR tree. The PEV-check
performs validation through bit operations on tidsets and does not require an
initial construction process like the tree approaches. It is thus an overall more
efficient procedure.

More recently, Song and Li proposed a set-based PSO for HUIM called HUIM-
SPSO [36]. HUIM-SPSO transforms the velocity vector into a discrete set with
operational pairs, describing the inclusion or deletion of specific items. The
intention is to target the promising items more consistently during particle up-
dates. The algorithm demonstrated superior performance to HUIM-BPSO with
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and without the OR/NOR tree. However, Bio-HUIF-PSO is more effective in
terms of runtime and accuracy. The main problem of HUIM-SPSO is that the
algorithm does not consider the sizes of previous solutions when updating parti-
cles. Instead, it generates a random integer to determine the number of items to
include, leading to many irrelevant candidates. The issue is slightly alleviated
as the algorithms adopt the PEV-check strategy.

The genetic algorithm (GA) is another EC-based method applied in HUIM.
Kannimuthu and Premalatha [37] developed HUPEUMU -GRAM, which itera-
tively updates a population of chromosomes (candidates) towards the optimal
values using selection, mutation, and crossover operations. Although the model
proved the feasibility of GA in HUIM, it performs worse than the PSO-based
approaches. The standard update operations in GA are computationally de-
manding and easily lead to local optima. This was later improved with Bio-
HUIF-GA [35], which uses the strategies of Bio-HUIF-PSO to increase popula-
tion diversity, avoid irrelevant candidates, and reduce execution time. Zhang et
al. [38] then proposed HUIM-IGA to expand the search space exploration using
neighborhood exploration, population diversity maintenance, individual repair,
and elite strategy. These techniques aim to induce more population diversity to
lessen the probability of local optima in the iterative process. Overall, the re-
cent GA-based algorithms provide slightly higher accuracy than the PSO-based
algorithms but use more time.

Several other types of EC have also been introduced for HUIM, such as ant
colony optimization [39], artificial bee colony algorithm [40], bat algorithm [35],
and artificial fish swarm algorithm [41]. There are also heuristic models not
based on EC, including hill climbing and simulated annealing [42]. However,
Bio-HUIF-PSO remains one of the state-of-the-art approaches, together with
Bio-HUIF-GA and HUIM-IGA.

2.3.5 Heuristic algorithms for CHUIM and top-k HUIM

Although heuristics have shown promise in HUIM, few approaches are available
for CHUIM and top-k HUIM. In 2022, Pramanik and Goswami [43] developed
CHUI-AC, an ant colony optimization (ACO) model for CHUIM. The algorithm
transforms the solutions space into a directed graph that is explored using local-
and global pheromone rules, inspired by the real-world movements of ants. It
showed an advantage in runtime comparisons against CHUI-Miner and CHUD
but missed many relevant itemsets.

As for top-k HUIM, TKU-CE+ [44] is currently the only heuristic approach. It
is a combinatorial optimization technique based on cross-entropy that updates
a set of samples towards the optimal values using a utility probability distri-
bution. The authors also introduced a critical utility value that enables TWU
pruning before storing the database in memory, thus reducing memory usage
and candidate evaluation time. The model was compared to TKU, TKO, and
kHMC and demonstrated better runtimes and memory usage, although for a
limited range of k.

Table 2.1 provides an overview of the discussed algorithms for CHUIM and top-k
HUIM.
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Table 2.1: Summary of algorithms for CHUIM and top-k HUIM

Algorithm Type Base-algorithm Year
Closed High-Utility Itemset Mining

CHUD [6] Exact (Two-phase) DCI Closed [29] 2011
CHUI-Miner [30] Exact (One-phase) HUI-Miner [24] 2015
EFIM-Closed [8] Exact (One-phase) EFIM [28] 2016
CLS-Miner [9] Exact (One-phase) FHM [25] 2018
CHUI-AC [39] Heuristic ACO [45] 2022

Top-k High-Utility Itemset Mining
TKU [7] Exact (Two-phase) UP-Growth [22] 2012
REPT [10] Exact (Two-phase) MU-Growth [23] 2015
TKO [11] Exact (One-phase) HUI-Miner [24] 2015
kHMC [31] Exact (One-phase) FHM [25] 2016
TKEH [32] Exact (One-phase) EFIM [28] 2019
THUI [33] Exact (One-phase) HUI-Miner [24] 2019
TKU-CE+ [44] Heuristic Cross-entropy [46] 2021

2.4 Research gap

Heuristics are a vital research topic in data mining as they alleviate the computa-
tional burden associated with analyzing massive datasets, which can be crucial
for swift decision-making. However, most heuristic studies target traditional
HUIM, and the field of CHUIM and top-k HUIM are still largely unexplored,
although they provide obvious advantages. The existing works also share two
commonalities that limit their usability:

� They tend to use excessive time as they evaluate all candidates gener-
ated. Candidate evaluations are computationally expensive as the algo-
rithm must scan the database to determine the itemset’s utility. The
execution time is thus closely related to the database size and number
of evaluations performed. In order to compete with the superior pruning
strategies of modern non-heuristic methods, there is a need for techniques
that can assess candidate quality without using database scans.

� They tend to provide inadequate accuracy in large search spaces. As
the search space grows, it is increasingly challenging to generate suitable
initial candidates. If they share few similarities with the actual solutions,
the model typically falls into local optima before creating appropriate
candidates. Thus, there is a need for models with better pruning- and
population initialization strategies.

2.5 Research question

The main goal of this master thesis is to investigate whether the current methods
for CHUIM and top-k HUIM can be improved. More specifically, can we develop
a PSO-based algorithm that addresses the performance limitations of existing
exact- and heuristic approaches?
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2.6 Research method

Given that the performance of pattern mining algorithms is distinctly measur-
able, a quantitative research method is appropriate to evaluate the research
question. We assessed the performance of the developed models by comparing
metrics such as execution time, accuracy, and memory usage against existing
heuristic and non-heuristic approaches. The results were collected on 8 datasets
in total, provided by the SPMF data mining library [47]. The datasets have
been extensively applied in earlier pattern mining studies and consist of real-
world and synthetic data prepared for utility mining. On each dataset, we
tested up to 6 different input parameters (minimum utility threshold and k)
to observe the model characteristics over a range of scenarios. In addition, the
algorithms performed up to 10 runs on the same input parameters to ensure
reliable measurements through average and median values.
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Chapter 3

Results

The work in this thesis consists of two research papers related to heuristic dis-
covery of CHUIs and top-k HUIs. This chapter presents the contributions and
findings of the papers.

3.1 An Efficient PSO-based Evolutionary Model
for Closed High-Utility Itemset Mining

This paper introduces CHUI-PSO, a PSO model for CHUIM that employs three
new strategies to target the limitations of existing heuristic works, described
in section 2.4. In order to reduce the number of necessary candidate evalua-
tions, the algorithm uses two techniques to find approximate itemset utilities
in linear time, which we call maximum- and average estimates. The estimates
provide upper bounds on the utility of itemsets and enable the model to bypass
database scans for certain unpromising candidates. In addition, a structure
called explored-set is proposed to maintain all candidates generated during run-
time. The purpose of the set is to identify whether a newly created particle has
been previously evaluated. This way, the algorithm can avoid reassessing redun-
dant particles, further reducing the number of database scans. Moreover, the
explored-set is employed during the update procedure to alter explored parti-
cles and induce population diversity. Finally, the paper suggests extended TWU
pruning (ETP) to improve the model’s capabilities in large search spaces. ETP
is a recursive extension of the traditional TWU pruning [20] that can identify
additional unnecessary candidates before the mining process starts.

In the paper, the performance of CHUI-PSO is assessed through comparisons
with EFIM-Closed [8], CLS-Miner [9] and the heuristic CHUI-AC [43]. The
results showed that the new model was the fastest overall. In total, CHUI-PSO
used just over 4 minutes to finish the test on all datasets, while EFIM-Closed,
CLS-Miner, and CHUI-AC took 31 minutes, 8 hours, and 41 hours, respectively.
In addition, experiments without ETP demonstrated that the new pruning could
significantly reduce the runtime in large search spaces. In terms of accuracy,
CHUI-PSO discovered on average 98.8% of the correct itemsets compared to
46.8% with the heuristic CHUI-AC. Moreover, the results showed that the pro-
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posed model found more solutions with ETP than without. We also compared
the convergence rate of the heuristic models, which revealed that CHUI-PSO
always converged in fewer iterations than CHUI-AC while also discovering ad-
ditional patterns. Finally, candidate comparisons between ETP and the tradi-
tional TWU pruning displayed that the new method removed more unpromising
items from each database, thus providing further search space reduction.

3.2 TKU-PSO: An Efficient Particle Swarm Op-
timization Model for Top-k High-Utility Item-
set Mining

This paper focuses on the field of top-k HUIM and presents another PSO-
Based model. TKU-PSO is built upon the same framework as CHUI-PSO and
adopts average estimates and the explored-set to reduce the number of necessary
particle evaluations. In addition, the algorithm introduces a new population
initialization strategy that differs from earlier works by generating the first
candidates deterministically rather than stochastically. The process selects the
initial population based on known itemset utilities to increase the likelihood of
suitable candidates in huge search spaces. The paper also proposes a threshold-
raising concept called minimum solution fitness, which the model utilizes to
remove unpromising items during particle updates, thus reducing the number
of possible candidates.

In the experiments, TKU-PSO was compared to an improved version of TKO
(TKO+) [11], THUI [33], and the heuristic TKU-CE+ [44]. The runtime results
demonstrated that TKU-PSO always outperformed the other algorithms. Most
notably, THUI and TKO+ could not complete tests on one of the datasets due
to excessive execution times (over 14 hours), while our model finished in less
than 10 seconds. In the other datasets, TKU-PSO was up to 63, 282, and 390
times faster than THUI, TKU-CE+, and TKO+, respectively. The accuracy
comparisons revealed that TKU-PSO discovered overall 99.8% of the correct
top-k HUIs while TKU-CE+ found 16.5%. In addition, we tested our model
with the traditional population initialization strategy, which confirmed that
the new method significantly increased accuracy in scenarios with large search
spaces. Finally, we measured the memory usage of the algorithms and showed
that our model was the most efficient in 4 of 6 datasets.
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Chapter 4

Conclusion

The goal of this master thesis was to determine whether the existing methods
for CHUIM and top-k HUIM could be improved with new models. To answer
this question, we identified limiting factors in previous works and developed two
distinct PSO-based algorithms. The model contributions were then measured
by comparing performance characteristics with state-of-the-art approaches in
the literature.

Both papers show that the new models can find itemsets with significantly higher
precision and efficiency than existing heuristics in CHUIM and top-k HUIM. In
addition, the results indicate that the proposed strategies are fundamental to the
overall performance of the developed algorithms. Based on this, we can conclude
that the work in this thesis improves the current heuristics. Nonetheless, we
acknowledge that there is always room for additional testing, and our results
may not be indicative of performance in all possible scenarios. However, given
the time required to collect reliable data, our experiments include a diverse
group of datasets with input parameters reflecting realistic real-world use.

Concerning exact algorithms, our results show they are generally effective at
search space pruning, particularly in CHUIM. However, this is not always the
case, and CHUI-PSO and TKU-PSO can provide tremendous reductions to
runtimes while discovering most or all solutions. Despite this, it is difficult to
gauge whether the proposed models directly improve the exact algorithms. The
overall benefit of using heuristics depends on the speedup compared to the loss
in precision. Therefore, more extensive testing is needed to determine if the
proposed models are reliable alternatives, especially on larger datasets, which
are the primary application of heuristics. Nonetheless, we have demonstrated
that it is possible to find the correct patterns more efficiently than the current
state-of-the-art models.
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Chapter 5

Further work

Although the developed algorithms show promising results, there are still sev-
eral opportunities for improving performance in utility mining. Currently, the
limiting factor to the speed of heuristics is the time required for candidate eval-
uations through database scans. Further work should thus focus on strategies
that can reduce this cost, either by omitting certain evaluations as proposed in
our papers or by developing a database projection that can be more efficiently
scanned. Another possible research direction is to investigate whether the utility
of discovered itemsets can be utilized to retrieve the utility of new candidates.

Regarding accuracy, we have shown that pruning and population initialization
can significantly influence the algorithm’s ability to find the correct solutions.
Further development of these procedures can thus be promising topics to ex-
plore. Specifically, work can be conducted to determine the feasibility of using
estimates for search space reduction and better candidate generation.
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Appendix A

Source code

CHUI-PSO: https://github.com/Simencar/CHUI-PSO

TKU-PSO: https://github.com/Simencar/TKU-PSO
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Abstract

High-utility itemset mining (HUIM) is a widely adopted data mining
technique for discovering valuable patterns in transactional databases.
Although HUIM can provide useful knowledge in various types of
data, it can be challenging to interpret the results when many pat-
terns are found. To alleviate this, closed high-utility itemset mining
(CHUIM) has been suggested, which provides users with a more concise
and meaningful set of solutions. However, CHUIM is a computation-
ally demanding task, and current approaches can require prolonged
runtimes. This paper aims to solve this problem and proposes a
meta-heuristic model based on particle swarm optimization (PSO) to
discover CHUIs, called CHUI-PSO. Moreover, the algorithm incorpo-
rates several new strategies to reduce the computational cost associated
with similar existing techniques. First, we introduce Extended TWU
pruning (ETP), which aims to decrease the number of possible can-
didates to improve the discovery of solutions in large search spaces.
Second, we propose two utility upper bounds to estimate itemset util-
ities and bypass expensive candidate evaluations. Finally, to increase
population diversity and prevent redundant computations, we utilize
a structure called ExploredSet to maintain all evaluated particles.
Experimental results show that CHUI-PSO outperforms the state-of-
the-art algorithms regarding execution time, accuracy, and convergence.

Keywords: evolutionary computation, closed high-utility itemset, data
mining, optimization, pso
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1 Introduction

Knowledge discovery in databases (KDD) is a process for extracting new and
potentially helpful information in the form of patterns or relationships hid-
den in large amounts of data. As database exploration can require enormous
resources, data analysts rely on various algorithms to efficiently extract the
desired type of knowledge. In the last decades, several data mining techniques
have been developed to find a variety of patterns in all kinds of data, including
frequent itemset mining (FIM) and association rule mining (ARM) [1]. FIM
aims to obtain a set of item combinations (itemsets) that occur no less than
a user-specified minimum support threshold. ARM is a similar approach but
requires an additional minimum confidence threshold to identify relationships
with a certain conditional probability. FIM and ARM are commonly applied
to find the most frequent customer purchases in retail transactional data.
However, both methods assume that the importance of each distinct item is
identical. As a result, the provided solutions can occur with high frequency but
may only contribute a small portion to some other significant measure, such
as profit. Therefore, these patterns can be of little interest from a business
perspective.

To avoid the limitations of FIM/ARM and increase the usefulness of
the patterns, the concept of high-utility itemset mining (HUIM) has been
proposed [2]. HUIM differs from previous approaches by using quantitative
databases in which each item can occur more than once in a transaction. In
addition, each item is associated with a weight representing its relative impor-
tance or value. In HUIM, the item quantities and weights are combined to
obtain a utility value of the itemsets in the database. An itemset is consid-
ered a high-utility itemset (HUI) if its utility is no less than a minimum utility
threshold defined by the user. In the context of retail transactional data, the
utility value typically represents the total revenue generated by the itemset.
This way, HUIM can discover the most profitable patterns, unlike the frequent
patterns found by FIM and ARM.

Although there has been extensive research on HUIM [4–13, 18–22], the
usefulness of the algorithms is often limited by the fact that they generate
vast amounts of HUIs. Consequently, it can be challenging to interpret and
analyze the results efficiently. Moreover, mining large sets of patterns may
degrade algorithm performance as runtime and memory requirements grow. To
address these concerns, closed high utility itemset mining (CHUIM) has been
proposed [3]. CHUIM strongly resembles HUIM but aims to reduce the total
number of HUIs by using a closed itemset property. This property states that
an itemset is closed if it has no immediate superset extension with the same
support value. As any such superset has higher utility than the subset, it is
desirable to neglect the subset as it contains redundant information. This way,
CHUIM can produce a smaller but more significant set of HUIs, alleviating
the challenges described above.
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However, HUIM and CHUIM are both considered challenging tasks as
the computational complexity can grow exponentially on the input. There-
fore, it may require immense computational resources to retrieve all patterns
when the database is large. This has motivated the adoption of various heuris-
tic models for utility mining, in particular evolutionary computation (EC).
EC-based algorithms are optimization techniques that utilize biological evo-
lutionary principles to find approximate solutions to large search problems.
Genetic algorithm (GA), particle swarm optimization (PSO), ant colony opti-
mization (ACO), and bat algorithm (BA) are some examples of EC models
that have been extensively applied in various utility mining problems [4, 18–
23, 25]. However, most existing studies target HUIM, and the potential of EC
in CHUIM is still largely unexplored. There is also a general need for more
efficient EC models, as the existing approaches tend to waste resources by
evaluating many redundant and unpromising candidates. In addition, they are
prone to premature converge to local optima, which affects the algorithm’s
ability to discover all available solutions.

This paper addresses all the above challenges by presenting a meta-heuristic
EC-based PSO model for discovering CHUIs, called CHUI-PSO. As far as
we know, there is no existing research on using PSO for CHUIM. The main
contributions of this work can be summarized as follows:

� The CHUI-PSO algorithm for CHUIM is proposed. Apart from adopting
the bio-inspired framework of Song and Huang [4], three main strategies
are developed to improve the overall performance of utility mining algo-
rithms. First, to reduce the required search space of the algorithm, we
propose a technique called Extended TWU Pruning (ETP). Second, to
avoid expensive candidate evaluation of low-utility items, we utilize Fit-
ness Estimates to find approximate itemsets utilities. Finally, we suggest a
structure called ExploredSet to prevent redundant evaluations and improve
population diversity during particle updates.

� Extensive experiments are performed on a mixture of real and synthetic
databases to evaluate the performance of the proposed model against exist-
ing heuristic and non-heuristic approaches. In addition, ETP is assessed by
testing CHUI-PSO with the traditional TWU model and the new method.

2 Related work

This section briefly reviews work related to high-utility itemset mining
(HUIM), closed high-utility itemset mining (CHUIM), and evolutionary
computation (EC) in three sections, respectively.

2.1 High-utility itemset mining (HUIM)

Over the years, many algorithms have been developed to solve the prob-
lem of HUIM. In 2004, Liu et al. proposed a two-phase model [5] using a
transaction-weighted downward closure property (TWU model) to overcome
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the combinatorial explosion which occurred in earlier algorithms. If a database
contains n distinct items, there are a total of 2n − 1 distinct itemsets. It can
therefore be an incredibly challenging task to examine all candidates when
n is large. The TWU model calculates upper bounds on the utility of item-
sets to identify unpromising items, which are removed from the database to
reduce the required search space. In the first phase of the algorithm, all item-
sets that satisfy the TWU constraint are generated, while the second phase
calculates the exact itemset utilities to determine the actual HUIs. IHUP [6]
and UP-Growth [7] are both models based on this two-phase concept but
employ tree-based structures to improve the overall performance. However, the
two-phase approach with candidate generation is generally considered ineffi-
cient because too many low-utility candidates are explored during the mining
process.

For this reason, HUI-Miner [8] developed a database projection technique
called utility-list, which allows further search space pruning, faster utility cal-
culations, and discovery of HUIs in one phase without candidate generation.
As a result, the algorithm significantly outperformed the previous approaches.
FHM [9] later improved on this idea by using estimated utility co-occurrence
pruning to reduce the number of necessary join operations on the utility-lists
of unpromising itemsets. This decreased execution times as the join operations
can be costly to perform. EFIM [10] then introduced subtree utility and local
utility as new utility upper bounds and used fast utility counting to compute
them in linear time. In addition, the algorithm reduced the overall cost of
database scans with high-utility transaction merging and high-utility database
projection. EFIM is often considered the fastest algorithm for mining the com-
plete set of HUIs. However, superior alternatives exist for sparse databases [11],
as transaction merging is most effective in dense scenarios with many similar
transactions. Nonetheless, HUI-PR, [12] has recently reduced the overall mem-
ory consumption and execution time of the EFIM approach through additional
pruning strategies. Finally, in 2022 UBP-Miner [13] integrated a bit-partition
utility list structure to speed up the utility-list construction process and was
shown to outperform HUI-Miner.

2.2 Closed high-utility itemset mining (CHUIM)

CHUIM was originally proposed by Tseng et al. [3] to address the overwhelm-
ing number of patterns returned by HUIM algorithms. They developed three
separate models for CHUIM, namely AprioriHC, AprioriHC-D, and CHUD.
CHUD is the most efficient, but it is a two-phase model that relies on the TWU
model for search space pruning. It was therefore outperformed when CHUI-
Miner [14] adopted the one-phase concept from more recent HUIM algorithms.
The model uses an extended utility-list for tighter utility upper bounds and
faster itemset evaluations, while the CHUIs are discovered using a divide-and-
conquer approach without producing candidates. Fournier-Viger et al. then
released an extension of EFIM for CHUIM, named EFIM-Closed [15]. Com-
pared to the HUIMmodel, EFIM-Closed provides additional pruning strategies
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with closure jumping, forward closure checking, and backward closure checking
to identify the relevant closed itemsets quickly during mining. Finally, Dam
et al. proposed improvements to the utility list approach of CHUI-Miner with
the CLS-Miner algorithm [16]. They introduced chain-estimated utility co-
occurrence pruning, lower branch pruning, and pruning by coverage to remove
unpromising candidates without fully constructing their utility-lists. An effi-
cient pre-check method was also proposed to perform subsumption checks and
closure computations. As far as we know, EFIM-Closed and CLS-Miner are
currently the most advanced approaches for non-heuristic discovery of CHUIs.
However, the effectiveness of each model varies depending on the database
characteristics. EFIM-Closed generally prefers dense databases, while CLS-
Miner performs best on sparse. Both algorithms may be unable to find the
solutions in a reasonable amount of time if the search space is large, regardless
of the database type.

2.3 Evolutionary computation (EC)

Evolutionary Computation (EC) attempts to overcome the computational lim-
itations of non-heuristic models by utilizing past experiences to explore the
search space efficiently. Generally, an initial set of candidate solutions is pro-
duced and updated by inheriting traits from the most promising solutions.
This process repeats for a limited number of generations to achieve a good
tradeoff between runtime and accuracy. One such EC algorithm is particle
swarm optimization (PSO). The traditional PSO [17] maintains a population
of particles representing potential solutions. Each particle is assigned a fitness
value, which indicates the quality of the solution, and a velocity vector that
determines how the particle should evolve. The velocity is calculated based on
the distance to the particle’s personal fittest offspring (pBest) and the all-time
fittest particle in the entire population (gBest). At each iteration of the algo-
rithm, the population is updated based on the velocities, and pBest and gBest
are redetermined. As a result, the particles tend to naturally evolve toward
fitter solutions as features of pBest and gBest are favored.

Lin et al. have proposed two PSO-based models for HUIM, namely
HUIM-BPSOsig [18] and HUIM-BPSO [19]. HUIM-BPSO differs from HUIM-
BPSOsig by using a OR/NOR tree structure during particle creation. The
OR/NOR tree ensures all generated itemsets appear in the database, and eval-
uations of irrelevant solutions are thus avoided. Song and Huang explored this
idea further with a bio-inspired framework for PSO, genetic algorithm (GA),
and bat algorithm (BA) [4]. The framework takes advantage of bitset database
representation and a promising encoding vector check (PEV-check) to ver-
ify valid item combinations. It also replaces the velocity mechanism with a
more efficient update procedure that uses bit difference. Once the population
is updated, gBest is selected by applying roulette wheel selection on the set
of discovered HUIs instead of selecting the fittest particle. As a result, gBest
changes more frequently, the diversity in the population increases, and the
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algorithm is better able to avoid local optima. Many similar HUIM EC mod-
els have been developed, such as [20–22, 25], but there are few alternatives
for CHUIM. In 2021, Pramanik and Goswami proposed CHUI-AC [23], an ant
colony optimization (ACO) method for discovering CHUIs. The model maps
the search space to a directed graph that is traversed using local and global
pheromone rules, inspired by the real-world movements of ants. The algorithm
showed promising runtime results compared to CHUI-Miner but missed a large
portion of the overall patterns. This is a common problem with EC algorithms,
as they focus on building new patterns close to the currently best solutions in
the search space. However, certain solutions may closely resemble low-fitness
patterns and are thus missed.

3 Preliminary and problem statement

Let the set I= {i1, i2, . . . , im} contain m distinct items, where ik is a unique
item such that 1 ≤ k ≤ m. A transactional database D = {T1, T2, . . . , Tn}
is a set of n transactions, where each transaction Tq ⊆ I and q is a unique
transaction identifier (TID) such that 1 ≤ q ≤ n. Moreover, each item ik ⊆ D
is associated with a profit value, denoted p(ik, D), and a purchase quantity for
each transaction, denoted q(ik, Tq). The set X ⊆ I is called an itemset and is
included in transaction Tq if X ⊆ Tq.

The database shown in Table 1 is used as a running example in this paper.
It contains 5 transactions and 7 distinct items named from A to G, with the
corresponding purchase quantities inside the parentheses. The associated profit
value of each item is shown in Table 2.

Table 1 A quantitative transactional database

TID Transaction (item:quantity) Transaction utility (tu)
T1 (B :5), (C :1), (D :2), (E :1), (F :1) 25
T2 (B :4), (C :3), (D :2), (E :1) 20
T3 (A:1), (C :1), (E :1) 8
T4 (A:2), (C :6), (E :2), (G:5) 25
T5 (B :2), (C :2), (E :1), (G:2) 11

Table 2 Profit table

Item A B C D E F G
Unit profit 4 2 1 3 3 5 1

Definition 1 The local utility of an item ik in a transaction Tq is denoted u(ik, Tq)
and is defined as:

u(ik, Tq) = q(ik, Tq)× p(ik, D) (1)
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Example 1 The local utility of item B in transaction T1 is calculated as 5× 2 = 10.

Definition 2 The local utility of an itemset X in a transaction Tq is denoted
u(X,Tq) and is defined as:

u(X,Tq) =
∑

ik∈X,X∈Tq

u(ik, Tq) (2)

Example 2 The local utility of itemset (DF ) in transaction T1 is calculated as 2× 3
+ 1× 5 = 11.

Definition 3 The utility of an itemset X in a database D is denoted u(X) and is
defined as:

u(X) =
∑

X∈Tq,Tq∈D

u(X,Tq) (3)

Example 3 The utility of itemset (EG) is calculated as 2× 3 + 5× 1 + 1× 3 + 2× 1
= 16.

Definition 4 The TID-set of an itemset X in a database D is denoted TID(X) and
is defined as:

TID(X) = {q | q ≥ 1, q ≤ n,X ∈ Tq, Tq ∈ D} (4)

Example 4 The TID-set of itemset (BC) is {1,2,5}, since (BC) occurs in T1, T2 and
T5.

Definition 5 The support count of an itemset X is denoted sup(X) and is defined
as:

sup(X) = |TID(X)| (5)

Example 5 The support of itemset (BC ) is calculated as |{1,2,5}| = 3.

Definition 6 The transaction utility of a transaction Tq is denoted tu(Tq) and is
defined as:

tu(Tq) =
∑

ik∈Tq

u(ik, Tq) (6)

Example 6 The transaction utility of T3 is calculated as: 1× 4 + 1× 1 + 1× 3 = 8

Definition 7 The total utility of a database D is denoted TU(D) and is defined as:

TU(D) =
∑

Tq∈D

tu(Tq) (7)
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Example 7 The total utility of the database in Table 1 is calculated as 25 + 20 + 8
+ 25 + 11 = 89.

Definition 8 The transaction weighted utility (TWU) of an itemset X is denoted
TWU(X) and is defined as:

TWU(X) =
∑

q∈TID(X)

tu(Tq) (8)

Example 8 The TWU of itemset (A) is calculated as 8 + 25 = 33.

Definition 9 An itemset X is a high transaction weighted utilization itemset
(HTWUI) if TWU(X) ≥ δ; otherwise, X is a low transaction weighted utilization
itemset (LTWUI). Note that δ is the minimum utility threshold, which is set by the
user. Furthermore, a HTWUI/LTWUI with k items is denoted k-HTWUI/k-LTWUI.

Example 9 If the minimum utility threshold is set to 35, then itemset (A) is a 1-
LTWUI because TWU(A) = 33, while itemset (B) is a 1-HTWUI as TWU(B) =
56.

Definition 10 An itemset X is a high-utility itemset (HUI) if u(X) ≥ δ, where δ is
the minimum utility threshold.

Example 10 If the minimum utility threshold is 35, then itemset (BDE) is a HUI as
u(BDE) = 36.

Definition 11 A high-utility itemset X is a closed high-utility itemset (CHUI) if
there exists no itemset Y , where X ⊂ Y and sup(X) = sup(Y ).

Example 11 If the minimum utility threshold is 35, the HUI (BDE) is not a CHUI as
it is a subset of itemset (BCDE) and sup(BDE) = 2, which is equal to sup(BCDE)
= 2. However, itemset (BCDE) is a CHUI.

Problem statement: Based on the above definitions and given a min-
imum utility threshold, the problem of closed high-utility itemset mining is
to discover all closed high-utility itemsets within a quantitative transactional
database.

4 Proposed EC based framework for CHUIM

The proposed algorithm is a heuristic EC-based model for discovering CHUIs.
It applies a pruning strategy to reduce the search space before a population
of particles is generated based on the remaining candidates. The population
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is then iteratively updated and evaluated to reveal the CHUIs until a max-
imum number of iterations is reached. In this section, we first describe the
adopted strategy of bitset database representation and promising coding vec-
tor [4] before the main developed strategies (1) Extended TWU pruning, (2)
Fitness estimates, and (3) Particle updates with ExploredSet are introduced.
Finally, all parts are put together, and the pseudo-code of the complete model
is explained.

4.1 Promising encoding vector

Let the original database D consist of n transactions and m items. The bitset
representation of the database B(D) is then a n×m matrix of Boolean values.
The entry in B(D) corresponding to transaction Tq (1 ≤ q ≤ n) and item ik
(1 ≤ k ≤ m) is denoted as (q, k) and is the q-th row and k-th column of B(D).
Each entry is then defined as:

B(q, k) =

{
1, if ik ∈ Tq

0, otherwise
(9)

That is, the entry (q, k) of B(D) is set to 1 if transaction Tq contains item ik,
otherwise it is set to 0.

The bitset cover of an item ik corresponds to the k-th column vector of
B(D), and is denoted as Bit(ik). This extends to itemsets in the following way:
The bitset cover of itemset X is computed as the bitwise-ANDi∈X(Bit(i)),
which is the intersection between all bitset covers of the items in X. Similarly,
the bitset cover of two itemsets X and Y is calculated as Bit(X) ∩ Bit(Y ).
For example, the bitset cover of items B and D in Table 1 are {1,1,0,0,1} and
{1,1,0,0,0}, respectively. The bitset cover of itemset (BD) is then calculated
as {1,1,0,0,1} ∩ {1,1,0,0,0} = {1,1,0,0,0}. Thus, the itemset (BD) occurs in
transactions T1 and T2 as positions 1 and 2 of Bit(BD) are set to 1.

In the designed model, each generated itemset is represented by a particle.
The particle maintains a bit vector that keeps track of the items present in
the particle, called encoding vector. If the j-th position of an encoding vector
is set to 1, then item j is included in the particle itemset. Otherwise, item j
is not included. The size of the encoding vector corresponds to the number
of 1-HTWUI in the database. For example, if we assume that each item in
Table 1 is a 1-HTWUI, then the encoding vector size is 7 and the itemset
(BDE) is represented as {0,1,0,1,1,0,0}. Naturally, evolutionary algorithms
with candidate generation can produce itemsets that do not appear in any
transaction. To avoid these itemsets and improve the model’s effectiveness, the
concept of promising encoding vector is applied.

Definition 12 Let P represent the encoding vector of an itemset X. If the bitset
cover Bit(X) only contains 0s, then the encoding vector P is called an unpromising
encoding vector (UPEV ); otherwise P is a promising encoding vector (PEV ).
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Example 12 The itemset (AB) in Table 1 is a UPEV as Bit(AB)= {0,0,0,0,0}, while
the itemset (AC) is a PEV as Bit(AC)= {0,0,1,1,0}

The procedure to determine whether an encoding vector is a PEV is called
PEV-check. The PEV-check is applied to ensure each candidate is present in
at least one transaction of the input database. When a UPEV is detected, the
procedure removes items from the encoding vector until it is a PEV. This way,
the model avoids irrelevant itemsets, which improves the ability to discover
the correct solutions. Further detail on the PEV-check is described by Song
and Huang [4].

4.2 Extended TWU pruning (ETP)

The traditional TWU model pruning is based on the transaction-weighted
downward closure property [5]. This property states that if an item’s TWU
(Def. 8) is less than the minimum utility threshold, then no superset of this
item can be a HUI. Any such item is considered unpromising (1-LTWUI) as
it cannot be part of a solution, and it is thus removed from the database to
reduce the algorithm’s search space. The TWU model performs two database
scans to complete this process. The first scan calculates the TWU of each
item, while the second scan removes the 1-LTWUIs from the database. The
remaining items after the second scan are the 1-HTWUIs.

We propose an extension to this process to further reduce the number of
possible candidates, called Extended TWU Pruning (ETP). ETP uses the same
two database scans as the TWU model to identify and remove 1-LTWUIs.
However, if any items are pruned during the second scan, ETP restarts the
entire process and performs both scans again. The rationale for this strategy
is that certain transaction utilities (Def. 6) decrease by removing items from
the database. As the TWU values are a sum of transaction utilities, additional
items may be classified as 1-LTWUI if their TWUs are redetermined after the
second scan. Altogether, ETP is a recursive transformation of the traditional
TWU model that can significantly impact the effectiveness of pruning. Section
5 illustrates an example of the procedure.

4.3 Fitness estimates

Definition 13 The fitness of a particle pi is defined as:

fitness(pi) = u(X), (10)

where X is the itemset in the encoding vector of pi.

At each iteration of the algorithm, the fitness function is applied to newly
generated particles to determine the quality of the solutions. Calculating the
fitness requires a database scan and can be computationally expensive, espe-
cially if the database is large. We propose two types of utility estimates to
alleviate this, described below.



Springer Nature 2021 LATEX template

An Efficient PSO-based Evolutionary Model for CHUIM 11

4.3.1 Maximum estimates

Definition 14 The maximum utility of an item i in a database D is denoted mu(i)
and is defined as:

mu(i) = max{u(i, Tq)}∀Tq∈D (11)

Example 13 The maximum utility of item (B) in Table 1 is calculated as
max{10, 8, 4} = 10

Definition 15 The maximum estimate on the utility of an itemset X is denoted
maxEst(X) and is defined as:

maxEst(X) = sup(X)×
∑

ik∈X

mu(ik) (12)

Example 14 The maximum estimate of itemset (B) in Table 1 is calculated as 3 ×
10 = 30.

As the maximum utility of an item cannot be less than any of its local
utilities, it follows that the maximum estimate is a definite upper bound on
the utility of an itemset (maxEst(X) ≥ u(X)). The developed model utilizes
maximum estimates to determine whether a newly generated particle should
be evaluated. If the estimate is less than the minimum utility threshold and
the fitness of the corresponding pBest, then the particle can be safely ignored
as it cannot improve pBest/gBest or be a CHUI. For instance, the maximum
estimate of itemset (B) in Table 1 is 30. If the minimum utility threshold and
fitness of pBest are at least 31, then the algorithm bypasses the evaluation
of particles containing itemset (B). The purpose of this strategy is to assess
the particle quality before performing the fitness calculation. This way, the
algorithm can save time by omitting costly database scans for unpromising
candidates, as it is unnecessary to identify their actual utility. Note that the
maximum utilities are stored to avoid calculating them repeatedly for each
estimate. In addition, the model retrieves the support count during the parti-
cle’s PEV-check at no additional computation cost. As a result, each estimate
is calculated in linear time on the size of the itemset.

4.3.2 Average estimates

The maximum estimates can often greatly exaggerate the utility of itemsets.
To further reduce the number of necessary fitness evaluations, we employ a
strategy called average estimates.

Definition 16 The average utility of an item i in a database D is denoted au(i)
and is defined as:

au(i) =

⌈∑
Tq∈D u(i, Tq)

sup(i)

⌉
(13)
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Example 15 The average utility of item B in Table 1 is calculated as
⌈
10+8+4

3

⌉
= 8.

Definition 17 The average estimate on the utility of an itemset X is denoted
avgEst(X) and is defined as:

avgEst(X) = sup(X)×
∑

ik∈X

au(ik) + σ, (14)

where the deviation σ is calculated as:

σ =

⌈∑
ik∈1-HTWUI mu(ik)− au(ik)

|1-HTWUI|

⌉
(15)

Example 16 Assuming all items in Table 1 are 1-HTWUI, the deviation is calculated

as
⌈
(8−6)+(10−8)+(6−3)+(6−6)+(6−4)+(5−5)+(5−4)

7

⌉
= 2. Thus, the average estimate

of itemset (B) is calculated as 3 × (8 + 2) = 30.

Contrary to maximum estimates, average estimates cannot provide a defi-
nite upper bound on the utility of an itemset. A solution can thus be missed
if the estimate is completely trusted and the fitness evaluation is mistakenly
skipped. In order to account for this uncertainty, the mean deviation between
all maximum- and average utilities is applied to increase the overall estimates.
This may seem counter-intuitive as the difference between maximum- and
average estimates diminish. However, the deviation can be adjusted during
runtime. Each time the algorithm calculates the fitness of a particle, it com-
pares the estimate to the actual fitness. If the estimate is less than the fitness,
it is considered an underestimate; otherwise, it is an overestimate. When the
sample size is sufficiently large, the algorithm measures the ratio of underesti-
mates to overestimates and updates the deviation according to the following
formula:

σ =

{
σ − 1, if σ > 0 and u

o < 0.01
σ, otherwise,

(16)

where the number of over- and underestimates are denoted as o and u,
respectively.

Example 17 Assuming u = 0 and o = 1,000. The deviation of Table 1 is updated as
2 - 1 = 1, and the average estimate of itemset (B) becomes 3 × (8 + 1) = 27. For
comparison, the actual utility of itemset (B) is 24.

This way, average estimates can adapt to the dataset and become more
effective than maximum estimates as the algorithm progresses. Although this
works well, some CHUIs can still be missed by incorrectly omitting their cor-
responding particles’ fitness calculation. In order to promote model accuracy
rather than speed, average estimates are only used when the measured devi-
ation is less than 0.01% of the given minimum utility threshold. The type of
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estimate is determined before the mining process starts and does not change
during runtime.

4.4 Particle update with ExploredSet

At each iteration of the algorithm, the population is updated with the influence
of the previous best particles. Two types of historic particles are refer-
enced—the personal fittest offspring of each particle (pBest) and the all-time
fittest particle of the entire population (gBest). The update procedure starts
by evolving the particles towards pBest and gBest by using the concept of bit
difference [4], defined below.

Definition 18 The bit difference of two particles pi and pj , denotedBitDiff(pi, pj),
is defined as the bitwise-XOR operation on the particle’s encoding vectors.

Example 18 Let pi = {1,1,1,0,0} and pj = {1,0,1,0,1}. The bit difference of pi and
pj is then {0,1,0,0,1}.

In other words, bit difference creates a bit vector of non-identical bits
between two encoding vectors. If the vector’s k-th position is set to 1, then
item k is present in one of the particles while absent in the other. During the
update procedure, bit difference is used to compare a particle with pBest and
gBest, and the non-identical bits determine the items that can change in the
particle. Consequently, the similarity between the particle and pBest/gBest
increases.

However, if pBest and gBest remain unchanged over many iterations, the
algorithm tends to create many identical candidates and converge to local
optima. We alleviate this by performing a random modification to each particle
after the update towards pBest and gBest is complete. The strategy utilizes
a hash set containing all candidates the model has generated during runtime,
called ExploredSet. A particle p is explored if p ∈ ExploredSet; otherwise p
is unexplored. If an explored particle is created after updating towards pBest
and gBest, the algorithm either includes or excludes a random item in the
particle. This way, the population diversity increases while we avoid modifying
unexplored particles to redundant candidates previously evaluated. As a result,
more unique candidates are generated, and the algorithm is better able to
evade local optima. Formally, the total number of bits bi to change during the
update of a particle pi is expressed as:

bi = bi1 + bi2 + bi3, (17)

where bi1, bi2, and bi3 are calculated as:

bi1 =
⌊
r1 ×

∑
BitDiff(pi, pBesti)

⌋
(18)
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bi2 =
⌊
r2 ×

∑
BitDiff(pi, gBest)

⌋
(19)

bi3 =

{
1, if pi ∈ ExploredSet
0, otherwise

(20)

where r1 and r2 are random numbers between [0,1]. Note that during update,
bi3 is calculated after bi1 + bi2 changes are made to the particle. An example
of the update procedure is given in Section 5.

4.5 Proposed CHUI-PSO

CHUI-PSO takes as input a transactional database, a minimum utility thresh-
old, a population size, and a number of iterations. In Algorithm 1, the model
starts by calling the initialization procedure of Algorithm 2, where the database
is pruned, and the initial population of particles is generated and evaluated
(line 1). As this is the first population, pBest and ExploredSet are copies of
the current population, while the fittest particle is selected as gBest (lines 2
and 3). To determine the appropriate estimate type for the dataset, the devi-
ation σ is calculated (line 4). Average estimates are only used if σ is less than
0.01% of the given minimum utility threshold. Subsequently, the main loop of
the model is initiated in which the population is updated and evaluated iter
times (lines 5-25). The process begins by updating a particle before the PEV-
check is applied to ensure it appears in one or more transactions (lines 7 and 8).
The new particle is then compared to the set of explored particles to avoid fur-
ther evaluation of redundant candidates (line 9). If the particle is unexplored,
its fitness is estimated using either average- or maximum estimates, depend-
ing on the size of the initial deviation (lines 10 and 11). The exact fitness is
only determined if the estimate is greater than the minimum utility thresh-
old and fitness of pBest (lines 12 and 13). This way, costly database scans are
avoided for particles that cannot improve pBest/gBest or be a CHUI. If the
fitness is calculated, Algorithm 3 verifies the closure of the particle, and any
CHUI is appended to the solution set (lines 14-16). pBest and gBest are then
updated accordingly (lines 17 and 18) before the particle is marked as explored
(line 20). After the entire population is updated and evaluated, gBest is re-
selected to one of the discovered CHUIs, using either roulette wheel selection
as described in [4] or random selection (line 23). The algorithm introduces
random selection if no new CHUIs have been discovered in 50 iterations to
induce more population diversity during convergence. Before the next iteration
begins, the deviation is updated according to the number of over- and under-
estimates (line 24). This step is only relevant if average estimates are used and
will not change the estimate type for the subsequent iterations. Finally, when
all iterations are complete, the algorithm returns the set of discovered CHUIs
and terminates (line 26). An overview of the complete model is shown in the
flowchart in Fig. 1.

Algorithm 2 describes the population initialization procedure in which
pop size particles are constructed. First, the original database is scanned with
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Algorithm 1 Proposed CHUI-PSO Algorithm

Input: D: a transactional database, δ: the minimum utility threshold,
pop size: the population size, iter: the number of iterations.

Output: CHUIS: a set of closed high-utility itemsets.
1: Pop,CHUIS ← init(D, pop size, δ);
2: pBest, ExploredSet ← Pop;
3: gBest← fittest particle in Pop;
4: calculate deviation σ using Eq. (15);
5: for i = 1 to iter do
6: for k = 1 to pop size do
7: change bi items in Popk using Eq. (17);
8: PEV-check Popk;
9: if Popk /∈ ExploredSet then

10: X ← the itemset in Popk;
11: est← estimate the utility of X using Eq. (12) or (14);
12: if est ≥ δ and est ≥ fitness(pBestk) then
13: fit← calculate fitness of Popk using Eq. (10);
14: if fit ≥ δ and closed(Popk) then
15: CHUIS ← CHUIS ∪ Popk
16: end if
17: pBestk ← fittest of pBestk and Popk;
18: gBest← fittest of gBest and Popk;
19: end if
20: ExploredSet← ExploredSet ∪ Popk;
21: end if
22: end for
23: update gBest with roulette wheel selection or random selection;
24: update deviation σ using Eq. (16);
25: end for
26: return CHUIS;

ETP to reduce the search space (line 1). The remaining items in D are the
1-HTWUI and determine the encoding vector size of each particle. The popu-
lation and solution set are then initialized to empty (line 2) before the particles
are iteratively created in the main loop of the procedure (lines 3-12). At each
iteration, a random number r between 1 and the longest transaction length in
D is generated (line 4). The particle is then created with r bits set to 1 in its
encoding vector, which means it contains an r-itemset. The items are selected
using roulette wheel selection, where a large TWU value increases the proba-
bility of selection. The PEV-check is then applied to avoid irrelevant itemsets,
and the fitness of the particle is calculated (lines 6 and 7). The fitness and algo-
rithm 3 are then used to determine any CHUIs before the particle is inserted
into the population (lines 8-11). After each particle is created, the population
and potential CHUIs are returned, and the procedure terminates (line 13).
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Algorithm 2 Population initialization, init()

Input: D: a transactional database, pop size: the population size, δ: the
minimum utility threshold.

Output: Pop: the first population, CHUIS: closed high-utility itemsets.
1: D ← prune D with ETP
2: Pop,CHUIS ← ∅;
3: for i = 1 to pop size do
4: generate random number r;
5: create pi with r bits set to 1;
6: PEV-check pi;
7: fit← calculate fitness of pi using Eq. (10);
8: if fit ≥ δ and closed(pi) then
9: CHUIS ← CHUIS ∪ pi;

10: end if
11: Popi ← pi;
12: end for
13: Return Pop,CHUIS;

The closure check in Algorithm 3 describes the process which determines
the closure of a particle. The loop (lines 2-6) checks whether any 1-HTWUI
that does not appear in itemset X of the particle can be appended to X and
attain the same support value. This is done by comparing the bitset cover of
X and X ∪ ik (line 3). If the two vectors are equal, then the superset occurs
in the same transactions, and the particle is not closed by definition 11 (line
4). The closure is verified if no such superset exists, and the procedure returns
True (line 7).

Algorithm 3 Closure check, closed()

Input: P : the particle
Output: True: P is closed, False: P is not closed
1: X ← the itemset in P ;
2: for each ik ∈ 1-HTWUI , ik /∈ X do
3: if Bit(X ∪ ik) == Bit(X) then
4: Return False;
5: end if
6: end for
7: Return True;

5 An illustrated example

In this section, the database in Table 1 is used as an example to illustrate the
flow of the developed algorithm. The minimum utility threshold and popula-
tion size are set to 35 and 5, respectively. Initially, the database is scanned with
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Fig. 1 Flowchart of CHUI-PSO

ETP to remove each 1-LTWUI. The process goes as follows: First, the TWU
of each item is calculated by searching the database once {A:33, B:56, C:89,
D:45, E:89, F :25, G:36}. Thus, items A and F are 1-LTWUI and are removed
from the transactions in which they occur. As a result, the transaction utilities
change and are updated to {T1:20, T2:20, T3:4, T4:17, T5:11}, and the TWU of
the remaining items are recalculated to {B:51, C:72, D:40, E:72, G:28}. This
time, item G is also classified as 1-LTWUI and is deleted from the database.
The transaction utilities are then updated {T1:20, T2:20, T3:4, T4:12, T5:9},
and the TWUs are recalculated {B:49, C:65, D:40, E:65}. None of these items
are 1-LTWUIs, and the final set of 1-HTWUIs are thus {B, C, D, E}.

The maximum utilities of the 1-HTWUI are {B:10, C:6, D:6, E:6}, the
average utilities are {B:8, C:3,D:6, E:4}, and the deviation is 2. Consequently,
maximum estimates are used throughout this example. The initial particles of
the population are then initialized, with the size of the encoding vector set to
the number of discovered 1-HTWUIs, i.e., 4. Assume the algorithm creates the
particles shown in Table 3.
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Table 3 The initial particles in the population

Particle B C D E
P1 0 0 0 1
P2 0 1 0 1
P3 1 0 0 1
P4 1 0 1 1
P5 0 1 1 1

As this is the first population, the fitness of each particle is calculated
{P1:18, P2:31, P3:31, P4:36, P5:16}, and pBest is a copy of the population.
Based on the fitness values, particle P4 is the fittest and is selected as gBest.
The itemset (BDE) of P4 is also a HUI. However, it is not a CHUI, as the
support of (BDE) is equal to the support of the superset (BCDE). Each
particle is then appended to the set of explored solutions before the update
procedure begins. To illustrate, let us examine the update of particle P1 with
the random numbers r1 and r2 generated to 0.9 and 0.5, respectively. As
BitDiff(P1, pBest1) = {0, 0, 0, 0}, b11 is ⌊0.9× 0⌋ = 0. Therefore, no bits
in P1 are changed. BitDiff(P1, gBest) = {1, 0, 1, 0} and b12 = ⌊0.5× 2⌋ =
1. This means that one of the non-identical bits between P1 and gBest must
be flipped in P1, either the bit representing item B or D. Assuming item B
is randomly selected, P1 becomes {1, 0, 0, 1}. This encoding vector is already
explored as it was evaluated by P3 in the last population. As a result, b13 is
calculated to 1 and an additional random bit in P1 is flipped. However, all
bits in P1 are now eligible to change. Assuming the bit representing item C is
selected, P1 becomes {1, 1, 0, 1}. The update is then complete as this encoding
vector is a PEV. Similarly, the other particles are updated: P2:{0, 1, 1, 1},
P3:{1, 0, 1, 1}, P4:{0, 0, 1, 1} and P5:{0, 0, 1, 0}.

Following the update procedure, the maximum estimate of each particle is
calculated {P1:66, P2:36, P3:44, P4:24, P5:12}. As a result, the fitness evalu-
ation of P4 and P5 are neglected as their estimates are below the minimum
utility threshold and the fitness of pBest4/pBest5. In addition, P3 is ignored
since it was explored in the last population. The fitness of P1 and P2 is calcu-
lated to 37 and 22, respectively. Consequently, pBest1 and gBest are updated
to P1, while pBest2 remains unchanged. The itemset (BCE) of P1 is also a
CHUI and is appended to the solution set. Finally, each particle in the current
population is marked as explored, and the next iteration begins. When the
algorithm terminates, the discovered CHUIs with their utilities are {(BCE):37,
(BCDE):40}.

6 Experimental evaluation

This section compares the performance of the proposed CHUI-PSO against
three existing models: the exact algorithms CLS-Miner and EFIM-Closed, and
the heuristic EC-based CHUI-AC. In addition, to evaluate the impact of the
ETP strategy, a version of CHUI-PSO using the traditional TWU model is
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tested, called CHUI-PSO(np). The authors provided the source code of CLS-
Miner and CHUI-AC, while we downloaded EFIM-Closed from the SPMF data
mining library [24]. The code for CHUI-PSO is available at GitHub1. All the
compared algorithms are written in Java and were executed using JDK 17.0.1,
with the Java heap size set to 2 GB. The experiments were performed on a
64-bit Windows 10 computer with a Ryzen 5 5600x CPU, a Radeon RX 5700
GPU, and 16 GB 3200 MHz CL 16 RAM. We evaluated the performance of
each algorithm using six datasets downloaded from SPMF. The datasets can
be classified as dense or sparse based on the number of items and average
transaction length. Dense databases generally contain fewer items but longer
transactions compared to sparse. We selected a mixture of both types to illus-
trate the performance in various scenarios. Table 4 shows the datasets and
their characteristics.

Table 4 Database characteristics

Dataset # items # transactions Avg. trans. length Type
Accidents 468 340,183 33.8 Dense
Chainstore 46,086 1,112,949 7.23 Sparse
Chess 75 3,196 37 Dense
Connect 129 67,557 43 Dense
Retail 16,470 88,162 10.3 Sparse
Kosarak 41,270 990,002 8.1 Sparse

In the experiments, the number of iterations and population size is set
to 10,000 and 20 for all the heuristic algorithms. CHUI-AC has defined a
termination criterion that stops the execution prematurely if it discovers no
CHUIs during an iteration. This logic is disabled for a clearer comparison. All
other algorithm parameters are set as suggested by the authors. Note that in
each figure, the minimum utility threshold is expressed as a percentage of the
total utility in the database (Def. 7).

6.1 Runtime

First, we evaluate the runtimes of the algorithms on five different minimum
utility thresholds on each dataset. Fig. 2 shows the results.

The experiments in Fig. 2 demonstrate that the proposed CHUI-PSO is
significantly faster than the heuristic CHUI-AC on every dataset tested. On
Accidents and Kosarak, CHUI-AC finished in roughly 3 hours on all minimum
utility thresholds, while our model used about 10 seconds. The smallest dif-
ference was observed in Chess, where CHUI-AC was at best 73 times slower
than CHUI-PSO. The proposed method also took less time than CLS-Miner
and EFIM-Closed on Accidents, Kosarak, and Retail, while it was the fastest
for certain minimum utility thresholds on Connect and Chainstore. Chess is
the only dataset where our algorithm could not achieve the best runtime at
any minimum utility threshold; however, the difference to EFIM-Closed was

1https://github.com/Simencar/CHUI-PSO
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Fig. 2 Execution times of the compared algorithms.

at most 0.3 seconds. This dataset is particularly dense, which naturally leads
to many transaction similarities, suiting EFIM’s transaction merging strat-
egy. It should also be noted that our model always completes the specified
number of iterations, even if it discovers all available patterns before the ter-
mination criterion. This primarily affects the runtime on the largest minimum
utility threshold values, as the model typically uncovers the CHUIs in a few
iterations. Nonetheless, CHUI-PSO provided comparable execution times to
EFIM-Closed in Chess and Connect, while the other datasets showed a clear
performance advantage for our model. Compared to CLS-Miner, the proposed
algorithm demonstrated much better results in the dense datasets and was at
most 292 times faster. CHUI-PSO was also generally faster in sparse scenar-
ios, but a slight advantage for CLS-miner can be seen on the higher minimum
utility thresholds on Chainstore.

Overall, the proposed method was the fastest of the compared algorithms.
CHUI-PSO used a total of 4 minutes and 16 seconds to complete all the tests
shown in Fig. 2, while EFIM-Closed, CLS-Miner, and CHUI-AC took 31 min-
utes, 8 hours, and 41 hours, respectively. The efficiency of CLS-Miner and
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EFIM-Closed strongly depended on the database type, while our model per-
formed consistently well in dense and sparse scenarios. The main contributors
to the speed of CHUI-PSO are the strategies for explored particles and fitness
estimates, which allows the model to omit many costly and unnecessary fitness
calculations. Moreover, the results show that ETP can drastically improve the
algorithm’s execution time. The runtime variability between CHUI-PSO and
CHUI-PSO(np) was mostly minor, but the Kosarak results reveal a substantial
difference caused by ETP pruning more items. As the number of candidates
decreases, the size of the database becomes smaller. As a result, the algo-
rithm can perform faster database scans to determine the fitness of particles.
In addition, the probability of generating an explored particle grows quicker
when there are fewer candidates, and CHUI-PSO tends to skip more particle
evaluations than CHUI-PSO(np).

Nonetheless, CHUI-PSO and CHUI-PSO(np) generally performed similarly
in terms of runtime. ETP executes more database scans than the TWU model
to conduct the pruning, which requires additional time. Thus, the difference
in speed is determined by the overall search space reduction compared to the
pruning duration.

6.2 Number of discovered CHUIs

This section compares the number of discovered CHUIs between CHUI-PSO,
PSO-CHUI(np), and CHUI-AC. EFIM-Closed and CLS-Miner are exact algo-
rithms that find all available patterns. Therefore, we only included results for
CLS-Miner as a reference to the maximum number of CHUIs. The results are
shown in Fig. 3.

Fig. 3 displays that the proposed CHUI-PSO outperformed CHUI-AC in
every experiment regarding the number of discovered CHUIs after 10,000 iter-
ations. The developed algorithm found all available patterns on Accidents,
Connect, and Kosarak, while it missed a small portion of the solutions on the
other datasets. The worst result for CHUI-PSO is seen in Retail, where the
accuracy was 94% for the lowest minimum utility threshold. In comparison,
CHUI-AC could never discover all the solutions and performed the poorest
on Connect, where it identified as low as 9% of the CHUIs. Altogether, the
average accuracy of CHUI-PSO and CHUI-AC was 98.8% and 48.6%, respec-
tively, demonstrating that our model can find significantly more itemsets while
providing satisfactory results in both dense and sparse scenarios.

Several factors influence the accuracy of the PSO model. The changes to the
particle update phase enable the algorithm to explore more of the search space
while preventing wasted evaluations of redundant candidates. In addition, ran-
dom selection for gBest can induce population diversity in scenarios where
gBest rarely changes, reducing the chance of convergence to local optima. The
results also suggest that ETP can increase the model’s performance. CHUI-
PSO found more CHUIs than CHUI-PSO(np) on Chainstore, Chess, Retail,
and Kosarak. Most notably, CHUI-PSO(np) was only able to discover CHUIs
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Fig. 3 Number of discovered CHUIs of the compared algorithms.

on Kosarak when the minimum utility threshold was set to 2.8%, while CHUI-
PSO revealed all available patterns at all thresholds. This indicates that an
additional reduction of the solution space can improve the ability to uncover
CHUIs.

6.3 Number of candidates

This section compares the number of candidates between CHUI-PSO with the
proposed ETP strategy and CHUI-PSO(np) with the traditional TWU model.
The candidates are measured as the number of 1-HTWUIs discovered during
the pruning phase. Therefore, few candidates are preferred since it reflects the
algorithm’s search space. We performed the tests on the same datasets and
minimum utility thresholds as in the previous experiments. The results are
shown in Fig. 4.

Fig. 4 reveals that the designed ETP strategy of CHUI-PSO consistently
removed more unpromising candidates compared to the TWU model of CHUI-
PSO(np). The most noteworthy differences are observed in Chainstore, Retail,
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Fig. 4 Number of candidates in CHUI-PSO and CHUI-PSO(np)

and Kosarak, implying that ETP is generally the most effective when the
database is sparse. However, the new pruning strategy also provided addi-
tional search space reductions for the dense datasets, especially Accidents. The
results on Kosarak also reveal the reason for the large disparity in runtime
and accuracy between CHUI-PSO and CHUI-PSO(np). When the minimum
utility threshold is 1.4%, CHUI-PSO and CHUI-PSO(np) discovered 40 and
1,409 1-HTWUI, respectively. As a result, CHUI-PSO(np) considers an addi-
tional 1,369 items during candidate generation that can never be part of a
CHUI, reducing the probability of creating the correct solutions. In addition,
the items must be maintained in the database, increasing the time required
for fitness calculations.

Although the developed strategy can prune more candidates than the
traditional TWU model, CHUI-PSO(np) provides comparable accuracy to
CHUI-PSO in most datasets, as shown in Fig. 2. This outcome is due to the
PSO algorithm naturally learning to disregard unpromising items, which likely
are the additional items pruned with ETP. Therefore, ETP may have a larger
impact on models not based on evolutionary principles.
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Fig. 5 Convergence rate of the compared EC based algorithms.

6.4 Convergence

Finally, we compare the convergence rate of CHUI-PSO, CHUI-PSO(np), and
CHUI-AC with a fixed minimum utility threshold on each dataset. CHUI-
Miner and EFIM-Closed are excluded as they are not iterative approaches.
Note that all algorithms completed 10,000 iterations, but the scale of the x -
axis (iterations) varies depending on the iteration number the last CHUI was
discovered. Fig. 5 shows the results.

According to Fig. 5, CHUI-PSO achieved the fastest convergence on all six
datasets. The results for CHUI-AC display that the algorithm often fell into
local optima, causing it to miss many relevant solutions. In addition, it used
more iterations than CHUI-PSO to reach the state of convergence. Overall,
the largest differences between CHUI-PSO and CHUI-AC are observed on
the dense datasets, where our model used at most 238 iterations to find all
available CHUIs. In comparison, CHUI-AC discovered new patterns after 7000
iterations.

Comparing the PSO versions, CHUI-PSO and CHUI-PSO(np) performed
almost identically on the dense datasets, but an advantage for CHUI-PSO
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is seen on the sparse. As shown in Fig. 4, the designed ETP strategy is
most effective in Chainstore, Retail, and Kosarak. Thus, CHUI-PSO avoids
more unpromising candidates on these databases, increasing the probability of
obtaining the solutions in fewer iterations. Altogether, the convergence rate of
the proposed CHUI-PSO allowed the model to comfortably discover the CHUIs
before reaching the termination criterion in these experiments. This suggests
that the iterations can be reduced to improve the algorithm’s runtime while
maintaining accuracy.

7 Conclusion

This paper proposed CHUI-AC, a heuristic particle swarm optimization (PSO)
model for closed high-utility itemset mining (CHUIM). To our knowledge, this
is the first work on PSO in CHUIM. We also introduced several new strategies
to address the performance limitations of similar heuristics in utility mining. In
the proposed approach, unnecessary and costly fitness calculations are avoided
by estimating itemset utilities and utilizing a hash set containing explored par-
ticles. In addition, the explored particles are employed during particle updates
to increase population diversity while alleviating the number of redundant can-
didates. The algorithm also uses a new pruning strategy (ETP) to improve its
mining capabilities through search space reduction.

The experimental results demonstrated that CHUI-PSO was overall faster
than EFIM-Closed, CLS-Miner, and the heuristic CHUI-AC. CHUI-PSO took
roughly 4 minutes to complete 30 tests in total, while EFIM-Closed, CLS-
Miner, and CHUI-AC used 31 minutes, 8 hours, and 41 hours, respectively.
The developed model provided an average accuracy of 98.8% compared to
48.6% with CHUI-AC, while its convergence rate was also much quicker. In
addition, search space comparisons proved that ETP could significantly reduce
the number of candidates compared to the traditional TWU model.

There are several opportunities for future work based on this paper. We
plan to investigate the impact of the proposed framework on other EC-based
utility mining algorithms, such as genetic algorithm, bat algorithm, ant colony
optimization, or artificial fish swarm algorithm. We will also explore the possi-
bility of developing a more efficient and effective pruning strategy by improving
the overall runtime of ETP and utilizing the new utility upper bounds defined
by the fitness estimates.
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ABSTRACT
Top-k high-utility itemset mining (top-k HUIM) is a data mining procedure used
to identify the most valuable patterns within transactional data. Although many
algorithms are proposed for this purpose, they require substantial execution time
when the search space is vast. For this reason, several meta-heuristic models have
been applied in similar utilitymining problems, particularly evolutionary computation
(EC). These algorithms are beneficial as they can find optimal solutions without
exploring the search space exhaustively. However, there are currently no evolutionary
heuristics available for top-k HUIM. This paper addresses this issue by proposing an
EC-based particle swarm optimization model for top-k HUIM, which we call TKU-
PSO. In addition, we have developed several strategies to relieve the computational
complexity throughout the algorithm. First, redundant and unnecessary candidate
evaluations are avoided by maintaining explored solutions and estimating itemset
utilities. Second, unpromising items are pruned during execution based on a
threshold-raising concept we call minimum solution fitness. Finally, the traditional
population initialization approach is revised to improve the model’s ability to find
optimal solutions in huge search spaces. Experimental results show that TKU-PSO is
superior to the state-of-the-art algorithms regarding runtime, accuracy, and memory
usage.
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I. Introduction

Data mining is a popular research field focused on
extracting interesting patterns from massive datasets.
These patterns are beneficial as they can help us reveal and
comprehend relationships within data. Several distinctive
data mining approaches exist, each specialized in locating a
specific type of pattern.

Frequent itemset mining (FIM) [1] is a subfield within
data mining for finding item combinations (itemsets) that
occur no less than a minimum support threshold, which
the user defines. In other words, FIM returns the most
prevalent patterns in the data. There is a wide variety of
applications for FIM, such as finding co-occurring words in
a text or products often bought together in a store.
However, concerning customer purchases, a business is
typically interested in the patterns that contribute the most
profit, and these itemsets are not necessarily the most
frequent.

High-utility itemset mining (HUIM) [2] is an extension
of FIM for discovering the most valuable patterns within
data. The value of an itemset is quantified by a utility,
representing anything the user characterizes as important.
HUIM algorithms aim to discover all itemsets with utility
over a user-specified minimum utility threshold. In
transactional data, the utility value typically constitutes the
total revenue generated by the itemset, allowing HUIM to

* Corresponding authors:
E-mail address: simencarstensen@gmail.com (Simen Carstensen),
jerrylin@ieee.org (Jerry Chun-Wei Lin).

find profitable itemsets rather than the frequent patterns
produced by FIM.

Although there has been extensive research on HUIM,
the algorithms tend to be unintuitive in practice. The
required minimum utility threshold is challenging to set
properly without knowing specific data characteristics.
Typically, the user has to test multiple threshold values to
find a reasonable number of patterns, which may not be
feasible depending on the runtime of the model. Top-k
HUIM [3] is an approach aimed at solving this by
retrieving HUIs without setting a minimum utility
threshold. Instead, the user provides an input parameter k,
which represents a desired number of HUIs, and the
algorithm’s objective is to discover the k HUIs with the
largest utility in the database. These models are more
intuitive because it is easier to set k appropriately than the
minimum utility threshold. However, top-k HUIM is
computationally demanding compared to traditional
HUIM because the minimum utility threshold is used to
perform search space pruning. Generally, the larger the
minimum utility threshold is, the fewer candidates the
algorithm has to consider. Therefore, the initial search
space in top-k HUIM is equivalent to HUIM with the
minimum utility threshold set to zero.

Evolutionary computation (EC) [4] is a collection of
meta-heuristic models utilizing biological principles to
explore search spaces efficiently. The purpose of EC is to
find approximate solutions to a problem within a limited
number of iterations. One such method applied in various
utility mining problems is particle swarm optimization
(PSO) [5]. Like other EC models, PSO iteratively optimizes
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a problem by evolving a set of candidate solutions with
regard to a given measure of quality. New candidates are
continuously created by inheriting traits from the best
solutions in previous generations. This allows the
algorithm to find optimal values without exploring the
search space exhaustively.

This paper proposes a meta-heuristic model based on
PSO to find the top-k HUIs, called TKU-PSO. To our
knowledge, this is the first work on EC in top-k HUIM. The
main contributions of the paper are listed below:
• We formulate the problem of top-k HUIM from the

perspective of evolutionary computation and particle
swarm optimization, in which candidate quality is
evaluated based on a utility fitness function.

• We introduce several new strategies to improve the
general performance of heuristics in utility mining. First,
to enhance the model’s ability to find optimal solutions
in large search spaces, the best 1-itemsets are utilized for
better population initialization. Second, redundant and
unnecessary particle evaluations are avoided through
fitness estimation and maintaining previously explored
solutions. Finally, unpromising candidates are pruned
with a threshold-raising concept called minimum
solution fitness, which can reduce the search space
considerably and allow faster convergence.

• We conduct a series of experiments on real- and
synthetic data to evaluate the performance of the
designed model against existing top-k HUIM methods.
The results show that TKU-PSO outperforms the current
state-of-the-art approaches in all tested datasets.
The remainder of this paper is organized as follows:

Section II reviews related works. Section III presents the
preliminaries and problem statement. Section IV
introduces the proposed strategies and algorithm. Section
V illustrates the model with an example. Section VI
discusses the results of the conducted experiments. Section
VII gives a conclusion of the presented work.

II. Related work
This section reviews work related to heuristic and

non-heuristic models in top-k HUIM and traditional HUIM.

A. Non-heuristic top-k HUIM
Several approaches have been proposed to overcome the

difficulty of setting an appropriate minimum utility
threshold in traditional HUIM. Wu et al. [3] were the first
to introduce top-k HUIM with the TKU algorithm. TKU is
a two-phase model that relies on five threshold-raising
strategies to reduce the number of candidates. The first
phase of the algorithm maps potential top-k HUIs
(PKHUIs) to a tree-based structure (UP-Tree) by scanning
the input data twice. The second phase then determines the
actual top-k HUIs by traversing the tree and evaluating the
utility of the PKHUIs. To improve the performance of TKU,
Ryang and Yun developed REPT [6]. REPT builds upon the
same two-phase concept but applies more effective pruning
strategies and thus generates fewer PKHUIs. Although the
algorithm is superior to TKU, it requires an additional
input parameter N , which can be challenging to select.

Due to the two-phase paradigm, TKO and REPT are
subject to computationally expensive database scans during
the evaluation phase of the PKHUIs. For this reason, recent
methods use a more efficient one-phase strategy. TKO [7]
employs a utility list data structure to hold itemset

information instead of the database. The model scans the
database twice to construct the utility list of 1-itemsets
before it reveals the top-k HUIs without producing any
candidates. As the utility list contains the details needed to
evaluate itemset utilities, the model avoids the complexity
associated with the second phase in the two-phase
approach.

Duong et al. [8] introduced kHMC, which also uses the
utility list strategy. In addition, kHMC applies three
threshold-raising methods to reduce candidates and uses
estimated utility co-occurrence pruning to limit the number
of necessary join operations on utility lists. The model was
compared to TKO and REPT and was overall more efficient.

TKEH [9] is another one-phase approach that utilizes
transaction merging and database projection techniques to
reduce the cost of database scans. It employs three
threshold-raising strategies and two pruning strategies to
evade unpromising candidates. Moreover, the utility list is
exchanged with a utility array structure to calculate itemset
utilities in linear time. The model performs particularly
well in dense databases as transaction merging is most
effective in datasets with similar transactions.

To improve the discovery of extremely long patterns, Liu
et al. [10] developed TONUP. TONUP is a utility list-based,
opportunistic pattern growth approach that uses five
strategies for maintaining shortlisted patterns. The model
grows the patterns as prefix extensions, shortlists patterns
with the top k utilities, and prunes the search space with
novel utility upper bounds. Experiments proved the model
to be significantly faster than TKU and TKO, as well as
several traditional HUIM algorithms tuned with an optimal
minimum utility threshold.

THUI [11] is an approach that applies a leaf itemset
utility structure to maintain itemset information and a
novel utility lower bound estimation method to improve the
effectiveness of threshold-raising and pruning. The results
showed the model to be one to three orders of magnitude
faster than kHMC and TKO, especially on dense datasets.

More recently, PTM [12] was proposed to deal with top-
k HUIM on massive data using a partitioning strategy, and
Ashraf et al. [13] introduced TKN for mining on negative or
positive item utilities.

B. Heuristic top-k HUIM and traditional HUIM
Although the algorithms mentioned in the previous

section can discover the exact top-k HUIs, they cannot
efficiently deal with huge search spaces, regardless if the
approach is in the one-phase or two-phase paradigm. For
this reason, several heuristic algorithms have been
proposed to tackle the problem of HUIM, particularly
evolutionary computation (EC). These methods can find
optimal solutions to large search problems without
exploring the entire search space, which can be crucial for
swift decision-making.

Currently, TKU-CE+ [14] is the only heuristic model
available for top-k HUIM. However, it does not belong to
the EC domain. It is an iterative approach based on
cross-entropy that generates random samples and updates
parameters to produce better samples in subsequent
iterations. The authors also proposed a pruning strategy
based on a critical utility value (CUV). During the
initialization process, the model calculates 1-itemsets
utilities and sets CUV to the k-th largest utility.
Unpromising candidates are then pruned based on the
transaction-weighted downward closure property (TWU
model) introduced in the Two-Phase [15] algorithm for
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HUIM. In addition, they used a sample refinement strategy
and smoothing mutation to increase mining performance
and sample diversity. As there are no other heuristics for
top-k HUIM, the rest of this section outlines the most
relevant works introduced for traditional HUIM. All of
these approaches utilize the basic TWU model for search
space pruning.

Particle swarm optimization (PSO) is an
evolutionary-based procedure extensively applied in
HUIM. PSO maintains a population of particles that
represent potential solutions. Each particle is assigned a
fitness value and a velocity vector. The fitness determines
the quality of the solution, while the velocity decides how
the particle evolves. At each iteration of the algorithm, the
velocity is updated based on two historical particles—the
personal fittest offspring of the particle (pBest) and the
all-time fittest particle in the entire population (gBest).
After the velocity is acquired, the particle is updated and
evaluated, and pBest and gBest are redetermined. This way,
the population continuously evolves towards fitter
solutions. Lin et al. introduced two PSO models with
HUIM-BPSO+ [16] and HUIM-BPSO− [17]. The difference
between the approaches is that HUIM-BPSO+ uses an
OR-NOR tree to produce valid item combinations and thus
avoids evaluating irrelevant solutions. Song and
Huang [18] used a similar approach in Bio-HUIF-PSO
where a promising encoding vector check (PEV-check) is
applied to prune the candidates that do not appear in any
transaction. In addition, they improved population
diversity by using roulette wheel selection to update gBest
among the discovered HUIs. The velocity function was also
replaced with a more effective bit difference strategy. More
recently, Fang et al. [19] introduced HUIM-IBPSO, which
uses several adjustment strategies to escape local optima
and improve the overall convergence and accuracy.

The genetic algorithm (GA) is also a biologically inspired
technique in which a population of chromosomes evolves
towards the optimal values using selection, crossover, and
mutation operations. Kannimuthu and Premalatha [20]
introduced two GA models for HUIM. Their distinction is
whether a minimum utility threshold is required or not.
However, both methods struggle with premature
convergence to local optima. To improve this, Zhang et al.
introduced HUIM-IGA [21], which employs neighborhood
exploration, population diversity maintenance, individual
repair, and elite strategy for better search space exploration.
Another GA model was proposed with Bio-HUIF-GA [18],
which uses the strategies of Bio-HUIF-PSO to avoid
irrelevant candidates and boost performance.

Several other types of EC have also been proposed for
HUIM. Wu et al. [22] used ant colony optimization to map
the search space to a routing graph and explored it using
pheromone rules. Song et al. have developed approaches
with artificial bee colony algorithm [23], bat
algorithm [18], and artificial fish swarm algorithm [24].
There are also heuristic HUIM techniques not based on EC,
such as hill climbing and simulated annealing [25].

As shown above, there is an abundance of heuristics
available for HUIM but only one method for top-k HUIM.
We also argue that all these previous works suffer the same
fault—they spend too much time evaluating unpromising
or redundant solutions. Fitness evaluation of a candidate
can be extremely costly as the algorithm must scan the
database to find the utility. The number of evaluations is
thus essential to the performance of the model. Some try to
solve this with various termination criteria. However, due

to the random nature of stochastic optimization,
convergence is unpredictable and challenging to measure,
and the model’s accuracy will typically suffer.

III. Preliminaries and problem statement
Let the set I= {i1, i2, . . . , im} contain m distinct items,

where ik is a unique item such that 1 ≤ k ≤ m. A
transactional database D = {T1, T2, . . . , Tn} is a set of n
transactions, where each transaction Tq ⊆ I and q is a
unique transaction identifier (TID) such that 1 ≤ q ≤ n.
Moreover, each item ik ⊆ D is associated with a profit
value, denoted p(ik, D), and a purchase quantity for each
transaction, denoted q(ik, Tq). The set X ⊆ I is called an
itemset and is included in transaction Tq if X ⊆ Tq . In
addition, an itemset with p items is called a p-itemset.

The database shown in Table 1 is used as a running
example in this paper. It contains six transactions and six
distinct items named from A to F , with the corresponding
purchase quantities inside the parentheses. Table 2 shows
the associated profit value of each item.

Table 1: A quantitative transactional database

TID Trans (item : quantity) tu
T1 (D:2), (E:3) 16
T2 (A:1), (D:2), (E:2) 17
T3 (A:1), (B:2), (F:1) 6
T4 (C:4), (E:3) 14
T5 (B:3), (C:1), (D:1) 10
T6 (F:9) 9

Table 2: Profit table

Item A B C D E F
Unit profit 3 1 2 5 2 1

Definition 1. The utility of an item ik in a transaction Tq is
denoted u(ik, Tq) and is defined as:

u(ik, Tq) = q(ik, Tq)× p(ik, D) (1)

Example 1. The utility of item D in transaction T1 is
calculated as 2× 5 = 10.
Definition 2. The utility of an itemset X in a transaction Tq

is denoted u(X,Tq) and is defined as:

u(X,Tq) =
∑

ik∈X,X∈Tq

u(ik, Tq) (2)

Example 2. The utility of itemset (BC) in transaction T5 is
calculated as 3× 1 + 1× 2 = 5.
Definition 3. The utility of an itemset X in a database D is
denoted u(X) and is defined as:

u(X) =
∑

X∈Tq,Tq∈D

u(X,Tq) (3)

Example 3. The utility of itemset (DE) is calculated as 2× 5
+ 3× 2 + 2× 5 + 2× 2 = 30.
Definition 4. The TID-set of an itemsetX in a databaseD is
denoted TID(X) and is defined as:

TID(X) = {q | q ≥ 1, q ≤ n,X ∈ Tq, Tq ∈ D} (4)
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Example 4. The TID-set of itemset (D) is {1,2,5}, as (D)
occurs in T1, T2 and T5.

Definition 5. The support count of an itemsetX is denoted
sup(X) and is defined as:

sup(X) = |TID(X)| (5)

Example 5. The support of itemset (D) is calculated as
|{1,2,5}| = 3.

Definition 6. The transaction utility of a transaction Tq is
denoted tu(Tq) and is defined as:

tu(Tq) =
∑

ik∈Tq

u(ik, Tq) (6)

Example 6. The transaction utility of T5 is calculated as: 3×1
+ 1× 2 + 1× 5 = 10

Definition 7. The transaction weighted utility (TWU) of an
itemset X is denoted TWU(X) and is defined as:

TWU(X) =
∑

q∈TID(X)

tu(Tq) (7)

Example 7. The TWU of itemset (E) is calculated as 16 + 17
+ 14 = 47.

Definition 8. Given a minimum utility threshold δ, an
itemset X is a high transaction-weighted utilization itemset
(HTWUI) if TWU(X) ≥ δ; otherwise, X is a low
transaction-weighted utilization itemset (LTWUI). In
addition, a HTWUI/LTWUI with p items is denoted
p-HTWUI/p-LTWUI.
Example 8. If the minimum utility threshold is set to 20,
then itemset (B) is a 1-LTWUI because TWU(B) = 16,
while itemset (A) is a 1-HTWUI as TWU(A) = 23.

Definition 9. Given an minimum utility threshold δ, an
itemset X is a high-utility itemset (HUI) if u(X) ≥ δ.
Example 9. If the minimum utility threshold is 20, then
itemset (D) is a HUI as u(D) = 25.

Definition 10. An itemsetX is a top-k HUI in a databaseD
if its utility is among the k largest in D.
Example 10. If k is 3, then the set of top-k HUIs is {(DE:30),
(D:25), (ADE:17)}.

Problem statement: Given a desired number of HUIs (k)
and a database D, the problem of top-k HUIM is to
determine the k HUIs with the largest utilities inD.

IV. Proposed algorithm for top-k huim

The proposed TKU-PSO is an iterative approach that
prunes the search space before a population of particles is
generated based on the remaining candidates. The top-k
HUIs are discovered by evaluating and updating the
population for a desired number of iterations. We will
explain the model in five parts, where the first four describe
the main developed strategies, and the last section
introduces the complete model.

A. Minimum solution fitness
To maintain the discovered top-k HUIs, we employ a set

with the maximum capacity of k (the desired number of
HUIs), where each solution is sorted in descending order of
utility. In other words, the solution with the lowest utility is
always at the tail of the set. For simplicity throughout the
paper, we call the utility of the tail-itemset the minimum
solution fitness. It is defined as follows:
Definition 11. The minimum solution fitness is denoted
MSF (H) and is defined as:

MSF (H) =

{
Hk, if |H| = k
0, otherwise, (8)

where H is the set of current top-k HUIs sorted in
descending order of utility, and k is the desired number of
HUIs

The minimum solution fitness is zero until the top-k set
reaches its capacity, and the model only stores a new
solution if its utility exceeds the current value. Once the set
is full, new solutions replace the tail-itemset. This way, the
minimum solution fitness is a dynamic threshold that
grows as the algorithm progresses. The following sections
explain how the model utilizes the minimum solution
fitness to avoid fitness evaluations and prune candidates.

B. Population initialization strategy
The designed model represents each particle with a bit

vector, called an encoding vector. The encoding vector
length corresponds to the number of 1-HTWUI in the
database, and each bit describes a specific item. If position i
of an encoding vector is 1, then item i is included in the
particle; otherwise, item i is not included. For example,
assuming all items in Table 1 are 1-HTWUI, the encoding
vector of itemset (ABF ) is {1, 1, 0, 0, 0, 1}.

As there is no minimum utility threshold in top-k HUIM,
all items are initially 1-HTWUI. However, the model
removes 1-LTWUIs by setting the minimum utility
threshold to the critical utility value (CUV) [14]. CUV is
found by calculating all 1-itemset utilities and sorting them
in descending order of utility. We utilize this to initialize
the first particles to the 1-itemsets with the highest utility.
This way, the model’s performance becomes more
consistent as the first population is identical in each run. In
addition, the best solutions are often relatively small
itemsets compared to the number of 1-HTWUIs. Previous
models initialize the first candidates to random sizes
between 1 and the number of 1-HTWUIs, which means
they will generate huge itemsets in databases with many
1-HTWUIs, and the model likely falls in a local optimum.

However, if the population size is larger than the number
of 1-HTWUIs, not all particles can be initialized to a unique
1-itemset. In this scenario, we generate the leftover particles
with roulette wheel selection. Moreover, any particle
generated with roulette wheel selection is PEV-checked.
The PEV-check ensures the particle appears in at least one
transaction, and the algorithm avoids evaluating irrelevant
solutions. The implementation details of roulette wheel
selection and PEV-check are described by Song and
Huang [18].

Algorithm 1 shows the population initialization
procedure. First, the database is scanned once to calculate
the utility and TWU of each 1-itemset (line 1). The
minimum utility threshold is then set to the k-th largest
utility, and each 1-LTWUI is pruned from the database (line
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Algorithm 1 Population initialization, init()
Input: D: a transactional database, pop_size: the

population size, k: the number of desired HUIs
Output: Pop: the first population, pBest: initial offspring,

H : the current top-k HUIs
1: calculate utility and TWU of each item inD;
2: remove items with TWU less than kth largest utility;
3: I ← each 1-HTWUI, in descending order of utility;
4: Pop, pBest,H ← ∅;
5: for i = 1 to pop_size do
6: if |I| > 0 then
7: pi ← generate to the first item in I ;
8: remove the first item in I ;
9: else

10: pi ← generate with roulette wheel selection;
11: pi ← PEV-check pi;
12: end if
13: fit← calculate fitness of pi using Eq. (9);
14: if fit > MSF (H) then
15: insert pi intoH ;
16: end if
17: Popi, pBesti ← pi;
18: end for
19: if pop_size < k and |I| > 0 then
20: fill H with the remaining 1-itemsets in I ;
21: end if
22: Return Pop, pBest,H ;

2). The 1-HTWUIs are then sorted in descending order of
utility before the population, pBest, and solutions are
initialized to empty (lines 3 and 4). After that, the main
loop of the procedure starts, where pop_size particles are
generated (lines 5-18). At each iteration, it is checked
whether the set of 1-HTWUI is empty (line 6). If not, the
first 1-HTWUI in I is popped, and the particle is initialized
to the 1-itemset representing this 1-HTWUI. (lines 7 and 8).
Otherwise, the particle is generated with roulette wheel
selection and PEV-checked (lines 9-12). Next, the created
particle is evaluated by calculating its fitness (line 13). If
the fitness is larger than the minimum solution fitness, the
particle is put in the set of top-k HUIs as described in
Section A (lines 14-16). Finally, the particle is placed in the
population and its corresponding pBest before the next
iteration starts (line 17). After the entire population is
created, the set of top-k HUIs is filled with the remaining
1-itemsets until it is full, or there are no more 1-itemsets
(lines 19-21). This step is performed to increase the
minimum solution fitness quickly. Finally, the population,
pBest, and current top-k HUIs are returned, and the
procedure terminates (line 22).

C. Fitness evaluation strategies
The model evaluates the quality of each particle with the

following fitness function:
Definition 12. The fitness of a particle pi is defined as:

fit(pi) = u(X), (9)

whereX is the itemset in the encoding vector of pi
Calculating the utility of an itemset is often a costly

operation in heuristic utility mining algorithms. The time
complexity is approximately O(s × a), where s is the
support of the itemset, and a is the average transaction
length in the database. Therefore, it is desirable to skip the

evaluation of certain unpromising candidates to improve
the execution time of the model. First, many redundant
particles are created during the algorithm’s runtime,
especially if it converges. As it is unnecessary to assess
these solutions repeatedly, the model maintains each
created particle in a hash set. If the set contains a specific
particle, the solution is redundant, and the algorithm does
not perform the fitness evaluation. By doing this, the model
quickly terminates when it converges as it will primarily
create explored solutions.

To further reduce the number of evaluations, we employ
a strategy to estimate the fitness, described below.
Definition 13. The maximum utility of an item i in a
database D is denotedmu(i) and is defined as:

mu(i) = max{u(i, Tq)}∀Tq∈D (10)
Example 11. The maximum utility of item D in Table 1 is
calculated asmax{10, 10, 5} = 10

Definition 14. The average utility of an item i in a database
D is denoted au(i) and is defined as:

au(i) =

⌈∑
Tq∈D u(i, Tq)

sup(i)

⌉
(11)

Example 12. The average utility of item D in Table 1 is
calculated as ⌈ 10+10+5

3

⌉
= 9.

Definition 15. The estimated utility of an itemset X is
denoted Est(X) and is defined as:

Est(X) = sup(X)×
∑

ik∈X

au(ik) + σ, (12)

where the deviation σ is calculated as:

σ =

⌈∑
ik∈1-HTWUI mu(ik)− au(ik)

|1-HTWUI|

⌉
(13)

Example 13. Assuming all items in Table 1 are 1-HTWUI,
the deviation is calculated as⌈

(3−3)+(3−3)+(8−5)+(10−9)+(6−6)+(9−5)
6

⌉
= 2. Thus, the

estimated utility of itemset (D) is calculated as 3 × (9 + 2)
= 33.

The model uses the estimated utility to determine
whether evaluating a particular particle is worthwhile. It
does this by comparing the estimate to the fitness of pBest
and the minimum solution fitness. If the estimate is less
than both values, the particle will likely not improve the
population or be a top-k HUI, and evaluation is thus
skipped. Based on Example 13, the model ignores the
evaluation of itemset (D) if the fitness of pBest and the
minimum solution fitness is at least 33.

The purpose of the deviation is to avoid underestimates.
An underestimate occurs when an estimate is less than the
particle’s fitness. Otherwise, the estimate is an
overestimate. The model keeps track of the number of over-
and underestimates during runtime and occasionally
updates the deviation according to the following formula:

σ =

{
σ
2
, if σ > 1 and u

o
< 0.01

σ, otherwise, (14)

where the number of over- and underestimates are denoted
as o and u, respectively.
Example 14. Assuming u = 0 and o = 100. The deviation of
Table 1 is updated as 2

2
= 1 , and the estimated utility of

itemset (D) is calculated as 3× (9 + 1) = 30.
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This way, the model adapts to the data and produces
more accurate estimates as the deviation is progressively
tuned. Each estimate is calculated in linear time on the size
of the itemset, which is negligible compared to the
complexity of finding the actual utility. The algorithm can
thus save significant time when generating many
low-fitness particles.

D. Particle update strategy
The designed model updates each particle towards pBest

and gBest using the concept of bit difference [18]. It is
defined as follows:
Definition 16. The bit difference of two particles pi and pj ,
denoted BitDiff(pi, pj), is defined as the bitwise-XOR
operation on the encoding vectors of the particles.
Example 15. Let pi = {0, 1, 1, 0} and pj = {1, 0, 1, 0}, then
BitDiff(pi, pj) = {1, 1, 0, 0}.

In other words, bit difference creates a bit vector of
non-identical bits between two particles. The update
procedure uses bit difference to compare a particle to pBest
and gBest, and the bits set to 1 in the vector represent the
items that can change in the particle. However, if the
population only evolves based on the previously best
solutions, the model typically falls in a local optimum due
to insufficient diversity. We increase the amount of
exploration by performing a random modification to the
particle after the update towards pBest and gBest is
complete. The model only executes this step if the current
particle is a redundant solution. Thus, we avoid randomly
altering new solutions to previously explored ones. The
total number of bits bi to change in a particle pi is
determined as follows:

bi = bi1 + bi2 + bi3, (15)
where bi1, bi2, and bi3 are calculated as:

bi1 =
⌊
r1 ×

∑
BitDiff(pi, pBesti)

⌋
(16)

bi2 =
⌊
r2 ×

∑
BitDiff(pi, gBest)

⌋
(17)

bi3 =

{
1, if pi ∈ E
0, otherwise (18)

where r1 and r2 are random numbers between [0,1], and E
is the hash set of explored particles. Note that bi3 is
determined after bi1 + bi2 changes are made to the particle.

The update procedure selects bi items and flips their
corresponding bit in the particle’s encoding vector.
However, some 1-HTWUIs can have a TWU value less than
the minimum solution fitness as it grows during runtime.
An itemset containing any such 1-HTWUI cannot be part of
a top-k HUI. Therefore, the algorithm always performs the
bit clear operation on these items in the particle. Doing this
lowers the number of potential candidates, improving the
algorithm’s ability to generate the actual solutions.

Algorithm 2 shows the particle update procedure. First,
bi1 of the different items between pi and pBesti are
randomly selected and put into the set I (lines 1 and 2).
Each item in I is flipped or cleared in the particle,
depending on the item’s TWU value and the current
minimum solution fitness (lines 3-5). Next, the above
process is repeated for pi and gBest (lines 6-10), before bi3
is calculated by identifying whether the current particle is

Algorithm 2 Particle update, update()
Input: pi: the particle
Output: p′i: the updated particle
1: b← calculate bi1 using Eq. (16);
2: I ← b random items set to 1 in BitDiff(pi, pBesti);
3: for each item ∈ I do
4: pi ← flip or clear item in pi;
5: end for
6: b← calculate bi2 using Eq. (17);
7: I ← b random items set to 1 in BitDiff(pi, gBest);
8: for each item ∈ I do
9: pi ← flip or clear item in pi;

10: end for
11: b← calculate bi3 using Eq. (18);
12: item← b random 1-HTWUI;
13: pi ← flip or clear item in pi;
14: pi ← PEV-check pi;
15: return p′i;

redundant (line 11). If it is redundant, one additional
random item is flipped or cleared in the particle (line 13).
Finally, the updated particle is PEV-checked and returned
(lines 14 and 15).

E. TKU-PSO

Algorithm 3 Proposed TKU-PSO Algorithm
Input: D: a transactional database, k: the desired number

of HUIs, pop_size: the population size, iter: the number
of iterations.

Output: H : set of top-k HUIs
1: Pop, pBest,H ← init(D, pop_size, k);
2: gBest← the fittest particle in Pop;
3: E ← Pop;
4: σ ← calc. using Eq. (13);
5: for i = 1 to iter do
6: for j = 1 to pop_size do
7: Popj ← update(Popj);
8: if Popj /∈ E then
9: X ← the itemset in Popj ;

10: est← estimate the utility ofX using Eq. (12);
11: if est > MSF (H) or est > fit(pBestj) then
12: fit← calc. fitness of Popj using Eq. (9);
13: if fit > MSF (H) then
14: insert Popj into H ;
15: end if
16: pBestj ← fittest of Popj and pBestj ;
17: gBest← fittest of Popj and gBest;
18: end if
19: E ← E ∪ Popj ;
20: end if
21: end for
22: gBest← update with roulette wheel selection;
23: σ ← update using Eq. (14);
24: end for
25: returnH ;

Algorithm 3 shows the designed TKU-PSO in its entirety.
The model takes as input a transactional database, the
number of desired HUIs, the population size, and the
number of iterations. First, the population, pBest, and the
set of top-k HUIs are initialized by calling the initialization
procedure of Algorithm 1 (line 1). Next, gBest is set to the
fittest particle, and the set of explored solutions is filled
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with the current population (lines 2 and 3). The deviation
of the maximum- and average utilities are then calculated
(line 4) before the main loop of the procedure starts, where
the population is iteratively updated and evaluated (lines
5-24). At each iteration, the particles are updated using
Algorithm 2 (line 7). If a new particle is redundant, it is not
evaluated further, and the procedure continues with the
next particle in the population (line 8). Otherwise, the
particle’s fitness is estimated to determine if evaluation
should proceed (lines 9 and 10). The particle’s exact fitness
is only found if the estimate is greater than the fitness of
pBest or the current minimum solution fitness (lines 11
and 12). If the fitness is greater than the minimum solution
fitness, the particle is a new top-k HUI and is inserted into
the solution set as described in Section A (lines 13-15).
Then, pBest and gBest are updated accordingly (lines 16
and 17), and the particle is marked as explored (line 19).
When the entire population is updated and evaluated,
gBest is reselected to one of the current top-k HUIs using
roulette wheel selection (line 22). This step is not
performed if gBest was updated naturally during the
current iteration. The deviation is then updated according
to the number of over- and underestimates before the next
iteration starts (line 23). Finally, when all iterations are
complete, the set of top-k HUIs is returned, and the
algorithm terminates (line 25).

V. An illustrated example

This section demonstrates the process of the designed
model on the database in Table 1. The population size and
k (the number of desired HUIs) are 3 and 2, respectively.

First, we find the TWU {A:23, B:16, C:24, D:43, E:47,
F :15} and utility {A:6, B:5, C:10, D:25, E:16, F :10} of each
1-itemset. The minimum utility threshold is then set to the
k-th largest utility, which is 16. Based on this, item F is
pruned from the database since its TWU is less than the
minimum utility threshold. The set of 1-HTWUIs is thus
{A,B,C,D,E}. As the population size is less than the
number of 1-HTWUI, each particle is initialized to the
fittest 1-itemsets. Table 3 shows the initial population.

Table 3: The initial particles in the population

Particle A B C D E
P1 0 0 0 1 0
P2 0 0 0 0 1
P3 0 0 1 0 0

The fittest particles are placed in the set of top-k HUIs
{D:25, E:16}, and the minimum solution fitness changes to
the tail-itemset’s utility (16). Next, pBest is initialized as a
copy of the population and gBest is set to P1. Before the
update procedure starts, each current particle is marked as
explored.

The update of P2 with r1 = 0.7 and r2 = 0.5 goes as
follows: First, BitDiff(P2, pBest2) is calculated to
{0,0,0,0,0} and b21 = ⌊0.7× 0⌋, which is 0. Therefore, no
items change in P2. Next, BitDiff(P2, gBest) is calculated
to {0,0,0,1,1} and b22 = ⌊0.5× 2⌋, which is 1. As a result,
one non-identical bit between P2 and gBest must change,
either the bit representing item D or E. Assuming item D
is selected, its bit is flipped because the TWU of D (43) is
larger than the minimum solution fitness (16), and P2

becomes {0,0,0,1,1}. P2 is not a redundant solution, and b23

is thus 0. The update is then complete as this encoding
vector is a PEV.

Suppose the updated population is {P1 : {0, 0, 0, 0, 1},
P2 : {0, 0, 0, 1, 1}, P3 : {0, 1, 1, 0, 0}}. Consequently, P1 is
not evaluated because it was explored in the last
population. The maximum utilities of the 1-HTWUI are
{A:3, B:3, C:8, D:10, E:6}, the average utilities are {A:3,
B:3, C:5, D:9, E:6}, and the deviation is 1. As a result, the
estimated fitness of P2 and P3 is 34 and 10, respectively. As
the estimate of P3 does not exceed the minimum solution
fitness (16) or the fitness of pBest3 (10), its fitness
evaluation is skipped. The fitness of P2 is 30, which is
greater than the minimum solution fitness. The top-k HUIs
is thus updated to {DE:30, D:25}, and the new minimum
solution fitness is 25. In addition, pBest2 and gBest change
to P2. At last, the population is put in the set of explored
particles, and the next iteration begins.

VI. Experimental results

This section evaluates the performance of the designed
TKU-PSO against THUI, TKO, and TKU-CE+. The authors
of TKO provided us with a significantly improved version
of the basic TKO algorithm. We call this version TKO+
throughout the experiments. The author also gave us the
source code of THUI while we downloaded TKU-CE+ from
the SPMF data mining library [26]. The source code of
TKU-PSO is available at GitHub1 . All the compared
algorithms are written in Java and were executed with a
heap size of 2 GB on JDK 17.0.1. We performed the
experiments on a 64-bit Windows 10 computer with a
Ryzen 5 5600x CPU and 16 GB of 3200 MHz CL 16 RAM.
Table 4 shows the characteristics of the datasets used in the
comparisons. They are a mixture of real and synthetic data
downloaded from SPMF. We have categorized each
database as dense or sparse based on the ratio of the
average transaction length to the number of distinct items
in the database. Generally, sparse databases have more
diverse transactions.

Table 4: Database characteristics

Dataset #Items #Trans Avg.Trans.Len. Type
Chainstore 46,086 1,112,949 7.23 Sparse
Chess 75 3,196 37 Dense
Connect 129 67,557 43 Dense
Kosarak 41,270 990,002 8.1 Sparse
Mushroom 119 8,416 23 Dense
Pumsb 2,113 49,046 74 Sparse

In all the tests, the proposed model uses 10,000 iterations
with a population size of 20. The iterations and sample size
in TKU-CE+ are 2,000, and the quantile parameter is 0.2, as
suggested by the authors. We used a lower iteration
number for TKU-CE+ because it is unclear how the sample
size compares to the population size of TKU-PSO. Only a
proportion of the total samples are updated each iteration.
In addition, TKU-CE+ uses a termination criterion that
stops the execution prematurely if it determines it has
converged, and the algorithm rarely completes all
iterations. Our model always performs 10,000 iterations.
For these reasons, the tested input parameters are fair.

1https://github.com/Simencar/TKU-PSO

7



Fig. 1. The runtimes of the compared algorithms

A. Runtime
First, we compare the runtimes of the algorithms on the six

datasets with various values of k. Fig. 1 shows the results.
Fig. 1(a) shows the comparison for Chainstore, where

TKU-PSO and THUI used a similar amount of time for
small values of k, but our model was up to 22 times faster
as k increased. The heuristic TKU-CE+ was significantly
slower than TKU-PSO in Chainstore. It also terminated in
less than 20 iterations on all tests. TKO+ is not included in
Fig. 1(a) as it ran out of memory.

The results in the dense databases Chess and Connect are
almost identical to each other, Fig. 1(b-c). Our model was
the fastest for all values of k, followed by THUI. Then, TKO+
was quicker than TKU-CE+when kwas less than 100, while
they swapped places for higher numbers of HUIs.

Fig. 1(d) demonstrates a clear advantage of the heuristic
models in Kosarak. When k was 150 and 200, THUI and
TKO+ could not finish due to the search space size. We ran
THUI for over 14 hours without getting a result, while
TKO+ was stopped after 3 hours. Although TKU-CE+
could complete the tests on Kosarak, it repeatedly
terminated after the first iteration and was still up to 64
times slower than TKU-PSO. In addition, our model
outperformed THUI and TKO+ for smaller values of k.

The Mushroom dataset also shows that TKU-PSO was
the most efficient model, closely followed by THUI, Fig.
1(e). TKU-CE+ was at worst 282 times slower than
TKU-PSO, while the runtime also fluctuated due to the
unpredictability of the termination criterion.

Finally, Fig. 1(e) shows that TKU-PSO was much faster
than the other approaches in Pumsb. THUI, TKU-CE+, and
TKO+ were up to 63, 141, and 390 times slower,
respectively. This was the only dataset where TKU-CE+
could finish quicker than THUI, but the runtime was
inconsistent, like on Mushroom.

Overall, our model achieved the best results in terms of
runtime. TKU-CE+ is slower in all tests while also
performing fewer iterations. THUI is generally the closest
to our model, but it cannot deal with colossal search spaces,
as seen on Kosarak. Kosarak has many candidates with
similar utility, and the threshold-raising pruning of THUI
thus becomes ineffective. The main contributions to the
speed of TKU-PSO are the strategies for redundant

particles and fitness estimation, which reduces the number
of necessary particle evaluations. The dynamic minimum
solution fitness can also improve the runtime of the model.
During particle update, we avoid 1-HTWUIs with TWU
less than the minimum solution fitness. Thus, the
algorithm converges quicker to the point where it creates
primarily redundant solutions, which are not evaluated.

B. Accuracy
The heuristic models cannot guarantee the discovery of

the correct patterns before termination. Therefore, some of
the found itemsets may not correspond with the actual
top-k HUIs in the database. This section compares the
percentage of correct top-k HUIs between TKU-PSO and
TKU-CE+. In addition, we test the proposed model
without the new population initialization strategy. This
model is called TKU-PSO- and uses the traditional roulette
wheel selection approach. We obtained the accuracy by
comparing the results of the heuristic algorithms with the
output of THUI. On Kosarak, the exact patterns were
retrieved with the threshold-based EFIM [27] as THUI and
TKO+ could not finish for large k. The accuracy was
measured with the following formula:

Accuracy =
c

k
× 100, (19)

where c is the number of correct top-k HUIs discovered by
the heuristic algorithm, and k is the desired number of
top-k HUIs.

Table 5: The accuracy of TKU-PSO, TKU-PSO- and TKU-
CE+ compared

Chainstore
k 1 10 25 100 250 500

TKU-PSO 100 % 100 % 100 % 99 % 98 % 96 %
TKU-CE+ 100 % 50 % 24 % 0 % 0 % 0 %
TKU-PSO- 100 % 100 % 100 % 98 % 93.6 % 88.8 %

Chess
k 1 10 100 500 1,000 2,000

TKU-PSO 100 % 100 % 100 % 100 % 100 % 99.9 %
TKU-CE+ 100 % 100 % 90 % 51.6 % 34 % 22.5 %
TKU-PSO- 100 % 100 % 100 % 100 % 100 % 99.9 %

Connect
k 1 10 100 500 1,000 2,000

TKU-PSO 100 % 100 % 100 % 100 % 100 % 99.9 %
TKU-CE+ 100 % 100 % 80 % 39.8 % 30 % 20.1 %
TKU-PSO- 100 % 100 % 100 % 100 % 100 % 99.9 %

Kosarak
k 1 10 50 100 150 200

TKU-PSO 100 % 100 % 100 % 100 % 100 % 100 %
TKU-CE+ 100 % 0 % 0 % 0 % 0 % 0 %
TKU-PSO- 100 % 0 % 0 % 0 % 0 % 0 %

Mushroom
k 1 10 100 500 1,000 2,000

TKU-PSO 100 % 100 % 100 % 100 % 100 % 100 %
TKU-CE+ 0 % 0 % 0 % 0 % 0.01 % 0.01 %
TKU-PSO- 100 % 100 % 100 % 100 % 100 % 100 %

Pumsb
k 1 10 50 100 250 500

TKU-PSO 100 % 100 % 100 % 100 % 100 % 100 %
TKU-CE+ 0 % 0 % 0 % 0 % 0 % 0 %
TKU-PSO- 100 % 100 % 0 % 0 % 0 % 0 %

Table 5 shows that the proposed TKU-PSO found
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Fig. 2. The memory usage of the compared algorithms

significantly more correct top-k HUIs than TKU-CE+. In
Kosarak, Mushroom, and Pumsb, the accuracy of our
model was always 100%, while TKU-CE+ missed nearly all
relevant patterns. In Chess and Connect, TKU-CE+ found
the actual top-k HUIs for k up to 10, but the accuracy
gradually fell to 22.5% and 20.1% as k increased. In
contrast, TKU-PSO returned one incorrect itemset when k
was 2,000 and maintained 100% accuracy in the other tests.
In Chainstore, the proposed model performed slightly
worse than in the other databases but still provided an
accuracy of 96% or more. TKU-CE+ found the correct HUI
at the smallest k but missed all relevant itemsets for k above
25.

Altogether, TKU-PSO and TKU-CE+ discovered 13,113
and 2,165 correct top-k HUIs, respectively, corresponding
to an overall accuracy of 99.8% and 16.5%. In other words,
our model outperformed TKU-CE+ by a wide margin in
these experiments. TKU-PSO can consistently find the
relevant itemsets even if the search space is huge. The
Kosarak results demonstrate this as the correct solutions
were returned within 10 seconds, while the non-heuristic
algorithms were unable to finish in any reasonable amount
of time, Fig. 1(d). The main contributor to this is the
proposed population initialization strategy. TKU-PSO has
better accuracy than TKU-PSO- in all the sparse databases.
These datasets have massive numbers of 1-HTWUIs when k
is large, but their best itemsets are relatively small in
comparison. Therefore, it is advantageous to avoid
initialization with roulette wheel selection as it will create
too big particles and lead the model to a local optimum.
TKU-PSO- discovered most of the correct solutions on
Chainstore due to the PEV-check reducing the particle
sizes. Nonetheless, the new population initialization
strategy always provided higher or identical accuracy.

C. Memory
Finally, we compare the maximum memory usage of

each algorithm on the same datasets and k as in the
previous experiments. THUI and TKO+ are missing from
some graphs for the reasons stated in Section A. The
memory was measured using the native Java Runtime class.

According to the results in Fig. 2, TKU-PSO used the

least memory on Chess, Connect, Mushroom and Pumsb,
while THUI was most efficient on Chainstore and Kosarak.
This is primarily caused by the database size and the
algorithm’s strategy for holding item information. The
heuristic models store the pruned database on the heap
while THUI and TKO+ construct utility list variations.
Generally, the utility list approach is more efficient when
the database is sparse and large, as seen on the highest k in
Fig. 2(a)(d). However, our model used less memory for
the smallest k in Chainstore and Kosarak because pruning
reduced the database size considerably. As k increases,
pruning is less effective, and memory requirements grow.
TKO+ does not perform the initial pruning used by the
other models. For this reason, it ran out of memory in
Chainstore and performed the worst in Kosarak.

Comparing the heuristic models, TKU-PSO used overall
less memory than TKU-CE+ in Fig. 2(b-f). On Chainstore,
our model generates a high number of unique candidates
due to the size of the search space. The memory usage then
increases as the algorithm stores all explored particles. This
does not happen to the same extent on the similar-sized
Kosarak as the model converges early, and overall fewer
candidates are examined.

Altogether, TKU-PSO was the most memory-efficient
algorithm. The utility list of THUI could use less memory
in extremely sparse databases but was outperformed in
other scenarios.

VII. Conclusion
This paper proposed TKU-PSO, a heuristic model based

on particle swarm optimization for discovering top-k
high-utility itemsets. TKU-PSO introduces several efficient
strategies that are fundamental to the model’s performance.
First, we effectively reduced the number of particle
evaluations by estimating itemset utilities and maintaining
explored candidates. Second, we introduced the concept of
minimum solution fitness, which is utilized in several
stages of the algorithm to prune unpromising candidates.
Finally, we revised the traditional population initialization
and thus improved the model’s ability to find optimal
solutions in large search spaces. The experimental results
show that our approach is superior in all tested databases
regarding runtime and accuracy. More specifically,
TKU-PSO is up to 63, 282, and 390 times faster than THUI,
TKU-CE+, and TKO+. The model achieved an overall
accuracy of 99.8% compared to 16.5% with TKU-CE+, and
memory usage was the smallest on 4 of 6 datasets. There
are several opportunities for future work based on this
paper. The developed framework can be adopted by other
heuristic and evolutionary approaches such as genetic
algorithm, ant colony optimization, bat algorithm, or
artificial fish swarm algorithm. The proposed model can
also be modified for utility mining variations such as top-k
quantitative- or sequential HUIM.
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