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Abstract

Motivation: With recent advances in the field of epigenetics, the focus is widening from large and frequent disease-
or phenotype-related methylation signatures to rare alterations transmitted mitotically or transgenerationally (consti-
tutional epimutations). Merging evidence indicate that such constitutional alterations, albeit occurring at a low mo-
saic level, may confer risk of disease later in life. Given their inherently low incidence rate and mosaic nature, there
is a need for bioinformatic tools specifically designed to analyze such events.

Results: We have developed a method (ramr) to identify aberrantly methylated DNA regions (AMRs). ramr can be
applied to methylation data obtained by array or next-generation sequencing techniques to discover AMRs being
associated with elevated risk of cancer as well as other diseases. We assessed accuracy and performance metrics of
ramr and confirmed its applicability for analysis of large public datasets. Using ramr we identified aberrantly methy-
lated regions that are known or may potentially be associated with development of colorectal cancer and provided
functional annotation of AMRs that arise at early developmental stages.

Availability and implementation: The R package is freely available at https:/github.com/BBCG/ramr and https://bio

conductor.org/packages/ramr.
Contact: oleksii.nikolaienko@uib.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1. Introduction

Epigenetics, normally assessed as gene promoter CpG methylations,
plays a pivotal role to many physiological processes throughout life
(Fraga et al., 2005). In addition, disturbances in epigenetic function are
involved in many pathophysiological processes. Somatic epimutations
are frequently seen in cancers (Peltomiki, 2012), and constitutional epi-
mutations (Sloane et al., 2016) have been associated with elevated risk
of cancer (Dobrovic and Kristensen, 2009; Evans et al., 2018; Hitchins
et al., 2007; Lynch et al., 2015; Prajzendanc et al., 2020) as well as
other diseases (Evans et al., 2007; Sloane et al., 2016). Notably, recent
findings (Lenning et al., 2018, 2019) show that even epimutations
occurring at a low mosaic level (affecting only a few percent of normal
cells) are associated with an elevated cancer risk. While to this end such
low-level mosaic methylation has been confirmed for a few genes only
(Lonning et al., 2019), the findings are suggestive that similar epimuta-
tions occur for several other tumour suppressor genes in respect to dif-
ferent tumour forms as well. Thus, these preliminary results point
towards a new and important field of research that may change our
understanding of carcinogenesis as well as the origin of several other
diseases profoundly.

©The Author(s) 2021. Published by Oxford University Press.

Low-level mosaic methylation typically affects <10% of the
alleles in samples of pooled normal cells (i.e. tissue biopsy or blood
sample) and may easily be overlooked by contemporary screening
methods. To overcome such problems, it is crucial to develop new,
unbiased, exploratory approaches suitable for identification of rare
long-range changes in methylation levels, i.e. aberrantly methylated
regions (AMRs). Importantly, the application of such approaches is
not restricted to detection of high-level hemiallelic epimutations in
tumour suppressor genes and their role for cancer development but
can also include discovery of moderate mosaic methylation events
underlying any disease or condition. Unsupervised tools for AMR
identification could be also useful to assess epimutation burden in
individuals.

A number of software tools for the analysis of differentially and
variably methylated regions have been developed [please see Yu and
Sun (2016) and Mallik et al. (2019) for the in-depth comparison].
While some of these tools, like the DMRcate (Peters et al., 2015),
Bumphunter (Jaffe et al., 2012) or iEVORA (Teschendorff ez al.,
2016a), can process data from any source, others, like DiffVar
(Phipson and Oshlack, 2014), DMRcaller (Catoni et al., 2018), DSS
(Park and Wu, 2016), Bsmooth/bsseq (Hansen et al., 2012), BiSeq
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(Hebestreit et al., 2013), MethCP (Gong and Purdom, 2020) or
DMCHMM (Shokoohi et al., 2019), are limited to processing of
bisulfite massive parallel sequencing data (e.g. Bismark output) or
BeadChip data only. Importantly, all these tools are meant to com-
pare two sets of samples and some of them proved to be less sensitive
(more robust) to outlier values (Teschendorff et al., 2016b). Thus,
there is a need for new tools specifically designed to identify the out-
liers with respect to AMRs in single/few individual samples in a
dataset.

We here propose and describe a novel unsupervised method,
ramr, for search of ‘rare aberrantly methylated regions’ in large data-
sets. By its design, ramr is sensitive to biologically relevant (extended
over prolonged genomic regions) outliers and is able to find epigen-
etic aberrations in one or several samples within the dataset, making
it suitable for discovery of low-frequency and/or mosaic epimuta-
tions. The implementation of ramr also includes methods for experi-
mental data-based generation of test datasets and thus establishes a
framework for performance evaluation of existing and future AMR/
DMR analysis tools. Using simulated data, we compared ramr’s per-
formance with some existing methods for search of differentially
methylated regions (DMR). We also applied ramr and other meth-
ods to identify and characterize AMRs in public GEO (GSE51032,
GSE105018) and TCGA-COAD datasets.

2 Materials and methods

2.1 Datasets and data preprocessing

GSES51032: this dataset was used to simulate test data, characterize
AMRs and find common aberrations with colorectal cancer patients
from the TCGA-COAD dataset. The public GSE51032 dataset con-
tains whole blood cells DNA methylation data generated by the
Infinium Human Methylation 450 Bead Chip array (Polidoro et al.,
2013; Cordero et al., 2015) from 845 participants in the EPIC-Italy
cohort (total 7=47 746). EPIC is a prospective cohort study designed
to investigate the relationship between genetic and environmental fac-
tors and the incidence of cancer and other diseases (Riboli et al.,
2002). At the time of the most recent follow-up in 2010, 235 of
GSES51032 participants had developed incidental breast cancer, 166
incidental colorectal cancer, while #=20 had developed other pri-
mary cancers. Blood samples from these 421 patients collected prior
to their cancer diagnosis were analyzed together with samples from
424 control participants remaining cancer-free. The raw Illumina
Infinium HumanMethylation450 BeadChip data files for this dataset
were obtained from Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo) and processed (normalized and annotated) with
the minfi Bioconductor package (Aryee et al., 2014) using the
preprocessQuantile method with outlier thresholding enabled.

The full dataset (485 512 CpGsx 845 samples) was first used as a
template to create a test dataset (see Preparation of test datasets
below). For further analyses (other than generation of test dataset),
all probes mapping to chromosomes X and Y (using hgl9 genome
assembly) together with non-specific or polymorphic probes (Chen
et al., 2013) were removed prior to identification of aberrantly
methylated regions, resulting in a smaller dataset with 383 788
CpGs (i.e. 383 788x845).

TCGA-COAD: this dataset was used to identify AMRs presum-
ably undergoing positive selection during carcinogenesis. The
Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/) proc-
essed Illumina Infinium HumanMethylation450 data files for 38 ad-
jacent mucosa and 40 corresponding colon adenocarcinoma samples
were obtained from The Genomic Data Commons data sharing plat-
form (https://portal.gdc.cancer.gov/). Probes with beta values miss-
ing in more than the half of the samples, non-specific or
polymorphic probes or probes mapping to chromosomes X and Y
(as described above) were filtered out resulting in a dataset with 394
360 CpGsx78 samples.

GSE105018: this dataset was used to gain insight on the potential
mechanisms of AMR formation. The Environmental Risk (E-Risk)
Longitudinal Twin Study dataset contains DNA methylation data
obtained by analysing blood samples of 732 complete twin pairs at the
age of 18years [426 monozygotic (MZ) and 306 same-sex dizygotic

(DZ) twin pairs] and 194 participants whose co-twin did not have com-
plete data using Infinium Human Methylation 450 Bead Chip array
(Hannon et al., 2018a,b). Preprocessed files with normalized beta val-
ues for this dataset were obtained from GEO (https://www.ncbi.nlm.
nih.gov/geo/) and filtered as described above, resulting in a dataset with
367 522 CpGs x 1658 samples.

2.2 Preparation of test datasets

The template-based test data generation employed in the present
study is a part of the ramr package, and thus can be easily reused to
evaluate the performance of various tools for AMR/DMR discovery.

For the purpose of serving as a test set, a methylation array data
was simulated using the full, unfiltered GSE51032 dataset as a tem-
plate. For each CpG in the GSE51032 dataset the parameters of beta
distribution were estimated using the ebeta function of the EnvStats
R module (Millard, 2013). Using the obtained parameters, 100 ran-
dom beta values distributed similarly to the experimental values
were produced by means of stats::rbeta function. The resulting data-
set contained 485 512 rows (CpGs) and 100 columns (samples).

To make a list of all potentially methylated regions, CpGs were
merged within a window of 1000 bp and resulting regions contain-
ing at least 10 CpGs per region were kept.

In order to simulate rare methylation events, 2000 regions were
randomly selected. Of those, 1000 were uniquely assigned to sam-
ples (each of these 1000 regions was assigned to a single sample, 10
regions per sample), while the other 1000 were assigned in a non-
unique manner (each of these 1000 regions was assigned to three
samples, 10 regions per sample). Thus, every sample in a dataset
possessed 10 unique and 10 non-unique regions with aberrant
methylation. The unique regions recapitulate sporadic epimutations,
while non-unique—allele-specific methylation events that can be
triggered by cis-factors with low to moderate variant allele frequen-
cies, such as rs16906252 or rs1800734 (Rapkins et al., 2015;
Thomas et al., 2019). The relatively high number of AMRs per sam-
ple (as compared with our findings using experimental datasets) was
selected to improve the reported performance metrics of methods
that, in this particular setting, are characterized by an elevated type I
error rate (DMRcate, comb-p).

Next, all CpG beta values corresponding to particular region/
sample pair were increased or decreased (depending on overall
methylation level of this region) by particular deltas (0.025, 0.050,
0.100, 0.250, 0.500) to simulate a wide range of epimutations (from
low-frequency mosaic to hemiallelic). Finally, all beta values below
0.001 were set to 0.001, and all values above 0.999 were set to
0.999. The modified regions effectively are ground true positive
unique (uGTP) or non-unique (nGTP) regions and were used to as-
sess performance of different methods. The mean-variance plots
(Supplementary Fig. S1) indicate overall similarity of simulated test
datasets to the template GSE51032 dataset, further confirmed by the
adjusted RV matrix correlation coefficient of at least 0.9994 (calcu-
lated using R package MatrixCorrelation v0.9.5 for the template
versus each of simulated datasets) (Mayer et al., 2011). Examples of
original and modified uGTP/nGTP regions are given in
Supplementary Figure S2.

Spontaneous deamination effects at CpG dinucleotides account
for more than 20% of de novo single nucleotide polymorphisms and
affect up to 26% of CpGs depending on genomic context (Youk
et al., 2020). This, together with the a significant fraction (6-11%)
of variation-dependent and cross-reactive probes present on Illumina
methylation beadchip arrays (Hop et al., 20205 Pidsley ez al., 2016;
Zhou et al., 2017), may introduce the additional single-base vari-
ation to the experimental datasets. To simulate such spontaneous
mutations, cross-hybridization events and potential technical arte-
facts better, we additionally introduced single-base methylation
aberrations. For this, the total of 1000 random single genomic posi-
tions outside of uGTP and nGTP regions were chosen, assigned to
samples (10 positions per sample), and their methylation beta values
were changed by a delta of 0.250.

To compare the stability of the main performance metrics of
ramr and DMRcate over a range of random number generator
(RNG) seed values, smaller test sets of 25 samples were simulated
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using GSE51032 dataset as a template. True positive AMRs were
defined as described above (merge window of 1000 bp, containing at
least 10 CpGs). Each sample possessed 1, 2, 4, 8 and 16 AMRs with
beta values increased or decreased by 0.500, 0.250, 0.100, 0.050
and 0.0235, respectively. In addition to these 31 AMRs, 10 single-
base methylation aberrations with delta beta of 0.250 were added to
each sample. 10 such simulations and subsequent performance meas-
urements were conducted for 10 different RNG seeds.

2.3 ramrimplementation
Three independent filtering methods for identification of AMRs
were implemented (Fig. 1).

IQR’: for every genomic position, median beta value and interquar-
tile range across the sample set were calculated. Then, all data points
differing from median by less than a certain (user-defined) number of
interquartile ranges were considered non-significant and filtered out.
‘beta’ or ‘wbeta’: non-weighted or weighted beta distribution, respect-
ively, was fit to data for every genomic position, and probability value
was calculated for every data point. For weighted parameter estimation,
individual values were split in bins, and their assigned weights directly
correlated with the number of values in the same bin, and inversely—
with the absolute difference from the median value, resulting in lower
P-values for outliers. Then, data points with probability values above a
certain threshold were considered non-significant and filtered out.

After filtering, significant per-sample data points obtained by
selected filtering method were merged by genomic position within a
particular window, and aggregate P-value was calculated as geometric
mean of P-values for individual significant data points comprising gen-
omic region. Additional filtering was then applied to the list of aber-
rantly methylated genomic regions (by minimum number of merged
CpGs, minimum average difference from median beta value, etc.).

Extract B values as a matrix
with genomic locations as rows (r)
and samples as columns (c)

Apply filtering

by IQR by fitting B distribution

: i ; Estimate parameters of p distribution,
X = - d /IQR, i
=P re” ecan Y Q r ‘ calculate probability values (p)

| l

Remove observations with Remove observations with
| xiqr | < igr.cutoff p > qval.cutoff

l '

Remove observations with medianr within exclude.range

Merge remaining genomic locations
within the distance of merge.window

Remove genomic regions with
nepg < min.cpgs or width < min.width

Fig. 1. Flowchart illustrating the AMR identification method implemented in ramr

2.4 Method comparison

The test data was analyzed by ramr with the following parameters: fil-
tering by IQR (method = ‘IQR’) or non-weighted (method = ‘beta’)
or weighted (method = ‘wbeta’) beta distribution fitting, IQR cutoff
or g-value cutoff as specified (range of 1.3-10, or 5e-02 to 1le-10, re-
spectively), merging CpGs within 1000 bp (merge.window = 1000),
selecting AMRs with at least 5 significantly different beta values (min.-
cpgs=73), using 5 parallel threads (cores=35).

We compared ramr to the following methods widely employed for
differential methylation analysis: dmpFinder [R package minfi v1.38.0
with qCutoff as specified and other default parameters(Fortin et al.,
2017)], champ.DMP [R package ChAMP v2.22.0 with adjPVal as speci-
fied and other default parameters (Morris et al., 2014)], ProbeLasso [R
package ChAMP v2.22.0, champ.DMR function with the following
parameters: adjPvalProbe as specified, method = ‘ProbeLasso’
minDmrSep = 1000, meanLassoRadius=1000 (Butcher and Beck,
2015)], DMRcate [R package DMRcate v2.6.0, with the following
parameters: lambda = 1000, min.cpgs= 35, pcutoff as specified (Peters
et al., 2015)], Bumphunter [R packages ChRAMP v2.22.0 and bump-
hunter v1.34.0, champ.DMR function with the following parameters:
minProbes =3, cores=1, method = ‘Bumphunter’, maxGap = 1000,
nullMethod = ‘bootstrap’, B=100, adjPvalProbe as specified (Jaffe
et al., 2012)], ImFit [R package limma v3.48.0 with the default parame-
ters (Ritchie ez al., 2015)] followed by comb-p [python module v0.50.3,
with the following parameters: seed as specified, dist=1000 (Pedersen
et al., 2012)]. As these methods require two classes/categories for com-
parison, every sample from the test dataset was tested against all the
other samples. For dmpFinder and champ.DMP, differentially methy-
lated CpGs detected were merged and filtered as described for ramr
above. Probability cutoff value for all of the existing methods was in
range of 5e-02 to 1e-10.

True positive unique (uTP) or non-unique (nTP) region is defined
as region which overlaps by at least 1bp with any of ground true
positive unique (uGTP) or non-unique (nGTP) regions correspond-
ingly. False positive (tFP) region is defined as region not overlapping
with any of uGTP or nGTP regions.

The following metrics were calculated:

1. Precision (Positive Predictive Value):

Precision = "
UHTECSION = TP 1 tFP
nPrecision = nTP
CCSION = TP 1 P
2. Recall (True Positive Rate):
uTP
uRecall = rp arN
nTP
nRecall = TP £ nEN

where uFN and nFN are the number of unique or non-unique false
negative regions, respectively.
3. FPR (False Positive Rate):

tFP

FPR = — 0
t tFP + (TN

where tTN is the total number of true negative regions.
4. Matthews correlation coefficient (MCC):

uTP x TN — tFP x uFN
\/(UTP 4 tFP) x (uTP + uFN) x (tTN + tFP) x (tTN + uFN)

uMCC =
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AMCC — nTP x tTN — tFP x nFN

/(TP + tFP) x (nTP + nFN) x (tTN + tFP) x (TN + nFN)
5. F1score

uPrecision + uRecall

Fl=2x—"—i———
b x uPrecision x uRecall

1F1 = 2 x nPrecision + nRecall

nPrecision x nRecall

6. AuPR (Area under Precision-Recall curve)
uAuPR (for unique regions) and nAuPR (for non-unique regions)
values were evaluated using linear interpolation between the sup-
porting points of the precision—recall curve calculated as speci-
fied above for the entire range of cutoff values.

7. AuROC (Area under Receiver Operating Characteristic curve)
uAuROC (for unique regions) and nAuROC (for non-unique
regions) values were evaluated using linear interpolation be-
tween the supporting points of the recall-FPR curve calculated
as specified above for the entire range of cutoff values.

8. utpCorr, ntpCorr, ufnCorr, nfnCorr
Average Pearson correlation coefficients were precomputed for
all samples across all CpGs within each ground true positive
unique (uGTP) or non-unique (nGTP) region, and an average
correlation coefficient was calculated for all unique/non-unique
true positive (utpCorr and ntpCorr, respectively) and all unique/
non-unique false negative (ufnCorr and nfnCorr, respectively)
regions for every method across the entire range of cutoff values.

9. Time
The elapsed time measured in seconds for AMR search using
every algorithm was recorded on a HP OptiPlex 7050 PC with
64 GB 2400 MHz, DDR4 RAM, 8-core Intels Cores i7-7700
(3.60 GHz) CPU and the Ubuntu 18.04.4 LTS Operating System.
Due to low performance of some methods and multiple test scen-
arios, parallel computing on five cores was used when comparing
computing times for different algorithms. As comb-p uses max-
imum of four threads by default, single threading was forced to
obtain results comparable to DMRcate, ChAMP, Bumphunter
and minfi. Then, multiprocessing of all methods except ramr was
achieved by running 5 independent processes at a time. Method
performance in a single-process mode was also assessed for sev-
eral test scenarios and was found to be consistent with multi-
process estimates.

2.5 Identification and characterization of aberrantly

methylated regions

Pre-filtered datasets (see above) GSE51032 (383 788 CpGs, 845 sam-
ples), TCGA-COAD (394 360 CpGs, 38 adjacent mucosa samples) and
GSE105018 (367 522 CpGs, 1658 samples) were analyzed using ramr
with the following parameters: method = ‘beta’, qval.cutoff=1e-03,
min.cpgs = 7, merge.window = 1000.

2.6 Region annotation and enrichment analysis

Genomic regions were annotated using the R package annotatr
v1.10.0 (Cavalcante and Sartor, 2017). Chromatin marks overrepre-
sented in aberrantly methylated regions were assessed by locus over-
lap analysis for enrichment of genomic ranges [R package LOLA
v1.14.0 (Sheffield and Bock, 2016)] using a provided extended data-
set containing 1110 BED files from the Roadmap Epigenomics
Project. Briefly, every given set of AMRs was tested for enrichment
in chromatin marks using function runLOLA with redefineUserSets
parameter set to TRUE. Significant hits (qValue < 1e-03) were
grouped by chromatin mark-specific antibody and counted. A set of

genomic regions which was used as a reference set for annotation
and enrichment analysis (‘universe’) was obtained by merging gen-
omic positions of GSE51032 dataset probes with the following
parameters: min.cpgs = 7, merge.window = 1000.

To evaluate the specificity of the enrichment analysis, we per-
formed repeated tests with randomly selected genomic regions from
the ‘universe’ set. Subsets of 30, 100, 300, 1000 or 3000 regions
over 100 iterations (total of 500 tests) did not result in significant
(<1e-03) g-values, confirming non-randomness of the analysis.

For enrichment analysis using chromatin marks in developing
mouse embryo, both the specified AMRs and the ‘universe’ set
were lifted over to mm9 mouse assembly using R package liftOver
v1.8.0 (https://www.bioconductor.org/help/workflows/liftOver/).
A dataset containing mouse genomic regions carrying H3K4me3,
H3K9me3 or H3K27me3 marks for various developmental stages
was obtained from GEO (accession number GSE98149; https://
www.ncbi.nlm.nih.gov/geo).

3. Results and discussion

Merging evidence indicates that constitutional mosaic epimutations
arising in early embryonic life may be a risk factor for certain cancer
forms (Lenning et al., 2019) as well as other diseases (Evans et al.,
2007) later in life. However, such epimutations are rare, and may be
difficult to identify comparing pooled subsets of cases and controls.
In order to detect the genomic regions aberrantly methylated in a
small subset of samples, we developed a fast method for within-the-
class differential methylation analysis, omitting the need of splitting
samples in subsets for comparison.

3.1 Implementation and evaluation of the method

The main processing steps of the ramr algorithm are depicted in the
Figure 1. Assuming beta distribution of methylation values, for every
sample at every given genomic position, the method estimates distri-
bution parameters and calculates either P-value, or deviation (xiqr)
from the median value normalized by interquartile range (IQR).
Filtering by P-values or xiqr is applied, and significant genomic posi-
tions that remain after filtering are merged into regions using float-
ing window of a provided length. Thereafter, post-filtering is
performed to select for regions bearing no less than a specified num-
ber of significant genomic positions, followed by a calculation of
per-region P-values (see Section 2 for details). The implemented
method (‘rare aberrantly methylated regions’; ramr) accepts
GRanges object, containing beta values as metadata columns (sam-
ples), and returns GRanges object with all the AMRs identified in
any of the samples. By its design, the method is not constrained by
the source of input data and is suitable for analysis of data obtained
by methylation profiling using both array and next-generation
sequencing of non-methylation-enriched samples. As precision of
parameter estimation as well as correctness of calculated median
and IQR values depend on the number of observations, ‘dense’ ra-
ther than ‘sparse’ datasets are expected to result in more credible
findings.

In order to evaluate sensitivity and specificity of our approach
versus existing methods, we simulated 450k array data using
GSE51032 as a template (see Section 2 for details). All three ramr fil-
tering methods (‘IQR’, ‘beta’ and ‘wbeta’) were applied to find artifi-
cially introduced AMRs in the simulated dataset. The performance
was compared to six other available methods (champ.DMP,
ProbeLasso, ImFit + comb.p, DMRcate, Bumphunter and
dmpFinder). Accuracy metrics and computing times were also com-
pared using the simulated dataset. To select the best performing
method we used Matthews correlation coefficient (MCC) as the
most reliable metric for classifications of imbalanced sets (Chicco
and Jurman, 2020; Chicco et al., 2021).

The top results from the test runs are summarized in Table 1
with further detail in Supplementary Table S1, Precision-Recall (PR)
and Receiver Operating Characteristic (ROC) curves are given in the
Supplementary Figure S3. The results indicate that all three ramr fil-
tering methods performed consistently better than the other methods
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Table 1. Matthews correlation coefficient (MCC) values for unique (uMCC) and non-unique (hMCC) AMR identification for the most optimal
cutoffs. Top values are given in bold, corresponding cutoff values—in parentheses

Delta
0.025 0.050 0.100 0.250 0.500
Method uMCC nMCC uMCC nMCC uMCC nMCC uMCC nMCC uMCC nMCC
Bumphunter 0.0006 0.0011 0.0851 0.1172 0.4391 0.6059 0.5379 0.7165 0.5380 0.7169
champ.DMP NA NA 0.1378 0.0182 0.8276 0.6474 0.9823 0.9788 0.9894 0.9908
dmpFinder NA NA 0.1643 0.0316 0.8252 0.6401 0.9818 0.9772 0.9894 0.9901
DMRcate 0.1483 0.1411 0.6993 0.7319 0.8870 0.9234 0.9339 0.9699 0.9403 0.9788
ImFit + comb-p 0.1133 0.1339 0.6509 0.6789 0.8692 0.9093 0.9089 0.9609 0.9163 0.969%4
ProbeLasso NA NA 0.0316 NA 0.4785 0.3275 0.7176 0.7027 0.7375 0.7466
ramr (beta) 0.1793 (1e-02)  0.1615  0.7609 (1e-02)  0.7007 0.9482 0.9529 0.9874 0.9893  0.9995 (1e-03)  0.9997
ramr (IQR) 0.1710 0.1695 0.7483 0.7156  0.9633 (2) 0.9570(2) 0.9884 0.9916 0.9960 0.9983
ramr (wbeta) 0.1706 0.1778 0.7310 0.7597 0.9513 0.9460 0.9894 0.9920 0.9995 0.9998
(1e-03) (1e-03) (1e-04) (1e-04) (1e-04) (1e-04)
Bumphunter = —
champ.DMP =
g S
8 " e d
E ramr (beta) -
ramr (IQR) -
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Fig. 2. Performance of different methods. Computational time was measured as described in Section 2

for differential methylation analysis across almost all simulation
scenarios (with the single exception for delta=0.050, where
DMRcate had second best MCC value for non-unique AMRs).
DMRcate and comb-p performed similarly well [as previously
revealed by (Mallik ez al., 2019) and (Peters et al., 2015)], especially
for low-magnitude aberrations (delta<0.050), demonstrating high
recall but rather moderate precision rates. In contrast, methods for
differentially methylated position discovery (champ.DMP and
dmpFinder) showed high precision at a cost of low recall, while two
other methods for DMR search—Bumphunter and ProbeLasso—
were often characterized by the worst MCC values in the current
testing context. Computing times for ramr were 12x-40x or 70x—
220x lower than for DMRcate or comb-p, respectively (Fig. 2,
Table 1), making it more suitable for analysis of large datasets.

The three different filtering techniques in ramr vary in their pre-
cision/recall metrics and were implemented in parallel in order to
provide high degree of analysis flexibility. As confirmed by perform-
ance evaluation using the simulated dataset, IQR filtering is the fast-
est and the most stringent but, at the same time, the least sensitive
(lower number of TP and FP) among the ramr filtering methods. In
contrast, fitting weighted beta distribution increases computational
time as well as the number of true positive and false negatives, while
fitting non-weighted beta distribution provide a balance between
speed and accuracy. In addition, performance metrics vary for
unique and non-unique AMRs, thus the best parameters are to be
estimated for any particular analysis case.

To further validate performance metrics by randomization, we
compared ramr and DMRcate on smaller test datasets with 25 sam-
ples, each containing 31 AMRs of varying deviations, over 10 ran-
dom number generator (RNG) seed values. Analysis revealed that
ramr has comparable though slightly superior performance to
DMRcate, and that the main performance metrics are weakly
affected by the RNG state (Supplementary Table S2; mean . SD
uMCC of 0.6015.0.0152, 0.5960-0.0123, 0.5880.0.0097 and
0.5450.0.0129 for ramr-IQR, ramr-wbeta, ramr-beta and
DMRcate with the most optimal cutoffs, respectively).

The template-based data generation approach utilized in this study
can be an advantageous alternative to other currently employed tech-
niques. In order to facilitate its use, ramr implementation includes

convenient methods for such data generation, thus establishing a quick
and easy way to evaluate the state-of-the-art and future algorithms for
discovery of aberrant or differential methylation events.

3.2 Characterization of aberrant methylation events in

the EPIC-Italy sample set

Aiming to characterize real AMRs, we applied ramr to several pub-
licly available methylation datasets. As methylation variation of in-
dividual probes may be a result of technical errors or nucleotide
polymorphism, we decreased P-value threshold to 1e-03 and limited
our analysis to genomic regions containing at least seven aberrantly
methylated CpGs, which is also thought to enhance the biological
relevance of search hits.

The search for AMR in the EPIC-Italy GSES51032 dataset
resulted in 3582 AMRs across the 845 samples, 2888 of them being
hypermethylation- and 694 hypomethylation events. The AMRs
were unevenly distributed across chromosomes, occurring at high
frequencies on chromosomes 6 and 11 versus particularly low fre-
quency on chromosome 9 (Fig. 3A).

To further characterize the identified AMRs, we annotated them
by their positions relative to known genomic elements. Compared to
all possible genomic regions, represented within the GSE51032 data-
set, AMRs were detected more frequently at core CpG islands and
5'-UTRs (in general associated with gene promoter regions) com-
pared to distant CpG island elements (shores and shelves) or other
intergenic regions (Fig. 3B). Per-sample number of AMRs was in a
wide range from 0 to 602 with a mean value of 4 and median value
of 1 AMR per sample (Fig. 4). Assuming normal distribution of a
number of per-sample aberrant methylation events, we classified
samples into low-AMR and high-AMR groups using a simple outlier
detection rule (threshold=Qs;-+1.5*IQR). High-AMR samples
(n=44) carried most of the AMRs identified (n=2328).

Using information on age of participants (patients and controls
together), we confirmed an age-related increase in the number of
AMRs [previously established in (Fraga er al., 2005)], but only in
the subset of low-AMR individuals (P =0.000762, versus P =0.336
for all participants), indicating that very high number of AMRs in
some of the samples may not relate to aging, but could result from
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deregulation of the epigenetic machinery in hematopoietic cells. Of
note, none of the participants from the GSE51032 dataset had devel-
oped malignant neoplasms of lymphoid, hematopoietic or related
tissue, known to be often associated with methylation alterations
(Vosberg et al., 2019), at the time of the most recent follow-up.
Further subdividing AMRs from low-AMR individuals according to
their genomic annotations revealed that the long-range age-related
changes accumulate mostly within CpG island shores (Bonferroni-
corrected P=0.00246), while other genomic elements did not show
significant correlation between age and number of AMRs [similar
correlation was previously reported in (Slieker et al., 2018),
reviewed in (Unnikrishnan et al., 2019)].

We further assessed enrichment of AMRs in epigenetic marks
using histone modification patterns of 111 reference human epige-
nomes from Roadmap Epigenomics Human Epigenome Atlas
(Roadmap Epigenomics Consortium et al., 2015). In contrast to the
random subsets of genomic regions, the full set of AMRs, as well as
AMRs subsets belonging to high- or low-AMR samples, showed en-
richment in various chromatin modifications which mark active or
repressed chromatin (Fig. 5). To assess variability between individ-
ual samples we performed similar analysis for the 10 most AMR-
rich samples from the high-AMR subset. Differences in their enrich-
ment patterns confirm the existence of multiple aberration types that
may cause AMR accumulation in individuals—such as overexpres-
sion of DNMT enzymes (Zhang et al., 2018) or mutations in their
DNA-recognizing domain (Sendzikaité et al., 2019).

3.3 Potential cancer-inducing AMRs

Local epigenetic alterations are known to accumulate and clonally ex-
pand in normal mitotic tissues (Bian ez al., 2002; Graham et al., 2011; Li
et al., 2016). Together with genetic alterations they underlie field cancer-
ization phenomenon best described in gastrointestinal cancers (Baba
et al., 2016). Numerous frequent events were already reported to be
associated with carcinogenesis or risk of cancer (Sakai er al., 2014;
Takeshima and Ushijima, 2019). In order to predict yet unknown, poten-
tial cancer-inducing aberrant methylation events, we performed a search
of AMRs in methylation profiles of a subset of the TCGA-COAD dataset
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Fig. 5. Heatmap plot of AMR enrichment in chromatin modifications. AMRs
belonging to particular sample groups or individual high-AMR samples were
checked for enrichment in known chromatin modifications. Heat map shows sum-
marized number of significant hits per sample or sample group, numbers of AMRs
per sample/group are given in parentheses

containing adjacent normal mucosa samples from patients with colon
cancer (n=38). As cancer-inducing aberrant methylation events are
expected to be positively selected during carcinogenesis, we post-filtered
the set of AMRs using the following criteria: (i) AMR methylation levels
of corresponding tumour and adjacent mucosa samples must deviate in
the same direction, and (ii) absolute difference between AMR methyla-
tion levels of corresponding tumour sample and adjacent mucosa sample
must be greater than 0.2. To find out which of the selected regions may
exist as cancer-predisposing epimutations, we checked if aberrant methy-
lation in those genomic regions was detected in a subset of low-AMR
individuals from GSE51032 dataset that have developed colorectal can-
cer. Four such regions have been found (none of them coappeared in the

same sample): chr3:37033791-37035399 (EPM2AIP1, MLHI),
chr12:133463694-133464933 (RP11-46H11.12, CHEFR),
chr6:31783029-31783545 (HSPA1L, HSPAIA), chr19:28284491-

28285308 (LINC00662, CTC-459F4.3, LLNLF-65H9.1). Interestingly,
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constitutional epimutation in one of these regions which belong to
MLH1 gene has been established as rare cause of Lynch syndrome
(Lynch et al., 2015), the CHFR genomic region has been found to be
hypermethylated in colorectal cancer tissue (Sun et al., 2017),
HSPA1A—in ovarian and bladder cancers (Ban et al., 2019; De Andrade
et al., 2020), while LINC00662 has been shown to promote tumourigen-
esis in colorectal cancer (Wang et al., 2019). To the best of our know-
ledge, potential risk for colorectal cancer related to constitutional mosaic
epimutations in any of these genes have not been formally assessed. Of
note, we did not identify normal tissue aberrations in other known genes
in which methylation is known to be frequent in development of colorec-
tal cancer, such as MGMT (Menigatti et al., 2009) and MSH2 (Kang
et al., 2015), likely due to the limited number of samples analyzed
(n=38). Further studies are needed in order to detect other rare events
or investigate their potential effect on cancer risk.

3.4 Aberrant methylation events in twins

The emergence of aberrant methylation events may be a result of
genetic and/or environmental factors and may potentially occur dur-
ing various stages of development. Therefore, methylation outlier
regions may be present throughout all normal tissues (germline epi-
mutations), in some specific organs, or show mosaic distribution
(later developmental or clonal expansion events) (Fraga et al., 2005;
Takeshima and Ushijima, 2019). In order to gain more insight into
the potential mechanisms of formation of AMRs, we assessed
methylation aberrations in a large set of twins from the
Environmental Risk  (E-Risk) Longitudinal Twin  Study
(GSE105018). Of all the twin pairs in the dataset (426 monozygotic
(MZ) and 306 dizygotic (DZ) pairs), 238 MZ and 142 DZ twin
pairs consisted of individuals both having at least one AMR each
(the mean number of AMRs per individual was 1.60 and 1.76 for
MZ and DZ twins, respectively). One hundred and seventy-six MZ
and 46 DZ pairs had at least one AMR overlapping between the two
individuals in the pair (the mean number of overlapping AMRs be-
tween twins were 1.11 and 0.35 for MZ and DZ twin pairs, respect-
ively). Nearly two-fold difference between the relative frequencies of
pairs with overlapping AMRs (176/238=0.74 and 46/142=0.32,
for MZ and DZ twins, respectively) suggests that the emergence of
many overlapping AMRs is possibly triggered by genetic compo-
nents. At the same time, there is also a substantial number of non-
overlapping AMRs in both MZ and DZ twins, implying frequent
stochastic events.

For all twin pairs having at least one AMR in common, the mean
number of common AMRs was 2.54 and 2.51 for MZ and DZ indi-
viduals, respectively. In comparison, the mean number of AMRs
overlapping between individuals from different twin pairs was 0.044
and 0.039 for MZ and DZ subjects, respectively. Interestingly,
methylation profiles in AMRs were similar within twin pairs sharing
the AMRs: using only the AMRs genomic coordinates and their
methylation profiles we were able to correctly identify correspond-
ing twins for 234 individuals from 123 MZ and 16 DZ twin pairs.
There were no gender-specific differences with respect to the above
mentioned AMR frequencies or overlap between individuals.

Additionally, according to enrichment analysis, overlapping
AMRs—which are thought to emerge during early development—
showed significant and exclusive enrichment in H3K9me3 marks in
human fetal tissues (adjusted P=1.29¢-05 or higher). The same
overlapping AMRs being lifted over to mouse assembly showed even
stronger enrichment in H3K9me3 marks in 7.5-days mouse embryo
(Bonferroni-adjusted P=4.60e-25). Interestingly, di- and trimethy-
lation of H3K9 is known to protect maternal 5-methylcytosine from
oxidation and subsequent demethylation in the zygotes (Wang er al.,
2018; Zeng et al., 2019), hinting towards potential involvement of
aberrant H3K9 methylation in AMR emergence after fertilization.
Taken together, these findings indicate that genetic and/or early en-
vironmental influence is dominating the generation of AMRs in indi-
viduals, and that aberrantly methylated genomic regions often bear
specific epigenetic patterns.

3.5 Conclusion

Involvement of epigenetic alterations in the development of vari-
ous diseases have been previously demonstrated and is being con-
firmed in increasingly larger-scale epigenetic studies (Wong et al.,
2020). It is also predicted that epigenetic alterations in a higher
than currently anticipated number of cancer-predisposing genes
might affect cancer risk (Widschwendter ez al., 2018). Given the
rapid evolution and cost reduction of next-generation sequencing
(NGS), including its widespread use in epigenetics, an increasing
number and scale of studies in this area are expected.
Consequently, bioinformatic tools allowing versatile analysis of
resulting datasets will be of critical importance. We believe that
our unbiased approach for rare AMR discovery, which is applic-
able to both array and NGS data, will help with generation of
hypotheses and aid in discovery of more disease risk-related epi-
genetic aberrations.
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