
Non-Uniform k-Center and Greedy Clustering
Tanmay Inamdar #

Department of Informatics, University of Bergen, Norway

Kasturi Varadarajan #

Department of Computer Science, University of Iowa, Iowa City, IA, USA

Abstract
In the Non-Uniform k-Center (NUkC) problem, a generalization of the famous k-center clustering
problem, we want to cover the given set of points in a metric space by finding a placement of balls
with specified radii. In t-NUkC, we assume that the number of distinct radii is equal to t, and we are
allowed to use ki balls of radius ri, for 1 ≤ i ≤ t. This problem was introduced by Chakrabarty et al.
[ACM Trans. Alg. 16(4):46:1-46:19], who showed that a constant approximation for t-NUkC is not
possible if t is unbounded, assuming P ̸= NP. On the other hand, they gave a bicriteria approximation
that violates the number of allowed balls as well as the given radii by a constant factor. They also
conjectured that a constant approximation for t-NUkC should be possible if t is a fixed constant.
Since then, there has been steady progress towards resolving this conjecture – currently, a constant
approximation for 3-NUkC is known via the results of Chakrabarty and Negahbani [IPCO 2021], and
Jia et al. [SOSA 2022]. We push the horizon by giving an O(1)-approximation for the Non-Uniform
k-Center for 4 distinct types of radii. Our result is obtained via a novel combination of tools and
techniques from the k-center literature, which also demonstrates that the different generalizations
of k-center involving non-uniform radii, and multiple coverage constraints (i.e., colorful k-center),
are closely interlinked with each other. We hope that our ideas will contribute towards a deeper
understanding of the t-NUkC problem, eventually bringing us closer to the resolution of the CGK
conjecture.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Rounding techniques

Keywords and phrases k-center, approximation algorithms, non-uniform k-center, clustering

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.28

Related Version Full Version: https://arxiv.org/abs/2111.06362

Funding Tanmay Inamdar : Supported by the European Research Council (ERC) via grant LOPPRE,
reference 819416.
Kasturi Varadarajan: Supported by National Science Foundation (NSF) Award CCF-1615845.

1 Introduction

The k-center problem is one of the most fundamental problems in clustering. The input to
the k-center problem consists of a finite metric space (X, d), where X is a set of n points, and
d : X×X → R+ is the associated distance function satisfying triangle inequality. We are also
given a parameter k, where 1 ≤ k ≤ n. A solution to the k-center problem consists of a set
C ⊆ X of size at most k, and the cost of this solution is maxp∈X d(p, C), i.e., the maximum
distance of a point to its nearest center in C. Alternatively, a solution can be thought of as
a set of k balls of radius maxp∈X d(p, C), centered around points in C, that covers the entire
set of points X. The goal is to find a solution of smallest radius. We say that a solution
C ′ is an α-approximation, if the cost of C ′ is at most α times the optimal radius. Several
2-approximations are known for the k-center problem [10, 9]. A simple reduction from the
Minimum Dominating Set problem shows that the k-center problem is NP-hard. In fact, the
same reduction also shows that it is NP-hard to get a (2− ϵ)-approximation for any ϵ > 0.

© Tanmay Inamdar and Kasturi Varadarajan;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Tanmay.Inamdar@uib.no
https://orcid.org/0000-0002-0184-5932
mailto:kasturi-varadarajan@uiowa.edu
https://doi.org/10.4230/LIPIcs.SWAT.2022.28
https://arxiv.org/abs/2111.06362
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Non-Uniform k-Center and Greedy Clustering

Several generalizations of the vanilla k-center problem have been considered in the
literature, given its fundamental nature in the domain of clustering and approximation
algorithms. One natural generalization is the Robust k-center or k-center with outliers
problem, where we are additionally given a parameter m, and the goal is to find a solution
that covers at least m points of X. Note that the remaining at most n−m points can be
thought of as outliers with respect to the clustering computed. Charikar et al. [7], who
introduced this problem, showed that a simple greedy algorithm gives a 3-approximation for
the problem. Subsequently, the approximation guarantee was improved by [4, 8], who gave a
2-approximation, which is optimal in light of the aforementioned (2− ϵ)-hardness result.

The focus of our paper is the Non-Uniform k-Center (NUkC), which was introduced by
Chakrabarty et al. [4]. A formal definition follows.

▶ Definition 1 (t-NUkC). The input is an instance I = ((X, d), (k1, k2, . . . , kt),
(r1, r1, . . . , rt)), where r1 ≥ r2 ≥ . . . rt ≥ 0, and the ki are positive integers. The goal
is to find sets Ci ⊆ X for 1 ≤ i ≤ t, such that |Ci| ≤ ki, and the union of balls of radius αri

around the centers in Ci, over 1 ≤ i ≤ t, covers the entire set of points X. The objective is
to minimize the value of the dilation factor α.

In the Robust t-NUkC problem, we are required to cover at least m points of X using such a
solution. We note that the special case of (Robust) t-NUkC with t = 1 corresponds to the
(Robust) k-center problem. Chakrabarty et al. [4] gave a bicriteria approximation for t-NUkC
for arbitrary t, i.e., they give a solution containing O(ki) balls of radius O(α∗)ri for 1 ≤ i ≤ t,
where α∗ is the optimal dilation. 1 They also give a (1 +

√
5)-approximation for 2-NUkC.

Furthermore, they conjectured that there exists a polynomial-time O(1)-approximation for
t-NUkC for constant t. Subsequently, Chakrabarty and Negahbani [6] made some progress
by giving a 10-approximation for Robust 2-NUkC. Very recently, Jia et al. [12] showed an
approximate equivalence between (t + 1)-NUkC and Robust t-NUkC, thereby observing that
the previous result of [6] readily implies a 23-approximation for 3-NUkC. We note that the
techniques from Inamdar and Varadarajan [11] implicitly give an O(1)-approximation for
t-NUkC for any t ≥ 1, in kO(k) · nO(1) time, where k =

∑
t kt. That is, one gets an FPT

approximation. Finally, we also note that Bandyapadhyay [2] gave an exact algorithm for
perturbation resilient instances of NUkC in polynomial time.

Another related variant of k-center is the Colorful k-center problem. Here, the set
of points X is partitioned into ℓ color classes, X1 ⊔ . . . ⊔ Xℓ. Each color class Xj has a
coverage requirement mj , and the goal is to find a set of k balls of smallest radius that
satisfy the coverage requirements of all the color classes. Note that this is a generalization
of Robust k-center to multiple types of coverage constraints. Bandyapadhyay et al. [3]
introduced this problem, and gave a pseudo-approximation, i.e., their algorithm returns an
2-approximate solution using at most k + ℓ − 1 centers. Furthermore, they managed to
improve this to a true O(1)-approximation in the Euclidean plane for constant number of
color classes. Subsequently, Jia et al. [13] and Anegg et al. [1] independently gave (true) 3
and 4-approximations respectively for this problem (with constant ℓ) in arbitrary metrics.

1 Chakrabarty et al. [4] use a slightly different, but equivalent, formulation of NUkC: the input contains a
sequence of allowed radii r1 ≥ r2 ≥ · · · ≥ rk, and we are allowed to use one ball of radius αri, for each
i. In this setting, they design an approximation algorithm that returns a solution containing O(1) balls
of radius O(α∗)ri, for each i. When there are only t distinct classes of radii, this is equivalent to the
result as formulated above.

T. Inamdar and K. Varadarajan 28:3

Our Results and Techniques. Our main result is an O(1)-approximation for 4-NUkC. We
obtain this result via a sequence of reductions; some of these reductions are from prior work
while some are developed here and constitute our main contribution. Along the way, we
combine various tools and techniques from the aforementioned literature of Robust, Colorful,
and Non-Uniform versions of k-center.

First, we reduce the 4-NUkC problem to the Robust 3-NUkC problem, following Jia et
al. [12]. Next, we reduce the Robust 3-NUkC to well-separated Robust 3-NUkC, by adapting
the approach of Chakrabarty and Negahbani [6].2 In a well-separated instance, we are given
a set of potential centers for the balls of radius r1, such that the distance between any two
of these centers is at least c · r1, for a parameter c ≥ 2.

To solve Well-Separated Robust 3-NUkC, we give a sequence of reductions, which
constitute the technical core of our paper. First, we show that any instance of Robust
t-NUkC can be transformed to an instance of “Colorful” (t− 1)-NUkC, where we want to
cover certain number of red and blue points using the specified number of balls of t − 1
distinct radii. Thus, this reduction reduces the number of radii classes from t to t− 1 at the
expense of increasing the number of coverage constraints from 1 to 2. In our next reduction,
we show that Colorful (t − 1)-NUkC can be reduced to Colorful (t − 1)-NUkC with an
additional “self-coverage” property, i.e., the radius rt−1 can be assumed to be 0. Just like
the aforementioned reduction from [12], these two reductions are generic, and hold for any
value of t ≥ 2. These reductions crucially appeal to the classical greedy algorithm and its
analysis from Charikar et al. [7], which is a tool that has not been exploited in the NUkC
literature thus far. We believe that these connections between Colorful and Robust versions
of NUkC are interesting in their own right, and may be helpful toward obtaining a true
O(1)-approximation for t-NUkC for any fixed t. Indeed, one possible avenue to this result is
to find suitable generalizations of some of our reductions.

We apply these two new reductions to transform Well-Separated Robust 3-NUkC to
Well-Separated Colorful 2-NUkC, with r2 = 0. The latter problem can be solved in polynomial
time using dynamic programming in a straightforward way – the details can be found in
Section 5. Since each of our reductions preserves the approximation factor up to a constant,
this implies an O(1)-approximation for 4-NUkC.

Our overall algorithm for 4-NUkC is combinatorial, except for the step where we reduce
Robust 3-NUkC to Well-Separated Robust 3-NUkC using the round-or-cut approach of [6].
Thus, we avoid an additional “inner loop” of round-or-cut that is employed in recent work
[6, 12].3

We conclude this section by explaining the bottleneck in employing the techniques used
in this paper to obtain an Ot(1) approximation for t-NUkC. For concreteness, we focus on
5-NUkC. Using the general reductions from prior work and this paper, we can reduce 5-NUkC
to Well-Separated Colorful 3-NUkC, with r3 = 0 (self-coverage at level 3). However, we do
not know how to solve this problem exactly via DP, or even obtain an O(1) approximation.
The difficulty pertains to the balls of radius r2 > 0, which are not constrained in any way. It
is not straightforward to use our techniques to also obtain self-coverage at level 2 (r2 = 0);
doing so would result in a problem that can be solved exactly using DP.

2 In this discussion, “reduction” refers to a polynomial time (possibly Turing) reduction from problem A
to problem B, such that (i) a feasible instance of A yields (possibly polynomially many) instance(s) of
B, and (ii) a constant approximation for B implies a constant approximation for A.

3 A by-product of one of our reductions is a purely combinatorial approximation algorithm for colorful
k-center, in contrast with the LP-based approaches in [3, 1, 13].

SWAT 2022

28:4 Non-Uniform k-Center and Greedy Clustering

2 Definitions, Main Result, and Greedy Clustering

2.1 Problem Definitions

In the following, we set up the basic notation and define the problems we will consider in
the paper. We consider a finite metric space (X, d), where X is a finite set of (usually n)
points, and d is a distance function satisfying triangle inequality. If Y is a subset of X,
then by slightly abusing the notation, we use (Y, d) to denote the metric space where the
distance function d is restricted to the points of Y . Let p ∈ X, Y ⊆ X, and r ≥ 0. Then, we
use d(p, Y) := miny∈Y d(p, y), and denote by B(p, r) the ball of radius r centered at p, i.e.,
B(p, r) := {q ∈ X : d(p, q) ≤ r}. We say that a ball B(p, r) covers a point q iff q ∈ B(p, r);
a set of balls B (resp. a tuple of sets of balls (B1,B2, . . . ,Bt)) covers q if there exists a ball
in B that covers q (resp.

⋃
1≤i≤t Bi that covers q). Analogously, a set of points Y ⊆ X is

covered iff every point in Y is covered. For a function f : S → R+ or f : S → N, and R ⊆ S,
we define f(R) :=

∑
r∈R f(r).

▶ Definition 2 (Decision Version of t-NUkC).
The input is an instance I = ((X, d), (k1, k2, . . . , kt), (r1, r2, . . . , rt)), where r1 ≥ r2 ≥ . . . rt ≥
0, and each ki is a non-negative integer. The goal is to determine whether there exists a
solution (B1,B2, . . . ,Bt), where for each 1 ≤ i ≤ t, Bi is a set with at most ki balls of radius
ri, that covers the entire set of points X. Such a solution is called a feasible solution, and if
the instance I has a feasible solution, then I is said to be feasible.
An algorithm is said to be an α-approximation algorithm (with α ≥ 1), if given a feasible
instance I, it returns a solution (B1,B2, . . . ,Bt), where for each 1 ≤ i ≤ t, Bi is a collection
of at most ki balls of radius αri, such that the solution covers X.

Next, we define the robust version of t-NUkC.

▶ Definition 3 (Decision Version of Robust t-NUkC).
The input is an instance I = ((X, d), (ω, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)). The setup is
the same as in t-NUkC, except for the following: ω : X → Z+ is a weight function, and
1 ≤ m ≤ ω(X) is a parameter. The goal is to determine whether there exists a feasible
solution, i.e., (B1,B2, . . . ,Bt) of appropriate sizes and radii (as defined above), such that the
total weight of the points covered is at least m. An α-approximate solution covers points of
weight at least m while using at most ki balls of radius αri for each 1 ≤ i ≤ t.

We will frequently consider the unweighted version of Robust t-NUkC, i.e., where the weight
of every point in X is unit. Let 1 denote this unit weight function. Now we define the
Colorful t-NUkC problem, which generalizes Robust t-NUkC.

▶ Definition 4 (Decision Version of Colorful t-NUkC).
The input is an instance I = ((X, d), (ωr, ωb, mr, mb), (k1, k2, . . . , kt), (r1, r2, . . . , rt)). The
setup is similar as in Robust t-NUkC, except that we have two weight functions ωr, ωb : X →
Z+ (corresponding to red and blue weight respectively). A feasible solution covers a set of
points with red weight at least mr, and blue weight at least mb. The notion of approximation
is the same as above.

We note that the preceding definition naturally extends to an arbitrary number χ ≥ 2 of
colors (i.e., χ different weight functions over X). However, we will not need that level of
generality in this paper.

T. Inamdar and K. Varadarajan 28:5

2.2 Main Algorithm for 4-NUkC
Let I = ((X, d), (k1, . . . , k4), (r1, . . . , r4)) be the given instance of 4-NUkC, which we assume
is feasible. First, using a reduction from [12] (or a variant described in Section 6), we reduce I
to an instance I ′ = ((X, d), (1, m)(r′

1, r′
2, r′

3), (k1, k2, k3)) of Robust 3-NUkC. The reduction
has the property that I ′ is feasible, and furthermore an O(1)-approximation for I ′ implies
an O(1)-approximation for I.

Next, we peform a Turing reduction from Robust 3-NUkC to Well-Separated Robust
3-NUkC, by adapting a very similar reduction of [6]. In a well-separated instance, we are
given a set of potential centers for the balls of radius r′

1, such that the distance between any
two potential centers is at least 3r′

1. This Turing reduction is described in Sections A and B of
the appendix, and uses the round-or-cut methodology on the instance I ′. At a high level, we
run the ellipsoid algorithm, and each iteration of the ellipsoid algorithm returns a candidate
LP solution such that, (1) it can be rounded to obtain an O(1)-approximate solution for I ′,
or (2) one can obtain polynomially many instances of well-separated Robust 3-NUkC, at
least one of which is feasible, or (3) If none of the obtained instances is feasible, then one
can obtain a hyperplane separating the LP solution from the integer hull of coverages.

Solving a Well-Separated Instance. For the sake of simplicity let J be one of the instances
of Well-Separated Robust 3-NUkC, along with a well-separated set Y that is a candidate set
for the centers of balls of radius r′

1. Furthermore, let us assume that J is feasible. First, the
reduction in Section 3 (Theorem 11), given the instance J , produces O(n) instances J (ℓ)
of Colorful 2-NUkC, such that at least one of the instances is feasible. Then, we apply the
reduction from Section 4 (Theorem 17) on each of these instances to ensure the self-coverage
property, i.e., we obtain an instance J ′(ℓ) of Colorful 2-NUkC with r′′

1 = r′
1 + c2r′

2 + c3r′
3

and, crucially, r′′
2 = 0. Finally, assuming that the resulting instance J ′(ℓ) is feasible, it is

possible to find a feasible solution using straightforward dynamic programming, as described
in Section 5. This dynamic programming only requires that the instance is Well-Separated
w.r.t. a smaller separation factor of 2. We argue in the next paragraph that this property
holds in each of the instances J ′(ℓ).

In the reductions in Sections 3 and Section 4, the solution transformations preserve the
centers for the balls of the largest radius class. In order to show that the set Y of candidate
centers is well-separated w.r.t. the new top level radius r′′

1 , we need to show that 3r′
1 ≥ 2r′′

1 ,
i.e., r′

1 ≥ 2c2r′
2 + 2c3r′

3 ≥ β · r′
2 for some sufficiently large constant β. This assumption is

without loss of generality, since, if two consecutive radii classes in instance J are within a β

factor, it is possible to combine them into a single radius class, at the expense of an O(β)
factor in the approximation guarantee.

Assuming the instance J is feasible, a feasible solution to an instance J ′(ℓ) can be
mapped back to an O(1)-approximate solution to J , and then to I, since each reduction
preserves the approximation guarantee up to an O(1) factor.

▶ Theorem 5. There exists a polynomial time O(1)-approximation algorithm for 4-NUkC.

We have overviewed how the various sections of the paper come together in deriving
Theorem 5. Before proceeding to these sections, we describe a greedy clustering procedure
that we need.

2.3 Greedy Clustering
Assume we are given (i) a metric space (X, d), where X is finite, (ii) a radius r ≥ 0, (iii) an
expansion parameter γ ≥ 1, (iv) a subset Y ⊆ X and a weight function ω : Y → Z+. The
weight ω(y) can be thought of as the multiplicity of y ∈ Y , or how many points are co-located

SWAT 2022

28:6 Non-Uniform k-Center and Greedy Clustering

at y. We describe a greedy clustering procedure, from Charikar et al. [7], that is used to
partition the point set Y into clusters, each of which is contained in a ball of radius γr. This
clustering procedure, together with its properties, is a crucial ingredient of our approach.

Algorithm 1 GreedyClustering(Y, X, r ≥ 0, γ ≥ 1, ω : Y → Z+).

We require that Y ⊆ X

1: Let U ← Y , M ← ∅
2: while U ̸= ∅ do
3: p = arg maxq∈X ω(U ∩B(q, r))
4: C(p) := U ∩B(p, γr); wt(p) := ω(C(p))
5: U ← U \ C(p)
6: M ←M ∪ {p} ▷ We refer to C(p) as a cluster whose center is p

7: end while
8: return (M, {C(p)}p∈M , {wt(p)}p∈M)

In line 3, we only consider q ∈ X such that U ∩ B(q, r) ̸= ∅. Notice that it is possible
that ω(U ∩ B(q, r)) = 0 if ω(y) = 0 for each y ∈ U . Furthermore, notice that we do not
require that q ∈ U for it to be an eligible point in line 3.

We summarize some of the key properties of this algorithm in the following observations.

▶ Observation 6. 1. For any p ∈M , C(p) ⊆ B(p, γr),
2. Point y ∈ Y belongs to the cluster C(p), such that p is the first among all q ∈M satisfying

d(y, q) ≤ γr.
3. The sets {C(p)}p∈M partition Y , which implies that
4.
∑

p∈M wt(p) = ω(Y), where ω(Z) =
∑

z∈Z ω(z) for any Z ⊆ Y .
5. If pi and pj are the points added to M in iterations i ≤ j, then wt(pi) ≥ wt(pj).
6. For any two distinct p, q ∈M , d(p, q) > (γ − 1)r.

Proof. The first five properties are immediate from the description of the algorithm. Now,
we prove the sixth property. Suppose for contradiction that there exist p, q ∈ M with
d(p, q) ≤ (γ − 1)r, and without loss of generality, p was added to M before q. Then, note
that at the end of this iteration, B(q, r) ∩ U = ∅. Therefore, q will subsequently never be a
candidate for being added to M in line 3. ◀

A key property of this greedy clustering, established by Charikar et al. [7], is that for any
k ≥ 1 balls of radius r, the weight of the points in the first k clusters is at least as large as
the weight of the points covered by the k balls.

▶ Lemma 7. Suppose that the parameter γ used in Algorithm 1 is at least 3. Let B be any
collecion of k ≥ 1 balls of radius r, each centered at a point in X. Let M ′ consist of the first
k′ points of M chosen by the algorithm, where k′ = min{k, |M |}. We have

∑
p∈M ′

wt(p) = ω

 ⋃
p∈M ′

C(p)

 ≥ ω

(
Y ∩

⋃
B∈B

B

)
.

The equality follows from the definition of wt(p) and the fact that the clusters partition
Y , as stated in Observation 6.

T. Inamdar and K. Varadarajan 28:7

3 From Robust t-NUkC to Colorful (t − 1)-NUkC

Let I = ((X, d), (ω, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)) be an instance of Robust t-NUkC.
The reduction to Colorful (t− 1)-NUkC consists of two phases. In the first phase, we use
Algorithm 1 to reduce the instance I to an instance I ′ focused on the cluster centers output
by the greedy algorithm. A key property of this reduction is that we may set rt = 0 in the
instance I ′ – each ball at level t is allowed to cover at most one point.

In the second phase, we transform I ′ to O(n) instances of Colorful (t−1)-NUkC. Assuming
there exists a feasible solution for I ′, at least one of the instances I ′′ of Colorful (t − 1)-
NUkC has a feasible solution, and any approximate solution to I ′′ can be used to obtain an
approximate solution to I ′ (and thus to I).

Phase 1. Let I = ((X, d), (ω, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)) be an instance of Robust
t-NUkC. We call the algorithm GreedyClustering(X, X, rt, 3, ω), and obtain a set of
points M with the corresponding clusters C(p) for p ∈M . The greedy algorithm also returns
a weight wt(p) = ω(C(p)) for each p ∈M . Let us number the points of M as pi, where i is
the iteration in which pi was added to the set M by GreedyClustering(X, X, rt, 3, ω).
This gives an ordering σ = ⟨p1, p2, . . . , p|M |⟩ of the points in M . Note that wt(pi) ≥ wt(pj)
for i ≥ j.

We define a weight function λ : X → Z+. Let λ(p) = wt(p) for p ∈M and λ(p) = 0 for
p ∈ X \M . Note that for p ∈ M , λ(p) = wt(p) = ω(C(p)). Thus, for each p ∈ M , we are
moving the weight from points in cluster C(p) to the cluster center p. Clearly, ω(X) = λ(X).

The output of Phase 1 is the instance I ′ =
((X, d), (λ, m), (k1, k2, . . . , kt), (r′

1, r′
2, . . . , r′

t−1, 0)) of Robust t-NUkC, where r′
i = ri + 3rt.

Note that in the instance I ′, we have r′
t = 0, whereas the other radii in I have been increased

by an additive factor of 3rt. The following claim relates instances I and I ′.

▶ Lemma 8. (a) If instance I has a feasible solution, then so does the instance I ′. (b) Given
a solution (B′

i)i∈[t] for I ′ that uses at most ki balls of radius αr′
i for every i ∈ [t], we can obtain

a solution (Bi)i∈[t] for I that uses at most ki balls of radius at most αr′
i+3rt ≤ αri+(3α+3)rt

for 1 ≤ i ≤ t.

Proof. We begin with part (b). For each ball in B(p, r) that is part of the solution (B′
i)i∈[t],

we replace it with the ball B(p, r + 3rt) to obtain a solution (Bi)i∈[t] for I. That is, we
expand each ball by an additive 3rt. If B(p, r) covers q ∈M , then B(p, r + 3rt) covers C(q),
and λ(q) = ω(C(q)). Let M ′ ⊆M denote the points covered by (B′

i)i∈[t]. The weight of the
points covered by (Bi)i∈[t] is at least∑

p∈M ′

ω(C(p)) =
∑

p∈M ′

λ(p) ≥ m.

We now establish (a). Fix a feasible solution (Bi)i∈[t] to I that covers ω-weight at least
m, where Bi is a set of at most ki balls of radius ri, for i ∈ [t]. Let M1 ⊆ M be the set of
points p such that some point in C(p) is covered by a ball in B1,B2, . . . ,Bt−1.

Now let M2 = M \M1 be the set of points p, such that any point in C(p) is either
covered by a ball from Bt, or is an outlier. Let Xi :=

⋃
p∈Mi

C(p) for i = 1, 2. Note that
X = X1 ⊔X2.

Note that in the sequence σ = ⟨p1, p2, . . . , p|M |⟩, the points of M1 and M2 may appear
in an interleaved fashion. Let pi1 , pi2 , . . . , pi|M2| be the subsequence restricted to the points
in M2. In the following lemma, we argue that the first kt points in this subsequence are
sufficient to replace the balls in Bt. Let k′ = min{|Bt|, |M2|} ≤ kt.

SWAT 2022

28:8 Non-Uniform k-Center and Greedy Clustering

▶ Lemma 9. There exists a subset M+
2 ⊆M2 of size at most k′ such that

∑
p∈M+

2
wt(p) ≥

ω
(
X2 ∩

⋃
Ball∈Bt

Ball
)

.

Proof. Let M+
2 = {pi1 , pi2 , . . . , pik′}. That is, M+

2 consists of the first k′ points of M2
picked by the greedy algorithm. Recall that M+

2 ⊆M2, and thus for pij ∈M+
2 , it holds that

C(pij
) ⊆ X2.

Now imagine calling the algorithm GreedyClustering(X2, X, rt, 3, ω). Observe that
in the iteration 1 ≤ j ≤ |M2|, this algorithm will select point pij (as defined above) in Line
3, and the corresponding cluster and its weight will be C(pij

) and wt(pij
) – exactly as in the

execution of GreedyClustering(X, X, rt, 3, ω). That is, the algorithm GreedyCluster-
ing(X2, X, rt, 3, ω) will output M2 and the clusters C(p) for each p ∈M2.

Now, Bt consists of a set of |Bt| balls of radius rt. The lemma now follows from Lemma 7
applied to GreedyClustering(X2, X, rt, 3, ω). ◀

Using Lemma 9, we now construct a solution to instance I ′. Fix index 1 ≤ i ≤ t− 1, and
B′

i denote the set of balls obtained by expanding each ball in Bi by an additive 3rt. Note
that each ball in B′

i has radius r′
i = ri + 3rt. For every point p ∈M+

2 , we add a ball of radius
0 around it and let B′

t be the resulting set of balls. Note that |B′
t| = |M+

2 | ≤ k′ ≤ kt.
By definition, for each point p ∈M1, there is a ball in (Bi)i∈[t−1] that intersects cluster

C(p), whose points are at distance at most 3rt from p. It follows that the balls in (B′
i)i∈[t−1]

cover each point in M1.
Using Lemma 9, the coverage of (B′

i)i∈[t] in instance I ′ is at least

∑
p∈M1

wt(p) +
∑

p∈M+
2

wt(p) ≥ ω(X1) + ω

(
X2 ∩

⋃
Ball∈Bt

Ball
)
≥ m.

The final inequality follows because any point covered by solution (Bi)i∈[t] for I either
belongs to X1 or to X2∩

⋃
Ball∈Bt

Ball. Thus, we have shown that I ′ has a feasible solution. ◀

Phase 2. Now we describe the second phase of the algorithm. We have the instance
I ′ = ((X, d), (λ, m), (k1, k2, . . . , kt), (r′

1, r′
2, . . . , r′

t−1, 0)) of Robust t-NUkC that is output by
Phase 1. Phase 2 takes I ′ as input and generates an instance I(ℓ), for each 0 ≤ ℓ ≤ |X|,
of the Colorful (t − 1)-NUkC problem. Note that the number of generated instances is
|X|+ 1 = O(n). If I ′ is feasible, at least one of these |X|+ 1 instances will be feasible.

Let σ = ⟨p1, p2, . . . , p|X|⟩ be an ordering of the points in X by non-increasing λ. That is,
λ(pi) ≥ λ(pj) for i ≤ j.

Fix an index 0 ≤ ℓ ≤ |X|. We now describe the instance I(ℓ) of colorful (t−1)-NUkC. Let
R = {p1, p2, . . . , pℓ} denote the set of red points, and B = {pℓ+1, pℓ+2, . . . , p|X|} denote the set
of blue points. For each p ∈ B, define its blue weight as ωb(p) := λ(p); for each p ∈ R, define
its blue weight as ωb(p) := 0. Define the blue coverage mb for instance I(ℓ) as mb := m−λ(R).
We define the red weight function ωr in a slightly different manner. For each red point
p ∈ R, let its red weight ωr(p) := 1; for each p ∈ B, let red weight ωr(p) := 0. Let mr :=∑

p∈R ωr(p)−kt = |R|−kt denote the red coverage for instance I(ℓ). Note that ωr is supported
on R and ωb on B. Let I(ℓ) := ((X, d), (ωr, ωb, mr, mb), (k1, k2, . . . , kt−1), (r′

1, r′
2, . . . , r′

t−1))
denote the resulting instance of Colorful (t−1)-NUkC problem. Recall that a solution to this
instance is required to cover red weight that adds up to at least mr, and blue weight that
adds up to at least mb. (In instance I(ℓ), the point sets R and B, the red and blue weights,
and total coverage requirements mr and mb all depend on the index ℓ. This dependence is
not made explicit in the notation, so as to keep it simple.)

T. Inamdar and K. Varadarajan 28:9

We now relate the instance I ′ to the instances I(ℓ), for 0 ≤ ℓ ≤ |X|.

▶ Lemma 10. (a) If the instance I ′ = ((X, d), (λ, m), (k1, k2, . . . , kt), (r′
1, r′

2, . . . , r′
t−1, 0)) is

feasible, then there exists an 0 ≤ ℓ∗ ≤ |X| such that instance I(ℓ∗) is feasible.
(b) Let I(ℓ) = ((X, d), (ωr, ωb, mr, mb), (k1, k2, . . . , kt−1), (r′

1, r′
2, . . . , r′

t−1)) be a generated
instance of Colorful (t− 1)-NuKc, and suppose (B′′

i)i∈[t−1] is a solution to this instance such
that B′′

i contains at most ki balls of radius αr′
i for 1 ≤ i ≤ t−1, and covers red weight at least

mr and blue weight at least mb. Then, we can efficiently obtain a solution to the instance I ′

that uses at most ki balls of radius αr′
i for 1 ≤ i ≤ t− 1, and at most kt balls of radius 0.

Proof. We first show part (b). In instance I(ℓ), the red weight ωr(p) = 1 for each p ∈ R, so
the solution (B′′

i)i∈[t−1] covers at least mr =
∑

p∈R ωr(p)− kt = |R| − kt red points. So the
number of red points that are not covered is at most kt. Construct B′

t by adding a ball of
radius 0 at each uncovered point in R. Thus, |B′

t| ≤ kt.
Let B′

i = B′′
i for each 1 ≤ i ≤ t − 1. Now, we argue that the solution (B′

i)i∈[t] covers
weight at least m in instance I ′. Note that this solution covers all points in R, and a subset
C ⊆ B such that ωb(C) ≥ mb = m− λ(R). Thus the coverage for I ′ is at least

λ(R) + λ(C) = λ(R) + ωb(C) ≥ λ(R) + mb = m.

We now turn to part (a). Fix a feasible solution (B′
i)i∈[t] to I ′. Let M1 ⊆ X denote the

subset consisting of each point covered by a ball in B′
i, for 1 ≤ i ≤ t− 1. Let M2 = X \M1.

Each point in M2 is either an outlier or is covered by a ball in B′
t. Note that in the sequence

σ = ⟨p1, p2, . . . , p|X|⟩, the points of M1 and M2 may appear in an interleaved fashion. Let
pi1 , pi2 , . . . , pi|M2| be the subsequence restricted to the points in M2. Let k′ = min{kt, |M2|},
and let M+

2 = {pi1 , pi2 , . . . , pik′}. A key observation is that λ(M+
2) is at least as large as the

total weight of the points in M2 covered by balls in B′
t. This is because each ball in B′

t has
radius 0 and can cover only one point in M2; and the maximum coverage using such balls is
obtained by placing them at the points in M2 with the highest weights, i.e, M+

2 . Without
loss of generality, we assume that B′

t consists of balls of radius 0 placed at each point in M+
2 .

Now, let the index ℓ∗ := ik′ . We now argue that the instance I(ℓ∗) of colorful (t − 1)-
NUkC is feasible. In particular, we argue that (B′

i)i∈[t−1] is a solution. Consider the set
R = {p1, p2, . . . , pℓ∗} of red points in I(ℓ∗). Each point in R is either in M1 or in M+

2 ,
and is therefore covered by (B′

i)i∈[t]. It follows that (B′
i)i∈[t−1] covers at least |R| − |B′

t| ≥
|R| − |kt| = mr points of R. In other words, the red weight in I(ℓ∗) covered by (B′

i)i∈[t−1] is
at least mr.

Now consider the set B = {pℓ+1, pℓ+2, . . . , p|X|} of blue points in I(ℓ∗). Let C ⊆ B

denote the blue points covered by solution (B′
i)i∈[t]. As (B′

i)i∈[t] covers points with weight at
least m in instance I ′, we have λ(R) + λ(C) ≥ m; thus, λ(C) ≥ m− λ(R) = mb. However,
the balls in B′

t do not cover any point in B. Thus, the balls in (B′
i)i∈[t−1] cover all points in

C. For any p ∈ B, we have λ(p) = ωb(p). It follows that the blue weight in I(ℓ∗) covered by
(B′

i)i∈[t−1] is at least ωb(C) = λ(C) ≥ mb. This concludes the proof of part (a). ◀

Combining Lemmas 8 and 10 from Phases 1 and 2, we obtain the following reduction
from robust t-NUkC to colorful (t− 1)-NUkC.

▶ Theorem 11. There is a polynomial-time algorithm that, given an instance I =
((X, d), (ω, m), (k1, . . . , kt), (r1, . . . , rt)) of Robust t-NUkC, outputs a collection of O(n) in-
stances of Colorful (t − 1)-NUkC with the following properties: (a) If I is feasible, then
at least one of the instances I(ℓ) = ((X, d), (ωr, ωb, mr, mb), (k1, . . . , kt−1), (r′

1, . . . , r′
t−1)) of

Colorful (t − 1)-NUkC is feasible; (b) given an α-approximate solution to some instance
I(ℓ), we can efficiently construct a solution to I that uses at most ki balls of radius at most
αri + (3α + 3)rt.

SWAT 2022

28:10 Non-Uniform k-Center and Greedy Clustering

▶ Remark 12. In part (a), the feasible solution for I(ℓ) that is constructed from the feasible
solution for I has the following useful property: for any Ball of radius r′

i = ri + 3rt in the
feasible solution for I(ℓ), the center of Ball is also the center of some ball of radius ri in the
feasible solution for I.

4 Ensuring Self-Coverage in Colorful 2-NUkC

We assume that we are given as input a Colorful 2-NUkC instance I =
((X, d), (ωr, ωb, mr, mb), (k1, k2), (r1, r2)). Recall that ωr : X → Z+ (resp. ωb : X → Z+)
is the red (resp. blue) weight function. The task in Colorful 2-NUkC is to find a solution
(B1,B2) such that (1) |Bi| ≤ ki for i = 1, 2, and (2) the point set Y ⊆ X covered by the
solution satisfies ωr(Y) ≥ mr and ωb(Y) ≥ mb, (i.e., the solution covers points with total
red weight at least mr, and blue weight at least mb.) In this section, we show that I can be
reduced to an instance of Colorful 2-NUkC with r2 = 0. The fact that each ball of radius r2
can only cover its center in the target instance is what we mean by the term self-coverage.
This reduction actually generalizes to Colorful t-NUkC, but we address the case t = 2 to
keep the notation simpler.

Our reduction proceeds in two phases. In Phase 1, we construct an intermediate instance
where we can ensure blue self-coverage. Then in Phase 2, we modify the intermediate instance
so as to obtain red self-coverage as well.

Phase 1. In this step, we call the greedy clustering algorithm using the blue weight function
ωb. In particular, we call GreedyClustering(X, X, r2, 3, ωb) (See Algorithm 1). This
algorithm returns a set of points M ⊆ X, where every p ∈M has a cluster C(p) and weight
wt(p) such that (1) {C(p)}p∈M is a partition of X; (2) for any p ∈ M , wt(p) = ωb(C(p)),
the blue weight of the cluster, and (3) d(q, p) ≤ 3r2 for any q ∈ C(p). Furthermore, the
greedy algorithm naturally defines an ordering σ = ⟨p1, p2, . . . , p|M |⟩ of M – this is the order
in which the points were added to M .

We define a new weight function λb : X → Z+ as follows: λb(p) := wt(p) if p ∈ M and
λb(p) := 0 if p ∈ X \M . Note that for p ∈M , we have wt(p) = ωb(C(p)). So the new weight
function λb is obtained from ωb by moving weight from each cluster C(p) to its center p.

Phase 1 outputs the intermediate instance I ′ = ((X, d), (ωr, λb, mr, mb), (k1, k2), (r′
1, r′

2))
of Colorful 2-NUkC, where r′

1 = r1 + 6r2 and r′
2 = 5r2. A solution (B′

1,B′
2) for I ′ is said to

be structured if it has the following properties.
1. It is a solution to I ′ viewed as an instance of Colorful 2-NUkC.
2. Let Y ⊆ X, the set of points self-covered by solution (B′

1,B′
2), consist of points p ∈ X

such that either (a) p is covered by B′
1, or (b) p is the center of some ball in B′

2. We
require that λb(Y) ≥ mb.

Thus, a structured solution covers red weight in the usual way; whereas a ball in B′
2 can only

contribute blue coverage for its center. The following lemma relates instances I and I ′.

▶ Lemma 13. (a) If instance I has a feasible solution, then the instance I ′ has a feasible
solution that is also structured. (b) Given a solution (B′

1,B′
2) for I ′ that uses at most ki balls

of radius αr′
i for every i ∈ {1, 2}, we can obtain a solution (B1,B2) for I that uses at most

ki balls of radius αr′
i + 3r2 ≤ αri + (6α + 3)r2 for i ∈ {1, 2}.

Part (b) is straightforward as the red weights are unchanged in going from I to I ′, and
the blue weights are moved by at most 3r2. (Note that we don’t require in part (b) that the
solution to I ′ be structured.)

T. Inamdar and K. Varadarajan 28:11

In the rest of this section, we establish (a). Fix a feasible solution (B1,B2) to I. Thus,
(1) |Bi| ≤ ki for i = 1, 2, and (2) the point set Y ⊆ X covered by the solution satisfies
ωr(Y) ≥ mr and ωb(Y) ≥ mb, (i.e., the solution covers points with total red weight at least
mr, and blue weight at least mb.)

Let M1 ⊆ M be the set of points p such that some point in C(p) is covered by a ball
in B1. Now let M2 = M \M1 be the set of points p such that any point in C(p) is either
covered by a ball from B2, or is an outlier. Let Xi :=

⋃
p∈Mi

C(p) for i = 1, 2. Note that
X = X1 ⊔X2.

We construct a solution (B′
1,B′

2) for instance I ′ as follows. The set B′
1 is obtained by

expanding each ball in B1 by an additive factor of 6r2. Thus, the balls in B′
1 cover X1. As

in the proof of Lemma 8, we construct a subset N ⊆ M2 of size at most |B2|. We let B′
2

consist of the balls of radius r′
2 = 5r2, each centered at a point in N . The set N will have

the following properties:

ωr(X2 ∩
⋃

Ball∈B′
2

Ball) ≥ ωr(X2 ∩
⋃

Ball∈B2

Ball) (1)

∑
p∈N

wt(p) ≥ ωb(X2 ∩
⋃

Ball∈B2

Ball) (2)

It is easy to verify that these two guarantees imply that (B′
1,B′

2) is a structured, feasible
solution to I ′:

The red weight covered by (B′
1,B′

2) is at least

ωr(X1) + ωr(X2 ∩
⋃

Ball∈B′
2

Ball) ≥ ωr(X1) + ωr(X2 ∩
⋃

Ball∈B2

Ball) ≥ mr.

The set M1 ∪N is self-covered by (B′
1,B′

2). We have

λb(M1) + λb(N) = ωb(X1) +
∑
p∈N

wt(p) ≥ ωb(X1) + ωb(X2 ∩
⋃

Ball∈B2

Ball) ≥ mb.

We now describe the construction of N and establish properties (1) and (2). At a high
level, this is similar to what we did for M+

2 in Lemma 8; but it is more involved as we need
to ensure that both properties hold.

Let B̂2 = {Ball ∈ B2 | Ball ∩X2 ̸= ∅}. The set N is obtained via Mapping Procedure,
given in Algorithm 2. In particular, we invoke Mapping Procedure(M2, σ, B̂2, {C(p}p∈M2).
We describe Algorithm 2 at a high level. First, we map every ball in B̂2 to the first (according
to σ) point q in M2 whose cluster C(q) has a non-empty intersection with the ball – this
is the definition of φ. Now, some points q ∈ M2 may get mapped by more than one ball.
Then, we create a “grouping procedure” that creates pairs (Nℓ, Dℓ) as follows. We start from
the first (according to σ) point qi that is mapped by at least one ball. We add qi to Nℓ,
and the balls that were mapped to qi to the set Dℓ. Now, if |φ−1(qi)| > 1, then we aim to
find |φ−1(qi)| − 1 additional points after qi to be added to Nℓ. Furthermore, it is important
in the analysis that these points be consecutive according to σ|M2 . The variable pending
keeps track of how many additional distinct points need to be added to Nℓ to match the
number of distinct balls in Dℓ at the current time. Thus, if |φ−1(qi)| > 1, we add qi+1 to Nℓ

as well. At this stage, it may happen that φ−1(qi+1) ̸= ∅. Then, we add φ−1(qi+1) to Dℓ,
and update the variable pending appropriately. If the variable pending becomes 0, then
|Nℓ| = |Dℓ|, at which point the inner while loop terminates. By construction, the points
added to Nℓ form a contiguous sub-sequence of σ|M2 . We add the pair (Nℓ, Dℓ) to T . At
this point, if there still exists a ball of B̂2 that does not belong to any Dj with j ≤ ℓ, we

SWAT 2022

28:12 Non-Uniform k-Center and Greedy Clustering

Algorithm 2 Mapping Procedure(M̂, σ, B̂, {C(p)}
p∈M̂

).

1: Index the points of M̂ as q1, q2, . . . according to the ordering σ

2: For every Ball ∈ B̂, φ(Ball) := qi, where qi ∈ M̂ is the first point q s.t. Ball ∩ C(q) ̸= ∅
3: ℓ = 0; T ← ∅
4: while there exists a Ball ∈ B̂ that does not belong to any Dj with j ≤ ℓ do
5: ℓ← ℓ + 1
6: qi ∈ M̂ \

⋃ℓ−1
j=1 Nℓ be the first point q with |φ−1(q)| > 0

7: pending ← |φ−1(qi)| − 1
8: Nℓ ← {qi}, Dℓ ← φ−1(qi)
9: while pending > 0 and i + 1 ≤ |M̂ | do

10: i← i + 1
11: pending← pending + |φ−1(qi)| − 1
12: Nℓ ← Nℓ ∪ {qi}, Dℓ ← Dℓ ∪ φ−1(qi)
13: end while
14: Add (Nℓ, Dℓ) to T
15: end while
16: Return T

start the construction of the next pair (Nℓ+1, Dℓ+1). Note that in all but the last iteration
of the outer while loop, it holds that |Nℓ| = |Dℓ|. However, in the last iteration t, the loop
may terminate with |Nt| ≤ |Dt|.

The invocation of Mapping Procedure(M2, σ, B̂2, {C(p}p∈M2) returns T = {(N1, D1),
(N2, D2), . . . , (Nt, Dt)}. In the following observation, we summarize a few key properties of
this collection of pairs.

▶ Observation 14. T = {(N1, D1), (N2, D2), . . . , (Nt, Dt)} satisfies the following properties.
1. For each 1 ≤ ℓ ≤ t, we have ∅ ̸= Nℓ ⊆ M2; Furthermore, the points of Nℓ form

a contiguous subsequence of M2 ordered according to σ. The sets N1, N2, . . . , Nt are
pairwise disjoint.

2. For each 1 ≤ ℓ ≤ t, we have ∅ ≠ Dℓ ⊆ B̂2. The sets D1, . . . , Dt form a partition of B̂2.
3. |Nℓ| = |Dℓ| for ℓ < t, and |Nt| ≤ |Dt|.

Now we prove the following key lemma.

▶ Lemma 15. For any 1 ≤ ℓ ≤ t, the following properties hold.
A. For any ball B(c, r2) ∈ Dℓ, there exists a q ∈ Nℓ such that B(c, r2) ⊆ B(q, 5r2).

B. ωb

X2 ∩
⋃

B(c,r2)∈Dℓ

B(c, r2)

 ≤ ∑
p∈Nℓ

wt(p).

Proof. For any Ball = B(c, r2) ∈ Dℓ, qi = φ(Ball) ∈ Nℓ. By the definition of qi, it
holds that C(qi) ∩ Ball ̸= ∅. Therefore, for any point p ∈ Ball, it holds that d(p, qi) ≤
d(p, c)+d(c, p′)+d(p′, qi) ≤ r2 +r2 +3r2 = 5r2, where p′ ∈ C(qi)∩Ball. This proves property
A.

Let Xℓ := X2 ∩
((⋃

q∈Nℓ
C(q)

)
∪
(⋃

Ball∈Dℓ
Ball

))
. That is, Xℓ denotes the set of those

points in X2 that belong to the clusters of all the points in Nℓ, as well as those in the
balls in Dℓ. Now, imagine calling GreedyClustering(Xℓ, X, r2, 3, ωb). As in the proof of
Lemma 9, the main observation is that the set of clusters computed in the first |Nℓ| iterations
is exactly {C(q)}q∈Nℓ

. Thus, property B in the lemma follows from Lemma 7 applied to
GreedyClustering(Xℓ, X, r2, 3, ωb). ◀

T. Inamdar and K. Varadarajan 28:13

We now set N =
⋃

1≤ℓ≤t Nℓ. Note that

|N | =
∑

ℓ

|Nℓ| ≤
∑

ℓ

|Dℓ| = |B̂2| ≤ |B2|.

Recall that for instance I ′, we set B′
2 = {B(q, 5r2) | q ∈ N}. We now argue that N satisfies

properties (1) and (2).
By Property A of Lemma 15, we have that for any Ball ∈ B2, there is a Ball′ ∈ B′

2 such
that X2∩Ball ⊆ X2∩Ball′. Thus,

(
X2 ∩

⋃
Ball∈B2

Ball
)
⊆
(

X2 ∩
⋃

Ball∈B′
2

Ball
)

, which implies
property (1).

Using Property B of Lemma 15, we can prove property (1) as follows:

∑
p∈N

wt(p) =
∑

ℓ

∑
p∈Nℓ

wt(p) ≥
∑

ℓ

ωb

(
X2 ∩

⋃
Ball∈Dℓ

Ball
)
≥ ωb

(
X2 ∩

⋃
Ball∈B2

Ball
)

,

Phase 2. Phase 1 outputs an instance I ′ = ((X, d), (λr, λb, mr, mb), (k1, k2), (r′
1, r′

2)) of Col-
orful 2-NUkC. In Phase 2, we transform this into an instance I ′′ = ((X, d), (χr, χb, mr, mb),
(k1, k2), (r′′

1 , 0)) of Colorful 2-NUkC where the radius at the second level is 0.
In this step, we call the greedy clustering algorithm (Algorithm 1) using the red weight

function λr. In particular, we will call GreedyClustering(X, X, r′
2, 3, λr). This algorithm

returns a set of points M ⊆ X, where every p ∈M has a cluster C(p) and weight wt(p) such
that (1) {C(p)}p∈M is a partition of X, (2) For any p ∈M , wt(p) = λr(C(p)), the red weight
of the cluster, and (3) d(q, p) ≤ 3r′

2 for any q ∈ C(p). Furthermore, the greedy algorithm
naturally defines an ordering σ = ⟨p1, p2, . . . , p|M |⟩ of M – this is the order in which the
points were added to M .

We define the red weight function χr for I ′′ as follows: χr(p) := λr(C(p)) for p ∈M , and
χr(p) := 0 for p ∈ X \M . We also define ϕ : X →M as follows: ϕ(p) is the first point in M

(according to σ) such that B(p, r′
2) ∩ C(p) ̸= ∅. Note that ϕ(p) exists and d(p, ϕ(p)) ≤ 4r′

2.
We define the blue weight function χb for I ′′ as follows: χb(p) :=

∑
q∈ϕ−1(p) λb(q) for p ∈M ,

and χb(p) := 0 for p ∈ X \M .
Finally, we let r′′

1 = r′
1 + 4r′

2, and obtain the instance I ′′ = ((X, d), (χr, χb, mr, mb),
(k1, k2), (r′′

1 , 0)) of Colorful 2-NUkC. The following lemma relates instances I ′ and I ′′.

▶ Lemma 16. (a) If instance I ′ has a feasible solution that is structured, then the instance
I ′′ has a feasible solution. (b) Given a solution (B′′

1 ,B′′
2) for I ′ that uses at most ki balls of

radius αr′′
i for each i ∈ {1, 2}, we can obtain a solution (B′

1,B′
2) for I ′ that uses at most ki

balls of radius αr′′
i + 4r′

2 ≤ αr′
i + (4α + 4)r′

2 for i ∈ {1, 2}.

Again, part (b) follows from the fact that in constructing I ′′ from I ′, we move weights
by a distance of at most 4r′

2. Note that we do not claim that the solution to I ′ constructed
in part (b) is structured.

In the rest of this section, we establish part (a). Fix a feasible solution (B′
1,B′

2) for I ′

that is also structured. Our construction of a feasible solution for I ′ is analogous to what we
did in Phase 1.

Let M1 ⊆M be the set of points p such that there exists some point x satisfying (i) x is
covered by a ball in B′

1, and (ii) d(x, p) ≤ 4r′
1. Note that M1 includes any p ∈M such C(p)

contains a point covered by a ball in B′
1. Now let M2 = M \M1; note that for p ∈M2, any

point in C(p) is either covered by a ball from B′
2, or is an outlier. Let Xi :=

⋃
p∈Mi

C(p) for
i = 1, 2. Note that X = X1 ⊔X2.

SWAT 2022

28:14 Non-Uniform k-Center and Greedy Clustering

Let B̂′
2 = {Ball ∈ B′

2 | Ball ∩ X2 ̸= ∅}. We invoke Mapping Procedure(M2, σ, B̂′
2,

{C(p}p∈M2) and T = {(N1, D1), (N2, D2), . . . , (Nt, Dt)}. We let N =
⋃

1≤ℓ≤t Nℓ.
As in phase 1, we have that |N | ≤ |B̂′

2| ≤ |B′
2|. The set N also satisfies the following

property, which is the analog of Property 2.∑
p∈N

wt(p) ≥ λr(X2 ∩
⋃

Ball∈B′
2

Ball) (3)

We now construct a solution (B′′
1 ,B′′

2) for I ′′. The set B′′
1 is obtained by expanding each

ball in B′
1 by an additive 4r′

2; each ball in B′′
1 has radius r′′

1 . Note that by definition of M1,
the balls in B′′

1 cover M1. The set B′′
2 is obtained by including in it a ball of radius 0 at each

point in N . Note that |B′′
2 | = |N | ≤ |B′

2|.
We now argue that (B′′

1 ,B′′
2) provides adequate coverage. Red coverage is analogous to

blue coverage in phase 1, using property 3:

χr(M1) + χr(N) = λr(X1) +
∑
p∈N

wt(p) ≥ λr(X1) + λr(X2 ∩
⋃

Ball∈B′
2

Ball) ≥ mr.

For blue coverage, let Y ⊆ X denote the set of points self-covered by the structured,
feasible solution (B′

1,B′
2) with λb(Y) ≥ mb. We argue that for each y ∈ Y , we have

ϕ(y) ∈ M1 ∪ N . If y is covered by a ball in B′
1, then as d(y, ϕ(y)) ≤ 4r′

2, we conclude
that ϕ(y) ∈ M1 using the definition of M1. Otherwise, y is the center of some ball in
B(y, r′

2) ∈ B′
2. Assume ϕ(y) ̸∈M1. Then by the definition of ϕ, ϕ(y) is the first point p ∈M2

such that B(y, r′
2) intersects C(p). But this means ϕ(y) is the same as φ(B(y, r′

2)) computed
in Mapping Procedure(M2, σ, B̂′

2, {C(p}p∈M2). Thus, B(y, r′
2) ∈ Dℓ and ϕ(y) ∈ Nℓ for

some pair (Nℓ, Dℓ) in T . We conclude ϕ(y) ∈ N =
⋃

ℓ Nℓ.
Thus, the blue coverage of (B′′

1 ,B′′
2) is at least

χb(M1) + χb(N) ≥
∑

p∈M1∪N

ϕ−1(p) ≥
∑
y∈Y

λb(y) ≥ mb.

This completes the proof of Lemma 16 and concludes our description of Phase 2. Com-
bining Phase 1 and Phase 2, we conclude with the main result of this section.

▶ Theorem 17. There is a polynomial-time algorithm that transforms a Colorful 2-
NUkC instance I = ((X, d), (ωr, ωb, mr, mb), (k1, k2), (r1, r2)) into an instance I ′′ =
((X, d), (χr, χb, mr, mb), (k1, k2), (r′′

1 , 0)) of Colorful 2-NUkC with r′′
1 = r1 + 26r2, and has

the following properties: (a) If I has a feasible solution, then so does I ′′; (b) Given an
α-approximate solution to I ′′, we can construct, in polynomial time, a c · α-approximate
solution to I, where c > 0 is an absolute constant.

▶ Remark 18. In part (a), the feasible solution (B′′
1 ,B′′

2) to I ′ that is constructed from feasible
solution (B1,B2) to I has the following useful property: for any Ball ∈ B′′

1 , the center of Ball
is also the center of some ball in B′

1.

5 Solving Well-Separated Colorful 2-NUkC

We assume that we are given a well-separated instance I = ((X, d), (ωr, ωb, mr, mb), (k1, k2),
(r1, 0)) of Colorful 2-NUkC. The well-separatedness of the instance comes with the following
additional input and restriction – we are given an additional set Y ⊆ X as an input. The set
Y is well-separated, i.e., for any u, v ∈ Y , d(u, v) > 2r1. The additional restriction is that,
the set of centers of balls of radius r1 must be chosen from the set Y . We sketch how to
solve such an instance optimally in polynomial time using dynamic programming.

T. Inamdar and K. Varadarajan 28:15

Let z := |Y |, and let Y = {y1, y2, . . . , yz}. For 1 ≤ i ≤ z, let Xi := B(yi, r1) ∩X, and let
Xz+1 := X \

(⋃
1≤i≤z Xi

)
. Note that {Xi}1≤i≤z+1 is a partition of X.

For any X ′ ⊆ X and non-negative integers k, nr, nb, let F (X ′, k, nr, nb) be true if there
exists a subset X ′′ ⊆ X ′ of size at most k, and (red, blue) weight at least (nr, nb); and
false otherwise.4 For a particular subset X ′, the value of F (X ′, k, nr, nb) can be found in
polynomial time using dynamic programming, since the values k, nr, nb are at most n.

For (1, 0, 0, 0, 0) ≤ (i, k′
1, k′

2, nr, nb) ≤ (z + 1, k1, k2, mr, mb), let G(i, k′
1, k′

2, nr, nb) be
true if it is possible to obtain (red, blue) coverage of at least (nr, nb) from the set of
points

⋃
1≤j≤i Xj , using at most k′

1 balls of radius r1 and k′
2 balls of radius 0; and false

otherwise. Note that if G(i − 1, k′
1, k′

2, nr, nb) = true, then G(i, k′
1, k′

2, nr, nb) is trivially
true. Otherwise, suppose some points in Xi are covered. We consider two possibilities:
either (A) Xi is covered using a ball of radius r1 (note that for i ≤ z this is possible by
definition; for i = z + 1 we omit this case), and the remaining (red, blue) coverage comes
from

⋃
1≤j≤i−1 Xj , or (B) We use some 1 ≤ t ≤ min{k′

2, |Xi|} balls of radius 0 to achieve the
(red, blue) coverage of (n′

r, n′
b) from within Xi, and the remaining (red, blue) coverage comes

from
⋃

1≤j≤i−1 Xj . Note that in case (B), for a fixed guess of (t, n′
r, n′

b), the subproblem for
Xi corresponds to F (Xi, t, n′

r, n′
b) as defined in the previous paragraph, and can be solved

in polynomial time. It is straightforward to convert this recursive argument to compute
G(z + 1, k1, k2, mr, mb) into a dynamic programming algorithm that also finds a feasible
solution, and it can be implemented in polynomial time. We omit the details.

6 From (t + 1)-NUkC to Robust t-NUkC

In this section, we show an approximate equivalence of t + 1-NUkC and Robust t-NUkC.
Note that Jia et al. [12] recently showed a very similar result. However, our proof is slightly
different from theirs, and we describe it here for the sake of completeness.

▶ Lemma 19.
1. Suppose there exists an α-approximation algorithm for (t + 1)-NUkC. Then, there exists

an α-approximation algorithm for unweighted Robust t-NUkC.
2. Suppose there exists a β-approximation algorithm for unweighted Robust t-NUkC. Then

there exists a 3β + 2-approximation algorithm for (t + 1)-NUkC.

Proof. Note that the first claim is trivial, since an instance of Robust t-NUkC is a special case
of NUkC, as follows. Let I = ((X, d), (1, m), (r1, r2, . . . , rt), (k1, k2, . . . , kt)) be an instance
of unweighted t-Robust-NUkC, where m is the coverage requirement. Then, observe that it is
equivalent to the instance I ′ = ((X, d), (r1, r2, . . . , rt, 0), (k1, k2, . . . , kt, n−m)) of t+1-NUkC.
An α-approximate solution to I ′ immediately gives an α-approximate solution to I. We now
proceed to the second claim.

Consider an instance I = ((X, d), (r1, r2, . . . , rt, rt+1), (k1, k2, . . . , kt, kt+1)) of (t + 1)-
NUkC. Note that we have to cover all points of X in the instance I. First, we compute a
2rt+1-net Y of X. That is compute Y ⊆ X with the following properties: (i) d(u, v) > 2rt+1
for any u, v ∈ Y , and (ii) for any u ∈ X \ Y , there exists a v ∈ Y such that d(u, v) ≤ 2rt+1.
Let φ : X → Y be a mapping that assigns every point in X to its nearest point in Y

(breaking ties arbitrarily). Our reduction constructs the instance I ′ = ((Y, d), (1, |Y | −
kt+1), (k1, k2, . . . , kt), (r′

1, r′
2, . . . , r′

t)) of t-Robust-NUkC with at most kt+1 outliers, where
r′

i = ri + 2rt for 1 ≤ i ≤ t.

4 We use X ′′ has (red, blue) weight at least (nr, nb) as shorthand for ωr(X ′′) ≥ nr and ωb(X ′′) ≥ nb.

SWAT 2022

28:16 Non-Uniform k-Center and Greedy Clustering

We now argue that if I is feasible, then so is I ′. Fix a solution (Bi)i∈[t+1] for the original
instance I, where Bi is a set of at most ki balls of radius ri. Let Y ′ ⊆ Y be the set of points
in Y covered by (Bi)i∈[t], the balls of the t largest radii types. For each ball B(ci, ri) ∈ Bi,
we add B(φ(ci), r′

i) to obtain the set B′
i of balls; recall r′

i = ri + 2rt. Note that the resulting
solution (B′

i)i∈[t] covers the set of points Y ′. Now, let Y ′′ = Y \ Y ′ be the set of points
covered by Bt+1, the balls of radius rt+1. The distance between any two points of Y , and
thus Y ′′, is greater than 2rt+1. Therefore, a ball of radius radius rt+1 covers at most one
point of Y ′′, which implies that |Y ′′| ≤ |Bt+1| ≤ kt+1. Thus (B′

i)i∈[t] is a feasible solution for
instance I ′, with the points in Y ′′ being the set of outliers of size at most kt+1.

We now argue that from a β-approximate solution to I ′, we can efficiently construct a
(3β + 2)-approximate solution to I. Fix a solution (B′

i)i∈[t] for the instance I ′ that covers at
least |Y | − kt+1 points of Y , where B′

i consists of ki balls of radius βr′
i, for 1 ≤ i ≤ t. To

obtain a solution for the original instance I, we proceed as follows. We expand the radius of
every ball in B′

i by an additive factor of 2rt+1 to obtain Bi. Note that the resulting radius for
each ball in Bi is βri + 2βrt+1 + 2rt+1 ≤ (3β + 2) · ri. Note that if a ball in solution (B′

i)i∈[t]
covers y ∈ Y , then the additively expanded version of the ball covers every point x ∈ φ−1(y).
For every outlier point y ∈ Y not covered by (B′

i)i∈[t], we add a ball of radius 2rt+1 centered
at y to Bt+1; this ball covers all points x ∈ φ−1(y). As the number of outliers is at most
kt+1, we have |Bt+1| ≤ kt+1. The resulting solution (Bi)i∈[t+1] covers all the points of X,
and has approximation guarantee 3β + 2. ◀

References
1 Georg Anegg, Haris Angelidakis, Adam Kurpisz, and Rico Zenklusen. A technique for obtaining

true approximations for k-center with covering constraints. In Daniel Bienstock and Giacomo
Zambelli, editors, Integer Programming and Combinatorial Optimization - 21st International
Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceedings, volume 12125 of Lecture
Notes in Computer Science, pages 52–65. Springer, 2020. doi:10.1007/978-3-030-45771-6_5.

2 Sayan Bandyapadhyay. On perturbation resilience of non-uniform k-center. In Jaroslaw Byrka
and Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Con-
ference, volume 176 of LIPIcs, pages 31:1–31:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.31.

3 Sayan Bandyapadhyay, Tanmay Inamdar, Shreyas Pai, and Kasturi R. Varadarajan. A constant
approximation for colorful k-center. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 12:1–12:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.12.

4 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform
k-center problem. ACM Trans. Algorithms, 16(4):46:1–46:19, 2020. doi:10.1145/3392720.

5 Deeparnab Chakrabarty and Maryam Negahbani. Generalized center problems with outliers.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

6 Deeparnab Chakrabarty and Maryam Negahbani. Robust k-center with two types of radii.
In Mohit Singh and David P. Williamson, editors, Integer Programming and Combinatorial
Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-
21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science, pages 268–282.
Springer, 2021. doi:10.1007/978-3-030-73879-2_19.

7 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 642–651. Society for Industrial and Applied Mathematics, 2001.

https://doi.org/10.1007/978-3-030-45771-6_5
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.31
https://doi.org/10.4230/LIPIcs.ESA.2019.12
https://doi.org/10.1145/3392720
https://doi.org/10.1007/978-3-030-73879-2_19

T. Inamdar and K. Varadarajan 28:17

8 David G Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. A lottery model for
center-type problems with outliers. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

9 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

10 Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985.

11 Tanmay Inamdar and Kasturi Varadarajan. Capacitated sum-of-radii clustering: An fpt
approximation. In 28th Annual European Symposium on Algorithms (ESA 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

12 Xinrui Jia, Lars Rohwedder, Kshiteej Sheth, and Ola Svensson. Towards non-uniform k-center
with constant types of radii. In Karl Bringmann and Timothy Chan, editors, 5th Symposium
on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022,
pages 228–237. SIAM, 2022. doi:10.1137/1.9781611977066.16.

13 Xinrui Jia, Kshiteej Sheth, and Ola Svensson. Fair colorful k-center clustering. In Daniel
Bienstock and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimiz-
ation - 21st International Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceed-
ings, volume 12125 of Lecture Notes in Computer Science, pages 209–222. Springer, 2020.
doi:10.1007/978-3-030-45771-6_17.

A Setup for Robust t-NUkC

Let I = ((X, d), (1, m)(k1, . . . , kt), (r1, . . . , rt)) be an instance of Robust t-NUkC. First we
state the natural LP relaxation for I. Recall that the goal is to cover at least m points.∑

v∈X

cov(v) ≥ m∑
u∈X

xi,u ≤ ki ∀1 ≤ i ≤ t

covi(v) =
∑

u∈B(v,ri)

xi,u ∀1 ≤ i ≤ t,∀v ∈ X

cov(v) = min
{

t∑
i=1

covi(v), 1
}

∀v ∈ X

xi,u ≥ 0 ∀1 ≤ i ≤ t, ∀u ∈ X.

Let F denote the set of all tuples of subsets (S1, . . . , St), where |Si| ≤ ki for 1 ≤ i ≤ t. For
v ∈ X, and 1 ≤ i ≤ t, we say that (S1, . . . , St) ∈ F covers v with radius ri, if d(v, Si) ≤ ri.
Let Fi(v) ⊆ F denote the subset of solutions that cover v with radius ri – where, the sets
Fi(v) of solutions are assumed to be disjoint by including a solution in Fi(v) of the smallest
index i, if it appears in multiple such sets.

If the instance I is feasible, then the integer hull of the coverages, PI
cov as given below,

must be non-empty.

PI
cov :

∑
v∈X

∑
i∈[t]

covi(v) ≥ m

∑
S∈Fi(v)

zS = covi(v) ∀i ∈ [t],∀v ∈ X

∑
S∈F

zS = 1

zS ≥ 0 ∀S ∈ F

SWAT 2022

https://doi.org/10.1137/1.9781611977066.16
https://doi.org/10.1007/978-3-030-45771-6_17

28:18 Non-Uniform k-Center and Greedy Clustering

Next, we give a few definitions from [6], generalized to arbitrary t ≥ 2, for the sake of
completeness. These definitions are used in the round-or-cut framework that reduces an
instance of Robust t-NUkC to Well-Separated Robust t-NUkC, as described in Section B.

t-Firefighter Problem. The input is a collection of height-t trees, where L1 is the set of roots,
and for any v ∈ Li with i ≥ 1, aj(v) represents the ancestor of v that belongs to Lj , where
1 ≤ j ≤ i (ai(v) = v). Furthermore, let w : Lt → N be a weight function on the leaves. For a
root u ∈ L1, we use Leaf(u) to denote the set of leaves, i.e., nodes in Lt in the tree rooted at u.
Note that the {Leaf(u) : u ∈ L1} partitions Lt. Thus, ((L1, . . . , Lt), (a1, a2, . . . , at), Leaf, w)
completely describes the structure of the tree, where ai(v) :

⋃
i≤j≤t Lj → Li is an ancestor

function as defined above. Now we define the t-FF problem.

▶ Definition 20 (t-FF Problem). Given height-t trees (T = (L1, . . . , Lt), (a1, . . . , at), Leaf, w),
along with budgets (k1, . . . , kt), we say that T = (T1, . . . , Tt), with Ti ⊆ Li is a feasible
solution, if |Ti| ≤ ki for 1 ≤ i ≤ t. Let C(T) = {v ∈ Lt : ai(v) ∈ Ti for some 1 ≤ i ≤ t} be
the set of leaves covered by the solution. Then, the objective is to find a feasible solution
maximizing the weight of the leaves covered. This instance is represented as I = (T =
((L1, . . . , Lt), (a1, . . . , at), Leaf, w), (k1, . . . , kt)),

▶ Definition 21 (The solution y). Given cov, and a collection T of rooted trees, let L1 denote
the set of roots, and let Li, i > 1 denote the set of vertices at j-th level. Furthermore, for any
node v ∈ Li with i > 1, let aj(v) denote the ancestor of v that belongs to Lj , where 1 ≤ j < i.
Then, the solution y is defined as follows.

y(v) =

cov1(v) if v ∈ L1

min
{

covi(v), 1−
∑

j<i covj(aj(v))
}

if v ∈ Li, i > 1

▶ Definition 22 (The Sparse LP).

max
∑

v∈Lt

w(v)Y (v)

∑
u∈L1

yu ≤ k1 − t

∑
u∈Li

yu ≤ ki ∀2 ≤ i ≤ t

Y (v) := yv +
t−1∑
i=1

yai(v) ∀v ∈ Lt

We now describe two subroutines that are used in the Reduction from Robust t-NUkC to
Well-Separated Robust t-NUkC. We use the same notation and convention as in [6]. These
two algorithms (Algorithm 3 and Algorithm 4) are named after Hochbaum, and Shmoys [10];
and Chakrabarty, Goyal, and Krishnaswamy [4], respectively.

We construct the t-FF instance based on the sets Li’s constructed, as follows. Consider
some 1 ≤ i ≤ t−1, and some u ∈ Li. Then, for every v ∈ Childi(u), we make v a child of u in
a tree T . Note that L1 is the set of roots of the trees constructed in this way. Then, we define
Leaf(u) = {v ∈ Lt : v is a leaf in the tree rooted at v }, and let ai : Lt →

⋃
i≤j≤t Lj be the

ancestor function as defined above. Finally, for every u ∈ Lt, let w(u) = |Childt(u)|. Then,
we return the t-FF instance I = (T = ((L1, . . . , Lt), (a1, . . . , at), Leaf, w), (k1, . . . , kt)).

T. Inamdar and K. Varadarajan 28:19

Algorithm 3 HS(Metric space(X, d), r ≥ 0, assignment cov : X → R+).

1: R← 0
2: while U ̸= ∅ do
3: u← arg maxv∈U cov(v)
4: R← R ∪ {u}
5: Child(u)← {v ∈ U : d(u, v) ≤ r}
6: U ← U \ Child(u)
7: end while
8: return R, {Child(u) : u ∈ R}.

Algorithm 4 CGK.

Input: Robust t-NUkC instance I = ((X, d), (ω, m), (r1, . . . , rt), (k1, . . . , kt)),
(α1, . . . , αt), where αi > 0 for 1 ≤ i ≤ t,
cov = (cov1, . . . , covt), where each covi : X → R+

1: for i = t downto 1 do
2: (Li, {Childi(v) : v ∈ Li})← HS((X, d), αiri, cov′

i :=
∑i

j=1 covj)
3: end for
4: Construct and Return a t-FF instance using {Li, Childi}1≤i≤t as described below.

B From Robust t-NUkC to Well-Separated Robust t-NUkC

In this section, we use the round-or-cut framework of [6] to give a Turing reduction from Robust
t-NUkC to (polynomially many instances of) Well-Separated Robust t-NUkC. Furthermore,
c-approximation for a feasible instance of the latter problem will imply an O(c)-approximation
for the original instance of Robust t-NUkC.

Round-or-Cut Framework. Let I = ((X, d), (1, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)) be the
given instance of Robust t-NUkC (we assume that we are working with unit-weight instance,
where we want to cover at least m points of X). We adopt the round-or-cut framework of [6]
(also [5]) to separate an LP solution from the integer hull of coverages (see Section A in
the appendix for the definitions thereof). Even though [6] discuss this for t = 2, it easily
generalizes to arbitrary t ≥ 2. Thus, we only sketch the high level idea.

Let cov = (cov1, cov2, . . . , covt : ∀v ∈ X) be a candidate solution returned by the ellipsoid
algorithm. First, we check whether cov(X) ≥ m, and report as the separating hyperplane if
this does not hold. Now, we call CGK Algorithm (see Section A) with α1 = 6, and αi = 2
for all 2 ≤ i ≤ t to get a t-FF instance (T = ((L1, . . . , Lt), (a1, . . . , at), Leaf, w), (k1, . . . , kt)).
Here, for any i ∈ [t], any distinct p, q ∈ Li satisfy that d(p, q) > 3ri. Then, we let
{yv : v ∈

⋃
i Li} be the solution as defined in Section A, see Definition 21. Now we check if

covi(Li) ≤ ki for i ∈ [t], and report if any of these t inequalities is not satisfied. Finally, the
algorithm checks the value of y(L1), and branches into the following two cases.

In the first case, if y(L1) ≤ k1 − t, then as argued by [6], it can be shown that a sparse
LP that is related to the t-FF problem (see Definitions 20 and 22) admits an almost-integral
solution. That is, a basic feasible solution to the sparse LP contains at most t strictly fractional
variables. By rounding up all such variables to 1, one can obtain an O(1)-approximation for
the original instance I. Note that here we need the assumption that the ratio between the
values of consecutive radii is at least β – otherwise we can merge the two consecutive radii
classes into a single class.

SWAT 2022

28:20 Non-Uniform k-Center and Greedy Clustering

In the second case, y(L1) > k1 − t. In this case, we use a generalization of an argument
from [6] as follows. We enumerate every subset Q ⊆ X of size at most t− 1, and add a ball
of radius r1 around each point in Q. Let X ′ be the set of points covered by balls of radius
r1 around Q. Then, we modify the weight of the points of X ′ to be 0, and let 1X\X′ be
the resulting weight function. Let I(Q) = ((X, d), (1X\X′ , m− |X ′|), (2r1, r2, . . . , rt), (k1 −
|Q|, k2, . . . , kt)) be the resulting residual instance of Well-Separated t-NUkC, where the well-
separatedness property imposes that the 2r1 centers must be chosen from Y := L1 \Q – note
that the distance between any two distinct points in L1, and thus Y , is at least 6r1 = 3 · 2r1,
i.e., the set Y is well-separated w.r.t. the new radius r1. An argument from [6] implies that
if I is feasible, then either (a) at least one of the well-separated instances I(Q) is feasible for
some Q ⊆ X of size at most t− 1, or (b) the hyperplane y(L1) ≤ k1 − t separates the LP
solution cov from the integer hull of coverages. Furthermore, an argument from [6] implies
that a constant approximation to any of the instances implies a constant approximation to I.

Note that the ellipsoid algorithm terminates in polynomially many iterations, and each
iteration produces at most nt instances of Well-Separated Robust t-NUkC. Thus, we get the
following theorem.

▶ Theorem 23. Suppose there exists an algorithm that, given an instance J of Well-Separated
Robust t-NUkC, in time f(n, t), either finds an α-approximation to J , or correctly determines
that J is not feasible. Then, there exists an algorithm to obtain an c · α-approximation for
any instance of Robust t-NUkC, running in time nO(t) · f(n, t).

	1 Introduction
	2 Definitions, Main Result, and Greedy Clustering
	2.1 Problem Definitions
	2.2 Main Algorithm for 4-NUkC
	2.3 Greedy Clustering

	3 From Robust t-NUkC to Colorful (t-1)-NUkC
	4 Ensuring Self-Coverage in Colorful 2-NUkC
	5 Solving Well-Separated Colorful 2-NUkC
	6 From (t+1)-NUkC to Robust t-NUkC
	A Setup for Robust t-NUkC
	B From Robust t-NUkC to Well-Separated Robust t-NUkC

