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SUMMARY

Experimental design usually focuses on the setting where treatments and/or other aspects of interest can be
manipulated. However, in observational biomedical studies with sequential processing, the set of available
samples is often fixed, and the problem is thus rather the ordering and allocation of samples to batches such
that comparisons between different treatments can be made with similar precision. In certain situations,
this allocation can be done by hand, but this rapidly becomes impractical with more challenging cohort
setups. Here, we present a fast and intuitive algorithm to generate balanced allocations of samples to
batches for any single-variable model where the treatment variable is nominal. This greatly simplifies the
grouping of samples into batches, makes the process reproducible, and provides a marked improvement
over completely random allocations. The general challenges of allocation and why good solutions can be
hard to find are also discussed, as well as potential extensions to multivariable settings.
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1. BACKGROUND

A common aim of experimental design is to find an appropriate configuration of runs to study a particular
situation, for example, treatment vs. placebo (Rosenberger and Lachin, 2016; Bailey, 2008). For example in
clinical trials, subjects enter an experiment sequentially and are randomized to treatments. Major concerns
in such settings are treatment balance (e.g., a certain ratio of active treatment vs. placebo), selection bias
(assignment to a particular treatment is not based on subject characteristics), and ascertainment bias (the
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2 B. BURGER AND OTHERS

Designed experiment Observational study

Subjects enter experiment sequentially

Subjects are randomised to treat-
ments as they enter the experiment

Samples are taken, and mea-
surements recorded, per subject

Data is analysed, taking into account
randomisation of subjects to treatments

Subjects receive treatment, and samples
are collected, in routine practice

Samples are stored in a biobank,
and selected at a later timepoint;

treatment group sizes depend
on availability in the biobank

Samples are randomised to
batches before processing

Data is analysed, taking into account
randomisation of samples to batches

Fig. 1. Examples of a designed experiment and an observational study, highlighting key conceptual differences and
settings related to subject and sample randomization.

assessment of the outcome can be biased if the treatment is known) (Rosenberger and Lachin, 2016).
However, in observational biomedical studies, it is not uncommon that sample collection and sample
processing are distinct parts of the study (Figure 1). For example, samples can be collected from subjects
during routine practice, possibly as part of a biobanking effort, in which case treatment or disease status
is part of the general subject characteristics, instead of being assigned to subjects in the course of the
experiment (Krokstad and others, 2012; Rønningen and others, 2006; Sudlow and others, 2015). Such
biobank-scale studies provide the opportunity to analyze differences and commonalities between related
diseases, for example, across a spectrum of neurodegenerative diseases, and obtain a level of information
that would most likely be impossible to achieve in a single study.

In these types of studies, the samples are often processed using omics technologies, which have their
own distinct limitations concerning sample preparation and processing. For example, in proteomics and
metabolomics using mass spectrometry the sample processing order can have a distinct influence on the
measurements (Surowiec and others, 2018; Mertens, 2017). Similarly, sample preparation in the lab is
labor intensive, with subsets of the samples potentially being processed by different people or spread
across multiple days. Multiplexing samples, i.e., processing several samples together using chemical tags
to subsequently deconvolve which molecules came from which sample, is currently limited to 18 samples
(Li and others, 2021), and also has additional design challenges (Burger and others, 2021; Zhang and
others, 2020).

Thus, the need often arises to split a study into smaller parts, which means having to decide which
samples to process together. These distinct sets of samples are referred to as batches, and a key challenge
is how to best design such batches for a given study where the set of available samples is fixed. Hence,
treatment balance, selection bias, and ascertainment bias are still major concerns in this setting, but now
with a focus on randomizing the collected samples to processing batches.

When a batch contains multiple sets of samples from each treatment regime, multiple equal parts of
the batch, referred to as blocks, can separately be randomized using block randomization (Bailey, 2008;
Box and others, 2005). However, the batches cannot always be divided into equal blocks, for example,
when there are samples from five treatment regimes, while only eight samples can be processed at the
same time. Hence, batches can, but do not necessarily, contain blocks.

The setting under consideration here is therefore different from what is generally assumed in the
experimental design literature, where treatments can be assigned to subjects/samples, or settings can be
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Automated splitting into batches 3

changed in subsequent experimental runs (Bailey, 2008; Box and others, 2005). In such settings, the
challenge is to find an allocation of treatments to possible subjects, while in our case the subjects and their
treatments are already fixed before sample collection. Common to both settings is the need to randomize
to avoid systematic bias, selection bias, accidental bias, and cheating by the experimenter (Bailey, 2008).

Thus, the sample processing order, and, if necessary, the creation of batches, are key when designing
these types of studies. Furthermore, it is essential to avoid the introduction of confounders that bias the
interpretation (Bailey, 2008; Box and others, 2005; Burger and others, 2021). While this can be achieved
by domain experts, such ad hoc sample allocation is vulnerable to experimenter bias and does not scale
to large numbers of samples, for example, for biobank-scale analyses. In such situations, an automated
procedure is therefore required to quickly generate an allocation where all treatments and treatment
contrasts can be estimated with similar precision. This will from here on be referred to as an optimal
allocation, even though what is optimal for a given study can deviate from the setting under consideration
here.

The available software tools for assigning subjects to blocks generally do so in the context of assigning
treatment to subjects sequentially entering an experiment. In practice, for observational biomedical studies,
the set of available samples is however often constrained or fixed, leaving the experimentalist with no choice
but assigning them ad hoc. One notable exception, mainly in the context of genomics and transcriptomics,
is Yan and others (2012), presenting a tool for block randomization for 2D settings. Here, we provide
guidance for the 1D setting and analyze the specific challenges encountered.

Given the cohort and the maximum batch size of a study, the batch composition and sample order
should (i) avoid unintended confounding and (ii) yield interpretable results even if something does not
go as planned, for example, if (part of) a batch has to be discarded. In other words, each batch should
present the highest diversity of treatments and the distribution of treatments should be as homogeneous as
possible among the different batches. These are the same considerations as for generating blocks in block
randomization, but it will often not be possible to have the same distribution of treatments in each batch.
Similarly, while in this step we only consider the allocation of treatments to batches, the next step would
be to use a process similar to stratified randomization to assign subjects/samples to fill the relevant places
in the batches (Bailey, 2008; Box and others, 2005; Burger and others, 2021).

In this particular setting, the ideal situation is therefore when each treatment can be equally distributed
across all of the batches, i.e., each batch contains Ni/B subjects, with i : 1, . . . , T , where T is the number
of treatments, Ni the number of subjects in treatment i, and B the number of batches. For example, if
there are 96 samples from five treatment regimes and we can only process eight samples at a time, for
example, when using 8-well plates, each treatment regime is represented by x × 12 samples, as each plate
can then contain the exact same combination of treatment regimes. However, this is only possible if, for
all i, B divides Ni. If this is not the case, not all batches will be the same and it can become challenging
to distribute the samples manually.

A natural simplification of the allocation problem follows directly from the above: if B divides Ni, Ni/B
subjects receiving treatment i are allocated to each batch; however, if B is larger than Ni, there are more
batches than subjects receiving treatment i. In order to have the batches as similar as possible, the subjects
receiving treatment i should all be allocated to different batches, i.e., each batch should contain at most
one subject receiving treatment i.

On the other hand, if the number of subjects receiving treatment i (Ni) is larger than the number
of blocks (B), at least one subject receiving treatment i can and should be allocated to every batch. In
fact, this is a combination of the two previous situations where the quotient of Ni/B subjects receiving
treatment i is allocated to each batch, and the remainder of Ni/B batches contain one more subject receiving
treatment i.

The above simplification splits the allocation problem into two parts. First, for each treatment i, the
quotient of Ni/B subjects having received treatment i is allocated to each batch. In the following, we will
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4 B. BURGER AND OTHERS

refer to this step as the preallocation. Second, allocate the remainders of Ni/B subjects for each treatment
i. The remainders are by definition all less than the number of batches, thus, the remaining problem is one
of finding an appropriate design given the samples and batch sizes. As the allocation in the preallocation
step is identical for all batches, it has no influence on the performance of the subsequent allocation for the
remaining subjects.

Note that we use “allocate subjects having received treatment i” as a shorthand. All subjects having
received treatment i are assumed exchangeable, and thus we are really only allocating “a spot in a batch
reserved for a subject having received treatment i.” The actual allocation of subjects can be done in a later
step using a stratified randomization algorithm (see e.g., Rosenberger and Lachin, 2016).

This design is binary because all treatments occur at most once in each batch, and the blocks are
incomplete in the sense that not all treatments can occur in a single batch (Bailey, 2004); as in this case
all batches consist of a subset of the treatments, this can be seen as a binary incomplete-block design. If
all treatments have the same number of subjects left to allocate, a balanced incomplete-block design with
a known allocation strategy may exist (see Colbourn and Dinitz (2007) for an overview). Otherwise, trial
and error may be required to allocate the treatments in such a way that every treatment shares a batch with
every other treatment in proportion to their sample size. Each batch then becomes its own small version
of the main study.

If each batch contains the same number of samples, each treatment occurs an equal number of times
in the entire study, and the number of times two treatments occur together in a batch is the same for all
pairs of treatments, this is called a balanced block design (Bailey, 2008). Whether each treatment occurs
an equal number of times depends on many factors. Here, we assume that this is not necessarily the case
and that the cohort, the set of samples included in the study, is fixed at the time of allocation. Additionally,
whether each batch contains the same number of samples is dependent on the maximum batch size and
the total number of subjects in the study.

An allocation that makes it possible to estimate one treatment variable with the highest precision, for
example, an administered drug, may force an undesired allocation for another, for example, treatment
duration. When the analytical model contains multiple variables, several competing aspects of the allo-
cation thus have to be optimized, which leads to further complications. Similarly, when the treatment
variables can take continuous values, this would be equivalent to subjects having unique values, using
these variables as-is would mean that every subject could be considered unique and that all possible allo-
cations would have to be considered. Categorization is commonplace (if only for the purpose of blocking)
but has its drawbacks due to the introduction of fixed (possibly arbitrary) cut-points.

From a mathematical point of view, the main difficulty in assigning subjects to batches is that it is
not possible to have fractional assignments of samples. The allocation problem thus becomes an integer
programming problem, i.e., x subjects of treatment i are to be allocated to batch k , where x is an integer.
As one can only assign one or zero subjects of a treatment to each batch, with constraints on batch sizes
and sample sizes, all options may have to be considered to find a solution that makes it possible to estimate
the desired treatment contrasts with the highest possible precision given the study constraints. The search
space for this problem thus grows exponentially as a function of the number of treatments and batches,
i.e., this problem is NP-complete (Karp, 1972).

Optimal allocations are known for specific balanced settings (e.g., Bailey, 2004). However, when the
cohort and batch sizes are not compatible with a standard setting the only option is to evaluate all possible
allocations. Even though the search space can be limited to a binary allocation problem, for the single-
variable setting with a nominal treatment variable (i.e., when one has Treatment A, B, C, …), the number
of options would still be

∏ ( T
bk

)
, with T the number of treatment levels and bk the number of samples in

batch k . This quickly grows too large to calculate within a reasonable timeframe. By using the number
of pairwise comparisons between all pairs of treatments as the guide for batch allocations, the number of
possible solutions can be reduced to

∑ ( T
bk

)
.
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To address this challenge, we have implemented a heuristic algorithm to iteratively allocate a fixed
cohort to batches based on a single nominal treatment variable.A heuristic cannot guarantee that an optimal
allocation will be found, nor that it will produce better results than a random algorithm in every situation.
Thus, we propose an approach where, in cases where manual allocation is challenging and calculating
an optimal allocation is not feasible, our heuristic algorithm is run multiple times and the best of the
generated allocations is selected.

2. METHODS

2.1. Notation

In the following, we denote the total number of batches by B, the vector of batch sizes by b, and the index
of a specific batch by k = 1, . . . , B. Similarly, the total number of treatments is denoted by T , with t
the vector of sample sizes for each treatment i, and i = 1, . . . , T , the index of a specific treatment. In
addition, several standard matrices for different aspects of the allocation are used as detailed in Bailey
(2004): (i) the incidence matrix N B×T , with the treatments along with the columns and batches along the
rows, indicates for each treatment the number of times it occurs in each batch, (ii) the concurrence matrix
�T×T , with treatments along the rows and columns, indicates for each pair of treatments how often they
occur together in a batch. The diagonal of � is Ni, the number of subjects receiving treatment i. When
each treatment occurs at most once in each batch, a so-called binary block design, the concurrence matrix
� = N T N .

2.2. Complexity reduction

If the complete cohort is allocated to batches in one step, the number of options to consider would be in
the order of

∏ ( T
bk

)
. Conversely, when allocating one batch at a time, and at every step allocating a set

of treatments together, the number of possible solutions to search decreases dramatically to
∑ ( T

bk

)
. Note

that this however comes at the cost of possibly missing the optimal allocation for the complete cohort,
which will be detailed in the discussion. The number of calculations per batch can further be reduced to
the order of

(T
2

)
by instead allocating one subject at a time. The optimal set of treatments to allocate to a

batch, given the previously allocated batches, but ignoring the subjects still to allocate, is in this context
the set of treatments with the fewest pairwise comparisons between them.

2.3. Heuristic algorithm for sample allocation

There are three main steps to our heuristic algorithm, as shown in Figure 2: (i) preallocation, (ii) stochastic
batch allocation, and (iii) combining the results. The input to the heuristic are the two vectors t and b,
where t is the number of subjects in each treatment group, and b is the number of subjects that will be
allocated to each batch. The details are indicated in the flow chart in Figure 3.

The first step is to perform preallocation (Figure 2A), by updating t to t∗, as t = Bq + t∗, with B the
number of batches, all i ∈ 1, . . . , T : 0 ≤ t∗

i < B, and q the vector containing, for each treatment group,
the number of subjects allocated to each batch. Similarly, b is updated to b∗, as b∗ = b − q. The initial
incidence matrix N ∗ is then obtained as 1BqT , and � and N are initialized as 0T×T and 0B×T , respectively.

In the second step, the remaining subjects are allocated one batch at a time, for k = 1, . . . , B. As each
treatment now has fewer subjects remaining than there are batches, this is a binary allocation problem
where each treatment is allocated at most once per batch. The treatments that can still be chosen are kept
in the set S, while the chosen treatments in a batch are iteratively added to the set C (and removed from
S). First treatments where t∗

i = B − (k − 1) and those that have not yet been chosen (which have a zero
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6 B. BURGER AND OTHERS

Subjects Batches Subjects Batches Batches

Preallocation Stochastic Batch Allocation Result

Fig. 2. Overview of the three main steps of the proposed heuristic algorithm. Subjects receive one of six treatments
(indicated by color). The vector t containing the number of subjects per treatment is [5, 6, 7, 8, 9, 9]. The vector b
containing the batch sizes is [8, 8, 7, 7, 7, 7]. The preallocation step is part of the initialization of the algorithm, the
SBA shows the part of the allocation problem our heuristic algorithm finds a solution for. Combining the two steps
leads to a proposed batch allocation.

on the diagonal of the concurrence matrix) are allocated. In case no treatments have been selected yet, a
pair of treatments is chosen with the lowest value in �. Subsequent treatments are chosen one at a time
by taking the treatment with the lowest column-sum in �C,S. The incidence and concurrence matrices
are updated every round, after choosing all treatments for a batch. When all batches have been allocated,
the final incidence matrix is the sum of N ∗ and N . As this is a heuristic for structured stochastic batch
allocation, we call it SBA.

2.4. Performance evaluation

As the proposed algorithm is a heuristic, it cannot guarantee an optimal allocation. Ideally, one would
therefore calculate the optimal allocation and compare it to the allocations from the proposed heuristic.
Unfortunately, this is only possible for small and/or balanced experimental settings. SBA was therefore
instead compared to a random allocation strategy where the preallocation is done as specified above
followed by a random binary allocation (RBA). Note that a completely random allocation of cohort to
batches can lead to allocations with confounding and was found to perform worse than either of the two
algorithms considered here, the results are therefore not shown.

The comparison of the allocation procedures was done by comparing the D-criterium score of the
allocation for a standard model including intercept, treatment, and batch. D-criterium is here calculated
as the determinant of the information matrix X T X , with X the design matrix. The determinant of the
inverse of the information matrix is the generalized variance. Minimizing that determinant is equivalent
to maximizing the determinant of the information matrix (Goos, 2002; Pukelsheim, 2006). The design
matrix consists of subjects in rows and variables in the columns. Categorical variables are recoded into
dummy/indicator variables, and the indicators for batches that are suggested by our algorithm are part of
this matrix. This makes the ranking of the allocations possible, without needing further calculations to get
the proper score. When the D-criterium is zero, there is confounding and not all aspects of the model can
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Input:
t = sample sizes
b = batch sizes

Initialisation and preallocation:
t = Bq + t∗, with ∀i ∈ {1, . . . , T} : 0 ≤ t∗

i < B
b∗ = b − q
N∗ = 1BqT

N = 0B×T

Λ = 0T×T

k = 0

Allocation loop:
k < B

Batch initialisation:
k+ = 1
S = {i|t∗

i > 0}
C = {i ∈ S|t∗

i = B − (k − 1)}
D = {i ∈ S ∩ C|λi,i = 0}

Final allocation:
N + N∗

Any treatment
not yet chosen?
D = ∅

|D| ≥ b∗
k − |C|

C = C ∪ D
C = C ∪ {random draw from D

of size b∗
k − |D|}

Batch not yet full?
|C| < b∗

k

|C| = ∅ b∗
k = 1

C = {random draw from
{i ∈ S, j ∈ S|

λi,j = min({λi′,j′ |i ∈ S, j ∈ S, i = j })}}

C = {random draw from
{i ∈ S|λi,i = min({λi′,i′ |i ∈ S})}}

|C| < b∗
k

C = C ∪ {random draw from
{i ∈ S ∩ C| ∑ΛC,i = min({∑ΛC,i′ |i ∈ S ∩ C})}}

Add batch:
Nk,C + = 1
∀i ∈ C, j ∈ C : Λi,j + = 1
t∗
C − = 1

yes

no

yes

no
no

yes

yes

no

yes
no no

yes

no yes

Fig. 3. Overview of the proposed heuristic algorithm. The initialization step includes the preallocation, the main
allocation loop describes our proposed heuristic algorithm, and the resulting incidence matrix is the final proposed
batch allocation. See main text for details.
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8 B. BURGER AND OTHERS

Table 1. The four settings considered for the allocation simulations. The search
space is estimated by

∏ ( T
bk

)
. Timings are median times in seconds required to

complete one run of 1000 allocations, calculated over 1000 runs

Setting Sample sizes per group (the vector t)
Max batch Search Median time (s)

size space RBA SBA

A 6, 6, 6, 6, and 6 3 109 0.02 0.08
B 10, 10, 10, 10, 10, 10, 10, 10, 10, and 10 5 1045 0.55 0.60
C 6, 7, 8, 8, and 9 3 1012 0.02 0.12
D 5, 5, 8, 8, 10, 10, 12, 12, 15, and 15 5 1045 9.38 0.55

A B C D E

Treatment

1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
3
4
5
6
7
8
9
10

Batch

Fig. 4. The optimal batch allocation (with ordered batches) for a standard balanced incomplete-block setting with
six replicates of five treatments and a batch size of three. Here, each batch contains a single block, as in block
randomization.

be estimated. When it is different from zero, higher numbers indicate better designs for a specific setting,
but the values for different settings are not directly comparable.

The search space is estimated by
∏ ( T

bk

)
after preallocation. This overestimates the actual number of

calculations needed but serves well as a proxy for the actual search space.

2.5. Evaluated settings

In order to evaluate our approach with regards to handling settings that differ in terms of balance and
sample size, and thus different aspects of the allocation, four example settings were chosen (Table 1),
none of which can be simplified by the preallocation step. A note on how confounding can occur in these
settings can be found in Section 4.

Setting A, was chosen to evaluate how efficiently SBA can find an optimal allocation where one can
easily be found by hand, and consists of 5 treatment groups with 6 subjects, each divided over 10 batches of
size 3. The optimal allocation for this setting is presented in Figure 4, where every possible binary batch
allocation occurs exactly once and corresponds to a balanced incomplete-block design. The algorithm
does not have a separate check to see whether there is a simple solution for a balanced incomplete-block
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Automated splitting into batches 9

design as presented here, so while the given setting is trivially solved by hand, the algorithm handles it in
a generic fashion.

Setting B is a larger incomplete-block design with equal treatment group sizes, consisting of 10 treat-
ment groups of 10 subjects each and a maximum batch size of 5. A balanced incomplete-block design
analogous to the previous setting would require 252 batches and 126 subjects per group. Instead, here,
each group has 10 subjects, which does not allow for a balanced design. The calculation of the highest
achievable D-criterium score could take several months due to the very high number of possible allocations
and was therefore not calculated. This setting tests a balanced setting, which is more challenging to do
by hand.

Setting C was designed to test a smaller imbalanced setting, an incomplete-block design with
unequal treatment sizes. As in Setting A, there are five groups and a maximum batch size of three,
but the treatment sizes are 6, 7, 8, 8, and 9. No preallocation is performed as the number of batches
is larger than the largest treatment group. This setting tests whether SBA can get stuck in sub-
optimal allocations due to the different treatment sizes. Again, the search space precludes calculating
the optimal allocation, hence the only comparison that can be made is with the random allocation
strategy.

Setting D was designed like Setting B, to test a larger incomplete-block design with unequal treatment
sizes, but here subjects are reallocated such that the treatments now consist of two groups each of sizes 5,
8, 10, 12, and 15. Again, no preallocation is performed, as the number of batches is larger than the largest
treatment group. Similar to Setting C, this tests whether SBA can get stuck in suboptimal allocations due
to the different treatment sizes, but here the differences in treatment sizes are larger.

2.6. Code availability

All of the code required to perform allocations for an experimental setting with a single nominal treatment
variable, and to confirm the results presented here, is implemented in Julia 1.5.3 https://julialang.org and
freely available, including additional documentation, at https://github.com/barsnes-group/sba.

3. RESULTS

To validate the output of our heuristic algorithm (SBA), four settings were considered (Table 1): (A)
a balanced incomplete-block design with a cohort consisting of 30 subjects equally spread over five
treatment groups; (B) an equireplicate incomplete-block design with a cohort consisting of ten treatment
groups with ten subjects each; (C) incomplete-block design with unequal treatment sizes; and (D) a larger
incomplete-block design with unequal treatment sizes. For details on how the four example settings were
selected, please see the Methods section.

To illustrate the performance of SBA vs. a random binary allocation (RBA), 1000 allocations were
calculated for each of the settings. To show the variability of the results, 1000 runs, where each run picks
the best out of 1000 allocations based on the D-criterium, were performed for each of the settings. Note that
across all of the runs, neither RBA, nor SBA, produced a confounding allocation for any of the settings.

For Setting A, the optimal allocation, given by the incidence matrix in Figure 5, has a D-criterium score
of 7 381 125. In a single run, the optimal allocation was produced in 5% and 96.4% of the single runs for
RBA and SBA, respectively (Figure 5A). Thus, while both algorithms can produce an optimal allocation,
SBA does so more often. Across the 1000 iterations of 1000 runs, both algorithms always reached the
maximum score, though SBA converged faster on average.

For Setting B, all but one of the allocations produced by the random algorithm had a lower D-criterium
score than the allocation with the lowest D-criterium score produced by SBA (Figure 5B). Even though,
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Fig. 5. Bean plots of D-criterium distributions. 1000 allocations form a single run and show the efficiency of the
algorithms. 1000 runs show the variability of the outcome of runs. Settings follow the numbering as in Table 1.

in a single run RBA may have returned a better allocation by chance, SBA thus clearly outperformed RBA
in this larger example.

For Setting C, both RBA and SBA reached a D-criterium score of 309 561 102 for their best allocation
(Figure 5C). As in Setting A, however, for a single run, the allocations from SBA presented consistently
higher D-criterium scores than RBA. Across the runs, RBA and SBA yielded two different D-criterium
scores. The higher score was achieved in 37.5% and 99.6% of the runs for SBA and RBA, respectively.
However, a closer look at the variances for the simple contrasts revealed that there was only a small
difference between the sets of allocations for these two D-criterium scores. For any simple contrast,
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Fig. 6. The time needed to calculate optimal allocation vs. the estimated number of calculations required. The vertical
dashed line indicates where finding the optimal allocation quickly starts to take a significant amount of time. As an
example, the topmost data point represents the setting with six treatment groups, three with five subjects and three
with six subjects, and maximum four subjects per batch.

the difference in variance is less than 7%, thus in practice, the differences between the allocations are
minimal.

Setting D was chosen to evaluate the performance when both the search space and the imbalance
in sample sizes are large. In a single run, the distribution of D-criterium scores was more concentrated
toward higher values for SBA compared to RBA. Similarly, in the combined runs, only 2% of the RBA
runs returned an allocation with a D-criterium score at least as high as the median D-criterium score
for SBA. In this setting, SBA thus outperformed RBA, though much less clearly compared to Setting B
(Figure 5D).

For Setting A, it is easy to calculate the optimal allocation and there is no need to run the stochastic
algorithm, while for the other settings exhaustive investigation of the search space becomes impractical.
When the number of calculations to perform is larger than 109 the time it takes to exhaustively find the
best allocation increases dramatically (Figure 6). Our heuristic, however, runs in under a second for all of
the considered settings (Table 1).

4. DISCUSSION

The results indicate that our heuristic algorithm (SBA) finds better allocations on average compared to
an RBA, although by chance this may not be the case for one specific run. In general, neither algorithm
exhaustively outperforms the other. For the smaller settings, SBA proved more efficient in finding the best
allocations than a random approach, but in this case, computing the optimal allocation might be affordable.
As the search space grows, finding the optimal allocation becomes computationally challenging. Then,
SBA performs better than RBA, both in speed and quality of the allocations. When a naive search space
calculation requires evaluating more than 109 options, it takes a substantial amount of time to find the
optimal allocation. For these settings, the recommended procedure is to run SBA until there has been no
improvement in the D-criterium score for x runs, where x should be a sufficiently large number chosen as
a trade-off between the time spent searching and the possibility of finding an improved allocation.
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Note that while the incidence matrix obtained from SBA will always provide a suggested set of batches,
the order of the allocations, and which subjects from the given treatments to allocate to which batch, is not
defined. The next steps are thus to (i) randomize the order of the batches (premultiply the incidence matrix
with a random permutation matrix), (ii) randomly assign subjects to available slots for their treatment,
and (iii) randomize the order of the samples for each batch separately to define the processing order.

The evaluated settings were chosen to represent the different aspects relevant to the allocation problem:
(i) the level of imbalance in the treatment sizes, (ii) the number of treatments relative to the number of places
in each batch, and (iii) the overall size of the problem in terms of the total number of possible allocations.
Within each setting, an example was chosen to represent that setting. Note that, due to the preallocation,
each example will give the same results for settings where N ∗

i = Ni + Bai, and b∗
k = bk + ∑

ai, with N ∗
i

the new treatment sizes, and b∗
k the new batch sizes.

Note that for each of the settings it is easy to produce batch allocations with confounding by hand, for
example, filling the batches one by one, starting by allocating all subjects receiving one treatment first,
then all subjects receiving the second treatment, etc. In Setting A, this would lead to all subjects receiving
Treatment A being allocated to Batches 1 and 2, all subjects receiving Treatment B being allocated to
Batches 3 and 4, and so on. This way no two treatments share a batch, and thus batch and treatment are
completely confounded. More subtle would be an allocation that leads to, for example, Treatments A and
B sharing a batch more often than Treatments A and C. Any difference between Treatments A and B can
then be estimated more precisely than that between Treatments A and C.

By using the D-criterium to compare different allocations of the same set of samples, we treat each
comparison between treatments as equally important. In settings where it is not possible to estimate all
comparisons between treatments with the same precision, the allocation proposed by the heuristic should
be near optimal, so it can either be used directly or as a starting point.

The reason why SBA might pick allocations that are suboptimal in terms of the D-criterium in settings
with large sample size imbalance seems inherent in the way the algorithm works: by only keeping track
of what has been allocated, but not what is still to be allocated, it consistently tries to allocate the same
number of subjects for each treatment. However, when the sample sizes are very different, this may not
be an optimal strategy in terms of the overall variance. For the simple contrasts, the difference for the
settings we analyzed are minimal and the differences roughly cancel each other out. In such cases, which
is better therefore mainly depends on personal preference.

The precision with which we can estimate model parameters is dependent on correlations between the
model parameters themselves and the outcome (Kutner and others, 2005). In many settings, particularly
in the omics field, this is unknown, without trusted proxies. One option is to calculate over a range
of (standardized) values, but this can quickly become difficult to interpret. For this reason, we use an
approximation of the D-criterium, by calculating the determinant of the information matrix, as a proxy
for the inverse of the generalized variance (Pukelsheim, 2006). This is both reasonably fast to calculate
and serves as a way to order the obtained batch allocations by generalized variance.

When having larger cohort sizes, it becomes affordable to study multiple variables of interest. It is
unfortunately not trivial to extend the suggested heuristic to multiple treatment variables. Take for example,
the challenges for the case with two treatment variables (β and γ ), without interaction. A first intuition
would be to treat this in the same manner as the case of two treatment variables and an interaction, where
one may be able to block on the interaction. Note however that by blocking on the interaction, all levels
of the interaction will be put together with equal priority. Thus, especially with smaller batches, this can
easily lead to suboptimal allocations.

Another multivariable option would be to use multiple concurrence matrices. At each step, one would
then first find the minimal column-sums for β, followed by an investigation of the concurrence matrix for
γ . Note that the chosen treatment levels of β will dictate which options are available for γ . We have not
yet investigated whether such a sequential prioritizing will lead to desirable results.
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To conclude, where an optimal allocation can be calculated, this is naturally the preferred option.
Unfortunately, even for medium-sized experiments, especially with imbalanced cohorts, this quickly
becomes intractable. For such settings, we provide a heuristic algorithm to automate the generation of
batches for a fixed cohort. By running the heuristic many times and choosing the best overall allocation,
a batch allocation that can be expected to be better than a random allocation can quickly be generated.
The suggested algorithm thereby greatly simplifies the generation of batch allocations for large studies,
especially with imbalanced cohorts and incomplete-block designs, thus making experiments both more
reproducible and easier to analyze.

ACKNOWLEDGMENTS

The authors thank Lukas Käll andViktoria Dorfer for valuable input on an earlier version of the manuscript,
and the reviewers for substantially improving the clarity of the text. Conflict of Interest: None declared.

FUNDING

The Bergen Research Foundation to B.B. and H.B.; Helse Vest’s Open Research Grant (#F-12144 to B.B.);
the Research Council of Norway (project #301178 to M.V.).

REFERENCES

BAILEY, R. A. (2004). Association Schemes: Designed Experiments, Algebra and Combinatorics. Cambridge Studies
in Advanced Mathematics. Cambridge, UK: Cambridge University Press.

BAILEY, R. A. (2008). Design of Comparative Experiments. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge, UK: Cambridge University Press.

BOX, G. E. P, HUNTER, J. S. AND HUNTER, W. G. (2005). Statistics for Experimenters: Design, Innovation, and
Discovery, 2nd edition. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley.

BURGER, B., VAUDEL, M. AND BARSNES, H. (2021). Importance of block randomization when designing proteomics
experiments. Journal of Proteome Research 20, 122–128.

COLBOURN, C. J. AND DINITZ, J. H. (2007). Handbook of Combinatorial Designs, 2nd edition. Discrete Mathematics
and its Applications. Boca Raton, FL: CRC.

GOOS, P. (2002). The Optimal Design of Blocked and Split-Plot Experiments. Lecture Notes in Statistics. New York,
NY: Springer.

Karp, R.M. (1972). Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D.
(editors) Complexity of Computer Computations. The IBM Research Symposia Series. Boston, MA: Springer, pp.
85–103.

KROKSTAD, S., LANGHAMMER, A., HVEEM, K., HOLMEN, T., MIDTHJELL, K., STENE, T., BRATBERG, G., HEGGLAND, J.
AND HOLMEN, J. (2012). Cohort profile: the HUNT Study, Norway. International Journal of Epidemiology 42,
968–977.

KUTNER, M. H., NACHTSHEIM, C. J., NETER, J. AND LI, W. (2005). Applied Linear Statistical Models, 5th edition.
New York, NY: McGraw-Hill.

LI, J., CAI, Z., BOMGARDEN, R. D., PIKE, I., KUHN, K., ROGERS, J. C., ROBERTS, T. M., GYGI, S. P. AND PAULO, J. A.
(2021). TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. Journal of
Proteome Research 20, 2964–2972.

MERTENS, B. J.A. (2017). Transformation, normalization, and batch effect in the analysis of mass spectrometry data for
omics studies. In: DATTA, S. AND MERTENS, B. J.A. (editors), StatisticalAnalysis of Proteomics, Metabolomics, and

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac014/6583311 by U

niversity of Bergen Library user on 07 February 2023



14 B. BURGER AND OTHERS

Lipidomics Data Using Mass Spectrometry. Frontiers in Probability and the Statistical Sciences. Cham: Springer,
pp. 1–21.

PUKELSHEIM, F. (2006). Optimal Design of Experiments. Classics in Applied Mathematics. Philadelphia, PA: Society
for Industrial and Applied Mathematics.

RØNNINGEN, K. S., PALTIEL, L., MELTZER, H. M., NORDHAGEN, R., LIE, K. K., HOVENGEN, R., HAUGEN, M., NYSTAD,
W., MAGNUS, P. AND HOPPIN, J.A. (2006). The biobank of the Norwegian mother and child cohort study: a resource
for the next 100 years. European Journal of Epidemiology 21, 619–625.

ROSENBERGER, W. F. AND LACHIN, J. M. (2016). Randomization in Clinical Trials: Theory and Practice, 2nd edition.
Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley.

SUDLOW, C., GALLACHER, J., ALLEN, N., BERAL, V., BURTON, P., DANESH, J., DOWNEY, P., ELLIOTT, P., GREEN, J.,
LANDRAY, M., LIU, B., MATTHEWS, P., ONG, G., PELL, J., SILMAN, A., YOUNG, A., SPROSEN, T., PEAKMAN, T.
and others. (2015). UK Biobank: an open access resource for identifying the causes of a wide range of complex
diseases of middle and old age. PLoS Medicine 12, e1001779.

SUROWIEC, I., JOHANSSON, E., STENLUND, H., RANTAPÄÄ-DAHLQVIST, S., BERGSTRÖM, S., NORMARK, J. AND TRYGG,
J. (2018). Quantification of run order effect on chromatography - mass spectrometry profiling data. Journal of
Chromatography A 1568, 229–234.

YAN, L., MA, C., WANG, D., HU, Q., QIN, M., CONROY, J. M., SUCHESTON, L. E., AMBROSONE, C. B., JOHNSON,
C. S., WANG, J. and others. (2012). OSAT: a tool for sample-to-batch allocations in genomics experiments. BMC
Genomics 13, 689.

ZHANG, T., GAFFREY, M. J., MONROE, M. E., THOMAS, D. G., WEITZ, K. K., PIEHOWSKI, P. D., PETYUK, V. A.,
MOORE, R. J., THRALL, B. D. AND QIAN, W.-J. (2020). Block design with common reference samples enables
robust large-scale label-free quantitative proteome profiling. Journal of Proteome Research 19, 2863–2872.

[Received July 13, 2021; revised April 7, 2022; accepted for publication April 8, 2022]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac014/6583311 by U

niversity of Bergen Library user on 07 February 2023


