
Roberto Parisella

On a New, Efficient Framework
for Falsifiable Non-interactive
Zero-Knowledge Arguments

2023

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Roberto Parisella

On a New, Efficient Framework for
Falsifiable Non-interactive Zero-

Knowledge Arguments

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 09.06.2023

The material in this publication is covered by the provisions of the Copyright Act.

Print:	 Skipnes Kommunikasjon / University of Bergen

© Copyright Roberto Parisella

Name: Roberto Parisella

Title: On a New, Efficient Framework for Falsifiable Non-interactive Zero-Knowledge Arguments

Year: 2023

Acknowledgments

A big and heartfelt thank you goes to Helger Lipmaa, my main supervisor. Not only
has he been a great academic mentor, providing guidance and support while always
encouraging my independence. He has also been a great friend, and I am confident he
will be in the future. I am also grateful to my other supervisor Øyvind Ytrehus, for all
his help.

I want to thank all my co-authors: Arne Tobias Ødegaard, Geoffroy Couteau, Chaya
Ganesh, and Hamidreza Khoshakhlagh. It was a great pleasure for me to collaborate
with them; I feel grateful for everything I have learned from them and for all the inspir-
ing conversations we had.

A special thank goes to all the people in Simula UiB for creating and maintaining
a lovely working environment where I felt welcomed and appreciated more than any-
where else. Particularly, I want to thank Arne Tobias Ødegaard, Martha Norberg Hovd,
and Janno Siim for reading my work and providing many helpful comments.

I also want to thank my family, who supported me, and my education, even if it took
a bit longer than expected.

Lastly, the biggest thank you goes to my wife, Maryla, for turning my life upside
down in a way I could not even imagine. She joined me during this journey with
enthralling enthusiasm. She always supported and encouraged me to pursue my dreams
and aspirations, showing me how proud and happy she was with my successes.

Abstract

A zero-knowledge proof is a protocol between a prover, and a verifier. The prover aims
to convince the verifier of the truth of some statement, such as possessing credentials
for a valid credit card, without revealing any private information, such as the credentials
themselves. In many applications, it is desirable to use NIZKs (Non-Interactive Zero-

Knowledge) proofs, where the prover sends outputs only a single message that can be
verified by many verifiers.

As a drawback, secure NIZKs for non-trivial languages can only exist in the presence
of a trusted third party that computes a common reference string and makes it available
to both the prover and verifier. When no such party exists, one sometimes relies on non-
interactive witness indistinguishability (NIWI), a weaker notion of privacy. The study
of efficient and secure NIZKs is a crucial part of cryptography that has been thriving
recently due to blockchain applications.

In the first paper, we construct a new NIZK for the language of common zeros of a
finite set of polynomials over a finite field. We demonstrate its usefulness by giving a
large number of example applications. Notably, it is possible to go from a high-level
language description to the definition of the NIZK almost automatically, lessening the
need for dedicated cryptographic expertise. In the second paper, we construct a NIWI
using a new compiler. We explore the notion of Knowledge Soundness (a security
notion stronger than soundness) of some NIZK constructions. In the third paper, we
extended the first paper’s work by constructing a new set (non-)membership NIZK that
allows us to prove that an element belongs or does not belong to the given set.

Many new constructions have better efficiency compared to already-known con-
structions.

Sammendrag

Et kunnskapsløst bevis er en protokoll mellom en bevisfører og en attestant. Bevisfør-
eren har som mål å overbevise attestanten om at visse utsagn er korrekte, som besittelse
av kortnummeret til et gyldig kredittkort, uten å avsløre noen private opplysninger, som
for eksempel kortnummeret selv. I mange anvendelser er det ønskelig å bruke IIK-bevis
(Ikke-interaktive kunnskapsløse bevis), der bevisføreren produserer kun en enkelt meld-
ing som kan bekreftes av mange attestanter.

En ulempe er at sikre IIK-bevis for ikke-trivielle språk kun kan eksistere ved tilst-
edeværelsen av en pålitelig tredjepart som beregner en felles referansestreng som blir
gjort tilgjengelig for både bevisføreren og attestanten. Når ingen slik part eksisterer
liter man av og til på ikke-interaktiv vitne-uskillbarhet, en svakere form for personvern.
Studiet av effektive og sikre IIK-bevis er en kritisk del av kryptografi som har blomstret
opp i det siste grunnet anvendelser i blokkjeder.

I den første artikkelen konstruerer vi et nytt IIK-bevis for språkene som består av alle
felles nullpunkter for en endelig mengde polynomer over en endelig kropp. Vi demon-
strerer nytteverdien av beviset ved flerfoldige eksempler på anvendelser. Særlig verdt
å merke seg er at det er mulig å gå nesten automatisk fra en beskrivelse av et språk
på et høyt nivå til definisjonen av IIK-beviset, som minsker behovet for dedikert kryp-
tografisk eskpertise. I den andre artikkelen konstruerer vi et IIV-bevis ved å bruke en ny
kompilator. Vi utforsker begrepet Kunnskapslydighet (et sterkere sikkerhetsbegrep enn
lydighet) for noen konstruksjoner av IIK-bevis. I den tredje artikkelen utvider vi arbei-
det fra den første artikkelen ved å konstruere et nytt IIK-bevis for mengde-medlemskap
som lar oss bevise at et element ligger, eller ikke ligger, i den gitte mengden.

Flere nye konstruksjoner har bedre effektivitet sammenlignet med allerede kjente
konstruksjoner.

List of Publications

Efficient NIZKs for Algebraic Sets
Geoffroy Couteau, Helger Lipmaa, Roberto Parisella, and Arne Tobias Ødegaard.
In ASIACRYPT 2021, Part III. ed. by Mehdi Tibouchi and Huaxiong Wang. Vol.
13092. LNCS. Springer, Heidelberg, Dec. 2021, pp. 128–158.
https://doi.org/10.1007/978-3-030-92078-4_5

NIWI and New Notions of Extraction for Algebraic Languages
Chaya Ganesh, Hamidreza Khoshakhlagh and Roberto Parisella.
In International Conference on Security and Cryptography for Networks, SCN

2022 ed. by Clemente Galbi and Stanislaw Jarecki. Lecture Notes in Computer
Science, vol 13409. Springer, Cham.
https://doi.org/10.1007/978-3-031-14791-3_30

Set (Non-)Membership NIZKs from Determinantal Accumulators
Helger Lipmaa and Roberto Parisella.
Cryptology ePrint Archive 2022, Paper Report 2022/1570,
https://eprint.iacr.org/2022/1570

Contents

Acknowledgments i

Abstract iii

Sammendrag v

List of Publications vii

1 Introduction 1
1.1 Cryptographic Primitives . 1

1.2 Zero-knowledge Protocols . 2

1.3 Cryptographic Assumptions . 5

1.4 Idealized Models . 8

1.5 Different Levels of Soundness . 9

1.6 NIZKs in the Random Oracle Model 10

1.7 NIZKs in the Standard Model . 11

1.8 Couteau-Hartmann NIZKs . 13

1.9 Succinct Arguments of Knowledge . 15

1.10 NIWI in the Plain Model . 15

1.11 Set-Membership Proofs . 17

1.12 Results of the Current Thesis . 18

2 Preliminaries 23
2.1 Notations and Basic Concepts . 23

2.2 Algebraic Branching Programs . 25

2.3 Asymmetric Bilinear Pairings . 26

2.4 Algebraic Group Model . 27

2.5 Public-Key Encryption Scheme . 28

2.6 Sigma Protocols . 30

x CONTENTS

2.7 Non-Interactive Zero-Knowledge Arguments 31
2.8 Couteau-Hartmann Framework . 33
2.9 Accumulator . 35

3 Technical overview 37
3.1 Article I . 37
3.2 Article II . 42
3.3 Article III . 47

4 Efficient NIZKs for Algebraic Sets 65

5 NIWI and New Notions of Extraction for Algebraic Languages 103

6 Set (Non-)Membership NIZKs from Determinantal Accumulators 157

Chapter 1

Introduction

1.1 Cryptographic Primitives

In the last few decades, we have seen exponential growth in digital communication. We
now live in a time where digital services have replaced many in-person interactions. For
instance, today it is common practice to handle even bureaucratic issues online, while
the internet was just a resource for the military and academia some decades ago. Alter-
natively, we can compare how often our credit card data are used online to how often
they were used for the same purpose at the beginning of this century. Consequently,
a massive amount of sensitive data is now exchanged and stored online. It should not
come as a surprise then that the need for efficient ways to communicate privately and
confidentially has become more and more crucial over the past few years.

Cryptography is what should come to mind when it comes to privacy and confiden-
tiality. When the average person thinks about cryptography, they most likely think of
the classical problem of two parties that want to achieve confidentiality in their commu-
nication against a (possibly malicious) eavesdropping third party. Traditionally in the
cryptographic research literature, the two parties that want to communicate are identi-
fied as Alice and Bob.

It is known how to achieve such private communication, supposing that Alice and
Bob agreed on a secret key representing secret information in advance. Alice can then
use a publically known encryption algorithm to encrypt a message, having the secret
key as additional input, and send the ciphertext to Bob. Bob can use another publically
known algorithm to decrypt the ciphertext and recover the message. Only Bob, who
knows the secret key Alice used to encrypt, can correctly compute the original message
from the ciphertext. Cryptographic primitives with the functionality we have just de-
scribed are called symmetric encryption schemes. In the context of cryptography, the

2 Introduction

word symmetric indicates that the same secret key is shared among parties.

Thanks to decades of formalization of cryptography and, more generally, computer
science, we now have several cryptographic primitives to ensure confidentiality in many
scenarios. For instance, we can think of public-key encryption schemes: cryptographic
primitives that aim to solve the problem of confidential communication between two
parties that do not share a secret key. In this setting, Bob can generate a pair of corre-
lated public and secret keys and publish the first while keeping the second for himself.
If Alice wants to send a confidential message to Bob, she can encrypt the message using
his public key and send the ciphertext to Bob. Only Bob, who knows the secret key, can
correctly decrypt the ciphertext and read the message. In other words, instead of achiev-
ing confidentiality under the assumption that the parties can share a secret in advance,
we achieve it assuming that it is impossible to recover the secret key from the corre-
sponding public key. Diffie and Hellman [DH76] proposed the public-key paradigm in
1976, revolutionizing the entire field of cryptography. If one thinks about how often we
need to communicate privately with a party we have had no real-life contact with, it is
easy to argue how important it is to develop efficient and secure public-key encryption
schemes.

Today cryptography is used to achieve privacy and confidentiality in a wide range
of scenarios. The current work is focused on the cryptographic primitive known as
zero-knowledge proof. A zero-knowledge proof is used in the following scenario. Sup-
pose Alice knows a secret and Bob needs to be sure that she indeed knows the secret.
However, Alice does not want to reveal the secret; she only needs to convince Bob that
she knows it. In other words, Alice wants to show knowledge about a specific state-
ment without revealing this knowledge. For example, Alice wants to show that she is
registered in a list that grants certain privileges, without revealing which pseudonym in
the list corresponds to her own. Of course, this would be trivial if Alice revealed her
pseudonym to Bob: he can just check if Alice’s pseudonym is on the list. However,
in this case, Bob would receive Alice’s pseudonym, compromising her privacy. While
in reality, for many applications, it would be sufficient for Bob to know merely that
Alice’s pseudonym is on the list.

1.2 Zero-knowledge Protocols

Let us now recall some useful basic mathematical concepts. Given two sets A and B, a
binary relation R is a subset of the cartesian product A×B. Since we only deal with
binary relations in the current thesis, we omit the term binary. Elements in A are called

1.2 Zero-knowledge Protocols 3

statements. For each statement x ∈ A, a witness for x is an element w ∈ B, such that
(x,w) ∈ R. We can naturally associate a language LR to each relation as the set of
elements in A for which a witness exists.

LR = {x ∈ A : ∃w ∈ B,(x,w) ∈R}.

Elements in a language are called true statements, and all other statements are called
false statements. We call PPT (Probabilistic Polynomial-Time) Turing machines that
run in time bounded by a polynomial function in the input length and are allowed
to use random coins to perform their computation. In the context of this thesis, we
say informally that a language is hard, if no PPT can compute a witness, given a state-
ment. An NP-complete language is a language such that: (i) there exists a deterministic
polynomial-time Turing machine that on input (x,w) outputs 1 if and only if (x,w) ∈R

and (ii) if a procedure to decide if x ∈ LR exists, then it could be used to decide
membership of every language for which (i) holds. NP stands for Non-deterministic
Polynomial-time, and it means that there exists a non-deterministic Turing machine,
with running time bounded by a polynomial function in the input length, that can de-
cide membership of LR . Intuitively, this non-deterministic Turing machine is defined
by trying all the possible w involved in (i). In contrast, languages in P, are languages
that a deterministic, polynomial-time Turing machine can decide. Whether P ̸= NP is
one of the most important open problems in mathematics; it is one of the Millennium
Prize problems. It is common practice in theoretical computer science to conjecture
that indeed NP ̸= P, despite the lack of a proof. As an example, a classic NP-complete
problem consists of assigning a colour, amongst three, to each vertex of a given graph,
such that two adjacent vertices do not have the same colour. We can define a relation
considering a graph as a statement and a three-colourability over the graph as a witness.

Zero-knowledge proofs were defined in 1985 by Goldwasser, Micali and Rackoff
[GMR85]. As an acknowledgement of the importance of their foundational work, they
got awarded the Gödel prize in 1993. In a zero-knowledge proof, a statement is given as
a public input to two parties, the prover and the verifier. As additional secret input, the
prover receives a witness proving that the statement is in a certain language: typically,
a hard language. Informally, the prover aims to convince the verifier that the statement
is true, without revealing any additional information about the witness. Thus, the two
parties start exchanging messages in accordance with what the protocol prescribes. At
the end of the interaction, the verifier performs additional computation, having the set of
exchanged messages—also called transcript or proof —as additional input. According

4 Introduction

to the result of this computation, the verifier either outputs accept or reject, and it
outputs accept if and only if it is convinced that a witness for the statement exists.

We require zero-knowledge proofs to have three security properties.

Completeness: the honest prover always convinces the verifier.

Soundness: the verifier can always catch a malicious prover and outputs reject for
every false statement.

Zero-knowledge: at the end of the interaction, a (potentially malicious) verifier learns
nothing about the witness besides the fact that a witness exists for the public state-
ment.

In principle, zero-knowledge proofs can be used to ensure the honesty of parties in-
volved in protocols without compromising their privacy. One can achieve the previous
task, requiring any party to send a zero-knowledge proof of the correctness of its com-
putation, along with any messages. By the completeness and soundness properties of
the proof, we know that the execution has been done correctly. Concurrently, the zero-
knowledge property guarantees no private information is leaked during the protocols’
execution. For example, zero-knowledge proofs are necessary for electronic voting sys-
tems, where they are used to check that a voter is registered as having the right to vote
and to collect his vote anonymously. Zero-knowledge proofs are also a crucial building
block of anonymous authentications when a party needs to authenticate itself without
revealing its identity. As a third noteworthy example, zero-knowledge proofs are used
in digital currencies, such as Zcash, and blockchains, such as Algorand, to carry out
tasks involving proving properties on confidential data. For instance, zero-knowledge
proofs are used to prove possession of enough unspent coins to complete a transaction
without revealing other information, like the total amount of owned coins. Or they are
used to achieve anonymity in a digital payment procedure, guaranteeing privacy about
details such as addresses, transactions type and quantity, buyer and seller identities, and
many more.

Many zero-knowledge proofs require online interaction between the parties. Interac-
tion is a not desirable feature. In many applications, it is necessary to allow verification
when the prover is offline and not available for interaction. For example, for electronic
voting, it is crucial that any verifier can check the validity of the election, even long
after it has taken place. Moreover, zero-knowledge protocols are used to define other
cryptographic primitives, such as digital signatures. The need for interaction would
severely compromise the usability of such schemes, sometimes irretrievably.

1.3 Cryptographic Assumptions 5

Blum, Feldman, and Micali [BFM88] introduced the concept of non-interactive

zero-knowledge proofs, which are abbreviated as NIZKs. A NIZK prover computes
the proof and sends it in one message to the verifier, who, without any interaction,
only has to output accept or reject. The first NIZK constructions were defined in the
so-called CRS model. That is, we suppose the existence of a trusted third party that
computes a common reference string (CRS) and makes it available to both the prover
and the verifier. In contrast, we refer to the plain model as the setting where no trusted
setup is required. Unfortunately, Goldreich and Oren [GO94] showed that it is im-
possible to define NIZKs in the plain model, enjoying completeness, soundness, and
zero-knowledge, for non-trivial languages. Thus, NIZKs are only defined in the CRS
model.

1.3 Cryptographic Assumptions

As it is often the case in complexity theory, in cryptography, many results are proven
under various cryptographic assumptions: unproven statements assumed to be true and
used as a starting point for formal mathematical proofs. A cryptographic assumption
is often a statement about the hardness of a certain problem. Throughout this thesis,
we will state many different cryptographic assumptions. A different but closely related
concept is a conjecture: a statement believed to be true amongst the vast majority of the
scientific community, despite the lack of a formal proof. A well-established computer
science practice is to take conjectures and state them as assumptions. Arguably the
most remarkable example of this practice is the case of the “P versus NP” problem,
mentioned in Section 1.2. The unproven statement that P is different from NP is widely
used as an assumption in many branches of theoretical computer science. Proving
the security of any cryptographic assumption formulated from one of these hardness
conjectures would imply a major breakthrough in complexity theory. Therefore, it is
not considered likely to happen soon. Since the number and nature of assumptions
used in cryptography are vast and diverse, it should not be surprising that a significant
and flourishing research direction is to study relations between these assumptions and
establish a hierarchy of trust among them [Nao03, Pas13, GK16].

The first important distinction for cryptographic assumptions is between computa-
tional and non-computational. A computational assumption is an assumption whose
validity can be verified using a Turing machine, traditionally called a challenger. More
precisely, a computational assumption follows the following pattern: an adversary, de-
fined as a Turing machine, with certain properties, that solves a given problem does

6 Introduction

not exist. Typically, the property we require from the adversaries is that they should be
PPT. Computational assumptions are called in this way because verifying if one of them
is false is a computational task. Suppose that we have an adversary that can efficiently
solve a given problem. Then we can define a Turing machine, called challenger, which
samples valid inputs, calls the adversary and finally checks if the solution is correct.
Thus, one can exhibit an adversary that solves the given problem to show that a compu-
tational assumption is false. Anyone else can run the challenger to verify whether the
adversary is successful. Note that the word computational has been used with different
meanings in the context of cryptographic assumptions. In this thesis, we use the mean-
ing we have just described, following how the word computational is used by [Nao03]
in the context of cryptographic assumptions classification.

Among computational assumptions, the most desirable ones are those for which
it is possible to define an efficient (PPT) challenger. Following Naor’s classification
[Nao03], we call the assumptions in this category falsifiable and any other (not neces-
sarily computational) assumption non-falsifiable. An example of a falsifiable assump-
tion is the hardness of computing the discrete logarithm in certain finite groups. Let g

be a generator of an abelian group G. Informally, the discrete logarithm assumption for
the group G states that there does not exist a PPT adversary which computes x, on in-
put gx. It is possible to verify if the previous assumption is false with a PPT challenger
defined as follows: sample a uniformly random group element, give it to a discrete
logarithm adversary which returns an exponent, and verify if the exponent returned is
the correct one. Another falsifiable assumption, widely used in cryptography, is the
CDH-assumption (Computational Diffie-Hellmann) [den90], defined in Section 2.1.

Falsifiable assumptions in which adversaries must distinguish between two distribu-
tions are referred to as decisional assumptions1. An adversary of a decisional assump-
tion receives inputs from one out of two distributions, and it must output a bit. We
require the output to be consistent to which distribution the adversary receives the in-
put from: it should output 0 if and only if it receives the input from the first distribution
and 1 otherwise. A famous example of a decisional assumption is the DDH-assumption
(Decisional Diffie-Hellmann), according to which no PPT adversaries can distinguish
between the distributions (gx,gy,gxy) and (gx,gy,gz) where x,y,z are uniformly random
exponents. The challenger of the DDH-assumption is defined as follows: (i) toss a coin
b∈ {0,1} and sample uniform x,y,z, (ii) compute b′ with the candidate DDH adversary,
on input (gx,gy,gxy+bz), and (iii) check if b = b′.

1The word computational is widely used with the meaning of “non-decisional”. We remark we are
using the word computational here with a different meaning.

1.3 Cryptographic Assumptions 7

Let us describe computational non-falsifiable assumptions: computational assump-
tions with a challenger defined as a Turing machine that runs in superpolynomial time.
A widely used assumption in this category is the one-more discrete logarithm assump-
tion [BNPS03, PV05, BMV08, BFP21]. The one-more discrete logarithm assumption
states that given l+1 group elements, it is hard to return the discrete logarithm of all of
them, even if we have access to an oracle that can compute up to l discrete logarithms.
The challenger for this assumption has to emulate the discrete logarithm oracle. Under
the hardness of computing the discrete logarithm, it seems unlikely to find a polynomial
time challenger for the one-more discrete logarithm assumption. In this class we also
find many gap assumptions [OP01]. A gap assumption is an assumption of the form “a
problem B is hard even if another problem A is easy”. Tipically, gap assumptions are
formulated taking both A and B as supposedly hard problems. A gap assumption chal-
lenger has to emulate an oracle that solves “problem A”, resulting in a superpolynomial
time challenger.

Because of the impossibility of running a superpolynomial time challenger in prac-
tice, assumptions in this class are less desirable than falsifiable assumptions. In fact,
paraphrasing [Nao03] a security proof of a cryptographic primitive, under an assump-
tion, can be seen as a proof for the statement “the construction is secure or the as-
sumption is false”. If the assumption is falsifiable, it is easier to check the veracity
of the second clause in the previous formula. For this reason, security proofs under
falsifiable assumptions are considered a stronger security condition than proofs under
non-falsifiable assumptions. When we want to prove the security of a cryptographic
scheme, it is therefore better to do it under any falsifiable assumption. Thus, an im-
portant research direction is to define new cryptographic primitives and improve the
efficiency and functionality of existing ones, with the constraint of proving security
under falsifiable assumptions.

Moving toward less desirable assumptions, cryptographers commonly use knowl-

edge assumptions, such as the knowledge-of-exponent assumption [Dam92, BP04]. A
knowledge assumption is a non-computational assumption stating that if an efficient
Turing machine can reliably compute a certain output from an input distribution, then it
must know specific intermediate values. This knowledge requirement is formalized by
postulating the existence of an efficient Turing machine called extractor. The extractor
has to compute the intermediate value reliably. To check that a knowledge assumption
is false, one must show an adversary for which each possible extractor fails to compute
the intermediate value reliably. We refer to [BP04], for an extensive discussion on falsi-
fying a knowledge assumption. However, since knowledge assumptions are much more

8 Introduction

difficult to falsify than any computational assumption [BP04, Nao03], they are consid-
ered even less desirable than any computational (possibly non-falsifiable) assumptions.

1.4 Idealized Models

Security proofs that rely only on assumptions and limit the adversaries’ computational
resources are referred to as proofs in the standard model. In many proofs, however,
security is proven using idealized models. In cryptography, we talk about idealized
models when a concrete primitive is replaced with an idealized version, in a security
proof.

Probably, the most popular idealized model used in cryptography is the random

oracle model, or ROM for short. In the ROM, any party has access to a black-box
oracle that implements a truly uniformly random function. In other words, the random
oracle is supposed to secretly sample a function from the uniform distribution in a finite
function space and black-box evaluate the secret function for all the parties. ROM is
widely used in the context of zero-knowledge [BR93].

Other idealized models are also used in zero-knowledge protocols security proofs,
such as the GGM (Generic Group Model) [Sho97, Mau05]. In GGM we suppose the
existence of a “perfect unstructured” cryptographic group, where group elements are
perfectly random encodings of their exponent. Thus, adversaries can only perform
generic group operations in GGM.

Fuchsbauer et al. proposed the AGM (Algebraic Group Model) [FKL18]: a different
idealized way of modelling cryptographic groups. A PPT is said to be algebraic if it
must know a representation of each group element it outputs in the form of a linear
combination of the group elements it received as input. Initially, Fuchsbauer et al.
required the algebraic PPT to output the coefficients of the linear representation as
well, as additional output. A different formalization requires that for each algebraic
adversary, an adversary-dependent PPT extractor exists that computes the coefficients
of the linear representation. In this thesis, we use this second formalization. One
can think of the AGM as a “generalized knowledge assumption”, where we require
adversaries to explain their computation through linear combinations of the inputs. For
this reason, AGM extractors are adversary-dependent, and receive adversary’s random
coins as additional input: the same is true for extractors of knowledge assumptions.
The AGM is considered more realistic and closer to the standard model than the GGM.
This is because AGM adversaries receive proper group elements as input, not abstract
labels, as in the case of GGM. Thus, they can see the group structure and try to exploit

1.5 Different Levels of Soundness 9

it. However, different from the standard model, AGM adversaries must explain their
computation in terms of linear combinations of the inputs.

Idealized models have been very useful in proving the security of efficient and com-
plex primitives. Moreover, no successful attacks have been found so far against con-
crete and used protocols with a security proof in an idealized model. Nevertheless, se-
curity proofs in idealized model should still be considered as heuristics. In fact, attacks
on (contrived) artificial protocols, or un-instantiablity result [GK03, Den02, Zha22]
have shown that proofs in idealized models do not translate automatically to proofs in
the standard model.

Having security proofs in the standard model and under computational and prefer-
ably falsifiable assumptions is most desirable. However, proposing new computational
(hopefully falsifiable) assumptions and proving the security of the assumption in an ide-
alized model has become more and more popular, mostly as a way to prove security of
more efficient primitives. Specifically, a new, “standard looking”, falsifiable assump-
tion, tailored to prove the security of a specific primitive can be defined. Then, a good
validation for the new assumption is to reduce it to a more standard one, such as the
hardness of discrete logarithm, relying on an idealized model.

1.5 Different Levels of Soundness

We can sometimes prove that valid proofs for false statements cannot exist. Or, equiv-
alently, the soundness of some proof systems holds even against computationally un-
bounded adversaries. Following standard terminology, from now on, we refer to zero-

knowledge proofs as proof systems with completeness, zero-knowledge, and soundness
that holds against any (potentially unbounded adversaries). Zero-knowledge proof sys-
tems with soundness that holds only against PPT adversaries are called zero-knowledge

arguments.

Moreover, the standard definition of soundness only guarantees that it is intractable
to compute valid proofs for false statements. However, for some applications, a stronger
definition of soundness is required.

Knowledge soundness: if a prover can compute a valid proof for a given statement,
then it must know a valid witness.

We can, for instance, think of languages for which false statements do not exist: say
that the statement x is an element of an abelian group G, generated by g, and the witness
an exponent w, such that gw = x.

10 Introduction

There exist efficient NIZKs that are knowledge sound under knowledge assumptions
or in idealized models. However, security proofs under knowledge assumptions or in
idealized models are undesirable, as discussed in Sections 1.3 and 1.4. Alternatively,
one can show knowledge soundness, augmenting the statement with a trapdoor for ex-
traction. For instance, a well-known methodology consists of adding a public key of an
encryption scheme to the CRS. Then, we let the prover add an encryption of the wit-
ness to the proof and prove that the ciphertext is computed correctly. Unfortunately, this
approach irreparably compromises efficiency. Therefore, it is not preferred in practice.

A solution to define NIZK proofs (with knowledge soundness) in the standard
model, under falsifiable assumptions, is to rely on a weaker definition of knowledge
soundness, stating that the prover must only know a function of a valid witness. This
property is called partial knowledge soundness [BCKL08].

However, no NIZK are known with: (i) knowledge soundness under falsifiable as-
sumptions, in the standard model, and (ii) no efficiency loss compared with the state-
of-the-art (not-knowledge) sound ones.

1.6 NIZKs in the Random Oracle Model

Fiat and Shamir [FS87] defined NIZKs from interactive zero-knowledge proofs, letting
the prover generate verifier messages on its own through a cryptographic hash function,
through a compiler called Fiat-Shamir transform. A cryptographic hash function is a
function h, such that, given an element y in the image of h, it is hard to find an element
x in the domain, such that h(x) = y. Alternatively, hash functions are defined by the
following stronger property: it is hard to find x1 ̸= x2, such that h(x1) = h(x2). The Fiat-
Shamir transform was the earliest technique proposed to define secure NIZKs. In terms
of efficiency, Fiat-Shamir NIZKs have proof size as big as the prover’s communication
of the starting interactive proof. Moreover, the hash function evaluation is the only
overhead in computational complexity introduced by the Fiat-Shamir compiler, over
the complexity of the interactive protocol we started with. Fiat-Shamir NIZKs from
very optimized interactive protocols are usually state-of-art in terms of efficiency for
many scenarios, and improving on them is often challenging.

To define efficient NIZKs for a given language, a standard and successful pattern
is to start designing a Sigma protocol for it [Sch90, CDS94, CCs08, Mau09, ACR21],
and then apply the Fiat-Shamir transform. A Sigma protocol is a three-round, zero-
knowledge proof, with security often based on mild falsifiable assumptions [Mau09]
and verifier interaction consisting only of a uniformly random message sent to the

1.7 NIZKs in the Standard Model 11

prover in the second round; see Section 2.6 for a formal definition.

Fiat-Shamir NIZKs are only proven secure in the ROM, when we instantiate the
cryptographic hash function with a random oracle. Moreover, it is proven that any con-
crete implementation of the hash function fails to instantiate secure Fiat-Shamir NIZKs
unconditionally. Specifically, (contrived) secure interactive zero-knowledge protocols
exist, for which the Fiat-Shamir transformation results in insecure NIZKs for any im-
plementation of the hash function [GK03]. For this reason, Fiat-Shamir NIZKs that use
concrete implementations for the hash function, such as SHA-256, are considered only
heuristically secure.

Although no concrete attacks have been found on any non-contrived Fiat-Shamir
NIZKs, it is desirable to define NIZKs secure under computational, and hopefully fal-
sifiable, assumptions, in the standard model, without compromising on efficiency.

1.7 NIZKs in the Standard Model

Groth-Sahai NIZKs. In the seminal work [GS08], Groth and Sahai defined a new class
of NIZKs whose security is based on trusted, falsifiable cryptographic assumptions, in
the standard model. Their result was recognized from the very beginning as a break-
through: they developed a framework to define falsifiable NIZKs for a large class of
practical languages. Many improvements followed their initial result.

In part, the merit of the method is shown by a rich line of GS NIZKs for specific and
interesting applications. Ghadafi et al. [GSW09] construct the first practical NIZKs
for circuit satisfiability, based on falsifiable assumptions. Belenkiy et al. [BCKL08],
Acar and Nguyen [AN11] and later Daza et al. [DGP+19] define Groth-Sahai set-

membership proofs, discussed in Section 1.11.

Furthermore, several results show application-independent, further optimizations for
the original constructions in many interesting cases. Escala and Groth [EG14] show
how to optimize the proof size and the prover computational complexity. Moreover,
they show how to redefine Groth-Sahai NIZKs as commit-and-prove NIZKs by letting
the prover choose its own CRS and prove that the chosen one still guarantees soundness.
Rafols [Ràf15] define efficient Groth-Sahai NIZK arguments of partial satisfiability of
sets of equations. Her technique, for instance, can be used to further reduce proof size
of NIZKs defined in [CGS07] or [BCKL08].

The Groth-Sahai framework carries some built-in limitations that severely compro-
mise its applicability for real-life applications. The first critical step is efficiency. Re-
garding both communication and computational complexity for the prover and verifier,

12 Introduction

a Groth-Sahai NIZK often has quite an efficiency gap compared to Fiat-Shamir NIZKs.
In practice, this gap irreparably compromises its use. Moreover, designing and opti-
mizing a Groth-Sahai NIZK for a specific application is an uphill task requiring con-
siderable work by dedicated expertise. The Groth-Sahai framework is, at its core, a
way to define a NIZK for a specific class of languages directly: languages generated by
a set of PPEs (Pairing-Product Equations). Informally, we can think of pairing-product
equations as quadratic equations.

The design of Groth-Sahai NIZK follows a precise pattern.

1. Find an efficient (possibly optimal) representation of a given problem as a set of
PPEs.

2. Apply the Groth-Sahai framework and any relevant further optimization from
follow-up works to prove in zero-knowledge the possessions of elements that sat-
isfy the given set of PPEs.

Many technical and application-dependent choices have to be taken in each step.

Due to these drawbacks, Groth-Sahai NIZKs cannot be considered a satisfying end
for the quest for efficient NIZKs, under falsifiable assumptions, in the standard model.

Provably secure Fiat-Shamir NIZKs. Recently, a new line of work showed how to
instantiate provable-secure Fiat-Shamir NIZK in the standard model [KRR17, HL18,
CCH+19, CLW18, PS19, CPV20]. At their core, these NIZKs are defined using the
Fiat-Shamir compiler with a concrete family of seeded hash functions that achieves the
correlation intractability property. Intuitively, this property means that given a function
h, for each relation R in a given class of relations, it is computationally intractable to
find an input x, such that (x,h(x)) ∈R. It is known how to prove that many families of
hash functions are correlation intractable for any computable relations under different
falsifiable assumptions; the existence of a circular-secure fully homomorphic encryp-
tion [CLW18], and the learning with errors [PS19] being notable examples. NIZKs of
this class have as good communication complexity as the original Fiat-Shamir NIZKs,
and they are secure in the standard model under falsifiable assumptions. However, so
far, NIZKs from this line of research are only of theoretical interest: in existing con-
structions, the complexity of evaluating the concrete hash function for both prover and
verifier is a critical bottleneck. Correlation-intractable hash functions are only known
from computationally expensive primitives [CLW18, PS19]. Thus, the resulting NIZK
often does not meet the efficiency requirement for concrete applications, in term of
computational complexity. A different issue is that we cannot unconditionally apply
the Fiat-Shamir compiler with correlation-intractable hash functions to any Sigma pro-
tocol. Recall the impossibility result in [GK03], discussed in Section 1.6, stating that

1.8 Couteau-Hartmann NIZKs 13

any concrete hash function fails to instantiate the Fiat-Shamir transform uncondition-
ally. Thus, it is not surprising that the class of Sigma protocols must be restricted. A
sufficient condition to define a secure NIZK, using correlation intractable hash func-
tions, is that the Sigma protocols is a trapdoor Sigma protocols [CLW18]. [CPV20]2

show a compiler to define a trapdoor Sigma protocol from any Sigma protocols. Un-
fortunately, this compiler severely compromises even communication complexity.

1.8 Couteau-Hartmann NIZKs

Couteau and Hartmann [CH20] define a novel type of NIZKs. At a very high level, they
define a NIZK by compiling a Sigma protocol over an abelian group G1 into a non-
interactive zero-knowledge argument over bilinear groups, by embedding the second
message e into a different abelian group G2 and adding the embedded challenge to the
CRS. Security informally relies on the hypothesis that no efficient isomorphisms exist
between the two groups G1 and G2. See Section 2.3, for the definition and a discussion
on cryptographic bilinear groups. The soundness of the resulting NIZK is proven under
a novel computational assumption.

Couteau-Hartmann NIZKs represented a significant advance towards practical
NIZKs, under falsifiable assumptions. As shown by many tables in [CH20], they sig-
nificantly improve efficiency over optimized Groth-Sahai constructions, for many in-
teresting applications.

However, the Couteau-Hartmann framework also has some critical limitations. First,
unlike the Fiat-Shamir one, their compiler defines secure NIZKs only if applied to one
specific Sigma protocol. In particular, they started from a Sigma protocol for a specific
class of languages: algebraic languages. These are languages of the form LΓ,θ = {x :
∃w,Γ(x) · w = θ(x)}, where x is the input, w is the witness, Γ and θ are affine maps,
such that θ(x) is a vector and Γ(x) is a matrix. Thus, to define a Couteau-Hartmann
NIZK for a given application, one must first find an efficient representation of a given
problem as an algebraic language and then apply the compiler to the Sigma protocol
for the found language. To go from the description of the algebraic language to the
optimized Couteau-Hartmann NIZK is an automatic task. However, finding an efficient
representation of a given problem as an algebraic language means finding suitable and
possibly short Γ,θ . The latter task has to be manually performed every time. Having to
manually find efficient language parameters is an undesirable feature, since it requires

2Although the author of this thesis is also a co-author of [CPV20], this article is not included in the
thesis.

14 Introduction

work from dedicated expertise, as already discussed in Section 1.7 for the Groth-Sahai
framework. Moreover, it needs to be clarified how many languages admit an efficient
representation as an algebraic language. To define efficient Couteau-Hartmann NIZKs,
we must start with algebraic languages with small language parameters. Therefore,
even though algebraic languages can be used to express all problems in NP, we are
only interested in the cases where a problem can be expressed as an algebraic language
with small language parameters. Because algebraic languages can only handle linear
equations, the task of finding small parameters for algebraic languages seems to be
even harder than finding an efficient representation in terms of PPEs (which can handle
quadratic equations).

Another weakness of Couteau-Hartmann NIZKs is represented by their new compu-
tational assumption: the extended kernel matrix Diffie-Hellman (ExtKerMDH) assump-
tion. To motivate the introduction of the ExtKerMDH assumption, the authors reduce
it to discrete logarithm in AGM [FKL18] and in GGM [Sho97, MW98]. As discussed
in Section 1.4, introducing a new falsifiable assumption, providing proof of security in
GGM or AGM, is a common practice. However, the ExtKerMDH assumption is only
guaranteed to be falsifiable for some cases, while in general, it is a computational,
non-falsifiable assumption, see Section 1.3. Couteau and Hartmann showed that the
ExtKerMDH assumption is falsifiable for a restricted class of algebraic languages. As
shown in [CH20], this class includes “disjunctions of linear languages”, but it was not
determined if any other languages of interest for applications are included. For the gen-
eral case of security based on a non-falsifiable version of the ExtKerMDH assumption,
a security proof in an idealized model is not considered a good enough motivation for
introducing a new assumption.

Couteau and Hartmann’s work left us with some important open problems, whose
solution would lead to making the best out of the new compiler.

1. Is it possible to apply the Couteau-Hartmann compiler to different Sigma proto-
cols? Hopefully, results in this direction would increase the class of languages
efficiently and natively supported by this framework, resulting in the definition of
practical NIZKs, secure in the standard model, for a broader class of applications.

2. Can we enlarge the class of languages for which we can define a Couteau-
Hartmann NIZK with security under falsifiable assumptions? Alternatively, can
we show better security conditions and motivations for the general case of the un-
derlying assumption not being falsifiable?

3. Can we construct small language parameters in an (almost) automatic way, thus
lessening the need for dedicated expertise?

1.9 Succinct Arguments of Knowledge 15

1.9 Succinct Arguments of Knowledge

Zero-knowledge arguments are succinct if the proof size is sublinear in the witness
size. Non-interactive succinct zero-knowledge arguments are called SNARGs (Suc-

cinct Non-interactive ARGuments). Since SNARGs offer the best performance in
terms of proof size, they have become one of the most popular topics in cryptogra-
phy [Gro10, BCCT12, Lip12a, GGPR13, PHGR13, Lip13, Gro16, BBB+18, GWC19,
RZ21, LSZ22]. Succinctness is a crucial requirement in applications where the size
of the relations is already much bigger than what can be afforded in terms of com-
munication complexity. For instance, we can think about the relations we deal with
in blockchains, cryptocurrencies, or verifiable outsourced computations. Due to the
topic’s popularity, we now have many different constructions of SNARGs. Therefore,
to talk about them as a whole category is a challenging task that carries inevitable gen-
eralizations and is out of the scope of the current work. Here, we only mention why we
should not compare them to non-succinct NIZKs.

The most significant difference separating SNARGs from non-succinct NIZKs is
that the formers’ security cannot rely on falsifiable assumptions. Almost every work on
succinct zero-knowledge quotes the famous impossibility result proven by Gentry and
Wichs, stating that it is impossible to reduce (adaptive) soundness of SNARGs for hard
languages to a falsifiable assumption [GW11]3. Here adaptive soundness means that a
malicious prover can first see the generated CRS, and then try to compute a valid proof
for an adaptively chosen false statement. The impossibility result in [GW11] alone
should be considered enough to separate the study of succinct and non-succinct zero-
knowledge. In reality, succinct and non-succinct NIZKs are separated by a wider gap
regarding the category of the assumptions. In fact, no (adaptively sound) SNARGs are
known even with security under non-falsifiable, yet still computational, assumptions,
and this task is still an exciting open question. We know how to prove the soundness of
SNARGs only relying on non-computational knowledge assumptions, or in idealized
models.

1.10 NIWI in the Plain Model

As stated above, the assumption of a trusted third party that securely computes the CRS
is necessary to define sound NIZKs for hard languages. However, it is possible to de-

3Gentry-Wichs impossibility is here stated very informally. We refer the reader to [GW11] for precise
information.

16 Introduction

fine non-interactive sound proofs, without the requirement of a trusted setup, as long as
we give up on zero-knowledge, and rely on a weaker notion of privacy. Informally, a
protocol is witness indistinguishable if it is hard for any (potentially malicious) verifier
to distinguish between provers that use different witnesses for any given statement. We
call protocols with this property NIWI (Non-Interactive Witness Indistinguishability)
proofs in the plain model, recalling that in Section 1.2 we used the expression “in the
plain model” to indicate that no trusted setup is required. For many interesting applica-
tions, witness indistinguishability is a natural requirement. We can, for instance, think
of languages of the type “either one knows a trapdoor or a witness for a statement”. Al-
gebraic languages, Sections 1.8 and 2.8, and languages defined by PPEs, Section 1.7,
are also valid examples.

A general idea to define NIWIs in the plain model is to start from NIZKs that are
perfectly sound for some CRS choices. Specifically, the idea is to let the prover choose
many CRSs by itself, with the restriction that at least one ensures perfect soundness.
The prover will compute a proof for each of the chosen CRSs and send all the pairs of
CRS and proof to the verifier. Then, we must also equip the verifier with a polynomial-
time, decision algorithm to check that the prover chooses the CRSs, in such a way that
perfect soundness holds for at least one of them. Since, here and in the rest of this
work, we only deal with NIWI defined without trusted setup, sometimes we omit the
expression “in the plain model”.

The first NIWI construction was proposed by Barak et al. [BOV03], obtained by
derandomizing a specific class of NIZKs. This approach has drawbacks that make it
unsuitable for applications. First, it is secure under a non-standard complexity-theoretic
assumption. Moreover, the prover must send a logarithmic number of pairs CRS, proof,
to the verifier, which result in a very inefficient construction, even starting from efficient
NIZKs.

Later Groth et al. [GOS06] (and the journal version [GOS12]) proposed a much
more efficient methodology to define a NIWI. Their idea is based on the fact that given
two CRSs of a Groth-Sahai proof [GS08] it is possible for the verifier to efficiently
check if at least one of them guarantees perfect soundness. Thus the NIWI is defined
by letting the prover choose two Groth-Sahai CRS by itself, compute relative Groth-
Sahai proofs and send them to the verifier. The latter checks the correctness of the proof
and the CRSs. This construction solved the issues the previous one suffered: it is secure
under standard, falsifiable, cryptographic assumptions and relatively efficient. Notably,
the efficiency overhead is constant (in the security parameter, but not in the language
size) compared to the corresponding NIZK in the CRS model: the proof consists of

1.11 Set-Membership Proofs 17

two Groth-Sahai proofs. However, this NIWI construction inherits all limitations of the
Groth-Sahai framework, described in Section 1.7. Particularly, even if the efficiency is
much better compared to the construction of Barak et al. twice as bad as Groth-Sahai
is still not acceptable for many applications.

From previous work, the problem of defining a secure NIWI that is just as efficient
as the corresponding NIZK in the CRS model was left as an open question.

Bitansky and Paneth [BP15] also defined NIWI under indistinguishability obfusca-
tion and one-way permutations. However, their construction is impractical for applica-
tions, and is therefore left out of the current discussion.

1.11 Set-Membership Proofs

Set (non-)membership NIZKs are zero-knowledge proof systems to argue that a given
element χ is (is not) in a public set S. We can define a set-membership proof using
a digital signature scheme and a general NIZK framework (typical choices are Fiat-
Shamir or Groth-Sahai). The CRS generator samples a pair of public and secret keys
for the signature scheme, and computes a signature for each element in the set S. Then,
it publishes the set-membership CRS composed by the public key, signatures of ele-
ments in S and a CRS for the used NIZK framework. The signature secret key is kept
secret to ensure that it is impossible to compute valid signatures for elements not in
S. The prover, on input an element in S, picks the corresponding signature in the CRS
and encrypts the tuple element-signature. Then, it proves that the two ciphertexts are
encryptions of elements which satisfy the signature verification.

Belenkiy et al. [BCKL08] defined a set-membership NIZK using a Structure-
Preserving Signature scheme and a Groth-Sahai NIZK, with security based on falsi-
fiable assumptions. Daza et al. [DGP+19] improved on efficiency over [BCKL08],
defined set-membership NIZK using the more efficient weak Boneh-Boyen signature
scheme [BB04] and a Groth-Sahai NIZK. Signature-based set-membership NIZKs
have two critical downsides. First, assuming S of polynomial size, its complement
would be of exponential size. Consequently, defining a set non-membership argument
in this setting seems impossible. Moreover, the CRS depends on the set S. Thus, one
must securely compute a new CRS every time the set S changes.

A different approach is to define set-membership NIZKs, using a primitive called
accumulator [Bd94]. An accumulator is a cryptographic primitive used to prove (non)-
membership of an element in a set without zero-knowledge. To define a set membership
NIZK, we can add the zero-knowledge property to an accumulator using a suitable

18 Introduction

compiler. Accumulator-based set membership NIZKs do not inherently suffer from the
issues we have just described in the case of signature-based ones. It is possible to define
universal (both membership and non-membership can be proven) accumulator-based
set-membership NIZKs, and with CRS independent from the set S4. Being universal is a
necessary property for some applications, for instance, anonymous credential systems.
Acar and Nguyen [AN11] defined a universal set (non-)membership NIZK, using the
Groth-Sahai framework as a compiler to add zero-knowledge to the accumulator from
[Ngu05]. [AN11] NIZKs have security based on falsifiable assumptions and a CRS
that only depends on the size of S.

Compared to best set (non-)membership NIZKs in the ROM [CCs08, VB20], all the
mentioned solutions, secure under falsifiable assumptions, in the standard model, per-
forms much worse in term of efficiency. Thus, it is an interesting problem to define
more efficient set (non-)membership NIZKs, with security under falsifiable assump-
tions, and possibly CRS that only depends on the size of S.

Note that [DGP+19] also proposed a different solution, based on the weak Boneh-
Boyen signature scheme and a QA-NIZK (Quasi-Adaptive NIZK) [KW15], with se-
curity based on falsifiable assumptions. This QA-NIZK-based set membership has
aggregation as an exciting feature (we can prove membership of many elements in
a single proof). Moreover, it has better communication complexity compared to any
Groth-Sahai set-membership NIZKs. However, as well as suffering from the issues
it shares with other signature-based solutions, [DGP+19] QA-NIZK set membership
has verifier with computational complexity linear in the size of S. All the other solu-
tions described here have verifier’s computational complexity independent of the size
of S. This independency is an essential requirement, since the size of S is significant in
many applications, and the verifier’s computational power is limited. Therefore, even
acknowledging the better performance in proof size, we do not compare [DGP+19]
QA-NIZK set membership with competitors with constant time verifier.

1.12 Results of the Current Thesis

This thesis is a collection of three papers, with the common purpose of defining better
and more efficient non-interactive protocols, under computational and, possibly falsifi-
able, assumptions, in the standard model. It is worth mentioning that each of the three
papers results from a joint work. Therefore, a list of personal contributions is included
in this section. However, it should be taken into account that sometimes it is not clear

4The CRS will depend only on the size of S.

1.12 Results of the Current Thesis 19

to point out what can be considered a personal achievement in a joint work. In collab-
orative research, results often follow from ideas, rounds of feedback and interactions
among authors. The list of personal contributions should then be considered as a list
of arguments where the author of this thesis has contributed the most, in terms of lead-
ing the discussion as well as writing the final result. The full version of each article is
included in the current thesis.

Efficient NIZKs for Algebraic Sets.

The first article [CLPØ21a], full version [CLPØ21b], is a joint work with Geoffroy
Couteau, Helger Lipmaa, and Arne Tobias Ødegaard. In this paper, we propose a new
methodology to define NIZKs whose security is based on computational cryptographic
assumptions, building on the work of Couteau and Hartmann [CH20]. The core idea
is a new and efficient Sigma protocol for showing that an encrypted vector decrypts
to an element belonging to an algebraic set. An algebraic set is a set of elements that
are common roots of a finite set of polynomials. Then, we apply the CH-compiler
(Couteau Hartmann) to the new Sigma protocol, showing that this procedure leads to
secure NIZKs. We significantly improve over [CH20] in terms of both security and
expressivity.

The security of the resulting NIZK is shown under a new assumption: the CED

(Computational Extended Determinant) assumption. The CED assumption is a weaker
form of a specific ExtKerMDH assumption used in [CH20]; here weaker means that any
adversary that breaks CED, is also a successful adversary against the ExtKerMDH as-
sumption. As per the ExtKerMDH, the CED assumption is a computational assumption,
although not always falsifiable. However, we were able to show the security of the new
NIZK, under a falsifiable version of CED, for many more significant cases than [CH20].
Moreover, for the general case when CED is used in its non-falsifiable variant, we show
that it can be reduced to a single, very plausible gap assumption [OP01]. It is unclear if
the same holds for the more general ExtKerMDH assumption, for which only reductions
in idealized models are known.

However, the most significant angle of improvement is in terms of expressivity. We
show in our paper, how finding an efficient and natural representation of problems as
algebraic sets is more straightforward compared to doing the same for other languages
popular in pairing-based cryptography, such as algebraic languages (used in [CH20])
or PPEs (used in [GS08]). Consequently, our work improves efficiency over the previ-
ous state-of-the-art, for many interesting cases, as shown in the paper by comparison
tables (see [CLPØ21a] 1, Table 1 and 2). Moreover, the new framework has the novel
and appealing feature of allowing one to go from a high-level (non-cryptographic) de-

20 Introduction

scription of the problem to the optimized NIZK almost automatically. Remarkably, the
previous task does not require work from dedicated cryptographic experts.

Despite many years of research, we remark that the new framework for NIZKs de-
fined in [CH20] and in this work represents the only known improvements in efficiency
over the Groth-Sahai framework. The latter is achieved at the cost of relying on less
standard, yet plausible, assumptions.

Author’s contributions in this work included optimizing the efficiency of prover
computational complexity, exploring the cases based on a falsifiable version of CED,
partially writing soundness and zero-knowledge proofs and an extensive literature
search and comparison with previous solutions.

NIWI and New Notions of Extraction for Algebraic Languages.

The second paper [GKP22b], full version [GKP22a], is a joint work with Chaya
Ganesh, and Hamidreza Khoshakhlagh. In this work, we give a new construction of
a NIWI in the plain model. Our NIWI (in the plain model) construction is based on,
and is as efficient as, [CH20] NIZK proof (in the CRS model). We construct the NIWI,
letting the prover pick its own CRS and output some auxiliary elements to prove the
correctness of the choice. Therefore, the verifier can use the auxiliary elements to
check that perfect soundness holds. Witness indistinguishability is proven under a new
decisional (falsifiable) assumption. To motivate the new assumption, we prove that it
holds in the AGM. The result is a new NIWI for algebraic languages, which is more
efficient than the state-of-the-art competitor [GOS12], at the cost of relying on a less
standard, but importantly falsifiable, assumption.

Furthermore, we explore the knowledge soundness of Couteau-Hartmann NIZK sys-
tems. We define the notion of strong partial knowledge soundness, and we prove that
Couteau-Hartmann NIZK proof achieves this property. Then, we define the notion
of semantic knowledge soundness. We investigate the relationship between seman-
tic knowledge soundness, and different existing notions of knowledge soundness. We
prove that semantic knowledge soundness is a general definition that recovers exist-
ing notions of knowledge soundness as special cases. Lastly, we show that Couteau-
Hartmann NIZKs cannot satisfy semantic extraction in the standard model under the
hardness of discrete logarithm.

Author’s contributions in this work includes writing the AGM proof for the new
assumption, writing the proof of strong partial extractability for Couteau-Hartmann
NIZK proofs, formulating the definition of semantic knowledge soundness, partially
writing the proof of relationship between semantic knowledge soundness, and different
existing notions of knowledge soundness, and writing the proof for the impossibility

1.12 Results of the Current Thesis 21

result about knowledge soundness of Couteau-Hartmann NIZK arguments.

Set (Non-)Membership NIZKs from Determinantal Accumulators.

The last article [LP22] is a joint work with Helger Lipmaa. In this work, we con-
struct a new set (non-)membership NIZK. To the best of our knowledge, the NIZK
presented in [LP22], improves over the previous version from many angles. First, it
achieves the best communication complexity and verifier computational complexity
among all previous falsifiable set membership NIZKs: [BCKL08, AN11] and Groth-
Sahai based NIZK from [DGP+19]. Moreover, since it is an accumulator-based NIZK,
it inherits all the advantages of accumulator-based solutions: it has a CRS that depends
only on the size of the set S, and it is universal, supporting non-membership proofs.
Since [LP22] set (non-)membership NIZK has constant time verifier, CRS indepen-
dent from the set S, and supports non-membership proof, it should not be compared to
the QA-NIZK set-membership from [DGP+19]. Nevertheless, we note that our NIZK
performs better in terms of proof size even compared to [DGP+19] QA-NIZK set-
membership.

The set (non-)membership NIZK defined in this work is based on the novel concept
of determinantal accumulator and the CLPØ framework for NIZKs. We first define a
determinantal accumulator, then compile it into a NIZK (adding zero-knowledge) using
the CLPØ NIZK system. We can informally think of determinantal primitives as those
that are “friendly” with the framework of [CH20, CLPØ21a]. Here the term friendly is
used in the sense that the zero-knowledge compilation adds minimal overhead to the re-
sulting NIZK, similar to how Structure-Preserving primitives are defined as “friendly”
with the Groth-Sahai framework [BCKL08, AFG+16]. More generally, we develop a
straightforward and modular technique to define efficient NIZKs in the standard model.
First, we construct an algebraic representation of a given problem. Then, we prove the
security of a (not zero-knowledge) determinantal primitive. Finally, we compile it into
a NIZK using CLPØ framework. We emphasize that the technique we have just de-
scribed is an essential contribution of this article.

The security of the new determinantal accumulator is proven under new falsifiable
assumptions. Once again, to justify introducing new assumptions, we prove they are
secure in the AGM. The AGM security proof of the new assumptions is technically
challenging and an important contribution of this work.

Since the pairing-based setting is nowadays a well-studied and established topic, it
is not easy to come up with consistent advancement in efficiency for simple problems
such as set (non-)membership NIZKs. This work shows that the CLPØ framework
allows for improvements over Groth-Sahai solutions. We leave it as an open question

22 Introduction

to explore whether achieving the same advancements for other popular problems is
possible.

As another significant contribution, we extend the framework defined in [CLPØ21a],
by proposing a general methodology to prove non-membership in an algebraic set with
minimal complexity overhead.

Author’s contributions in this work included an extensive literature search and com-
parison with previous solutions, optimizing the efficiency of the accumulator scheme,
partially writing the AGM proof for the new assumptions, proposing how to define the
new assumptions in such a way they are falsifiable, and write the proof for the ZK
compiler.

Chapter 2

Preliminaries

2.1 Notations and Basic Concepts

For any positive integer n, [n] denotes the set {1, . . . ,n}. Let λ ∈ N be the security
parameter. In the second paper, we denote the secure parameter with k. A function
is negligible if it is definitely smaller than the inverse of any polynomial. Let negl(λ)
be an arbitrary negligible function. We write a(λ) ≈λ b(λ) if |a−b| ≤ negl(λ) for an
arbitrary negligible function. Note that a is a negligible function if a ≈λ 0. When a
function can be expressed in the form 1− negl(λ), we say that it is overwhelming in
λ . Given two distritutions D1,D2 over the same support, we write D1 ≡ D2 to indicate
that the two distributions are equal.

Let X ,Y be two sets. A relation R is a subset of the cartesian product X ×Y . We
call elements in the first set X statements. A witness for a statement x∈ X is an element
w ∈ Y such that (x,w) ∈R. We associate to each relation the language LR = {x ∈ X :
∃w,(x,w) ∈R}. True statements are elements in the language LR and false statements
elements in X but not in LR . Some classes of languages are parametrized by a public
language parameter lpar sampled from a certain distribution. See Section 2.8 for an
example of such a class of languages. When this is the case, we indicate the language
as Ll par,R .

We use DPT (resp. PPT) to mean a deterministic (resp. probabilistic) polynomial
time algorithm. We write Y ←A (X) to denote an algorithm with input X and output Y .
RNDλ (A) denotes the random tape of A (for given λ), and r←$RNDλ (A) denotes the
uniformly random choice of r from RNDλ (A). We write Y ← A (X ;r) to denote that
a probabilistic algorithm outputs Y on input X and random coins r. Further, we write
a←$ S to denote that a is sampled according to distribution S, or uniformly randomly if
S is a set. All adversaries will be stateful.

24 Preliminaries

To represent matrices and vectors, we use bold letters. We use bold upper-case
letters for matrices and bold lower-case letters for vectors. Vectors are, by default,
column vectors. For a matrix A, Ai denotes its ith row, A(j) denotes its jth column, and
Ai j denote the element at row i and column j.

An OWF (One-Way Function) f is a function such that there exists a PPT that com-
putes f (x), but given y no PPT can compute with more than negligible probability an x

such that y = f (x).

Security through games and reductions. We often prove that properties hold under cer-
tain assumptions. That is, we want to prove statements of the form “if the assumption
A holds, then property B holds as well”. To achieve this goal, we use games and reduc-
tions.

Cryptographic properties are frequently defined as games between parties in which
one (or rarely more than one) tries to compute outputs with specific properties, receiv-
ing inputs through interaction with the other parties involved. For instance, the sound-
ness property of zero-knowledge proofs is defined by a (potentially malicious) prover
interacting with an honest verifier, trying to compute a valid proof for a false statement.
Security is then proven by contradiction. We suppose the existence of an adversary A

able to win the game that defines the property B. We then define an adversary B that
runs A . Lastly, we prove that B contradicts assumption A. In this case, we say that B

breaks the assumption A. Since we conjecture that assumption A holds, then such B

must not exist, which implies that the original A should not exist as well. It follows
that property B holds as well, quod erat demonstrandum.

This procedure is called a reduction of property B to assumption A, or equivalently it
is said that we have reduced property B to assumption A. More precisely, with a reduc-
tion, we prove by contradiction statements of the form “property B holds or assumption
A is false”.

Cryptographic assumptions. The DL (discrete logarithm) assumption in a group G of
order p states that it is hard to compute the discrete logarithm of a random element in
G.

Definition 1 (Discrete logarithm assumption.) Given a cyclic group G of order p

generated by g, for each PPT adversary A

Pr
[

gw = h h←$G;w←A (g,h)
]
≤ negl(λ).

We now state the CDH (Computational Diffie-Hellman) assumption.

2.2 Algebraic Branching Programs 25

Definition 2 (CDH assumption.) Given a cyclic group G of order p generated by g, for

each PPT adversary A

Pr
[

h = gxy x,y←$Zp;h←A (g,gx,gy)
]
≤ negl(λ).

We also state a decisional version of the Diffie-Hellmann assumption: the DDH as-
sumption.

Definition 3 (DDH assumption.) Given a cyclic group G of order p generated by g,

for each PPT adversary A

Pr
[

b′ = b x,y,z←$Zp;b←${0,1};b′←A (g,gx,gy,gxy+bz)
]
≤ 1/2+negl(λ).

2.2 Algebraic Branching Programs

In this thesis, we use an algebraic model of computation for polynomials over fields
called ABP (Algebraic Branching Program) [Nis91, BG99]. An ABP is a directed
acyclic graph with two special vertices s (source vertex) and t (target vertex), and a
function that assigns a label to each edge. Each label is an affine multivariate function
(a polynomial of total degree up to 1). An ABP computes a polynomial f if f is equal
to the sum over all paths from s to t of the products of labels in the path.

Definition 4 (Algebraic Branching Program.) An algebraic branching program is a

tuple (V,E,s, t,φ) such that (V,E) is a directed acyclic graph, s, t ∈V are two distinct

vertices and φ : E→ Zp[X] is a function that associates each edge to a polynomial. In

addition, we require the following conditions

1. No edges go out from t or into s. That is, for each v ∈V we have (v,s),(t,v) /∈ E.

2. For each e ∈ E, φ(e) is an affine function (a linear polynomial).

Let s− t be the set of all possible paths from s to t in the graph. We say that the ABP

(V,E,s, t,φ) computes a polynomial F if F(X) = ∑P∈s−t ∏a∈P φ(a).

In Fig. 2.1, we can see as an example an ABP that computes F(X ,Y) = X3 +aX +

b−Y 2. Note that there are 4 different paths from s to t. For each of them the product
of the labels in the path is equal to a monomial of F . As a model of computation,
ABP can be used to represent a wide range of functions, such as log-depth arithmetic
circuits and boolean formulas. Moreover, ABPs often provide an efficient and compact
representation of the polynomial they compute. See [Val79, SY10] a more precise
characterization of the class of functions that admit an efficient ABP representation.

26 Preliminaries

X X2

s F(X)

Y

X

X

Y

Xa

b

−Y

Figure 2.1: ABP example for F(X ,Y) = X3 +aX +b−Y 2.

See [IK00, IK02, IW14] and the reference they cite for a more in-depth discussion
about ABPs.

2.3 Asymmetric Bilinear Pairings

Let G1,G2,GT be three different additive, cyclic groups of order a large prime p, gen-
erated respectively by g1,g2,gT . Let also Zp be the ring of integers, modulo p. We
use bracket notation for groups, introduced in [EHK+13]. For ι ∈ {1,2,T} and each
x,y ∈ Zp, we denote the generator gι with [1]ι and we write [x]ι for gx

ι , and [x]ι +[y]ι
for gx

ι gy
ι .

As a common practise in cryptographic literature, starting from [BF01], we require
the existence of a bilinear pairing function e : G1×G2→GT , with the following prop-
erty.

Non-degeneracy: the element e([1]1, [1]2) is a generator of GT , denoted as [1]T ..

Bilinearity: for each a,b ∈ Zp, e(a[1]1,b[1]2) = ab[1]T .

Efficiently computable: e can be computed by an efficient deterministic Turing ma-
chine.

We denote e([x]1, [y]2) as [x]1 • [y]2. We write [x]1 • [y]2 = e([x]1, [y]2) = [xy]T . For each
x ∈ Zp and each group element [y]ι , we denote the operation x[y]ι = [xy]ι with scalar
multiplication. Since scalar multiplication corresponds to the exponentiation in cyclic
multiplicative groups, with a little abuse of notation we also sometimes indicate this
operation as exponentiation1. To use bilinear groups in cryptography, we require addi-
tional hardness properties. We require the hardness of the discrete logarithm problem
Definition 1, in all three groups: for ι ∈ {1,2,T}, given a uniformly random group ele-
ment [x]ι no PPT can compute x with more than negligible probability. More precisely,
we require that for each ι ∈ {1,2,T}, [·]ι : Zp→Gι is an OWF. Lastly, we require that

1In the second paper [GKP22b] we always use the term exponentiation for the operation x[y]ι = [xy]ι .

2.4 Algebraic Group Model 27

no efficiently computable isomorphism exists between G1 and G2. This last property is
what characterizes type III bilinear pairings, which are also called asymmetric pairings
[GPS06]. In contrast, in type I, we set G1 =G2 and in type II, we require the existence
of an efficient isomorphism between G1 and G2. In this thesis, we always use type III
pairings.

We use bilinear pairings as a black-box structure, assuming the needed hardness
property to hold. More precisely, we assume that there exists an efficient algorithm
Pgen that takes as input a security parameter and returns the description of the three
groups, with a generator and the description of the pairing operation. We also assume
that p = (G1,G2,GT , [1]1, [2]1,•)← Pgen(1λ), is given as input to all the algorithms.
However, we sometimes do not list p explicitly as input. For real applications, groups
defined by elliptic curves over finite fields are used to implement bilinear cryptographic
pairings; see [BSS00, BD19] for details about implementation. We point out that using
type III pairings leads to implementations of group elements with shorter bit representa-
tion, thus better efficiency. See [BD19] for more information about size and efficiency
of type III state-of-the-art pairings. As a rule of thumb, it is important to take in mind
that elements in G2 are about twice longer in bit size than elements in G1.

Finally, we naturally extend this notation to vectors and matrices, applying bracket
operators pointwise, and define the pairing operation as [A]1• [B]2 = [AB]T for any two
matrices with compatible dimensions.

We state some standard assumptions in pairing based cryptography.

Definition 5 (Symmetric discrete logarithm assumption.) For any PPT adversary

A , it holds that

Pr
[

x = x′ x←$Zp;x′←A ([x]1, [x]2)
]
≤ negl(λ).

Let Dk,l be a distribution of matrices over Zk×l
p .

Definition 6 (KerMDH-assumption.) For any PPT adversary A , it holds that for each

ι ∈ {1,2}

Pr
[

cT A = 0 A←$ Dk,l; [c]3−ι ←A ([A]ι)
]
≤ negl(λ).

2.4 Algebraic Group Model

The AGM (Algebraic Group Model) [FKL18] is an idealized model of computation,
where we consider only a restricted class of adversaries.

28 Preliminaries

Let us consider algorithms that receive group elements as inputs. We call algebraic
any algorithm that, when it outputs a group element, it must know a representation
of the output as a linear combination of its inputs. Such algebraic algorithms were
first considered in [BV98] and defined in [PV05]. Differently from how it is done
in [FKL18], we formalize algebraic algorithms, by the existence of an extractor that
computes the coefficients of such linear combination, given the algorithm code and
the random coins it used for the execution. We give the formal definition directly
for asymmetric setting, where any output in a given group must be a known linear
combination only of inputs in the same group.

Definition 7 An algorithm A is algebraic if there exists a PPT extractor ExtA such

that, for any vector of group elements X = ([X1]1, [X2]2), we have

Pr

[
Y1 ̸= α1X1∧ p←$Pgen(1λ);r←$RNDλ (A);
Y2 ̸= α2X2 ([Y1]1, [Y2]2)←A (X;r);(α1,α2)← ExtA (X,r)

]
≤ negl(λ)

See Section 1.4 for a discussion about the choice of defining AGM with extractors and
the relation between AGM and knowledge assumptions.

In AGM, we show security by reductions, with the restriction that we consider only
algebraic adversaries. Reductions in AGM heavily rely on algebraic extractors.

Therefore, a proof of security in AGM is a proof of statements of the form “property
B holds for all algebraic adversaries, or assumption A is false”. It is common to use
AGM to justify introducing new assumptions, proving that they hold against algebraic
adversaries under well-established and standard assumptions, such as the hardness of
discrete logarithm. As stated in Section 1.4, an AGM reduction to a well-established as-
sumption is considered a better proof of security than a proof in GGM [Sho97, Mau05],
another idealized model for cryptographic groups.

Recall that decisional assumptions adversaries output bits, which are not group el-
ements. The original AGM [FKL18] lacks a definition of algebraic adversaries for
decisional assumptions. Rotem and Segev [RS20] show how to extend the AGM to
prove the security of decisional assumptions, defining algebraic distinguishers.

2.5 Public-Key Encryption Scheme

A public-key encryption scheme is a triple of PPT algorithms.

Key generator: on input a security parameter, outputs a pair of correlated public key
pk and secret key sk.

2.5 Public-Key Encryption Scheme 29

Encryption: on input a public key pk and a plaintext m, computes a ciphertext c =

Encpk(m;r) using random coins r.

Decryption: on input a ciphertext c and a secret key sk, computes a plaintext m =

Decsk(c).

In this thesis, we use public-key encryption scheme with the following security prop-
erties.

Correctness: for each pair of (pk, sk) computed by the key generator algorithm, for
each plaintext m and random coins r, we have m = Decsk

(
Encpk(m;r)

)
.

IND-CPA security: for each two-stage PPT algorithm A1,A2 it holds that

Pr

[
b = b′ (pk, sk)←$kgen(1λ);(m0,m1, st)←A1(pk);

b←${0,1};b′←A2(st,Encpk(mb,r))

]
≈λ

1
2
,

where r is fresh randomness and st is an internal state that the two-stage adversary
uses to pass information from one stage to the other.

Public keys of a public-key encryption scheme, are used as language parameters for
parametrized languages Llpar,A described in Section 2.1. Paticularly we can define
lpar= pk and LANGlpar,R = {c : c = Encpk(x;r)∧ x ∈ A}.

In the Elgamal encryption scheme [ElG84], the public key is pk= [1∥sk]1, and

Encpk(m;r) = (r[1]1∥m[1]1 + r[sk]1) .

To decrypt, one computes [m]1 = Decsk([c]1) ← −sk[c1]1 + [c2]1. In what follows,
we denote [c]1 = Enc(m;r) for a fixed public key pk = [1∥sk]1. Recall the DDH as-
sumption: given x,y,z←$Zp and a bit b, no PPT can computes a bit b′ on input
([x]1, [y]1, [xy+bz]1) such that b = b′, with probability greater than 1/2+negl(λ). If the
DDH assumption holds Definition 3, then the Elgamal encryption scheme is IND-CPA
secure.

Note that Elgamal encryption scheme is linearly homomorphic: given two cipher-
texts [c1]1 = Encpk(m1;r1), [c2]1 = Encpk(m2;r2) we have that Decsk([c1]1 + [c2]1) =

[m1]1+[m2]1. We heavily use the linear homomorphic property of the Elgamal encryp-
tion scheme in this thesis.

30 Preliminaries

P[x,w) V(x)

(a, st)← P(x,w)
[a]−−−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−−− e←$

d← P(x,w, st,e) d−−−−−−−−−−−−−−−→
b← V(x,π = (a,e,d))

Figure 2.2: The flow of a Sigma protocol

2.6 Sigma Protocols

A Sigma protocol [CDS94] for a relation R is a public-coin three-round interactive
protocol between a prover P and a verifier V on input a common statement x. The
prover has a witness w, such that (x,w) ∈ R as additional secret input. The flow of a
Sigma protocol is depicted in Fig. 2.2.

For any pair of interactive algorithms A,B, we denote with ⟨A(a),B⟩(b) the output
of B, after an interaction with A, on common input b and A’s secret input a. Standard
security notions for a Sigma protocol are completeness, special soundness, and special
honest verifier zero-knowledge (SHVZK).

Completeness : for any (x,w) ∈R

Pr
[
⟨P(w),V⟩(x) = 1∨ (x,w) /∈R (x,w)←A (1λ)

]
= 1

Special Soundness: there exists a PPT algorithm Ext that given a statement x and two
accepting transcripts (a,e,d),(a,e′,d′) with the same first message and e ̸= e′ out-
puts a witness w, such that (x,w) ∈R with overwhelming probability.

Special Honest-Verifier Zero-Knowledge (SHVZK): there exists a PPT simulator
Sim such that for any (x,w) ∈ R and e ∈ {0,1}k, the distributions of Sim(x,e)

is identical to the distribution of the 3-move honest transcript obtained when V

sends e as challenge and P runs on common input x and private input w.

Sometimes, optimal soundness [MP03] is achieved, as an alternatively weaker no-
tion of soundness. Roughly speaking, a Sigma protocol is optimally sound if given a
false statement x there do not exist two accepting transcripts (a,e,d),(a,e′,d′) with the
same first message and e ̸= e′.

2.7 Non-Interactive Zero-Knowledge Arguments 31

2.7 Non-Interactive Zero-Knowledge Arguments

A NIZK [BFM88] for a language LR consists of four PPT algorithms.

CRS generator kgen: on input the security parameter, generates a CRS crs and a trap-
door td.

Prover P: on input a CRS crs, a statement x, and a witness w outputs a proof π for
x ∈LR , or equivalently (x,w) ∈R.

Verifier V: on input a CRS, a statement and a proof, outputs 1 for accepting or 0 for
rejecting the proof.

Simulator Sim: on input a couple of (crs,td) CRS with a relative trapdoor, and a true
statement x computes a simulated proof π .

In addition, the following properties are required.

Perfect completeness: for any pair (x,w) ∈ R, and for any (crs,td)← kgen(1λ) we
have

Pr
[
V(crs,x,π) = 1 π ← P(crs,x,w)

]
= 1.

Computational adaptive soundness: for any PPT adversary A

Pr

[
V(crs,x,π) = 1∧ (crs,td)← kgen(1λ);

x /∈LR (x,π)←A (crs)

]
≤ negl(λ).

If valid proofs for false statement cannot exist, we have perfect soundness. Infor-
mally, computational non-adaptive soundness is defined by letting the adversary
choose the false statement x before recieving the CRS. In this work we never use
non-adaptive soundness, and we implicitly refer to computational soundness as
computational adaptive soundness, omitting the term adaptive.

Perfect zero-knowledge: for any (x,w) ∈ R, and for any (crs,td) ← kgen(1λ) the
following distributions are identical

P(crs,x,w)≡ Sim(crs,td,x).

If the two distributions are computationally indistinguishable, we have computa-
tional zero-knowledge.

32 Preliminaries

Note that the zero-knowledge property is formalized by the existence of an efficient
simulator that can compute valid proofs without knowing the witness. This definition
aims to capture that, if it is possible to compute proofs distributed as those computed by
the honest prover, without knowing the witness, then the proof carries no information
about the witness. The simulator can compute valid proofs, without knowing the wit-
ness, only because it receives a secret trapdoor td as additional input. For soundness to
hold, it is required that computing the trapdoor td from the CRS crs is computationally
intractable. Pass showed that it is impossible to define NIZKs with perfect soundness
and perfect zero-knowledge [Pas13].

We say that a NIZK is black-box knowledge-sound if there exists a PPT extractor
that computes a witness, for a statement, given a CRS with the related trapdoor, and an
accepting proof. If the extractor is allowed to depend on the adversary and receives the
random coins used by the adversary as additional input, the NIZK achieves white-box
knowledge soundness.

Black-box knowledge soundness: there exists an extractor ExtBB such that, for any
PPT adversary A :

Pr

[
V(crs,x,π) = 1 (crs,td)← kgen(1λ);
∧(x,w) /∈R (x,π)←A (crs);w← ExtBB(td,x,π)

]
≤ negl(λ)

White-box knowledge soundness: for any PPT adversary A , there exists an efficient
extractor ExtWB,A such that:

Pr

[
V(crs,x,π) = 1 (crs,td)← kgen(1λ);r←$RNDλ (A);
∧(x,w) /∈R (x,π)←A (crs;r);w← ExtWB,A (td,x,π,r)

]
≤ negl(λ)

where r is the random coins of A .

Lastly, we state the witness indistinguishability definition [FS90] for non-interactive
protocols, as used in [GOS12]. Roughly speaking, a protocol is witness indistinguish-
able if it is impossible to distinguish which witness the prover used to compute a valid
proof. Recall that we are interested in non-interactive witness indistinguishable proof
systems in the plain model without a trusted setup.

Witness Indistinguishability (WI): for every PPT verifier (V∗1,V
∗
2), for all (x,w1,w2)

2.8 Couteau-Hartmann Framework 33

such that (x,w1) ∈Rlpar,(x,w2) ∈Rlpar, we have

Pr

[
b = b′ (x,w1,w2, st)← V∗1(lpar);b←${0,1};

π ← P(lpar,x,wb);b′← V∗2(st,π)

]
≈λ

1
2

Here st is an internal state that the two-stage adversary uses to pass information from
one stage to the other. See Section 1.10 for a discussion about NIWI in the plain model.

2.8 Couteau-Hartmann Framework

An algebraic language is a language described by linear equations over abelian groups.
Let l,k,n ∈ N, lpar = (Γ,θ) be a pair of linear maps Γ : Gl → Gn×k,θ : Gl → Gn.2

The language Llpar is defined as

Llpar = {[x]1 ∈Gl : ∃w ∈ Zk
p, [Γ(x)]1w= [θ(x)]1}.

Algebraic languages are as expressive as NP, because we can use them to represent
boolean circuits. Linear languages are algebraic languages such that Γ is a constant
function. Many languages of interest for applications admit a representation as a linear
language. For instance, the language of Elgamal encryption of bits is a linear language.
See [CH20] and their references, or the second paper in this thesis [GKP22a], for more
information about linear languages.

Couteau and Hartmann [CH20] introduce a new approach to define pairing-based
NIZKs for algebraic langauges.

Their methodology consists in obtaining a NIZK from compiling a Sigma protocol
for algebraic languages, reported for completeness in Fig. 2.3. See Section 1.8 in the
intro, for a discussion on the compiler they used.

The NIZK is depicted in Fig. 2.4. Soundness of the NIZK argument is proven
under the ExtKerMDH assumption. For completeness we report the definition of the
ExtKerMDH assumption, and the theorem about the security of the NIZK argument.

Definition 8 (ExtKerMDH assumption.) Let L1 be the distribution [1
e]2, where e←$Zp.

The L1-(k)-ExtKerMDH assumption holds in G2 relative to Pgen, if for all PPT adver-

2Sometimes algebraic languages are defined as maps from the field Zp to the group

34 Preliminaries

P(lpar, [x],w) V(lpar, [x])
r←$Zk

p
[a] := [Γ(x)]r

[a]−−−−−−−−−−−−−−−−→
e←$Zp

e←−−−−−−−−−−−−−−−
d := we+ r

d−−−−−−−−−−−−−−−→
[Γ(x)]d ?

= [θ(x)]e+[a]

Figure 2.3: Sigma protocol for an algebraic language Llpar with lpar= (Γ,θ)

kgen(1λ)

e←$Zp

crs := (p, [e]2);td := e
return (crs,td)

P(lpar,crs, [x]1,w)

r←$Zk
p

[a]1 := [Γ(x)]1r
[d]2 := w[e]2 +[r]2
return π := ([a]1, [d]2)

Sim(lpar,crs,e, [x]1)

d←$Zl
p;

[A]1 = [Γ(x)]1d− e[θ(x)]1;
return π := ([a]1, [d]2)

V(lpar,crs, [x]1,π = ([a]1, [d]2))

[Γ(x)]1 • [d]2 =? [θ(x)]1 • [e]2 +[a]1 • [1]2

Figure 2.4: NIZK argument for algebraic language Llpar with lpar= (Γ,θ) [CH20]

saries A , the following probability is negligible:

Pr

[
[C]1 ∈Gk+1×k+2

1 ∧ [δ]2 ∈Gk
2∧ p← Pgen(1λ), [D]2←$L1,

C
(D

δ

)
= 0 ∧ rk(C)≥ k ([C]1, [δ]2)←A (p, [D]2)

]
.

Proposition 1 ([CH20]) Let LΓ,θ be an algebraic language, with Γ : Gl → Gn×k,θ :
Gl → Gn. The NIZK argument in Fig. 2.4 for the algebraic language LΓ,θ is perfect

complete, perfect zero-knowledge and computational adaptive sound, under the L1-

(k)-ExtKerMDH assumption in G2.

Couteau and Hartmann also propose a second compiler that leads to a NIZK proof
with perfect soundness and computational zero-knowledge, applied to the same Sigma
protocol. We refer to Section 3.2 for an informal description of this second compiler

2.9 Accumulator 35

and to [CH20] or the second article in this thesis [GKP22b] for a formal description
and the security proof.

2.9 Accumulator

Benaloh and de Mare defined accumulators in [BdM93]. Universal accumula-
tors [BLL00, BLL02, LLX07, Lip12b, DHS15] allow non-membership arguments.

We define accumulators in the CRS model only. Hence, within the context of the
current paper, universal accumulators are set (non-)membership arguments, without
zero-knowledge, in the case the input χ is public. That is, for lpar = S , a universal
(CRS-model) accumulator is a (non-zk) set (non-)membership non-interactive argu-
ment system for the following complementary languages:

L acc
lpar = S , L̄ acc

lpar = D \S .

Here D ⊆ Zp is the set of elements that can be accumulated. The computation com-
mitment algorithm com corresponds to the accumulator’s commitment algorithm that
inputs a set S and outputs its short commitment. A CRS-model accumulator can have
a trapdoor. However, since χ is public (and no zero-knowledge is required) then the
trapdoor is not used.

As with all argument systems, a universal accumulator must satisfy completeness
and soundness properties. Because of historical reasons, the latter is usually known as
collision-resistance. Full definitions follow.

A universal accumulator ACC must be perfectly complete: for (crs,td) ∈ kgen(1λ),
χ ∈ D , and S ⊆ D , V(crs,com(crs,S),χ,P(crs,S ,χ)) outputs Member if χ ∈S

and NotMember if χ /∈S .

Definition 9 Let ACC be a universal accumulator. ACC is collision-resistant [BP97] if

for all N = poly(λ) and PPT adversaries A ,

Pr




S ∈D≤N∧(
(χ /∈S ∧ v =Member)∨

(χ ∈S ∧ v = NotMember)

)
p← Pgen(1λ);

(crs,td)← kgen(p,N);
(S ,χ,ψ)←A (crs);

v← V(crs,com(crs,S),χ,ψ)



≤ negl(λ),

where D≤N is a set of elements in D of size up to N.

Nguyen [Ngu05] proposed a pairing-based CRS-model accumulator with D = Zp.

36 Preliminaries

Damgård and Triandopoulos [DT08] and Au et al. [ATSM09] showed independently
how to make it universal by adding a non-membership argument.

Sometimes accumulator can satisfy a weaker notion of security called f -collision-
resistance, where collision-resistance holds even against adversaries that output f (χ),
instead of χ . In this thesis, we use the [·]1-collision-resistance property. See the third
paper in this thesis [LP22] for more about f -collision-resistance.

Chapter 3

Technical overview

3.1 Article I

The main technical contribution in [CLPØ21a] is a new methodology to construct a
NIZK for languages defined by encryptions of common roots of a set of polynomials.
As explained in Section 1.12, the new NIZK framework is an improvement over in
[CH20] in many respects. We show how to go from a high-level description of a given
relation, to an efficient NIZK for that relation, in an almost automatic way. Notably,
for the NIZK described in this article, the described task does not require dedicated
cryptographic expertise. We also show better security conditions for soundness.

More precisely, let ν be a small integer and p be a large prime. Let M = { f} be a
finite set of ν-variate polynomials over Zp. Define the algebraic set generated by M

as A = {x ∈ Zν
p : ∀ f ∈M , f (x) = 0}. M is called a base of the algebraic set A. We

refer to the article [CLPØ21a] for a more precise discussion about algebraic sets and
their relations with ideals in polynomial rings. We choose a linearly homomorphic,
public-key encryption scheme, for instance, the Elgamal encryption scheme described
in Section 2.5. We let pk be an Elgamal public key and define the language of encryp-
tion of elements in A as

Lpk,A = {[c]1 : ∃(r,x),Encpk(x,r) = [c]1∧x ∈ A}.

Finally, our main contribution is to define a NIZK for Lpk,A.

It is worth mentioning, though, that finding an algebraic set base M , composed by a
few polynomials of low degree, is, in general, a non-cryptographic open problem, dis-
cussed more in detail in the article, see [CLPØ21a]. The task of defining an efficient
NIZK for an algebraic set A is performed in two steps: finding a good base M (com-

38 Technical overview

posed by a few polynomials of low degree), and define a NIZK to argue the possession
of an element x, root of all polynomials in M . We now describe how we solve this
second step, starting by noticing that we can construct our NIZK as a conjunction of
NIZKs for the simpler language defined as encryptions of roots of a single polynomial
f . Let us show a NIZK for the simpler language

Lpk, f = {[c]1 : ∃(r,x),Encpk(x,r) = [c]1∧ f (x) = 0}. (3.1)

Our first step is to find a suitable representation of the given polynomial f , in terms
of a matrix C. A QDR (Quasi-Determinantal Representation) of a ν-variate polynomial
f , is a matrix C with the following properties.

Affine map: every entry is an affine map in Ci j : Zν
p → Zp. We write Ci j(X) =

∑
ν
k=1 Pki jXk +Qi j, for public constant Pki j, and Qi j. To simplify notation, we will

use vector/matrix format, by writing

C(X) =
ν

∑
k=1

PkXk +Q .

Determinantal representation: the determinant of C is equal to the polynomial f :
det(C(x)) = f (x). In particular, this requirement implies that C(x) is singular if
and only if f (x) = 0.

First column dependence: Write C(x) = [h(x)||T (x)], where h is the first column of
C. For any root x of f , h(x) must be in the space generated by the columns of
T (x).

If we omit the third condition, we recover the notion of determinantal representation:
a well-studied notion in algebraic geometry, see [CLPØ21a] appendix B.1 for a more
precise discussion. We define our NIZK for the language described in Eq. (3.1), by
solving two subtasks: (i) finding a QDR of f , (ii) define a NIZK to prove that a cipher-
text decrypts to an element x such that det(C(x)) = 0 for a given QDR C.

The step (i) can be performed using ABP Definition 4. Given an ABP (V,E) for
computing f , we show how to compute a QDR C of f , of size (|V |−1)×(|V |−1), from
the adjacency matrix of the ABP. Recall that the adjacency matrix of a graph (V,E),
labeled by φ , is a |V | × |V | matrix, defined as having 0 in entry i, j if (i, j) /∈ E and
having φ(i, j) if i, j ∈ E. The computation of C is based on the methodology in [IK00,
IK02]. Specifically, a QDR for a polynomial f computed by an ABP (V,E,s, t,φ) is
obtained by

3.1 Article I 39

1. taking the adjacency matrix of the ABP and subtracting the identity matrix from
it,

2. removing the row corresponding to t and the column corresponding to s,
3. transposing the matrix you get so far.

See [IK02], Lemma 1, for a proof of why the procedure just described outputs a QDR
of f .

For instance, applying this procedure to the ABP in Fig. 2.1, we get IK(X ,Y) QDR
of F(X ,Y) = X3 +aX +b−Y 2, defined as

IK(X ,Y) =
(X −1 0 0

0 X −1 0
Y 0 0 −1
b a X −Y

)
.

To solve (ii) we introduced the CED assumption (Computational Extended Deter-

minant): a weaker version of the ExtKerMDH assumption [CH20]. In a nutshell, the
CED assumption states that given a uniformly random group element [e]2, it is hard to
compute a full-rank [C]1 ∈Gl×l

1 and vectors [γ]1 ∈Gl
1 and [δ]2 ∈Gl−1

2 such that

[γ]1 • [1]2 +[C]1 • [e
δ]2 = [0]T . (3.2)

Definition 10 (CED assumption.) The CED assumption holds in G2 relative to Pgen, if

for all PPT adversaries A , the following probability is negligible:

Pr

[
[C]1 ∈Gk×k

1 ∧ [γ]1 ∈Gk
1 ∧ [δ]2 ∈Gk−1

2 ∧ p← Pgen(1λ),e←$Zp,

γ +C(e
δ) = 0 ∧ rk(C) = k ([γ,C]1, [δ]2)←A (p, [e]2)

]
.

To see how CED relates to the ExtKerMDH assumption, Definition 8, just notes that
any adversaries that breaks CED can break ExtKerMDH, by setting [C]1 = [γ||C]1. Note
that the vice versa is not true: breaking ExtKerMDH is not equivalent to breaking CED.
An ExtKerMDH adversary can be successful if [C]1 is not full-rank, but [γ||C]1 is. In this
case, though, the adversary will not be successful against the CED assumption. Later
in this section, we explain the advantages of reducing soundness to CED and not to
ExtKerMDH.

If the prover is honest, then C(x) is singular. We show that the prover can efficiently
compute [γ]1, [δ]2 such that Eq. (3.2) is satisfied, relying on the First Column Depen-

dence property. Let [h(x)||T (x)] = C(x) be a l× l QDR of a polynomial f . For each
root x of f , there exists w ∈ Zl−1

p such that h(x) = T (x)w. The prover samples a ran-
dom vector y ∈ Zl−1

p and computes γ = T (x)y. Note that γ is computed indipendently
from e. Then, the prover computes w solving the linear system h(x) = T (x)w. And

40 Technical overview

kgen(p,lpar): e←$Zp; return (crs,td)← ([e]2,e) ;

P(crs,lpar,x= [ct]1,w= (x,r)): ([γ]1, [δ]2)← comp(p, [e]2,x,C(X));

ρ←$Zℓ
p; [ctγ]1← Enc([γ]1;ρ) ∈Gℓ×2

1 ;

[z]2← ρ[1]2 +(∑ν
k=1 rkPk) [

e
δ]2 ∈Gℓ

2.

Return π ← ([ctγ]1, [δ ,z]2) ∈Gℓ×2
1 ×G2ℓ−1

2 .

V(crs,lpar,x= [ct]1,π): check [Iℓ]2 • [ctγ]1 + ∑
ν
k=1 (Pk [

e
δ]2 • [ctk]1) =?

(−Q [e
δ]2)• [0∥1]1 +[z]2 •pk.

Sim(crs,td,lpar,x= [ct]1): δ←$Zℓ−1
p ;

z←$Zℓ
p; [ctγ]1← Enc(−Q(e

δ)[1]1;z)−∑
ν
k=1 Pk(

e
δ)[ctk]1;

Return π ← ([ctγ]1, [δ ,z]2) ∈Gℓ×2
1 ×G2ℓ−1

2 .

Figure 3.1: The NIZK for Lpk, f , where C(X) is a QDR of f , included in lpar.

lastly, it computes [δ]2 =−w[e]2+y[1]2. We denote with comp the algorithm described
here, used by the prover to compute [γ]1, [δ]2, on input (p, [e]2,x,C(X)).

To preserve zero-knowledge, the prover computes [ctγ]1: encryption of [γ]1, un-
der fresh randomness. The verifier can homomorphically check an encrypted version
of Eq. (3.2), relying on the homomorphic property of the encryption scheme and the
Affine Map property of C. The prover additionally sends a vector [z]2 of elements in
G2. [z]2 is used by the verifier to annihilate encryption randomizers while checking
Eq. (3.2) on ciphertexts. Thus, having the statement [ct]1, an encryption of x, and the
proof π = ([ctγ]1, [δ ,z]2), the verifier homomorphically checks that Eq. (3.2) holds. For
completeness, the resulting NIZK argument is depicted in Fig. 3.1.

Now, assume by contradiction that a malicious verifier can compute a valid proof for
a false statement: an encryption of a vector x such that C(x) is full rank. A reduction
can decrypt the statement and ctγ , and output the full rank [C(x)]1 and vectors [γ]1, [δ]2,
breaking the CED assumption. Therefore, if the CED assumption and an encrypted
version of Eq. (3.2) holds, then we can assume that det(C(x)) = 0.

Finally, from the determinantal representation property and det(C(x)) = 0, the ver-
ifier concludes that x is a root of f . Or, equivalently, the NIZK argument is computa-
tionally sound under the CED assumption.

Because checking the rank of [C(x)]1 is a hard task in general, unless C has some spe-

3.1 Article I 41

Protocol |crs| |com| |π| P comp. V comp.

Groth-Sahai [GSW09] 4(|G1|+ |G2|) 2(m+1)(|G1|+ |G2|) (6m+2n+2)(|G1|+ |G2|) (12m+4n+4)(e1 + e2) 16(2m+n)p

New NIZK |G2| 2m · |G1| (m+n)(4|G1|+3|G2|) (m+n)(5e1 +4e2) 13(m+n)p

Table 3.1: Comparison of falsifiable NIZKs for Boolean circuit satisfiability: the
Groth-Sahai proof, as optimized by Ghadafi et al. [GSW09], and the new NIZK from
[CLPØ21a], Section 8.1. Here, |Gι | is the length of one element from Gι

cific restrictions, the CED assumption is a computational yet non-falsifiable assumption.
In the paper, we show sufficient conditions on C for the underlying CED assumption to
be falsifiable, see [CLPØ21a], Section 10. We also show many interesting applica-
tions, in the form of NIZK constructions, more efficient than the previous state-of-the-
art, whose security is based on falsifiable CED. We show better security conditions for
the general case, where the soundness of our NIZK is reduced to a non-falsifiable ver-
sion of CED. Namely, we reduce (in the standard model) the CED assumption to a very
plausible and standard gap assumption [OP01]: “KerMDH is hard in G2 even if CDH is
easy in G1”. We emphasize that, despite being non-falsifiable, our gap assumption is
very natural and plausible. Notably, it is much more desirable than knowledge assump-
tions or the use of idealized models. No reductions in the plain model to any standard
assumption are known for the more general ExtKerMDH assumption.

The article shows interesting examples of languages for which we achieve signifi-
cant efficiency improvements compared to the most optimized variant of Groth-Sahai
NIZK. As an example, we report Table 2 from [CLPØ21a], showing how we improve
in efficiency for the language of boolean circuit-satisfiability. In Table 3.1, we compare
our NIZK for circuit satisfiability with the optimized Groth-Sahai proof for Boolean
circuits by Ghadafi et al. [GSW09]. We consider circuits with m wires and n gates.
When comparing efficiency, one should consider that the size of an element in G2 is
usually twice the size of an element in G1. Moreover e2, the time to perfom a mul-
tiplication in G2 is about twice e1, the time for the multiplication in G1. We indicate
with p the time to perform a pairing operation. As shown in the table, the new NIZK,
with soundness on falsifiable CED, has 3 times shorter commitments, 20% shorter ar-
guments, and 1.84 times smaller prover’s and verifier’s computation. Importantly, as
already stated in Section 1.12, the framework defined in [CH20], and in the current
paper, is so far the only known way of improving in efficiency over Groth-Sahai.

Nevertheless, the framework itself is a significant contribution on its own. We leave
it as an open question if there are other languages where our framework outperforms
Groth-Sahai NIZK in efficiency. The third article of this thesis [LP22] partially answers
to this question positively.

42 Technical overview

3.2 Article II

We here list technical details about all the contributions in [GKP22b]. See Section 1.12
for discussion and background on the contributions in this article.

A new NIWI in the plain model. Our starting point is the NIZK proof for algebraic
languages in [CH20]. Couteau-Hartmann NIZK proofs are defined through a compiler
applied to a linear Sigma protocol for algebraic languages, depicted in Fig. 2.3. Let us
start by describing the Sigma protocol for the algebraic language

LΓ,θ = {[x]1 ∈Gl : ∃w ∈ Zk
p : [Γ(x)]1w= [θ(x)]1}.

The prover samples randomness r and computes the first message [a]1 = [Γ(x)]1r. The
verifier replies with a challenge e←$Zp. The prover then sends the third message
d = ew+r. Finally, the verifier checks if [Γ(x)]1d = [θ(x)]1e+[a]1, and outputs 1 if the
previous verification equations hold. By the special soundness of the Sigma protocol,
it is possible to efficiently compute a valid witness having on input two valid proofs
([a]1,e1,d1),([a]1,e2,d2) for the same statement x, with the same first message [a]1,
and different challenges e1 ̸= e2.

As prescribed in [CH20], to define a NIZK proof from the Sigma protocol pick two
different challenges e1 ̸= e2, two uniformly random elements s1,s2←$Zp, and publish
the CRS ([s1,s1e1,s2,s2e2]2). The prover computes a first message [a]1, as before and
two masked third messages in G2, [di]2 for i ∈ {1,2}, each answering the challenge ei.
The verifier can check both verification equations in GT , by

[Γ(x)]1[di]2 =
? [θ(x)]1 • [siei]2 +[a]1 • [si]2,∀i ∈ 1,2.

[CH20] prove perfect soundness of the NIZK proof from the special soundness of the
underlying Sigma protocol.

We note that if the prover picks the CRS on its own, perfect soundness is pre-
served, as long as he honestly chooses e1 ̸= e2. Thus, we define a NIWI proof in
the plain model, modifying the Couteau-Hartmann NIZK proof. We let the prover
pick its own CRS ([s1,s1e1,s2,s2e2]2), with e1 ̸= e2 and send it with the related proof
π = ([a]1, [d1,d2]2) and two auxiliary group elements ([s1,s2]1).

The verifier can now use the auxiliary group elements ([s1,s2]1), to check that the
prover was honest in picking a valid CRS with e1 ̸= e2, and then run the original NIZK
proof verifier. Perfect soundness of the NIWI proof follows from the special soundness
of the underlying Sigma protocol, using a similar argument to the one in [CH20] for

3.2 Article II 43

the NIZKs’ soundness proof. The witness indistinguishability property is shown under
a new decisional assumption. The new assumption is basically a tautological, deci-
sional (falsifiable) assumption for the witness indistinguishability game of our NIWI
proof. Following the golden standard in pairing-based cryptography, to validate the
new assumption, we show that it holds in AGM, under a standard variation of a dis-
crete logarithm assumption. We note that we used the decisional AGM [RS20] for the
reduction.

See Section 1.12, for an informal comparison in efficiency with other NIWI in the
plain model constructions.

We left the question of whether it is possible to prove the witness indistinguishability
property of our scheme under a more standard assumption open. However, we believe
this will likely not be the case. Standard decisional, pairing-based assumptions one
can find in literature are all different flavours of the DDH assumption. To the best of
our knowledge, they all imply the DDH assumption. Since the latter is used to prove
the zero-knowledge property, we are unlikely to be able to use it to prove witness
indistinguishability for a construction without a trusted setup. To be more precise,
zero-knowledge of the NIZK proof (in the CRS model) in [CH20] is proven letting the
simulator generate a CRS with e1 = e2. Under the DDH assumption, this simulated CRS
is indistinguishable from an honestly generated one. To define our NIWI, we disallow
the possibility of having valid proof for CRSs with e1 = e2. This seems to result in the
impossibility of a reduction to any flavour of the DDH assumption.

We also left open the question of defining NIWI in the plain model for algebraic sets.
One can always write languages generated by algebraic sets as algebraic languages;
see section 9 of the first article of this thesis [CLPØ21a]. However, since we use an
encryption scheme in the language definition, each statement would only have at most
1 witness. Thus, the witness indistinguishability property seems useless for languages
described in [CLPØ21a].

Strong partial extractability. Recall that for a NIZK proof for the language LR , the
standard knowledge soundness is defined by the existence of a PPT extractor Ext that
can compute a valid witness w, for a statement x, having a pair of crs,td and a valid
proof π for x. In pairing-based cryptography, such a powerful extractor is unlikely to
be defined under falsifiable assumptions1. However, there are cases where some useful,
partial information about the witness can still be computed. Let f be a OWF. Balenkiy
et al. [BCKL08] define the notion of f -extractability by requiring the existence of a

1As stated in Section 1.5, adding a bit-by-bit encryption of the witness would irreparably compromis
the efficiency of the NIZK. Therefore, this option is left out of the current discussion.

44 Technical overview

PPT extractor Ext able to compute a function of the witness w̃ = f (w). Particularly,
Ext computes w̃, for a statement x, having (crs,td) and a proof π for x. It is required
that if the verifier accepts (crs,x,π), then w̃ = f (w) and (x,w) ∈ R. In pairing-based
cryptography, typically f is the scalar multiplication in one of the groups, as shown in
[BCKL08] for Groth-Sahai NIZK proofs. Full-extractability seems out of reach due to
the lack of a trapdoor to compute the discrete logarithm2.

We note that Couteau-Hartmann NIZK proofs for algebraic languages LΓ,θ are [·]2-
extractable. Moreover, we show that, as opposed to Groth-Sahai proofs, the partial
witness [w]2 can be used to check membership, in the case of NIZK proofs in [CH20].
In fact [x]1 is a true statement if and only if [θ(x)]1 • [1]2 = [(x)]1 • [w]2. Lastly, despite
its usage in checking membership, the partial witness w̃ = [w]2 cannot be considered
a full witness. Notably, there does not exist a PPT adversary able to compute a valid
proof, on input (x, w̃), but not (w). We define strong f -extractability as f -extractability,
and the possibility of deciding membership, but not computing a proof with w̃. We
show that Couteau-Hartmann NIZK proofs are strong [·]2-extractable, under falsifiable
assumptions.

Impossibility of semantic extractability. In the case of full extractability, the extractor
is required to compute the witness w. When we consider classic knowledge sound-
ness definitions, depicted in Section 2.7, we note that they differ in two points. For
black-box knowledge soundness, the extractor has to be universal: there must exist a
single extractor that works well with each PPT prover. In a sense, the black-box ex-
tractor only relies on the semantic property of its inputs (crs,td,x,π) to be a tuple that
makes the verifier accept. On the contrary, for white-box knowledge soundness, one
requires the extractor to be dependent on one specific, potentially malicious, prover,
represented as a PPT. Thus, for each PPT, potentially malicious, prover A there ex-
ists a prover-dependent extractor ExtA that computes the witness, using A ’s code as
additional information.

Moreover, the two definitions differ in another aspect. As additional input, the white-
box extractor receives the entire string of random coins which A used to compute its
output. In the black-box case, the extractor does not see any portion of the string of the
random coins.

We define a new notion of extraction for NIZK called semantic knowledge sound-

ness. First, we consider the adversary’s randomness as an input from a specific distri-

2To achieve the extraction of the full witness [AHK20] defined the groups in a way that such a
trapdoor for computing discrete logarithm exists. However, no such trapdoors are known in the case of
elliptic-curve groups used in real applications.

3.2 Article II 45

bution. Once we clarify that, we can associate a function with each adversary. For each
Turing machine A , we say that A implements the function f that associates each tuple
of inputs and random string to the related (deterministic) output computed by A . We
require that adversaries implementing the same function must have the same extractor.
Moreover, we allow the flexibility to split the random coins into two different strings,
enabling the semantic extractor to see only one of the two portions. This choice results
in a flexible definition, allowing gradually more powerful extractors to be defined as
the randomness they are allowed to see grows.

We investigate how this new notion relates to the classic notions of extraction. We
show how semantic knowledge soundness is a general definition that recovers the two
classic notions of extraction as particular cases. We prove that if we allow the extractor
to see all the randomness, semantic extraction is equivalent to white-box extraction.
This equivalence suggests that to bound the extractor to the function implemented by
the adversary is the right choice, compared to binding it to the specific Turing machine.
Although the two notions are equivalent, it is clear that one can use a semantic extractor
in a reduction as a Turing machine per se, without being forced to generate its input
using the specific adversary the extractor was designed for. This is a crucial property of
semantic extraction that we use in our impossibility result. Then, we show that black-
box extraction trivially implies semantic extraction. We also prove a slightly weaker
implication in the other direction.

Finally, we show that semantic extraction is impossible for the [CH20] NIZK argu-
ment, depicted here in Fig. 2.4. More precisely, we show that no semantic extractor that
sees only a portion of the random coins can successfully compute a witness. To under-
stand the intuition behind this impossibility result, we start by noticing that statement,
proof, and CRS consist only of group elements. At the same time, the witness and the
CRS trapdoor are defined as elements in Zp. Intuitively, soundness relies on the hard-
ness of discrete logarithm in G1 and G2 and on the property of asymmetric pairings of
not admitting efficient isomorphisms between the two source groups3.

Let us look at the computation of the NIZK argument proof by the honest prover,
focusing on the element [d]2 = w[e]2 + r[1]2, where r is the prover randomness. We
focus on [d]2 because it is the only part where the prover uses the witness. Suppose a
semantic extractor can compute w from [d]2, the CRS trapdoor e and the other group
elements composing the proof and the statement. Now, one can observe that, from a
semantic point of view, there is no difference between the honestly computed [d]2 and

3In fact, it is easy to show knowledge soundness in AGM, from this simple assumptions only, as we
do in this paper.

46 Technical overview

the case where the CRS trapdoor e is used to maliciously compute [d]2 as [w]2e+ r[1]2.
Notably, the semantic extractor should be able to recover w even when the proof is
dishonestly computed using td. Lastly, we note that if such a semantic extractor exists,
we can exploit it to break the discrete logarithm. After embedding the challenge into
w, the reduction would sample e by itself, dishonestly compute [d]2 and then invoke the
semantic extractor to compute w, which contains the discrete logarithm of the challenge.

The reduction sketched above does not work correctly if the semantic extractor can
see all the adversary randomness (e.g., when the semantic extractor is equivalent to a
classic white-box extractor). Although, as soon as some randomness is hidden from
the extractor, the reduction can correctly embed the discrete logarithm challenge in
that hidden part of the execution. Thus, we have shown that semantic extraction is
impossible unless the extractor sees all the adversary randomness. Particularly, black-
box knowledge soundness is impossible. But we argue that our impossibility result
rules out many extractors more powerful than the classic black-box ones.

A different interpretation of our impossibility result is that the proof only shows
the knowledge of [w]1, [w]2. To go a step further and argue the knowledge of the full
witness w, from the knowledge of [w]1, [w]2, one must rely on a knowledge assumption
(a suitable assumption is defined in [ABLZ17], or in the journal version [ALSZ21]) or
one must use idealized models.

Our result also suggests that computing the witness for many algebraic languages,
given a statement [x]1, is as hard as extracting a witness from the statement and a valid
proof under a CRS for which we know the trapdoor. More precisely, note that the
hardness of the algebraic languages is based on the hardness of computing the discrete
logarithm. We base the impossibility result on the hardness of symmetric discrete log-
arithm: it is computationally intractable to compute x, on input [x]1 and [x]2. Therefore,
our result states that either there is a gap between the hardness of discrete logarithm and
the hardness of the symmetric discrete logarithm or computing w from [x]1 is as hard as
computing w from (e,r, [x]1,π = ([a]1, [d]2)) where π is computed by the honest prover
on random coins r (and V([e]2, [x]1,π) = 1).

We believe that the new view of considering semantic adversaries is, by itself, a
strong contribution of this article. Note that semantic techniques are already implic-
itly used in cryptography, everytime a non-black-box technique is used in the standard
model. For instance, we can think of the non-black-box zero-knowledge simulator in
[BLV03] as a semantic simulator. We left as future work the task of exploring if the
idea could be applied to prove results in other branches of cryptography.

3.3 Article III 47

3.3 Article III

We describe here the main contribution of the paper [LP22]: a new set (non-

)membership NIZK argument, see Sections 1.11 and 1.12. Let S = {a1, . . . ,am} be
a finite set of elements in Zp. Recall that an accumulator is a cryptographic primitive,
implementing a non-zero-knowledge proof to show that an element χ is in the public
set S , see Section 2.9. Recall also that an accumulator is universal if it is possible
to prove that χ is not an element in the set S . Following a methodology discussed in
Section 1.11, we can define a set (non-)membership NIZK, by adding zero-knowledge
to a universal accumulator.

Our approach relies on using the CLPØ, framework presented in the first article
of this thesis [CLPØ21a], as a very efficient zero-knowledge compiler for a new ac-
cumulator we define. The new accumulator is designed to be “friendly” with the
choice of using CLPØ as a compiler. We use the term determinantal accumulator

to emphasize this friendliness, similarly to how structure-preserving is used in the
context of signatures, to emphasize friendliness with the Groth-Sahai framework in
[BCKL08, AFG+16, FHS19]. See the article [LP22], for the precise definition of a
determinantal accumulator.

Let us discuss the details of our accumulator construction. We focus on the case
of set membership, referring to the paper for the non-membership case. Inspired by
[Ngu05], given the public set S and an element χ ∈S , we define the polynomials

ZS (Σ) = ∏
a∈S

(Σ−a) ; Q(Σ) = ∏
a∈S ,a̸=χ

(Σ−a).

We construct the accumulator CRS with group elements [1,σ1, . . . ,σm]1, where
σ←$Zp is a secret trapdoor and we require |S | ≤ m. Nguyen’s solution was to let
the prover output group elements [q= Q(σ)]1, [χ]2. The verifier can verify the correct-
ness of the accumulator proof, using pairings, by checking that

[q]1 • [σ −χ]2− [ZS (σ)]1 • [1]2 = [0]T .

We choose a different approach. We define matrices

CΣ(X ,Q) :=
[

Σ−X −1
−ZS (Σ) Q

]
1

and Cσ (χ,q) =
[

σ−χ −1
−ZS (σ) q

]
1
.

We let the prover output [χ,q]1. The verifier will accept the proof if det(Cσ (χ,q)) =

0(= q(σ −χ)−ZS (σ)). Now, the attentive reader will not have missed that checking

48 Technical overview

if Cσ (χ,q) is singular, given its entries only as group elements, is a computationally
intractable task. Therefore, following the framework developed in the first article of
this thesis, [CLPØ21a], we let the prover output additional hints [γ]1, [δ]2 such that the
CLPØ style verification equation

[γ]1 • [1]2 +
[

σ−χ −1
−ZS (σ) q

]
1
• [e

δ]2 = [0]T ,

holds. Here [e]2 is added as an additional element to the CRS. Thus, our determinantal
accumulator’s proof of χ ∈S contains [γ,q]1, [δ]2.

Unfortunately, this construction is not secure: since the prover outputs χ only as a
group element, it can compute it as a function of σ and easily forge valid proof for χ /∈
S . A possible solution requires that the prover outputs χ as an integer. However, this
solution would not be satisfactory. Remember that we want to use the accumulator to
define a CLPØ set (non-)membership NIZK. After decryption, the soundness reduction
of such a NIZK argument can only recover [χ]1 as a group element. Therefore, we
need our accumulator to be [·]1-collision resistant: no PPT adversary should be able to
compute a group element [χ]1 and a valid accumulator proof for any χ /∈S . Previous
falsifiable constructions [BCKL08, AN11, DGP+19] had the same issue, which they
solved by a “knowledge equation”. However, introducing a new equation is a major
source of inefficiency. See Section 1.11 for a discussion about previous falsifiable set
membership NIZKs.

As a novelty, we define a [·]1-collision-resistant accumulator by cleverly using a
new trapdoor τ , without resorting to another equation. Given an accumulator proof
([γ,χ,q]1, [δ]2), the accumulator verifier checks if

[δ]1 • [1]2 = [Cσ ,τ(χ,q)]1 • [e
δ]2 ,

where Cσ ,τ(χ,q) is still a 2×2 matrix, but slightly different than the Cσ (χ,q) defined
previously. Notably, the [·]1-collision-resistant accumulator is as efficient as the (not
[·]1-collision resistant) one described above.

The security of the accumulator scheme is based on new falsifiable assumptions we
introduced in the paper, one for the membership case and one for non-membership.
To motivate the introduction of new assumptions, we again show that they can be re-
duced in AGM to a standard flavour of a discrete logarithm assumption. The AGM
assumptions’ proof of security is one of the most technically involved contribution of
the article.

Lastly, we use CLPØ framework for NIZK as a compiler to add zero-knowledge

3.3 Article III 49

t

s t̄

X
ν+1

ABP for F(
X)

−1




IKF(X1, . . . ,Xν)

0
0
...
0
−1

−1 0 . . . 0 0 Xν+1




Figure 3.2: ABP abp for the g(X,Xν+1) = f (X)Xν+1 − 1 and the QDR matrix
IKg(X,Xν+1).

to the determinantal accumulator. We use the Elgamal encryption scheme from Sec-
tion 2.5 to achieve the best efficiency. We aim to define a set membership NIZK, to
show that [ct]1 is an encryption of an element in the public set S . We let the prover
encrypt [γ,q]1 under fresh randomness and compute additional elements [z]2, follow-
ing the methodology we have explained in the first article of this thesis. The verifier
homomorphically checks the accumulator’s CLPØ style verification equation, using
the elements [z]2 to annihilate encryption randomizers. Computational adaptive sound-
ness of the NIZK argument follows from the [·]1-collision-resistance of the accumulator
scheme. Computational zero-knowledge is shown under the IND-CPA security of the
Elgamal encryption scheme.

A general non-membership NIZK. As an independent result, we show how to define a
NIZK to show that a given encryption decrypts to an element that is not a root of a
polynomial f . Given an ABP to compute the ν-variate polynomial f , we show how to
automatically define an ABP to compute a (ν +1)-variate polynomial g such that: (i)
if f (x) = 0 then g(x,xν+1) ̸= 0 for each xν+1 ∈ Zp and (ii) if f (x) ̸= 0, then it is easy
to find a xν+1 ∈ Zp such that g(x,xν+1) = 0. We then use this ABP to define a CLPØ
NIZK for the polynomial g, following the methodology of the first article of this thesis.
The ABP for the new non-membership NIZK is depicted in Fig. 3.2.

Bibliography

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Za-
jac. A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS,
pages 3–33. Springer, Heidelberg, December 2017. doi:10.1007/

978-3-319-70700-6_1.

[ACR21] Thomas Attema, Ronald Cramer, and Matthieu Rambaud. Compressed
Σ -protocols for bilinear group arithmetic circuits and application to log-
arithmic transparent threshold signatures. In Mehdi Tibouchi and Huax-
iong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS,
pages 526–556. Springer, Heidelberg, December 2021. doi:10.1007/

978-3-030-92068-5_18.

[AFG+16] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. Journal of Cryptology, 29(2):363–421, April 2016.
doi:10.1007/s00145-014-9196-7.

[AHK20] Thomas Agrikola, Dennis Hofheinz, and Julia Kastner. On instantiating
the algebraic group model from falsifiable assumptions. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of
LNCS, pages 96–126. Springer, Heidelberg, May 2020. doi:10.1007/

978-3-030-45724-2_4.

[ALSZ21] Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac.
On subversion-resistant SNARKs. Journal of Cryptology, 34(3):17, July
2021. doi:10.1007/s00145-021-09379-y.

[AN11] Tolga Acar and Lan Nguyen. Revocation for delegatable anonymous cre-
dentials. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Anto-
nio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 423–440.

52 BIBLIOGRAPHY

Springer, Heidelberg, March 2011. doi:10.1007/978-3-642-19379-8_

26.

[ATSM09] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic univer-
sal accumulators for DDH groups and their application to attribute-based
anonymous credential systems. In Marc Fischlin, editor, CT-RSA 2009,
volume 5473 of LNCS, pages 295–308. Springer, Heidelberg, April 2009.
doi:10.1007/978-3-642-00862-7_20.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random ora-
cles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 56–73. Springer, Heidelberg, May 2004.
doi:10.1007/978-3-540-24676-3_4.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Pri-

vacy, pages 315–334. IEEE Computer Society Press, May 2018. doi:

10.1109/SP.2018.00020.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Shafi Goldwasser, editor, ITCS 2012, pages
326–349. ACM, January 2012. doi:10.1145/2090236.2090263.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyan-
skaya. P-signatures and noninteractive anonymous credentials. In Ran
Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–374.
Springer, Heidelberg, March 2008. doi:10.1007/978-3-540-78524-8_

20.

[Bd94] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A
decentralized alternative to digital sinatures (extended abstract). In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 274–285.
Springer, Heidelberg, May 1994. doi:10.1007/3-540-48285-7_24.

[BD19] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. Journal of Cryptology, 32(4):1298–1336, October 2019. doi:
10.1007/s00145-018-9280-5.

BIBLIOGRAPHY 53

[BdM93] Josh Benaloh and Michael de Mare. One-Way Accumulators: A Decen-
tralized Alternative to Digital Signatures. In Tor Helleseth, editor, EU-

ROCRYPT 1993, volume 765 of LNCS, pages 274–285, Lofthus, Norway,
May 23–27, 1993. Springer, Heidelberg, 1994.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139
of LNCS, pages 213–229. Springer, Heidelberg, August 2001. doi:

10.1007/3-540-44647-8_13.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988. doi:10.1145/62212.62222.

[BFP21] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more
discrete logarithm assumption in the generic group model. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume
13093 of LNCS, pages 587–617. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92068-5_20.

[BG99] Amos Beimel and Anna Gál. On Arithmetic Branching Programs. J.

Comput. Syst. Sci., 59(2):195–220, 1999.

[BLL00] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate
management using undeniable attestations. In Dimitris Gritzalis, Sushil
Jajodia, and Pierangela Samarati, editors, ACM CCS 2000, pages 9–17.
ACM Press, November 2000. doi:10.1145/352600.352604.

[BLL02] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Eliminating Counterevi-
dence with Applications to Accountable Certificate Management. Journal

of Computer Security, 10(3):273–296, 2002.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-
black-box zero knowledge. In 44th FOCS, pages 384–393. IEEE Com-
puter Society Press, October 2003. doi:10.1109/SFCS.2003.1238212.

[BMV08] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation
results on the “one-more” computational problems. In Tal Malkin, editor,
CT-RSA 2008, volume 4964 of LNCS, pages 71–87. Springer, Heidelberg,
April 2008. doi:10.1007/978-3-540-79263-5_5.

54 BIBLIOGRAPHY

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The one-more-RSA-inversion problems and the security of
Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215,
June 2003. doi:10.1007/s00145-002-0120-1.

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in
cryptography. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 299–315. Springer, Heidelberg, August 2003. doi:10.1007/
978-3-540-45146-4_18.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-Free Accumulators and Fail-
Stop Signature Schemes without Trees. In Walter Fumy, editor, EURO-

CRYPT 1997, volume 1233 of LNCS, pages 480–494, Konstanz, Germany,
11–15 May 1997. Springer, Heidelberg.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assump-
tions and 3-round zero-knowledge protocols. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer, Heidel-
berg, August 2004. doi:10.1007/978-3-540-28628-8_17.

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indis-
tinguishability from indistinguishability obfuscation. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of
LNCS, pages 401–427. Springer, Heidelberg, March 2015. doi:10.1007/
978-3-662-46497-7_16.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, edi-
tors, ACM CCS 93, pages 62–73. ACM Press, November 1993. doi:

10.1145/168588.168596.

[BSS00] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Elliptic Curves in Cryp-

tography. Cambridge Univ Pr, January 2000. ISBN: 0521653746.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be
equivalent to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998. doi:
10.1007/BFb0054117.

BIBLIOGRAPHY 55

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from prac-
tice to theory. In Moses Charikar and Edith Cohen, editors, 51st ACM

STOC, pages 1082–1090. ACM Press, June 2019. doi:10.1145/3313276.
3316380.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols
for set membership and range proofs. In Josef Pieprzyk, editor, ASI-

ACRYPT 2008, volume 5350 of LNCS, pages 234–252. Springer, Heidel-
berg, December 2008. doi:10.1007/978-3-540-89255-7_15.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of par-
tial knowledge and simplified design of witness hiding protocols. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187.
Springer, Heidelberg, August 1994. doi:10.1007/3-540-48658-5_19.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of
sub-linear size without random oracles. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007, volume
4596 of LNCS, pages 423–434. Springer, Heidelberg, July 2007. doi:

10.1007/978-3-540-73420-8_38.

[CH20] Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-
knowledge arguments and ZAPs for algebraic languages. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, vol-
ume 12172 of LNCS, pages 768–798. Springer, Heidelberg, August 2020.
doi:10.1007/978-3-030-56877-1_27.

[CLPØ21a] Geoffroy Couteau, Helger Lipmaa, Roberto Parisella, and Arne Tobias
Ødegaard. Efficient NIZKs for algebraic sets. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of
LNCS, pages 128–158. Springer, Heidelberg, December 2021. doi:10.

1007/978-3-030-92078-4_5.

[CLPØ21b] Geoffroy Couteau, Helger Lipmaa, Roberto Parisella, and Arne Tobias
Ødegaard. Efficient NIZKs for algebraic sets. Cryptology ePrint Archive,
Report 2021/1251, 2021. https://eprint.iacr.org/2021/1251.

[CLW18] Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-Shamir: From prac-
tice to theory, part II (NIZK and correlation intractability from circular-

56 BIBLIOGRAPHY

secure FHE). Cryptology ePrint Archive, Report 2018/1248, 2018. https:
//eprint.iacr.org/2018/1248.

[CPV20] Michele Ciampi, Roberto Parisella, and Daniele Venturi. On adaptive
security of delayed-input sigma protocols and fiat-shamir NIZKs. In
Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238
of LNCS, pages 670–690. Springer, Heidelberg, September 2020. doi:

10.1007/978-3-030-57990-6_33.

[Dam92] Ivan Damgård. Towards practical public key systems secure against cho-
sen ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, vol-
ume 576 of LNCS, pages 445–456. Springer, Heidelberg, August 1992.
doi:10.1007/3-540-46766-1_36.

[den90] Bert den Boer. Diffie-Hellman is as strong as discrete log for certain
primes (rump session). In Shafi Goldwasser, editor, CRYPTO’88, vol-
ume 403 of LNCS, pages 530–539. Springer, Heidelberg, August 1990.
doi:10.1007/0-387-34799-2_38.

[Den02] Alexander W. Dent. Adapting the weaknesses of the random oracle model
to the generic group model. In Yuliang Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 100–109. Springer, Heidelberg, December
2002. doi:10.1007/3-540-36178-2_6.

[DGP+19] Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. Shorter quadratic QA-NIZK proofs. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 314–343.
Springer, Heidelberg, April 2019. doi:10.1007/978-3-030-17253-4_11.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting
cryptographic accumulators, additional properties and relations to other
primitives. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of
LNCS, pages 127–144. Springer, Heidelberg, April 2015. doi:10.1007/

978-3-319-16715-2_7.

[DT08] Ivan Damgård and Nikos Triandopoulos. Supporting non-membership
proofs with bilinear-map accumulators. Cryptology ePrint Archive, Re-
port 2008/538, 2008. https://eprint.iacr.org/2008/538.

BIBLIOGRAPHY 57

[EG14] Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 630–649.
Springer, Heidelberg, March 2014. doi:10.1007/978-3-642-54631-0_

36.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Vil-
lar. An algebraic framework for Diffie-Hellman assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 129–147. Springer, Heidelberg, August 2013. doi:

10.1007/978-3-642-40084-1_8.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg,
August 1984.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anony-
mous credentials. Journal of Cryptology, 32(2):498–546, April 2019.
doi:10.1007/s00145-018-9281-4.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd ACM STOC, pages 416–426. ACM Press, May 1990.
doi:10.1145/100216.100272.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:

10.1007/978-3-642-38348-9_37.

58 BIBLIOGRAPHY

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. In 44th FOCS, pages 102–115. IEEE Computer Society
Press, October 2003. doi:10.1109/SFCS.2003.1238185.

[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A
position paper. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-

A, Part I, volume 9562 of LNCS, pages 505–522. Springer, Heidelberg,
January 2016. doi:10.1007/978-3-662-49096-9_21.

[GKP22a] Chaya Ganesh, Hamidreza Khoshakhlagh, and Roberto Parisella. NIWI
and new notions of extraction for algebraic languages. Cryptology ePrint
Archive, Report 2022/851, 2022. https://eprint.iacr.org/2022/851.

[GKP22b] Chaya Ganesh, Hamidreza Khoshakhlagh, and Roberto Parisella. Niwi
and new notions of extraction for algebraic languages. In Clemente Galdi
and Stanislaw Jarecki, editors, Security and Cryptography for Networks,
pages 687–710, Cham, 2022. Springer International Publishing.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th ACM

STOC, pages 291–304. ACM Press, May 1985. doi:10.1145/22145.

22178.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, December
1994. doi:10.1007/BF00195207.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, vol-
ume 4117 of LNCS, pages 97–111. Springer, Heidelberg, August 2006.
doi:10.1007/11818175_6.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New Techniques for Non-
interactive Zero-Knowledge. Journal of the ACM, 59(3), 2012.

[GPS06] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptog-
raphers. Cryptology ePrint Archive, Report 2006/165, 2006. https:

//eprint.iacr.org/2006/165.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of

BIBLIOGRAPHY 59

LNCS, pages 321–340. Springer, Heidelberg, December 2010. doi:

10.1007/978-3-642-17373-8_19.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,

Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016. doi:10.1007/978-3-662-49896-5_11.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008. doi:

10.1007/978-3-540-78967-3_24.

[GSW09] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Practical zero-
knowledge proofs for circuit evaluation. In Matthew G. Parker, editor,
12th IMA International Conference on Cryptography and Coding, volume
5921 of LNCS, pages 469–494. Springer, Heidelberg, December 2009.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
doi:10.1145/1993636.1993651.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong
one-way functions (or: One-way product functions and their applications).
In Mikkel Thorup, editor, 59th FOCS, pages 850–858. IEEE Computer
Society Press, October 2018. doi:10.1109/FOCS.2018.00085.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new rep-
resentation with applications to round-efficient secure computation. In
41st FOCS, pages 294–304. IEEE Computer Society Press, November
2000. doi:10.1109/SFCS.2000.892118.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure compu-
tation via perfect randomizing polynomials. In Peter Widmayer, Fran-
cisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan

60 BIBLIOGRAPHY

Eidenbenz, and Ricardo Conejo, editors, ICALP 2002, volume 2380 of
LNCS, pages 244–256. Springer, Heidelberg, July 2002. doi:10.1007/

3-540-45465-9_22.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their
applications. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias, editors, ICALP 2014, Part I, volume 8572 of
LNCS, pages 650–662. Springer, Heidelberg, July 2014. doi:10.1007/

978-3-662-43948-7_54.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From
obfuscation to the security of Fiat-Shamir for proofs. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 224–251. Springer, Heidelberg, August 2017. doi:10.1007/
978-3-319-63715-0_8.

[KW15] Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear sub-
spaces revisited. In Elisabeth Oswald and Marc Fischlin, editors, EURO-

CRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_4.

[Lip12a] Helger Lipmaa. Progression-free sets and sublinear pairing-based
non-interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

[Lip12b] Helger Lipmaa. Secure accumulators from euclidean rings without trusted
setup. In Feng Bao, Pierangela Samarati, and Jianying Zhou, editors,
ACNS 12, volume 7341 of LNCS, pages 224–240. Springer, Heidelberg,
June 2012. doi:10.1007/978-3-642-31284-7_14.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments
from span programs and linear error-correcting codes. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of
LNCS, pages 41–60. Springer, Heidelberg, December 2013. doi:10.1007/
978-3-642-42033-7_3.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with effi-
cient nonmembership proofs. In Jonathan Katz and Moti Yung, editors,

BIBLIOGRAPHY 61

ACNS 07, volume 4521 of LNCS, pages 253–269. Springer, Heidelberg,
June 2007. doi:10.1007/978-3-540-72738-5_17.

[LP22] Helger Lipmaa and Roberto Parisella. Set (non-)membership nizks from
determinantal accumulators. Cryptology ePrint Archive, Paper 2022/1570,
2022. https://eprint.iacr.org/2022/1570. URL: https://eprint.
iacr.org/2022/1570.

[LSZ22] Helger Lipmaa, Janno Siim, and Michal Zajac. Counting vampires:
From univariate sumcheck to updatable ZK-SNARK. Cryptology ePrint
Archive, Report 2022/406, 2022. https://eprint.iacr.org/2022/406.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on

Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

[Mau09] Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart
Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, pages 272–
286. Springer, Heidelberg, June 2009.

[MP03] Daniele Micciancio and Erez Petrank. Simulatable commitments and
efficient concurrent zero-knowledge. In Eli Biham, editor, EURO-

CRYPT 2003, volume 2656 of LNCS, pages 140–159. Springer, Heidel-
berg, May 2003. doi:10.1007/3-540-39200-9_9.

[MW98] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms
in groups. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of
LNCS, pages 72–84. Springer, Heidelberg, May / June 1998. doi:10.

1007/BFb0054118.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited
talk). In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 96–109. Springer, Heidelberg, August 2003. doi:10.1007/

978-3-540-45146-4_6.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications.
In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,
pages 275–292. Springer, Heidelberg, February 2005. doi:10.1007/

978-3-540-30574-3_19.

62 BIBLIOGRAPHY

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended
abstract). In 23rd ACM STOC, pages 410–418. ACM Press, May 1991.
doi:10.1145/103418.103462.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class
of problems for the security of cryptographic schemes. In Kwangjo Kim,
editor, PKC 2001, volume 1992 of LNCS, pages 104–118. Springer, Hei-
delberg, February 2001. doi:10.1007/3-540-44586-2_8.

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive
non-malleable commitments. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 334–354. Springer, Heidelberg, March 2013. doi:

10.1007/978-3-642-36594-2_19.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Symposium

on Security and Privacy, pages 238–252. IEEE Computer Society Press,
May 2013. doi:10.1109/SP.2013.47.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for
NP from (plain) learning with errors. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 89–114. Springer, Heidelberg, August 2019. doi:10.1007/

978-3-030-26948-7_4.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures
may not be equivalent to discrete log. In Bimal K. Roy, editor, ASI-

ACRYPT 2005, volume 3788 of LNCS, pages 1–20. Springer, Heidelberg,
December 2005. doi:10.1007/11593447_1.

[Ràf15] Carla Ràfols. Stretching groth-sahai: NIZK proofs of partial satisfiability.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 247–276. Springer, Heidelberg, March 2015.
doi:10.1007/978-3-662-46497-7_10.

[RS20] Lior Rotem and Gil Segev. Algebraic distinguishers: From dis-
crete logarithms to decisional uber assumptions. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS,
pages 366–389. Springer, Heidelberg, November 2020. doi:10.1007/

978-3-030-64381-2_13.

BIBLIOGRAPHY 63

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for uni-
versal and updatable SNARKs. In Tal Malkin and Chris Peikert, ed-
itors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–
804, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/

978-3-030-84242-0_27.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 239–252. Springer, Heidelberg, August 1990. doi:10.1007/

0-387-34805-0_22.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 256–266. Springer, Heidelberg, May 1997. doi:10.1007/

3-540-69053-0_18.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A Survey of

Recent Results and Open Questions, volume 5 of Foundations and Trends

in Theoretical Computer Science. Now Publishers Inc, December 2010.

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In STOC 1979, pages
249–261, Atlanta, Georgia, USA, 30 April—2 May 1979.

[VB20] Giuseppe Vitto and Alex Biryukov. Dynamic universal accumulator with
batch update over bilinear groups. Cryptology ePrint Archive, Report
2020/777, 2020. https://eprint.iacr.org/2020/777.

[Zha22] Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022. doi:

10.1007/978-3-031-15982-4_3.

Chapter 4

Efficient NIZKs for Algebraic
Sets

Geoffroy Couteau
Helger Lipmaa
Roberto Parisella
Arne Tobias Ødegaard

In ASIACRYPT 2021, Part III. ed. by Mehdi Tibouchi and Huaxiong Wang. Vol.
13092. LNCS. Springer, Heidelberg, Dec. 2021, pp. 128–158.
https://doi.org/10.1007/978-3-030-92078-4_5

In this thesis, we include the full version published on ePrint. Compared to the
conference version, we have corrected some minor issues, notations, inconsistencies
and typos. Moreover, there are some additional contents in the appendix.

Efficient NIZKs for Algebraic Sets

Geoffroy Couteau1, Helger Lipmaa2, Roberto Parisella2, and Arne Tobias Ødegaard2

1 CNRS, IRIF, Université de Paris, Paris, France
2 Simula UiB, Bergen, Norway

Abstract. Significantly extending the framework of (Couteau and Hartmann, Crypto 2020), we
propose a general methodology to construct NIZKs for showing that an encrypted vector χ belongs
to an algebraic set, i.e., is in the zero locus of an ideal I of a polynomial ring. In the case where I is
principal, i.e., generated by a single polynomial F , we first construct a matrix that is a “quaside-
terminantal representation” of F and then a NIZK argument to show that F (χ) = 0. This leads to
compact NIZKs for general computational structures, such as polynomial-size algebraic branching
programs. We extend the framework to the case where I is non-principal, obtaining efficient NIZKs
for R1CS, arithmetic constraint satisfaction systems, and thus for NP. As an independent result,
we explicitly describe the corresponding language of ciphertexts as an algebraic language, with
smaller parameters than in previous constructions that were based on the disjunction of algebraic
languages. This results in an efficient GL-SPHF for algebraic branching programs.

Keywords: Algebraic branching programs, algebraic languages, algebraic sets, NIZK, pairing-
based cryptography, SPHF, zero knowledge

1 Introduction

Zero-knowledge arguments [GMR89] are fundamental cryptographic primitives allowing one to convince a
verifier of the truth of a statement while concealing all further information. A particularly appealing type
of zero-knowledge arguments, with a wide variety of applications in cryptography, are non-interactive
zero-knowledge arguments (NIZKs) [BFM88] with a single flow from the prover to the verifier.

Early feasibility results from the 90’s established the existence of NIZKs for all NP languages (in
the common reference string model) under standard cryptographic assumptions. However, these early
constructions were inefficient. In the past decades, a major effort of the cryptographic community has
been directed towards obtaining efficient and conceptually simple NIZK argument systems for many
languages of interest. Among the celebrated successes of this line of work are the Fiat-Shamir (FS)
transform [FS87], which provides simple and efficient NIZKs but only offers heuristic security guarantees3,
and pairing-based NIZKs such as the Groth-Sahai proof system [GS08] (and its follow-ups).
The quest for efficient and conceptually simple NIZKs. The Groth-Sahai NIZK proof system was
a major breakthrough in this line of work, providing the first provably secure (under standard pairing
assumptions) and reasonably efficient NIZK for a large class of languages, capturing many concrete
languages of interest. This proof system initiated a wide variety of cryptographic applications, and its
efficiency was refined in a sequence of works [BFI+10,EG14,Ràf15,DGP+19]. Unfortunately, the efficiency
of Groth-Sahai proofs often remains unsatisfying (typically much worse than NIZKs obtained with Fiat-
Shamir), and building an optimized Groth-Sahai proof for a specific problem is an often tedious process
that requires considerable expertise. This lack of conceptual simplicity inhibits the potential for large-
scale deployment of this proof system. Therefore, we view it as one of the major open problems in
this line of work to obtain an efficient proof system where constructing an optimized proof for a given
statement does not require dedicated expertise. The Fiat-Shamir transform offers such a candidate – and
as a consequence, it has seen widescale adoption in real-world protocols – but lacks a formal proof of
security. The recent line of work on quasi-adaptive NIZKs [JR13,KW15,ALSZ20] offers simultaneously
simple, efficient, and provably secure proof systems, but these are restricted to a small class of languages
– namely, linear languages. Some recent SNARK proof systems also offer generic and efficient methods
to handle a large class of languages given by their high-level description; however, they all rely on very
strong knowledge-of-exponent style assumptions.

3 There have been recent developments towards provably secure Fiat-Shamir NIZKs [CCH+19].

The Couteau-Hartmann argument system. Very recently, Couteau and Hartmann put forth a new
framework for constructing pairing based NIZKs [CH20]. At a high level, their approach compiles a
specific interactive zero-knowledge proof into a NIZK (as does Fiat-Shamir), by embedding the challenge
in the exponent of a group equipped with an asymmetric pairing. The CH argument system enjoys several
interesting features:

– It generates compact proofs, with efficiency comparable to Fiat-Shamir arguments, with ultra-short
common reference strings (a single group element);

– It has a conceptually simple structure, since it compiles a well-known and simple interactive proof;
– It handles a relatively large class of algebraic languages [BBC+13,CC18], which are parameterized

languages of the shape LΓ ,θ = {x : ∃w,Γ (x) ·w = θ(x)}, where x is the input, w is the witness, Γ and
θ are affine maps, such that x and θ(x) are vectors and Γ (x) is a matrix. We call (θ,Γ) the matrix
description of the language L. Since any NP language can be embedded into an algebraic language4,
this gives a proof system for all of NP.

These features make the CH argument system a competitive alternative to Fiat-Shamir and Groth-Sahai
in settings where efficiency and conceptual simplicity are desirable while maintaining provable security
under a plausible, albeit new, assumption over pairing groups. In a sense, Couteau-Hartmann achieves a
sweet spot between efficiency, generality, and underlying assumption.
Limitations of the CH argument system. The CH transformation offers attractive efficiency features,
but its core advantage is (arguably) its conceptual simplicity. As many previous works pointed out (see
e.g. [KZM+15]), what “real-world” protocol designers need is a method that can easily take a high-level
description of a language, and “automatically” generate a NIZK for this language without going through
a tedious and complex process requiring dedicated expertise. Ideally, both the process of generating the
NIZK description from the high-level language and the NIZK itself should be efficient.

With this in mind, CH provides an important step in the right direction, where producing the NIZK
for any algebraic language is a straightforward generic transformation applied to its matrix description.
However, it falls short of fully achieving the desired goal for two reasons.

First, it does not entirely remove the need for dedicated expertise from the NIZK construction; rather,
it pushes the complexity of building the NIZK to that of finding its matrix description given a higher-level
description of an algebraic language. However, it does not provide a characterization of which languages,
given via a common higher-level description, are algebraic, neither does it give a method to construct
their matrix description5.

Second, the CH-compilation produces NIZKs whose soundness reduces to an instance of the novel
ExtKerMDH family of assumptions. However, the particular assumption will only be falsifiable in the
much more restricted setting of witness-samplable algebraic languages, which essentially seem to capture
disjunctions of linear languages. Couteau and Hartmann focused on NIZKs based on the falsifiable
variant, which severely limits the class of languages captured by the framework. It is much more desirable
to base the security of all NIZKs produced by this framework on a single, plausible, well-supported
assumption: this would avoid protocol designers the hurdle of precisely assessing the security of the
specific flavor of the ExtKerMDH assumption their particular instance requires.

1.1 Our Contribution

We overcome the main limitations of the CH argument system. Our new approach, which significantly
departs from the CH methodology, allows us to produce compact NIZKs for a variety of languages, with
several appealing features.
A general framework. We provide a generic method to compute, for several important families of
languages, a different matrix description of the languages. We then construct a NIZK. We implic-
itly use the CH-compiler but in a way, different from [CH20]. We focus on the important set-
ting of commit-and-prove NIZK argument systems [Lip16,KOS18,Kiy20], i.e. languages of the form
4 The classical approach to do so for circuit satisfiability uses algebraic commitments to all values on the wire
of the circuit; then the statement “all committed values are consistent and the output is 1” is an algebraic
language.

5 While we can always embed any language in an algebraic language, this can be inefficient; the CH proof system
is efficient when the language is “natively” algebraic.

2

{Com(x1), . . . ,Com(xn) | R(x1, . . . , xn)}, where R is some efficiently computable relation. Our method
allows us to automatically obtain a compact matrix description for many types of high-level relations.
New NIZKs: improved efficiency or generality. As a first byproduct, we obtain improved NIZKs for some
important statements, such as set membership (see Table 1) or the language of commitments to points on
an elliptic curve6, as well as new NIZKs for very general classes of statements, such as R1CS, arithmetic
constraint satisfaction systems (and thus for NP).
A weaker unified assumption. As the second byproduct of our formal approach, we manage to base all
NIZKs in our framework on a slightly weaker form of the extended Kernel Diffie-Hellman assumption,
which we call the CED (family of) assumption(s) (for Computational Extended Determinant assumption).
This turns out to have an important consequence: we show that all instances of our assumption can be
based on a single plausible gap assumption, which states that solving the kernel Diffie-Hellman assumption
in a group G2 (a well-known search assumption implied in particular by DDH) remains hard, even given
a CDH oracle in a different group G1. On top of it, several of our NIZKs (like the one for Boolean
Circuit-SAT) are based on a falsifiable CED assumption, while we also show that a slight modification
of the NIZK for arithmetic circuits can be also based on a falsifiable variant of CED.
New SPHFs. Eventually, as another byproduct of our methodology, we obtain constructions of Smooth
Projective Hash Functions (SPHFs) [GL03] for new languages (SPHFs were the original motivation for
introducing the notion of algebraic language, and [BBC+13] gives a generic construction of SPHFs given
the matrix description of an algebraic language), including languages describable by efficient algebraic
branching programs.

1.2 Efficiency, Generality, and Security of our NIZKs

The argument of Couteau and Hartmann [CH20] improves over (even optimized variants of) the standard
Groth-Sahai approach on essentially all known algebraic languages. Couteau and Hartmann illustrated
this by providing shorter proofs for linear languages (Diffie-Hellman tuples, membership in a linear sub-
space) and OR proofs (and more generally, membership in t out of n possibly different linear languages),
two settings with numerous important applications (to structure-preserving signatures, tightly-secure
simulation-sound NIZKs, tightly-mCCA-secure cryptosystems, ring signatures...). Our framework builds
upon the Couteau-Hartmann framework, provides a clean mathematical approach to overcoming its
main downside (which is that the matrix description of “algebraic languages” must be manually found),
and significantly generalizes it. Our framework enjoys most of the benefits of the Couteau-Hartmann
framework, such as its ultra-short common random string (a single random group element).

Efficiency. Our framework shines especially as soon as the target language becomes slightly too complex
to directly “see” from its description an appropriate and compatible matrix description C of the language;
then, we get significant efficiency improvements. We illustrate this on a natural and useful example: set
membership proofs for ElGamal ciphertext over G1 (i.e., the language of ElGamal encryptions of m ∈ S
for some public set S of size d), see Table 1. It depicts the complexity of optimized Groth-Sahai proofs,
the generic Couteau-Hartmann compilation of Maurer’s protocol (denoted CHM) by using the language
parameters (Γ ,θ) provided in [CH20], CHM NIZK for (Γ ,θ) automatically derived in the current paper
from the matrix description C, and our new NIZK. On the other hand, our modular approach provides
significantly shorter proofs. Taking e.g. d = 5, we get a proof about 25% shorter compared to Groth-
Sahai. Our approach also significantly improves in terms of computational efficiency. Moreover, since in
our approach, we need to only encrypt the data in a single group, as opposed in two groups in the case
of (asymmetric-pairing-based) Groth-Sahai, we have three times shorter commitments. In Section 8.2,
we also discuss the case of multi-dimensional set membership proofs (where, depending on the structure
of the set, our framework can lead to even more significant improvements).

Generality. Our framework also goes way beyond the class of languages naturally handled by Couteau-
Hartmann. In particular, we show that our framework directly encompasses arithmetic constraint sat-
isfaction systems (aCSPs), i.e., collections of functions F1, . . . , Fτ (called constraints) such that each

6 NIZKs for this type of languages have recently found important applications in blockchain applications, such
as the zcash cryptocurrency, see [KZM+15] and https://z.cash/technology/jubjub/.

3

Table 1. Comparison of set-membership proofs, i..e., NIZKs for Lpk,F , where F (X) is univariate, as in Lemmas 8,
9 and 10. The verifier’s computation is given in pairings. The Groth-Sahai computation figures are not published
and based on our own estimation; hence, we have omitted the computation cost. Note that |G2| = 2|G1| in
common settings. In CHM and new NIZK, |crs| = |G2|.

Argument |π| P comp. V comp.
Previous works

Optimized GS [Ràf15] d|G1|+ (3d+ 2)|G2| - -
CHM NIZK + [CH20] (Γ ,θ), Lemma 10 (3d− 1)|G1|+ (3d− 2)|G2| (7d− 4)e1 + (3d− 1)e2 9d− 2

New solutions
CHM NIZK + new Γ ,θ, Lemma 9 2d|G1|+ (2d− 1)|G2| (5d− 3)e1 + 4de2 7d− 1
New NIZK, Lemma 8 2d|G1|+ (2d− 1)|G2| ≤ 3de1 + (4d− 2)e2 7d− 1

function Fi depends on at most q of its input locations.7 In particular, this efficiently captures arith-
metic circuits, hence all NP languages.8

Rank-1 constraints systems (R1CS) are well-known to be powerful, since they capture compactly many
languages of interest [GGPR13]. They have been widely used in the construction of SNARKs. aCSPs
directly extend these simple constraints to arbitrary low-degree polynomial relations. Moving away from
R1CS to more expressive constraint systems can potentially be very useful: in many applications of
NIZKs with complex languages, an important work is dedicated to finding the “best” R1CS to represent
the language. The increased flexibility of being allowed to handle more general constraints can typically
allow to achieve a significantly more efficient solution. While systematically revisiting existing works
and demonstrating that their R1CS system could be improved using aCSPs would be out of the scope
of this paper, we point out that this generalization approach was successfully applied in the past: the
work of [HKR19] described a method to go beyond R1CS in “Bulletproof style” random-oracle-based
NIZKs (this setting is incomparable to ours, as we focus on NIZKs in the standard model). They show
how to handle general quadratic constraints, and demonstrate that this leads to efficiency improvements
over Bulletproof on aggregate range proofs. Since aCSPs are even more general, handling any low-
degree polynomials, we expect that this representation could lead to significant optimizations for many
applications of NIZKs that rely on R1CS representations. However, we are aware of no previous random-
oracle-less NIZKs that can handle aCSPs natively.

Furthermore, even in scenarios where R1CS does indeed provide the best possible representation, our
framework leads to proofs more compact than Groth-Sahai. We illustrate this on Table 2 for the case of
general boolean circuits. Here, the standard GOS approach [GOS06] reduces checking each gate of the
circuit to checking R1CS equations. When comparing the cost obtained with our framework to the cost
achieved by a Groth-Sahai proof (using the optimized variant of [GSW09]), we find that our framework
leads to three times smaller commitments, 20% shorter argument, and almost a factor two reduction in
computation.
On the non-falsifiability of our assumption. When the algebraic branching program representa-
tion of the relation is multivariate, the corresponding matrix description may lead to a NIZK under a
non-falsifiable assumption. This might appear at first sight to significantly restrict the interest of our
framework: while our NIZKs are typically more efficient than Groth-Sahai, they are usually larger than
SNARKs since they grow linearly with (the algebraic branching program representation of) the rela-
tion, while SNARKs have size independent of both the relation and the witness. Hence, if we allow
non-falsifiable assumptions, wouldn’t SNARKs provide a better solution?

We discuss this apparent issue in Section 10. First, we identify a large class of important cases where
the underlying assumption becomes falsifiable; this includes Boolean circuits (and thus NP). Second, we
provide a general approach to transform any NIZK from our framework into NIZKs under a falsifiable
assumption, by replacing the underlying commitment scheme by a DLIN-based encryption scheme and
7 That is, for every j ∈ [1, τ] there exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that ∀χ ∈ Fn, Fj(χ) =
f(χi1 , . . . , χiq). Then F is satisfiable if ∀j, Fj(χ) = 0.

8 Technically, one could always take aCSPs, write them as a circuit satisfiability problem, and embed that into
an agebraic language to capture it with the Couteau-Hartmann framework; the point of our framework is that,
by capturing this powerful model directly, we can obtain much better efficiency on aCSPs.

4

double-encrypting certain values. This comes at the cost of increasing the commitment and argument
size. Third, we argue that the gap assumption [OP01] underlying our framework is, despite its non-
falsifiability, a very natural and plausible assumption; see Section 10 for more details. In particular, gap
assumptions are generally recognized as much more desirable than knowledge of exponent assumptions.
In essence, our assumption says that uncovering structural weaknesses in a group G1 does not necessarily
imply the existence of structural weaknesses in another group G2; in particular, this assumption trivially
holds in the generic bilinear group model (where a CDH oracle in G1 provides no useful information for
breaking any assumption in G2).

Overall, we view our framework as providing a desirable middle ground between Groth-Sahai (which
leads to less efficient NIZKs, but under the standard SXDH assumption) and SNARKs (which lead to
more efficient NIZKs in general but require highly non-standard knowledge of exponent assumptions).

1.3 Technical Overview

Intuitive overview. At a high level, the Couteau-Hartmann methodology compiles a Σ-protocol for
languages of the form {x : ∃w,Γ (x) ·w = θ(x)}, where (Γ ,θ) are linear maps, into a NIZK. This leaves
open, however, the tasks of characterizing which languages admit such a representation, finding such a
representation, and when multiple representations are possible optimizing the choice of the representation.
We provide a blueprint for these tasks.

We focus on commit-and-prove languages, a large and useful class of languages. At the heart of our
techniques is a general method to convert a set of low-degree polynomial equations Fi(X) into a set of
“optimized” matrices Ci(X) such that det(Ci(X)) = Fi(X) with a specific additional structure. We call
this matrix a quasideterminantal (QDR) representation of the polynomial. Then, we directly construct
a compact NIZK proof system for a QDR, using a variant of the Couteau-Hartmann methodology. We
prove that the resulting proof system is sound under a CED assumption. Whenever Fi has a polynomial
number of roots (e.g., univariate), the corresponding CED assumption is always falsifiable.

Constructing a QDR from a polynomial is a non-trivial task that highly depends on the representation
of Fi. We provide a general framework to construct such QDRs from the algebraic branching program
(ABP [Nis91]) representation of Fi; hence, our framework is especially suited whenever the polynomials
have a compact ABP representation. ABP is a powerful model of computation, capturing in particular
all log-depth circuits, boolean branching programs, boolean formulas, logspace circuits, and many more.
Background. The rest of the technical overview requires understanding of some minimal background
from algebraic geometry, see [CLO15] for more. Let F = Zp and X = (X1, . . . , Xν). For a set F of
polynomials in F[X], let

A(F) := {χ ∈ Fν : f(χ) = 0 for all f ∈ F}
be the algebraic set defined by F . A subset A ⊆ Fν is an algebraic set if A = A(F) for some F . Given a
subset A of Fν , let I(A) be the ideal of all polynomial functions vanishing on A,

I(A) := {f ∈ F[X] : f(χ) = 0 for all χ ∈ A} .

Since each ideal of F [X] is finitely generated [CLO15], then so is I(A), and thus I(A) = ⟨F1, . . . , Fτ ⟩ for
some Fi. I is principal if it is generated by a single polynomial. All univariate ideals are principal. For
an ideal I with generating set {Fi}, A(I) := A({Fi}). We also define Z(F) := A({F}).
Commit-and-prove NIZKs for algebraic sets. For the sake of concreteness, we focus on commit-
and-prove languages where the underlying commitment scheme is the ElGamal encryption scheme; it is
easy to extend this approach to any additively homomorphic and perfectly binding algebraic commitment
scheme. Let pk be an Elgamal public key and let A be an algebraic set. We provide a general methodology
of constructing a NIZK argument for the language

Lpk,A = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ A}

of Elgamal-encryptions of elements of A. We define Lpk,F := Lpk,Z(F) when we are working with a single
polynomial. Assuming I(A) = ⟨F1, . . . , Fτ ⟩, we prove that χ ∈ A by proving that Fi(χ) = 0 for each Fi.
The resulting argument system is efficient (probabilistic polynomial-time), assuming that there is

(i) an efficient algorithm (to be run only once) that finds a small generating set (F1, . . . , Fτ) for I(A)
where τ = poly(λ), and

5

(ii) an efficient NIZK argument system to show that Fi(χ) = 0 for each Fi.

Note that the NIZK for showing that Fi(χ) = 0 for each i is a simple conjunction of NIZKs for showing
for each i that Fi(χ) = 0.

Now, i is a non-cryptographic problem from computational commutative algebra. The classical
Buchberger-Möller algorithm [MB82] can find efficiently a finite Gröbner basis {Fi} for all algebraic
sets A that have a finite Gröbner basis. Other methods exist, and we will only mention a few. Most
importantly, one can relate i to finding efficient arithmetic circuits and arithmetic constraint satisfaction
systems (aCSPs), see Section 8.1.9 The main technical contribution of our work (on top of the general
framework) is to propose an efficient solution to ii.
Constructing a compact proof system for F (χ) = 0. Here, we follow the next blueprint: we
construct

(iii) a small matrix C(X) (that satisfies some additional properties) of affine maps, such that
det(C(X)) = F (X), and

(iv) an efficient NIZK argument system for showing that det(C(χ)) = 0 for committed χ.

To solve iv, we build upon the new computational extended determinant assumption (CED). The CED
assumption is a relaxation of the ExtKerMDH assumption from [CH20], which itself is a natural general-
ization of the Kernel Diffie-Hellman assumption. At a high level, CED says that given a matrix in a group
G2, it is hard to find an extension of this matrix over G2, together with a large enough set of linearly
independent vectors in G1 in the kernel of the extended matrix (where (G1,G2) are groups equipped
with an asymmetric pairing). While CED is not falsifiable in general, it can be reduced to a natural gap
assumption. The latter reduction does not work with the ExtKerMDH assumption.

Our reduction to the CED assumption proceeds by identifying the matrix C, returned by the CED
adversary, with the matrix C(X) from iii. Intuitively, we construct a reduction that, knowing the Elgamal
secret key sk, extracts [(γ∥C)(χ)]1, where [χ]1 = Decsk([ct]1), such that C(χ) has full rank iff the
soundness adversary cheated, i.e., F (χ) ̸= 0. In that case, the reduction can obviously break the CED
assumption.

To ensure that the NIZK argument can be constructed, we require that C satisfies two additional
properties. Briefly,

(1) C(X) is a matrix of affine maps, (to ensure that the matrix is computable from the statement) and
(2) the first column of C(χ) is in the linear span of the remaining columns of the matrix for any χ ∈ Z(F)

(a technical condition which ensures that an honest prover can compute the argument).

We say that then C(X) is a quasideterminantal representation (QDR) of F . We also give some conditions
which make it easier to check whether a given matrix is a QDR of F .
Building NIZKs from QDRs. Assuming C(X) is a QDR of F , we propose a linear-algebraic NIZK
argument Πnizk for showing that x ∈ Lpk,F . We prove that Πnizk is sound under a CED assumption.
Importantly, CED is falsifiable if A = A(F) has a polynomial number of elements. Otherwise, CED
is in general non-falsifiable (except in some relevant cases, see Section 10), but belongs to the class
of “inefficient-challenger” assumptions (usually considered more realistic than knowledge assumptions,
see [Pas13]). Furthermore, CED can be reduced to a single, natural gap assumption: the hardness of
breaking DDH in a group G2 given a CDH oracle in a different group G1. We refer to 10.2 for more
details.
Constructing QDRs. The remaining, highly non-trivial, problem is to construct a QDR of F , such
that the constructed NIZK argument is efficient. In the rest of the paper, we study this problem.

First, we propose a general framework to construct NIZK arguments for Lpk,F where F (χ) can be
computed by an efficient algebraic branching program. Let Π be an ABP that computes F , with the node
set V and the edge set E, and let ℓ = |V | − 1. Given the methodology of [IK00,IK02], one can represent
Π as an ℓ × ℓ matrix IK(X), such that det(IK(X)) is equal to the output of the ABP. We show that
9 There are ample examples of sets A that have small generating sets (and even small Gröbner bases), which
can be found using a variety of standard tricks and methods (e.g. increasing the dimension of the affine space
from some Fn to Fn′

, n′ > n, such that the new n′ − n “helper variables” make it possible to construct a
small Gröbner basis that consists of only small-degree polynomials). We will use such tricks in some of our
illustrations and applications.

6

such IK(X) is a QDR. Thus, we obtain an efficient computationally-sound NIZK for Lpk,F under a CED
assumption.
Applications. We consider several natural applications of our framework.
Univariate polynomials. Given a univariate polynomial F (X) =

∏
(X−ξi) of degree-d, for different roots

ξi, we construct a simple matrix C(X). The resulting NIZK argument is about 30% shorter and 20%
more computationally efficient than the set membership proof that stems from [CH20, Section C]; see
the comparison in Table 1.
Commitments to points on an elliptic curve. We construct a NIZK argument to prove that the committed
point (X,Y) belongs to the given elliptic curve Y 2 = X3 + aX + b. Such NIZK proofs are popular
in cryptocurrency applications, [BCTV14]. The construction of C(X,Y) is motivated by a classical
algebraic-geometric (possibility) result that for any homogeneous cubic surface F (X,Y, Z), there exists
a 3× 3 matrix of affine maps that has F (X,Y, Z) as its determinant [Dic21,Bea00].
OR proofs. In Section 6.2, we look at the special case of OR proofs and study three instantiations of our
general protocol to OR arguments. We discuss the advantages and downsides of each.
Non-Principal Ideals. Importantly, in Section 8, we capture the very general scenario where I(A) has
a “nice-looking” generating set (F1, . . . , Fτ) (i.e. τ is small and each polynomial has a small degree).
Some cryptographically important examples include arithmetic circuits, R1CS, Boolean circuits, and
arithmetic constraint satisfaction systems. Thus, we obtain efficient NIZKs for NP.

2 Preliminaries

For a matrix A ∈ Zn×np and i ∈ [1, n], let C(i,1) be the submatrix obtained from C by removing the ith
row and the first column.
Cryptography. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê, [1]1, [1]2), where G1,
G2, and GT are three additive cyclic groups of prime order p, [1]ι is a generator of Gι for ι ∈ {1, 2, T} with
[1]T = ê([1]1, [1]2), and ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear pairing. We
require the bilinear pairing to be Type-3 [GPS08], that is, we assume that there is no efficient isomorphism
between G1 and G2. We use the additive implicit notation of [EHK+13], that is, we write [a]ι to denote
a[1]ι for ι ∈ {1, 2, T}. We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the
bracket notation together with matrix notation; for example, if AB = C then [A]1 • [B]2 = [C]T . We
also define

[A]2 • [B]1 := ([B]⊤1 • [A]⊤2)
⊤ = [AB]T .

Let Pν := {[a0]1 +
∑ν
i=1[ai]1Xi : ai ∈ Zp for i ∈ [0, ν]} ⊂ G1[X] be the set of linear multivariate

polynomials over G1 in ν variables.
Algebraic languages [CC18,CH20] are parameterized languages of the shape LΓ ,θ = {x : ∃w,Γ (x) ·w =

θ(x)}, where x is the input, w is the witness, Γ and θ are affine maps, such that x and θ(x) are
vectors, and Γ (x) is a matrix. One can construct Gennaro-Lindell smooth projective hash functions
(GL-SPHFs [GL03,BBC+13,Ben16]) for all algebraic languages.

Let k ∈ {1, 2, . . .} be a small parameter related to the matrix distribution. In the case of asymmetric
pairings, usually k = 1. Let Dℓk be a probability distribution over Zℓ×kp , where ℓ > k. We denote Dk+1,k

by Dk. We use the matrix distribution, L1, defined as the distribution over matrices (1
a), where a←$Zp.

In the Elgamal encryption scheme [ElG84], the public key is pk = [1∥sk]1, and

Encpk(m; r) = (r[1]1∥m[1]1 + r[sk]1) .

To decrypt, one computes [m]1 = Decsk([c]1) ← −sk[c1]1 + [c2]1. In what follows, we denote [c]1 =
Enc(m; r) for a fixed public key pk = [1∥sk]1. Elgamal’s IND-CPA security is based on L1-KerMDH, that
is, DDH.

The DLIN cryptosystem [BBS04] is less efficient than Elgamal, with the ciphertext consisting of 3
group elements instead of 2. However, it remains secure in the case of symmetric pairings. Its IND-CPA
security is based on L2-KerMDH, that is, DLIN [BBS04]. Briefly,

[c]ι ← Encι(χ; r1, r2) := (χ∥r1∥r2)
[

0 0 1
sk1 0 1
0 sk2 1

]

ι

= [r1sk1∥r2sk2∥χ+ r1 + r2]ι ∈ G3
ι

7

for public key pkι = [1∥sk1∥sk2]ι and randomiser (r1, r2). The decryption formula is [χ]ι ← −1/sk1 ·
[c1]ι − 1/sk2 · [c2]ι + [c3]ι.

The following Extended Kernel Diffie-Hellman assumption ExtKerMDH [CH20] generalizes the well-
known KerMDH assumption [MRV16]. (Appendix A.1 defines KerMDH.) We also define in parallel a
new, slightly weaker version of this assumption, CED (computational extended determinant).

Definition 1 (Dk-(ℓ − 1)-ExtKerMDH). Let ℓ, k ∈ N, and Dk be a matrix distribution. The Dk-(ℓ −
1)-ExtKerMDH assumption holds in Gι relative to Pgen, if for all PPT adversaries A, the following
probability is negligible:

Pr

[
δ ∈ Z(ℓ−1)×k

p ∧ γ ∈ Zℓ×kp ∧ C ∈ Zℓ×ℓp ∧ p← Pgen(1λ), [D]ι←$Dk,
(γ∥C)

(
D
δ

)
= 0 ∧ rk(γ∥C) ≥ ℓ ([γ∥C]3−ι, [δ]ι)← A(p, [D]ι)

]
.

We define Dk-(ℓ− 1)-CED analogously, except that we change the condition rk(γ∥C) ≥ ℓ to rk(C) = ℓ.

CED is weaker than ExtKerMDH since a successful adversary has to satisfy a stronger condition (rk(C) ≥ ℓ
instead of rk(γ∥C) ≥ ℓ). Formally:

Lemma 1. Let ℓ, k, and Dk be as in Definition 1. If Dk-(ℓ− 1)-ExtKerMDH holds, then Dk-(ℓ− 1)-CED
holds.

Proof. Let A be an adversary that breaks Dk-(ℓ− 1)-CED with probability ε. We construct the following
adversary B that breaks Dk-(ℓ− 1)-ExtKerMDH:

B(p, [D]ι)

([γ∥C]3−ι, [δ]ι)← A(p, [D]ι);
return ([γ∥C]3−ι, [δ]ι);

If A succeeds, then by Definition 1, (γ∥C)
(
D
δ

)
= 0 and rk(γ) ≥ ℓ. However, if rk(γ) ≥ ℓ then also

clearly rk(γ∥C) ≥ ℓ. Thus, B succeeds with probability ≥ ε. ⊓⊔

CED suffices for the security of all NIZK arguments of the current paper. Moreover, in Section 10.2, we
reduce CED to a gap assumption. It seems that ExtKerMDH cannot be reduced to the same assumption.
Finally, CED is a natural assumption since we always care about rk(C) and not rk(γ∥C) ≥ ℓ.

Despite the general definition, in the rest of the paper (following [CH20]), we will be only concerned
with the case k = 1 and Dk = L1.
NIZK Arguments. An adaptive NIZK Π for a family of language distribution {Dp}p consists of five
probabilistic algorithms:

(1) Pgen(1λ): generates public parameters p that fix a distribution Dp.
(2) kgen(p): generates a CRS crs and a trapdoor td. For simplicity of notation, we assume that any

group parameters are implicitly included in the CRS. We often denote the sequence “p← Pgen(1λ);
(crs, td)← kgen(p)” by (p, crs, td)← kgen(1λ).

(3) P(crs, lpar, x, w): given a language description lpar ∈ Dp and a statement x with witness w, outputs
a proof π for x ∈ Llpar.

(4) V(crs, lpar, x, π). On input of a CRS, a language description lpar ∈ Dp, a statement and a proof,
accepts or rejects the proof.

(5) Sim(crs, td, lpar, x). Given a CRS, the trapdoor td, lpar ∈ Dp, and a statement x, outputs a
simulated proof for the statement x ∈ Llpar.

Note that the CRS does not depend on the language distribution or language parameters, i.e. we
define fully adaptive NIZKs for language distributions. The following properties need to hold for a NIZK
argument.

A proof system Π for {Dp}p is perfectly complete, if

Pr

[
V(crs, lpar, x, π) = 1

(p, crs, td)←$Kcrs(1
λ); lpar ∈ Supp(Dp);

(x, w) ∈ Rlpar;π←$P(crs, lpar, x, w)

]
= 1

8

A proof system Π for {Dp}p is computationally sound, if for every efficient A,

Pr

[
V(crs, lpar, x, π) = 1 (p, crs, td)←$Kcrs(1

λ);
∧x /∈ Llpar lpar ∈ Supp(Dp); (x, π)← A(crs, lpar)

]
≈ 0

with the probability taken over Kcrs.
Π for {Dp}p is perfectly zero-knowledge, if for all λ, all (p, crs, td) ∈ Supp(Kcrs(1

λ)), all lpar ∈
Supp(Dp) and all (x, w) ∈ Rlpar, the distributions P(crs, lpar, x, w) and Sim(crs, td, lpar, x) are identi-
cal.

Σ-Protocols. A Σ-protocol [CDS94] is a public-coin, three-move interactive proof between a prover P
and a verifier V for a relation R, where the prover sends an initial message a, the verifier responds with
a random e←$Zp and the prover concludes with a message z. Lastly, the verifier outputs 1, if it accepts
and 0 otherwise. In this work we are concerned with three properties of a Σ-protocol: completeness,
optimal soundness and honest-verifier zero-knowledge.

CH compilation. Couteau and Hartmann [CH20] compile Σ-protocols to NIZKs in the CRS model for
algebraic languages by letting [e]2 be the CRS. The basic Couteau and Hartmann compilation is for a
Σ-protocol, inspired by [Mau09], for algebraic languages. We will describe it in Section 9.

3 Quasideterminantal Representations

Next, we define quasideterminantal representations (QDRs) C(X) of a polynomial F (X). We prove a
technical lemma in Section 3.1 which shows how one can check whether a concrete matrix C(X) is a
QDR of F . We use this definition in Section 4, where, given a QDR C(X), we define the NIZK argument
for the associated language Lpk,F (defined in Eq. (1)), and prove its security.

We first define the class of languages we are interested in. Initially, we are interested in the case
where A = A({F}) for a single polynomial F . Fix p← Pgen(1λ). For a fixed Elgamal public key pk, let
lpar := (pk, F). (Implicitly, lpar also contains p.) Let [ct]1 = Enc([χ]1; r) = (Enc([χi]1; ri))i. We use
freely the notation F (Dec([ct]1)) = F ([χ]1) = [F (χ)]1. In Section 4, we describe a general technique that
results both in efficient NIZK arguments for languages

Lpk,F = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ Z(F)} . (1)

For example, if F (X) = X2 −X, then Lpk,F corresponds to the language of all Elgamal encryptions of
Boolean values under the fixed public key pk.

Intuition. To motivate the definition of QDRs, we first explain the intuition behind the new NIZK
argument. Recall from Definition 1 that an adversary breaks the L1-(ℓ − 1)-CED assumption if, given
[D]2 = [1e]2 ←$L1 (i.e., e←$Zp), he returns ([γ∥C]1 ∈ Gℓ×(ℓ+1)

1 , [δ]2 ∈ G(ℓ−1)×1
2), such that rk(C) ≥ ℓ

and
γ +C(eδ) = 0. (2)

Following [CH20], in our arguments [e]2 (i.e., [D]2) is given in the CRS and [δ]2 is chosen by the
prover. More precisely, the prover sends Enc([γ∥C]1) and [δ]2 (together with some elements that make
it possible to verify that Eq. (2) holds using encrypted values) to the verifier.

The matrix C must have full rank whenever the prover cheats, i.e. F (χ) ̸= 0. We achieve this by
requiring that det(C(X)) = F (X). Then, rk(C) = ℓ.

We guarantee that C is efficiently computable by requiring that C(X) is a matrix of affine maps,
and [C]1 = [C(χ)]1 for [χ]1 = Dec([ct]1). This also minimizes communication since each element of
Enc([C(χ)]1) can be recomputed from Enc([χ]1) by using the homomorphic properties of Elgamal.

On the other hand, assume that the prover is not honest (i.e., det(C(χ)) = F (χ) ̸= 0) but managed
to compute Enc([γ]1) and [δ]2 accepted by the verifier. Assume that the reduction knows sk (the language
trapdoor). Then, the reduction obtains [χ]1 by decryption and recomputes [C(χ)]1. Since det(C(χ)) ̸= 0
but the verifier accepts (i.e., Eq. (2)), then one can break the CED assumption by returning [(γ∥C)(χ)]1
and [δ]2.

9

3.1 Definition

We now define quasideterminantal representations (QDRs) C(X) of polynomial F . QDRs are related to
the well-known notion of determinantal representation from algebraic geometry, see Appendix B.1 for a
discussion.

Definition 2 (Quasideterminantal Representation (QDR)). Let F (X) ∈ Zp[X] be a ν-variate
polynomial. Let ℓ ≥ 1 be an integer. A matrix C(X) = (Cij(X)) ∈ Zp[X]ℓ×ℓ is a QDR of F , if the
following requirements hold. Here, C(X) = (h∥T)(X), where h(X) is a column vector.

Affine map: For each i and j, Cij(X) =
∑ν
k=1 PkijXk + Qij, for public Pkij , Qij ∈ Zp, is an affine

map.
F -rank: det(C(X)) = F (X).
First column dependence: For any χ ∈ Z(F), h(χ) ∈ colspace(T (χ)).

The quasideterminantal complexity qdc(F) of F is the smallest QDR size of F . (Clearly, qdc(F) ≥
deg(F).)

For example, C(X) =
(

0 X
X−1 1−X

)
is a QDR of F (X) = X(X−1). The first column dependence property

follows since
(

0
χ−1

)
=
(χ
1−χ

)
w iff (χ,w) = (0,−1) or (χ,w) = (1, 0), i.e., χ ∈ Z(F). On the other hand,

C(X) =
(
X 0
0 X−1

)
is not a QDR (of the same F) since (χ0) =

(
0

χ−1
)
w iff (χ,w) = (0, 0).

The first column dependence property is nicely connected to a computational requirement we need
for our NIZK. However, it can be difficult to check whether a given matrix satisfies this condition. We
now give two alternative conditions that imply the first column dependence property, and which are
easier to check.

Lemma 2. Suppose a matrix C satisfies the affine map and F -rank properties. If it in addition satisfies
one of the following properties, it also satisfies the first column dependence property.

(1) High right rank: For any χ ∈ Zνp, rk(T (χ)) = ℓ− 1.
(2) Invertible right-submatrix: there exists i, s.t. det(C(i,1)(χ)) ̸= 0 for any χ.

Proof. (1). Consider any χ ∈ Z(F). By the F -rank property, det(C(χ)) = 0 and thus rk(C(χ)) ≤ ℓ− 1.
Suppose h(χ) ̸∈ colspace(T (χ)). Then rk(C(χ)) > rk(T (χ)). By the high right rank property, ℓ − 1 ≥
rk(C(χ)) > rk(T (χ)) = ℓ− 1, which is a contradiction. Thus, h(χ) ∈ colspace(T (χ)).

(2). From the invertible right-submatrix property, rk(C(i,1)(χ)) = ℓ− 1, and thus rk(T (χ)) = ℓ− 1.
⊓⊔

E.g., any matrix C(X) that contains non-zero elements on its upper 1-diagonal and only 0’s above the
upper 1-diagonal is automatically a QDR of F (X) := det(C(X)). See Sections 5 and 6 for more.

3.2 Corollaries

The affine map property is needed since we use a homomorphic cryptosystem which makes it possible to
compute

Enc([Cij(χ)]1) =
ν∑

k=1

PkijEnc([χk]1) +QijEnc([1]1)

given only Enc([χ]1). The F -rank property follows directly from the definition of CED. The first column
dependence property, guarantees that the QDR C(X) satisfies the following two properties, required
later:

Efficient prover: There exist two PPT algorithms that we later explicitly use in the new NIZK ar-
gument (see Fig. 2) for Lpk,F . First, comp1(p,χ,C(X)), that computes [γ]1 and a state st. Sec-
ond, comp2(st, [e]2), that computes [δ]2. We require that if F (χ) = 0, then ([γ]1, [δ]2) satisfy
Eq. (2). We denote the sequential process ([γ]1, st) ← comp1(p,χ,C(X)), [δ]2 ← comp2(st, [e]2)
by ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X)).

Zero-knowledge: For ([γ]1, [δ]2) ← comp(p, [e]2,χ,C(X)), δ is uniformly random. This requirement
is needed for the zero-knowledge property of the resulting NIZK argument.

10

comp1(p,χ,C(X)):

Write C(χ) = (h∥T)(χ);y←$Zℓ−1
p ;

γ ← T (χ)y; st← (p,χ,C(X);y);
return ([γ]1, st);

comp2(st, ψ(e)):

Write C(χ) = (h∥T)(χ);
Compute w such that T (χ)w = h(χ);
ψ(δ)← −(wψ(e) + ψ(y)); return ψ(δ);

Fig. 1. compi algorithms assuming h(χ) ∈ colspace(T (χ)). Here, ψ = id in the case of the Σ-protocol, and
ψ = [·]2 in the case of the NIZK argument.

To be able to construct an efficient Σ-protocol for Lpk,F , we need to replace the efficient prover assumption
with the following assumption.

Efficient prover over integers: as the “efficient prover” requirement, but one uses e everywhere in-
stead of [e]2, and δ instead of [δ]2.

In all our instantiations, the two variations of comp are related as follows: comp(p, [e]2,χ,C(X)) is the
same as comp(p, e,χ,C(X)) but applies an additional [·]2 to some of the variables.

Remark 1. We will explicitly need the independence of [γ]1 from [e]2 for Σ-protocols and thus for CH-
compilation. It is not a priori clear if it is needed for NIZK arguments in general. However, if γ = f(e)
for some non-constant affine map f , then one cannot efficiently compute [γ]1 given only [e]2, since we
rely on type-III pairings and those two values belong to different source groups. Thus, independence of
[γ]1 from [e]2 seems inherent in the case of type-III pairings.

Lemma 3. Assume F is as in Definition 2 and that C(X) is a QDR of F . Then

(1) C has the efficient-prover property.
(2) C has the zero-knowledge property.

Proof. Recalling C(X) = (h∥T)(X), we rewrite Eq. (2) as

γ + h(X)e+ T (X)δ = 0 . (3)

Assume C(X) is a QDR of F . From the first column dependence property, we get that for any
χ ∈ Z(F), there exists a w, such that T (χ)w = h(χ). Thus for such χ, Eq. (3) holds iff

γ + T (χ)(we+ δ) = γ + T (χ)we+ T (χ)δ = 0 .

This gives rise to the following algorithm to compute γ and δ. In comp1, one samples y←$Zℓ−1p , and
outputs γ ← T (χ)y. In comp2, one solves T (χ)w = h(χ) for w, and sets δ ← −(we + y). Clearly, γ
and δ satisfy Eq. (2), and γ is computed independently of e. Thus, the efficient prover property holds.
Since y is uniformly random, so is δ = −(we+ y). Hence, the zero-knowledge property is satisfied. We
depict the algorithms in Fig. 1. ⊓⊔

Finally, we show that any matrix which satisfies the efficient prover property as well as the affine
map and F -rank properties must satisfy the first column dependence property. Thus, the latter property
is actually needed.

Lemma 4. Let C(X) be a matrix that satisfies the affine map, F -rank and efficient prover properties.
Then C satisfies the first column dependence property.

Proof. Fix p,χ, and C(X) = (h∥T)(X), and let compi be any (potentially inefficient) algorithms that
output ([γ]1, [δ]2), such that [γ]1 does not depend on e. Consider any ([γ]1, st) ← comp1(p,χ,C(X)).
For any e and the given st, let [δe]2 ← comp2(st; [e]2). Suppose that γ does not depend on e. Fix any
e ̸= e′. Since Eq. (2) and thus Eq. (3) holds for both e (and thus δ = δe) and e′ (and thus δ = δe′),

h(χ)(e− e′) + T (χ)(δe − δe′) = 0 .

Thus, h(χ) = T (χ)((δe − δe′)/(e
′ − e)), and thus h(χ) ∈ colspace(T (χ)). ⊓⊔

11

kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X));
ϱ←$Zℓp; [ctγ]1 ← Enc([γ]1;ϱ) ∈ Gℓ×21 ;
[z]2 ← ϱ[1]2 + (

∑ν
k=1 rkP k) [

e
δ]2 ∈ Gℓ2.

Return π ← ([ctγ]1, [δ, z]2) ∈ Gℓ×21 ×G2ℓ−1
2 .

V(crs, lpar, x = [ct]1, π): check [Iℓ]2 • [ctγ]1+
∑ν
k=1 (P k [

e
δ]2 • [ctk]1) =? (−Q [eδ]2)• [0∥1]1+[z]2 •

pk.

Sim(crs, td, lpar, x = [ct]1): δ←$Zℓ−1p ;
z←$Zℓp; [ctγ]1 ← Enc(−Q(eδ)[1]1; z)−

∑ν
k=1 P k(

e
δ)[ctk]1;

Return π ← ([ctγ]1, [δ, z]2) ∈ Gℓ×21 ×G2ℓ−1
2 .

Fig. 2. The new NIZK argument Πnizk for Lpk,F .

4 Argument for Algebraic Set of Principal Ideal

Fix p← Pgen(1λ) and define Dp := {lpar = (pk, F)}, where
(1) pk is an Elgamal public key for encrypting in G1, and
(2) F is a polynomial with qdc(F) = poly(λ), i.e., there exists a poly(λ)-size QDR C(X) of F . (In

Sections 5 and 6, we will show that such QDRs exist for many F -s.)

Before going on, recall that Cij(X) =
∑ν
k=1 PkijXk + Qij for public Pkij and Qij . To simplify

notation, we will use vector/matrix format, by writing

C(X) =
ν∑

k=1

P kXk +Q .

As always, we denote Enc([a]1; r) := (Enc([ai]1; ri))i. We often omit χ in notation like [C(χ)]1, and just
write [C]1.

4.1 Protocol Description

Let Lpk,F be defined as in Eq. (1). The new Σ-protocol and NIZK argument for Lpk,F are based on the
same underlying idea. Since the new NIZK is a CH-compilation of the Σ-protocol, it suffices to describe
intuition behind the NIZK.

In the new NIZK argument (see Fig. 2), P uses comp1 to compute [γ]1 (together with state st),
encrypts [γ]1 by using fresh randomness ϱ, and then uses comp2 (given crs = [e]2) to compute [δ]2. If
P is honest, then by the definition of QDRs of F , Eq. (2) holds, i.e., γ + C(χ)(eδ) = 0. The latter is
equivalent to γ + (

∑
k P kχk)(

e
δ) = −Q(eδ). V needs to be able to check that the last equation holds,

while given only an encryption of [γ]1. To help V to do that, P sends a vector of randomizers [z]2 to V as
helper elements that help to “cancel out” the randomizers used by the prover to encrypt [γ]1 and [χ]1.

The new NIZK argument is given in Fig. 2.

4.2 Efficiency

Next, we estimate the efficiency of the NIZK argument. Note that if we use the comp algorithm given
in Fig. 1, we see that the algorithm computes w and y such that [δ]2 = −(w[e]2 + y[1]2). This lets
us write [eδ]2 =

(
1
−w
)
[e]2 +

(
0
−y
)
[1]2. This allows us to compute [z]2 as (

∑ν
k=1 rkP k)

(
1
−w
)
[e]2 +

(ϱ+
∑ν
k=1 rkP k)

(
0
−y
)
[1]2, which can be done with 2ℓ exponentiations in G2. This leads to the fol-

lowing lemma. Its proof follows by direct observation.

Lemma 5. Consider Πnizk with QDR C. Define TP (C) := |{(i, j) : ∃k, Pkij ̸= 0}|, and TQ(C) :=
|{(i, j) : Qij ̸= 0}|. Let c be the time needed to run comp, eι is the time of an exponentiation in Gι, and
p is the time of a pairing. Then

12

(1) the prover’s computation is dominated by c+ 2ℓ · e1 + 2ℓ · e2,
(2) the verifier’s computation is dominated by (TP (C) + TQ(C)) · e2 + 2(2 + ν)ℓ · p,
(3) the communication is 2ℓ elements of G1 and 2ℓ− 1 elements of G2.

For the argument to be efficient, we need comp to be efficient (according to Section 3.1, it must be
efficient to solve the system T (χ)w = h(χ) for w, where C(X) = (h∥T)(X)), and the matrices P k and
Q have to be sparse.

In Section 5, we propose a way to construct C(X) that satisfies these restrictions for any F (X) that
can be computed by a polynomial-size ABP. In Section 6, we study other interesting cases.

The estimate in Lemma 5 is often over-conservative. For example, let δ′ = (eδ). If Pkij1 = Pkij2 =: P ′

for j1 ̸= j2, then the verifier has to perform one exponentiation P ′([δ′j1]2 + [δ′j2]2) instead of two. The
same holds when Qij1 = Qij2 for some j1 ̸= j2. Moreover, when the exponent is a small constant (in the
extreme case, 1 or −1), then one does not have to perform a full-exponentiation.

4.3 Security of the NIZK Argument

Theorem 1. Let {Dp}p be the family of language distributions, where Dp = {lpar = (pk, F)} as before.
Here, F (X) is a ν-variate polynomial of degree d, where ν, d ∈ poly(λ). Let C(X) ∈ Zp[X]ℓ×ℓ be a QDR
of F . The NIZK argument Πnizk for {Dp}p from Fig. 2 is perfectly complete and perfectly zero-knowledge.
It is computationally (adaptive) sound under the L1-(ℓ− 1)-CED assumption in G2 relative to Pgen.

Proof. Completeness: To see that the NIZK argument is complete, transform the verification equation
as follows:

[Iℓ]2 • [ctγ]1 +
ν∑

k=1

(P k [
e
δ]2 • [ctk]1) =? (−Q [eδ]2) • [0∥1]1 + [z]2 • pk ⇐⇒

[ctγ]1 +
ν∑

k=1

P k(
e
δ)[ctk]1 =? Enc([−Q(eδ)]1; z) ⇐⇒

Enc([γ]1;ϱ) +
ν∑

k=1

P k(
e
δ)Enc([χk]1; rk) =

? Enc([−Q(eδ)]1; z) ⇐⇒

Enc

(
[γ +C(χ)(eδ)]1;ϱ+

(
ν∑

k=1

rkP k

)
(eδ)− z

)
=? Enc([0]1;0)

which holds since the prover is honest and due to the definition of z.
Perfect zero-knowledge: Fix any λ, (p, td) ∈ Supp(Kcrs(1

λ)) and compute crs = [td]2. Then fix
lpar ∈ Supp(Dp) and (x, w) ∈ Rlpar. In the honest prover’s algorithm, since ϱ is uniformly random, then
also z is uniformly random. By the zero-knowledge property (see Section 3.2), δ output by an honest
prover is uniformly random. On the other hand, Sim (see Fig. 2) also samples uniformly random δ and z.
Finally, in both the prover’s and simulator’s case, [ctγ]1 is the unique value that makes the verifier accept
the argument π. Hence, the distributions of the prover and the simulator are perfectly indistinguishable.

Computational soundness. Let A be a soundness adversary that, for honestly generated crs and
any lpar ∈ Supp(Dp) (including C), breaks Πnizk in time τ and with probability ε. We construct the
following L1-(ℓ− 1)-CED adversary B. (See Definition 1 for the definition of CED.)

The CED challenger creates p ← Pgen(1λ), [D]2 = [1e]2 ←$L1 and sends (p, [D]2) to B. B runs
(crs, td) ← Kcrs(p). B runs the setup algorithm of Elgamal to compute a random secret key sk and
public key pk from the correct distribution. B fixes any F such that lpar = (pk, F) ∈ Supp(Dp), and
sends crs = [e]2 and lpar to A. Let C be a fixed poly(λ)-size QDR of F .

Assume that A returns an accepting input-argument pair (x = [ct]1, π), such that x ̸∈ Llpar, i.e.,
[χ]1 ← Dec([ct]1) is such that F (χ) ̸= 0. B uses sk to decrypt [ct]1 to [χ]1 and [ctγ]1 to [γ]1. B recomputes
[C(χ)]1 ←

∑
P k[χk]1 +Q. B returns [γ∥C(χ)]1 and [δ]2 to the CED challenger.

Since A is successful, the verification equation in Fig. 2 holds, and thus also the following “decryption”
of the verification equation holds:

[Iℓ]2 • [γ]1 +
ν∑

k=1

(P k [
e
δ]2 • [χk]1) = (−Q [eδ]2) • [1]1 .

13

Thus, γ + C(χ)(eδ) = 0, i.e., Eq. (2) holds. Since det(C(χ)) = F (χ) ̸= 0, C has full rank. Thus, B
breaks CED. ⊓⊔

5 Efficient Instantiation Based on ABP

In this section we construct QDRs, that we denote by IK(X), for any polynomial F that can be efficiently
computed by algebraic branching programs (ABPs, [Nis91,BG99]). This results in NIZKs for the class of
languages Lpk,F , where F is only restricted to have a small ABP. However, in many cases, the resulting
matrix IK(X) is not optimal, and this will be seen in Section 7.1. Thus, following sections consider
alternative construction techniques of such matrices.

5.1 Preliminaries: Algebraic Branching Programs

A branching program is defined by a directed acyclic graph (V,E), two special vertices s, t ∈ V , and a
labeling function ϕ. An algebraic branching program (ABP, [Nis91,BG99]) over a finite field Fp computes
a function F : Fνp → Fp. Here, ϕ assigns to each edge in E a fixed affine (possibly, constant) function in
input variables, and F (X) is the sum over all s − t paths (i.e., paths from s to t) of the product of all
the values along the path.

Algebraic branching programs capture a large class of functions, including in particular all log-depth
circuits, boolean branching programs, boolean formulas, logspace circuits, and many more. For some
type of computations, they are known to provide a relatively compact representation, which makes them
especially useful. See [IK00,IK02,IW14] and the references therein.

Ishai and Kushilevitz [IK00,IK02] related ABPs to matrix determinants as follows.

Proposition 1. [IK02, Lemma 1] Given an ABP abp = (V,E, s, t, ϕ) computing F : Fνp → Fp, we can
efficiently (and deterministically) compute a function IK(χ) mapping an input χ ∈ Fνp to a matrix from
Fℓ×ℓp , where ℓ = |V | − 1, such that:

1. det(IK(χ)) = F (χ),
2. each entry of IK(χ) is an affine map in a single variable χi,
3. IK(χ) contains only −1’s in the upper 1-diagonal (the diagonal above the main diagonal) and 0’s

above the upper 1-diagonal.

Specifically, IK is obtained by transposing the matrix you get by removing the column corresponding to s
and the row corresponding to t in the matrix adj(X)− I, where adj(X) is the adjacency matrix for abp.

Note that the matrix IK is transposed compared to what is found in [IK02, Lemma 1], to ensure consis-
tency with the notation from the CED assumption.

5.2 NIZK for Algebraic Branching Programs

Lemma 6. Let abp = (V,E, s, t, ϕ) be an ABP that computes a ν-variate polynomial F (X). Then IK(X)
is a QDR of F with ℓ = |V | − 1.

Proof. Items 1 and 2 of Proposition 1 state directly that the affine map and reducibility properties of
Definition 2 hold. From 3 of Proposition 1, it follows that IK(X)(ℓ,1) is an upper triangular matrix where
the diagonal which only consists of −1’s. Clearly, det(IK(χ)(ℓ,1)) ̸= 0 for any χ; thus, it follows from
Lemma 2 that the first column dependence property is also satisfied. The claim ℓ = |V |−1 is obvious. ⊓⊔

In particular, qdc(F) ≤ |V | − 1.
Efficiency of comp. We next specialize the general compi algorithms given in Fig. 1 to ABP. For this,
we just have to write down how to efficiently do the next two steps:

(1) Compute γ = T (χ)y. Due to the shape of IK(χ) and thus of T (χ), one can clearly compute γ as
γi ←

∑i−1
j=1 Tij(χ)yj−1 − yi for each i ∈ [1, ℓ].

14

s a1 · · · ad−1 t
X − ξ1 X − ξ2 X − ξd−1 X − ξd IKpath(X) =

(X−ξ1 −1 0 ... 0
0 X−ξ2 −1 ... 0
...
0 0 0 ... −1
0 0 0 ... X−ξd

)

Fig. 3. The ABP abpdpath(X, ξ) for F (X) =
∏d

i=1(X − ξi) and IKpath(X)

(2) Solve T (χ)w = h(χ) for w. Let T ∗ be the matrix obtained from T (χ) by omitting its last row,
and similarly let h∗ be the vector obtained from h(χ) by omitting its last element. One finds w

by solving T ∗w = h∗ by forward substitution, as follows: wi ←
∑i−1
j=1 Tij(χ)wj − hi(χ) for each

i ∈ [1, ℓ− 1].

Lemma 7. Let N(v) be the neighbourhood of a node v in the underlying ABP. Assuming C(X) = IK(X),
the computational complexity of comp is dominated by 2(|E| − |N(s)|) − |N(t)| field multiplications, ℓ
exponentiations in G1, and 2(ℓ− 1) exponentiations in G2.

Proof. Clearly, computing γ requires at most |E|−|N(s)| field multiplications, and computing w requires
at most |E|− |N(s)|− |N(t)| field multiplications. Finally, in the case of the NIZK argument, computing
[γ]1 requires ℓ exponentiations in G1, and computing [δ]2 requires 2(ℓ− 1) exponentations in G2. ⊓⊔

6 Applications

6.1 Univariate F (Set-Membership Proof)

Consider an algebraic set A ∈ Zp of size poly(λ), generated by τ univariate polynomials F1, . . . , Fτ ∈
Zp[X]. As before, we aim to prove that an Elgamal-encrypted χ satisfies χ ∈ A, i.e., Fi(χ) = 0 for all i.
In the univariate case, all ideals are principal [CLO15, Section 1.5], and thus any ideal can be written as
I = ⟨F ⟩ for some F . Thus, A = A(F) for F ← gcd(F1, . . . , Fτ) [CLO15, Section 1.5].

Moreover, I(A(F)) = I(Fred) [CLO15, Section 1.5], where Fred has the same roots as F but all with
multiplicity one. That is, if F (X) =

∏
(X − ξi)

bi , for bi ≥ 1 and mutually different ξi, then Fred =∏
(X − ξi). This reduced polynomial Fred can be efficiently computed as Fred = F/ gcd(F, F ′), [CLO15,

Section 1.5]. Since we are constructiong NIZKs for algebraic sets, in this section, we will assume that
F (X) = Fred(X) =

∏
(X−ξi) for mutually different roots ξi. (This will be the case if we assume A = {ξi}

for polynomially many ξi.) Thus, it suffices to prove that F (χ) = 0, where F is a reduced polynomial.
As before, for efficiency reasons, we assume that F has degree poly(λ).

We now apply the ABP-based protocol to a univariate reduced polynomial F . We depict the ABP
abpdpath(X, ξ) in Fig. 3. The ABP consists of a single path of length d with edges labelled by values X−ξi.
Clearly, abpdpath(X, ξ) computes F (X). The corresponding matrix IKpath(X) is also given in Fig. 3.

Fig. 4 depicts the resulting set-membership NIZK argument that X ∈ {ξi}.
Lemma 8. Let F (X) be a univariate reduced polynomial. The ABP-based NIZK argument for Lpk,F has
prover’s computation of at most 3d exponentiations in G1 and 4d − 2 exponentiations in G2, verifier’s
computation of 7d− 1 pairings and at most d exponentiations in G2, and communication of 2d elements
of G1 and 2d− 1 elements of G2.

Proof. Prover: First, we write down the concrete formulas for the comp algorithm from Fig. 1.

1. Computation of γ = T (χ)y: one sets γ1 ← −y1, γi ← (χ − ξi)yi−1 − yi for i ∈ [2, d − 1], and
γd ← (χ− ξd)yd−1. (d− 1 field operations.)
[γ]1 can then be computed by using at most d exponentiations in G1. However, if either (a) χ = ξd
or (b) χ− ξi is small for all i, then d− 1 exponentiations suffice.

2. Solving T (χ)w = h(χ) for w: wi ← −
∏i
j=1(χ− ξj) for i ∈ [1, d− 1].

This allows us compute [δ]2 in the following way: Define [ai]2 := wi[e]2. We can recursively compute
[ai]2 as [a1]2 = (χ−ξ1)[e]2 and [ai]2 = (χ−ξi)[ai−1]2, and so computing each [ai]2 requires at most 1
exponentiation. Note that if χ = ξj , then [aj]2 = [0]2 and thus requires no exponentiations. Further,
each [ai]2 = [0]2 for each i ≥ j, which then also do not require exponentiations.
We finally compute [δi]2 = [ai]2 + [yi]2, which gives us a total of at most 2d − 2 exponentiations in
G2, and we only achieve this bound if χ = ξd,

15

kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [δ]2)← comp(p, [e]2, χ,C(X));
ϱ←$Zdp; [ctγ]1 ← Enc([γ]1;ϱ) ∈ Gd×21 ; [z]2 ← ϱ[1]2 + r [eδ]2 ∈ Gd2;
return π ← ([ctγ]1, [δ, z]2).

V(crs, lpar, x = [ct]1, π): check [Id]2 • [ctγ]1 + [eδ]2 • [ct]1 +Q [eδ]2 • [0∥1]1 =? [z]2 • pk.
Sim(crs, td, lpar, x = [ct]1): δ←$Zd−1p ; z←$Zdp; [ctγ]1 ← Enc(−Q(eδ)[1]1; z) − (eδ) · [ct]1; return

π ← ([ctγ]1, [δ, z]2).

Fig. 4. The NIZK argument for Lpk,F , where F (X) is a monic univariate polynomial with qdc(F) = d.

X X2

s F (X)

Y

X

X

Y

Xa

b

−Y
IK(X,Y) =

(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)

Fig. 5. ABP example for F (X,Y) = X3 + aX + b− Y 2.

Since field operations are cheap, comp is dominated by at most d exponentiations in G1 to compute [γ]1
and 2d−2 exponentiations in G2 (up to d−2 of which can have a small exponent χ−ξi) to compute [δ]2.
In addition, the prover performs 2d exponentiations in G1 to compute [ctγ]1 and 2d exponentiations in
G2 to compute [z]2. Thus, the prover performs 3d (3d − 1 if χ = ξd) in G1 and 4d − 2 exponentiations
in G2.

Verifier: We first note that Q [eδ]2 = −ξ ◦ [eδ]2 − [δ0]2 ∈ Gd2. Thus,

[eδ]2 • [ct]1 +Q [eδ]2 • [0∥1]1 = [eδ]2 • [ct]1 − (ξ ◦ [eδ]2 + [δ0]2) • [0∥1]1 = [κ]T − [δ0]2 • [0∥1]1 ,

where [κi]T = [(eδ)i]2•([ct]1 − ξi ◦ [0∥1]1). Here, (eδ)i is the ith coefficient of the vector (eδ). Thus, Q [eδ]2
can be computed in 3d− 1 pairings. Thus, the verifier’s total computation is 7d− 1 pairings. Note that
the verifier executes at most d exponentiations; however, this number is smaller if the exponents are
small. Moreover, one can usually precompute all values [ξi]1.

Communication: 2d group elements to transfer the ciphertexts [ctγ]1, d − 1 group elements to
transfer [δ]2, and d group elements to transfer the randomizers [z]2, 4d− 1 group elements in total. ⊓⊔

6.2 Special Case: OR Arguments

In an OR argument, the language is Lpk,X(X−1), that we will just denote by L{0,1}, assuming that
pk is understood from the context. The case of OR arguments is of particular interest because of its
wide applications in many different scenarios. Indeed, one of the most direct applications of [CH20] is
a new OR proof with the argument consisting of 7 group elements. Due to the importance of L{0,1}, in
Appendix C.1, we will detail three example NIZK arguments that are all based on CED-matrices. The
first argument is based on abp2path, and the other two arguments are based on known Σ-protocols from
the literature. Interestingly, the third example is not based on ABPs; the added discussion clarifies some
benefits of using the ABP-based approach.

6.3 Elliptic Curve Points

In Fig. 5, we depict an ABP and IK(X,Y) for the bivariate function F (X,Y) = X3 + aX + b− Y 2 (i.e.,
one checks if (X,Y) belongs to the elliptic curve Y 2 = X3 + aX + b). In Section 7.1, we will propose
a non-ABP-based QDR for the same task. ABPs for hyperelliptic curves Y 2 +H(X)Y = f(X) (where
deg(H) ≤ g and deg f = 2g + 1) of genus g can be constructed analogously.

NIZK arguments that committed (X,Y) belongs to the curve are interesting in practice since one
often needs to prove in zero-knowledge that a verifier of some pairing-based protocol accepts. Such a
situation was studied in [BCTV14], who proposed to use cycles of elliptic curves, such that the number

16

of points on one curve is equal to the size of the field of definition of the next, in a cyclic way. Using
the NIZK, resulting from the example of the current subsection, one can use a bilinear group with group
order p to prove that the encrypted coordinates belong to an elliptic curve where the finite field has size
p.
Different normal form. Motivated by [PSV12], we also consider the following less common normal
form for an elliptic curve, F (X,Y) = (X + aY)(X + bY)(X + cY) − X, for mutually different a, b, c.
Then, one can construct the following ABP-based 3× 3 QDR:

(X+aY −1 0
0 X+bY −1
−X 0 X+cY

)
.

7 On Bivariate Case

Dickson [Dic21] proved that for any degree-d bivariate polynomial F (X), there exists a d×dmatrixC(X)
of affine maps that has F (X) as its determinant. Plaumann et al. [PSV12] described efficient algorithms
for finding C(X) for some families of polynomials F ; in their case, C(X) is usually symmetric and
can satisfy some other additional requirement like semidefiniteness. Since the ABP-based approach often
blow ups the dimension of the matrix, we will next use the results of [Dic21,PSV12] to construct a
d × d matrix C(X). However, the resulting matrix is usually not a QDR, which results in additional
complications. We provide several concrete examples in the case F (X,Y) describes an elliptic curve.
Plaumann et al. [PSV12] provided also examples for the case d ∈ {4, 5}, noting however that finding a
determinantal representation of F becomes very time-consuming for d ≥ 5. In Appendix D.3, we will
provide an example for d = 5. We refer to [PSV12] for algorithms and general discussion.

7.1 Optimized Solutions for Elliptic Curves

Let F (X,Y) = X3 + aX + b − Y 2 be a polynomial that describes an elliptic curve. In Section 6.3,
we described a small ABP for checking that (X,Y) ∈ E(Zp), where E(Zp) : F (X,Y) = 0. However,
this resulted in a 4 × 4 matrix IK(X,Y). Next, we construct 3 × 3 matrices, of correct determinant,
for two different choices of F . In general, there are several inequivalent linear symmetric determinantal
representations of F , [PSV12]. In both cases, we chose the matrix by inspection.
Case F (X,Y) = X3 + aX + b − Y 2 for a ̸= 0. In Appendix D.1, we show that in case there exists a
3 × 3 determinantal representation that is not a QDR, and discuss the possible issues that arise when
one tries to use our NIZK argument in such a case.
Case F (X,Y) = X3 + b− Y 2. We will tackle this case in Appendix D.2.

8 Handling Non-Principal Ideals

Next, we extend the new framework to constructing a NIZK argument that an Elgamal-encrypted χ
satisfies χ ∈ A for any algebraic set A = A(I). Namely, assume that I(A) has a known generating
set (F1, . . . , Fτ) for some τ . We prove that χ ∈ A by proving that Fi(χ) = 0 for each Fi. Thus,
Dp = {(pk,A)}, where I(A) = ⟨F1, . . . , Fτ ⟩ and each Fi has qdc(Fi) = poly(λ).

The argument system can be implemented in polynomial time and space, assuming that (1) we know
a generating set with small τ = poly(λ) and with small-degree polynomials, (2) for each Fi, we know a
small QDR Ci(X) of Fi, and (3) we can construct an efficient NIZK argument system for showing that
det(Ci(X)) = 0. The previous sections already tackled the last two issues. In this section, we study issue
(1). However, the issues are related. In particular, steps (2) and (3) are most efficient for specific type of
polynomials Fi, and when solving (1), we have to take this into account.

8.1 NIZK for NP

Next, we use the described methodology to implement arithmetic circuits, and then extend it to R1CS (a
linear-algebraic version of QAP [GGPR13]) and aCSPs (arithmetic constraint satisfaction systems), i.e,
constraint systems where each constraint is a small-degree constant that depends on some small number

17

of inputs. We also show how to directly use our techniques to implement the Groth-Sahai-Ostrovsky
constraint system [GOS06] that have efficient reductions to corresponding circuits. Interestingly, this
seems to result in the first known pairing-based (random-oracle-less) NIZK for general aCSPs; although
see [Sze20] for a recent use of aCSPs to construct SNARKs.
Arithmetic circuits. Let C be an arithmetic circuit over Zp, with n gates (including input gates) and
m wires. We construct an algebraic set AC = (χ1, . . . , χn) ∈ Znp , such that χ ∈ AC iff C(χ) = 0, as
follows. First, χ corresponds to the vector of wire values. As in the case of QAP [GGPR13], we assume
that each gate is a weighted multiplication gate that computes

Fi :


∑

j

uijχij




∑

j

vijχij


 7→ χi

for public uij , vij , and ij , where for the sake of efficiency, the sum is taken over a constant number of
values.

1. First, each χi corresponds to the value of the output wire of ith gate, with χj , j ≤ m0 corresponding
to the inputs of the circuit. We also assume that the last few wire values correspond to the output
values of the circuit.

2. Second, for each gate i > m0, we introduce the polynomial Fi(χ) = χi − (
∑
uijχij)(

∑
vijχij).

Then AC = {(χ1, . . . , χm) : Fi(χ) = 0 for all i > m0}. To construct a NIZK for showing χ ∈ AC, we do
as before:

(1) We let the prover Elgamal-encrypt χ.
(2) We show that Fi(χ) = 0 for all i by using the NIZK argument from Section 4.

Note that each polynomial in this case is quadratic, and thus one can construct a 2× 2 QDR

C(χ) =
(∑

uijχij
−1

−χi

∑
vijχij

)
.

According to [GS08], the Groth-Sahai proof for this task has commitment length (2m+1)(|G1|+ |G2|)
and argument length (2m + 2n + 2)(|G1| + |G2|). The new NIZK has commitment length 2m|G1| and
argument length n(4|G1|+3|G2|). Assuming m ≈ n and |G2| = 2|G1|, the new NIZK has 3 times shorter
commitments/encrypts and 20% shorter proofs. The new NIZK has approximately 1.5–2 times smaller
prover’s and verifier’s computation. Since the computation in [GS08] can probably be optimized, we have
not included complete comparison.
Extension: R1CS. In R1CS (rank-1 constraint system [GGPR13]), one has n constraints
(
∑
uijχi)(

∑
vijχi) =

∑
wijχi in m variables χi, for arbitrary public matrices U = (uij), V = (vij),

and W = (wij). There is clearly a simple reduction from arithmetic circuits to R1CS. The described
solution for arithmetic circuits can be used to construct a NIZK argument system for R1CS, by defining
Fi(χ) = (

∑
uijχi)(

∑
vijχi)−

∑
wijχi and

C(χ) =
(∑

uijχij
−1

−∑wijχij

∑
vijχij

)
.

Extension: Arithmetic Constraint Satisfaction Problems (aCSPs). Fix F = Zq. Recall that for
a q ≥ 1, a q-aCSP instance F over F is a collection of functions F1, . . . , Fτ (called constraints) such
that each function Fi depends on at most q of its input locations. That is, for every j ∈ [1, τ] there
exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that Fj(χ) = f(χi1 , . . . , χiq) for every χ ∈ Fn. Then F is
satisfiable if Fj(χ) = 0 for each j.

One can extend R1CS to q-aCSP for small constant q, assuming that Fj are (small-degree) polynomials
for which one can construct poly-size QDRs. Intuitively, F is the generating set for some polynomial
ideal I = I(A), and thus the examples of this subsection fall under our general methodology. One can
possibly use some general techniques (see Section 8.2 for some examples) to minimize the generating sets
so as to obtain more efficient NIZKs.
Specialization: Boolean Circuits. By using techniques from [GOS06], one can construct a NIZK for
any Boolean circuit that, w.l.o.g., consists of only NAND gates. Intuitively, one does this by showing that

18

Table 2. Comparison of falsifiable NIZKs for Boolean circuit satisfiability: the Groth-Sahai proof, as optimized
by Ghadafi et al. [GSW09], and the new NIZK from Section 8.1. Here, |Gι| is the length of one element from Gι

Protocol |crs| |com| |π| P comp. V comp.

Groth-Sahai [GSW09] 4(|G1|+ |G2|) 2(m+ 1)(|G1|+ |G2|) (6m+ 2n+ 2)(|G1|+ |G2|) (12m+ 4n+ 4)(e1 + e2) 16(2m+ n)p

New, Section 8.1 |G2| 2m · |G1| (m+ n)(4|G1|+ 3|G2|) (m+ n)(5e1 + 4e2) 13(m+ n)p

each wire value is Boolean, and then showing that each NAND gate is followed correctly. The latter can
be shown by showing that a certain linear combination of the input and output wires of the NAND gate
is Boolean. Thus, here one only uses polynomials of type fi(χ) = A(χ)2 −A(χ), where A(χ) =∑ aijχj
for some coefficients aij .

In Table 2, we compare the resulting NIZK with the optimized Groth-Sahai proof for Boolean circuits
by Ghadafi et al. [GSW09]. Here, m is the number of wires and n is the number of gates. In the case of the
AES circuit described in [GSW09], m = 33880 and n = 34136. Assuming |G2| = 2|G1| and e2 = 2e1, we
get that the NIZK of [GSW09] has commitment length 203283|G1|, argument length 814662|G1|, prover’s
computation 1629324e1, and verifier’s computation 1630336p. The new NIZK has commitment length
67760|G1|, argument length 680160|G1|, and prover’s computation 884208e1, and verifier’s computation
884208p. Hence, the new NIZK has 3 times shorter commitments, 20% shorter arguments, and 1.84 times
smaller prover’s and verifier’s computation.

8.2 Various Examples

Next, we give very generic background on generating sets and after that, we give some examples of the
cases when it pays off directly to work with aCSPs (and not just arithmetic circuits) and then use the
described methodology to construct the NIZK. We emphasize that one does not need a Gröbner basis
and thus sometimes there exist smaller generating sets. In fact, there exist many alternative methods for
constructing efficient aCSPs not directly related to generating sets at all; and the Gröbner basis technique
is just one of them — albeit one that is strongly related to our general emphasis on polynomial ideals.
As we see from the examples, the efficiency of NIZK depends on a delicate balance between the size of
the generating set and the degree of the polynomials in that set. Really, it follows from Lemma 5 that if
the generating set contains polynomials Fi for which QDRs have sizes ℓi, then the resulting NIZK has
communication complexity (2

∑
ℓi)(|G1|+ |G2|)− τ |G2|.

Basic Background on Generating Sets. Generating sets of an ideal can have vastly different cardi-
nality. For example, Z is generated by either {1} or by the set of all primes. Since a Gröbner basis [Buc65]
is, in particular, a generating set, one convenient way of finding a generating set is by using a Gröbner
basis algorithm; however, such algorithms assume that one already knows a generating set. Fortunately,
the Buchberger-Möller algorithm [MB82] (as say implemented by CoCoA10) can compute a Gröbner basis
for I(A), given any finite set A.

Worst-Case Multi-Dimensional Set-Membership Proof. We performed an exhaustive computer
search to come up with an example of a 3-dimensional set of five points that has the least efficient NIZK
argument in our framework. One of the examples we found11 is

A = {(2, 5, 1), (2, 4, 2), (2, 5, 3), (1, 2, 4), (3, 1, 5)} .

In this case, we found a reduced degree-lexicographic Gröbner basis




(y − z − 2)(y + z − 6),
1

18
(6x(3y − 5)− 37y + (z − 4)z + 68),

1

9

(
9x2 − 33x+ y − (z − 4)z + 22

)
,
1

3
(−12x+ 5y + z(z(3z − 23) + 53)− 34)





10 http://cocoa.dima.unige.it/
11 In the case of many other sets, the NIZK will be much more efficient. We will provide one concrete example in

Appendix E.1.

19

that consists of three quadratic and one cubic polynomials. Clearly, here, each degree-d polynomial has
an optimal-size d× d QDR. In the only non-trivial case (the cubic polynomial), one can use the matrix

C4(x, y, z) =

(
z 1 0

53/3 23/3−z −4
x−5y/12+17/6 0 −z

)
.

Thus, one can construct a NIZK argument with communication of 2(2 + 2 + 2 + 3) = 18 elements of G1

and 18 − 4 = 14 elements of G2. Since, usually, elements of G2 are twice as long as elements of G1, it
means that, in the worst case, such a NIZK argument will only be 4.6 times longer than a single OR
proof. This is also the upper bound on the NIZK communication according to our exhaustive search,
further discussion would be outside the scope of the current paper.

The most efficient known alternative seems to add (structure-preserving) signatures (SPSs) of 5
points to the CRS, letting the prover encrypt a signature of the chosen point, and then proving that the
encrypted value is a valid signature of some point. (See, e.g., [RKP09].) This alternative has both a much
larger CRS and worse concrete complexity compared to our NIZK argument. Moreover, it assumes that
the underlying signature scheme is unforgeable.
Range proofs. In Appendix C.2, we will show how to use our techniques to construct range proofs, i.e.,
proofs that the committed value χ belongs to some interval [0, N]. Couteau and Hartmann’s approach
can be used to propose range proofs of efficiency Θ(logN) by using the binary decomposition of χ. In
Appendix C.2, we note that the use of the NIZK from Section 6.1 helps us to obtain a NIZK with better
verifier’s computation.

9 Back to Algebraic Languages

The well-known methodology of diverse vector spaces (DVSs, [BBC+13,Ben16]) has been used to suc-
cessfully create efficient smooth projective hash functions (SPHFs) for algebraic languages. Moreover,
by now several constructions of NIZKs based on such SPHFs are known, [ABP15,CH20]. For all such
constructions, the first step is to construct language parameters Γ and θ (see Section 2). Unfortunately,
existing constructions of the language parameters are all somewhat ad hoc.

Next, we improve on the situation by proposing a methodology to construct (Γ ,θ) for any Lpk,A,
where A is any algebraic set for which Section 8 results in an efficient NIZK. We start the process from a
QDR Ci of Fi, where ⟨F1, . . . , Fτ ⟩ is some generating set of I(A), and output concrete parameters (Γ ,θ).
The problem of constructing such Ci was already tackled in the current paper, with many examples
(including the case when Ci is based on an ABP). As the end result, we construct explicit language
parameters (Γ ,θ) for a variety of languages where no such small parameters were known before. Moreover,
even in the simple case of univariate polynomials, where previous solutions were known [BBC+13,CH20],
the new parameters are smaller than before.

We consider various NIZKs that one can construct for given (Γ ,θ). For every fixed (Γ ,θ), the NIZK
from Section 4 is more efficient than the QA-NIZK of [ABP15] and usually more efficient than the
CHM NIZK of [CH20]. Finally, we briefly discuss resulting GL-SPHFs [GL03] based on the new language
parameters.
Preliminaries. We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol and the resulting NIZK
in Appendix F.1. There, we will also state the efficiency of their construction as a function of (Γ ,θ). We
also restate Theorem 18 from [CH20] about the security of the CHM NIZK.

9.1 On Algebraic Languages for Elgamal Ciphertexts

Next, we derive language parameters Γ and θ for an arbitrary Lpk,F , such that θ(x) ∈ colspaceΓ (x) iff
x ∈ Lpk,F . In the case where I(A) = ⟨F1, . . . , Fτ ⟩ is not a principal ideal, one can then “concatenate” all
τ parameters Γ (x) and θ(x).

We start the derivation from the equation T (χ)w = h(χ) in Fig. 1. To simplify notation, let E(χ; r) :=
Enc([χ]1; r)

⊤ ∈ G2
1 be a transposed ciphertext. Let E(T (χ)) (resp., E(h(χ))) denote an element-wise

(transposed) encryption of T (χ) (resp., h(χ)), where χi is encrypted by using randomizer ri (that is, χi
is “replaced” by [cti]⊤1) and constants are encrypted by using the randomizer 0. We define [Γ (x)]1 and
[θ(x)]1 as follows:

[Γ (x)]1 = (E(T (χ))∥E(0d×d; Id)) ∈ G2d×(2d−1)
2 , [θ(x)]1 = E(h(χ)) ∈ G2d

2 . (4)

20

Thus, [Γ]1w
∗ = [θ]1 is an “encrypted” version of T (χ)w = h(χ), where [Γ]1 contains additional columns

and w∗ contains additional rows (compared to w) to take into account the randomizers used to encrypt
χi. Note that E(C(χ)) = E(∑P kχk +Q;

∑
P krk).

Example 1. Let F (X) = (X − 0)(X − 1), and thus d = 2. Recall that then C(χ) =
(χ −1
0 χ−1

)
and thus

T (χ) =
(−1
χ−1

)
and h(χ) = (χ0). Since Enc([0]1; 1) = [1∥sk]1 and Enc([0]1; 0) = [0∥0]1, Eq. (4) results in

[Γ]1 =

(
E(−1; 0) E(0; 1) E(0; 0)
E(χ− 1; r) E(0; 0) E(0; 1)

)
=




0 1 0
−1 sk 0
ct1 0 1

ct2 − 1 0 sk



1

∈ G4×3
1 , [θ]1 =

[
ct1
ct2
0
0

]

1

.

A variation of this [Γ ,θ]1 was given in [BBC+13,CH20]. To motivate Theorem 2, note that w∗1 = w = −χ
is a solution of T (χ)w∗1 = h(χ). Setting ŵ := (w∗2∥w∗3)⊤ = r

(
1
−w∗

1

)
= r

(
1
χ

)
results in Γw∗ − θ =

(0∥0∥0∥ − χ(χ− 1))⊤, which is equal to 04 iff χ ∈ {0, 1}.

Theorem 2. Lpk,F = LΓ ,θ.

Proof. (1) Assume x = Enc(χ) ∈ Lpk,F . By the first column dependence property of Definition 2,
there exists w such that T (χ)w = h(χ), i.e., C(χ)

(
1
−w
)
= 0. To show that x ∈ LΓ ,θ, we need to

construct w∗ such that θ = Γw∗. First, we set w∗i ← wi for i ≤ d− 1. This guarantees that Dec([θ]1) =
Dec([Γ]1)w

∗. Next, we have to set the remaining coefficients of w∗i so that also the randomizers in
(E(T)∥E(0d×d; Id))w∗ = E(h) match. Denoting ŵ = (w∗d, . . . , w

∗
2d−1)

⊤, this is achieved by setting ŵ ←
(
∑

P krk)
(

1
−w
)
. Really, then

(E(T)∥E(0d×d; Id))w∗ − E(h(χ)) =E (C) (−1w) + E(0d×d; Id)ŵ
=E
(
C;
∑

P krk

)
(−1w) + E(0d; ŵ)

=E
(
0d;
(∑

P krk

)
(−1w) +

(∑
P krk

) (
1
−w
))

=E(0d;0d) .

(2) Assume that x = Enc(χ) ∈ LΓ ,θ, and thus [θ]1 ∈ colspace([Γ]1). Let w∗ be such that θ = Γw∗.
After entry-wise decrypting, we get Γ ∗ = (T (χ)∥0)w∗ = h(χ). Letw = (w∗1 , . . . , w

∗
d)
⊤. Hence, T (χ)w =

h(χ), which means that C(χ)(−1w) = 0. If x ̸∈ Lpk,F then det(C(χ)) ̸= 0. Since −1 is non-zero, this is
a contradiction. ⊓⊔

In Appendix F.2, we will give two more (lengthy) examples to illustrate how w∗ is chosen.
Handling Non-Principal Ideals. Assume I(A) has a generating set (F1, . . . , Fτ) for τ > 1, and that
for each Fi, we have constructed the language parameter Γ i,θi. We can then construct the language
parameter for Lpk,A by using the well-known concatenation operation, setting

Γ =
(
Γ 1 ... 0
...
0 ... Γ τ

)
and θ =

(
θ1
...
θτ

)
.

On the Couteau-Hartmann Disjunction. In Appendix F.3, we describe the Couteau-Hartmann
disjunction that results in Γ of size (3d − 1) × (3d − 2) and compare it to Eq. (4). For the sake of
completeness, we also reprove the efficiency of the CHM NIZK from [CH20].

9.2 Efficiency of Set-Membership NIZKs: Comparisons

In Table 1 we give a concrete efficiency comparison in the case of set-membership. This is motivated by
the fact that this is probably the most complex language for which [CH20] provides a concrete NIZK with
which we can compare our results. Because of the still large dimensions of Γ , using the CHM Σ-protocol
as in [CH20] for LΓ ,θ = Lpk,F has quite a big overhead. Thus, the NIZK in Lemma 8 is quite a bit more
efficient. However, it compares favorably to [CH20]. In the following lemma, we state its efficiency.

21

Lemma 9. Let F be a univariate degree-d polynomial and let C(X) be the abppath-based QDR of F from
Section 6.1. Let [Γ]1 be constructed as in Eq. (4). Then, the CHM NIZK argument requires (5d− 3)e1 +
4de2 from the prover, 7d− 1 pairings from the verifier, and 4d− 1 group elements.

Proof. In this proof, we use the notation of Lemma 5. Note that

TΓ = {|(i, j)| : Tij ̸= 0}+ {|(i, j)| s.t. j > 1 : Pkij ̸= 0 for some k}+ 2 · ℓ

and
Tθ = {|(i, j)| : hij ̸= 0}+ {|i| : Pki1 ̸= 0 for some k} .

For a general C, the efficiency estimate follows from Proposition 2 and the above formulas for TΓ and
Tθ. Hence, we only give concrete estimates for the case of univariate F .

The prover can compute [Γ (x)]1r in TΓ = 5d− 3 exponentiations in G1, and [d]2 in 2n = 2 · 2d = 4d
exponentiations in G2. The verifier executes TΓ = 5d− 3 pairings to compute [Γ]1 • [d]2, Tθ = 2 pairings
to compute [θ(x)]1 • [e]2, and n = 2d pairings to compute [a]1 • [1]2, in total 7d− 1 pairings. ⊓⊔

Note that the computation of the language parameters Γ ,θ induces some cost. However, this com-
putation is usually done once in advance. It is also not expensive, both in the case of the new NIZK and
the CHM NIZK [CH20] requiring one to compute [ξi]1 for each root ξi.

9.3 GL-SPHFs for Algebraic Sets

We give an example of GL-SPHFs (Gennaro-Lindell smooth projective hash functions, [GL03]) based
on the new lpar = (Γ ,θ). We refer the reader to [CS02,BBC+13,Ben16] for a formal definition of GL-
SPHFs. Briefly, recall that an SPHF is defined for a language parameter lpar and associated language
Llpar. A SPHF consists of an algorithm hashkg(lpar) to generate the private hashing key hk, an algorithm
projkg(lpar, hk) to generate a public projection key hp from hk, and two different hashing algorithms:
hash(lpar, hk, x) that constructs an hash H, given the input x and hk, and projhash(lpar, hp, x, w) that
constructs a projection hash pH, given the input x and its witness w. It is required that (1) H = pH when
x ∈ Llpar, and that (2) H looks random when x ̸∈ Llpar, given (lpar, hp, x).

In the GL-SPHFs [GL03], lpar and the projection key hp can depend on x, while in other types
of SPHFs, x is only chosen after lpar and hp are fixed. In the “DVS-based” constructions of SPHFs
of [BBC+13], one starts with [Γ]1 ∈ Gn×t1 and [θ]1 ∈ Gn1 that may or may not depend on x = [Γ]1w.
One samples a random hk = α←$Znp , and sets hp ← α⊤[Γ]1. For x = [Γ]1w, one computes pH =
projhash(lpar, hp, x, w)← hp · w and H = hash(lpar, hk, x)← hk · x.

For any A(I) for which the NIZK of Section 4 is efficient, one can also construct an efficient SPHF
by constructing Γ and θ as in Eq. (4).

Example 2 (GL-SPHF for the language of elliptic curve points.). Let A = {(X,Y) : Y 2 = X3 + aX + b}
as in Section 6.3. Then, one can use lpar = (Γ ,θ) from Example 4 to define hk←$Z8

p, hp← α⊤[Γ]1 =

(
α3ct11 + α4ct12 + aα8 − α2, α7ct11 + α8ct12 − α4,−α7ct21 − α8ct22 − α6,

α1 + α2sk, α3 + α4sk, α5 + α6sk, α7 + α8sk

)⊤
,

and, in the case x ∈ Llpar, pH = H = [α⊤Γ w]1 =



χ1 (−α3ct11 − aα8 + α4χ1 + α2)− χ1 (α7χ1ct11 + ct12 (α8χ1 + α4))+

χ2 (α7ct21 + α8ct22 + α6) + r1 (α1 + χ1 (α3 + χ1 (α7 + α8sk) + α4sk) + α2sk)+

r2 (α5 − χ2 (α7 + α8sk) + α6sk)




1

.

10 On Falsifiability of CED

In the current paper, we significantly expand the class of languages for which the Couteau-Hartmann
framework allows for the construction of efficient NIZKs. However, for many of these languages, the
underlying variant of the CED assumption is not falsifiable in the sense of Naor [Nao03]. At first sight,

22

even though the Couteau-Hartmann framework leads to particularly compact NIZKs, relying on a non-
falsifiable assumption seems to limit the interest of the result severely: if one is willing to rely on non-
falsifiable in the first place, then there are countless pairing-based SNARGs and SNARKs which will
achieve much more compact proofs [Gro10,Lip12,GGPR13] (albeit the prover cost will be much higher
in general).

Next, we discuss the falsifiability of the CED assumption. In Section 10.1, we study the falsifiable
CED case, by clarifying for which languages there exist (algebraic) polynomial-time algorithms to check
F (χ) = 0. In particular, we point out that for many examples of the current paper, the CED assumption
is already falsifiable. After that, we concentrate on the cases when this is not so.

In Section 10.2, we show that despite their unfalsifiability, CED assumptions are fundamentally differ-
ent in nature from knowledge-of-exponent assumptions (which underlie the security of existing SNARK
candidates [Gro10,Lip12,GGPR13]). We will prove that CED assumptions are implied by a new but
natural gap assumption [OP01] that KerMDH stays secure in G2 even given a CDH oracle in G1.

In Section 10.3, we modify our NIZKs to make the CED assumption falsifiable by letting the prover
additionally encrypt input elements in G2. If the polynomial F is quadratic, then the soundness reduction
can use them to check whether the prover’s inputs belong to the language or not, thus making CED
falsifiable. Since each gate of an arithmetic circuit is a quadratic polynomial, one can construct a NIZK
for arithmetic circuits under a falsifiable assumption. The reason why we do not start with this solution is
the added cost. First, the additional elements make the argument longer. Second, as probably expected,
one cannot use Elgamal but has to use the less efficient DLIN cryptosystem [BBS04].

Thus, if CED is falsifiable, then one can use an Elgamal-based solution. Otherwise, one has a security-
efficiency tradeoff: one can either rely on a non-falsifiable gap-assumption or use a slightly less efficient
DLIN-based falsifiable NIZK.

10.1 On Languages for Which CED Is Falsifiable

The CED assumption is falsifiable if there exists an efficient verification algorithm Vf , such that given
an arbitrary ciphertext tuple x = [ct1, . . . , ctν]1 and an sk-dependent trapdoor T, Vf(p, pk, x,T) can
efficiently check whether Decsk([ct1, . . . , ctν]1) ∈ Lpk,F . As in the rest of the paper, we take T = sk.
Thus, given a ciphertext tuple [ct]1, Vf can use sk to decrypt it and obtain the plaintext [χ]1. Vf then
forms the QDR [C(χ)]1 from [χ]1. If F (χ) ̸= 0 (that is, x ̸∈ Lpk,F), then [C(χ)]1 has full rank. Otherwise,
it has rank < ℓ. Thus, if F (X) is such that it is possible to check efficiently whether F (χ) = 0, given
[χ]1, we can construct an efficient falsifiability check Vf . (Note that this approach is different from
Couteau-Hartmann, who required T to be a matrix.)

First, if |A| = poly(λ), then Vf just checks if [χ]1 is equal to [a]1 for any a ∈ A. Thus, the NIZK for the
univariate case in Section 6.1 and the NIZK for boolean circuits in Section 8.1 rely on a falsifiable CED
assumption. (This assumes that all polynomials have degree poly(λ), and the circuits are polynomial-
size.) In general, the NIZK in the case of non-principal ideal, Section 8, is based on falsifiable CED iff
A(I) has polynomial size.

The outliers are the cases of principal ideals of multivariate polynomials (since then |A(I)| can be
exponential as in the set of points (X,Y) on an elliptic curve) and some instances of non-principal ideals
where |A(I)| is super-polynomial. In the latter case, we can clarify the situation further. Namely, given a
generating set ⟨F1, . . . , Fτ ⟩, by Bézout’s theorem, A(I) has at most size

∏
degFi. Assuming each degFi

is poly(λ),
∏

degFi is super-polynomial if τ = ω(1). Thus, constant-size set-membership arguments in
Section 8.2 or aCSPs for constant-size arithmetic circuits in Section 8.1 are based on falsifiable CED.
However, range proofs and superconstant-size arithmetic circuits are based on non-falsifiable CED.

The super-polynomial size of A(I) does not mean that efficient Vf does not exist. E.g., assume
Fj(X) =

∏
i(Xi− sj) for each j. The ideal ⟨Fj⟩, for a single j, has exponential size. However, given [χ]1,

one can check if Fj(χ) = 0 by checking if χi = sj for some j. This can be generalized to the case Fj is a
product of affine multivariate polynomials

∑
aikXk + bik. Clearly, F (χ) = 0 iff one of its affine factors

is equal to 0. So, Vf can check if there exists an i such that
∑
aik[χk]1 + bik[1]1 = [0]1. Generalizing

this, one can efficiently establish whether [C]1 is full-rank if the Leibniz formula for the determinant,
det(C) =

∑
σ∈Sn

(sgn(σ)
∏n
i=1 Ci,σi

), contains only one non-zero addend.
On the other hand, since Vf has only access to [χ]1, there is not much hope that the CED assumption

is falsifiable if F is a product of irreducible polynomials, such that at least one of them has a total degree
greater than one, unless we add some additional, carefully chosen, elements to the proof for this purpose.

23

In the general case, this is not efficient, but the number of additional needed elements might not be
prohibitive for some applications.

Finally, the falsifiability of CED depends only on the polynomial F and not on the specific C. One
could find two different CED-matrices Ci for F , such that the first one results in a more efficient NIZK
argument, but the second one has a specific structure enabling one to construct efficient Vf .

10.2 CED as a Gap Assumption

We show that CED follows from a new gap assumption, which states that given p← Pgen(1λ), even if one
finds some structural properties in G1 that allows breaking CDH over this group, this does in general not
guarantee an efficient algorithm for solving KerMDH [MRV16] over the other group G2. More formally:

Definition 3. Assume that the (exponential-time) oracle O([x, y]1) outputs [xy]1. Dℓ−1,k-CDHG1
̸⇒

KerMDHG2
holds relative to Pgen, if ∀ PPT A,

Pr
[
p← Pgen(1λ);D←$Dℓ−1,k; [c]1 ← AO(p, [D]2) : D

⊤c = 0k ∧ c ̸= 0ℓ−1
]
≈λ 0 .

Theorem 3. Let ℓ − 1, k ∈ N. If the Dk-CDHG1
̸⇒KerMDHG2

assumption holds relative to Pgen, then
Dk-(ℓ− 1)-CED holds in G1 relative to Pgen.

Proof (of Theorem 3). Let A be an CED adversary, as in Definition 1, that succeeds with a non-negligible
probability εA. We construct the following CDHG1̸⇒KerMDHG2 adversary B.
B receives p ← Pgen(1λ) and [D]2 ← Dk, and feeds them to A. Assume A is successful. B obtains

([γ∥C]1, [δ]2)← A(p, [D]2), where γ ∈ Zℓ×kp , C ∈ Zℓ×ℓp , and δ ∈ Z(ℓ−1)×k
p . Write

(γ∥C) =
(
XL XR
vL vR

)
,

where XR ∈ Z(ℓ−1)×(ℓ−1)
p and say vL ∈ Z1×(k+1)

p . Since A is successful, we get rk(C) ≥ ℓ and thus XR

is invertible. Next, A’s winning condition (γ∥C)
(
D
δ

)
= 0 rewrites to

XL ·D +XR · δ = 0 , vL ·D + vR · δ = 0 ,

which gives, when XR is invertible, D⊤c = 0, where

c← (uL − uR ·X−1R ·XL)
⊤ ∈ Zk+1

p .

Since12 rk(C) ≥ ℓ, we get c ̸= 0. Using Gaussian elimination, one can compute c by an arithmetic circuit
over Zp. Thus, B can compute [c]1 from [γ∥C]1 with the help of O that allows it to multiply exponents
over G1. B returns [c]1 to the challenger. Clearly, B breaks KerMDH with probability εA. ⊓⊔

Note that in particular, this re-proves the result of [CH20] that CED is secure in the generic bilinear
group model (since a CDH oracle in G1 does not help to break any assumption in G2 in the generic
bilinear group model).

10.3 DLIN-Based NIZK Based on Falsifiable CED

While constructing a Sub-ZK QA-NIZK, [ALSZ20] had to check efficiently if C is invertible, given only
[C]1. We will next study whether we can apply their technique. It is not straightforward to apply it since
their case is somewhat different: there, C is a k × k (in particular, k ∈ {1, 2}) public matrix sampled
from Dk and then given as a part of the CRS. In our case, C can have an arbitrary poly(λ) dimension,
and it is reconstructed from the input to the NIZK argument.

To explain the technique of [ALSZ20], consider the case [C]1 ∈ G2×2
1 . [ALSZ20] added to the CRS cer-

tain additional elements in G2 (namely, [C11, C12]2), such that it became possible to check publicly (by us-
ing pairings) whether detC = 0 by checking whether [C11]1•[1]2 = [1]1•[C11]2, [C12]1•[1]2 = [1]1•[C12]2,
and [C22]1 • [C11]2 = [C21]1 • [C12]2. One cost of publishing the additional elements in [ALSZ20] was that
12 Note that this is the point where we need to use CED instead of ExtKerMDH since we cannot deduce c ̸= 0

from rk(γ∥C) ≥ ℓ.

24

it changed the assumption they used from KerMDH to the less standard SKerMDH assumption [GHR15].
As we see next, we have to use the DLIN cryptosystem [BBS04] instead of the Elgamal cryptosystem.
However, as a result, we will obtain a NIZK for any F , computable by a poly-size arithmetic circuit,
sound under a falsifiable CED assumption. Another benefit of it is to demonstrate that our framework is
not restricted to Elgamal encryptions.

Next, we show how to construct a NIZK, based on a falsifiable CED assumption, for the polynomial
F (X,Y) = X2 − Y . We ask the prover to also encrypt X in G2. In the soundness reduction, a CED-
adversary uses the latter, after decryption, to check whether [X]1 • [X]2 = [Y]1 • [1]2. We must ensure
that the verifier only accepts the proof if [X]2 is correct, i.e., [X]1 • [1]2 = [1]1 • [X]2. Since Elgamal
is not secure given symmetric pairings, we cannot use the secret key or the same randomness in both
groups. Hence, we use the DLIN encryption scheme. Given sk = (sk1, sk2) and pkι = [1∥sk1∥sk2]ι, we
define lpar := (pk1, pk2, F). Then, Llpar := {([ct1, ct2]1, [ct1]2)}, where

[ct1]ι = Encι(X; r1, r2) = [r1sk1∥r2sk2∥X + r1 + r2]ι

and
[ct2]1 = Enc1(Y ; r3, r4) = [r3sk1∥r4sk2∥Y + r3 + r4]1 .

We prove that [ct1, ct2]1 are encryptions of X and Y such that X2 = Y , by using the QDR C(X,Y) =(
X −1
−Y X

)
. The use of the DLIN encryption scheme just affects the efficiency and the communication size

of the protocol. In addition, one can check that [ct1]1 and [ct1]2 encrypt the same X in two different
groups by checking that [ct1]1 • [1]2 = [1]1 • [ct1]2.

Since the DLIN encryption is doubly-homomorphic like Elgamal, then the argument of Section 4.1
stays essentially the same, with Elgamal encryptions replaced by DLIN encryptions, and the dimensions
of randomizers and ciphertexts increasing slightly. In the soundness proof, given that the prover also
outputs Enc2(X; r1, r2), the constructed CED adversary obtains plaintexts [X,Y]1, [Z]2 and, then can
efficiently verify if the statement X2 = Y holds.

Combining this idea with the rest of our framework, we can construct a NIZK for any language of
DLIN-encryptions for any F , based on a falsifiable CED assumption. This is since one can check that
F = 0 by checking that an arithmetic circuit evaluates to 0, and each gate of an arithmetic circuit
evaluates a quadratic function. For example, to prove that Y 2 = X3 + aX + b, one can encrypt Y , Y ′,
X, X ′, and X ′′, and then prove that Y ′ = Y 2, X ′ = X2, X ′′ = XX ′, and Y ′ = X ′′ + aX + b.
Acknowledgment. Geoffroy Couteau was partially supported by the ANR SCENE.

References

ABP15. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash proof sys-
tems: New constructions and applications. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 69–100. Springer, Heidelberg, April 2015.
doi:10.1007/978-3-662-46803-6_3.

ALSZ20. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac. On QA-NIZK in the BPK
model. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part I, volume 12110 of LNCS, pages 590–620. Springer, Heidelberg, May 2020. doi:10.1007/
978-3-030-45374-9_20.

BBC+13. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. New
techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475. Springer, Heidelberg, August
2013. doi:10.1007/978-3-642-40041-4_25.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August 2004. doi:
10.1007/978-3-540-28628-8_3.

BCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles
of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 276–294. Springer, Heidelberg, August 2014. doi:10.1007/978-3-662-44381-1_16.

Bea00. Arnaud Beauville. Determinantal Hypersurfaces. Michigan Math. J., 48(1):39–64, 2000.
Ben16. Fabrice Ben Hamouda-Guichoux. Diverse Modules and Zero-Knowledge. PhD thesis, PSL Research

University, 2016.

25

BFI+10. Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and Damien
Vergnaud. Batch Groth-Sahai. In Jianying Zhou and Moti Yung, editors, ACNS 10, volume 6123 of
LNCS, pages 218–235. Springer, Heidelberg, June 2010. doi:10.1007/978-3-642-13708-2_14.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988. doi:10.1145/
62212.62222.

BG99. Amos Beimel and Anna Gál. On Arithmetic Branching Programs. J. Comput. Syst. Sci., 59(2):195–
220, 1999.

Bou00. Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444. Springer, Heidelberg, May 2000.
doi:10.1007/3-540-45539-6_31.

Buc65. Bruno Buchberger. An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero
Dimensional Polynomial Ideal. PhD thesis, University of Innsbruck, 1965.

CC18. Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive zero-knowledge
proofs of knowledge. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 193–221. Springer, Heidelberg, April / May 2018. doi:
10.1007/978-3-319-78372-7_7.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors,
51st ACM STOC, pages 1082–1090. ACM Press, June 2019. doi:10.1145/3313276.3316380.

CCs08. Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set membership and range
proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 234–252. Springer,
Heidelberg, December 2008. doi:10.1007/978-3-540-89255-7_15.

CDS94. Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages
174–187. Springer, Heidelberg, August 1994. doi:10.1007/3-540-48658-5_19.

CG15. Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive without random oracles.
In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 650–670. Springer, Heidelberg,
March / April 2015. doi:10.1007/978-3-662-46447-2_29.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-knowledge arguments and
ZAPs for algebraic languages. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 768–798. Springer, Heidelberg, August 2020. doi:10.1007/
978-3-030-56877-1_27.

CLO15. David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics.
Springer, 4 edition, May 13, 2015.

CLs10. Rafik Chaabouni, Helger Lipmaa, and abhi shelat. Additive combinatorics and discrete logarithm
based range protocols. In Ron Steinfeld and Philip Hawkes, editors, ACISP 10, volume 6168 of LNCS,
pages 336–351. Springer, Heidelberg, July 2010.

CLZ12. Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A non-interactive range proof with constant
communication. In Angelos D. Keromytis, editor, FC 2012, volume 7397 of LNCS, pages 179–199.
Springer, Heidelberg, February / March 2012.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 45–64. Springer, Heidelberg, April / May 2002. doi:10.1007/3-540-46035-7_4.

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier Silva. Shorter quadratic QA-
NIZK proofs. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part I, volume 11442 of LNCS,
pages 314–343. Springer, Heidelberg, April 2019. doi:10.1007/978-3-030-17253-4_11.

Dic21. Leonard Eugene Dickson. Determination of All General Homogeneous Polynomials Expressible as
Determinants with Linear Elements. Trans. of the American Mathematical Society, 22(2):167–179,
April 1921.

Dol10. Igor V. Dolgachev. Topics in Classical Algebraic Geometry. September 7, 2010. URL: https://www.
math.ucsd.edu/~eizadi/207A-14/Dolgachev-topics.pdf.

EG14. Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 630–649. Springer, Heidelberg, March 2014. doi:10.1007/
978-3-642-54631-0_36.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic frame-
work for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013. doi:10.1007/
978-3-642-40084-1_8.

26

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer,
Heidelberg, August 1984.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987. doi:10.1007/3-540-47721-7_12.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

GHR15. Alonso González, Alejandro Hevia, and Carla Ràfols. QA-NIZK arguments in asymmetric groups:
New tools and new constructions. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 605–629. Springer, Heidelberg, November / December 2015.
doi:10.1007/978-3-662-48797-6_25.

GL03. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer, Heidelberg,
May 2003. https://eprint.iacr.org/2003/032.ps.gz. doi:10.1007/3-540-39200-9_33.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for NIZK. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111. Springer, Heidelberg,
August 2006. doi:10.1007/11818175_6.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for Cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December 2010.
doi:10.1007/978-3-642-17373-8_19.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April
2008. doi:10.1007/978-3-540-78967-3_24.

GSW09. Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Practical zero-knowledge proofs for circuit
evaluation. In Matthew G. Parker, editor, 12th IMA International Conference on Cryptography and
Coding, volume 5921 of LNCS, pages 469–494. Springer, Heidelberg, December 2009.

Har92. Joe Harris. Algebraic Geometry: A First Course, volume 133 of Graduate Texts in Mathematics.
Springer-Verlag, 1992.

HKR19. Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge arguments in the discrete log
setting, revisited. In Lorenzo Cavallaro, Johannes Kinder, XiaoFengWang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2093–2110. ACM Press, November 2019. doi:10.1145/3319535.3354251.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In 41st FOCS, pages 294–304. IEEE Computer Society Press,
November 2000. doi:10.1109/SFCS.2000.892118.

IK02. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect randomizing
polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,
Stephan Eidenbenz, and Ricardo Conejo, editors, ICALP 2002, volume 2380 of LNCS, pages 244–256.
Springer, Heidelberg, July 2002. doi:10.1007/3-540-45465-9_22.

IW14. Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014, Part I, volume 8572
of LNCS, pages 650–662. Springer, Heidelberg, July 2014. doi:10.1007/978-3-662-43948-7_54.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
1–20. Springer, Heidelberg, December 2013. doi:10.1007/978-3-642-42033-7_1.

Kiy20. Susumu Kiyoshima. Round-optimal black-box commit-and-prove with succinct communication. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 533–561. Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56880-1_19.

KOS18. Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round optimal black-box “commit-
and-prove”. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of
LNCS, pages 286–313. Springer, Heidelberg, November 2018. doi:10.1007/978-3-030-03807-6_11.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In Elisabeth Os-
wald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128.
Springer, Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_4.

27

KZM+15. Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert Chan, Charalampos Pa-
pamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi. C∅C∅: A Framework for Building Com-
posable Zero-Knowledge Proofs. Technical Report 2015/1093, IACR, November 10, 2015. https:
//ia.cr/2015/1093, last accessed version 9 Apr 2017.

LAN03. Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey auctions without threshold trust. In
Matt Blaze, editor, FC 2002, volume 2357 of LNCS, pages 87–101. Springer, Heidelberg, March 2003.

Lip03. Helger Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In Chi-Sung
Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 398–415. Springer, Heidelberg, Novem-
ber / December 2003. doi:10.1007/978-3-540-40061-5_26.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge ar-
guments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189. Springer,
Heidelberg, March 2012. doi:10.1007/978-3-642-28914-9_10.

Lip16. Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge SNARKs. In David Pointcheval,
Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS,
pages 185–206. Springer, Heidelberg, April 2016. doi:10.1007/978-3-319-31517-1_10.

Mau09. Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart Preneel, editor,
AFRICACRYPT 09, volume 5580 of LNCS, pages 272–286. Springer, Heidelberg, June 2009.

MB82. H. Michael Möller and Bruno Buchberger. The Construction of Multivariate Polynomials with Pre-
assigned Zeros. In Jacques Calmet, editor, EUROCAM 1982, volume 144 of LNCS, pages 24–31,
Marseille, France, 5-7 April 1982. Springer.

MRV16. Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix Diffie-Hellman assumption. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS,
pages 729–758. Springer, Heidelberg, December 2016. doi:10.1007/978-3-662-53887-6_27.

Nao03. Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Heidelberg, August 2003. doi:10.
1007/978-3-540-45146-4_6.

Nis91. Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In 23rd ACM
STOC, pages 410–418. ACM Press, May 1991. doi:10.1145/103418.103462.

OP01. Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for the security
of cryptographic schemes. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages 104–118.
Springer, Heidelberg, February 2001. doi:10.1007/3-540-44586-2_8.

Pas13. Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable commitments.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 334–354. Springer, Heidelberg, March
2013. doi:10.1007/978-3-642-36594-2_19.

PSV12. Daniel Plaumann, Bernd Sturmfels, and Cynthia Vinzant. Computing Linear Matrix Representations
of Helton-Vinnikov Curves. Mathematical Methods in Systems, Optimization, and Control Operator
Theory, 222:259–277, 2012.

Ràf15. Carla Ràfols. Stretching groth-sahai: NIZK proofs of partial satisfiability. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 247–276. Springer,
Heidelberg, March 2015. doi:10.1007/978-3-662-46497-7_10.

RKP09. Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable adaptive priced oblivious
transfer. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of LNCS, pages
231–247. Springer, Heidelberg, August 2009. doi:10.1007/978-3-642-03298-1_15.

Sze20. Alan Szepieniec. Polynomial IOPs for linear algebra relations. Cryptology ePrint Archive, Report
2020/1022, 2020. https://eprint.iacr.org/2020/1022.

A More on Section 2

A.1 Matrix Assumptions

The following assumptions are, while relatively recently formalized, very standard. In particular, MDDH
generalizes DDH and KerMDH generalizes CDH. See [EHK+13,GHR15,MRV16] for more discussion.

Let ι ∈ {1, 2}. Dℓ,k-MDDHGι
(Matrix Decisional Diffie-Hellman, [EHK+13]) holds relative to Pgen,

if ∀ PPT A, Advmddh
A,Pgen,Gι,Dℓ,k

(λ) := |ε0A(λ)− ε1A(λ)| ≈λ 0, where

εbA(λ) := Pr

[
A(p, [A,y]ι) = 1

p← Pgen(1λ);A←$Dℓ,k; w←$Zk
p;

if b = 0 then y←$Zℓp else y ← Aw fi

]
.

Dℓ,k-KerMDHGι (Kernel Diffie-Hellman, [MRV16]) holds relative to Pgen, if ∀ PPT A,
Advkermdh

A,Dℓ,k,ι,Pgen(λ) :=

Pr
[
A⊤c = 0k ∧ c ̸= 0ℓ p← Pgen(1λ);A←$Dℓ,k; [c]3−ι ← A(p, [A]ι)

]
≈λ 0 .

28

Table 3. The efficiency of new NIZK arguments for L{0,1}. The communication is given as (g1, g2, z), where gι
is the number of Gι elements (ι = 1 in the Σ-protocols) and z is the number of Zp elements. The computation
is given as (e1, e2, p), where eι is the number of exponentiations in Gι and p is the number of pairings.

Scheme |crs| |π| P comp V comp Assumpt.

Π∨simple, Π
∨
cg, Π∨cds (0, 1, 0) (4, 3, 0) (5, 4, 0) (0, 0, 13) CED

Dℓ,k-SKerMDH (Split Kernel Diffie-Hellman, [GHR15]) holds relative to Pgen, if ∀ PPT A,

Advskermdh
A,Dℓ,k,Pgen(λ) := Pr

[
A⊤(c1 − c2) = 0k ∧ p← Pgen(1λ);A←$Dℓ,k;

c1 − c2 ̸= 0ℓ ([c1]1, [c2]2)← A(p, [A]1, [A]2)

]
≈λ 0 .

According to Lemma 4 of [MRV16], in a bilinear group, if Dℓ,k-MDDH holds then also Dℓ,k-KerMDH
holds. According to Lemma 1 of [GHR15], if Dℓ,k-KerMDH holds in generic symmetric bilinear groups
then Dℓ,k-SKerMDH holds in generic asymmetric bilinear groups.

B More on Section 3

B.1 Determinantal Representations

The following problem is well-studied in algebraic geometry, [Har92,Dol10]. Given a homogeneous poly-
nomial f(X0, . . . , Xn) of degree-d find a d× d matrix C(X) = (Lij(X)) with affine maps as its entries
such that

f(X) = det(Lij(X)) .

The resulting equation det(C(X)) = F (X) is known as F ’s determinantal representation.
More generally, one considers ℓ × ℓ matrices C(X) with the same property. In this case, the deter-

minantal complexity dc(F) of the polynomial F is the minimal size of any determinantal representation
of F . Clearly, dc(F) ≥ deg(F).

All plane curves and cubic surfaces have determinantal complexity equal to their degree, [Dic21].
Dickson [Dic21] also proved a general theorem about the impossibility of determinantal representations
of size deg(F) for general polynomials F . See [Dic21,Bea00] for more information. Moreover, efficient al-
gorithms for finding determinantal representations, if they exist, have only been proposed lately [PSV12];
see also Section 8.

QDRs, as defined in Definition 2, additionally have the first column dependence property, which is
not required for determinantal representations. Not every determinantal relation is a QDR (see Section 7
for some examples) and thus it is plausible that in general, qdc(F) > dc(F).

C More on Section 6

C.1 On OR Proofs

Π∨simple and Π∨cg. The NIZK argument Π∨simple (see Fig. 7) for L{0,1} follows from the approach in
Section 6.1, by using abp2path.

On the other hand, Π∨cg (see Fig. 7) follows from the approach in Section 6.1, given the ABP in
Fig. 6 (right). It is based roughly on the Chaidos-Groth Σ-protocol from [CG15], which itself is based
on checking whether X · X = X. We depict the ABPs and corresponding matrices IK(X) in in Fig. 6.
The correctness of both arguments follows from the fact that the solution of T (χ)w = h(χ) is w = −χ.

As seen from Fig. 7, in both Π∨simple and Π∨cg, the prover’s computation is dominated by 5 exponen-
tiations in G1 (to compute [γ]1; 5 is sufficient since γ2 ∈ {−γ1, 0, γ1}) and 4 exponentiations in G2 (one
to compute y[1]2 as part of the computation of [δ]2; 3 to compute [z]2 as (r

rχ)[e]2 + (ϱ +
(

0
−ry

)
)[1]2).

The argument length is 4 elements of G1 and 3 elements of G2.
The verifier’s computation is dominated by 13 pairings. In the case of Π∨simple, this follows from

Q [eδ]2 = −
[
δ
δ

]
2
; thus, [0∥1]1 •Q [eδ]2 = −[0∥1]1 •

[
δ
δ

]
2
can be computed in 1 pairing. In the case of Π∨cg,

it follows from Q [eδ]2 = − [δ0]2; thus, [0∥1]1 •Q [eδ]2 = −[0∥1]1 • [δ0]2 can be computed in 1 pairing.

29

s X t
X X − 1

IKpath(X) =
(
X −1
0 X−1

) X

s t

X
−X

X
IKcg15(X) =

(
X −1
−X X

)

Fig. 6. The matrices for the ABP-based simple (ABP abp2path(X, {0, 1}), left) and the ABP-based Chaidos-Groth
(right) argument for f(X) = X2 −X = X(X − 1) and the corresponding matrices.

kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x, w): y←$Zp; γ ←
(−1
χ−1

)
y ; γ ←

(−1
χ

)
y ; γ ←

(χ
1−χ

)
y ;

ϱ←$Z2
p; [ctγ]1 ← Enc([γ]1;ϱ);

w ← −χ ; w ← χ− 1 ; [δ]2 ← −(w[e]2 + y[1]2); [z]2 ← ϱ[1]2 + r [eδ]2;
return π = ([ctγ]1, [δ, z]2).

V(crs, lpar, x, π): check [I2]2 • [ctγ]1 + [eδ]2 • [ct]1 +Q [eδ]2 • [0∥1]1 =? [z]2 • pk;

Fig. 7. Π∨
simple (contains boxed entries), Π∨

cg (contains dashed boxed entries), and Π∨
cds (contains dotted boxed

entries)

Π∨cds. From the outset, the famous Cramer-Damgård-Schoenmakers (CDS) Σ-protocol from [CDS94]
looks quite different. The idea behind CDS is that to prove that χ ∈ {0, 1}, one follows the prover’s
algorithm in the true branch (resulting in transcript (aχ, eχ, zχ)) and the simulator’s algorithm in the
other branch (resulting in transcript (a3−χ, e3−χ, z3−χ)). To make sure that at least one branch is correctly
computed, the prover chooses ei such that e1 + e2 = e, where e is the verifier’s second message. Couteau
and Hartmann [CH20] described a CH-compilation of the CDS protocol.

Somewhat unexpectedly, one can use our generic framework also here, by defining the QDR
Ccds(X) =

(
0 X

X−1 1−X
)
. However, Ccds(X) does not belong to the class of matrices considered by Ishai

and Kushilevitz, [IK00,IK02] and thus not correspond to an ABP.
In Fig. 7, we also depict the new NIZK argument Π∨cds that applies Figs. 1 and 2 to Ccds(X). The

property of CDS that the simulated branch depends on χ carries over since one samples γ2−χ←$Zp and
sets γ1−χ ← 0; i.e., the index i of the non-random γi depends on χ. Intuitively, the prover simulates the
branch 2− χ. The reason behind it is that det(C(1,1)(χ)) ̸= 0 if χ = 0 and det(C(1,2)(χ)) ̸= 0 if χ = 1.

As a small optimization, [z]2 can computed as follows:

(1) [z]2 = ϱ[1]2 + r
[e
(1−χ)e−y

]
2
= r
(ϱ1
ϱ2−ry

)
[1]2 + r [ee]2, if χ = 0,

(2) [z]2 =
(ϱ1
ϱ2−ry

)
[1]2 + r [e0]2, if χ = 1.

In both cases, the prover spends 3 exponentiations in G2. Thus, the prover’s computation is dominated
by 5e1 + 4e2.

To see the verifier accepts note that here Q [eδ]2 =
[

0
δ−e
]
2
. In particular, [eδ]2• [ct]1+Q [eδ]2• [0∥1]1 =

[eδ]2 • [ct]1 +
[

0
δ−e
]
2
• [0∥1]1 can be computed in 5 pairings. In total, the verifier executes 13 pairings.

C.2 Range Proof

The following example both has a long cryptographic pedigree and can be used to simply explain
how to expand our framework. In a range proof, the task is to prove that the encrypted value be-
longs to a fixed range [0, N]. Many range proofs have been proposed in the cryptographic litera-
ture, [Bou00,LAN03,Lip03,CCs08,RKP09,CLs10,CLZ12,DGP+19], due to their many applications and
non-trivial constructions. It is possible that the Couteau-Hartmann compilation works directly with some
of the existing Σ-protocol-based range proofs like [LAN03]. We will next show how to use our frame-
work to obtain a proof with Θ(logN) communication. Write η = ⌊log2N⌋. In this case, just setting
AN = {x : 0 ≤ x ≤ N} results in an inefficient NIZK argument, since GS(AN) = {∏N

i=0(x− i)} contains
a polynomial F of linear-in-N degree N+1. (Since F is univariate, one can use the solution of Section 6.1
in this case.)

30

Table 4. Complexities in the range proof. Every entry should be multiplied by log2N .

P comp in (e1, e2) V comp in p Comm. in (|G1|, |G2|)
General (3d−1

log2 d
, 3d−1
log2 d

) 7d−1
log2 d

(2d
log2 d

, (2d−1)log2 d
)

d = 2 (also [CH20]) (5, 5) 13 (4, 3)
d = 3 (5.05, 5.05) 12.62 (3.79, 3.15)

One can instead use a different generating set of smaller-degree polynomials. Assuming N = 2η − 1,
a well-known idea in range proofs is to extend x to binary digits xi, and to prove separately that each
xi is Boolean. In the case N + 1 is not a power of two, one can use an idea from [LAN03]. Namely, let
bj :=

⌊
(N + 2j)/2j+1

⌋
, where j ∈ [0, η]. Then, χ ∈ [0, N] iff χ =

∑η
j=0 bjχj for some χj ∈ {0, 1} [LAN03].

To translate this idea to our framework, we introduce additional indeterminates and write

A′N =



(x, x0, . . . , xη) : x =

η∑

j=0

bjxj ∧ (bj ∈ {0, 1} for all j)



 .

Note that in the terms of algebraic geometry, A′N is a variety in the affine space Zη+2
p , such that AN is

its projection to the affine space Zp.
Clearly,

GB(A′N) =



X

2
η −Xη, . . . , X

2
0 −X0, X −

η∑

j=0

bjXj





is a (lexicographic) Gröbner basis for A′N that consists of one linear and η quadratic polynomials. Thus,
the resulting NIZK argument has communication complexity Θ(η) = Θ(logN). A similar trick is useful
in also other settings.

We can base range proofs on d-ary digits, for d ≥ 2, using an ABP-based univariate NIZK to show
that each Xj ∈ {0, . . . , d−1}. One has to execute ⌊logdN⌋ basic NIZK proofs. The resulting range proof
has complexities depicted in Table 4. (The complexities are such due to the fact that in this case, all
values χ− ξi are small.) In particular, the verifier’s computation (which is the most important measure
in many applications) is minimized when d = 3.

As in the case of the multi-dimensional set-membership proof, an alternative is to use signature-based
solutions [RKP09,DGP+19] that offer somewhat better proof size Θ(N/ logN)(|G1| + |G2|). However,
also here these solutions have a longer CRS size and require that the underlying signature scheme is
unforgeable. We leave it as an open question how to combine the protocols of the current paper with
signatures.

D More on Section 7

D.1 Elliptic Curve Points, Case F (X,Y) = X3 + aX + b − Y 2 for a ̸= 0

By inspection, we found the following 3× 3 matrix, where13 s =
√
−b/a:

C(X,Y) =
(
Y −s X
X −1 s
a X Y

)
. (5)

Clearly, detC(X,Y) = F (X,Y). However, C is not a QDR. We will explain next what does it mean in
the concrete case.

13 Hence, this assumes that there exists a square root of −b/a modulo p, i.e., that there exists c such that
ac2 = −b, which is true for (p + 1)/2 values of b. If b is not one of those values, one can by inspection find a
different matrix. Alternatively, one can use the ABP-based solution from Section 6.3.

31

Solving Eq. (2) together with F (X,Y) = 0 gives us the following formulas to replace into Fig. 1
depending on which minor of C is non-zero:

w ←





(
a(sY−X2)
a(Y−sX)

)
/(aX + b) if b+ aX ̸= 0 ,(

as−XY
a+X2

)
/(sX + Y) if sX + Y ̸= 0 ,(

aX−Y 2

as+XY

)
/(sY +X2) if sY +X2 ̸= 0 .

Since Y 2 = X3 + aX + b, one can use formulas like X3 + b = Y 2 − aX to modify the expressions.
In particular, the three given expressions for w are equivalent if the three denominators sX + Y =
− det(C(1,1)), sY +X2 = − det(C(2,1)), and aX + b = a det(C(3,1)) are all non-zero.

Solving F (X,Y) = 0 and det(C(i,1)) = 0 gives that the ith expression for w holds except in either
3, 4, or 2 points. Since there is only one point (X,Y) = (−b/a, bs/a) where all F (X,Y) = 0 and
det(C(i,1)) = 0 hold, it means one can compute w in all but a single point.

Thus, we can construct a NIZK argument, with ℓ = 3, assuming that there exists a square root of
−b/a modulo p. Moreover, it cannot be applied in the special case (X,Y) = (−b/a, bs/a). Thus, strictly
speaking, the resulting NIZK is not for Lpk,F but for a different language, and this outlines the need of
QDRs. However, the resulting argument could be still interesting in the case when in the honest case,
(X,Y) has some restrictions.

D.2 Elliptic Curve Points, Case F (X,Y) = X3 + b − Y 2

Consider the following less common normal form for an elliptic curve,

F (X,Y) = (X + aY)(X + bY)(X + cY)−X ,

for mutually different a, b, c; w.l.o.g., let b ̸= 0. By inspection, we found the following matrix:

C⊤(X,Y) =

(
X 0 −1
Y+s X+s 1

−sX+Y+s2 Y X

)
,

where s = b1/3 (assuming b has a cubic root). Then,

w ←





(
Y/(s+X)+1
−X

)
if s+X ̸= 0 ,(

(s2−sX+X2+Y)/Y
−X

)
if Y ̸= 0 ,(

−s2+2sX+(X−1)Y
−sX2+b+Y (X−Y)

)
/(X(s+X)− Y) if X(s+X)− Y ̸= 0 .

None of these formulas succeeds if all F (X,Y) = s+X = Y = X(s+X)−Y = 0, which can only happen
if (X,Y) = (−s, 0).

D.3 Fifth-Degree Example

Next, we give a fifth-degree example directly from [PSV12]:

F (X,Y) =X5 + 3X4Y − 2X4 − 5X3Y 2 − 12X3 − 15X2Y 3 + 10X2Y 2 − 28X2Y + 14X2+

4XY 4 − 6XY 2 − 12XY + 26X + 12Y 5 − 8Y 4 − 32Y 3 + 16Y 2 + 48Y − 24 ,

and

C(X,Y) =



X+Y 0 0 0 0

0 X+2Y 0 0 0
0 0 X−Y 0 0
0 0 0 X−2Y 0
0 0 0 0 X+3Y−2


+

(
0 2 1 0 0
2 0 0 0 1
1 0 0 2 1
0 0 2 0 −1
0 1 1 −1 0

)
.

As noted in [PSV12], this is just one of 33280 possible solutions for the latter (integer) matrix. In this
case, one can write 5 different formulas for χ1, depending on which submatrix C(I,1)(X,Y) has a non-
zero determinant. One can check that there are four points for which all these submatrices have a zero
determinant.

Note that there is no obvious small-dimensional ABP-based solution in this case.

32

E More on Section 8

E.1 Another Multi-Dimensional Set-Membership Proof

To demonstrate that one does not always need a set-membership proof of the worst-case size, we will
next work out an example for the following set

A = {(2, 1, 2), (1, 4, 2), (3, 1, 3), (1, 2, 3)} ⊂ Z3
p .

By using CoCoA, we found the following lexicographic Gröbner basis

GBlex(I) =

{
(z − 3)(z − 2), (y − 1)(y + 2z − 8), x+

1

3
(5y − 8)z − 3y + 3

}

of size 3. (The corresponding degree-lexicographic and degree-reverse-lexicographic Gröbner bases have
size 6.) By following our methodology, to show that χ ∈ A, we show that Fi(χ) = 0 for each Fi ∈
GBlex(I). More precisely:

– We show that (z − 3)(z − 2) = 0, by using C1 =
(
z−2 −1
0 z−3

)
.

– We show that (y − 1)(y + 2z − 8) = 0, by using C2 =
(y−1 −1

0 y+2z−8
)
.

– We show that 3x+ y(5z − 9)− 8z + 9 = 0, by using C3 =
(

y −1
3x−8z+9 5z−9

)
.

Thus, one needs 3 NIZK arguments for quadratic polynomials (ℓ = 2). By Lemma 5, the NIZK argument
for A has thus communication of 3 · 2 · 2 = 12 elements of G1 and 3(2 · 2− 1) = 9 elements of G2.

As in all examples in Section 8.2, we used Gröbner-basis techniques to find a small aPCS for A.
Clearly, any arithmetic circuit for checking that χ ∈ A has size larger than 3. In particular, in this
concrete case, it seems that one needs to use the full power of aPCS.

An alternative generating set, that is not a Gröbner basis, is

GS(I) = {(x− 1)(y − 1), (x− 3)(y − 2)(z − 2), (x− 2)(y − 4)(z − 3)}

of size 3. While GS is tidier, the argument for GS(A) is slightly less efficient since two of the polyno-
mials are cubic. Thus, here, one can construct three QDRs of size 2, 3, and 3. The resulting NIZK has
communication of 2 · 2 + 2 · 2 · 3 = 16 elements of G1 and (2 · 2− 1) + 2 · (2 · 3− 1) = 13 elements of G2.

F More on Section 9

F.1 CHM NIZK

We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol and the resulting NIZK, see Fig. 8. For
further reference, we state the following results. We refer to Appendix A and [CH20] for unexplained
notions and notation.

Proposition 2 (Efficiency of the CHM Σ-Protocol and CH Compilation). Assume [Γ]1 ∈ Gn×t1

and [θ]1 ∈ Gn1 . Let TΓ := {|(i, j)| : Γij ̸= 0} and Tθ := {|i| : θi ̸= 0}. In the CHM Σ-protocol, the prover
executes TΓ ≤ nt exponentiations and the verifier executes TΓ + Tθ + n ≤ nt + n exponentiations; the
communication is n group elements and t+1 integers. In the compiled protocol, the prover executes TΓ ≤
nt exponentiations in G1 and 2n exponentiations in G2, and the verifier executes TΓ + Tθ + n ≤ nt+2n
pairings; the communication is n|G1|+ t|G2|.

Proposition 3 (Couteau-Hartmann). Consider the NIZK argument ΠC
Σ , described in Fig. 8, for any

algebraic language distribution Dlpar outputting pairs lpar = [Γ ,θ]1 ∈ Pn×tν × Pnν .
1. It is sound under the L1-t-CED assumption in G2 relative to Pgen.
2. If the language distribution is witness-sampleable with trapdoors Tlpar ∈ Zn×np , then ΠC

Σ is sound
under the falsifiable L1-t-CED assumption in G2 relative to Pgen.

3. If the language distribution is m-trapdoor reducible, then ΠC
Σ is sound under the falsifiable L1-(t−m)-

CED assumption in G2 relative to Pgen.

Note that [CH20] proved the soundness under KerMDH assumptions, but it is easy to see that the
soundness also holds under CED assumptions.

33

P(lpar = [Γ ,θ]1; [x]1, w) V([Γ ,θ]1; [x]1)

r←$Zt
p

[a]1 ← [Γ (x)]1r [a]1

e←$Zpe

d← ew+ r d

[Γ (x)]1d
?
= [θ(x)]1e+ [a]1

P(lpar = [Γ ,θ]1, crs = [e]2; [x]1, w) V(lpar = [Γ ,θ]1, crs = [e]2; [x]1)

r←$Zt
p

[a]1 ← [Γ (x)]1r
[d]2 ← [e]2w+ r[1]2 ([a]1, [d]2)

[Γ (x)]1 • [d]2 ?
= [θ(x)]1 • [e]2 + [a]1 • [1]2

Fig. 8. The CHM Σ-protocol for algebraic languages LΓ ,θ (above) and its Couteau-Hartmann compilation ΠC
Σ

(below)

F.2 More Examples

To simplify parsing, we have omitted the use of bracket notation in examples, writing say 0 instead of
[0]1.

Example 3. Let F (X) =
∏4
i=1(X − ξi). Then

[Γ]1 =




0 0 0 1 0 0 0
−1 0 0 sk 0 0 0
ct1 0 0 0 1 0 0

ct2 − ξ2 −1 0 0 sk 0 0
0 ct1 0 0 0 1 0
0 ct2 − ξ3 −1 0 0 sk 0
0 0 ct1 0 0 0 1
0 0 ct2 − ξ4 0 0 0 sk




∈ Z8×7
p , [θ]1 =




ct1
ct2−ξ1

0
0
0
0
0
0


 .

In this case, w1 = −(χ− ξ1), w2 = −(χ− ξ1)(χ− ξ2), w3 = −(χ− ξ1)(χ− ξ2)(χ− ξ3), and ŵ = r
(

1
−w
)
=

r(1∥χ− ξ1∥(χ− ξ1)(χ− ξ2)∥(χ− ξ1)(χ− ξ2)(χ− ξ3)).

Example 4 (Elliptic curve.). Let F (X,Y) = X3 + aX + b− Y 2 and

C(X,Y) =

(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)

be as in Fig. 5. Then for [ct1]1 = Enc(χ1; r1) and [ct2]1 = Enc(χ2; r2),

[Γ]1 =




0 0 0 1 0 0 0
−1 0 0 sk 0 0 0
ct11 0 0 0 1 0 0
ct12 −1 0 0 sk 0 0
0 0 0 0 0 1 0
0 0 −1 0 0 sk 0
0 ct11 −ct21 0 0 0 1
a ct12 −ct22 0 0 0 sk




, [θ]1 =




ct11
ct12
0
0

ct21
ct21
0
b


 .

In this case, w⊤ = (w∗1∥ . . . ∥w∗3) = (−χ1∥ − χ2
1∥ − χ2), and

ŵ =

(
w∗

4
...
w∗

7

)
=

((
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0

)
· r1 +

(
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 −1

)
· r2
)
·
(

1
−w
)

34

=

(r1 0 0 0
0 r1 0 0
r2 0 0 0
0 0 r1 −r2

)
·
(

1
χ1

χ2
1
χ2

)
=

(r1
r1χ1
r2

r1χ
2
1−r2χ2

)
.

Clearly,

Γ ·w∗ =




−χ1E(−1;0)+r1E(0;1)
−χ1E(χ1;r1)−χ2

1E(−1;0)+r1χ1E(0;1)
−χ2E(−1;0)+r2E(0;1)

−χ1E(a;0)−χ2
1E(χ1;r1)−χ2E(−χ2;−r2)+(r1χ

2
1−r2χ2)E(0;1)




=




E(χ1;r1)

E(−χ2
1;−r1χ1)+E(χ2

1;0)+E(0;r1χ1)
E(χ2;0)+E(0;r2)

E(−aχ1;0)+E(−χ3
1;−r1χ2

1)+E(χ2
2;r2χ2)+E(0;r1χ2

1−r2χ2)




=




E(χ1;r1)
E(0;0)
E(χ2;r2)

E(χ2
2−aχ1−χ3

1;0)


 (∗)

=

(E(χ1;r1)
E(0;0)
E(χ2;r2)
E(b;0)

)
= E(h(χ)) ,

where (∗) holds iff F (χ) = 0.

F.3 CHM NIZK based on Couteau-Hartmann Disjunction

On the Couteau-Hartmann Disjunction. Next, we describe the Couteau-Hartmann disjunction that
results in Γ of size (3d− 1)× (3d− 2) and compare it to Eq. (4).

In Appendix C of [CH20], the authors describe a method of constructing the parameters [Γ]1 and
[θ]1 of LΓ ,θ for the disjunction of two algebraic languages LΓ i,θi , i ∈ {0, 1}. That is, x ∈ LΓ ,θ iff LΓ i,θi

for at least one i. Briefly, they define

Γ :=




01×M1 1 01×M0 1
0N0×M1 0N0 Γ 0 θ0

Γ 1 θ1 0N1×M0
0N1


 , θ :=

(
−1

0N0+N1

)
(6)

Thus, a disjunction from matrices [Γ i]1 of size Ni ×Mi ends up with a matrix [Γ]1 of size (N1 +N2 +
1)× (M1+M2+2). In the honest case, a valid witness is either (w⊤0 ,−1, 0, 0)⊤ or (0, 0,w⊤1 ,−1)⊤, where
wi is a valid witness corresponding to the ith disjunct.

We will demonstrate how it differs from our parametrization for the two examples given above.
First, when F (X) = X − ξ and thus [ct]1 = [r[1]1∥r[sk]1 + ξ[1]1]1, then C = (χ− ξ) and thus

[Γ]1 =

(
[1]1
[sk]1

)
∈ G2×1

1 , [θ]1 =
(

ct1
ct2−[ξ]1

)
,

with w = r. Applying the disjunction of Eq. (6) to it for two different values of ξi and ciphertexts [cti]1,
i ∈ {1, 2}, we get (omitting the bracket notation)

Γ =




0 1 0 1
0 0 1 ct1,1
0 0 sk ct1,2−ξ1
1 ct1,1 0 0
sk ct1,2−ξ2 0 0


 ∈ Z5×4

p ,θ =

(−1
0
0
0
0

)
,

with w = (r1,−1, 0, 0)⊤ or w = (0, 0, r2,−1)⊤. This should be compared with 4×3 matrix Γ of [BBC+13]
(see also Example 1). Going one step forward, for d = 4, the Couteau-Hartmann disjunction results in a
matrix of size (2 · 5+ 1)× (2 · 4+ 2) = 11× 10, which should compared with the matrix Γ of Example 3
that has size 8× 7. In the general case d = 2c for some c ≥ 1, the resulting matrix has dimensions

(3d− 1)× (3d− 2) .

As noted before, the new solution results in matrices of size 2d× (2d− 1).
Efficiency. For the sake of completeness, we reprove the following lemma, also given in [CH20]. Note
that w has zero elements which means that the computation of [d]2 by the prover is more efficient than
by the general result Proposition 2.

35

Lemma 10. Let d = 2c, and assume in recursion Γ 0 and Γ 1 always have equal dimensions. The CH
compiled NIZK argument, as in Fig. 8, corresponding to Γ of this subsection as in Eq. (6), requires
(7d − 4)e1 + (3d − 1)e2 from the prover, (9d − 2)p from the verifier, and the communication is (3d −
1)|G1|+ (3d− 2)|G2|.

Proof. Prover’s computation. The prover needs to compute [Γ (x)]1r and [e]2w+ r[1]2.
If d = 1 then the multiplication [Γ (x)]1r can be executed in T1 = 2 exponentiations. If d = 2 then it

takes T2 = 10 exponentiations. Assume that for fixed d ≥ 2, the multiplication takes Td exponentiations.
Then, T2d can be executed in 2Td + 4 exponentiations. Solving this recurrence relation gives that Td =
7d− 4 in G1.

On top of this, the prover computes [d]2 ← [e]2w + r[1]2. If d = 1 then this can be executed in 2
exponentiations. At each recursion step, w will still have one non-small element and r will have dimension
3d− 2. Thus, this takes 1 + (3d− 2) = 3d− 1 exponentiations in G2.

Verifier’s computation. Since Γ has 6d − 2 non-zero elements, the verifier has to execute 6d − 2
pairings to compute [Γ]1 • [d]2. In addition, she has to execute 1 pairing to compute [θ(x)]1 • [e]2, and
n = 3d− 1 pairings to compute [a]1 • [1]2, in total 9d− 2 pairings.

Communication. n|G1|+ t|G2| = (3d− 1)|G1|+ (3d− 2)|G2|. ⊓⊔

36

Chapter 5

NIWI and New Notions of
Extraction for Algebraic
Languages

Chaya Ganesh
Hamidreza Khoshakhlagh
Roberto Parisella

In International Conference on Security and Cryptography for Networks, SCN 2022

ed. by Clemente Galbi and Stanislaw Jarecki. Lecture Notes in Computer Science, vol
13409. Springer, Cham.
https://doi.org/10.1007/978-3-031-14791-3_30

In this thesis we include the extended version published on ePrint. The extended ver-
sion includes some additional results and all the formal proofs in the appendix.

NIWI and New Notions of Extraction for
Algebraic Languages

Chaya Ganesh1, Hamidreza Khoshakhlagh2, and Roberto Parisella3

1 Indian Ins i u e of Science
cha a@iisc.ac.in
2 Aarhus Universi y
hamidreza@cs.au.dk

3 Simula UiB
robertoparisella@hotmail.it

Abstract. We give an efficien cons ruc ion of a compu a ional non-
in erac ive wi ness indis inguishable (NIWI) proof in he plain model,
and inves iga e no ions of ex rac ion for NIZKs for algebraic languages.
Our s ar ing poin is he recen work of Cou eau and Har mann
(CRYPTO 2020) who developed a new framework (CH framework) for
cons ruc ing non-in erac ive zero-knowledge proofs and argumen s under
falsifiable assump ions for a large class of languages called algebraic lan-
guages. In his paper, we cons ruc an efficien NIWI proof in he plain
model for algebraic languages based on he CH framework. In he plain
model, our NIWI cons ruc ion is more efficien for algebraic languages
 han s a e-of- he-ar Gro h-Os rovsky-Sahai (GOS) NIWI (JACM 2012).
Nex , we explore knowledge soundness of NIZK sys ems in he CH frame-
work. We define a no ion of s rong f -ex rac abili y, and show ha he
CH proof sys em sa isfies his no ion.
We hen pu for h a new defini ion of knowledge soundness called seman-
tic extraction. We explore he rela ionship of seman ic ex rac ion wi h
exis ing knowledge soundness defini ions and show ha i is a general
defini ion ha recovers black-box and non-black-box defini ions as spe-
cial cases. Finally, we show ha NIZKs for algebraic languages in he CH
framework canno sa isfy seman ic ex rac ion. We ex end his impossi-
bili y o a class of NIZK argumen s over algebraic languages, namely
quasi-adap ive NIZK argumen s ha are cons ruc ed from smoo h pro-
jec ive hash func ions.

1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [40], are
cryptographic primitives that allow a prover to convince a verifier that a state-
ment is true without revealing any other information. Zero-knowledge proof sys-
tems have a rich history in cryptography [38,32,12] finding numerous applica-
tions in cryptographic constructions such as identification schemes [31], public-
key encryption [50], signature schemes [21], anonymous credentials [20], secure
multi-party computation [39], and a wide variety of emerging applications.

The notion of zero-knowledge proof was later extended to non-interactive
zero-knowledge (NIZK) proofs by Blum, Feldman and Micali [16] where there
is a single message sent from the prover to the verifier. NIZKs are particularly
useful in low-interaction settings, and feasibility is known for all of NP in the
common reference string (CRS) model.

Pairing-based NIZKs. Starting from the work of Groth and Sahai [43], many
pairing-based NIZK proof systems have been constructed. These proof systems
avoid the need for expensive reductions to NP-complete languages and can di-
rectly handle a large class of languages over abelian groups.

Another line of work for constructing pairing-based NIZKs is via a smooth
projective hash function (SPHF) [27]. For a language over some abelian group
G1, a secret hashing key is embedded in group G2, and this NIZK proof can be
verified via a pairing operation between G1 and G2. The SPHF-based approach
leads to very efficient proofs for linear languages. However, they only provide a
quasi-adaptive type of soundness, where the CRS can depend on the language.

NIWIs. One can relax the security of a NIZK argument to a Non-Interactive
Witness Indistinguishable (NIWI) argument by replacing the zero-knowledge
property with a weaker witness indistinguishability (WI) property. Unlike NIZKs
for which we know impossibility in the plain model [16], and can therefore only
exist in the CRS model, NIWIs are possible in the plain model. Informally,
witness indistinguishability means that the verifier at the end of protocol, cannot
guess which of the possible witnesses the prover used to compute the proof.

The general idea to construct a NIWI in the plain model, is to start from
zero-knowledge proofs that are perfectly sound for some choice of the verifier
randomness (or some choice of the CRS). Namely, we let the prover sample the
randomness by itself and include additional checks to force the prover to compute
at least one proof for such choice of randomness. The first NIWI construction in
the plain model was proposed by Barak et al. [8] obtained by derandomizing any
two-round zero-knowledge proof (ZAP) [28]. The idea behind the construction
is to let the prover send a “high enough” number of proofs, each for a differ-
ent choice of randomness, such that it is hard to cheat for all of them. There
are however drawbacks that make such NIWI schemes unsuitable in practical
applications. In the NIWI of [8], the prover has to compute a logarithmic (in
the security parameter) number of proofs, which leads to inefficient schemes,
both in terms of computation and communication, even starting from efficient,
say, linear ZAPs. Also, security is based on a complexity theoretic assumption
(namely E = DTIME(2O(n)) has a function of circuit complexity 2Ω(n)) that
implies BPP = P.

Groth, Ostrovsky and Sahai [42] proposed a different framework for NIWI
proofs, which leads to more efficient proofs for concrete languages (instead of
circuit satisfiability). The key idea in [42] is to force the prover to produce two
CRSs, such that at least one of them guarantees perfect soundness. Moreover,
the structure of the CRS is such that multiplication of one element can always
transform a computationally sound CRS into a perfectly sound CRS. The NIWI

2

proof system can now take advantage of the structure in the CRS as follows: the
prover generates a CRS on its own and provides proofs under both the chosen
CRS and its transformation. Perfect soundness holds by the fact that at least
one of the two CRSs guarantees this property. Some of the issues in the con-
struction of [8] mentioned above are overcome by the NIWI proof system of [42],
thanks also to further optimizations [53]. Namely, it is based on well-established
assumptions, and the number of proof elements is constant instead of logarithmic
in the security parameter. However, for some applications, having communica-
tion complexity that is twice the size of a Groth-Sahai (GS) proof is still not
practical, particularly considering that GS NIZK, and consequently the NIWI
often comes with a drastic efficiency reduction due to the need for reducing the
original language to an intermediate language supported by the GS proof system.

In this work, we construct more efficient computational NIWI proofs in the
plain model for a larger class of languages.

CH framework. Recently, Couteau and Hartmann [25] developed a new frame-
work (henceforth referred to as the CH framework) for constructing non-
interactive zero-knowledge proofs and arguments for a broad class of languages
under a falsifiable assumption. They provide several constructions whose effi-
ciency is satisfactory for many applications and enjoy a number of interesting
features such as having proofs that are as short as proofs resulting from the
Fiat-Shamir transformation applied to Σ-protocols. Their approach, at a very
high level, consists of compiling a Σ-protocol over an abelian group G1 into a
non-interactive zero-knowledge argument over Type III pairings by embedding
the challenge e into a group G2 and adding the embedded challenge to the CRS.

The work of [25] also obtains a simple and efficient ZAP argument in the
plain model where the WI property holds statistically as opposed to all previ-
ous pairing-based constructions that satisfy computational WI. While this ZAP
argument can be compiled directly into a non-interactive ZAP using the com-
piler of [8], the prover, as mentioned above, needs to send logarithmically many
proofs, hence decreasing the efficiency of the original scheme.

CH framework with knowledge soundness. All aforementioned proof systems
based on CH framework only guarantee soundness meaning that accepting
proofs cannot be computed for false statements. Typically, applications require a
stronger notion of soundness called knowledge soundness which guarantees that
the prover knows a witness for a statement if it can make the verifier accept.
This notion of knowledge soundness is formalized by the existence of an effi-
cient extractor that can extract a valid witness from the prover whenever the
prover provides a valid proof. Given that the NIZK systems in [25] only guaran-
tee soundness, we investigate the possibility of knowledge soundness of the CH
protocol, and pairing-based arguments in general.

Can we construct NIZK proofs in the CH framework with knowledge
soundness?

A näıve solution to provide extractability in the CRS model is to use well-
known techniques to augment the statement with a trapdoor for extraction. In

3

particular, given a CRS that contains a public key pk, the most efficient currently
known approach is to ask the prover to encrypt the witness under pk and then
prove that the ciphertext is computed correctly. The extractor can then use the
secret key of pk to recover a valid witness from the proof. This however makes
the proof size much larger. On a high level, this is because existing algebraic
encryption schemes are not friendly enough with the CH framework, unless we
perform the encryption bit-by-bit as in [48,14], which makes the construction
undesirable. More importantly, the underlying NP relation is now changed into
an augmented relation that should also manage the correctness of ciphertext
computations. Our goal is however to study the (im)possibility of extractability
for the standard CH framework without changing the underlying relation.

Another solution is to show extractability under knowledge assumptions, or
in idealized models such as generic group model (GGM) [56] or algebraic group
model (AGM) [34]. Indeed, it is not hard to show that CH NIZKs are knowledge
sound in the AGM 4. Gentry and Wichs [37] show impossibility of a black-box
reduction to a falsifiable assumption to prove soundness for succinct arguments,
where the proof size is logarithmic in the size of the witness and the statement.
However, the use of idealized models or knowledge assumptions to prove
knowledge soundness of non-succinct proof systems seems to be less justifiable.

At first look, it might seem like knowledge assumptions for extraction are
justified since soundness of some CH NIZK is already based on a non-falsifiable
version of the extKerMDH assumption. As per Naor’s classification [49], knowl-
edge assumptions are a class of non-falsifiable assumptions. However, since
knowledge assumptions stipulate “feasibility” of efficient extraction, they do not
fit within a taxonomy of intractability assumptions [52]. On the other hand, an
assumption such as extKerMDH, while non-falsifiable, is still an intractability
assumption that can be phrased as a game between an adversary and a chal-
lenger, albeit with an inefficient challenger.

1.1 O r Contrib tions

We study NIZK and NIWI constructions in the pairing-based setting and make
the following contributions.
NIWI in the plain model. Different from the aforementioned idea of con-
structing NIWI in the plain model based on the CH framework [25] using the
compiler of [8], we investigate a more efficient strategy inspired by the approach
of [42] which allows the verifier to verify if, given a (small) set of CRSs, at least
one of them is perfectly binding, without breaking soundness.

Our construction is based on the existence of an efficient algorithm that,
given one CRS of the NIZK proof of [25], allows the verifier to check if it is a
perfectly binding one without compromising the soundness property. The key
idea in constructing such an algorithm is, at a high level, to add two additional
group elements to the CRS, chosen such that assuming the existence of Type
III pairings, it allows the verifier to (efficiently) check the distribution of the

4 We show knowledge soundness of he CH argumen in he AGM in Appendix D.1.

4

CRS (with a technique similar to what was done in [2]) while not compromising
the WI property. Now, with the verifier equipped with such an algorithm, we
construct a non-interactive ZAP by letting the prover compute this CRS and
output it together with the proof.

We need additional ideas to prove security of the resulting construction. First,
as noted in [25], the soundness of the resulting NIZK proof is based on the special
soundness property of the underlying Σ-protocol. Soundness of our NIWI proof
follows from the same reasoning and from the correctness of the algorithm that
checks the distribution of the CRS. Indeed, if the verifier accepts, then the prover
correctly sampled a perfectly binding CRS and thus soundness holds. To show
WI, we rely on a new decisional assumption, which we validate in the AGM. The
ability of the verifier to check the distribution of the CRS relies on DDH being
easy, and therefore it is not possible to rely on DDH for WI.
CH framework with knowledge so ndness. The proof and argument sys-
tems presented in [25] and our NIWI construction ensure only soundness. As
our second contribution, we investigate knowledge soundness of NIZK systems
in the CH framework.

f -extractability. We define a notion of strong f -extractability that extends re-
lated notions of partial extraction used in literature. Informally, an argument
system satisfies f -extractability if there exists an efficient extractor that outputs
w̃ whenever the verifier accepts the proof for statement x, where w̃ = f(w) and w

is a valid witness for x. We extend the notion to strong f -extractability where
we ask that the partial witness w̃ allows for efficiently deciding membership of
the statement. We show that the CH proof system satisfies this notion where
the extracted value is the encoding of a witness to G2.

Semantic extraction. We then investigate the possibility of knowledge soundness
of the CH NIZKs, and pairing-based arguments in general. We show that the
CH argument is knowledge sound in the Algebraic Group Model (AGM), and
then ask the following question: can we show knowledge soundness in the stan-
dard model without relying on knowledge assumptions or show impossibility of
extraction? Towards this end, we put forth a notion of extraction called seman-
tic extraction, and prove that this notion of extraction is impossible for the CH
argument. The intuition behind the definition of semantic extraction is to con-
sider the random coins of the adversary as an input from a certain distribution.
This makes it possible to associate a function to each adversary: the function
that it computes on certain inputs including its random coins. We then require
that adversaries that implement the same function, have the same extractor.
We allow the flexibility to split the random coins in two distinct portions, and
then allow the extractor to see only one of the two portions. This gives a gen-
eral definition that, depending on how much randomness we allow the extractor
to see, gradually makes the extractor more powerful. We then investigate the
relationship between semantic extraction and classic notions of extraction. We
show that semantic extraction is a general definition, that captures both white-
box(n-BB) and black-box(BB) extraction. In particular, BB extraction trivially

5

implies semantic extraction. Also a slightly weaker version of the other direc-
tion is true, when we give no randomness to the semantic extractor. Moreover,
semantic extraction is equivalent to n-BB extraction, where we give to the ex-
tractor all the random coins of the adversary. Finally, we show impossibility of
semantic extraction for CH argument: that no extractor that sees only a portion
of the adversary’s randomness can succeed. We then generalize this impossibility
to a class of NIZK arguments over algebraic languages, namely quasi-adaptive
NIZK arguments based on SPHFs. As a concrete case, we show that the most
efficient Quasi-Adaptive NIZK construction of Kiltz and Wee [46] cannot be
semantically extractable. While black-box extraction is impossible since the ar-
guments are shorter than the witnesses, the impossibility of semantic extraction
is a stronger result. We present this in Appendix D.4.

1.2 Technical Overview

In this section we provide a technical overview of our results. We start with
an overview of our NIWI construction in the plain model. Then we discuss our
definition of semantic extraction and sketch our impossibility result for semantic
extractability of CH NIZKs.
NIWI in the plain model. The starting point of our construction is the NIZK
proof for algebraic languages in [25] which is based on a compiler that converts
a Σ-protocol with linear answers over a group G1 into a NIZK argument by
embedding the verifier’s challenge into a group G2 in the CRS.
Σ-protocols for linear languages. A linear language with language parameter
[M]1 ∈ Gn×k

1 is defined as LM =
{
[x]1 ∈ Gn

1 |∃w ∈ Zk
p : [x]1 = [M]1 ·w

}
. A

Σ-protocol for a linear language LM with corresponding relation RM is a three-
move honest-verifier zero-knowledge (HVZK) proof system between a prover P
and a verifier V with the following syntax. First, P with an input pair ([x]1,w)
selects r← Zk

p and sends a first message [a]1 := [M]1 ·r ∈ Gn
1 to V. Next, V sends

a random string e ∈ Zp to P. Finally, P sends a reply d := we+r ∈ Zk
p to V, who

accepts the proof if [M]1 ·d = [x]1e+[a]1. The special soundness property states
that for any [x]1 and any pair of accepting conversations ([a]1, e,d), ([a]1, e

′,d′)
on [x]1 where e ̸= e′, one can efficiently compute a valid witness w for [x]1.
CH Compiler. Couteau and Hartmann [25] proposed the following approach to
compile a Σ-protocol into a NIZK in the CRS model: the setup algorithm picks
a random e ∈ Zp and sets [e]2 as the CRS. The prover computes [a]1 as in the
Σ-protocol, and an embedding of d in G2 by computing [d]2 := w · [e]2 + r ·
[1]2. The proof can (publicly) be verified by checking if the pairing equation
[M]1[d]2 = [x]1[e]2+[a]1[1]2 holds. While this leads to an argument system with
computational soundness, [25] further shows how to turn the argument into a
proof by providing two challenges with two different generators in the CRS and
having the prover answer both with the same randomness. The (unconditional)
special soundness property of the underlying Σ-protocol now guarantees that a
witness exists, resulting in perfect soundness.

The idea behind our NIWI construction is as follows: consider the CRS of the
CH NIZK proof [s1, s2, e1s1, e2s2]2 ∈ G4

2, where e1, e2, s1, s2 ∈ Zp, and [e1, e2]2

6

play the role of the two challenges (embedded in G2) in the underlying Σ-
protocol. Now, we have the prover pick the CRS and the verifier checks that this
CRS computed by a potentially malicious prover is such that e1 ̸= e2, so we can
rely on the special soundness of the underlying Σ-protocol. We then prove that
the proof is witness-indistinguishable by relying on a new decisional assumption
that we show secure in the AGM. This observation leads us to a NIWI proof
in the plain model, where we let the prover to choose the “crs” parameters by
itself, such that it is verifiable that e1 ̸= e2.

Extractability in the CH framework. We now give an overview of the ex-
tractability notions we explore, the new notion of semantic extraction we pro-
pose, and the impossibility of semantic extraction for CH NIZKs.

The standard definition of knowledge extraction asks for the existence of an
efficient algorithm called extractor that takes as input a proof π of a statement x
and returns a value w′ such that w′ is a witness for the truth of x, i.e., (x, w′) ∈ R.
While such full extractability captures the fact that the prover must have known
the witness, there are instances where the existence of such a powerful extractor
is unlikely; however, it is still possible to extract some partial information about
the witness. One concrete example is the Groth-Sahai non-interactive proof of
knowledge [43] from which one can only extract a one-way function of the witness
f(w) where f : F → G is the encoding of the witness in the underlying group.
The barrier to full extractability is the fact that there does not seem to be a
trapdoor that can be used to compute, in an efficient way, a witness w from f(w)
(i.e., discrete logarithm problem). To capture this notion of partial extractability,
Belenkiy et al. [10] formalized the notion of f -extractability by the existence of
an efficient algorithm that outputs w̃ such that there exists some w with (x, w) ∈
R and w̃ = f(w)5. In their context of constructing anonymous credentials, f -
extractability is used by relaxing the notion of unforgeability to f -unforgeable
signatures where the adversary produces (f(m), σ) pair (as opposed to (m,σ))
without previously obtaining a signature on m. Since then, f -extractability has
been used as a standard property in many privacy-preserving authentication
mechanisms [4,18,30,41,44,54].

We begin with this observation that the CH NIZK proof is not only f -
extractable for f := [·]2, but the extracted value also allows to decide the mem-
bership of the statement via pairing checks. To see this, let ([x]1,w) be a pair
of statement-witness in the linear relation RM that returns 1 if [x]1 = [M]1 ·w.
One can observe that extracting [w]2 suffices to decide the membership of [x]1
by checking if [M]1[w]2 = [x]1[1]2. The primary distinction between partial and
full extractability is in the ability to decide membership of the statement being
proven via the extracted value. We fill the gap between the two notions by defin-
ing a stronger form of partial extractability called strong f -extractability which
guarantees the existence of an efficient procedure D that for any given statement
x and f -extracted value w̃ := f(w), D(x, w̃) can decide the membership of x. Note
that w̃ still falls short of being a full witness for the relation; assuming that f is

5 No e ha his a generaliza ion of he s andard no ion as he iden i y func ion f(·)
implies full ex rac abili y.

7

one-way, w̃ cannot be used to produce a valid proof for x. This is what separates
strong f -extractability from full extractability.

Impossibility of Semantic Extraction. We show impossibility of semantic extrac-
tion for the CH NIZK argument for algebraic languages. Note that this is a
stronger result than ruling out BB extraction. Our impossibility holds only for
semantic extraction where there exists a portion of the adversary’s randomness
that the extractor cannot see.

We now articulate the implications of ruling out semantic extraction for
pairing-based arguments. In these systems, a proof consists only of group ele-
ments, while witnesses are elements of the underlying field6. Soundness relies
on the hardness of discrete logarithm in order to argue that the exponents of
elements in the CRS remain hidden from the prover. As a concrete example,
let us consider the CH NIZK argument that essentially compiles a Σ-protocol
with three-round messages ([a], e,d) into a NIZK argument in the CRS model
in such a way that the CRS includes [e]2 and the proof consists of two (vector
of) group elements ([a]1, [d]2). Informally, the security relies on the fact that the
prover cannot compute e (or [e]1) and the second component [d]2 should have
been computed as [d]2 = d0[1]2 + d1[e]2. But now, one can observe that from
a semantic point of view, there is no distinction between the case that [d]2 is
computed honestly as above and the case where the CRS trapdoor e is used for
generating [d]2 as d0[1]2 + e[d1]2. In fact, if an extractor Ext that is limited to
being semantic is able to extract the witness d1, then one can invoke Ext to
break the discrete logarithm in G2 by sampling e in the reduction. The above
reduction does not go through if Ext is a semantic extractor that has access
to all the adversary random coins (we show that such Ext is equivalent to a
classic white-box extractor). But as soon as some randomness is hidden from
the extractor, we can define an adversary that embeds a DL challenge in this
hidden part of the execution, for which no extractor can exist. This means that
a valid proof in such argument systems does not prove “knowledge” of w, but
only knowledge of [w]1, [w]2, and in order to extract w, one must rely on the
hypothesis of asymmetric pairings to conclude that the prover actually knew w
as a field element, which is essentially a knowledge-of-exponent type assumption.

Our results suggest that for most algebraic languages, extracting a witness
given the statement [x]1 is as hard as extracting a witness given [x]1, a valid
proof π together with used randomness r and trapdoor of the CRS e. Thus, if
an extractor that is not based on knowledge assumption exists, it completely ig-
nores the proof and just recomputes sampling a true statement together with its
relative witness. This can also be seen in the following way: consider a language
whose hardness relies on the hardness of discrete logarithm. Now, computing
the witness from the statement is as hard as discrete logarithm; computing the
witness given the statement, a proof, randomness used to compute the proof,
and trapdoor is (in the case of CH20) as hard as symmetric discrete logarithm

6 In s ruc ure preserving sys ems, he wi ness can be group elemen s as well, bu in
 his work, we are only in eres ed in proof sys ems where wi nesses are field elemen s.

8

(SDL). This implies that either there is a gap between DL and SDL; or com-
puting w from [x]1 is as hard as computing w from ([x]1, r, π, e). In the case of
SPHF, both hardness of the language and our result rely on hardness of discrete
logarithm, implying that computing w from [x]1 is as hard as computing w from
([x]1, π, r, td). This gives an explanation for why in the pairing-based setting, we
have perfect soundness and f -extractability, like we show the CH proof is, while
no fully extractable scheme exists under falsifiable assumptions.

2 Preliminaries

Notation. For any positive integer n, [n] denotes the set {1, . . . , n}. Let k ∈ N
be the security parameter. Let negl(k) be an arbitrary negligible function. We
write a ≈k b if |a− b| ≤ negl(k). Moreover a is a negligible function if a ≈k 0.
When a function can be expressed in the form 1 − negl(k), we say that it is
overwhelming in k. We use DPT (resp. PPT) to mean a deterministic (resp.
probabilistic) polynomial time algorithm. We write Y ← F(X) to denote an

algorithm with input X and output Y . Further, we write a
$←−− S to denote

that a is sampled according to distribution S, or uniformly randomly if S is a
set. For two interactive machines P and V, we denote by ⟨P(α),V(β)⟩(γ) the
output of V after running on private input β with P using private input α, both
having common input γ. All adversaries will be stateful. To represent matrices
and vectors, we use bold upper-case and bold lower-case letters, respectively.

2.1 Bilinear Gro ps

We use additive notation for groups. Throughout the paper we let G be
a bilinear group generator that on input security parameter k returns
(p,G1,G2,GT , ê, [1]1, [1]2) ← G(1k), where G1,G2,GT are groups of prime
order p, [1]1 and [1]2 are respectively the generators for G1 and G2, and
ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear map
such that ∀[u]1 ∈ G1, ∀[v]2 ∈ G2, ∀a, b ∈ Zp : ê(a[U]1, b[V]2) = (ab)ê([U]1, [V]2).

We denote ê([U]1, [V]2) as [U]1[V]2. We consider only type III pairings, where
there does not exist an efficient isomorphism between G1 and G2.

2.2 Algebraic Lang ages

We refer to algebraic languages as the set of languages associated to a relation
that can be described by algebraic equations over an abelian group. More pre-
cisely, let gpar = (p,G1,G2,GT , ê, [1]1, [1]2)← G(1k). For the rest of the paper,
we suppose that these global parameters gpar are implicitly given as input to
each algorithm. Let lpar = (M,θ) be a set of language parameters generated
by a polynomial-time algorithm setup.lpar which takes gpar as input. Here,
M : Gℓ 7→ Gn×k and θ : Gℓ 7→ Gn are linear maps such that their different coef-
ficients are not necessarily in the same algebraic structures. Namely, in the most
common case, given a bilinear group gpar = (p,G1,G2,GT , ê, [1]1, [1]2), they can

9

belong to either Zp, G1, G2, or GT as long as the equation θ(x) = M(x) ·w is
“well-consistent”. However, in this paper we only use algebraic languages where
the statement is defined as elements in G1. Formally, we define the algebraic
language Llpar ⊂ Xlpar as

Llpar =
{
[x]1 ∈ Gℓ

1|∃w ∈ Zk
p : [θ(x)]1 = [M(x)]1 ·w

}
. (1)

An algebraic language whereM is independent of x and θ is the identity is called
a linear language. We sometimes require algebraic languages to satisfy a property
we call 1DL-friendly. Roughly, this is to enable the embedding of a symmetric
simple discrete logarithm challenge, which is given as a pair of group elements,
into an algebraic statement in the reduction. We give the definition(Defini-
tion 13) in Appendix A.4. We note that algebraic languages are as expressive as
NP, since every Boolean circuit can be represented by sets of linear equations.

2.3 Non-interactive Zero-knowledge Arg ments

A NIZK (non-interactive zero-knowledge) argument Π, for a family of languages
Llpar consists of four PPT algorithms.

– CRSGen on input a security parameter 1k generates a pair (crs, td).
– P on input a crs, a statement x and a witness w, computes a proof π.
– V on input a crs, a statement x and a proof π outputs 1 (accept) or 0 (reject).
– Sim on input td, a true statement x computes a simulated proof π.

Here we are implicitly supposing that lpar is always given as input. We assume
that each td corresponds to only one crs and also that given td it is possible to
efficiently and deterministically compute the corresponding crs. This is w.l.o.g.,
since it is always possible to define the trapdoor in a way that the previous
property is satisfied. The following properties are required for a NIZK argument:

– Perfect completeness : for any pair of true statement x with a relative witness
w, for any crs computed by CRSGen

Pr [V(crs, x, π) = 1|π ← P(crs, x, w)] = 1.

– Computational soundness : for any PPT adversary A

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧ x /∈ Llpar (x, π)← A(crs)

]
≤ negl(k)

– (Perfect) zero-knowledge: for any true statement, witness pair (x, w), for any
(crs, td)← CRSGen(1k) the following distributions are identical

P(crs, x, w) ≡ Sim(crs, td, x).

If the zero-knowledge property requires the two distributions to only be com-
putationally insitinguishable, then we get a computational NIZK. If soundness
holds even against unbounded adversaries, we say that the protocol is a NIZK
proof system, with perfect soundness. We say that Π is black-box knowledge
sound if there exists an efficient extractor that computes a witness, given a
statement, an accepting proof and the crs trapdoor.

10

Definition 1 (BB Knowledge so ndness). Let Π = (CRSGen,P,V, Sim) be
a NIZK argument for the relation Rlpar, defined by some language parameter
lpar. We say that Π is black-box knowledge sound, if there exists an extractor
Extbb such that, for any PPT adversary A:

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ Rlpar (x, π)← A(crs, lpar; r); w← Extbb(td, x, π)

]
≤ negl(k)

where r is the random coins of the adversary.

If the extractor is allowed to depend on the adversary and we also give it
as additional input, the random coins used by the adversary, we say that Π is
white-box knowledge sound.

Definition 2 (n-BB Knowledge so ndness). Let Π = (CRSGen,P,V, Sim)
be a NIZK argument for the relation Rlpar, defined by some language parameter
lpar. We say that Π is white-box knowledge sound, if for any PPT adversary
A, there exists an efficient extractor Extwb,A such that:

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ Rlpar (x, π)← A(crs, lpar; r); w← Extwb,A(td, x, π, r)

]
≤ negl(k)

where r is the random coins of A.
We also consider the concrete security variants of the above definitions.

Roughly, Π is (t, ϵ)-BB knowledge sound if the extraction property holds with re-
spect to all t(k)-time bounded provers (as opposed to all PPT provers), and that
the extractor succeeds except with probability ϵ (as opposed to being negligible).
We give the formal definitions of the concrete-security versions in Appendix D.2.

Lastly, we state the witness indistinguishability definition for non-interactive
protocols. Recall that we are interested in non-interactive witness indistinguish-
able proof systems in the plain model without a trusted setup.

Definition 3 (Witness Indisting ishability (WI)). A non-interactive proof
system Π = (P,V) for language Llpar is WI if for every PPT verifier (V∗

1 ,V∗
2),

for all (x, w1, w2) such that (x, w1) ∈ Rlpar, (x, w2) ∈ Rlpar, we have

Pr
[
b← V∗

2 (st, π) (x, w1, w2, st)← V∗
1 (lpar); b

$←−− {0, 1};π ← P(lpar, x, wb)

]
≈k

1

2

2.4 From Σ-protocols to NIZKs

Recently, Couteau and Hartmann [25] propose a new approach for building
pairing-based non-interactive zero-knowledge arguments for algebraic languages.
At a high level, their approach is based on compiling a Σ-protocol (see Ap-
pendix A.1) into a non-interactive zero-knowledge argument by embedding the
challenge in G2 and publishing it once in the crs. The NIZK argument is de-
picted in Fig. 2, where we denote as SΣ the simulator for special honest verifier
zero-knowledge property of the Σ-protocol. A variant of their compiler yields
NIZK proofs, depicted in Fig. 3, based on standard assumptions. We refer to Ap-
pendix A.5 for more details.

11

P(lpar, [x],w) V(lpar, [x])

r ← Zk
p

[a] := [M(x)]r
[a]−−−−−−−−−−−−−−−−→

e ← Zp
e←−−−−−−−−−−−−−−−

d := we + r
d−−−−−−−−−−−−−−−→

[M(x)]d
?
= [θ(x)]e + [a]

Fig. 1: Σ-protocol for algebraic language Llpar with lpar = (M,θ)

CRSGen(1k)

gpar ← setup.gpar(1k)

e ← Zp

crs := (gpar, [e]2); td := e

return (crs, td)

P(lpar, crs, [x]1,w)

r ← Zk
p

[a]1 := [M(x)]1r

[d]2 := w[e]2 + [r]2

return π := ([a]1, [d]2)

Sim(lpar, crs, e, [x]1)

([a]1,d) := SΣ([x]1, e)

return π := ([a]1, [d]2)

V(lpar, crs, [x]1, π = ([a]1, [d]2))

[M(x)]1 · [d]2
?
= [θ(x)]1 · [e]2 + [a]1 · [1]2

Fig. 2: NIZK argument for algebraic language Llpar with lpar = (M,θ) [25]

2.5 Cryptographic Ass mptions

The DL (discrete logarithm) assumption in group Gι of order p states that it is
hard to compute the discrete logarithm of a random element in Gι.

Ass mption 1 (Discrete logarithm ass mption) For any PPT adversary
A, it holds that:

Pr
[
w[1]ι = [x]ι w ← A([1, x]ι)

]
≤ negl(k)

where x is sampled from the uniform distribution over Zp.

Ass mption 2 (Symmetric discrete logarithm ass mption) For any
PPT adversary A, it holds that:

Pr
[
w[1]ι = [x]ι ; ι = 1, 2 w ← A([1, x]1, [1, x]2)

]
≤ negl(k)

where x is sampled from the uniform distribution over Zp.

12

CRSGen(1k)

s1, s2, e1, e2 ← Zp

crs := ([s1, s2, s1e1, s2e2]2)

return crs

P(lpar, crs, [x]1,w)

r ← Zk
p

[a]1 := [M(x)]1r

[di]2 := w[siei]2 + r[si]2

return π := ([a]1, [d1,d2]2)

Sim(lpar, [x]1)

e, s1, s2 ← Zp

([a]1,d) := SΣ([x]1, e)

crs = ([s1, s2, s1e, s2e]2)

π := ([a]1, [ds1,ds2]2)

return (crs, π)

V(lpar, crs, [x]1, π = ([a]1, [d1,d2]2))

for i ∈ {1, 2} check

[M(x)]1 · [di]2
?
= [θ(x)]1 · [siei]2 + [a]1 · [si]2

Fig. 3: NIZK proof for algebraic language Llpar with lpar = (M,θ) [25]

The co-CDH assumption was first proposed in [17]. Later a modified version
of the assumption was proposed in [51] which we adapt as follows.

Ass mption 3 (Comp tational co-Diffie-Hellman (co-CDH) ass mption)
For any PPT adversary A, it holds that:

Pr
[
[xy]2 ← A([1, x]1, [1, x, y]2)

]
≤ negl(k)

where x, y are sampled from the uniform distribution over Zp.

3 NIWI Proof in the Plain Model

Our NIWI proof system in the plain model is given in Fig. 4. We show that
our construction is perfectly sound and computationally WI. To show WI, we
rely on a new assumption that we validate in the algebraic group model (AGM)
in Appendix B.3. While it might seem like we can show WI by relying on DDH
in the second group and then invoking the WI of the underlying sigma protocol,
the presence of [s2]1 in the proof makes this impossible. In fact, we rely on DDH
being easy for perfect soundness by enabling the verifier to check that the two
challenges are indeed distinct. We show that the new assumption holds in the
AGM introduced by Fuchsbauer, Kiltz and Loss [34]. The model is a relaxation
of the generic group model [56] that captures adversaries exploiting the repre-
sentation of the underlying group, and has been shown to be useful in reasoning
about security properties of various constructions [47,35,23]. The work of [55]
extends this model to handle decisional assumptions by introducing the notion
of algebraic distinguishers. We use this model to show the algebraic equivalence

13

P(lpar, [x]1,w)

s1, s2, e1, e2 ← Zp s. e1 ̸= e2

r ← Zk
p

[a]1 := [M(x)]1r

di := sieiw + sir for i = 1, 2

return π :=
(
[a, s1, s2]1,

[s1, s2, s1e1, s2e2,d1,d2]2
)

V(lpar, [x]1, π)

parse π as
(
[a, c1, c2]1, [s1, s2, E1, E2,d1,d2]2

)

accep if all he following checks pass

[ci]1[1]2
?
= [1]1[si]2 for i ∈ {1, 2} (1)

[c2]1[E1]2
?

̸= [c1]1[E2]2 (2)

for i ∈ {1, 2} :

[M(x)]1[di]2
?
= [θ(x)]1[Ei]2 + [a]1[si]2 (3)

Fig. 4: NIWI proof for algebraic language Llpar with lpar = (M,θ)

GADHR,b(A, lpar)

([x]1,w0,w1) ← A([1]1, [2]2, lpar);

s1, s2, e1, e2 ← Zp; r ← Zk
p; (e1 ̸= e2);

π = ([M(x)r, s1, s2]1, [s1, s1e1, s2, s2e2, s1e1wb + s1r, s2e2wb + s2r]2);

b′ ← A([M(x)]1,w0,w1, π);

if b = b′ then return 1; else return 0 fi ;

Fig. 5: Algebraic decisional hidden range games GADHR,i.

between our assumption and symmetric power discrete logarithm (SPDL) as-
sumption. While the assumption we make is a tautological assumption, we hope
it will be analysed further and will find other applications, just like the tauto-
logical Kiltz-Wee assumption for QA-NIZK [46,3]. We believe it is an interesting
open problem to prove the security of our construction under standard decisional
assumptions.

Ass mption 4 (Algebraic decisional hidden range) Let lpar = (M,θ)
be any pair of language parameter that defines the algebraic language Llpar. Let
GADHR,i, for i ∈ {0, 1} be the games depicted in Fig. 5. The (M,θ)-ADHR
assumption states that for any PPT adversary A,

Adv
GADHR,0,1

A,lpar = |Pr [GADHR,0(A, lpar) = 1]− Pr [GADHR,1(A, lpar) = 1]| ≤ negl(k).

Theorem 1. For any algebraic language Llpar, with lpar = (M,θ), the pro-
tocol in Fig. 4 is a non-interactive witness indistinguishable proof under the
(M,θ)-ADHR assumption.

Proof. (Perfect completeness). We show that an honest prover convinces
an honest verifier with probability 1. For an honestly generated proof
π = ([a, c1, c2]1, [s1, s2, E1, E2,d1,d2]2), by construction, we have that ci = s−1

i ,
Ei = siei and di = si(eiw+ r). It is easy to see that all the verifier checks pass.

14

1. [ci]1[si]2 = [s−1
i]1[si]2 = [1]T .

2. [c1]1[E1]2 = [s−1
1]1[s1e1]2 = [e1]T , and [c2]1[E2]2 = [s−1

2]1[s2e2]2 = [e2]T , and
since e1 ̸= e2, we have [c1]1[E1]2 ̸= [c2]1[E2]2.

3. M(x)di = sieiM(x)w + siM(x)r = Eiθ(x) + asi.

(Perfect soundness). Let A be any (possibly unbounded) ad-
versary that breaks the soundness property by outputting a proof
π̃ = ([ã, c̃1, c̃2]1, [s̃1, s̃2, Ẽ1, Ẽ2, d̃1, d̃2]2) relative to an (adaptively) chosen
statement x = [x]1 /∈ Llpar, such that the NIWI verifier accepts π̃. We show
that such an accepting proof contradicts with the assumption that x /∈ Llpar. In
what follows, the index i will always be used as for each i ∈ {1, 2}.

From the verifier’s check (1), it must be that c̃i = s̃i. Moreover, from check (3)
we have thatM(x)d̃i = θ(x)Ẽi+ãs̃i, which means thatM(x)d̃i/c̃i = θ(x)Ẽi/c̃i+
ã. Now, since the NIWI verifier accepts the proof, from check (2), we have that
c̃2Ẽ1 ̸= c̃1Ẽ2. Therefore, there exists a pair of valid transcripts ([ã]1, Ẽi/c̃i, d̃i/c̃i)
for x, with the same first message [ã]1 and different challenges. From special
soundness of the underlying Σ-protocol, there exists an extractor that outputs
a witness for x given two such transcripts. This contradicts the assumption that
x /∈ Llpar.

(Witness indistinguishability). Let Llpar be an algebraic language with
lpar = (M,θ). Let A be a PPT adversary that wins the WI game with non-
negligible probability ϵ. We build an efficient adversary B against (M,θ)-ADHR
assumption as follows: B first calls A and obtains st = ([x]1,w0,w1). It then
outputs st and receives π from the challenger. Lastly, B calls A on π and returns
A’s decision bit. Since the challenger of GADHR,i computes π exactly as the
honest prover of the NIWI in Fig. 4, B breaks the assumption with the same
non-negligible probability ϵ.

⊓⊔

We discuss the efficiency of our construction and applications of NIWI in the
plain model in Appendix B.

4 Partial Extractability for the CH Framework

In this section, we first recall the definition of f -extractability and show the NIZK
proof system in Fig. 3 is [·]2-extractable. Next, we strengthen this property by
introducing a new notion called strong f -extractability where the partial witness
w̃ can be used by an efficient algorithm to decide membership of the statement.
In more detail, here we also require the existence of an efficiently computable
decision procedure D such that for w̃ = f(w) output by the extractor, D(x, w̃)
decides membership of x (i.e., (x, w) ∈ R iff D(x, w̃) = 1). However, w̃ falls short
of being a witness for the relation; assuming that f is one-way, w̃ cannot be used
to produce a valid proof for x.

Definition 4 (f-extractability [10]). Let Π = (CRSGen,P,V, Sim) be a
NIZK argument for the relation R, defined by some language parameter lpar.

15

Let f be an efficiently computable function. We say that Π is (black-box) f -
extractable if there exists a PPT extractor Ext such that for any PPT adversary
that returns an accepting proof π for a statement x, Ext outputs a value w̃ for
which there exists some w such that (x, w) ∈ R and w̃ = f(w) with overwhelming
probability. More formally, for any PPT adversary A, we have

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, f−1(w̃)) /∈ R (x, π)← A(crs, lpar; r); w̃← Ext(td, x, π)

]
≤ negl(k)

where r is the random coins of the adversary.

We show that the CH proof system satisfies f -extractability where f(x) is the
encoding of x toG2. We state the lemma below and give the proof in Appendix C.

Lemma 1. The NIZK proof system of [25] depicted in Fig. 3 is [·]2-extractable.

4.1 Strong f-extractability

We now define strong f -extractability as an strengthening of f -extractability
where the extracted value further allows to decide membership of the statement
(although it cannot be used to produce a valid proof for it).

Definition 5 (Strong f-extractability). Let Π = (CRSGen,P,V, Sim) be a
NIZK argument for the relation R, defined by some language parameter lpar.
Let f be an efficiently computable function. We say that Π is strong f -extractable
if the following properties hold:

Extractability. Π is f -extractable (see Definition 4).
Decidability. There exists a DPT algorithm D, such that for any statement x

and string w̃, it holds that D(x, w̃) = 1 iff (x, w) ∈ R, where w̃ = f(w).
One-wayness. For any (x, w̃) sampled uniformly at random s.t D(x, w̃) = 1, if

there exists a PPT adversary A and a polynomial p(·), such that

Pr
[
V(crs, x, π′) = 1 π′ ← A(crs, x, w̃)

]
≥ 1

p(k)
,

there exists a PPT algorithm I, and polynomial q(·) such that

Pr
[
f(w̄) = w̃ w̄← I(w̃)

]
≥ 1

q(k)
.

Remark 1. Similar to Definition 4, strong f -extractability is defined without any
restriction on f and hence it can recover full extractability for the case when f is
the identity function. However, we only focus on strong f -extractability for non-
trivial f in this work. Having no restriction on f in Definitions 4 and 5 makes
strong f -extractability a middle ground between full and f -extractability.

We show in Appendix C.2 that the proof system in Fig. 3 is strong [·]2-
extractable under a standard hardness assumption. We remark that it is not
clear whether the argument system in Fig. 2 satisfies strong f -extractability.
Intuitively, if it did, then such an algorithm could likely be used to compute the
witness w in the case of the underlying Σ-protocol, given only one transcript,
which is impossible by SHVZK.

16

5 Full Extractability for the CH Framework

The CH argument system from Fig. 2 is knowledge sound in the AGM. (We
show in Sec. D.1). Now, we turn to showing limitations of proving knowledge
soundness.7 We begin this section by defining a notion of knowledge sound-
ness called semantic extraction. We study the relationship between semantic
knowledge soundness and standard notions of black-box (BB) and white-box
(n-BB) knowledge soundness. Then, we show impossibility of the existence of
semantic extractors for the CH argument system in Fig. 2. The generalization of
this impossibility to quasi-adaptive NIZK arguments constructed from SPHFs
is in Appendix D.4.

Notation. We introduce some additional notation for this section. We denote by
CRS the set of all possible crs’s. We denote by χ the set of the statements x
and by Ψ the set of all possible proofs π We also split the randomness of PPT-s
into two strings s and t. We denote by Γt the set of all possible strings t and by
Γs the set of all possible strings s. Looking ahead, for adversarial provers, this
split, at a high level, is to distinguish between the portion of randomness that is
provided to the semantic extractor (t), and the portion that is not (s). Note that,
while CRS, χ, Ψ are defined by the NIZK construction, the randomness spaces
are not fixed by the NIZK. We only assume that s, t have polynomial size.

5.1 Semantic Extractor

We now define our new notion of extraction. Informally, this extractor inverts
the “semantic” function implemented by an adversarial prover regardless of how
the computation was done. The key difference from n-BB notion is that we will
not ask for a different extractor for every PPT A, instead, we ask for an extrac-
tor associated with a function f ; this extractor is universal for all TMs (even
unbounded ones) that implement f . We begin by modeling the function imple-
mented by a knowledge soundness adversary. To capture any possible adversarial
strategy, we consider functions f and a distribution D from which random coins
are sampled for a machine that implements f .

Definition 6 (Knowledge so ndness strategy (KSS)). Consider NIZK
Π = (CRSGen,P,V, Sim). Let f : CRS×Γs×Γt → χ×Ψ be a function, and D
be the uniform distribution over Γs ×Γt. f is said to be a knowledge soundness
strategy for Π if

Pr




(crs, td)← CRSGen(1k); (s||t)← D
V(crs, x, π) = 1

f(crs; (s, t)) = (x, π)


 = η(k)

7 Recen ly, [5] ins an ia ed AGM under falsifiable assump ions. However, heir con-
s ruc ion relies on indis inguishabili y obfusca ion. I is inheren ly inefficien and
no a prac ical group for applica ions. Here, we focus on feasibili y of knowledge
soundness of he CH framework as is in he s andard model, wi hou compromising
on he efficiency.

17

where η(k) is non-negligible. We say that a TM A implements the knowledge
soundness strategy f , if for any crs ∈ CRS and (s, t) ← D, we have z ←
A(crs; s, t), where z = f(crs, s, t). If there exists a PPT A that implements a
knowledge soundness strategy f , we say that f is efficiently implementable.

We now define semantic knowledge soundness for a KSS.

Definition 7 (Semantic knowledge so ndness). Consider a NIZK argu-
ment Π = (CRSGen,P,V, Sim). Let D be the uniform distribution over Γs×Γt.
We call Π semantic knowledge sound if for every efficiently implementable KSS
f , there exists a PPT extractor Ext = Extf , such that, for each (even unbounded)
TM A∗ that implements f , we have

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); (s||t)← D

∧(x, w) /∈ R (x, π)← A∗(crs; (s, t)); w← Ext(td, x, π, t)

]
≤ negl(k)

Remark 2. We note that asking for extraction only against provers that imple-
ment a KSS is not a weakening of the extraction definition, since we only care
about extracting from provers that make the verifier accept with non-negligible
probability.

Remark 3. Note that this definition is a generalization of the usual knowledge
soundness definitions. In particular, if we hide all the randomness from the ex-
tractor (that is Γt is the set that contains only the empty string), then we
recover the usual black-box knowledge soundness. On the other hand, if we give
the extractor all the randomness used by the adversary (that is Γs is the set
that contains only the empty string), then we recover the canonical white-box
knowledge soundness. We discuss these connections formally in Appendix D.2.
We define semBB and semn-BB exactly as in Definition 7 with the boxed part
replaced with w← Ext(td, x, π), and w← Ext(td, x, π, s||t) respectively.

Remark 4 (Canonical knowledge soundness adversary). The usual definition of
knowledge soundness naturally handles the existence of an extractor for the
honest prover. Our definition handles the case of the honest prover too; we show
the honest efficiently implementable KSS for a NIZK Π below:

1. Sample uniformly random strings (s, t)← Γs × Γt.
2. Sample a true statement x together with w, from the uniform distribution

over pair of (x, w) ∈ R, using random seed s. Note that this can be done
efficiently. That is, there exists a PPT A that computes (x, w) on random
coins s. Let us define the function g : Γs → χ× {0, 1}∗ as g(s) = (x, w).

3. Run the honest prover algorithm on input (crs, x, w) and random coins t, to
compute a proof π. Define the function g′ : CRS× χ× {0, 1}∗ ×Γt → Ψ as
g′(crs, x, w, t) = P(crs, x, w; t).

4. Define f : CRS× Γs × Γt → χ× Ψ as f(crs, (s, t)) = (x, π) where (x, w) =
g(s) and π = g′(crs, x, w, t).

18

We call this f the canonical knowledge soundness strategy, and a PPT algorithm
that implements it the canonical adversary of knowledge soundness.

We illustrate the meaningfulness of the new notion by showing relationships
of semantic extraction with BB and n-BB extraction definitions in Appendix D.2.
Here we point out that the notion of semantic extraction has been implicitly used
in other works. For instance, standard Σ-protocols satisfy the semantic extrac-
tion notion. By special soundness, given a certain number of accepting transcripts
for the same statement, and the same prover’s first message, an extractor ex-
ists that outputs a valid witness. The extractor, therefore, does not depend on
the prover’s computation, instead, on a “semantic” function: one that outputs
two different accepting transcripts relative to the same statement, and the same
first message. One advantage in thinking of an extractor as a semantic one is
the possibility to use it in a reduction, without its relative “native” adversary.
This is indeed what is done in the proof of soundness for the NIZK proof of [25]
described in Fig. 3, which is based on the existence of an (unbounded) TM that
computes a valid input for the special soundness extractor, and then relying on
the implicit semantic property of the latter.

The non-black-box nature of the semantic definition is limited to making non-
black-box use of the malicious prover’s randomness, but otherwise the prover’s
TM is treated as a black-box. There are instances in literature where a n-BB
technique in fact corresponds to a semantic technique. Consider the case of sim-
ulation – Barak’s non-black-box zero-knowledge protocol [7]. Though simulation
is defined to make non-black-box use of the verifier’s TM, it can be modified
to only make non-black-box use of the auxiliary input and running time of the
verifier, and not its TM. The property needed to define the simulator is the ex-
istence of an efficient (with bounded-length description) adversary. Then in the
security proof, the next-message function implemented by the adversary is used,
together with the ability to choose its random coins. This means that the secu-
rity proof works for any adversary (even an unbounded one) that computes the
same next-message function. Moreover, the zero-knowledge simulator for each of
these adversaries would be exactly the same simulator as the one defined for the
efficient adversary. For concreteness, we may think that, given the code of one
efficient adversary, we define a simulator that works for each TM that computes
the same function, in the sense that we use the code in a black-box way; by just
fixing the random coins and taking partial outputs.

5.2 Impossibility of Semantic Knowledge So ndness for CH-NIZK

In this section we focus on semantic knowledge soundness of NIZK argument
in Fig. 2 for a large and useful class of algebraic languages. We show in Ap-
pendix D.1 that when the adversary is algebraic, knowledge soundness holds in
the AGM for this NIZK argument. We ask for knowledge soundness in the stan-
dard model, and show that CH NIZK argument cannot be semantic knowledge
sound. The impossibility can be interpreted as an adversary explicitly violating
AGM rules by hiding some exponent about the statement, and thus making the

19

extractor fail. We refer to Remark 5, for more remarks on the interpretation of
this result, while we focus on technical details for the rest of this section.

We now show the impossibility proof of semantic knowledge soundness of CH
arguments for linear languages Llpar, where lpar = [M]1 is a constant matrix.
The proof of Theorem 2 for general case of 1DL-friendly languages is deferred
to Appendix D.3.

Lemma 2. Let Llpar be a linear language defined by constant matrix lpar :=
[M]1. The NIZK argument in Fig. 2 cannot be semantic knowledge sound for
Llpar under the SDL assumption.

Proof. We denote as wi components of the vector w. The description of the
canonical prover adversary on input (crs = [e]2) and random coins (s, t), where
t = (r, r′) is given in Fig. 6a. Let Extf be the semantic extractor for the
function f([e]2; (s, t)) = ([x]1, π), with π = ([a]1, [d]2) that is implemented
by the canonical prover adversary. By completeness of the NIZK argument,
Extf (e, [x,a]1, [d]2, t) outputs a valid witness w for [x]1 with overwhelming prob-
ability. Let us consider the (not polynomial-time) TM P∗ as in Fig. 6b that im-
plements f . P∗ implements the same f of the canonical adversary and therefore
its output can be used to feed the same extractor Extf .

We now exploit Extf to define an adversary A against SDL assumption.
On input an SDL challenge ([w1]1, [w1]2), A is defined as in Fig. 6c. Since A
computes inputs of Extf exactly as P∗ does, they are correctly distributed, and
hence A breaks SDL with the same probability that Extf succeeds.

Theorem 2. Let Llpar be a 1DL-friendly algebraic language (Definition 13) de-
fined by language parameters lpar := (M,θ). The NIZK argument in Fig. 2
cannot be semantic knowledge sound for Llpar under the SDL assumption.

Remark 5. Since our reduction exploits the knowledge of the trapdoor to com-
pute a proof, (as a typical ZK simulator would do), it might seem like we are
arguing about extracting from the simulator. However this is not the case, at
least in general. We note that the procedure defined by the SDL adversary is
very different from the zero-knowledge simulator. First, the adversary knows
something that the simulator does not, which is [x]2. Moreover, the adversary
is able to compute [a]1 before computing [d]2 as the honest prover; while the
simulator, in order to compute a proof must compute d before. This can be also
seen as the fact that the honest prover and simulator do not implement the same
function. In fact, given the language parameter M ∈ Zn×m

p the prover computes
a proof π as a function of x,w, r where r ∈ Zn×1

p , while the simulator computes
a proof which is a function of random coins rSim ∈ Zm×1

p . In order to invoke the
semantic extractor associated to the honest prover, we must have a function that
defines a relation between the two randomness. This, for instance, can be done
(inefficiently) only in some particular cases, like when M is a square invertible
matrix. Finally, the existence of such cases is evidence towards the impossibility
of extraction. In fact, given the latter case, since we have perfect zero-knowledge
for a relation that defines only true statement, given a proof from the NIZK

20

1. Sample uniformly random w1 using
random coins s.

2. Sample o her componen s of w, wi

for i ̸= 1, using random coins r′.
3. Compu e [x]1 = [M]1w.
4. Compu e [a]1 = [M]1r.
5. Compu e [d]2 = w[e]2 + r[1]2.
6. Ou pu ([x]1, π = ([a]1, [d]2)).

(a) Canonical prover adversary

1. Use random coins s o sample w1 and
compu e [w1]1, [w1]2.

2. Compu e (inefficien ly) e from [e]2.
3. Sample o her componen s of w using

random coins r′.
4. Compu e [x]1 = [Mw]1.
5. Compu e [a]1 = [Mr]1.
6. Compu e [d]2 = e[w]2 + r[1]2.

(b) Unbounded adversary

1. Sample e, r, r′.
2. Sample o her componen s of w, wi for i ̸= 1, using random coins r′.
3. Compu e [x]1 = [Mw]1.
4. Compu e [a]1 = [Mr]1.
5. Compu e [d]2 = e[w]2 + r[1]2.
6. Compu e w ← Extf (([a]1, [d]2), e, [x]1, (r, r

′)).
7. Ou pu w1.

(c) SDL adversary

Fig. 6: Procedures for Lemma 2

argument, it is impossible to distinguish the case when the prover was honest,
from the case when a powerful adversary just computes the discrete logarithm of
the CRS and runs the simulator. Furthermore, it is impossible to distinguish the
case that adversary had [w]2 and the trapdoor e, instead of w without relying
on knowledge-type assumptions.

References

1. Abdalla, M., Benhamouda, F., Poin cheval, D.: Disjunc ions for hash proof sys-
 ems: New cons ruc ions and applica ions. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015, Par II. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (Apr
2015)

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resis an
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Par III. LNCS,
vol. 10626, pp. 3–33. Springer, Heidelberg (Dec 2017)

3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On QA-NIZK in he BPK model.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Par I.
LNCS, vol. 12110, pp. 590–620. Springer, Heidelberg (May 2020)

4. Acar, T., Nguyen, L.: Revoca ion for delega able anonymous creden ials. In: Ca a-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 423–440. Springer, Heidelberg (Mar 2011)

21

5. Agrikola, T., Hofheinz, D., Kas ner, J.: On ins an ia ing he algebraic group model
from falsifiable assump ions. In: Can eau , A., Ishai, Y. (eds.) EUROCRYPT 2020,
Par II. LNCS, vol. 12106, pp. 96–126. Springer, Heidelberg (May 2020)

6. Anan h, P., Asharov, G., Dahari, H., Goyal, V.: Towards accoun abili y in crs
genera ion. IACR Eurocryp 2021, https://eprint.iacr.org/2021/1090.pdf

7. Barak, B.: How o go beyond he black-box simula ion barrier. In: 42nd FOCS.
pp. 106–115. IEEE Compu er Socie y Press (Oc 2001)

8. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomiza ion in cryp ography. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg, San a
Barbara, USA (Aug 17–21, 2003)

9. Bauer, B., Fuchsbauer, G., Loss, J.: A classifica ion of compu a ional assump-
 ions in he algebraic group model. In: Micciancio, D., Ris enpar , T. (eds.)
CRYPTO 2020, Par II. LNCS, vol. 12171, pp. 121–151. Springer, Heidelberg (Aug
2020)

10. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signa ures and nonin-
 erac ive anonymous creden ials. In: Cane i, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (Mar 2008)

11. Ben Hamouda-Guichoux, F.: Diverse Modules and Zero-Knowledge. Ph.D. hesis,
PSL Research Universi y (2016)

12. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊as ad, J., Kilian, J., Micali, S., Ro-
gaway, P.: Every hing provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) CRYPTO’88. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (Aug 1990)

13. Benhamouda, F., Blazy, O., Chevalier, C., Poin cheval, D., Vergnaud, D.: New
 echniques for SPHFs and efficien one-round PAKE pro ocols. In: Cane i, R.,
Garay, J.A. (eds.) CRYPTO 2013, Par I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (Aug 2013)

14. Benhamouda, F., Poin cheval, D.: Trapdoor Smoo h Projec ive Hash Func ions.
Tech. Rep. 2013/341, IACR (Jun 3 2013), available a http://eprint.iacr.org/
2013/341, las re rieved version from 27 Aug 2013

15. Bi ansky, N.: Verifiable random func ions from non-in erac ive wi ness-
indis inguishable proofs. Cryp ology ePrin Archive, Repor 2017/018 (2017),
http://eprint.iacr.org/2017/018

16. Blum, M., Feldman, P., Micali, S.: Non-In erac ive Zero-Knowledge and I s Appli-
ca ions. In: STOC 1988. pp. 103–112. ACM Press, Chicago, Illinois, USA (May 2–4,
1988)

17. Boneh, D., Gen ry, C., Lynn, B., Shacham, H.: Aggrega e and verifiably encryp ed
signa ures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003)

18. Boo le, J., Cerulli, A., Chaidos, P., Ghadafi, E., Gro h, J., Pe i , C.: Shor accoun -
able ring signa ures based on DDH. Cryp ology ePrin Archive, Repor 2015/643
(2015), http://eprint.iacr.org/2015/643

19. Boyen, X.: The uber-assump ion family (invi ed alk). In: Galbrai h, S.D., Pa er-
son, K.G. (eds.) PAIRING 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg
(Sep 2008)

20. Camenisch, J., Lysyanskaya, A.: An efficien sys em for non- ransferable anony-
mous creden ials wi h op ional anonymi y revoca ion. In: Pfi zmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May 2001)

21. Camenisch, J., S adler, M.: Efficien group signa ure schemes for large groups
(ex ended abs rac). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (Aug 1997)

22

22. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and compo-
si ion of succinc zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X.,
Ka z, J. (eds.) ACM CCS 2019. pp. 2075–2092. ACM Press (Nov 2019)

23. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKs wi h universal and upda able SRS. In: Can eau , A., Ishai,
Y. (eds.) EUROCRYPT 2020, Par I. LNCS, vol. 12105, pp. 738–768. Springer,
Heidelberg (May 2020)

24. Chung, K.M., Lui, E., Pass, R.: From weak o s rong zero-knowledge and applica-
 ions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Par I. LNCS, vol. 9014, pp.
66–92. Springer, Heidelberg (Mar 2015)

25. Cou eau, G., Har mann, D.: Shor er non-in erac ive zero-knowledge argumen s
and ZAPs for algebraic languages. In: Micciancio, D., Ris enpar , T. (eds.)
CRYPTO 2020, Par III. LNCS, vol. 12172, pp. 768–798. Springer, Heidelberg
(Aug 2020)

26. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of par ial knowledge and sim-
plified design of wi ness hiding pro ocols. In: Desmed , Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (Aug 1994)

27. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adap ive cho-
sen cipher ex secure public-key encryp ion. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (Apr / May 2002)

28. Dwork, C., Naor, M.: Zaps and heir applica ions. In: 41s FOCS. pp. 283–293.
IEEE Compu er Socie y Press (Nov 2000)

29. Escala, A., Gro h, J.: Fine- uning gro h-sahai proofs. Cryp ology ePrin Archive,
Repor 2013/662 (2013), http://eprint.iacr.org/2013/662

30. Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: S ruc ure-preserving and re-
randomizable RCCA-secure public key encryp ion and i s applica ions. In: Gal-
brai h, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Par III. LNCS, vol. 11923, pp.
159–190. Springer, Heidelberg (Dec 2019)

31. Feige, U., Fia , A., Shamir, A.: Zero knowledge proofs of iden i y. In: Aho, A. (ed.)
19 h ACM STOC. pp. 210–217. ACM Press (May 1987)

32. For now, L.: The complexi y of perfec zero-knowledge (ex ended abs rac). In:
Aho, A. (ed.) 19 h ACM STOC. pp. 204–209. ACM Press (May 1987)

33. Freund, Y., Schapire, R.E.: Adap ive game playing using mul iplica ive weigh s.
Games and Economic Behavior 29(1-2), 79–103 (1999)

34. Fuchsbauer, G., Kil z, E., Loss, J.: The algebraic group model and i s applica ions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Par II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018)

35. Gabizon, A., Williamson, Z.J., Ciobo aru, O.: PLONK: Permu a ions over
lagrange-bases for oecumenical nonin erac ive argumen s of knowledge. Cryp ology
ePrin Archive, Repor 2019/953 (2019), https://eprint.iacr.org/2019/953

36. Garg, S., Os rovsky, R., Viscon i, I., Wadia, A.: Rese able s a is ical zero knowl-
edge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer,
Heidelberg (Mar 2012)

37. Gen ry, C., Wichs, D.: Separa ing succinc non-in erac ive argumen s from all fal-
sifiable assump ions. In: For now, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp.
99–108. ACM Press (Jun 2011)

38. Goldreich, O., Micali, S., Wigderson, A.: Proofs ha yield no hing bu heir validi y
and a me hodology of cryp ographic pro ocol design (ex ended abs rac). In: 27 h
FOCS. pp. 174–187. IEEE Compu er Socie y Press (Oc 1986)

23

39. Goldreich, O., Micali, S., Wigderson, A.: How o play any men al game or A
comple eness heorem for pro ocols wi h hones majori y. In: Aho, A. (ed.) 19 h
ACM STOC. pp. 218–229. ACM Press (May 1987)

40. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexi y of In erac ive
Proof-Sys ems. In: Sedgewick, R. (ed.) STOC 1985. pp. 291–304. ACM Press,
Providence, Rhode Island, USA (May 6–8, 1985)

41. Green, M., Hohenberger, S.: Prac ical adap ive oblivious ransfer from simple as-
sump ions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer,
Heidelberg (Mar 2011)

42. Gro h, J., Os rovsky, R., Sahai, A.: New Techniques for Nonin erac ive Zero-
Knowledge. Journal of he ACM 59(3) (2012)

43. Gro h, J., Sahai, A.: Efficien non-in erac ive proof sys ems for bilinear groups. In:
Smar , N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008)

44. Izabachène, M., Liber , B., Vergnaud, D.: Block-wise P-signa ures and non-
in erac ive anonymous creden ials wi h efficien a ribu es. In: Chen, L. (ed.) 13 h
IMA In erna ional Conference on Cryp ography and Coding. LNCS, vol. 7089, pp.
431–450. Springer, Heidelberg (Dec 2011)

45. Ju la, C.S., Roy, A.: Shor er quasi-adap ive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Par I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (Dec 2013)

46. Kil z, E., Wee, H.: Quasi-adap ive NIZK for linear subspaces revisi ed. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Par II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (Apr 2015)

47. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and upda able s ruc ured reference s rings. In:
Cavallaro, L., Kinder, J., Wang, X., Ka z, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019)

48. Meiklejohn, S.: An ex ension of he gro h-sahai proof sys em (2009)
49. Naor, M.: On cryp ographic assump ions and challenges (invi ed alk). In: Boneh,

D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (Aug
2003)

50. Naor, M., Yung, M.: Public-key cryp osys ems provably secure agains chosen ci-
pher ex a acks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

51. Ng, T., Tan, S., Chin, J.: A varian of BLS signa ure scheme wi h igh securi y
reduc ion. In: Mobile Ne works and Managemen - 9 h In erna ional Conference,
MONAMI 2017, Melbourne, Aus ralia, December 13-15, 2017, Proceedings. pp.
150–163 (2017), https://doi.org/10.1007/978-3-319-90775-8_13

52. Pass, R.: Unprovable securi y of perfec NIZK and non-in erac ive non-malleable
commi men s. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354.
Springer, Heidelberg (Mar 2013)

53. Ràfols, C.: S re ching gro h-sahai: NIZK proofs of par ial sa isfiabili y. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Par II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (Mar 2015)

54. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adap ive priced obliv-
ious ransfer. In: Shacham, H., Wa ers, B. (eds.) PAIRING 2009. LNCS, vol. 5671,
pp. 231–247. Springer, Heidelberg (Aug 2009)

55. Ro em, L., Segev, G.: Algebraic dis inguishers: From discre e logari hms o de-
cisional uber assump ions. In: Pass, R., Pie rzak, K. (eds.) TCC 2020, Par III.
LNCS, vol. 12552, pp. 366–389. Springer, Heidelberg (Nov 2020)

24

56. Shoup, V.: Lower bounds for discre e logari hms and rela ed problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997)

25

Appendix

A Additional Preliminaries

A.1 Σ-Protocols

A Σ-protocol is a public-coin three-round interactive protocol between a prover
P and a verifier V. A Σ-protocol should satisfy completeness, special soundness,
and special honest verifier zero-knowledge (SHVZK), defined as follows:

Definition 8 (Completeness). A Σ-protocol is complete for relation R, if for
any PPT adversary A, and any honest P and V,

Pr
[
⟨P(w),V⟩(x) = 1 ∨ (x, w) /∈ R (x, w)← A(1k)

]
= 1

Definition 9 (Special So ndness). A Σ-protocol for a relation R is special
sound, if there exists a PPT algorithm Ext that given a statement x and two
accepting transcripts (a, e, d), (a, e′, d′) with the same first message and e ̸= e′

outputs a witness w, such that (x, w) ∈ R with overwhelming probability.

Definition 10 (Special Honest-Verifier Zero-Knowledge (SHVZK)). A
Σ-protocol for a relation R is SHVZK, if there exists a PPT simulator Sim such
that for (x, w) ∈ R and e ∈ {0, 1}k, the distributions of Sim(x, e) is identical to the
distribution of the 3-move honest transcript obtained when V sends e as challenge
and P runs on common input x and private input w such that (x, w) ∈ R.

For the sake of completeness, we also recall the definition of witness indis-
tinguishability for Σ-protocols. As shown in [26], every Σ-protocol that enjoys
Completeness, Special Soundness and perfect Honest Verifier Zero Knowledge
(HVZK) is perfect WI.

Definition 11 (Witness Indisting ishability (WI)). A Σ-protocol for a
relation R is perfect WI 8 if for every malicious verifier V∗, for all st = (x, w1, w2)
such that (x, w1) ∈ R, (x, w2) ∈ R, we have

Pr
[
⟨P(w1, 1

k),V∗(st)⟩(x) = 1
]
= Pr

[
⟨P(w2, 1

k),V∗(st)⟩(x) = 1
]

8 WI is used o mean bo h “wi ness indis inguishabili y” and “wi ness indis inguish-
able”.

26

A.2 Witness Sampleable (WS) Lang ages

For a witness sampleable language L, the language parameters come together
with a trapdoor which allows to check whether x ∈ L. In this case, we suppose
that setup.lpar also outputs a (language) trapdoor ltrap associated with lpar

and allows to decide whether a given x ∈ X is in L or not. It is easy to see
that for linear languages, this trapdoor is the exponents of all matrix entries.
We refer to [25] for formal definition and more details of WS languages.

A.3 Smooth Projective Hash F nction (SPHF)

A SPHF is defined as follows (cf. [13]).

Definition 12. A SPHF for {Llpar} is a tuple of PPT algorithms
(setup, hashkg, projkg, hash, projhash), which are defined as follows:

setup(1k): Takes a security parameter k and generates the global parameters pp
together with the language parameters lpar (we assume that all algorithms
have access to pp).

hashkg(lpar): Takes a language parameter lpar and outputs a hashing key hk.
projkg(lpar; hk, x): Takes a hashing key hk, lpar, and a statement x and outputs

a projection key hp, possibly depending on x.
hash(lpar; hk, x): Takes a hashing key hk, lpar, and a statement x and outputs

a hash value H.
projhash(lpar; hp, x, w): Takes a projection key hp, lpar, a statement x, and a

witness w for x ∈ L and outputs a hash value pH.

A SPHF needs to satisfy the following properties:

Correctness. It is required that hash(lpar; hk, x) = projhash(lpar; hp, x, w) for
all x ∈ L and their corresponding witnesses w.

Smoothness. It is required that for any lpar and any x ̸∈ L, the following
distributions are statistically indistinguishable:

{(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H← hash(lpar; hk, x)}
{(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H← Ω} .

where Ω is the set of hash values.

A.4 Constr ction of SPHF from Diverse Vector Space

A diverse vector space (DVS) [13,1,11] is a representation of a language L ⊆ X
as a subspace L̂ of some vector space. Let R = {(x, w)} be a relation with L =
{x : ∃w, (x, w) ∈ R}. Let pp be system parameters, including say the description
of a bilinear group. A (pairing-based) DVS V is defined as V = (pp,X ,L,R, n,
k,M,θ,λ), where M(x) is an n × k matrix, θ(x) is an n-dimensional vector,

27

and λ(x, w) a k-dimensional vector. The matrix M(x) can depend on x (in this
case, it is called GL-DVS) or not (KV-DVS). Moreover, different coefficients of
θ(x), M(x), and λ(x, w) can belong to different algebraic structures as long as
the equation θ(x) =M(x) ·λ(x, w) is well-consistent. In the most common case,
this means that given a bilinear group pp = (p,G1,G2,GT , ê, g1, g2), they belong
to either Zp, G1, G2, or GT as long as the consistency of the above equation is
preserved.

A DVS V satisfies the following properties [11]:

– coordinate-independence of groups: the group in which each coordinate of
θ(x) lies is independent of x.

– perfect completeness: for any (x, w) ∈ R, θ(x) =M(x) · λ(x, w).
– statistical ε-soundness: ∀x ∈ X \ L, Pr[θ(x) ∈ colspace(M(x))] ≤ ε.

In this work, we only deal with DVSs where λ is the identity function. I.e.,
λ(x, w) = w. Given a GL/KV-DVS for L, one can construct an efficient GL/KV-
SPHF for x′ ∈ L, where w = w′ and x = [θ(x′)]ι = [M(x′)]ιw′ [13], see Fig. 7.
Here, the only possible nonlinear operation is the dependency of θ and M on
the actual input x′. It is known that if V is a 0-sound GL-DVS/KV-DVS, then
the PHF in Fig. 7 is a perfectly smooth GL/KV-SPHF, see Theorem 3.1.11 in
[11].

– hashkg(lpar): sample α⃗ ← Zn
p , and ou pu hk ← α⃗;

– projkg(lpar; hk, x = [θ(x′)]ι): [γ]⊤ι ← α⃗⊤[M(x′)]ι ∈ G1×k
ι ; re urn hp ← [γ]ι;

– hash(lpar; hk, x): re urn H ← α⃗⊤[θ(x′)]ι;
– projhash(lpar; hp, x, w = w′): re urn pH ← [γ]⊤ι w

′;

Fig. 7: DVS-based SPHF construction for Llpar with lpar = (M,θ).

We sometimes require algebraic languages to satisfy a property we call 1DL-
friendly. The reason we need this property is to enable the embedding of a
symmetric simple discrete logarithm challenge, which is given as a pair of group
elements, into an algebraic statement in the reduction. We give the definition
below.

Definition 13. An algebraic languages is 1DL-friendly if given a uniformly ran-
dom element, c ← Zp, there exist a tuple of functions λx, λw such that the fol-
lowing procedure can be used to generate a pair of true statement [x]1 with a
relative witness w.

– Define w1 = c and sample uniformly random w2, . . . , wd (independently from
w1). Compute w = λw(w1, . . . , wn). We restrict here to functions λw that
are affine in w1.

28

– Compute [x]1 = λx(w1, . . . , wn), such that M(x)w = θ(x). Again, we re-
strict to functions λx that are affine in w1.

Practically, given group elements [x]1, [x]2, we implicitly define x = w1 and
sample w2, . . . , wn ← Zp. Then, we compute [x]1 = λx([x]1, w2, . . . , wn) and
a G2-encoding of the relative witness [w]2 = λw([x]2, w2, . . . , wn), which are
efficiently computable because λx, λw are required to be affine as a function of
w1. We remark that this condition is only assumed for simplicity, in order to
state our formal theorem under simple assumptions. However, our framework
could in principle, work for any hard algebraic language, at the cost of using
more structured assumptions.

A.5 From Σ-protocols to NIZKs (Extended)

The work of [25] proposed a framework for compiling a Σ-protocol for algebraic
languages into a non-interactive zero-knowledge argument by embedding the
challenge in G2 and publishing it once in the crs. The soundness of the compiled
NIZK is based on a new family of assumptions extended-kernel Matrix Diffie-
Hellman (extKerMDH) that are not necessarily falsifiable 9.

Couteau and Hartmann [25] also showed how to achieve perfect soundness
by making use of the unconditional special soundness of the Σ-protocol. More
precisely, they proved that the compiled protocol in Fig. 3 is a NIZK proof
with computational zero-knowledge if the DDH assumption holds in G2, and
the underlying Σ-protocol is complete, special sound and SHVZK.

We remark that there is no efficient extractor to compute the witness in the
latter proof system. In fact the existence of a witness is guaranteed by the special
soundness of the underlying Σ-protocol, however, to be able to extract it, we need
an unbounded extractor to compute the exponent of group elements. To be more
precise, an efficient extractor can compute, in the best case, only exponentiations
of the witness in either G1 or G2 as shown in Section 4. It is worth mentioning
that the soundness proof is based on the existence of this unbounded extractor,
to compute a pair of proofs of the underlying Σ-protocol. More precisely, given
a valid proof for a false statement and under an honestly generated CRS, we
can (inefficiently) compute the field elements (s1, e1, s2, e2, d1, d2) and output
two valid proofs for the underlying Σ-protocol with the same first message and
different challenges (with overwhelming probability). This contradicts the special
soundness property, which states that two such proofs cannot exist for a false
statement.

A.6 Algebraic Gro p Model

Algebraic algorithms. We recall that AGM essentially states that for every ef-
ficient algorithm A that outputs the vector [y]ι of group elements in Gι when
given inputs the vector [x]ι of group elements in Gι, there exists an efficient

9 Al hough he assump ion is falsifiable for all wi ness-sampleable languages (A.2).

29

extractor ExtA that returns a matrix A such that y = Ax. In particular, since
we are working in the setting of asymmetric bilinear pairings, we require that
any outputs in one group must depend only on the inputs it receives in that
group.

Algebraic Distinguishers. Here, we briefly recall the notion of algebraic dis-
tinguishers and refer the reader to [55] for more details.

A distinguisher is an algorithm that aims to distinguish between 2 games.
Particularly, we consider adversaries A that engage in games with challengers,
parametrized by a bit b ∈ {0, 1}. We refer to Gb as the game where the bit
b is chosen. A distinguisher A aims to detect if it is playing the game G0, or
G1. At the end of its interaction with the challenger, it outputs a decisional bit
b′. A wins the game if b = b′. Let us denote by ViewGb

A the random variable
that describes the view of A in the game Gb (that is the input it received so
far and the internal random tape). Moreover, let [x0, . . . , xn1

]1, [y0, . . . , yn2
]2 be

A’s input, with x0 = y0 = 1, and let w⃗ be a vector indexed by two indices i ∈
{0, . . . , n1}, j ∈ {0, . . . , n2} such that the component wij is naturally associated
to the pairing of inputs [xi]1 and [yj]1, i.e., [xi]1[yj]2 = [xiyj]T . We indicate

with
[
ViewGb

A

]
supp(w⃗)

the random variable that is defined by the view A in the

game Gb omitting all group elements whose corresponding entry in w⃗ is 0. A
distinguisher A participating in an algebraic game Gb, is said to be algebraic if
there exists a PPT extractor ExtA that computes a vector w⃗ that explains the
decision in an algebraic way, at least with a certain probability.

Definition 14 (Algebraic disting isher). A distinguisher A participating
in an algebraic game Gb is said to be algebraic if there exists a PPT extractor
ExtA that computes a vector of field element w⃗ such that the following condition
holds.

1.
∑n1

i=1

∑n2

j=1 wij [xiyj]T = [0]T .
2. Let t be an upper bound over the running time of A and ϵ be the probability

that A successfully distinguishes between G0 and G1. Then

Pr

[[
ViewG0

A

]
supp(w⃗)

̸=
[
ViewG1

A

]
supp(w⃗)

]
≥ ϵ/t2,

where the inequality is intended as distributions and the probability is over
the choice of w⃗ induced by a random execution of Gb(A) and ExtA.

B NIWI Proof in the Plain Model

B.1 Efficiency of O r NIWI Proof

We give an informal comparison between the Groth-Ostrovsky-Sahai (GOS)
NIWI [42] in the plain model and our NIWI in Fig. 4.

Recall that GOS techniques [42] to construct NIWI in the plain model
consist of sending two distinct Groth-Sahai proofs, along with two different

30

crs-s chosen by the prover. This results in communication complexity that is
two times the size of proof plus the crs 10. With our technique, a NIWI proof
has communication complexity of one CH proof, on top of 6 group elements
that are sent as the “crs” that the prover chooses. As noted in [25], proofs
in the CH framework has the same size as optimized Groth-Sahai proofs, for
many languages of interest, such as disjunctions of linear languages. Hence our
NIWI proof, in these cases, has better communication complexity compared to
Groth-Sahai NIWI [42].

When proving statements where the statement is augmented with inter-
mediate commitments, our resulting statement size is much shorter, since
we only need to commit in G1, while usually one needs to commit in both
groups with GS. This results in better communication complexity in scenarios
where we embed a circuit satisfiability problem as an algebraic language and
commitments are part of the statement that are sent along with the proof.

Finally, we point out that our NIWI construction is the first that achieves
constant overhead for communication and computational complexity (with re-
spect to the language size), compared to the corresponding NIZK proof in the
CRS model.

B.2 Applications

There are several works [15,36,6] which show how one can make use of NIWI in
the plain model to construct more complex cryptographic primitives. Bitansky
et al. [15] showed how to construct verifiable random functions and verifiable
function commitment schemes using NIWI in the plain model. In [36], Garg
et al. introduced the notion of Efficiently Extractable Non-Interactive Instance-
Dependent Commitment Scheme and constructed a two-round resettable sta-
tistical witness-indistinguishable argument for languages that have such type
of commitments. The key idea in their construction is to make use of a NIWI
proof system in the plain model to ensure that verifier’s challenge in the first
round of the argument is well-formed. The fact that the verifier’s challenge is
a commitment to a random message indicates that the NIWI language is “na-
tively” algebraic, and hence our NIWI can be used to improve the efficiency of
the resulting argument in [36], wherein the NIWI is instantiated with [42].

The recent work of Ananth et al. [6] which provides a notion of accountability
towards the CRS generation authority employs a NIWI proof system. To this
end, the authority is required to include some valid transcript in the CRS and
since he is the one who generates the CRS, the idea of using a NIZK proof
does not work. The authority instead proves a statement about the transcript
using a NIWI proof. In more detail, the authority provides four commitments
(cm = (cm0, cm1), cm = (cm0, cm1)) and uses a NIWI in the plain model to prove

10 The proof size can na urally be improved by using op imized varian s of Gro h-Sahai
proofs like [29,53]

31

that one of cm or cm are commitments to both bits 0 and 1. Interestingly, the
NIWI language corresponding to the statements defined by the commitments is
again natively algebraic, for which our NIWI is suitable.

B.3 New Comp tational Ass mption and AGM Proof of Sec rity

Ass mption 5 (Symmetric power discrete logarithm (SPDL)) Let
q1, q2 be two integers. The (q1, q2)-SPDL assumption holds if for any PPT
adversary A,

Pr
[
y∗ = y y∗ ← A([1, y, y2, . . . , yq1]1, [1, y, y

2, . . . , yq2]2)
]
≤ negl(k)

where y is sampled from the uniform distribution over Zp.

Following the framework of [55], we prove the security of our new assumption
in the AGM. We start by restating the new assumption.

Ass mption 6 (Algebraic decisional hidden range) Let GADHR,i, for i ∈
{0, 1} be the games depicted in Fig. 5. Let lpar = (M,θ) be any pair of lan-
guage parameter that defines the algebraic language Llpar. The (M,θ)-ADHR
assumption states that for any PPT adversary A,

Adv
GADHR,0,1

A,lpar = |Pr [GADHR,0(A, lpar) = 1]− Pr [GADHR,1(A, lpar) = 1]| ≤ negl(k).

Theorem 3. If the (1, 2)-SPDL holds, then for any PPT algebraic distin-
guisher A, it holds that

Adv
GADHR,0,1

A,lpar ≤ negl(k)

for any lpar = (M,θ) that defines the algebraic language Llpar.

Proof. Let us first consider the case that M is of dimension d× 1 for any d > 0,
so r is a single element. Let A be an algebraic PPT distinguisher for the games
depicted in Fig. 5. In Fig. 8 we show how to exploit A in order to define an
adversary B to (1, 2)-SPDL problem. The reduction proceeds as follows: B first
picks some language parameter lpar and then runs the first stage of A in or-
der to obtain (x,w0,w1). Note that since B knows lpar as field elements, A
is algebraic and A receives as input only the generators, we can assume that
B knows x as field elements. Next, B samples some uniformly random elements
(u1, u2, ur, t1, t2, tr) to embed the challenge as elements uiy + ti. This is a stan-
dard procedure frequently used to embed a univariate challenge in a multivariate
polynomial [34,9]. Note that elements u1, u2, ur and y are perfectly hidden to
A as they are “one-time padded” with ti-s. This property will be used later in
the proof. Then, B samples uniformly random trapdoors e1, e2, computes π and
then runs the second phase of A in order to obtain the distinguisher bit b′. Note
that B needs [Y 2]2 in order to compute elements of the form [sir]2.

32

BA
2-SPDL([y]1, [y, y2]2)

Fix any lpar = (M,θ);

(x,w0,w1) ← A([1]1, [1]2, lpar);

b ← {0, 1};
ur, u1, u2, tr, t1, t2 ← Zp;

if ur[y]1 + tr[1]1 = [0]1, then return − tr/ur;fi ; (1)

if ∃i ∈ {1, 2} such ha ui[y]1 + ti[1]1 = [0]1, then return − ti/ui;fi ; (2)

e1, e2 ← Zp; (e1 ̸= e2)

for ι ∈ {1, 2} [r]ι = ur[y]ι + tr[1]ι;

for i ∈ {1, 2} [si]ι = ur[y]ι + tr[1]ι;

[sir]2 = uiur[y
2]2 + (uitr + urti)[y]2 + titr[1]2;

[di]2 = eiwb[si]2 + [sir]2;

if [di]2 = [0]2 then return − (tr + eiwb)/ur;fi ; (3)

endfor

endfor (∗)
π = ([M(x)r, s1, s2]1, [s1, s1e1, s2, s2e2, d1, d2]2);

b′ ← A([M(x)]1,w0,w1, π);

(ϕ⃗, ψ⃗, σ⃗) ← ExtA;

Find all he roo s of he univaria e polynomial

V (Y) = V (u1Y + t1, u2Y + t2, e1, e2, urY + tr,x);

Check if one of he roo s y∗ is equal o y; If yes return y∗ else return ⊥;

Fig. 8: SPDL reduction for the new assumption. Polynomials Φ,Σ, Ψ are as de-
fined in Eq. (2) and polynomial V is as defined in Eq. (3).

Let us define the polynomials

Φ(S⃗, E⃗) =
2∑

i=1

[ϕ0iSi + ϕ1iSiEi] +
2∑

i,j=1

[ϕ2ijSiSj + ϕ3ijSiSjEj];

Σ(R,X) = σ0 + σ1M(X)R.

Ψ(S⃗, E⃗, R,X) =
2∑

i=1

[ψ0i(SiEiw + SiR) + ψ1iM(X)RSi + ψ2iM(X)RSiEi]

+
2∑

i=1

[ψ3iM(X)R(SiEiw + SiR)] +
2∑

i,j=1

[ψ4ijSj(SiEiw + SiR)];

(2)

33

Since A is supposed to be an algebraic distinguisher, there exists a PPT extrac-
tor ExtA that computes coefficients (ψ⃗, ϕ⃗, σ⃗) such that the following verification

polynomial V (S⃗, E⃗, R,X) = Φ(S⃗, E⃗) + Ψ(S⃗, E⃗, R,X) +Σ(R,X) is 0 when eval-
uated in the point defined by A’s inputs. That is,

V (s⃗, e⃗, r,x) = Φ(s⃗, e⃗) + Ψ(s⃗, e⃗, r,x) +Σ(r,x) = 0. (3)

It is easy to see that V is the polynomial taking all the possible pairings among
A’s inputs. As shown in Fig. 8, B invokes ExtA to compute coefficients (ϕ⃗, ψ⃗, σ⃗)
of V .

Recall that by definition of algebraic distinguisher, with high probability,
V must have a number of non-zero coefficients, such that the view of A,
when restricted to the input corresponding to the non-zero monomials, is dis-
tributed differently in the two games. Particularly, in our case this implies that
V must explicitly depend on the used witness wb. Note that the monomials
of V in which wb is multiplied by M(x) are the same in both games, since
M(x)w0 = M(x)w1 = θ(x). Thus [Viewwb

A]supp(ϕ⃗,ψ⃗,σ⃗) for b ∈ {0, 1} are dis-

tributed differently if and only if V has a non-zero coefficient that corresponds
to a monomial in which wb but not M(x) appears. Formally, let ϵ be the advan-
tage of A in distinguishing the two distributions, and t be the running time of
A. Let Hit be the event that V explicitly depends on the used witness wb. Then
Pr [Hit] ≥ ϵ/t2 by the definition of algebraic distinguishers.

We first observe that B stops before the point labeled as (∗) with negligible
probability. This can be concluded by the fact that (u1, u2, ur, t1, t2, tr) and e1, e2
are sampled from uniform distributions which implies that the elements eiwb are
distributed uniformly at random too.

We now show that Pr [B wins] ≥ negl(k) + Pr [Hit]. Note that the variable R
appears in Ψ only multiplied by at least one of the variables S1, S2. Suppose that
Ψ(S⃗, e⃗, R,x) is a polynomial of degree at least 1 in R. So, there exists a non-zero

element ψ̃ of ψ⃗ that corresponds to a monomial in which the variable R appears.
Let Sz

1S
q
2RJ(e1, e2,x), for z, q ∈ {0, 1, 2} and some J , be this monomial. Since

Σ is independent from Si and Φ is independent from R, then V (S1, S2, e⃗, R,x) =
ψ̃Sz

1S
q
2RJ(e1, e2,x) + P (S1, S2, e⃗, R,x) where P is a trivariate polynomial that

does not contain a monomial of the type Sz
1S

q
2R. Thus, V (S1, S2, e⃗, R,x) is also

a non-zero polynomial of degree at least 2. Suppose now that Ψ(S⃗, e⃗, R,x) is

of degree 0 in R. This can happen if and only if Ψ = −∑2
i=1M(x)wψ1iSiEi,

(ψ0i = −ψ1i, and other coefficients of Ψ are equal to 0). Thus Ψ , and also V are
independent from w and the view of A is the same in the two games. Note in
fact that M(SiEiw) = θ(x)SiEi for each valid witness. By definition of Hit, this
cannot happen. Thus, we have shown that, conditioned on the event Hit, V is a
non-zero polynomial of (total) degree at least 2.

We now recall a lemma from [9] that we use in our proof.

Lemma 3 ([9]). Let V (X1, ..., Xm) be a non-zero multivariate polynomial in
Zp of total degree d. For each vectors u⃗, t⃗ of length m, define V (Y) as V (Y) =
P (u1Y + t1, . . . , umY + tm). Then the coefficient of maximal degree of Q is a
polynomial in u1, . . . , um of degree d.

34

By applying this lemma, we have that the coefficient of the term with maxi-
mal degree in V (Y) = V (u1Y + t1, u2Y + t2, e1, e2, urY + tr,x) is polynomial in
u1, u2, ur of degree at least 2. Let v(u1, u2, ur) be this term. Since u1, u2, ur are
perfectly hidden to A, the probability that v(u1, u2, ur) = 0 is negligible based
on the Schwartz-Zippel lemma.

Summing up, we have V (y) = 0 and, conditioned on Hit, V (Y) ̸= 0 as a
polynomial, except with negligible probability. This shows that Pr [B wins] ≥
negl(k) + Pr [Hit]− negl(k) ≥ negl(k) + ϵ/t2.

Thus, ϵ ≤ t2 Pr [B wins] + negl(k). The fact that Pr [B wins] is negligible by
assumption concludes the proof for the case of (d× 1)-dimension M.

What is left is to generalize the proof to the case whereM is a n×k matrix. In
this case, B will sample k different and independently chosen uniformly random
uir, tir and define each value of r as uirY + tir. Then, instead of having just one
verification polynomial V , we have k verification polynomials {Vi}i∈[k], one for
each line of M. By the definition of AGM distinguisher, at least one of these
polynomials, say Vi, must explicitly depend on wb. Applying the same procedure
to Vi as described above completes the proof. ⊓⊔

C Partial Extractability of CH Framework

C.1 f-extractability of CH Proof systems

We show that the CH NIZK proof system satisfies f extractability where f(x)
is the encoding of x to G2.

Lemma 4 (Lemma 1 restated). The NIZK proof system of [25] depicted
in Fig. 3 is [·]2-extractable.

Proof. We show the existence of an efficient extractor Ext that given a trapdoor
td and a valid proof π for any statement [x]1, outputs partial witness w̃. Let
td = (e1, e2, s1, s2). By relying on the soundness of the NIZK proof and the fact
that a valid proof π = ([a]1, [d1,d2]2) must satisfy the verification equations,
Ext computes a partial witness w̃ as follows:

– [d′
i]2 := [di]2s

−1
i = w[ei]2 + r[1]2

– u⃗ = [d′
1]2 − [d′

2]2
– ret rn w̃ = u⃗(e1 − e2)−1

It is easy to see that w̃ = [w]2 with probability 1.

C.2 Strong Partial Extractability of CH proof systems

To ease exposition we first show the proof for linear languages and then prove
the general case for any 1DL-friendly language.

Lemma 5. Let Llpar be any linear language defined by lpar = [M]1. Assuming
that co-CDH problem is hard, the NIZK proof system in Fig. 3 for Llpar is strong
[·]2-extractable.

35

Proof. From Lemma 1, we have that the proof system is [·]2-extractable. This
means that for any adversarially generated ([x]1, π) which passes the verifica-
tion, the extractor can extract w̃ = [w]2. To prove that it satisfies decidability
property, we define the algorithm D as follows: D([x]1, w̃ = [w]2) returns 1 if
[M]1[w]2 = [x]1[1]2. It is clear that D is efficient. To show how D decides the
membership of [x]1, note that the pairing equality holds iff w = f−1([w]2) (for
f(x) := [x]2) is a valid witness for [x]1, i.e., ([x]1,w) ∈ Rlpar. We now argue
that, compute w = f−1([w]2), is as hard as computing a valid proof π′ for [x]1
given w̃ = [w]2. Clearly, computing w = f−1([w]2) is hard given the hardness
of discrete logarithm in G2. We now show the hardness of computing a valid
proof, given a partial witness w̃, by a reduction to the co-CDH problem. Re-
call that co-CDH problem asks to compute [XY]2, given ([1, X, Y]2) ∈ G2 and
([1, X]1) ∈ G1 as input.

Consider the linear language Llpar, defined by lpar = [M]1, where M =
(mij) ∈ Zn×k

p . W.l.o.g we can assume that the first entry of M (i.e., m11) is
non-zero 11. Let A be an efficient algorithm that on input (lpar, crs, [x]1, w̃)
computes a valid proof π with non-negligible probability ϵ. We construct an
efficient algorithm B against co-CDH problem so that on input challenge
([1, X]1, [1, X, Y]2) proceeds as follows:

– Generate the CRS parameters by sampling s1, s2, e1 ← Zp and set e2 = [Y]2.
Let crs = ([s1, s2, s1e1, s2e2]2). It is clear that the distribution of crs is the
same as an honestly generated CRS.

– Define [w1]1 = [X]1 and sample uniformly random elements w2, . . . , wk ←
Zp. Let [w]1 = [w1, . . . , wk]1 and compute [x]1 = M[w]1. Compute also
w̃ = [w]2, where [w1]2 = [X]2 is from the challenge.

– Run A on input (lpar, crs, [x]1, w̃) to obtain a proof π = ([a]1, [d1,d2]2).
– Check if π makes the verifier accepts; and abort otherwise.
– Let u be the first entry of the vector (s1M[d2]2 + s1s2e1[x]2 −
s2M[d1]2)/(s1s2). Return ([u]2 − (

∑d
i=2m1iwi)[e2]2)/m11.

To see that the output is [XY]2, we note that, if the verifier accepts, then
Mdi = xsiei + sia for i ∈ 1, 2. Thus, we have MwY = xY = xe2 = (s1Md2 +
s1s2e1x − s2Md1)/(s1s2). To complete the proof we note that, since X = w1,

the first entry of MwY is equal to m11XY + (
∑d

i=2m1iwi)Y . This shows that
B returns [XY]2 with at least the same probability ϵ that A computes a valid
proof given only w̃ as the witness. ⊓⊔

Strong partial extractability for 1DL-friendly lang ages. Fix any lpar =
(M,θ) such that the defined algebraic language is 1DL-friendly. Thus, there
exists two affine functions λx, λw such that,M(λx(X))λw(X) = θ(λx(X)). Here,
with a little abuse of notation, we implicitly assume that X = w1, w2, ..., wn

are fixed values and λx(X) indicates λx(X,w2, ..., wn). Same for λw. Since the

11 This is wi hou loss of generali y since columns of M can be assumed o be linearly
independen .

36

composition of a linear and an affine map is still affine, we have that each entry
of (M(λx(X)))ij is defined by an affine function m1ijX +m0ij . Moreover, each
entry of (λw(X))j is defined by an affine function w1jX + w0j . Note that each
w2, ..., wn corresponds to a set of coefficients m1ij ,m0ij , w1j , w0j ; and viceversa,
i.e., to each set of coefficients, at least one choice of w2, ..., wn is corresponded.
Thus, we can assume that the reduction below knows w2, ..., wn. Given, any
e ∈ Zp, for any i ∈ {1, ..., n} let us define the polynomial

giT (X,Y) = X2Y
∑

j

(m1ijw1j)+XY
∑

j

(m1ijw0j+m0ijw1j)−X2e
∑

j

(m1ijw1j)

(4)
Note that this polynomial is not in the subspace generated by the base
{1, X,X2, Y,XY }, as long as

∑
j(m1ijw1j) ̸= 0. Following the framework of

Uber-assumptions (see [19]) we define the following assumption.

Ass mption 7 Let giT be any polynomial as defined in Eq. (4), such that∑
j(m1ijw1j) ̸= 0. For any PPT adversary A it holds that:

Pr
[
t = giT (x, y) x, y ← Zp; [t]T ← A([1, x]1, [1, x, y]2)

]
≤ negl(k)

Lemma 6. If Assumption 7 holds, then the NIZK proof system in [25], depicted
in Fig. 3 for any 1DL-friendly language, is strong [·]2-extractable.
Proof. The first part of the proof is the same as in Lemma 5. We just need to
show that, given w̃ = [w]2, computing a proof is hard. We prove the hardness
under Assumption 7.

Consider any git defined by the choice of any 1DL-friendly language and any
e ∈ Zp. Suppose that A can efficiently compute a valid proof with high probabil-
ity, having on input (lpar, crs, [x]1, w̃ = [w]2). We show how to define an effi-
cient adversary B to compute [git(x, y)]T , given the challenge ([1, x]1, [1, x, y]2).
B is defined as follows.

– Let e be as in Eq. (4). If e = y then compute [giT (x, y)]T . Note that in this
case [giT (x, y)]T can be easily computed having ([1, x, xy]1, [1, x, y]2).

– Else, generate the CRS parameters by sampling s1, s2 ← Zp and set [e1]2 =
[y]2, e2 = e. Let crs = ([s1, s2, s1e1, s2e2]2). It is clear that the distribution
of crs is the same as one that is generated honestly.

– Define [x]1 = [λx(x)]1, [w]1 = [λw(x)]1, [w]2 = [λw(x)]2. Note that w̃ = [w]2.
– Run A on input ([1,x]1, [1, s1, s2, s1e1, s2e2,w]2) to obtain a proof π =

([a]1, [d1,d2]2).
– Check if π makes the verifier accepts, otherwise B abort.
– Compute [δd]2 = (s2/s1)[d1]2 − [d2]2.
– Let [out]T be

[x]1(
∑

j

(m1ij [δ
d
j]2 + s2em1ijw0ij [1]2 + s2em0ijw1ij [1]2))

+[−1]1(
∑

j

s2m0ijw0j [y]2) + [1]1(
∑

j

(m0ij [δ
d
j]2 + s2em0ijw0ij [1]2)).

37

Output (1/s2)[out]T .

To see that B’s output is equal to gi,T (x, y), we note that, if the verifier
accepts, then, for i ∈ {1, 2},

M([λx(X)]1)[di]2 = θ([λx(X)]1)[siei]2 + [a]1[si]2,

which implies

M([λx(X)]1)[δ
d]2 = θ([λx(X)]1)[s2(Y − e)]2,

where the last equality follows by observing that e1 = Y , and e2 = e, and then
by multiplying the first equation with s2/s1 and subtracting the second. The
i-th row of the previous equation defines the polynomial

∑

j

((m1ijX +m0ij)δ
d
j) = s2(Y − e)

∑

j

((m1ijX +m0ij)(w1jX + w0j)).

Thus, we have

s2gi,T (X,Y) = X


∑

j

(m1ijδ
d
j + s2e(m1ijw0ij +m0ijw1ij))




− Y (s2
∑

j

m0ijw0j) +
∑

j

(m0ijδ
d
j + s2em0ijw0ij).

This completes the proof. ⊓⊔

D Full Extractability for the CH Framework

D.1 Knowledge So ndness of CH Arg ment Systems in the AGM

We show knowledge soundness of the argument system in Fig. 2 in the AGM
framework. We recall that AGM essentially states that for every efficient algo-
rithm A that outputs the vector [y]ι of group elements in Gι when given inputs
the vector [x]ι of group elements in Gι, there exists an efficient extractor ExtA
that returns a matrix A such that y = Ax. In particular, since we are working
in the setting of asymmetric bilinear pairings, we require that any outputs in
one group must depend only on the inputs it receives in that group.

Lemma 7. The NIZK argument in Fig. 2 is knowledge sound in the algebraic
group model for asymmetric pairings, under DL-assumption in G2.

Proof. Let A be a knowledge soundness adversary that on input [1]1, [1, e]2 out-
puts [x,a]1, [d]2. Since the verification equations hold, we have that,

M(x) · d = θ(x) · e+ a·

38

Now, since A is an algebraic algorithm, there exists an extractor that outputs
vectors d0,d1,a0,a1 such that d = d0 + d1e, a = a0, x = a1. The knowledge
soundness extractor simply outputs w = d1.

We show that this extractor outputs a witness whenever the verifier accepts,
except with negligible probability. Each equation defined by the verifier’s test can
be written as a a univariate polynomial Qi(X) := d0i + d1iX = xiX + ai where
d0i = (M(a1) · d0)i, d1i = (M(a1) · d1)i, xi = θ(a1)i and ai = a0i. Suppose
for the sake of contradiction that A computed a valid proof [a]1, [d]2 for an
adaptively chosen statement [x]1, but w output by the extractor as described
above is not a valid witness, that is, M(x) · w ̸= θ(x). Then we can use A to
break the DL assumption in G2.

The DL adversary receives a challenge [e]2 and invokes A on input crs = [e]2.
Then, the DL adversary obtains d0,d1,a0,a1 as defined above by the extractor
for the algebraic adversary A. If each polynomial Qi(X) is identically 0, that is
Qi(X) ≡ 0 as a polynomial, then M(a1) ·d1 = θ(a1) which implies that w = d1

and the extractor doesn’t fail. Otherwise, there exists i such that Qi(e) = 0, for
a non-zero polynomial Qi(X). Then e = (ai − d0i)/(d1i − xi) is the only root of
Qi(e). Note that Qi(X) ̸≡ 0 implies that d1i ̸= xi and thus the DL adversary
succeeds in breaking the DL-assumption in G2.

D.2 Semantic, BB and n-BB Extraction

Semantic extraction demands that for every adversary that implements a strat-
egy (an efficiently computable function that outputs an accepting proof) there
exists an extractor. Unlike n-BB extraction where there could be a different ex-
tractor for every machine, in semantic extraction, one extractor for a function
is a good extractor for all machines that implement that function. Semantic ex-
traction is non-blackbox only in the randomness of the adversary but treats the
adversary’s machine as a black-box; our formal definition allows the extractor
access to a part of the adversary’s randomness. By allowing the extractor to see
all or none of the prover’s randomness, the semantic definition recovers standard
n-BB and BB extraction definitions. We show that a NIZK satisfies semantic ex-
traction where the extractor is given all the randomness of the adversary (called
semn-BB) if and only if it satisfies the standard n-BB extraction definition. While
it seems intuitive that the extractor’s (in)ability to see the adversary’s random
coins makes the semantic extractor (BB)n-BB, this is not straightforward, es-
pecially the equivalence with BB definition. A BB extractor is also a semantic
extractor. For the other direction, consider the case when the semantic extractor
is not allowed to see the adversary’s randomness; here we would like to argue that
such a semantic extractor (called semBB) is a BB extractor. However, semantic
extraction only guarantees a (potentially different) extractor for every function
implemented by a prover. We therefore have to switch the order of quantifiers in
order to construct one universal extractor that works for all provers. For a re-
laxed concrete security notion of extraction, we can indeed show this concluding
that a special case of semantic extraction semBB implies BB extraction.

39

At a high-level, we rely on the minimax theorem from game theory to con-
struct a universal extractor from function-dependent extractors. We define a
utility function to capture how well the extractor performs. The minimax theo-
rem guarantees the existence of a distribution over extractors. Computing this
distribution is not guaranteed to be efficient. This can be done efficiently by
using a multiplicative weights algorithm [33] to implement an approximate min-
imax strategy by knowing the randomness used by the adversary. However, this
use of the adversary’s randomness makes the universal extractor non-blackbox.
We then show how to make the universal extractor BB without the randomness
of the adversary. Our use of minimax is reminiscent of its use in proving the
equivalence of distinguisher-dependent and universal simulators in [24], and in
switching the order of quantifiers in the proof of the leakage lemma in [37].

From Semantic to BB and n-BB. In the definition of semantic extraction, the
function implemented by the adversary uses randomness (s, t), and the extractor
receives t, but not s; thus the extractor is allowed to see a part of the adver-
sary’s randomness. Let us consider the two extremes of the extractor’s access:
(i) the extractor is not given even r, that is, does not see the randomness of the
adversary. (ii) the extractor is given both (s, t), that is, the extractor sees the
entire randomness of the adversary. Intuitively, the former is black-box in the
adversary, and the latter is white-box. However, in order to establish the equiv-
alences, we also have to be careful with the order of quantifiers in the definition
of extraction, which is different in the black-box and the semantic notion. In
this section, we show that versions of semantic extraction where we control the
randomness access of the extractor as in (i) and (ii) are equivalent to standard
black-box (one side of the equivalence additionally needs a relaxed concrete (t, ϵ)
variant of the definitions) and white-box definitions respectively.

We first give the concrete security definitions of black-box extraction, and se-
mantic black-box extraction which is the semantic definition where the extractor
is not given the randomness of the prover.

Definition 15. A NIZK argument Π = (CRSGen,P,V, Sim) is semantic black-
box knowledge sound (semBB) if for each efficiently implementable knowledge
soundness strategy f there exists a PPT extractor Ext = Extf , such that, for
each (even unbounded) TM A∗ that implements f

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); (s, t)← D
∧(x, w) /∈ R (x, π)← A∗(crs; s, t); w← Ext(td, x, π)

]
≤ negl(k).

Definition 16. A NIZK argument Π = (CRSGen,P,V, Sim) is (t, ϵ) black-box
knowledge sound, if there exists an extractor Extbb such that, for any t-time
adversary A:

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ R (x, π)← A(crs; r); w← Extbb(td, x, π)

]
≤ ϵ(k)

where r is the random coins of the adversary.

40

Definition 17. A NIZK argument Π = (CRSGen,P,V, Sim) is (t, ϵ) semBB
(semantic black-box knowledge sound) if for each t-time implementable knowledge
soundness strategy f , there exists a PPT extractor Ext = Extf , such that, for
each (even unbounded) TM A∗ that implements f

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); (s, t)← D
∧(x, w) /∈ R (x, π)← A∗(crs; s, t); w← Ext(td, x, π)

]
≤ ϵ(k).

Theorem 4. Let Π be a NIZK argument that is BB knowledge sound as in
Definition 1. Π is also semBB knowledge sound as in Definition 15. Conversely,
if a NIZK argument Π is (t, ϵ) semBB knowledge sound as in Definition 17,
for each polynomial t and inverse polynomial ϵ, then Π is (t′, ϵ′) BB knowledge
sound for every polynomial t′ and inverse polynomial ϵ′ as in Definition 16.

Proof. The first implication is straightforward. Let Ext be a BB extractor that
satisfies Definition 1. Then this extractor is, by definition, a semantic black-box
extractor for each efficiently implementable knowledge soundness strategy as in
Definition 1.

We now prove the second implication. Suppose Π is (t, ϵ) semBB as in Defini-
tion 17, for each polynomial t and inverse polynomial ϵ. Let t′ be any polynomial,
and ϵ′ any inverse polynomial. We show that Π is (t′, ϵ′) BB by constructing an
extractor ExtBB and showing that it satisfies Definition 16.

High-level description of the extractor. The universal extractor ExtBB on in-
put td, x, π uses the multiplicative weights algorithm [33] to find a good set
of extractors (Ext1, . . . ,ExtL), then runs each of the extractors in the set and
outputs a witness if at least one of the extractors succeeds.

We define the “advantage” of an extractor Ext with respect to a knowledge
soundness strategy kss = f as follows. Since kss is efficiently implementable, we
fix a PPT adversary Akss that implements kss.

µ(Ext,Akss) := Pr

[
V(crs, x, π) = 1 r ← D,

(x, w) ∈ R (x, π) = f(crs; r), w← Ext(td, x, π)

]
.

Note that we define this advantage for a fixed pair of (crs, td). We would now
like to define this advantage for a distribution over the set kss of knowledge
soundness strategies kss1, . . . , kssk; consider the set {Akss1 ,Akss2 , . . . ,Akssk} of
efficient uniform machines with description of size ≤ log k that are implementa-
tions of the set of kss. We also redefine each Akssj such that it halts and outputs
⊥ after t′ steps. Each fixed t′-time machine A for t′ = poly(k) will eventually
appear in the set.

Given a distribution D over the set {Akss1 ,Akss2 , . . . ,Akssk}, we define the
advantage of the extractor Ext with respect to the distribution as

µ(Ext,D) := EAkss∼D [µ(Ext,Akss)] =
∑

Akss∈Supp(D)

D(Akss) · µ(Ext,Akss).

where (D(Akss1), . . . ,D(Akssk)) is the vector of probability weights representing
D. Our goal is to construct an extractor Ext such that for every t′ implementable

41

strategy that is implemented by Akss, we have that

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ R (x, π)← Akss(crs; r); w← Ext(td, x, π)

]
≤ ϵ′(k).

We note that, this is equivalent to constructing Ext such that for every t′

implementable strategy (implemented by Akss),

E(crs, d)∼CRSGen(1k) [µ(Ext,Akss)] ≥ 1−O(ϵ′(k)).
We now give an overview of the multiplicative weights algorithm. The ex-

tractor emulates a certain number of rounds of a zero-sum game between an
extractor player and a knowledge soundness adversary. The payoff function for
the extractor is the advantage µ(·, ·). In each round, the knowledge soundness
adversary chooses a distribution D, and the extractor chooses Exti such that
its expected payoff is high. We begin with the uniform distribution D(1) over
{Akss1 ,Akss2 , . . . ,Akssk}. In each round, this is updated to D(i+1) using the mul-
tiplicative weights algorithm using the advantage function µ(·, ·). For this, the
knowledge soundness adversary in the two player game needs to compute the
payoff function µ(Ext,Akss) of an extractor that is good with respect to Akss.
We use a universal adversary that takes a description of a knowledge soundness
adversary Akss as auxiliary input and runs Akss in order to compute the payoff
function. Then, we choose an extractor that is good with respect to this univer-
sal adversary. The extractor, therefore needs to efficiently find the kss-dependent
extractor for the mixed strategy D(i) over kss implementations. This is done by
using the universal adversary AU that takes the vector of probability weights
representing D as auxiliary input, samples a kss adversary from the distribu-
tion, and runs the sampled adversary. Let ExtAU

be the extractor for the kss
implemented by AU that is guaranteed to exist by semantic extraction. In the
ith round, we choose Exti to be the machine that runs ExtAU

given the weights
of D(i) as auxiliary input. The description of this extractor is given in Fig. 9.
Later, we show how to make ExtBB efficient when Exti is not given any auxiliary
input.

It can be verified that ExtBB runs in time O(L[γ(t′ + TU) + TU]) =

O(log k
ϵ′(k2) [

log(kL/ϵ′(k))
ϵ′(k)2 k(t′+TU)+TU]), that is polynomial in t′ and 1/ϵ′. To prove

the theorem we must show that, for each t′ implementable knowledge soundness
strategy kss, E(crs, d)∼CRSGen(1k) [µ(ExtBB,Akss)] ≥ 1−O(ϵ′(k)). In order to show
this, we rely on two auxiliary lemmas: the first shows that if in each round Exti
does well against D(i) with respect to µ̃(·, ·), then Ext does well against each
Akss. This follows from the analysis of the multiplicative weights algorithm. The
second lemma shows that the above statement holds for µ(·, ·).
Lemma 8. For every knowledge soundness strategy implementation Akssj ∈
{Akss1 ,Akss2 , . . . ,Akssk}, the extractor defined in Fig. 9 generates D(1), . . . ,D(L)

and Ext1, . . . ,ExtL such that

1

L

L∑

i=1

µ̃(Exti,Akssj) ≥
1

L

L∑

i=1

µ̃(Exti,D(i))−O(ϵ′(k)).

42

ExtBB(td, x, π).

– Le D be a dis ribu ion over a se of kss implemen a ions
{Akss1 ,Akss2 , . . . ,Akssk}. Le wD be he vec or of weigh s represen ing

D. Tha is (wD)j = Pr
[
Akssj

$←−− D
]
. Le AU be he PPT ha on inpu

(crs, r) in erpre s r as wD||χ||r′, samples a knowledge soundness s ra egy
adversary Akssj from D, using random coins χ, and runs Akssj on (crs, r′).
Le f be he func ion implemen ed by AU , and TU be a polynomial ha
bounds he running ime of AU . Le ExtAU be he (TU , ϵ′) black-box seman ic
ex rac or for AU as in Defini ion 17.

– Le L = Θ(log k
ϵ′(k2)

) and β = 1

1+
√
(2 log k)/L

.

– Le D(1) be he uniform dis ribu ion over {Akss1 ,Akss2 , . . . ,Akssk}. For i =
1, . . . , L do
1. On inpu (td, x, π), consider he adversary AUi(crs, (χ||r)) which is de-

fined as AU (crs, r′), where r′ = wD(i) ||χ||r. Le fi be he func ion im-
plemen ed by AUi . No e ha fi(crs, (χ||r)) = f(crs, (wD(i) ||χ||r)). No e
also ha fi is an efficien ly implemen able knowledge soundness s ra egy,
since he running ime of AUi is bound by TU . Le Exti be he (TU , ϵ′)
black-box seman ic ex rac or for AUi .

2. Le D(i+1) be defined as β
µ̃(Exti,Akssj

) · D(i) up o renormalizing. Tha is

D(i+1)(Akssj) =
β
µ̃(Exti,Akssj

)D(i)(Akssj)∑k
l=1 βµ̃(Exti,Akssl

)D(i)(Akssl)

where µ̃(Ext,Akss) is defined by he procedure in Fig. 10. µ̃(Ext,Akss) can
be hough of as an approxima ion of µ(Ext,Akss).

– Run each ex rac or Exti in he se {Ext1, . . . ,ExtL}, and verify if one of hem
succeeded in compu ing a valid wi ness.

– Ou pu a valid wi ness if available, else ou pu ⊥.

Fig. 9: The black-box (t′, ϵ′) extractor.

Le γ = Θ(log(kL/ϵ′(k))
ϵ′(k)2). Le freq = 0. For i = 1, . . . , γ do

1. Sample r ← D. Compu e (x, π) = Akss(crs, r).
2. Compu e w ← Ext(td, x, π).
3. If V(crs, x, π) = 1 and (x, w) ∈ R, hen freq = freq + 1.

µ̃(Ext,Akss) = freq/γ.

Fig. 10: µ̃(Ext,Akss)

43

Proof. Recall that the relative entropy of two random variables X and Y is
defined as

KL(X||Y) =
∑

x∈supp(X)

Pr [X = x] ln
Pr [X = x]

Pr [Y = y]
.

Now, consider a strategy Akssj ∈ {Akss1 , . . . ,Akssk}. Fix a pair (crs, td) ←
CRSGen. Lastly, fix the random tape of the extractor. in this way, all the random
variables that appears in Fig. 9, became fixed.

We begin showing that for each i ∈ {1, . . . , L} we have

KL(Akssj ||D(i+1))−KL(Akssj ||D(i)) ≤

(ln
1

β
)µ̃(Exti,Akssj)− (1− β)

k∑

b=1

Pr
[
D(i) = kssb

]
µ̃(Exti,Akssb). (5)

Upon fixed i, we have

KL(Akssj ||D(i+1))−KL(Akssj ||D(i))

= ln
1

Pr
[
D(i+1) = kssj

] − ln
1

Pr
[
D(i) = Akssj

]

= ln
Pr
[
D(i) = Akssj

]

Pr
[
D(i+1) = Akssj

]

= ln

∑k
b=1 β

µ̃(Exti,Akssb
) Pr

[
D(i) = Akssb

]

βµ̃(Exti,Akssj
)

= ln(
1

β
)µ̃(Exti,Akssj) + ln

k∑

b=1

βµ̃(Exti,Akssb
) Pr

[
D(i) = Akssb

]
.

Since, x ∈ [0, 1] and β > 0 imply that βx ≤ 1 − (1 − β)x, recalling that∑k
b=1 Pr

[
D(i) = Akssb

]
= 1, we have

ln(
1

β
)µ̃(Exti,Akssj) + ln

k∑

b=1

βµ̃(Exti,Akssb
) Pr

[
D(i) = Akssb

]

≤ ln(
1

β
)µ̃(Exti,Akssj) + ln

(
1− (1− β)

k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

])

Lastly, from x < 1 implies that ln(1− x) ≤ −x, we have

ln(
1

β
)µ̃(Exti,Akssj) + ln

(
1− (1− β)

k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

])

≤ ln(
1

β
)µ̃(Exti,Akssj)− (1− β)

k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
,

44

which complete the proof of Eq. (5).
Now, summing Eq. (5) over i ∈ {1, ..., L}, we have

KL(Akssj ||D(L+1))−KL(Akssj ||D(1))

≤ ln(
1

β
)

L∑

i=1

µ̃(Exti,Akssj)− (1− β)
L∑

i=1

k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
.

From the last inequality and using KL(Akssj ||D(L+1)) ≥ 0,

KL(Akssj ||D(1)) ≤ ln k and ln(1
β) ≤

1−β2

2β (which holds because β ∈ (0, 1]), we
have

− ln k ≤ 1− β2

2β

L∑

i=1

µ̃(Exti,Akssj)−(1−β)
L∑

i=1

k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
.

Rearranging the last inequality we have

L∑

i=1

k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]

≤ 1− β2

2β(1− β)
L∑

i=1

µ̃(Exti,Akssj) +
1

1− β ln k

=
1 + β

2β

L∑

i=1

µ̃(Exti,Akssj) +
1

1− β ln k

=
L∑

i=1

µ̃(Exti,Akssj) +

(
1 + β

2β
− 1

) L∑

i=1

µ̃(Exti,Akssj) +
1

1− β ln k.

We recall here that β = 1

1−
√

(2 log k)/L
. So 1

1−β ln k =
√

2L ln k
2 + ln k and

1−β
2β L+

√
2L ln k

2 =
√
2L ln k, which imply

L∑

i=1

k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]

≤
L∑

i=1

µ̃(Exti,Akssj) +

(
1 + β

2β
− 1

) L∑

i=1

µ̃(Exti,Akssj) +
1

1− β ln k

=

L∑

i=1

µ̃(Exti,Akssj) +

(
1 + β

2β
− 1

) L∑

i=1

µ̃(Exti,Akssj) +

√
2L ln k

2
+ ln k

≤
L∑

i=1

µ̃(Exti,Akssj) +
1− β
2β

L+

√
2L ln k

2
+ ln k

=
L∑

i=1

µ̃(Exti,Akssj) +
√
2L ln k + ln k.

45

Finally, rearranging the inequality and dividing by L we have the result. For
the reader convenience, we also recall here that, by definition,

µ̃(Exti,D(i)) =
k∑

b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
.

⊓⊔

Lemma 9. For each Akssj ∈ {Akss1 ,Akss2 , . . . ,Akssk}, with probability 1 −
O(ϵ(k)) over the random coins of the extractor, the extractor defined in Fig. 9
generates D(1), . . . ,D(L) and Ext1, . . . ,ExtL such that

1

L

L∑

i=1

µ(Exti,Akssj) ≥
1

L

L∑

i=1

µ(Exti,D(i))−O(ϵ′(k)).

Proof. As done in the previous lemma, fix a pair (crs, td)← CRSGen, and fix the
random tape of the extractor. in this way, all the random variables that appears
in Fig. 9, become fixed. We begin to show that, |µ̃(Ext,Akss)− µ(Ext,Akss)| ≤
O(ϵ′(k)) with probability 1 − O(ϵ′(k)

kL), for each extractor Ext and each Akss ∈
{Akss1, . . . ,Akssk}. Let X denotes the random variable that counts the number
of success of the extractor Ext, when one compute µ̃(Ext,Akss), as prescribed in
Fig. 10. That isX = freq, where freq is the variable defined in Fig. 10. Formally,
X = γµ̃(Ext,Akss). Note that the expected value of X is E(X) = γµ(Ext,Akss).
Now,

Pr [|µ̃(Ext,Akss)− µ(Ext,Akss)| ≥ ϵ′(k)]
= Pr [|X − γµ(Ext,Akss)| ≥ ϵ′(k)γ]
≤ Pr [|X − γµ(Ext,Akss)| ≥ ϵ′(k)γµ(Ext,Akss)]

= Pr [|X − E(X)| ≥ ϵ′(k)E(X)] .

We recall here the multiplicative form of Chernoff bound for a random vari-
able X. For each δ > 0, it holds that

Pr [|X − E(X)| ≥ δE(X)] ≤ 2e−(δ2E(X))/3.

We also recall that γ = Θ(log(kL/ϵ′(k))
ϵ′(k)2). Applying the Chernoff bound to the last

term of the inequality above, we have

Pr [|µ̃(Ext,Akss)− µ(Ext,Akss)| ≥ ϵ′(k)] ≤ 2e−(ϵ(n)2E(X))/3

= 2e−(ϵ(k)2γµ(Ext,Akss))/3

= 2

(
kL

ϵ′(k)

)(−Cµ(Ext,Akss))

= O(ϵ
′(k)
kL

),

46

where C is a positive constant.
By the union bound, we have

|µ̃(Exti,Akss)− µ(Ext,Akss)| ≤ O(ϵ′(k)), (6)

for each i ∈ {1, . . . , L}, with probability at least 1− kLO(ϵ′(k)
kL) = 1−O(ϵ′(k)).

Finally, conditioned on the previous event, we have

1

L

L∑

i=1

µ(Exti,Akssj)

≥ 1

L

L∑

i=1

µ̃(Exti,Akssj)−O(ϵ′(k))

≥ 1

L

L∑

i=1

n∑

k=1

µ̃(Exti,Akssk) Pr
[
D(i) = Akssk

]
−O(ϵ′(k))

≥ 1

L

L∑

i=1

k∑

b=1

(µ(Exti,Akssb)−O(ϵ′(k))) Pr
[
D(i) = Akssb

]
−O(ϵ′(k))

=
1

L

L∑

i=1

µ(Exti,D(i))−O(ϵ′(k)).

Here the second inequality holds by Lemma 8 and the other inequalities follows
by Eq. (6). ⊓⊔

Now, we show that, for each i ∈ {1, . . . , L}, Exti is a good extractor against
D(i), that is E(crs, d)∼CRSGen(1k)

[
µ(Exti,D(i))

]
≥ O(ϵ′(k)) for each i. Consider,

µ(Exti,D(i)) =
k∑

j=1

D(i)(Akssj) · µ(Ext,Akssj)

=

k∑

j=1

D(i)(Akssj) · Pr



V(crs, x, π) = 1 r ← Dj ,

∧ (x, π) = fj(crs; r),
(x, w) ∈ R w← Ext(td, x, π)


 .

= µ(Exti,AUi) = µ(ExtAUi
,AUi)

The second equality is given by the definition of AUi , and the third inequal-
ity follows from the definition of Exti. Let f be the kss implemented by AUi .
Now, since ExtAUi

is a good extractor for f , by the (t′, ϵ′) semantic black-box
extraction, we have that

E
(crs, d)∼CRSGen(1k)

[
µ(Exti,D(i))

]
= E

(crs, d)∼CRSGen(1k)

[
µ(ExtAUi

,AUi)
]

= Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); s← D
∧(x, w) ∈ R (x, π)← AUi(crs; s); w← ExtAUi

(td, x, π)

]

≥ 1− ϵ′(k) (7)

47

From Lemma 9, with probability 1−O(ϵ′(k)), the generated {Ext1, . . . ,ExtL}
are such that

1

L

L∑

i=1

µ(Exti,Akssj) ≥
1

L

L∑

i=1

µ(Exti,D(i))−O(ϵ′(k))

1

L
E

(crs, d)

[
L∑

i=1

µ(Exti,Akssj)

]
≥ 1

L
E

(crs, d)

[
L∑

i=1

µ(Exti,D(i))

]
−O(ϵ′(k)) (8)

From Eq. (7) and Eq. (8),

1

L

L∑

i=1

E
(crs, d)

[µ(Exti,Akss)] ≥ 1−O(ϵ′(k)).

Finally, since ExtBB generates the set of {Exti}, and fails only if all of them
fail, we have

E
(crs, d)

[µ(ExtBB,Akss)] ≥
1

L

L∑

i=1

E
(crs, d)

[µ(Exti,Akss)] ≥ 1−O(ϵ′(k)).

⊓⊔

Unfortunately, the extractor depicted in Fig. 9 is not guaranteed to be poly-
nomial time since it is not efficient to find the distribution-dependent extractor
Exti. Using an auxiliary input to encode the distribution is an idea used in prior
works like [24], however, since we are interested in a BB extractor, we cannot
allow the extractor to read auxiliary inputs. Instead, we interpret the universal
KSS – that takes an auxiliary input, a string encoding each distribution D(i),
samples a distribution, then samples a KSS as per that distribution – also as a
knowledge soundness strategy. We then show that invoking the extractor corre-
sponding to this universal KSS works well against distribution dependent AUi .
Note that such a AU is indeed polynomial time: Each distribution D computed
in the “for” loop of Fig. 9 can be represented as a weight vector wD of polynomial
length.

Let ExtAU
be a (t, ϵ2) extractor against the knowledge soundness strategy

AU , where AU is as defined above. We show in the following lemma that ExtAU

is a good approximation of an extractor for any distribution dependent AUi
,

with probability greater than 1−O(ϵ). Thus, we can define the efficient univer-
sal black-box extractor as follows: run L independent executions of ExtAU

and
output a valid witness if at least one of the executions succeeds. The used ExtAU

has to be a (t, ϵ) with ϵ much better than ϵ′2.

Lemma 10. Let N be the number of times that any semantic extractor is called
in the procedure defined in Fig. 9. Let L be defined as in Fig. 9. Let ExtAU

be the
(t, ϵ) semantic black-box extractor against AU , where ϵ = O(ϵ′2/N). Then the
procedure defined by running L independent executions of ExtAU

is a black-box
(Lt, ϵ′) extractor, for every inverse polynomial ϵ, ϵ′.

48

Proof. Let Y be the conditional expectation of the failure of ExtAU
against AU ,

given a fixed distribution wD over Akss-es. Formally we have

Y (W) = E [1− µ(ExtAU
,AU)| [W = w]]

= Pr

[
V(crs, x, π) = 1 (χ, r)← D
∧(x, w) /∈ R (x, π)← AU (crs; (w||χ||r)); w← ExtAU

(td, x, π)

]
.

Note that E [Y] = ϵ(k), by definition. We now recall Markov inequality. For each
non-negative random variable X that admits expected value E [X], for each value
α it holds that

Pr [X ≥ α] ≤ E [X]

α
.

Applying the inequality to Y we get

Pr [Y ≥ ϵ′(k)] ≤ ϵ(k)

ϵ′(k)
= O(ϵ′(k)/N(k)).

Note that, for each of the k Akss, there exists w such that

Pr

[
V(crs, x, π) = 1 r ← D
∧(x, w) /∈ R (x, π)← Akss(crs; r); w← ExtAU

(td, x, π)

]

=Pr

[
V(crs, x, π) = 1 (χ, r)← D
∧(x, w) /∈ R (x, π)← AU (crs; (w||χ||r)); w← ExtAU

(td, x, π)

]

= Y (w).

Here w is the distribution that puts a weight of 1 on Akss. Moreover, for each
distributions D(i), represented by vector of weights wi and the corresponding
AUi , we have

Pr

[
V(crs, x, π) = 1 (χ||r)← D
∧(x, w) /∈ R (x, π)← AUi(crs; (χ||r)); w← ExtAU

(td, x, π)

]

=Pr

[
V(crs, x, π) = 1 (χ, r)← D
∧(x, w) /∈ R (x, π)← AU (crs; (wi||χ||r)); w← ExtAU

(td, x, π)

]

= Y (wi).

Suppose now, we define a universal extractor as the one defined in Fig. 9,
except, we run AU every time an extractor is called in the procedure. This new
universal extractor is a good approximation of the one in Fig. 9, as long as
the distribution of Y (W) is sufficiently dense around its average. Indeed, using
Markov inequality, we show how to choose ϵ as a function of ϵ′ so that each
time we use ExtAU

instead of any other extractor in the proof of Theorem 4,
with overwhelming probability, we have an average loss of O(ϵ′(k)/N(k)). Now
applying the union bound we have the result. The resulting BB extractor runs
in time Lt.

⊓⊔

49

Semantic and white-box extraction. We now state the restricted semantic
knowledge soundness definition for which the equivalence to white-box knowl-
edge soundness holds. We consider knowledge soundness strategies f such that
f : CRS× Γt → χ× Ψ and Γs is the set that contains only the empty string.

Definition 18. A NIZK argument Π = (CRSGen,P,V, Sim) is semantic white-
box knowledge sound (semn-BB) if for each efficiently implementable knowledge
soundness strategy f , there exists a PPT extractor Ext = Extf , such that, for
each (even unbounded) TM A∗ that implements f

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); r ← D
∧(x, w) /∈ R (x, π)← A∗(crs; r); w← Ext(td, x, π, r)

]
≤ negl(k).

Theorem 5. A NIZK argument is white-box knowledge sound (semn-BB) as in
Definition 2 if and only if it is also semantic knowledge sound as in Definition 18.

Proof. Any semantic extractor that satisfies Definition 18, is also, by definition, a
white-box extractor for each PPT that implements a certain function. So “only
if” side is trivial. To show the other direction, suppose that there exists two
efficient PPT machines A,A′ that implement the same function f . Let Ext,Ext′

be the corresponding white-box extractors as in Definition 2. We show that Ext
is a semantic extractor for A′.

Consider the set of tuples (crs, x, π) such that there exists r for which (x, π) =
f(crs, r). We can divide this set into two disjoint subset. The first subset is
defined by the tuples such that w ← Ext(td, x, π, r), w′ ← Ext′(td, x, π, r) and
(x, w) ∈ R, (x, w′) ∈ R with overwhelming probability. Given the tuple belongs
to this set, then Ext will also be a good extractor for A′, although in the general
case it can return a different (but still valid) witness with respect to Ext′.

We now consider the set of tuples (crs, x, π) such that at least one extractor
fails with non-negligible probability. Consider the subset of tuples such that
w ← Ext(td, x, π, r), w′ ← Ext′(td, x, π, r) and (x, w) /∈ R, (x, w′) ∈ R. This set
is of negligible size, since it is a subset of the set of tuples for which Ext fails,
which is negligible dy definition.

Thus, Ext is a good semantic extractor for each PPT that implements the
function f . It only remains to show that Ext is a good extractor even against
unbounded TMs that implement f . This is true since the set in which Ext fails
is of negligible size. So, let A∗ be an unbounded TM that implements f . Clearly,
Ext is a good extractor for A∗, since A(crs, r) = A∗(crs, r) for each (crs, r). It
is also a good semantic extractor for A∗, since the set of (crs, x, π) tuples such
that Ext fails on A∗ but not for A is the empty set.

D.3 Impossibility of Semantic Knowledge So ndness for CH-NIZK

Theorem 6 (Theorem 2 restated). Let Llpar be any 1DL-friendly algebraic
language with lpar = (M,θ). The NIZK argument in Fig. 2 cannot be semantic
knowledge sound for Llpar under the SDL assumption.

50

Proof. The proof is similar to the proof of Lemma 2. Fix a language with the
properties mentioned in the statement; that is, fix suitable M,θ. Suppose that
the relative NIZK argument is semantic knowledge sound. Define the canonical
prover adversary, on input crs = [e]2 and randomness (s, r, r′), in the following
way:

1. Sample uniformly random w1 using seed s.
2. Using random coins r′ sample all the other integer, w2, . . . , wd and define
w = λw(w1, . . . , wn).

3. Compute x = λx(w1, . . . , wn).
4. Using random coins r compute a, [d]2 as prescribed by the honest prover.
5. Output ([x]1, π = ([a]1, [d]2)).

Let Extf be the semantic extractor defined for the canonical adversary. We can
exploit it to define an adversary A for the SDL assumption. On input an SDL
challenge ([w1]1, [w1]2), A do the following.

1. Sample e, r, r′.
2. Using random coins r′ sample all the other integer, w2, ...wd and define

[w]2 = λw([w1]2, w2 . . . , wn). Recall that this is efficiently computable since
λw is linear in w1.

3. Compute [x]1 = λx([w1]1, w2 . . . , wn). Recall that this is efficiently com-
putable since λx is linear in w1.

4. Compute [a]1 as r[M(x)]1.
5. Compute [d]2 as e[λ(w)]2 + [r]2.
6. Compute w← Extf (([a]1, [d]2), e, [x]1, (r, r

′)).
7. Output w1.

Since A computes the same function as an unbounded prover that is able to
recover e from [e]2, inputs provided to the extractor are correctly distributed.
Thus, A computes discrete logarithm w1 with the same probability that Extf is
successful, breaking the SDL assumption.

D.4 Impossibility of Semantic Extractability for SPHF-based
QA-NIZKs

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS can
depend on some parameters lpar of the language for which proofs have to be
generated [45]. The language dependent preprocessing improves efficiency and
leads to succinct proofs which have size as short as a single group element [45].
QA-NIZK arguments are not arguments of knowledge in general. While in [22]
it has been shown that QA-NIZK arguments can satisfy this property in the
generic/algebraic group model, showing this property in the case of black-box
extraction where the extractor can extract a witness from the prover using only
its input/output interface seems counterintuitive as the proof size is shorter
than the witness. In this section, we prove this intuition to be correct by giving a
stronger impossibility result which shows SPHF-based QA-NIZKs with semantic
knowledge soundness cannot exist. More precisely, we consider the most efficient
QA-NIZKs Πkw by Kiltz and Wee [46] and show that it cannot be semantic
knowledge sound.

51

CRSGen(lpar = [M]1 ∈ Gℓ×k
1)

A ← Dt;α ← Zℓ×(t+1)
p

[γ]1 := [M⊤α]1;C := αA

crs := ([γ]1, [C,A]2)

return (crs, td = α)

Sim(crs, td = α, [x]1)

return π := [x⊤α]1

P(crs, [x]1 = [M]1w,w)

return π := ([w⊤γ]1 ∈ Gt+1
1

V(crs, [x]1,π)

ê([x⊤]1, [C]2)
?
= ê(π, [A]2)

Fig. 11: QA-NIZK proof system Πkw under Dt-KerMDH assumption

D.5 Overview of Kiltz-Wee QA-NIZK

The core idea of the NIZK proof system in [46] for linear space membership
languages is as follows: starting from a DVS-based SPHF for the language
(see Fig. 7), which can be seen as a symmetric-key analogue of NIZK with a
designated verifier and then translating it to the bilinear group setting. To be
more precise, let Llpar with lpar = [M]1 ∈ Gℓ×k

1 be the linear language defined
as

Llpar =
{
[x]1 ∈ Gℓ

1|∃w ∈ Zk
p : [x]1 = [M]1 ·w

}
(9)

A designated-verifier ZK from a DVS-based SPHF (see A.4) for Llpar can be con-

structed as follows: the verifier first selects a key α ∈ Zℓ×(t+1)
p , where t depends

on the hardness assumption behind the soundness property. Next, the verifier
sends [M⊤α]1 to the prover, who later computes and sends π = w⊤[M⊤α]1 to
the verifier. Finally, the verifier checks if [x⊤]1α = π. Starting from this con-
struction, Kiltz and Wee make it a publicly-verifiable QA-NIZK proof system in
the CRS model by using pairing techniques as follows: the CRS includes [M⊤α]1
and [A,αA]2 for a vector A ∈ Z(t+1)×t

p chosen from a distribution Dt. The proof
remains the same as before, but the verification is the pairing check

ê([x⊤]1, [αA]2)
?
= ê(π, [A]2)

The soundness relies on the hardness of finding non-trivial cokernel elements of
A and the smoothness of the underlying projective hash function (PHF). Also,
for the right choice of the distribution for A, the most efficient choice that the
assumption is believed to hold is t = 1 which results in succinct proofs consisting
of only two group elements. The protocol Πkw is depicted in Fig. 11.

D.6 Impossibility of semantic extractor for Kiltz-Wee QA-NIZK.

We now prove that Πkw cannot be semantic knowledge sound under the discrete
logarithm assumption.

52

Theorem 7. Let Llpar be a linear language over some cyclic group G1 with
lpar = [M]1. The QA-NIZK Πkw depicted in Fig. 11 cannot be semantic knowl-
edge sound under the DL assumption in G1.

Proof. The proof is very similar to the proof of Lemma 2. Suppose Πkw is se-
mantic knowledge sound. Let P be the canonical prover adversary that on input
a CRS crs = ([γ]1, [C,A]2) and random coins s, r′ proceeds as follows:

1. Sample the first component of the witness w1 using random coins s.
2. Sample other components of w using random coins r′.
3. Compute x = [M]1w.
4. Compute π := ([w⊤γ]1 ∈ Gt+1

1 .
5. Return ([x]1,π).

Let f be the function of honest prover strategy that P uses to compute a valid
proof. Namely, f(crs, (s, r′)) = ([x]1,π). The semantic extractor ExtP given as
input ([x]1,π, td = α; r) can output w with overwhelming probability. Note
that r = ⊥ as the prover is deterministic. A DL adversary A can now use this
extractor to break the DL assumption. Specifically, A, on a DL challenge [ϱ]1
proceeds as follows:

1. Samples a group element [x]1 using randomness r′ such that the first element
of [x]1 is defined as [x1]1 = [ϱ]1.

2. Selects a trapdoor td = α and computes an accepting proof π = [x⊤]1α.
3. Invokes the extractor on [x]1,π who outputs w. Return the first element w1

of w.

Now observe that A computes inputs of Extf exactly as an inefficient prover P∗

for which the extraction is guaranteed. Hence, A computes the discrete logarithm
ϱ = w1 of [ϱ]1 with the same probability that Extf succeeds.

⊓⊔

53

Chapter 6

Set (Non-)Membership NIZKs
from Determinantal
Accumulators

Helger Lipmaa
Roberto Parisella

Cryptology ePrint Archive 2022, Paper Report 2022/1570,
https://eprint.iacr.org/2022/1570

Currently on ePrint. Paper under submission.

Set (Non-)Membership NIZKs from
Determinantal Accumulators

Helger Lipmaa and Roberto Parisella

Simula UiB, Bergen, Norway

Abstract. We construct the most efficient (in the argument size and
the verifier’s computation) known falsifiable set (non-)membership NIZK
Π∗, where the membership (resp., non-membership) argument consists
of only 9 (resp., 15) group elements. It also has a universal CRS. Π∗

is based on the novel concept of determinantal accumulators. Determi-
nantal primitives have a similar relation to recent pairing-based (non-
succinct) NIZKs of Couteau and Hartmann (Crypto 2020) and Couteau
et al. (CLPØ, Asiacrypt 2021) that structure-preserving primitives have
to the NIZKs of Groth and Sahai. Π∗ is considerably more efficient than
known falsifiable based set (non-)membership NIZKs. We also extend
CLPØ by proposing efficient (non-succinct) set non-membership argu-
ments for a large class of languages.

Keywords: Commit-and-prove · non-interactive zero-knowledge · set
(non-)membership argument · universal accumulator

1 Introduction

In a set (non-)membership NIZK, the prover aims to convince the verifier that
an encrypted element χ belongs (does not belong) to a public set S. Fully suc-
cinct (constant size and constant-time verifiable) set (non-)membership NIZKs
have many applications. Classical applications include anonymous credentials
(one has to prove that one has a valid credit card), governmental whitelist (to
prevent money laundering), and e-voting (one has to prove that one is an eligible
voter). A non-membership NIZK can be used to prove that a key is not black-
listed. Set membership NIZKs are instrumental in ring signatures. Recently, set
(non-)membership NIZKs have gained popularity in cryptocurrencies. For exam-
ple, in Zcash, to validate a transaction that intends to spend a coin χ requires
one to check that χ is in the set UTXO (unspent transaction outputs).

When χ is public, one can use an efficient (universal) accumulator [BdM93]
for this task. A universal accumulator can be reframed as a set (non-)membership
non-zk non-interactive argument system. Accumulator’s completeness and
collision-resistance (see Section 2) correspond directly to the completeness and
soundness of the set (non-)membership argument system but with public in-
put. To construct a set (non-)membership NIZK, one only needs to add a zero-
knowledge (ZK) compiler to the accumulator. Unfortunately, the ZK compiler is

2 Helger Lipmaa and Roberto Parisella

quite complicated in existing constructions, resulting in set (non-)membership
NIZKs that are either not falsifiable or not sufficiently efficient.

Related Work. Many set membership NIZKs use either signature schemes or
accumulators. In a signature-based set membership NIZKs, the CRS includes
signatures of all set elements. The prover proves it knows an (encrypted) sig-
nature on the (encrypted) χ. Such NIZKs have several undesirable properties.
First, their CRS is non-universal1 (i.e., it depends on the set). A universal CRS is
important in practice since it allows one to rely on a single CRS to construct set
(non-)membership NIZKs for different sets. Second, assuming that |S| is poly-
nomial (and the complement of S has exponential size), it seems to disallow the
construction of set non-membership arguments explicitly.

We will concentrate on accumulator-based constructions since they do not
have these two problems. Recall briefly that a (CRS-model) universal accumula-
tor enables one, given a CRS crs, to construct a succinct (non-hiding) commit-
ment CS of the set S, such that one can efficiently verify whether χ ∈ S, given
crs, CS , χ, and a succinct accumulator argument ψ of (non-)membership.

In a typical accumulator-based set membership NIZK, the CRS contains set-
independent elements that are sufficient to compute the accumulator arguments
of (non-)membership. (This depends on the underlying accumulator, but impor-
tantly, the efficient Nguyen accumulator [Ngu05] allows for that.) Hence, their
CRS is universal. Moreover, since there is no need to add all accumulator argu-
ments to the CRS, one can at least hope to construct efficient accumulator-based
set non-membership NIZKs.

Next, we will summarize the published falsifiable set-membership NIZKs.2
In all cases S ⊂ Zp and hence χ ∈ Zp. Since the previous papers have not
written down all efficiency numbers, our efficiency comparison (see Table 1) is
not completely precise.

Belenkiy et al. (BCKL, [BCKL08]) construct a set-membership NIZK by
first building a P-signature scheme [BCKL08]. They prove that a commitment
opens to an element for which the prover knows a signature, using a Groth-Sahai
NIZK [GS08]. Daza et al. (DGPRS-GS, [DGP+19]) use the more efficient weak
Boneh-Boyen (WBB) signature scheme instead of the P-signature scheme. Since
the WBB signature scheme is not F -unforgeable [BCKL08], Daza et al. modify
it slightly. However, using signature schemes means that the CRS of BCKL
and DGPRS-GS is non-universal. In addition, Daza et al. [DGP+19] propose
a succinct set membership QA-NIZK. However, their verifier’s computation is
O(|S|); thus, it is not suitable in our applications.

Acar and Nguyen (AN, [AN11]) replace the signature scheme with the Nguyen
accumulator [Ngu05] and then use Groth-Sahai to prove that the prover knows

1 We follow the previous literature by using “universal ” in the definition of universal
accumulators (that have a non-membership argument) and universal CRS (that does
not depend on the language).

2 There are many non-falsifiable or random-oracle-based NIZKs (see, e.g.,
[CCs08,BCF+21]); we do not compete with them, and thus we omit any discussion.

Set (Non-)Membership NIZKs from Determinantal Accumulators 3

Table 1. Comparison of known fully succinct falsifiable set (non-)membership argu-
ments for univariate sets of size |S| ≤ N . Here, gι denotes the bit-length of an element
of Gι, mι denotes the cost of a scalar multiplication in Gι, m denotes the cost of a scalar
multiplication in either G1 or G2, and p denotes the costs of a pairing. The numbers
with ∗ are based on our estimation when the original paper did not give enough data.
We give online prover’s computation, i.e., assuming precomputation.

Paper Belenkiy et al. [BCKL08] Acar-Nguyen [AN11] Daza et al. [DGP+19] This work (Fig. 9)

Building blocks

Primitive P-signature Nguyen acc. WBB signature determinantal acc.
NIZK Groth-Sahai Groth-Sahai Groth-Sahai CLPØ

Structural properties

Universal CRS? ✗ ✓ ✗ ✓
Updatable CRS? ✗ ✗ ✗ ✓
Non-membership? ✗ ✓ ✗ ✓

Membership argument efficiency

|crs| (2N + 1)g1 + (N + 1)g2 (N + 5)g1 + 4g2* 5g1 + (N + 5)g2* (N + 1)g1 + 4g2
|π| 18g1 + 16g2 8g1 + 10g2* 10g1 + 8g2* 6g1 + 3g2
P computation 34m 16m1 + 16m2* 17m1 + 18m2* 8m1 + 6m2

V computation 68p 30p* 30p* 13p

Non-membership argument efficiency

|crs| ✗ (N + 5)g1 + 4g2* ✗ (N + 1)g1 + 4g2
|π| ✗ 11g1 + 16g2* ✗ 10g1 + 5g2
P computation ✗ 26m1 + 28m2* ✗ 14m1 + 10m2

V computation ✗ 46p* ✗ 20p

an accumulator argument. Due to the use of an accumulator, the AN NIZK has
a universal CRS; they also propose a set non-membership argument.

BCKL, AN, and DGPRS-GS, and all rely on new (though falsifiable) security
assumptions. The central intuition here is that the underlying signature schemes
and accumulators are proven to be only secure when the adversary returns χ
as an integer. In these NIZKs, χ is essentially encrypted, and the soundness
reduction can only recover a group version (say3, [χ]1) of χ. The new assumptions
(that differ from work to work, see Table 1) guarantee that the adversary cannot
break the underlying primitives even if it is allowed only to output [χ]1.

Structural properties. Another drawback of the signature-based solutions is that
it is unclear how to define a universal argument that efficiently allows for non-
membership proofs. From the above solutions, only [AN11] (that does not rely
on signatures) proposes a set non-membership NIZK.

Efficiency. According to [BCKL08], BCKL’s prover performs 34 multi-scalar-
multiplications ([BCKL08] does not give separately the number of scalar-
multiplications in G1 and G2) and the verifer 68 pairings. Neither AN [AN11]
Daza et al. [DGP+19] give any efficiency numbers. Hence, the corresponding
entries (marked with an asterisk) in Table 1 are based on our estimations.

3 We use the standard additive bracket notation for pairing-based setting.

4 Helger Lipmaa and Roberto Parisella

Recent NIZKs of Couteau et al. Most of the prior falsifiable set member-
ship NIZKs are based on the Groth-Sahai NIZK [GS08]. Recently, Couteau and
Hartmann (CH, [CH20]) proposed a methodology to transform a specific class
of Σ-protocols to NIZKs. Intuitively, starting with a Σ-protocol with transcript
(a, e, z), CH puts [e]2 to the CRS and then modifies the computation of z and
the verifier’s algorithm to work on [e]2 instead of e. The resulting NIZKs have a
CRS consisting of a single group element.

Couteau et al. (CLPØ [CLPØ21]) significantly extended the CH methodol-
ogy. They constructed efficient commit-and-prove NIZKs for many languages,
including (Boolean and arithmetic) Circuit-SAT. Importantly, [CLPØ21] con-
structed efficient NIZKs for languages that can be described by small algebraic
branching programs. The CLPØ NIZK is secure under a new assumption CED
(Computational Extended Determinant). Depending on the parameters, CED can
be either falsifiable or non-falsifiable. For many natural problems like Boolean
Circuit-SAT and set membership for poly-sized sets, CED is falsifiable.

Both [CH20,CLPØ21] compare their work to the Groth-Sahai NIZK, show-
ing that in several important use cases, their (falsifiable) NIZKs are more effi-
cient than the Groth-Sahai NIZK. In particular, an important difference between
Groth-Sahai and CH/CLPØ is that in the latter, all secret values are only en-
crypted in G1. Because of this, the encrypted witness is often three times shorter
in CLPØ than in Groth-Sahai; see [CH20,CLPØ21] for examples.

Our first main question is whether one can construct CLPØ-based set
(non-)membership NIZKs that are more efficient than the known falsifiable
NIZKs [BCKL08,AN11,DGP+19]. Moreover, Groth-Sahai-based NIZKs use spe-
cialized primitives (structure-preserving signatures [AFG+16]) that are designed
to allow for efficient Groth-Sahai NIZKs. Our second main question is whether
one can define a similar class of primitives that allow for efficient CLPØ NIZKs.

1.1 Our Contributions

Summary. Recall that a universal accumulator is a non-zk (non-)membership
non-interactive argument system. Thus, one can construct efficient set
(non-)membership NIZKs by creating an efficient universal accumulator and
then using an efficient ZK compiler to build a NIZK. Our approach is to make
the latter part (ZK compiler) as efficient as possible without sacrificing the for-
mer part (accumulator) too much.

Differently from the previous work, we will ZK-compile the accumula-
tor to a CLPØ NIZK. We define a determinantal accumulator as a univer-
sal accumulator with a structure that supports efficient ZK compilation to
CLPØ. Determinantal accumulators are related to but different from structure-
preserving signatures [AFG+16] that support efficient Groth-Sahai NIZKs. After
that, we construct AC∗, an updatable determinantal accumulator with efficient
(non-)membership arguments. For this, we follow CLPØ’s technique of using
algebraic branching programs. Based on AC∗, we then construct Π∗, a commit-
and-prove, updatable set (non-)membership NIZK with a universal CRS.

Set (Non-)Membership NIZKs from Determinantal Accumulators 5

Linearization
Determinan-
tal primitive NIZK

Algebraic branching
programs and determi-
nantal representation

Linear algebra
and pairings Elgamal encryption

Fig. 1. Our general blueprint for constructing efficient falsifiable NIZKs.

We emphasize that this results in a clear, modular framework for construct-
ing efficient falsifiable NIZKs: first, construct an efficient algebraic branching
program for the task at hand. Second, construct a determinantal accumulator
(or, in general, a non-zk non-interactive argument system). Third, use the ef-
ficient CLPØ-inspired ZK compiler to achieve zero knowledge. See Fig. 1 for a
high-level diagram of the new approach.

Moreover, we develop a general efficient technique that allows one to con-
struct non-membership NIZKs for a large class of languages where CLPØ only
supported membership NIZKs. We use this technique in the case of AC∗ and Π∗,
but it potentially has many more applications.

The pairing-based setting is ubiquitous in contemporary public-key cryp-
tography. Any advancement in concrete efficiency in simple problems like set-
membership proofs is challenging to come by. Our work demonstrates that in this
case, the CH/CLPØ framework gives concretely better results than the seminal
Groth-Sahai framework.
Determinantal Accumulators. We assume the standard pairing-based set-
ting (see Section 2). We follow [CLPØ21], but we reinterpret their constructions.
First, the verifier has access to input (namely, χ), auxiliary (for example, com-
mitment to S), and output (the accumulator’s argument) only in G1, that is,
not as integers. The availability of all private values in G1 enables us to use an
efficient ZK compiler, where only elements of G1 will be encrypted. (In many
pairing-based settings, elements of G2 are twice longer.) On the other hand, they
are not available as integers since the ZK compiler encrypts these values by using
Elgamal, and the decryption only returns group elements and not integers.

Second, a determinantal accumulator’s verifier checks that the determinants
(a potentially high-degree polynomial) of some fixed matrices, whose entries
are affine maps, are zero. (On the other hand, in prior falsifiable pairing-based
accumulators, the verification equations were pairing-product equations.) This
can be seen as a linearization of a polynomial F (X) by using affine maps. More
precisely, the determinantal accumulator’s verifier accepts iff detCi(χ) = 0 for
DRs Ci(X) of some well-chosen polynomials Fi(X). Here, a DR (determinantal
representation) C(X) of F (X) is a matrix, where each entry of C(X) is an
affine map of X, and the determinant of C(X) is F (X).

Since we only need to test that the determinant is zero, we follow the under-
lying ideas of [CH20,CLPØ21] to make the accumulator efficiently and pub-
licly verifiable. Namely, we use the undergraduate linear algebraic fact that

6 Helger Lipmaa and Roberto Parisella

detC(X) = 0 iff there exists a non-zero vector d, such that C(X) · d = 0.
To simplify the construction of accumulators and NIZKs, we follow [CLPØ21]
and require that the first coordinate of d is non-zero. Moreover, to achieve both
soundness and zero-knowledge in the case of NIZKs, we define d = (e

δ) for a
new trapdoor e←$Zp. (For such e to exist, the matrices C(X) need to satisfy
an additional requirement, see [CLPØ21].) To achieve zero knowledge, we mask
δ additively with well-chosen randomness. To balance the randomness, we intro-
duce an additional (e-independent) vector γ and prove that C(X) · (e

δ) = γ.
Hence, in the implementation of a determinantal accumulator, the prover

outputs [χ]1 (this includes [χ]1, the candidate element for χ ∈ S) and hints [δ]2
and [γ]1. The verifier checks that [C(χ)]1 • [eδ]2 = [γ]1 • [1]2. (Here, χ is the
vector of concrete values of the indeterminates X.) Assuming C(X) is small,
the verification is constant time.

The definition of determinantal accumulators is an important independent
contribution of the current paper. In particular, it is easy to take another prim-
itive (for example, a signature scheme) and define its determinantal variant.
This may result in other efficient CLPØ-style NIZKs, but we leave any such
generalizations to future work.
New Determinantal Accumulator AC∗. AC∗ uses a DR C(X) that is moti-
vated by Ngyuen’s accumulator [Ngu05]. Define

CΣ(X,Q) :=
[

Σ−X −1
−ZS(Σ) Q

]
1

and Cσ(χ, q) =
[

σ−χ −1
−ZS(σ) q

]
1
.

The AC∗ verifier accepts a membership argument if detCσ(χ, q) = 0 (that is,
(σ − χ)q = ZS(σ)). Here, χ is the statement (a candidate member of S), [q]1
is given in the membership argument, σ is a CRS trapdoor, and ZS(Σ) :=∏
s∈S(Σ− s) is the vanishing polynomial of S.
In Nguyen’s accumulator, given the membership argument [q]2 ∈ G2, the

verifier checks that [σ − χ]1 • [q]2• = [ZS(σ)]1 • [1]2. In all known Groth-Sahai
based solutions, to verify that detCσ(χ, q) = 0, either the encryption of χ or
q has to be given in G2. In AC∗, however, all elements are given as members
of G1. Using the approach from above, AC∗’s membership argument is equal to
([q,γ]1, [δ]2), where γ ∈ Z2

p and δ ∈ Zp. (We will define γ and δ in Section 5.)
Complications. Unfortunately, the described solution is not yet sufficient. The
main reason why not is that the implication (Σ−χ) | (ZS(Σ)−r) =⇒ ZS(χ) = r
(where r = 0 in the membership case and r = 1/s in the non-membership case)
holds only if χ and r are integers, that is, they do not depend on the trapdoor σ.
Since the verifier only has access to [χ]1 (and [s]1 in the non-membership case)
as group elements, there is no guarantee that χ (and s) does not depend on σ.

Previous works [BCKL08,AN11,DGP+19] solve this problem from scratch,
each using a new assumption. We approach it systematically. We define a new
security property, F -collision-resistancy. An accumulator is collision-resistant if
it is hard for an efficient adversary to return a set S, a candidate element χ,
and an accumulator argument ψ, such that the verifier accepts χ as a member
of S iff χ /∈ S. An accumulator is F -collision-resistant if the same holds even if

Set (Non-)Membership NIZKs from Determinantal Accumulators 7

the adversary, instead of χ, outputs F (χ). (We always have F (χ) = [χ]1.) This
notion is related to that of F -unforgeable signatures [BCKL08].

We observed that Nguyen’s accumulator (and thus the described version of
AC∗) is not F -collision-resistant. We solve this issue by introducing another trap-
door τ . The goal of τ is to guarantee that if the verifier accepts, then χ and r do
not depend on σ. We also carefully change AC∗’s verification equations. Crucially,
we do it without increasing communication complexity. On the other hand, pre-
vious work [BCKL08,AN11,DGP+19] introduced a new equation to prove the
knowledge relation and thus added new group elements to the argument.

We prove the F -collision-resistance of AC∗ under new, essentially tautolog-
ical, security assumptions DETACM and DETACNM (determinantal accumula-
tor membership/non-membership). We rely on DETACM (resp., DETACNM) to
prove that it is intractable to construct fake accepting membership (resp., non-
membership) arguments. Crucially, DETACM and DETACNM are falsifiable. We
prove the security of DETACM and DETACNM in the AGM. The AGM security
proofs are far from trivial and profoundly rely on which elements of AC∗’s argu-
ment are or are not multiplied by τ . Note that also the most efficient structure-
preserving signatures are proven secure in the generic group model or AGM, the
main difference being that the collision-resistance of accumulators is a simpler
assumption than the unforgeability of signature schemes.
General Non-Membership CLPØ NIZK. As a result of independent impor-
tance, in Section 3, we develop a generic technique for constructing efficient non-
membership CLPØ NIZKs. This results, for example, in a very efficient falsifiable
NIZKs that the Elgamal-encrypted value χ is non-zero or that two Elgamal-
encrypted values are unequal, see Section 3. Both are more efficient than known
alternatives [BCV15,BDSS16] based on Groth-Sahai. Such NIZKs have indepen-
dent applications in, say, anonymous credential systems and privacy-preserving
authenticated identification and key exchange protocols [BCV15,BDSS16] and
controllable linkability of group signatures, [BDSS16].
New Succinct Set (Non-)Membership NIZK Π∗. We are now ready to
describe an efficient commit-and-prove NIZK Π∗ for showing that an Elgamal-
encrypted χ belongs (or does not belong) to the set S. Π∗ is just a simple
ZK compilation of AC∗. On top of the work done in AC∗, the prover additionally
(1) encrypts the data (including the accumulator input χ) one wants to hide, and
(2) creates an additional randomizer [z]2 that balances off the randomizers used
in such encryptions. The NIZK verifier performs the accumulator verification on
the ciphertexts, taking [z]2 into account.

Π∗ is computationally sound, assuming that AC∗ is F -collision-resistant.
Knowing the Elgamal secret key, the reduction decrypts the encrypted data
and returns it together with the hint [δ]2. We emphasize that Π∗ is falsifiable.
We prove that Π∗ is computationally zero-knowledge, assuming that Elgamal is
IND-CPA secure (that is, XDH holds).
Efficiency. In Table 1, we provide an efficiency comparison with some previ-
ously proposed set (non-)membership NIZKs. In the case of prover’s computa-
tion, we have taken the standard approach and assumed that the accumulator

8 Helger Lipmaa and Roberto Parisella

argument ([q]1 in our case) is precomputed. This always makes sense if S is small
(then all accumulator arguments can be precomputed), but it is also common in
case S can be large. For example, in an anonymous credential system, one only
needs to compute the accumulator argument for its own credential. Moreover,
all signature-based solutions have precomputation built-in since the signatures
are in the CRS. We hence assume precomputation in all cases.
Updatability. Notably, AC∗ and Π∗ have an updatable [GKM+18] CRS. That
is, it is possible to update the CRS sequentially so that the soundness relies only
on the honesty of at least one of the updaters (or the original CRS creator).
This partially eliminates the undesirable need to trust the CRS creator. None
of the previous falsifiable set membership NIZKs (see Table 1) is updatable:
this is caused by the use of (non-updatable) signature schemes and Groth-Sahai
NIZK. See [BLL00,Lip12] for work on “transparent” accumulators that do not
need a trusted CRS at all. We leave it as another open problem to construct a
transparent, efficient, falsifiable set (non-)membership NIZK.

Note that one can build set-membership arguments more efficiently by using
(non-falsifiable) zk-SNARKs, but the most efficient zk-SNARKs are not updat-
able. On the other hand, Π∗’s efficiency is comparable to that of most efficient
updatable and universal zk-SNARKs like Vampire [LSZ22]. However, the latter
are only known to be secure in the ROM.

We end the paper with some general discussion and generalization.

2 Preliminaries

Algebraic Branching Programs. An algebraic branching program (ABP)
over a finite field Fp is defined by a directed acyclic graph (V,E), two special
vertices s, t ∈ V , and a labeling function ϕ. It computes a function F : Fνp → Fp.
Here, ϕ assigns to each edge in E a fixed affine (possibly, constant) function in
input variables, and F (X) is the sum over all s− t paths (that is, paths from s
to t) of the product of all the values along the path.

Ishai and Kushilevitz [IK00,IK02] related ABPs to matrix determinants.
Given an ABP abp = (V,E, s, t, ϕ) computing F : Fνp → Fp, we can efficiently
(and deterministically) compute a function IKF (χ) mapping an input χ ∈ Fνp to
a matrix from Fℓ×ℓp , where ℓ = |V | − 1, such that: (1) det IKF (χ) = F (χ), (2)
each entry of IKF (χ) is an affine map in a single variable χi, (3) IKF (χ) contains
only −1’s in the upper 1-diagonal (the diagonal above the main diagonal) and
0’s above the upper 1-diagonal.

IKF is obtained by transposing the matrix you get by removing the column
corresponding to s and the row corresponding to t in the matrix adj(X) − I.
Here, adj(X) is the adjacency matrix for abp with adj(X)ij = x iff ϕ(i→ j) = x
and adj(X)ij = 0 if there is no edge i→ j.

For example, assuming F (X) = X2 −X, one can define an ABP with

adj(X) =
(

0 X 0
0 0 X−1
0 0 0

)
and IKF (X) =

(
X −1
0 X−1

)
.

Set (Non-)Membership NIZKs from Determinantal Accumulators 9

Cryptography. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT ,
ê, [1]1, [1]2), where G1, G2, and GT are three additive cyclic groups of prime order
p, Pι = [1]ι is a generator of Gι for ι ∈ {1, 2, T} with PT = [1]T := ê([1]1, [1]2),
and ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear pairing.
We require the bilinear pairing to be Type-3; that is, we assume that there
is no efficient isomorphism between G1 and G2. We use the standard implicit
additive “bracket” notation, writing [a]ι to denote aPι = a[1]ι for ι ∈ {1, 2, T}.
We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the
bracket notation together with matrix notation; for example, if AB = C then
[A]1 • [B]2 = [C]T . We also define [A]2 • [B]1 := ([B]⊤1 • [A]2

⊤
)⊤ = [AB]T .

We write A ≈c B if the distributions A and B are computationally indistin-
guishable. Let ℓ, k ∈ N, with ℓ ≥ k, be small constants. In the case of asymmetric
pairings, usually k = 1. Let p be a large prime. A PPT-sampleable distribution
Dℓ,k is a matrix distribution if it samples matrices A ∈ Zℓ×kp of full rank k. L1 is
the matrix distribution over matrices (1

a), where a←$Zp.
The XDH assumption in Gι holds relative to Pgen if for every PPT A,

Pr

[
b′ = b

p← Pgen(1λ);σ, τ, ζ ←$Zp; b←$ {0, 1};
b′ ← A([1, σ, τ, στ + bζ]ι)

]
≈c 0 .

Let d1, d2 ∈ poly(λ). The (d1, d2)-PDL (Power Discrete Logarithm) assump-
tion holds relative to Pgen, if for any PPT A,

Pr

[
σ′ = σ

p← Pgen(1λ);σ←$Zp;
σ′ ← A(p; [(σi)d1i=0]1, [(σ

i)d2i=0]2)

]
≈c 0 .

Let ℓ, k ∈ N, and Dk be a matrix distribution. The Dk-(ℓ− 1)-CED assump-
tion [CLPØ21] holds in Gι relative to Pgen, if for all PPT A,

Pr




δ ∈ Z(ℓ−1)×k
p ∧ γ ∈ Zℓ×kp ∧

C ∈ Zℓ×ℓp ∧ (γ∥C)
(
D
δ

)
= 0∧

rk(C) = ℓ

p← Pgen(1λ), [D]ι←$Dk,
([γ,C]3−ι, [δ]ι)← A(p, [D]ι)


 ≈c 0 .

CED may or may not be falsifiable, see [CLPØ21] for a discussion.
Following [CH20,CLPØ21], we will be only concerned with the case k = 1

and Dk = L1. Then, (γ∥C)
(
D
δ

)
= 0 iff, after changing the sign of γ, C(e

δ) = γ.
Elgamal encryption. In Elgamal, the public key is pk = [1∥sk]1, and
Encpk(χ; ϱ)← (ϱ[1]1∥χ[1]1 + ϱ[sk]1), where ϱ←$Zp. We also denote the encryp-
tion of [χ]1 by Encpk([χ]1; ϱ) = (ϱ[1]1∥[χ]1 + ϱ[sk]1). To decrypt, one computes
[χ]1 = Decsk([c]1) ← −sk[c1]1 + [c2]1; clearly, the result [χ]1 of the decryp-
tion is a group element and not an integer. Note that pk = Encpk(0; 1) and
[0∥χ]1 = Encpk(χ; 0). As always, we denote Encpk([a]1;ϱ) := (Encpk([ai]1; ϱi))i.
Elgamal is IND-CPA secure under the XDH assumption.
Algebraic Group Model. AGM [FKL18] is an idealized model for security
proofs. In the AGM, adversaries are restricted to be algebraic in the following
sense: if A inputs some group elements and outputs a group element, it can
provide an algebraic representation of the latter in terms of the former.

10 Helger Lipmaa and Roberto Parisella

More precisely, let G be a cyclic group of prime order p. Let Aalg be a
PPT algorithm, run on initial inputs including description p with oracles or
other parties and receive further inputs including obliviously sampled group
elements (which it cannot sample directly). Let L ∈ Gn be the list of all group
elements A has been given so far such that all other inputs it has received do
not depend in any way on group elements. A is algebraic if whenever it outputs
a group element G ∈ G it also outputs a vector a = (ai)

n
i=1 ∈ Znp , such that

G =
∑n
i=1 aiLi = ⟨a,L⟩.

2.1 Universal NIZK Arguments

Let {Dp}p be a family of distributions, s.t. each lpar ∈ Dp defines a language
Llpar. A universal NIZK Π for {Dp}p consists of six probabilistic algorithms:
Parameter generation Pgen(1λ): generates public parameters p that fix a dis-

tribution Dp.
Key generation Kgen(p, N): generates a CRS crs and a trapdoor td. Here,

N is a public size parameter (an upper bound of the size S in our case); we
assume N is implicitly in the CRS. We omit N if the CRS does not depend
on it. For simplicity of notation, we assume that any group parameters are
implicitly included in the CRS. We often denote the sequence “p← Pgen(1λ);
(crs, td)← Kgen(p, N)” by (p, crs, td)← Kgen(1λ, N).

Computation commitment Com(crs, lpar): Given a CRS crs and a lan-
guage description lpar ∈ Dp, outputs a specialized CRS crslpar. We assume
that crslpar implicitly contains lpar. Com is a deterministic algorithm that
can hence be run by both the prover and the verifier. (This algorithm is also
known as CRS specialization algorithm, indexer, or derive.)

Prover P(crslpar,x,w): Given a specialized CRS crslpar and a statement x
with witness w, outputs an argument π for x ∈ Llpar.

Verifier V(crslpar,x, π): Given a specialized CRS crslpar, a statement, and an
argument, either accepts or rejects the argument.

Simulator Sim(crslpar, td,x): Given a specialized CRS crslpar, a trapdoor td,
and a statement x, outputs a simulated argument for x ∈ Llpar.
The CRS does not depend on the language distribution or language pa-

rameters. However, Com (applied on public arguments) allows one to derive a
specialized CRS such that the verifier’s operation is efficient given crslpar.

The following properties need to hold for a NIZK argument.
Π for {Dp}p is perfectly complete, if

Pr


V(crslpar,x, π) = 1

(p, crs, td)←$Kcrs(1
λ); lpar ∈ Supp(Dp);

crslpar ← Com(crs, lpar);
(x,w) ∈ Rlpar;π←$P(crslpar,x,w)


 = 1 .

Π for {Dp}p is computationally sound, if for every efficient A,

Pr


 V(crslpar,x, π) = 1∧

x /∈ Llpar

(p, crs, td)←$Kcrs(1
λ); lpar ∈ Supp(Dp);

crslpar ← Com(crs, lpar);
(x, π)← A(crs, lpar)


 ≈ 0 .

Set (Non-)Membership NIZKs from Determinantal Accumulators 11

Π for {Dp}p is perfectly zero-knowledge, if for all λ, all (p, crs, td) ∈
Supp(Kcrs(1

λ)), all lpar ∈ Supp(Dp) and all (x,w) ∈ Rlpar, the distributions
P(crslpar,x,w) and Sim(crslpar, td,x) are identical.

Π is commit-and-prove if its input x is a ciphertext, such that the argument
convinces the verifier some statement about Decsk(x), i.e., that detsk(x) ∈ L for
some language L. Commit-and-prove argument systems are usually modular, i.e.,
one can share the encrypted inputs between several argument systems that prove
different properties of the same input. The CLPØ argument system [CLPØ21]
(see Section 2.3) is commit-and-prove.

A sound Π is updatable [GKM+18] if one can sequentially update the CRS
multiple times so that if at least one of the updaters (or the initial CRS cre-
ator) is honest, then Π remains sound. We will not give a formal definition.
As shown by Groth et al. [GKM+18], a (pairing-based) Π is updatable in
the case its CRS is of shape ([f(x) : f ∈ T1]1, [f(x) : f ∈ T2]2), where x is
a vector of trapdoors over Zp, and Tι are sets of monomials. For example,
crs = ([1, τ, στ, . . . , σNτ]1, [1, σ, τ, στ]2). On the other hand, Π is not updat-
able if either T1 or T2 contains a non-monomial.
Set (Non-)Membership NIZK. Let D be some finite domain; in the current
paper, D = Zp. Let pk be an Elgamal public key and S be a set of size S ∈ D≤N
for fixed N = poly(λ). Let lpar = (pk,S). In the case of NIZKs for set mem-
bership and non-membership, we are interested in the following complementary
(commit-and-prove) languages:

Lsm
lpar =

{
[ctχ]1 ∃χ, ϱχ such that Encpk([χ]1; ϱχ) = [ctχ]1 ∧ χ ∈ S

}
,

L̄sm
lpar =

{
[ctχ]1 ∃χ, ϱχ such that Encpk([χ]1; ϱχ) = [ctχ]1 ∧ χ /∈ S

}
.

Instead of defining two NIZKs (for Lsm
lpar and L̄sm

lpar), we define a single NIZK
where the two arguments share a common CRS. If χ ∈ S (resp., χ /∈ S), then
the prover generates a membership (resp., non-membership) argument. The ver-
ifier/simulator take an additional argument mem ∈ {Member,NotMember}. The
verifier assumes that its input is a membership argument if mem = Member, and
a non-membership argument otherwise. It outputs either Member, NotMember,
or Error. We generalize the simulator similarly.

2.2 Accumulators

Benaloh and de Mare defined accumulators in [BdM93]. Universal accumula-
tors [BLL00,BLL02,LLX07] allow non-membership arguments.

We define accumulators in the CRS model only. Hence, within the context of
the current paper, universal accumulators are set (non-)membership NIZKs in
the case the input χ is public. That is, for lpar = S, a universal (CRS-model) ac-
cumulator is a (non-zk) set (non-)membership non-interactive argument system
for the following complementary languages:

Lacc
lpar = S , L̄acc

lpar = D \ S .

12 Helger Lipmaa and Roberto Parisella

The computation commitment algorithm Com corresponds to the accumulator’s
commitment algorithm that inputs a set S and outputs its short commitment.
A CRS-model accumulator can have a trapdoor. However, since χ is public (and
no zero-knowledge is required) then the trapdoor is not used.

As all argument systems, a universal accumulator must satisfy completeness
and soundness properties. Because of the historical reasons, the latter is usually
known as collision-resistance. Full definitions follow.

A universal accumulator ACC must be perfectly complete : for (crs, td) ∈
Kgen(1λ), χ ∈ D, and S ∈ D≤N , V(crs,Com(crs,S), χ,P(crs,S, χ)) outputs
Member if χ ∈ S and NotMember if χ /∈ S.

Definition 1. Let ACC be a universal accumulator. ACC is collision-
resistant [BP97] if for all N = poly(λ) and PPT adversaries A,

Pr




S ∈ D≤N ∧(
(χ /∈ S ∧ v = Member)∨

(χ ∈ S ∧ v = NotMember)

) p← Pgen(1λ);
(crs, td)← Kgen(p, N);
(S, χ, ψ)← A(crs);

v ← V(crs,Com(crs,S), χ, ψ)


 ≈c 0 .

Nguyen [Ngu05] proposed a pairing-based CRS-model accumulator with D = Zp.
Damgård and Triandopoulos [DT08] and Au et al. [ATSM09] showed indepen-
dently how to make it universal by adding a non-membership argument.

In Fig. 2, we depict the resulting CRS-model universal accumulator, assuming
that S ∈ D≤N . Here, and in what follows, ZS(Σ) :=

∏
s∈S(Σ−s) is the vanishing

polynomial of S. We slightly simplified its description: Nguyen originally defined
ZS(Σ) :=

∏
s∈S(Σ + s) (that is, ZS(Σ) was the vanishing polynomial of −S =

{−s : s ∈ S}), while we define ZS(Σ) :=
∏
s∈S(Σ−s); we modified the rest of the

formulas in a consistent manner to account for this change. Note that ZS(χ) = 0
iff χ ∈ S. Intuitively, the prover proves that χ ∈ S by showing that ZS(χ) = 0
and χ /∈ S by showing that ZS(χ) ̸= 0. A membership argument is shorter since
in this case, ZS(χ) = 0 and thus the prover does not have to transfer ZS(χ).

Note that [q]1 ← [(ZS(σ) − r)/(σ − χ)]1 is well defined even if σ = χ. In
this case, f(X) = (ZS(X) − ZS(χ))/(X − χ) =

∏
s∈S{χ}(X − s) is clearly a

polynomial, and thus we can set [q]1 ← [f(χ)]1.
Com can be seen as a preprocessing algorithm. One can do even more pre-

processing in typical accumulators (including Nguyen’s). One can precompute
accumulator arguments for all χ ∈ S to speed up the online phase of a set mem-
bership (but not non-membership) argument. In some applications, one can pre-
compute ψ corresponding to concrete χ. We will always assume this is the case,
but, to avoid notational bloat, we will not study preprocessing formally.

2.3 CLPØ NIZK

Since we build on CLPØ [CLPØ21], we will give a lengthier description of their
results. Fix p ← Pgen(1λ) and define Dp := {lpar = (pk, F)}, where (1) pk
is a randomly chosen Elgamal public key for encrypting in G1, and (2) F is a

Set (Non-)Membership NIZKs from Determinantal Accumulators 13

Pgen(1λ): the same as the bilinear group generator; returns p.

Kgen(p, N): σ←$Zp; crs← (p, [(σi)Ni=0]1, [1, σ]2);
return (crs, td = σ);

Com(crs,S): given |S| = N : output [CS]1 ← [ZS(σ)]1;

P(crs,S, χ): r← ZS(χ); [q]1 ← [(ZS(σ)− r)/(σ − χ)]1;
If χ ∈ S then ψ ← [q]1 else ψ ← ([q]1, r);
return ψ;

V(crs,CS , χ, ψ): If ψ parses as ψ = ([q]1, r) and r = 0 then return Error;
If ψ parses as ψ = [q]1 then r← 0;
If [q]1 • ([σ]2 − χ[1]2) + (r[1]1 − [CS]1) • [1]2 ̸= [0]T then return Error;
If r = 0 then return Member else return NotMember;

Fig. 2. Nguyen’s universal accumulator ACCNguyen.

polynomial. The simplest version of CLPØ is a set membership NIZK for the
set being defined as the set Z(F) of zeros of the fixed polynomial F .

More precisely, let S = Z(F) := {x : F (X) = 0} for a polynomial F . Fix
p← Pgen(1λ). For a fixed Elgamal public key pk, let lpar := (pk, F). (Implicitly,
lpar also contains p.) Let [ctχ]1 := Encpk([χ]1;ϱ) = (Encpk([χi]1; ϱi))i. Define

Llpar = {[ctχ]1 : ∃χ such that Decsk([ctχ]1) = [χ]1 ∧ χ ∈ Z(F)} . (1)

Hence, Llpar is a commit-and-prove language. For example, if F (X) = X2 −X,
then Lpk,F corresponds to the language of all Elgamal encryptions of Boolean
values under the fixed public key pk.

Let F (X) ∈ Zp[X] be a ν-variate polynomial. Let ℓ ≥ 1 be an inte-
ger. A matrix C(X) = (Cij(X)) ∈ Zp[X]ℓ×ℓ is a quasideterminantal rep-
resentation (QDR [CLPØ21]) of F , if the following requirements hold. Here,
C(X) = (h(X)∥T (X)), where h(X) is a column vector.
Affine map: C(X) is an affine map. That is, C(X) =

∑ν
k=1 P kXk+Q, where

P k,Q ∈ Zℓ×ℓp are public matrices.
F -rank: detC(X) = F (X).
First column dependence: For any χ ∈ Z(F), h(χ) ∈ colspace(T (χ)). That

is, h(χ) = T (χ)w for some w.
The quasideterminantal complexity qdc(F) of F is the smallest QDR size of F .
(Clearly, qdc(F) ≥ deg(F).) We always assume that the polynomial F in lpar

satisfies qdc(F) = poly(λ), that is, there exists a poly(λ)-size QDR C(X) of F .
[CLPØ21] showed that such QDRs exist for many F -s.
CLPØ Argument. In Fig. 3, we depict the commit-and-prove updatable uni-
versal CLPØ NIZK Πclpø. Intuitively, the verifier checks that [eδ]2 • [C(ctχ)]1 =
[Iℓ]2 • [ctγ]1 + [z]2 • pk, where [C(ctχ)]1 :=

∑ν
k=1 P k · [ctχk]1 +Q · Encpk(1; 0).

Couteau et al. [CLPØ21] did not use the terminology of commit-and-prove, uni-
versal, and updatable NIZKs. Still, Πclpø satisfies these properties.

14 Helger Lipmaa and Roberto Parisella

Pgen(1λ): returns the system parameters p, as always.

Kgen(p): e←$Zp; return (crs, td)← ([e]2, e);

Com(crs, lpar): return crslpar ← (crs, lpar);

P(crslpar,x = [ctχ]1,w = (χ,ϱ)): Write C(χ) = (h∥T)(χ);
ϱδ ←$Zℓ−1p ; γ ← −T (χ)ϱδ;
Compute w such that T (χ)w = h(χ);
[δ]2 ← −(w[e]2 + ϱδ[1]2);
ϱγ ←$Zℓp; [ctγ]1 ← Encpk([γ]1;ϱγ) ∈ Gℓ×21 ;
[z]2 ← (

∑ν
k=1 ϱkP k) [

e
δ]2 − ϱγ [1]2 ∈ Gℓ2;

Return π ← ([ctγ]1, [δ, z]2) ∈ Gℓ×21 ×G2ℓ−1
2 ;

V(crslpar,x = [ctχ]1, π): check
∑ν
k=1 (P k [

e
δ]2 • [ctk]1) +Q [eδ]2 • [0∥1]1 =

[Iℓ]2 • [ctγ]1 + [z]2 • pk;
Sim(crslpar, td,x = [ctχ]1): δ←$Zℓ−1p ;

z←$Zℓp; [ctγ]1 ←
∑ν
k=1 P k(

e
δ)[ctk]1 + Encpk(Q(e

δ)[1]1;−z);
Return π ← ([ctγ]1, [δ, z]2) ∈ Gℓ×21 ×G2ℓ−1

2 ;

Fig. 3. The commit-and-prove CLPØ NIZK Πclpø for Lpk,F .

We will state Fact 1 for the sake of completeness.

Fact 1 ([CLPØ21]) Let {Dp}p be the family of language distributions, where
Dp = {lpar = (pk, F)}. Here, F (X) is a ν-variate polynomial of degree d,
where ν, d ∈ poly(λ). Let C(X) ∈ Zp[X]ℓ×ℓ be a QDR of F . The NIZK Πclpø
for {Dp}p from Fig. 3 is perfectly complete and perfectly zero-knowledge. It is
computationally (adaptive) sound under the L1-(ℓ − 1)-CED assumption in G2

relative to Pgen.

Efficient Instantiation Based on ABP. Couteau et al. [CLPØ21] constructed
a QDR IKF (X) for any polynomial F that can be efficiently computed by an
algebraic branching program (ABP).

Fact 2 ([CLPØ21]) Let abp = (V,E, s, t, ϕ) be an ABP that computes a ν-
variate polynomial F (X). Then IKF (X) is a QDR of F with ℓ = |V | − 1.

In particular, qdc(F) ≤ |V |− 1. This results in NIZKs for Lpk,F whenever F has
a small ABP.

3 General Non-Membership NIZK Argument System

For a set F of polynomials, let Z(F) be the set of common zeros of all
Fi ∈ F . Next, we construct efficient (commit-and-prove, updatable, universal)

Set (Non-)Membership NIZKs from Determinantal Accumulators 15

t

s t̄

X
ν+1

AB
P for

F (
X
)

−1




IKF (X1, . . . , Xν)

0
0

...
0
−1

−1 0 . . . 0 0 Xν+1




Fig. 4. ABP abp for the F̄ (X, Xν+1) = F (X)Xν+1−1 and the matrix IKF̄ (X, Xν+1).

non-membership NIZKs for S = Z(F), given that for each Fi ∈ F , there ex-
ists a small ABP that computes Fi. The modifications are at the level of ABP
and thus do not depend on the inner workings of Πclpø. The current section has
independent importance since non-membership NIZKs have their own applica-
tions, [ATSM09,BCV15,BDSS16,BBLP21].

New Non-Membership NIZK. Assume F = {F}, where F (X) : Fνp 7→ Fp is
a polynomial that can be computed by a small ABP abp = (V,E, s, t, ϕ). We
construct a new ABP abp as follows (see Fig. 4): we add to abp a new target
vertex t̄ and two edges, s→ t̄ and t→ t̄. We naturally extend ϕ to a new labeling
function ϕ̄, such that ϕ̄(s→ t̄) = −1 and ϕ̄(t→ t̄) = Xν+1, where Xν+1 is a new
indeterminate. Let F̄ (X, Xν+1) : Fν+1

p 7→ Fp, F̄ (X, Xν+1) = F (X)Xν+1 − 1,
be the polynomial computed by abp. Clearly, if F (χ) = 0 for a concrete input
assignment χ, then F̄ (χ, χν+1) = −1 ̸= 0 for all values of χν+1. On the other
hand, if F (χ) ̸= 0, then there exists χν+1 = F (χ)−1, such that F̄ (χ, χν+1) = 0.

Thus, to obtain a non-membership NIZK for the algebraic set S = Z(F), it
suffices to construct a membership NIZK for the algebraic set S̄ = Z(F̄). For
this, one can use Πclpø from Fig. 4 for the QDR IKF̄ . The resulting NIZK is
again secure under a CED assumption (see Fact 1). Moreover, if the NIZK for
F relies on a falsifiable version of CED, then so does the NIZK for F̄ .

Examples. To show that χ ̸= 0, we can run Πclpø with the QDR

C̄(X, S) :=
(

X −1
−1 S

)
,

where in the honest case, S = 1/X. One can easily extend it to the proof that
two plaintexts χ1 and χ2 are unequal, by using the QDR

C̄(X1,X2, S) :=
(
X1−X2 −1
−1 S

)
,

where in the honest case, S = 1/(X1 − X2).
The argument length of the resulting NIZKs (including encryption of s but

not of χ or χi) is 6g1+3g2. They are based on a less standard and non-falsifiable
assumption (CED instead of SXDH) but are significantly more efficient than
Groth-Sahai-based constructions of [BCV15,BDSS16]. In particular, the commu-
nication of the NIZK of plaintext inequality of [BCV15] consists of 15 elements
of G1, 4 elements of G2, and 2 elements of Zp. (The more efficient construc-
tion [BBLP21] works in the random oracle model.)

16 Helger Lipmaa and Roberto Parisella

s ◦ ◦ ◦ tABP for F̄1(X) ABP for F̄2(X)
. . .

ABP for F̄n(X)

Fig. 5. ABP abp for F̄ (X) =
∏
F̄i(X).

Finally, consider the task of proving that an encrypted integer χ is non-
Boolean. In this case, one can define the QDR

C{0,1}(X, S) :=
(X −1 0

0 X−1 −1
−1 0 S

)
.

Generalization. Let F = {F1, . . . , Fν} for ν > 1. To obtain a set non-
membership NIZK for S = Z(F), we first construct an ABP that computes
each F̄i (see the previous subsubsection). After that, we construct an ABP that
computes a polynomial F̄ (X), such that F̄ (χ) = 0 iff F̄i(χ) = 0 for some i.
Define F̄ (X) =

∏
F̄i(X), and define its ABP as the concatenation of the ABPs

for individual polynomials F̄i. See Fig. 5. We then use Πclpø for the QDR IKF̄
from Fig. 4. The resulting NIZK is secure according to Fact 1.

4 Determinantal Accumulators

It is easy to see that universal accumulator is a non-zk set (non-)membership
non-interactive argument system (i.e., one that possesses both membership
and non-membership arguments). Hence, it is logical to try to construct a set
(non-)membership NIZK by first constructing an accumulator and then adding
a zero-knowledge layer to obtain privacy.

While the end goal is to define efficient NIZKs, both steps of the descrived
blueprint can be expensive per se. In the current paper, we are interested in
constructing a CLPØ-style set (non-)membership NIZK where the second step
is as simple as possible. To achieve this, we first reinterpret Πclpø. We then use the
obtained understanding to define and construct determinantal accumulators that
allow for a simple zero-knowledge layer. For latter, a determinantal accumulator
must have a specific structure consistent with Πclpø’s design.

The relation between determinantal accumulators and CLPØ is similar to
the relation between structure-preserving signatures and Groth-Sahai. Hence,
we also compare both primitives.
Intuition. Recall that in Πclpø [CLPØ21], one rewrites the condition χ ∈ S as
the condition Fi(χ) = 0 for a set of polynomials {Fi}.4 After that, one constructs
QDRs Ci(X) for each Fi, such that detCi(X) = Fi(X). This step can be seen
as linearization: while Fi can be a high-degree polynomial, each entry of Ci is an
affine map. As typical in group-based cryptography, it is easier to solve linearized
tasks. After that, [CLPØ21] proposes a technique of constructing QDRs (i.e.,
linearization algorithm) by using algebraic branching programs.
4 In our new primitives, the set consists of only one polyomial. However, the framework
is valid in the more general case.

Set (Non-)Membership NIZKs from Determinantal Accumulators 17

Given the QDRs, Πclpø’s prover P aims to convince the verifier that each
detCi(χ) is zero. Crucially, the verifier has access only to encrypted [χ]1 but
not to χ or even [χ]1. Since each entry of Ci is affine and the cryptosystem
is additively homomorphic, the verifier can compute an encryption of [Ci(χ)]1
given an encryption of [χ]1. Knowing sk, the soundness reduction decrypts ci-
phertexts, obtains [Ci(χ)]1, and uses it to break CED. To preserve privacy, the
verifier cannot [Ci(χ)]1 and thus also not detCi(χ).

In a non-zk CLPØ-style non-interactive argument system, we proceed as in
CLPØ, except that we do not encrypt any of the values. In particular, similarly
to the soundness reduction in Πclpø, the verifier has access to [χ]1 and thus also
to [Ci(χ)]1. To be compatible with CLPØ, the verifier is not however given
access to detCi(χ) or even χ as integers. Given this, we must take additional
care to ensure that the accumulator will be secure.

4.1 Determinant Verification

The verifier needs to check efficiently that the determinant of a given matrix
Ci(χ) is zero. The main problem is that since the verifier sees [Ci(χ)]1 but not
Ci(χ), the verifier’s task is intractable. Next, we outline a straightforward but
non-satisfactory solution to this problem together with three modifications.

First, without any additional hints given to the verifier, we have an accu-
mulator with inefficient verification, where the verifier computes the discrete
logarithm of [Ci(χ)]1 to obtain Ci(χ). This might be fine in the NIZK since the
NIZK verifier does not have to perform the accumulator verification; instead,
the NIZK verifier checks (efficiently) the NIZK argument showing that the ac-
cumulator verifier accepts. However, since also the soundness reduction does not
get any hints about Ci(χ), it will not be able to verify whether this results in a
non-falsifiable NIZK, as explained in [CH20,CLPØ21].

Second, following [ALSZ20], we can allow the prover to output as hints all
partial multiplications needed in the Leibniz formula for the determinant. In
that case, one can obtain a PPT verifiable accumulator and thus a NIZK based
on falsifiable assumptions. However, while PPT, it is concretely very expensive:
if the dimension of the matrix is large, the hint is potentially huge [ALSZ20]. 5

Moreover, since in the NIZK, one has to encrypt the matrix elements in both
groups, one has to use the less efficient DLIN encryption, see [CLPØ21].

Third, we can use the undergraduate linear-algebraic fact that detC = 0 iff
there exists a non-zero vector x such that Cx = 0. We can utilize this fact by
outputting [x]2 as a hint to the verifier/soundness reduction. However, [x]2 can
reveal secret information and thus must be hidden. We do not want to encrypt
[x]2: since [x]2 is given in G2, this means that one again needs to use DLIN.

Fourth, we rely on CED as follows: recall that CED states that detC = 0
iff one can compute vectors γ and δ such that C(e

δ) = γ, where e←$Zp. (The
5 In the case of 2 × 2 matrices, the hint can be [C1]2, where C1 is the first row of
C ∈ Z2×2p [ALSZ20]. In the case of a 3 × 3 matrix C, the prover already needs to
output six values [C1iC2j]2 for i ̸= j.

18 Helger Lipmaa and Roberto Parisella

first coordinate of x = (e
δ) is non-zero w.p. 1 − 1/p since C is a QDR.) For

the security of CED, γ must not depend on e. Here, as in [CH20,CLPØ21], δ is
masked by uniformly random addend ϱδ and γ is needed to balance ϱδ. Thus,
the prover gives ([γ]1, [δ]2) as a hint to the verifier/soundness reduction. In the
NIZK, [γ]1 is encrypted but [δ]2 (that looks uniformly random after adding ϱδ)
is not. While the resulting accumulator is less efficient than Nguyen’s, the new
NIZK (see Section 7) is very efficient since it reuses the hints ([γ]1, [δ]2).

4.2 Definition

The reasoning from Section 4.1 shows that one can construct an efficient accumu-
lator (and NIZK) even if χ is only given to the verifier in one source group. This
motivates the new definition of determinantal accumulators. For comparison pur-
poses only, we will first define structure-preserving signature schemes [AFG+16].

Definition 2 (Structure-preserving signature scheme [AFG+16]). A
digital signature scheme is structure preserving relative to bilinear group gener-
ator Pgen if (1) the common parameters p consist of group description generated
by Pgen, some constants, and some source group elements in G1 and G2, (2) the
verification algorithm V consists only of evaluating membership in G1 and G2

and relations described by paring product equations, (3) verification keys vk,
messages χ and signatures σ solely consist of group elements in G1 and G2.

Our definition of determinantal accumulators is very close in spirit. For clar-
ity, we highlight the differences between “structure preserving” and “determinan-
tal” primitives. Other differences are caused by having an accumulator instead
of a signature scheme.

Definition 3 (Determinantal accumulator). An accumulator is determi-
nantal relative to bilinear group generator Pgen if
(a) the common parameters p consist of group description generated by Pgen,

some constants, and some source group elements in G1 and G2,
(b) the verification algorithm V consists only of evaluating membership in

G1 and G2 and relations described by checking that Ci(χ) = 0, where each
Ci(X) is a QDR,

(c) the CRS crs, messages χ, commitments CS , and membership arguments ψ
solely consist of group elements in G1 and G2,

(d) messages χ are given to the verifier as elements of G1,
(e) the set of G2 elements in ψ is independent of χ.

Items d and e help creating efficient NIZKs, where one only has to encrypt
elements of G1. We assume that all determinantal accumulators use the fourth
method from Section 4.1. Since in that case, the only G2 element in ψ is δ and the
latter is chosen uniformly from G2 in [CLPØ21], Item e follows automatically.

Clearly, this approach is not restricted to accumulators.
Comparison to Structure-Preserving Primitives (SPPs). Determinantal
primitives are quite different from SPPs. First, compared to SPPs, we restrict the

Set (Non-)Membership NIZKs from Determinantal Accumulators 19

inputs to be from a single source group. While this is a restriction, it potentially
boosts efficiency: since all inputs have to be encrypted in one source group, one
can use Elgamal instead of less efficient DLIN or Groth-Sahai commitments.
Because G2 elements are often twice longer than G1 elements, this can make the
statement of the NIZK (commitment to χ) three times shorter.

Second, the verifier is not restricted to quadratic equations: the QDRs Ci can
be polynomially large. In the new non-membership accumulator, the determinant
of the used Ci is a cubic polynomial. This means that some of the known lower-
bounds for SPPs (e.g., [AFG+16]) might not apply.

Third, and crucially, determinantal accumulators are (efficient) CLPØ-
style non-zk non-interactive argument systems. On the other hand, structure-
preserving signatures are independent primitives with the property that one can
construct (efficient) Groth-Sahai NIZKs for tasks like signature possession. It is
not known how to construct structure-preserving accumulators.

5 The New Determinantal Accumulator AC∗

5.1 F -Collision-Resistance

In the new set (non-)membership NIZK, χ is Elgamal-encrypted. In the sound-
ness reduction, the reduction decrypts it to obtain [χ]1 but does not obtain χ. Be-
cause of that, the collision-resistance property must hold against adversaries who
return [χ]1 but not χ. Definition 4 is inspired by the definition of F -unforgeable
signature schemes, [BCKL08], where F is an efficiently computable one-way bi-
jection. Since F is a bijection, χ ∈ S iff F (χ) ∈ F (S) iff ∃s ∈ S.F (χ) = F (s).

Definition 4. Let D be a domain and F be an efficiently computable (one-
way) bijection. A universal accumulator ACC is F -collision resistant if for any
N = poly(λ) and PPT adversaries A, Advf−crPgen,F,ACC,A(λ) :=

Pr




S ∈ D≤N ∧(
(χ /∈ S ∧ v = Member)∨

(χ ∈ S ∧ v = NotMember)

) p← Pgen(1λ); (crs, σ)← Kgen(p, N);
(S, F (χ) , ψ)← A(crs);

v ← V(crs,Com(crs,S), F (χ) , ψ)


 ≈c 0 .

Here, we highlighted the differences with Definition 1.

In what follows, F = [·]1.

5.2 Construction

In Fig. 7, we propose a new F -collision-resistant determinantal (CRS-model,
universal) accumulator AC∗. Next, we give the intuition behind its construction.

The first task constructing AC∗ is to fix suitable verification equation that
defines a polynomial F (X), such that the verifier accepts iff F (χ) = 0. Given
F , we use an ABP to define a QDR C(X) for F .

20 Helger Lipmaa and Roberto Parisella

◦

s t

Σ−
χ Q

−ZS(Σ) CΣ(X,Q) =
(

Σ−X −1
−ZS(Σ) Q

)

◦ t

s t̄

Σ
− χ

Q

−ZS(Σ
)

S

−1 C̄Σ(X,Q, S) =

(
Σ−X −1 0
−ZS(Σ) Q −1
−1 0 S

)

Fig. 6. Above: ABP for FΣ(X,Q) and the corresponding QDR CΣ(X,Q). Below: ABP
for F̄Σ(X,Q, S) and the corresponding QDR C̄Σ(X,Q, S).

In the case of the membership argument, we start with the verification equa-
tion of ACCNguyen from Fig. 2, which defines the bivariate polynomial

FΣ(X,Q) := (Σ− X)Q− ZS(Σ) .

Here, say, Q is the indeterminate corresponding to q ∈ ψ (see Fig. 2). Clearly,
the membership argument verifier of ACCNguyen accepts iff [Fσ(χ, q)]1 = [0]1.

In the non-membership argument, we need to prove that FΣ(X,Q) ̸= 0. We
use the method of Section 3 by defining the polynomial

F̃Σ(X,Q, S) := ((Σ− X)Q− ZS(Σ)) S− 1 .

We index F and F̃ with Σ instead of giving Σ as a formal argument. We
do it because Σ (a trapdoor indeterminate, with various powers like [σi]1 being
present in the CRS) has a different semantics compared to indeterminates X,
Q, and S that correspond to the argument elements. In particular, [σi]1 do not
have to stay hidden in the set (non-)membership NIZK. Crucially, this allows to
think of FΣ and F̃Σ as low-degree polynomials with coefficients from R = Zp[Σ].

Since FΣ and F̃Σ have degrees ≤ 2 and ≤ 3, they have respectively 2× 2 and
3×3 QDRs CΣ(X,Q) and C̄Σ(X,Q, S). We construct these QDRs from algebraic
branching programs for FΣ and F̄Σ. See Fig. 6 for the description of the result-
ing ABP and QDR for FΣ and F̄Σ. The membership (resp., non-membership)
argument verifier needs to check that detC(χ, q) = 0 (resp., det C̄(χ, q, s) = 0).
Membership Argument. Since we construct a determinantal accumulator, we
check detC(χ, q) = 0 by using the hints [γ]1 and [δ]2. The membership argument
verifier checks that [C(χ)]1•[eδ]2 = [γ]1•[1]2, which can be rewritten as checking

([σ]1 − [χ]1) • [e]2 − [1]1 • [δ]2 = [γ1]1 • [1]2 ,

−[ZS(σ)]1 • [e]2 + [q]1 • [δ]2 = [γ2]1 • [1]2 .
(2)

Here, [χ]1 is the input, ([q,γ]1, [δ]2) are parts of the (non-)membership argument,
and [σ,ZS(σ)]1 can be computed from crs.

Unfortunately, this is not sufficient. A maliciously chosen χ = χ(Σ), q = q(Σ),
and δ = δ(Σ) can depend non-trivially on σ. In a AGM security proof, Eq. (2)
guarantees that ZS(Σ) = (Σ − χ(Σ))q(Σ) and thus (Σ − χ(Σ)) | ZS(Σ). If χ
is an integer, then from this we will get that ZS(χ) = 0. However, if χ is not

Set (Non-)Membership NIZKs from Determinantal Accumulators 21

an integer (it depends on σ), then ZS(χ) = 0 does not follow. For example, to
break the membership argument, the adversary can fix any δ1, δ2 ∈ Zp and set
[χ]1 ← [σ]1 − δ2[1]1, [δ]2 ← δ1[1]2 + δ2[e]2, [q]1 ← [ZS(σ)]1/δ2, [γ1]1 ← −[δ1]1,
[γ2]1 ← δ1/δ2 · [ZS(σ)]1. This results in Eq. (2) holding and thus breaks the
F -collision-resistance of the version of AC∗ that only uses Eq. (2) as verification
equations. Breaking F -collision-resistance of ACCNguyen is even more trivial.6

To counteract this problem, we must guarantee that χ does not depend on
σ. We do this by introducing an additional trapdoor τ . We then slightly mod-
ify Eq. (2), making the checks explicitly dependent on τ . The resulting modified
checks result in b1 and b2 in the final construction of AC∗ in Fig. 7.

Since now crs depends on τ , the adversary can make its outputs depend on
τ ; this opens a new cheating avenue. Hence, our use of τ is non-trivial, especially
since we achieve F -collision-resistance without hampering the efficiency of AC∗.
We explicitly multiply each term of type [α]1 • [β]2 in b1 and b2 by τ , except the
terms [q]1 • [δ]2 and [γ]1 • [1]2. In the AGM security proof, we get that values like
χ, which are multiplied by τ , are in the span of 1 (that is, integers). However, q
must be a polynomial (it depends on σ), that is, in the span of {σiτ}; thus we
do not multiply [q]1 • [δ]2 by τ . The same holds for γ2. Finally, it is not essential
whether γ1 depends on σ or not; not multiplying it by τ simplifies the AGM
proof slightly since then we do not need to add [τ]2 to the CRS. Nevertheless,
the AGM proof is very delicate.

Note that the verification equations (b1 = b2 = true) are mathematically (but
not computationally) equivalent to checking that C ′(χ, q)(e

δ) = γ, where

C ′(X,Q) :=
(

(Σ−X)T −T
−ZS(Σ)T Q

)
.

Here, detC ′(X,Q) = ((Σ− X)Q− ZS(Σ)T)T. That is, we really use the QDR
framework of [CLPØ21]. The description of V in Fig. 7 just spells out how to do
this verification in PPT.

Non-Membership Argument. The non-membership argument verifier must
check that [C̄(χ)]1 • [eδ]2 = [γ]1 • [1]2 (where now δ ∈ Z2

p and γ ∈ Z3
p; see Fig. 6),

which can be rewritten as three checks

([σ]1 − [χ]1) • [e]2 − [1]1 • [δ]2 = [γ1]1 • [1]2 ,

−[ZS(σ)]1 • [e]2 + [q]1 • [δ1]2 − [1]1 • [δ2]2 = [γ2]1 • [1]2 ,

−[1]1 • [e]2 + [s]1 • [δ2]2 = [γ3]1 • [1]2 .

(3)

As in the case of the membership argument, we need to modify the first two
equations by using τ . However, since we require s to be an integer, we do not
have to modify the third verification equation.

6 In the collision-resistance proof of ACCNguyen, χ and r are given as integers and thus
do not depend on σ. Such a problem did also not exist in [CH20,CLPØ21] since
there the CRS only contained a single element [e]2 and thus did not depend on σ.

22 Helger Lipmaa and Roberto Parisella

Kgen(p, N): σ, τ, e←$Zp; crs← ([1, (σiτ)Ni=0]1, [1, e, σe, τe]2); td← (e, τ);
return (crs, td).

Com(crs,S): [CS]1 ← [ZS(σ)τ]1; return crslpar ← (crs, [CS]1,S);
P(crslpar, χ): r← ZS(χ); f(X)← (ZS(X)− r)/(X − χ); [q]1 ← [f(σ)τ]1;

if χ ∈ S then
1. ϱδ ←$Zp; [γ]1 ← −

[−τ
q

]
1
ϱδ; [δ]2 ← [σe]2 − χ[e]2 − ϱδ[1]2;

2. ψ ← ([q,γ]1, [δ]2); // 3g1 + g2

else
1. s← 1

r
; ϱδ ←$Z2p; [γ]1 ← −

[−τ 0
q −τ
0 s

]
1
ϱδ; [δ]2 ←

(
[σe]2−χ[e]2

r·[e]2

)
− ϱδ[1]2;

2. ψ ← ([q, s,γ]1, [δ]2); // 5g1 + 2g2

return ψ;

V(crslpar, [χ]1, ψ) : mem← NotMember;
If ψ parses as ψ = ([q,γ]1, [δ]2) then mem← Member;
If mem = Member then
1. b1 ← [στ]1 • [e]2 − [χ]1 • [τe]2 − [τ]1 • [δ]2 =? [γ1]1 • [1]2;
2. b2 ← −[CS]1 • [e]2 + [q]1 • [δ]2 =? [γ2]1 • [1]2;
3. if b1 and b2 then return Member else return Error;
else
1. b̄1 ← ([σ]1 − [χ]1) • [τe]2 − [τ]1 • [δ1]2 =? [γ1]1 • [1]2;
2. b̄2 ← −[CS]1 • [e]2 + [q]1 • [δ1]2 − [τ]1 • [δ2]2 =? [γ2]1 • [1]2;
3. b̄3 ← −[1]1 • [e]2 + [s]1 • [δ2]2 =? [γ3]1 • [1]2;
4. if b̄1 and b̄2 and b̄3 then return NotMember else return Error;

Fig. 7. The new [·]1-collision-resistant determinantal universal accumulator AC∗.

The verification equations (that is, b̄1 = b̄2 = b̄3 = true, see Fig. 7) are
equivalent to checking that C̄ ′(χ, q, s)(e

δ) = γ, where

C̄ ′(X,Q, S) :=

(
(Σ−X)T −T 0
−ZS(Σ)T Q −T
−1 0 S

)
,

with det C̄ ′(X,Q) = ((Σ− χ)Q− ZS(Σ)T) sT− T2.
Description. We depict AC∗ in Fig. 7. As explained before, the membership
verifier checks (on pairings) that C ′(χ, q) · (e

δ) = γ, and the non-membership
verifier checks that C̄ ′(χ, q, s) · (e

δ) = γ. Fig. 7 does it in PPT.

Lemma 1. AC∗ is perfectly complete.

Proof. One can straightforwardly check that the choice of ϱδ, γ, and δ is
consistent with Fig. 3 when one uses the correct matrices C ′ and C̄ ′. Com-
pleteness follows straightforwardly. In particular, writing C ′ = (h′∥T ′), we
get that h′ = T ′w′, where w′ = −(σ − χ). This explains why say [δ]2 =
−w′[e]2−ϱδ[1]2 = [(σ − χ)e]2−ϱδ[1]2 = [σe]2−χ[e]2−ϱδ[1]2. Then, say b1 = true

Set (Non-)Membership NIZKs from Determinantal Accumulators 23

since (σ − χ)τe − τδ = γ1 ⇐⇒ (σ − χ)τe − τ((σ − χ)e − ϱδ) = τϱδ, which is
trivially true. In the case of non-membership proof, writing C̄ ′ = (h̄′∥T̄ ′), we
get similarly that h̄′ = T̄ ′w̄′, where w̄′ =

(
−(σ−χ)
−r

)
. ⊓⊔

On Semantics of Non-Membership. Recall that AC∗ must be F -collision-
resistant. Since the CRS contains trapdoor-dependent elements, one must make
it precise how to define non-membership. As a motivating example, if S = {0, 1},
then [χ]1 ← [σ]1 satisfies χ ∈ S iff σ ∈ {0, 1}. The AGM security proof handles
σ as an indeterminate, and thus it cannot decide whether σ (or, more generally,
some known affine map of σ) belongs to S. To avoid such artefacts, we con-
structed AC∗ so that the verifier returns Error when the prover makes [χ]1 to
depend on [σ]1 (see the proof of Theorems 1 and 2). While we do not do it here,
it allows one to define the extractability of the accumulator naturally; from the
proof of Theorems 1 and 2, it is easy to see that AC∗ is extractable.

6 AC∗’s F -Collision-Resistance

The actual F -collision-resistance proof is complicated. We first define two tau-
tological assumptions N -DETACM and N -DETACNM that essentially state that
AC∗ is F -collision-resistant against adversaries that try to create fake member-
ship (resp., non-membership) arguments. After that, we prove in AGM that
DETACM and DETACNM reduce to PDL.

The most efficient structure-preserving signatures are proven to be secure
in the AGM (or in the generic group model), though the assumption of their
security by itself is a falsifiable assumption. We can similarly prove the security
of AC∗ in AGM. However, the collision-resistance of an accumulator is a much
simpler (in particular, it is non-interactive) assumption than the unforgeability of
a signature scheme and thus the tautological assumption looks less intimidating.

6.1 DETACM And DETACNM

Next, we define assumptions N -DETACM and N -DETACNM.

Definition 5. Let A be a PPT adversary. Let N = poly(λ). N -DETACM holds
relative to Pgen, if for every PPT A,

Pr



S ∈ D≤N ∧
χ /∈ S ∧

C ′(χ, q)(e
δ) = γ

p← Pgen(1λ);σ, τ, e←$Zp;
crs← (p, [1, (σiτ)Ni=0]1, [1, e, σe, τe]2);

(S, [χ, q,γ]1, [δ]2)← A(crs);
C ′(χ, q)←

(
(σ−χ)τ −τ
−ZS(σ)τ q

)


 ≈c 0 .

N -DETACNM holds relative to Pgen, if for every PPT A,

Pr




S ∈ D≤N ∧
χ ∈ S ∧

C̄ ′(χ, q, s)(e
δ) = γ

p← Pgen(1λ);σ, τ, e←$Zp;
crs← (p, [1, (σiτ)Ni=0]1, [1, e, σe, τe]2);

(S, [χ, q, s,γ]1, [δ]2)← A(crs);
C̄ ′(χ, q, s)←

(
(σ−χ)τ −τ 0
−ZS(σ)τ q −τ
−1 0 s

)



≈c 0 .

24 Helger Lipmaa and Roberto Parisella

B(crs = (p, [1, (σiτ)Ni=0]1, [1, e, σe, τe]2))

(S, [χ]1, ψ)← A(crs);
return (S, [χ]1, ψ); endif

Fig. 8. The adversary B in the proof of Lemma 2

Compared to CED, DETACM and DETACNM do not rely on the (possibly,
inefficiently verifiable) condition that C(χ) has a full rank. Thus, importantly,
DETACM and DETACNM are efficiently verifiable and thus falsifiable. For ex-
ample, as explained above, the verification C̄ ′(χ, q, s)(e

δ) = γ is equivalent to
checking that b̄1, b̄2, and b̄3 hold. Thus, it can be checked efficiently.

6.2 F -Collision-Resistance of AC∗

Lemma 2 is trivial since DETACM and DETACNM are tautological assumptions
for the F -collision-resistance of AC∗. The complicated step (see Section 6.3) is
establishing that DETACM and DETACNM are secure in the AGM.

Lemma 2. Let F = [·]1 and N = poly(λ). AC∗ is F -collision-resistant under
N -DETACM and N -DETACNM.

Proof. Let A be an F -collision-resistance (see Definition 4) adversary for AC∗,
such that Advf−crPgen,F,AC∗,A(λ) = εA for non-negligible εA. In Fig. 8, we depict a
trivial DETACM/DETACNM adversary B. Clearly, with probability at least εA,
B succeeds in breaking N -DETACM (resp., N -DETACNM), given A outputs an
accepting fake membership (resp., non-membership) argument. ⊓⊔

6.3 AGM Security of DETACM And DETACNM

Theorem 1. If (N + 1, 2)-PDL holds, then N -DETACM is secure in the AGM.

Proof. Let Aalg be an algebraic DETACM adversary. Assume that Aalg(crs)
outputs ψ = (S, [χ, q,γ]1, [δ]2), such that V accepts with a non-negligible prob-
ability. Since Aalg is algebraic, with every group element G ∈ Gι, it also outputs
a vector a explaining how G is constructed from the elements of crs that belong
to Gi. Next, we will make this more precise.

Let X = (Σ,T,E) and x = (σ, τ, e). Here, say T is the indeterminate cor-
responding to the trapdoor τ . We express each output of Aalg as a polynomial
evaluation, with say [χ]1 = [χ(x)]1. The involved polynomials are

χ(X) =χ1(Σ)T+ χ2 , q(X) =q1(Σ)T+ q2 ,

γ1(X) =γ11(Σ)T+ γ12 , γ2(X) =γ21(Σ)T+ γ22 ,

δ(X) =δ1 + δ2E+ δ3ΣE+ δ4TE ,

Set (Non-)Membership NIZKs from Determinantal Accumulators 25

where each polynomial (like q1) on the RHS is of degree ≤ N . That is, the
algebraic adversary Aalg also outputs coefficients of all above polynomials. The
DETACM verifier’s checks guarantee that V1(σ, τ, e) = V2(σ, τ, e) = 0, where

V1(X) = ((Σ− χ(X))E− δ(X)) · T− γ1(X) ,

V2(X) = (r(X)− ZS(Σ))TE+ q(X)δ(X)− γ2(X) .

Consider separately the cases (1) V1 = V2 = 0 as polynomials, and (2) either
V1 ̸= 0 or V2 ̸= 0.
Case 1. First, assume V1 = V2 = 0 as a polynomial. Think of the polynomials
as members of R[T,E], where R = Zp[Σ]. We now enlist the coefficients of TiEj
in both V1 and V2, highlighting the coefficients that are actually needed in this
proof (we give other coefficients only for the sake of completeness):

(i, j) V1

(2, 1) −δ4 − χ1(Σ)
(1, 1) −δ2 + (1− δ3)Σ− χ2

(1, 0) −γ11(Σ)− δ1
(0, 0) −γ12

(i, j) V2

(2, 1) δ4q1(Σ)
(1, 1) δ4q2 + (δ2 + δ3Σ) q1(Σ)− ZS(Σ)
(1, 0) δ1q1(Σ)− γ21(Σ)
(0, 1) (δ2 + δ3Σ)q2
(0, 0) −γ22 + δ1q2

For example, the coefficient of T2E1 = T2E in V1 is −δ4 − χ1(Σ). Since Vi = 0
as a polynomial, the coefficient of any monomial TjEk in any Vi is also 0.

From the coefficient of T2E of V1, we get χ1(Σ) = −δ4. From the coefficient
of TE of V1, after separating the coefficients of different Σi, we get δ3 = 1 and
δ2 = −χ2. From the coefficient of T2E of V2, we get δ4q1(Σ) = 0. Thus, either
q1(Σ) = 0 or δ4 = 0. Taking into account what we already know, from the
coefficient of TE of V2, we get ZS(Σ) = δ4q2 + (Σ− χ2) q1(Σ). Recall that we
have either q1(Σ) = 0 or δ4 = 0. If q1(Σ) = 0, then ZS(Σ) = δ4q2 ∈ Zp, a
contradiction. Hence, δ4 = 0. Thus, ZS(Σ) = (Σ− χ2) q1(Σ) and (Σ − χ2) |
ZS(Σ), which gives us ZS(χ2) = 0. Moreover, χ(X) = χ1(Σ)T + χ2 = χ2, and
thus we have proven AGM security in Case 1.
Case 2. The case Vi ̸= 0 for some i can be handled in a standard way. Assume for
example that V2 ̸= 0. We construct a PDL reduction B({[σi]1}N+1

i=0 , {[σi]1}2i=0). B
samples α1, α2, β1, β2←$Zp and sets implicitly τ ← α1σ+β1 and e← α2σ+β2.
Then, B creates crs for the DETACM adversary Aalg and calls Aalg with crs.
After obtaining π, together with the coefficients of the polynomials like χ(Σ),
from Aalg, B reconstructs the coefficients of the degree-≤ (N +2) polynomial V2
(which is now univariate since τ and e are affine maps of σ). We know V2 ̸= 0
but V2(σ) = 0. B factorizes V2 and finds up to N + 2 roots xi of V2. B tests
which one of them is equal to σ, and returns σ. ⊓⊔

Theorem 2. If (N+1, 2)-PDL holds, then N -DETACNM is secure in the AGM.

We postpone the proof of this theorem to Appendix A.1.

26 Helger Lipmaa and Roberto Parisella

7 New Set (Non-)Membership NIZK

Next, we use AC∗ to construct a succinct set (non-)membership NIZK Π∗. First,
Π∗’s CRS is equal to AC∗’s CRS. Second, the NIZK prover proves that AC∗’s
honest verifier accepts the encrypted χ and the encrypted accumulator argument
ψ = AC∗.P(crs,S, χ). That is, the prover encrypts χ and ψ, and then proves
that the verification equation is satisfied.
Description. Following the described blueprint, we construct the new set
(non-)membership NIZK Π∗ (see Fig. 9). Π∗ handles both Lsm

lpar (set member-
ship arguments, mem = Member) and Llpar (set non-membership arguments,
mem = NotMember). The prover of Π∗ implements the prover of AC∗ but it
also additionally encrypts all G1. To make the verification on ciphertexts pos-
sible, the prover outputs addtional randomizer hints [z]2. The verifier performs
AC∗ verification on ciphertexts (this relies on the homomorphic properties of
Elgamal), taking [z]2 into account. Π∗ also defines the simulator algorithm.

Alternatively, Π∗ is a version of Πclpø for the concrete choice of the QDRs
(and different CRS). To see the connection between Fig. 9 and Fig. 3, note that

C ′(X,Q) =
(

ΣT −1
−ZS(Σ)T 0

)

︸ ︷︷ ︸
Q

+
(−T 0

0 0

)
︸ ︷︷ ︸

P 1

X+ (0 0
0 1)︸ ︷︷ ︸
P 2

Q .

For example, starting with Fig. 3, [z]2 = (
∑ν
k=1 ϱkP k [

e
δ]2) − ϱγ [1]2 =

ϱχ
(−τ 0

0 0

)
[eδ]2+ϱq(

0 0
0 1) [

e
δ]2−ϱγ [1]2 = ϱχ

[−τe
0

]
2
+ϱq [0δ]2−ϱγ [1]2 =

(
−ϱχ[τe]2
ϱq[δ]2

)
−

ϱγ [1]2. One can represent C̄ ′(X,Q,R) similarly.
Clearly, Π∗ is commit-and-prove, updatable, and universal.

7.1 Security

Theorem 3. The set membership argument Π∗ in Fig. 9 is perfectly complete.
Assuming Elgamal is IND-CPA secure, it is computationally zero-knowledge.

We postpone the proof of this theorem to Appendix A.2. The following straight-
forward soundness reduction relies on the security of AC∗.

Theorem 4. Let ℓ = 2 and k = 1. Let Dk be the distribution of [1e]2 for e←$Zp.
Let N = poly(λ) be an upper bound on |S|. The set membership NIZK Π∗ in
Fig. 9 is sound, assuming AC∗ is [·]1-collision-resistant.

Proof. Let AΠ∗ be a successful soundness adversary (as defined in Section 2.1)
for Π∗. That is, with a non-negligible probability εAΠ∗ , for (p, crs, td) ←
Kcrs(1

λ) and for any valid lpar, AΠ∗(crs, lpar) outputs (x, π), such that
V(crslpar,x, π) = 1 but either (1) π is a membership argument but x /∈ Lsm

lpar

or (1) π is a non-membership argument but x ∈ Lsm
lpar.

Decrypting all verification equations, the verifier checks guarantee that the
AC∗ verifier accepts [χ]1 ← Decsk(ctχ). Essentially, the constructed adversary

Set (Non-)Membership NIZKs from Determinantal Accumulators 27

Pgen(1λ): p = (p,G1,G2,GT , ê, [1]1, [1]2)← Pgen(1λ).

Kgen(p): (crs, td)← AC∗.Kgen(p);

Com(crs, lpar = (pk,S)): AC∗.lpar ← S; AC∗.crslpar ←
AC∗.Com(crs,AC∗.lpar); return crslpar ← (AC∗.crslpar, pk);

P(crslpar,x = [ctχ]1,w = (χ, ϱχ)):
AC∗.ψ ← AC∗.P(AC∗.crslpar, χ); // ψ = ([q,γ]1, [δ]2) or ψ = ([q, s,γ]1, [δ]2)

ϱq ←$Zp; [ctq]1 ← Encpk([q]1; ϱq);
If χ ∈ S then
1. ϱγ ←$Z2p; [ctγ]1 ← Encpk([γ]1;ϱγ) ∈ G2×21 ; [z]2 ←

(−ϱχ[τe]2
ϱq[δ]2

)
− ϱγ [1]2 ∈ G22;

2. π ← ([ctq, ctγ]1, [δ,]2)
else
1. ϱs ←$Zp; [cts]1 ← Encpk([s]1; ϱs) ∈ G1×2

1 ;

2. ϱγ ←$Z3p; [ctγ]1 ← Encpk([γ]1;ϱγ) ∈ G3×21 ; [z]2 ←
(

−ϱχ[τe]2
ϱq[δ1]2
ϱs[δ2]2

)
−ϱγ [1]2 ∈ G32;

3. π ← ([ctq, cts, ctγ]1, [δ,]2);
return π; // membership: 6g1 + 3g2; non-membership: 10g1 + 5g2

Sim(crslpar, td = (e, τ),x = [ctχ]1,mem ∈ {Member,NotMember}):
If mem = Member then
1. δ←$Zp; ←$Z2

p; ϱq ←$Zp; [ctq]1 ← Encpk(0; ϱq);

2. [ctγ]1 ←
(

Encpk([στ]1;0)−[ctχ]1·τ −Encpk([τ]1;0)
−Encpk([CS]1;0) [ctq]1

)
(eδ)− Encpk(0;);

3. π ← ([ctq, ctγ]1, [δ,]2)
else
1. δ←$Z2

p; ←$Z3
p;

2. ϱq, ϱs ←$Zp; [ctq]1 ← Encpk(0; ϱq); [cts]1 ← Encpk(0; ϱs);

3. [ctγ]1 ← −
(

Encpk([στ]1;0)−[ctχ]1·τ −Encpk([τ]1;0) Encpk(0;0)

−Encpk([CS]1;0) [ctq]1 −Encpk([τ]1;0)

−Encpk(1;0) Encpk(0;0) [cts]1

)
(e
δ)− Encpk(0;);

4. π ← ([ctq, cts, ctγ]1, [δ,]2);
return π;

V(crslpar,x = [ctχ]1, π) : mem← NotMember;
if π parses as π = ([ctq, ctγ]1, [δ,]2) then mem← Member;
If mem = Member then check
1. b1 ← Encpk([στ]1; 0)• [e]2− [ctχ]1 • [τe]2−Encpk([τ]1; 0)• [δ]2 =? [ctγ1]1 •

[1]2 + [z1]2 • pk;
2. b2 ← −Encpk([CS]1; 0) • [e]2 + [ctq]1 • [δ]2 =? [ctγ2]1 • [1]2 + [z2]2 • pk;
3. if b1 and b2 then return Member else return Error;

else check
1. b̄1 ← Encpk([στ]1; 0)•[e]2−[ctχ]1•[τe]2−Encpk([τ]1; 0)•[δ1]2 =? [ctγ1]1•

[1]2 + [z1]2 • pk;
2. b̄2 ← −Encpk([CS]1; 0) • [e]2 + [ctq]1 • [δ1]2 − Encpk([τ]1; 0) • [δ2]2 =?

[ctγ2]1 • [1]2 + [z2]2 • pk;
3. b̄3 ← −Enc(1; 0) • [e]2 + [cts]1 • [δ2]2 =? [ctγ3]1 • [1]2 + [z3]2 • pk;
4. if b̄1 and b̄2 and b̄3 then return NotMember else return Error;

Fig. 9. The new set (non-)membership NIZK Π∗.

28 Helger Lipmaa and Roberto Parisella

Bcr(crs = (p, [1, (σiτ)Ni=0]1, [1, e, σe, τe]2)) // [·]1-CR adversary, see Definition 4

Choose any set S of size ≤ N ;

sk←$Zp; pk← [1∥sk]1 ; lpar← (pk,S);
crslpar ← Com(crs, lpar);

(x, π)← AΠ∗(crslpar);

[χ]1 ← Decsk([ctχ]1); [q]1 ← Decsk([ctq]1); [γ]1 ← Decsk([ctγ]1);

if π parses as ([ctq, ctγ]1, [δ,]2) then ψ ← ([q,γ]1, [δ]2); return (S, [χ]1, ψ);
else [s]1 ← Decsk([cts]1);ψ ← ([q, s,γ]1, [δ]2); return (S, [χ]1, ψ);fi

Fig. 10. Reduction Bcr in the proof of Π∗

Bcr (see Fig. 10), on its input, creates a new Elgamal key-pair. Based on that,
Bcr then creates a correct crslpar for AΠ∗ . After obtaining (x, π) from AΠ∗ , Bcr
decrypts AΠ∗ ’s answer, obtaining and returning the input and the argument as
expected from a [·]1-collision-resistance adversary.

Clearly, Bcr succeeds iff AΠ∗ succeeds. ⊓⊔

7.2 Efficiency

Π∗’s CRS length is N + 1 elements of G1 and 4 elements of G2. The set mem-
bership argument length is 6g1 + 3g2, which comes close to the Πclpø argument
length 4g1 + 3g2 for the simple OR language (this corresponds to ℓ = 2). The
difference comes from the fact that here we also need to encrypt AC∗’s argument
ψ. On the other hand, the set non-membership argument length is ten elements
of G1 and five elements of G2.

The prover’s computation can be divided into precomputation and online
computation. In precomputation, P computes f(X) (Θ(|S|) field operations)
and [q]1 (|S| scalar multiplications in G1). In online precomputation, (1) the
membership prover computes 8 scalar multiplications in G1 and 6 in G2 (2m1 +
2m2 to compute AC∗.ψ and 6m1 + 4m2 in the rest of Π∗), and (2) the non-
membership prover computes fourteen scalar multiplications in G1 and ten in
G2 (4m1+4m2 to compute AC∗.ψ and 10m1+6m2 in the rest of Π∗). (The online
computation includes the computation of [ctq]1 and other ciphertexts.)

The set membership verifier’s computation is dominated by fifteen pairings
(eight to check b1, seven to check b2). However, two pairings (the pairings in-
volved in Encpk([στ]1; 0) • [e]2 and Encpk([CS]1; 0) • [e]2) can be precomputed.
Thus, online the verifier has to only compute thirteen pairings. Similarly, the
set non-membership verifier’s computation is dominated by 23 pairings (eight to
check b̄1, eight to check b̄2, and seven to check b̄3), but three can be precomputed
so the online computation is 20 pairings.

We refer to Table 1 for an extensive efficiency comparison.

Set (Non-)Membership NIZKs from Determinantal Accumulators 29

8 On Handling Group Elements with CLPØ

The CLPØ NIZK [CLPØ21] works in the case where the prover knows all the
elements of all DRs as integers. This seems to exclude applications where one
needs to prove statements about group elements. In Π∗, we overcome this issue
by making the following observation. Consider the case of a single DR C(X) =
(h(X)∥T (X)), where h(X) is a column vector. Then, for CLPØ to work, it
suffices that the prover (1) knows [C(χ)]1, and (2) is able to compute [δ]2; for
this, it suffices to compute [we]2, where w is such that h(X) = T (X)w (this
follows from CLPØ’s construction).

In the case of Π∗, (1) means that the prover must be able to compute
[q,ZS(σ), s]1 (and thus χ, but not σ, must be available as an integer, and one
must include to the CRS information needed to recompute [ZS(σ)]1), and (2)
means that [σe, e]2 must be given as part of the CRS.

We leave the grand generalization of this observation for future work.

References

AFG+16. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. Journal of Cryptology, 29(2):363–421, April 2016.

ALSZ20. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac. On
QA-NIZK in the BPKmodel. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of
LNCS, pages 590–620. Springer, Heidelberg, May 2020.

AN11. Tolga Acar and Lan Nguyen. Revocation for delegatable anonymous cre-
dentials. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Ni-
colosi, editors, PKC 2011, volume 6571 of LNCS, pages 423–440. Springer,
Heidelberg, March 2011.

ATSM09. Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic univer-
sal accumulators for DDH groups and their application to attribute-based
anonymous credential systems. In Marc Fischlin, editor, CT-RSA 2009,
volume 5473 of LNCS, pages 295–308. Springer, Heidelberg, April 2009.

BBLP21. Olivier Blazy, Xavier Bultel, Pascal Lafourcade, and Octavio Perez-
Kempner. Generic Plaintext Equality and Inequality Proofs. In Borisov
and Diaz [BD21], pages 415–435.

BCF+21. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dim-
itris Kolonelos. Zero-Knowledge Proofs for Set Membership: Efficient, Suc-
cinct, Modular. In Borisov and Diaz [BD21], pages 393–414.

BCKL08. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
P-signatures and noninteractive anonymous credentials. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 356–374. Springer, Heidel-
berg, March 2008.

BCV15. Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Non-interactive
zero-knowledge proofs of non-membership. In Kaisa Nyberg, editor, CT-
RSA 2015, volume 9048 of LNCS, pages 145–164. Springer, Heidelberg,
April 2015.

30 Helger Lipmaa and Roberto Parisella

BD21. Nikita Borisov and Claudia Diaz, editors. FC 2021 (1), volume 12674 of
LNCS, Virtual, March 1–15, 2021. Springer, Cham.

BdM93. Josh Benaloh and Michael de Mare. One-Way Accumulators: A Decen-
tralized Alternative to Digital Signatures. In Tor Helleseth, editor, EU-
ROCRYPT 1993, volume 765 of LNCS, pages 274–285, Lofthus, Norway,
May 23–27, 1993. Springer, Heidelberg, 1994.

BDSS16. Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spreitzer. Non-
interactive plaintext (in-)equality proofs and group signatures with verifi-
able controllable linkability. In Kazue Sako, editor, CT-RSA 2016, volume
9610 of LNCS, pages 127–143. Springer, Heidelberg, February / March 2016.

BLL00. Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate
management using undeniable attestations. In Dimitris Gritzalis, Sushil
Jajodia, and Pierangela Samarati, editors, ACM CCS 2000, pages 9–17.
ACM Press, November 2000.

BLL02. Ahto Buldas, Peeter Laud, and Helger Lipmaa. Eliminating Counterevi-
dence with Applications to Accountable Certificate Management. Journal
of Computer Security, 10(3):273–296, 2002.

BP97. Niko Barić and Birgit Pfitzmann. Collision-Free Accumulators and Fail-
Stop Signature Schemes without Trees. In Walter Fumy, editor, EURO-
CRYPT 1997, volume 1233 of LNCS, pages 480–494, Konstanz, Germany,
11–15 May 1997. Springer, Heidelberg.

CCs08. Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols
for set membership and range proofs. In Josef Pieprzyk, editor, ASI-
ACRYPT 2008, volume 5350 of LNCS, pages 234–252. Springer, Heidelberg,
December 2008.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-
knowledge arguments and ZAPs for algebraic languages. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 768–798. Springer, Heidelberg, August 2020.

CLPØ21. Geoffroy Couteau, Helger Lipmaa, Roberto Parisella, and Arne Tobias Øde-
gaard. Efficient NIZKs for algebraic sets. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages
128–158. Springer, Heidelberg, December 2021.

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. Shorter quadratic QA-NIZK proofs. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 314–343.
Springer, Heidelberg, April 2019.

DT08. Ivan Damgård and Nikos Triandopoulos. Supporting non-membership
proofs with bilinear-map accumulators. Cryptology ePrint Archive, Report
2008/538, 2008. https://eprint.iacr.org/2008/538.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applica-
tions to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

Set (Non-)Membership NIZKs from Determinantal Accumulators 31

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
FOCS, pages 294–304. IEEE Computer Society Press, November 2000.

IK02. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure compu-
tation via perfect randomizing polynomials. In Peter Widmayer, Fran-
cisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Ei-
denbenz, and Ricardo Conejo, editors, ICALP 2002, volume 2380 of LNCS,
pages 244–256. Springer, Heidelberg, July 2002.

Lip12. Helger Lipmaa. Secure accumulators from euclidean rings without trusted
setup. In Feng Bao, Pierangela Samarati, and Jianying Zhou, editors, ACNS
12, volume 7341 of LNCS, pages 224–240. Springer, Heidelberg, June 2012.

LLX07. Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient
nonmembership proofs. In Jonathan Katz and Moti Yung, editors, ACNS
07, volume 4521 of LNCS, pages 253–269. Springer, Heidelberg, June 2007.

LSZ22. Helger Lipmaa, Janno Siim, and Michał Zając. Counting Vampires: From
Univariate Sumcheck to Updatable ZK-SNARK. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, volume ? of LNCS, pages ?–?,
Taipei, Taiwan, December 5–9, 2022. Springer, Cham. Accepted.

Ngu05. Lan Nguyen. Accumulators from bilinear pairings and applications. In
Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 275–
292. Springer, Heidelberg, February 2005.

A Some Missing Proofs

A.1 Proof of Theorem 2

Proof. Let Aalg be an algebraic DETACNM adversary. Assume that Aalg(crs)
outputs ψ = (S, [χ, q, s,γ]1, [δ]2), such that V accepts with a non-negligible
probability. Since Aalg is algebraic, with every group element G ∈ Gι, Aalg also
outputs a vector a explaining how G is constructed from the elements of crs
that belong to Gi. Next, we will make this more precise.

Let X = (Σ,T,E) and x = (σ, τ, e). E.g., T is the indeterminate correspond-
ing to the trapdoor τ . We express each output of the DETACNM adversary Aalg

as a polynomial evaluation, with say [χ]1 = [χ(x)]1. The relevant polynomials
are

χ(X) =χ1(Σ)T+ χ2 , q(X) =q1(Σ)T+ q2 ,

s(X) =s1(Σ)T+ s2 , γ1(X) =γ11(Σ)T+ γ12 ,

γ2(X) =γ21(Σ)T+ γ22 , γ3(X) =γ31(Σ)T+ γ32 ,

δ1(X) =δ11 + δ12E+ δ13ΣE+ δ14TE , δ2(X) =δ21 + δ22E+ δ23ΣE+ δ24TE ,

where each polynomial (like q1) on the RHS is of degree ≤ N . That is, the
algebraic adversary Aalg also outputs coefficients of all above polynomials.

32 Helger Lipmaa and Roberto Parisella

The DETACNM verifier’s checks guarantee that V1(σ, τ, e) = V2(σ, τ, e) = 0.
Moreover, if R(X) ̸= 0 then V3(σ, τ, e) = V4(σ, τ, e) = 0. Here,

V1(X) = ((Σ− χ(X))E− δ1(X)) · T− γ1(X) ,

V2(X) =− ZS(Σ)TE+ q(X)δ1(X)− δ2(X)T− γ2(X) ,

V3(X) =− E+ s(X)δ2(X)− γ3(X) .

Consider separately the cases (1) V1 = V2 = V3 = 0 as polynomials, and (2)
either V1 ̸= 0 or V2 ̸= 0 or V3 ̸= 0.

Case 1. Assume V1 = V2 = V3 = 0 as a polynomial. Think of the polynomials
as members of R[T,E], where R = Zp[Σ]. We now enlist the non-zero coefficients
of all monomials TiEj of all polynomials, highlighting the coefficients that are
actually needed in this proof (we give other coefficients for completeness’ sake):

(i, j) V1

(2, 1) −δ14 − χ1(Σ)
(1, 1) −δ12 + (1− δ13)Σ− χ2

(1, 0) −δ11 − γ11(Σ)
(0, 0) −γ12

(i, j) V3

(2, 1) δ24s1(Σ)
(1, 1) δ22s1(Σ) + δ23s1(Σ)Σ+ s2δ24
(1, 0) δ21s1(Σ)− γ31(Σ)
(0, 1) s2δ23Σ+ s2δ22 − 1
(0, 0) s2δ21 − γ32

(i, j) V2

(2, 1) δ14q1(Σ)− δ24
(1, 1) δ14q2 + δ12q1(Σ) + (δ13q1(Σ)− δ23)Σ− ZS(Σ)− δ22
(1, 0) δ11q1(Σ)− γ21(Σ)− δ21,
(0, 1) δ12q2 + δ13q2Σ
(0, 0) δ11q2 − γ22

For example, the coefficient of T2E in V1 is −δ14 − χ1(Σ). Since Vi = 0 as a
polynomial, the coefficient of any monomial TjEk in any Vi is also 0.

From the coefficient of T2E of V1, we get χ1(Σ) = −δ14. From the coefficient
of TE of V1, after separating the coefficients of Σi, we get δ13 = 1 and δ12 = −χ2.
Consider the coefficients of V3:
– E: separating the coefficients of Σ, s2δ23 = 0 and s2δ22 = 1. Hence s2 ̸= 0,

and thus δ23 = 0. Moreover, δ22 = 1/s2.
– TE: s1(Σ)/s2 + s2δ24 = 0 and thus s1(Σ) = s22δ24.
– T2E: s22δ224 = 0. Since s2 ̸= 0, δ24 = 0.

Going back to the coefficient of TE, we get s1(Σ) = 0.
Consider the coefficients of V2:
– TE: ZS(Σ)− δ14q2 + 1/s2 = (Σ− χ2)q1(Σ).

Since ZS(Σ) is non-constant, q1(Σ) ̸= 0.
– T2E: δ14q1(Σ) = 0. Since q1(Σ) ̸= 0, we get δ14 = 0.

Hence, the coefficient of TE of V2 gives ZS(Σ) + 1/s2 = (Σ − χ2)q1(Σ). Thus,
(Σ− χ2) | ZS(Σ) + 1/s2. Since χ(X) = χ2, ZS(χ2) = −1/s2 ̸= 0.

Case 2. The case Vi ̸= 0 for some i can be handled in a standard
way. Assume for example that V2 ̸= 0. We construct a PDL reduction

Set (Non-)Membership NIZKs from Determinantal Accumulators 33

B({[σi]1}N+1
i=0 , {[σi]1}2i=0). B samples α1, α2, β1, β2←$Zp and sets implicitly τ ←

α1σ + β1 and e ← α2σ + β2. Then, B creates crs for an DETACNM adversary
Aalg, and calls Aalg with crs. After obtaining π, together with the coefficients
of the polynomials like χ(Σ), from ExtAalg

, B reconstructs the coefficients of the
degree-≤ (N+2) polynomial V2 (which is now univariate since τ and e are affine
maps of σ). We know V2 ̸= 0 but V2(σ) = 0. B factorizes V2 and finds up to
N +2 roots xi of V2. B tests which one of them is equal to σ, and returns σ. ⊓⊔

A.2 Proof of Theorem 3

Proof. Perfect completeness. We consider separately membership and non-
membership arguments.
Membership Argument. Clearly, b1 = true iff Encpk([σ]1; 0)τe − [ctχ]1τe −
Encpk([τ]1; 0)δ =? [ctγ1]1 + z1 · pk ⇐⇒ Enc ((σ − χ)τe− τδ;−ϱχτe) =?

Enc (γ1; ϱγ1)+Encpk(0; z1). Clearly, (σ−χ)τe−τδ = (σ−χ)τe−τ((σ−χ)e−ϱδ) =
ϱδτ = γ1τ , and thus the ciphertext part is correct. On the other hand, random-
izers are correct by definition.

Similarly, b2 = true iff −Encpk(ZS(σ); 0)τe+ [ctq]1δ =
? [ctγ2]1 + z2 · pk ⇐⇒

Enc (−ZS(σ)τe+ qδ; ϱqδ) =? Enc (γ2; ϱγ2) + Encpk(0; z2). Consider first the ci-
phertexts. Clearly, −ZS(σ)τe+qδ = −ZS(σ)τe+q ·((σ−χ)e−ϱδ) = −ϱδq = γ2.
On the other hand, randomizers are correct by definition.
Non-Membership Argument. Clearly, b̄1 = true iff Encpk([σ]1; 0)τe − [ctχ]1τe −
Encpk([τ]1; 0)δ1 =? [ctγ1]1 + z1 · pk ⇐⇒ Encpk ((σ − χ)τe− τδ1; ϱχτe) =?

Encpk(γ1; ϱγ1) +Encpk(0; z1). Consider first the ciphertexts. Clearly, (σ−χ)τe−
τδ1 = y1τ = γ1τ . On the other hand, randomizers are correct by definition.

Similarly, b̄2 = true iff −Encpk(ZS(σ); 0)τe + [ctq]1δ1 − Encpk(1; 0)τδ2 =?

[ctγ2]1 + z2 · pk ⇐⇒ Encpk (−ZS(σ)τe+ qδ1 − τδ2; ϱqδ1) =? Encpk(γ2; ϱγ2) +
Encpk(0; z2). Consider first the ciphertexts. Clearly, −ZS(σ)τe + qδ1 − τδ2 =
−ZS(σ)τe+ q · ((σ−χ)e− y1)− τ(1/s · e− y2) = −y1q+ y2τ = γ2. On the other
hand, randomizers are correct by definition.

Finally, b̄3 = true iff −Enc(1; 0)e + ctsδ2 =? [ctγ3]1 + z3 · pk ⇐⇒
Encpk (−e+ sδ2; ϱsδ2) =

? Encpk(γ3; ϱγ3) + Encpk(0; z3). Consider first the cipher-
texts. Clearly, −e+ sδ2 = −e+ s(1/s · e− y2) = −y2s = γ3. On the other hand,
randomizers are correct by definition.

Computational zero-knowledge: First, consider the membership argu-
ment. Fix any λ, and let (crs, td) ∈ Supp(Kcrs(1

λ)). Let lpar = (pk,S)
and (x,w) ∈ Rlpar. To show zero-knowledge we first define an hybrid simu-
lator SimH . The hybrid SimH receives as additional input an Elgamal cipher-
text [ctq]1, that is an encryption of [q]1 such that q(σ − χ) = ZS(σ), where
[χ]1 = Decsk([ctχ]1). Then SimH computes its output as the simulator in Fig. 9,
except that it computes [ctq]1 as an encryption of [q]1 and not of 0. The output
of SimH is perfectly close to the output of the honest prover. The proof of the
last statement is the same as the perfect zero-knowledge proof in [CLPØ21].
For completeness, we state a proof for this concrete case. In the honest prover’s
algorithm, since ϱγ is uniformly random, then also z is uniformly random. As in

34 Helger Lipmaa and Roberto Parisella

Fact 1, δ output by an honest prover is uniformly random. On the other hand,
SimH also samples uniformly random δ and z. Finally, in both the prover’s and
simulator’s case, one can verify manually that [ctγ]1 is the unique value that
makes the verifier accept the argument π. Then we show that the output of the
real simulator (see Fig. 9) is computationally close to the output of SimH . This
follows directly from Elgamal IND-CPA security (which holds under the XDH
assumption).

In the non-membership argument, zero-knowledge holds analogously. ⊓⊔

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230854853 (print)
9788230847855 (PDF)

	108900 Roberto Parisella_SH_Elektronisk
	108900 Roberto Parisella_SH_korrekturfil
	108900 Roberto Parisella_SH_innmat
	108900 Roberto Parisella_SHElektronsk_bakside
	108900 Roberto Parisella_SHElektronsk_bakside

