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1 Introduction

Roads serve as the fundamental infrastructure for modern logistics and transportation,
facilitating essential daily commutes and the efficient delivery of goods and services
(Nurmi et al., 2013). However, adverse weather conditions, including snow, rain, ice,
and wind, often affect them, causing delays and accidents (El Faouzi et al., 2010). Road
weather forecasting (RWF) has the potential to mitigate these problems by providing
timely weather information and prediction (Kangas et al., 2015). An accurate RWF
product would be of great societal value as it could lower road maintenance costs during
winter by employing preventative measures (Karsisto et al., 2017).

RWF (Road Weather Forecast) is a forecast product that provides information on the
variables that affect road conditions, such as temperature, precipitation, and the chance
of frost (Kangas et al., 2015). RWF is based on numerical weather prediction models and
observational data and has been proven effective by several surveys through historical
road weather data comparisons (Karsisto and Lovén, 2019) (Karsisto et al., 2017). The
models are designed to help road users and authorities make informed decisions about
road safety and enable preventative maintenance to reduce the risk of accidents (Kangas
et al., 2015). Figure 1.1 shows an example forecast produced by the Roadsurf model
(Kangas et al., 2015).

Figure 1.1: Example forecast by the Roadsurf model, driving difficulty displayed as traffic light
colors (Kangas et al., 2015)

Road weather models (RWM) are often one-dimensional and are traditionally de-
signed to run for singular locations, resulting in less computationally demanding mod-
els, that can be run in a more timely manner (Kangas et al., 2015). However, relying
on model results from single stations can be unreliable if the results are used to cover
larger areas, as variations in road type and traffic amount can have a major impact on
local conditions (Kangas et al., 2015). Some newer RWMs have the capability to be
run over several points, or even entire countries, such as the RoadSurf model developed
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by the Finnish Meteorological Institute (Kangas et al., 2015). Examples of operational
RWF models can be found in several countries, notably, countries that are affected by
freezing conditions during winter, such as the Netherlands with the RWM model from
the Royal Netherlands Meteorological Institute (Karsisto et al., 2017), and the METRo
model used in Canada (Crevier and Delage, 2001).

The importance of RWMs and RWFs cannot be understated as there are surveys de-
tailing the correlation between accidents on the road and poor driving conditions (Nurmi
et al., 2013). The availability of reliable forecasts could reduce the risk of accidents by
informing the public about dangerous conditions, enabling people to make informed de-
cisions when accessing the driving conditions. Additionally, it is much cheaper to deploy
preventative measures like salt before it freezes, as it takes significantly more salt to melt
the ice if it is already formed (Karsisto et al., 2017). Likewise, there is a large potential
for savings by adopting route-based forecasting, as it could make it easier to distinguish
which routes need salting, as some sections of road are more liable to freezing conditions
than others (Chapman and Thornes , 2011).

Road conditions are strongly impacted by local variations such as changes in topog-
raphy, vegetation, traffic, and nearby man-made structures(Bell et al., 2022). These
variations can be found at scales that are unresolved in typical NWP or road weather
models, as microscale variations require denser observation networks to capture and are
computationally demanding to model, requiring higher horizontal model resolutions for
the processes to be resolved (Chapman and Thornes , 2011). Even with spatially and
temporally dense observation, there is still an issue of representability, as temperatures
can vary significantly across a few meters of the roadway (Chapman and Thornes , 2011).

Increasing the number of observations can help to resolve small-scale temperature
differences, but expanding the official observation networks can be expensive (Hintz et al.,
2019). Crowdsourced data provides a possible solution to this problem, opening several
new avenues for opportunistic data collection, including private weather stations, car
observations, bus observation, and indirect measurements like phone battery temperature
(Hintz et al., 2019) & (Bell et al., 2022). While data sources like private weather stations
and vehicular observations are of lower quality they can still be useful given proper quality
control during the data assimilation, especially for areas with few or no official weather
stations (Nipen et al., 2020).

This new source of data is especially useful for post-processing of the NWP and
creating nowcasts, as post-processing often relies on observation from official weather
stations, which tends to be limited, especially considering high-resolution model grids
of 2.5km or lower (Nipen et al., 2020). Post-processing can be used to improve the
output of the NWP model, enabling corrections for known biases, integration of updated
observations, and even downscaling of the base model output to include more detail in
the forecast (Müller et al., 2017). An example of station coverage in the UK is shown in
fig 1.2, where there is a distinct difference between official station coverage and Netatmo
station coverage, particularly in densely populated areas.
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Figure 1.2: Map overview of official and Netatmo weather stations in the UK (Coney et al.,
2022), main colorbar indicating number of stations per 20km2, and secondary mini-colorbar
showing population

In this thesis, I will investigate the performance of the operational forecast model
AROME-MetCoOp (Müller et al., 2017) across two regions in Norway and assess the
use of car observations in reference to the model, and Netatmo weather stations (Ne-
tatmo). Both the stock 2.5km model and the post-processed 1.0km model supplied by
the Norwegian Meteorological Institute (Met Norway) will be evaluated. The compar-
ison between the car observations and Netatmo observations will investigate whether
these private stations are representable for road conditions. Finally, I will investigate
the usefulness of spatially and/or temporally dense observations for use in RWF, and
nowcasting products.
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2.1 Instruments

2.1.1 InterMet iMet-XQ2

The InterMet iMet-XQ2 (iMet) is a battery-powered lightweight temperature, humidity,
and pressure sensor with a GPS receiver designed to be used on drones. It features a
five-hour battery and storage for 15 hours of operation using a sampling rate of 1hz, bat-
tery, and storage capacity depending on sampling frequency. Temperature is measured
through an exposed bead transistor resulting in a fast 1-second response time, but mak-
ing it highly vulnerable to damage by moisture, as the circuitry is exposed. Specifications
are listed below in table 2.1

Table 2.1: Excerpt from manufacturers specifications for iMet-XQ2 (InterMet International Met
Systems, 2021)

Operating parameters Temperature Sensor GPS
Battery life 5-6 hours Type Bead thermistor Type Ublox CAM-M8
Data storage 16Mb Flash Memory Range -90 to 50 C Vertical accuracy 12m
Data transfer USB Response Time 1s at 5m/s flow Response Time 1s
Sampling Rate 1hz Accuracy ±0.3 degC
Size/weight 126x58, 60g Resolution 0.01degC

2.1.2 S+S Regeltechnik HTF 100 Pt100

The S+S Regeltechnik HTF 100 Pt100 is a temperature sensor used on the ITAS auto-
matic weather station in the Met-Garden by the Geophysical Institute (UiB , 2016). It
is a reliable high-resolution temperature sensor set to sample at 1hz, with data exported
once per hour. The instrument is covered by a sun screen to reduce the heating effect of
insolation.

Table 2.2: Specifications for S+S Regeltechnik HTF 100 Pt100 temperature sensor (UiB, 2016)

Meassurement Range Resolution accuracy Unit
Air temperature -50 to 180 0.1 N/A [◦C]

2.2 Variability testing

One in an insulated box, out of direct sunlight and wind, and the other exposed to
the elements. The boxed setup was tested on the roof of the tower at the Geophysical
Institute (GFI) at the University of Bergen (UiB). The exposed test setup occurred in
front of the GFI (Met-garden), with the sensors zip-tied to the fence (fig:2.2), while the
rooftop sensors were placed in an instrument junction box (fig: 2.1).

Instruments were left running for 4-5 hours, or until they ran out of battery, depending
on the specific device, as some had been modified with larger batteries. The sampling
frequency was set to 1hz for all tests. Due to high sampling frequency and large datasets,
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the static variability data, collected at the GFI, was resampled to 60 seconds through a
rolling mean to match the frequency of the comparative instruments.

This line of testing allowed us to determine the bias and precision of the portable
sensors (iMets), both in terms of how they related to each other and environmental
factors such as wind and changes in cloud cover. Additionally, the boxed experiment
was retested later to investigate sensor drift over time.

Figure 2.1: Boxed instrument setup on the GFI tower’s roof, with iMets placed inside the
junction box

Figure 2.2: Garden instrument setup in front of the GFI, iMets on the fence, and reference
instrument on the mast behind, this is an example, with the same setup as the benchmark, but
fewer iMets
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2.2.1 Sensitivity to car speed and position of instrument

We performed tests to assess the impact of instrument placement and how they
were affected by insolation, stationary, acceleration, and movement, as well as dif-
ferent surface materials. The tests were split between two cars, one white and
the other dark blue. Due to availability, most trials were conducted on the latter.

[H]

Figure 2.3: Map of the northern section of
the NAF practice facility, blue route: 10km/h-
30km/h, red route:40km/h-50km/h, ref: (Google
Inc, n.d.a)

Due to limitations posed by the in-
strument and time limitations, the test-
ing is centered around daytime testing, fo-
cusing on sunny conditions. The effect of
heating during short-term stops was tested
by driving around a circuit, taking a one-
minute stop between each lap, and simu-
lating the impact of a short traffic stop.
Laps were divided into speed brackets
(10km/h, 20km/h,30km/h,40km/h, and
50km/h), with each speed bracket be-
ing tested five times. All brackets were
tested at the NAF practice circuit at So-
tra. Due to occupancy and traffic, the 10-
30km/h brackets and 40-50km/h brack-
ets were tested on different circuit parts.
The different paths are shown in figure 2.3,
with the blue track used for the 10km/h-
30km/h and the red used for the 40km/h-
50km/h tests.

The 10-30km/h brackets were tested
on a shorter stretch of the circuit, with
short stops on a dark gravel patch next to
the road between the runs, while the 40-
50km/h brackets had a short on an asphalt
surface.

Two iMets were used for the experi-
ment, one mounted on a roof rack, referred
to as roof, and the other near the bottom
of the car on the lower engine intake, re-
ferred to as bottom. Mounting points are
shown in figure 2.4

The sensitivity to the surface and
movement tests, from the NAF practice
circuit at Sotra, kept their native sampling
frequency due to their shorter run times. The nature of the tests and surrounding traffic
made it impractical to rely on lap times, especially considering there was no place to stop
at the end of the testing areas. The sensitivity and movement test at the NAF circuit
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utilized the geodetic distance derived from the Haversine formula to estimate speed from
changes in longitude, latitude, and time, combined with spatial boundaries to identify
the lap times.

a = sin2
(
∆ϕ

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
∆λ

2

)
(2.1)

c = 2 · atan2
(√

a,
√
1− a

)
(2.2)

d = R · c (2.3)

where ∆ϕ and ∆λ are the change in latitude and longitude, ϕ1 and ϕ2 are the latitudes
of starting and end position, R is the radius of the earth, a is the haversine of the angular
separation between the points, c is the angular distance in radians, and d is the final
distance between the two points on the surface of the sphere.

Each lap was set to start when acceleration was detected, however, due to inaccuracy
in the GPS signal resulting in short erroneous accelerations when stationary, filtering
was needed. A simple clipping filter was used to set every value below 1 km/h to zero,
while a Hampel filter was used to remove larger outliers, caused by larger jumps in the
GPS location.

Mj = medianj(xj) (2.4)

MADj = medianj (|xj −Mj |) (2.5)

yi =

{
xi if |xi −Mj | ≤ k ×MADj

Mj otherwise
(2.6)

where yi is the filtered value of the ith data point in the time series, xi is the original
value of the ith data point, medianj(xj) is the median value of the data points within
the window centered at the jth data point, and MADj(xj) is the median absolute
deviation of the data points within the window centered at the jth data point. The k
is a tuning parameter determining the threshold for outlier detection and is set to 3, to
remove outliers larger than 1 km/h while the vehicle is stationary, and outliers caused
by drifting of the GPS signal while moving. The resulting speed, time, and coordinates
were used as lap limiters and identifiers.
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Figure 2.4: Instrument mounts used at NAF practice facility, left: iMet mounted on the roof
rack, right: iMet mounted on the bottom

Figure 2.5: Instrument mounts used at the proof of concept trial and roof mount for main runs
for the Haugesund route, left: car overview, top right: roof mount, bottom right: iMet mounted
on bottom
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Figure 2.6: Trial route around Northern Karmøy, starting/stopping at Gunnarshaug South buss
stop (Google Inc, n.d.b)

2.3 Car Measurements for model comparisons and variability while
driving

First, there was a proof of concept trial including two iMets using the white car with the
configuration above (fig: 2.5), driving around a short loop of Northern Karmøy (approx-
imately 20 minutes), with tests including both daytime and late evening measurements.
The route is shown in fig 2.6. Data gathering for the primary datasets was conducted
along two routes. The first route was a loop between Haugesund-Haukås-Aksdal and the
second between Bergen and Northern Os along the old E-39 (fig: 2.7).

The first route was tested in a six-hourly fashion for 24 hours, each run taking
approximately one hour, with an extra midnight run driven later. While the Bergen
route was driven in a twelve-hourly manner, each run took around 30 minutes. Each
route is depicted in fig 2.7, with driving times in table 2.3.

Rooftop instruments collect all data gathered on these routes due to roadway moisture
concerns and results from the trial run. Additionally, all runs in the Haugesund were
performed in a white car, while runs in the Bergen region used a dark blue car.
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Figure 2.7: Main car observation routes, left: Haugesund-Haukås-Aksdal ref: (Google Inc,
n.d.b), right:Bergen-Northern Os ref: (Google Inc, n.d.c)

Table 2.3: Driving times for main routes depicted in fig2.7, all times in UTC

Location Date Start Stop Duration
Haugesund 28.09.2022 22:00 23:00 60 min
Haugesund 29.09.2022 04:00 4:57 57 min
Haugesund 29.09.2022 10:00 10:56 56 min
Haugesund 29.09.2022 16:00 16:57 57 min
Haugesund 18.11.2022 23:00 23:55 55 min
Bergen 20.01.2023 23:00 23:33 33 min
Bergen 21.01.2023 11:00 11:32 32 min
Bergen 26.01.2023 23:00 23:32 32 min
Bergen 27.02.2023 11:00 11:33 33 min
Bergen 27.02.2023 23:00 23:32 32 min
Bergen 28.02.2023 11:00 11:32 32 min
Bergen 28.02.2023 23:00 23:32 32 min
Bergen 01.03.2023 11:00 11:33 33 min
Bergen 01.03.2023 23:00 23:32 32 min
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2.4 External Data

2.4.1 Netatmo data

The project was granted access to Netatmo observations through Met-Norway, for the
areas and timeslots of the car runs. Netatmo weather stations are small privately owned
weather stations commonly found in residential areas(Netatmo). The stations are con-
nected to the internet and can provide real-time weather monitoring to their users,
including temperature, humidity, wind, and precipitation (Netatmo). Additionally, Met-
Norway integrates Netatmo data into the observation product used in the post-processing
for the 1.0km model ((Nipen et al., 2020)), providing spatially dense observations in
densely populated areas. As a result, they also make for an interesting comparison to
car observations, as official RWS are few and far between, providing a poor basis for
comparison.

2.4.2 Model data

AROME-MetCoOp is a high-resolution NWP model with a 2.5km horizontal resolution,
utilizing an ensemble prediction system (Müller et al., 2017). The model was originally
a cooperative effort between the Norwegian Meteorological Institute (Met Norway) and
the Swedish Meteorological Institute and Hydrological Institute (Müller et al., 2017) but
has been joined by several other countries including Finland and Denmark (Meteorologisk
Institutt , n.d.). The model is built on the French AROME model and optimized for the
Nordic regions, with 6-hourly forecasts for the main cycle updating atmospheric and land
surface variables at (00,06,12,18 UTC) producing a 66-hour forecast, and intermediate
cycles at (03,09,15,21 UTC) producing a shorter three-hour forecast (Müller et al., 2017).

Figure 2.8: Data assimilation flow chart for AROME-MetCoOp, by Müller et al. (2017), illus-
trating the surface and upper-air data assimilation process to obtain the analysis.
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The surface model uses the SURFEX model for atmosphere-surface and surface-soil
interactions (fig: 2.9), where all surface processes are described as one-dimensional pro-
cesses (Müller et al., 2017) & (CNRM , 2023). ECOCLIMAP2 is used to define the land
surface parameters, initializing soil, vegetation, and atmosphere transfer schemes(Müller
et al., 2017). Surface data assimilation is performed by CANARI (Code d’Analyze Néces-
saire à ARPEGE pour ses Rejets et son Initialization), using two-meter temperature and
relative humidty to adjust surface temperature, soil temperature, and moisture fields,
by use of optimal interpolation (Müller et al., 2017). T2m and RH2m is supplied by the
regional observation networks.

Figure 2.9: Illustration of the processes calculated by the SURFEX model (CNRM, 2023)

The upper-air data assimilation uses the mixing of large-scale information (LSMIX)
(Müller et al., 2017) from the european center for medium range forecasting integrated
forecasting system (ECMWF-IFS), and 3DVAR data assimilation (Müller et al., 2017),
which calculates errors from a previous forecast run and compares the data to observa-
tions identifying differences and creates a cost function. Initial conditions are iteratively
adjusted to minimize the cost function, giving the analysis, which represents the best es-
timate of the atmospheric conditions (Fisher , 2001). The assimilation process for surface
and upper-air assimilations is illustrated in figure 2.8.

Met Norway utilizes a modified version of the MEPS 2.5km model that downscales the
control run temperature to a 1km horizontal resolution and applies bias corrections from
a 1.0km temperature analysis (Meteorologisk institutt , 2021). This helps to minimize
errors from the NWP model output and enables regular adjustments to the output
without requiring a complete re-run of the main NWP model, which typically takes
several hours to run, allowing the post-processed forecast product to be updated hourly
(Nipen et al., 2020). However, the 1.0km post-processed model does not use the improved
ground tiling product used in the main 2.5km model (SURFEX), instead relying on a
coarser surface tile setup, likely leading to model biases near lakes(Nypen, 2023).
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Model data was downloaded from Met-Norway originating from the AROME-
MetCoOp model and distributed through the Met-Norway THREDDS server (Norwegian
Meteorological Institute, n.d.). This project uses data from the MetCoOp ensemble pre-
diction system (MEPS), specifically the deterministic 2.5km model runs(MEPS25), and
the analysis and forecast runs from the 1.0km post-processed model product (MEPSPP)
described in section 1.

Analysis/closest forecast

Observations are unfiltered and matched to their grid cells using a nearest neighbor
lookup function, precisely the KdTree function in the SciPy spatial package. Returning
the indexes and distances to the nearest point on the model mesh grid allows for aver-
aging all observations inside each grid cell, resulting in the grid-averaged product, which
resembles the scale of the parent model with one value for each grid cell. The process is
repeated for the Netatmo observations, adding a cutoff filter to account for inaccurate
data from misplaced stations. Said filter uses a cutoff threshold of ±3 degrees of the
max/min values of the iMet observations.

Due to differences in forecast times, and available model products, the 1km post-
processed model product uses the analysis, which starts simultaneously with the car
runs. In comparison, the 2,5km product uses the closest preceding forecast, which varies
between 1-2 hours lead time depending on daylight savings time.

All car runs use model data corresponding to the run’s start time; it is assumed that
there is little or no change in the forecast products over the individual test runs.

Forecasts

The Forecast comparisons use the same method as the analysis but adjusted to compare
the forecasts from t-5 hours, t-11 hours, t-17 hours, and t-23hours, with lead time re-
ferring to hours before the car observations. I utilized the six hourly forecasts for the
2,5km and 1km products to investigate the whole observation and grid-averaged prod-
ucts, including the Netatmo observations.

2.5 Statistics

General statistics will be calculated for all relevant datasets, including extreme values,
mean bias error(MBE), standard deviation(StDev), and root mean square error (RMSE),
with equations listed below:

The

MBE =
1

n

n∑
i=1

(xi − yi) (2.7)

where n is the number of observations, xi is the forecasted value, and yi is the observed
value. The MBE measures the average difference between the forecasted and observed
values, indicating the direction and extent of the bias in the models.

The mean absolute error is defined as
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MAE =
1

n

n∑
i=1

|xi − yi| (2.8)

where n is the number of observations, xi is the forecasted value, and yi is the observed
value. The MAE measures the average absolute difference between the forecasted and
observed values, indicating the magnitude of the bias in the models.

The standard deviation is defined as

StDev =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (2.9)

where n is the number of observations, xi is the i-th value, and x̄ is the mean of the
values. The StDev measures the spread of data points around the mean, indicating the
variability or precision of the measurements.

The root mean square error is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2 (2.10)

where n is the number of observations, xi is the forecasted value, and yi is the
observed value. The RMSE measures the difference between forecasted and observed
values, considering both the direction and extent of the difference. It is a commonly
used metric for evaluating the accuracy of predictive models.



3 Variability testing

3.1 Static variability

3.1.1 Sheltered sensors

Figure 3.1: Temperature variability between the iMets compared to the reference temperature for
07.09.2022, top: temperature in ◦C, bottom: temperature anomaly between iMets and reference
in ◦C

The first experiment, conducted at 08:00-13:00 UTC 07.09.2022, showed slight variation
between the instruments, except iMet11 being around 1 degree warmer than the rest.
Furthermore, iMet11 has more significant variability seemingly caused by signal noise
and bad calibration, resulting in a consistent difference from the other iMets (fig: 3.1).
It is clear from the temperature anomaly shown in the lower half of the figure, consisting
of the difference between the individual sensors to the ensemble of the sensors (the
reference), excluding outliers, that the majority of the sensors have a very low bias.

From table 3.1, it is shown that the bias and RMSE of the instruments are less than
±0.10◦C for all the devices except iMet11, with the StDev staying consistently between
all sensors (≤ 0.05◦C). N/A values show instruments missing or broken during the
current test but available/fixed for later trials.
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Table 3.1: iMet temperature statistics for 07.09.2022 for the sheltered instrument setup

Instrument StDev Bias RMSE
iMet01 1.76◦C −0.05◦C 0.067◦C
iMet03 1.82◦C 0.07◦C 0.097◦C
iMet04 1.76◦C −0.05◦C 0.068◦C
iMet05 N/A N/A N/A
iMet06 N/A N/A N/A
iMet10 1.79◦C −0.01◦C 0.035◦C
iMet11 1.78◦C 1.23◦C 1.243◦C
iMet12 1.77◦C 0.09◦C 0.093◦C

average 1.78◦C 0.21◦C 0.267◦C
ensemble 1.77◦C

Figure 3.2: Temperature variability between the iMets compared to the reference temperature for
12.11.2022, top: temperature in ◦C, bottom: temperature anomaly between iMets and ensemble
in ◦C

The second experiment, conducted at 09:00-13:00 UTC 12.11.2022, shows less total
variability for the individual sensors (fig: 3.2), with the reduction coinciding with a
more stable ambient temperature brought on by cloudy weather. Once again, there is
an outlier, this time iMet06 with a bias of −0.40◦C (tab 3.2). Interestingly iMet11 now
has a much-reduced bias, suggesting external factors might be at play.

In contrast to iMet11, there is an increase in mean bias, with a marginal rise in mean
RMSE and a sharp increase in StDev. Furthermore, table 3.2 includes bias drift showing
less than 0.20◦C difference for instruments included in both tests, excluding iMet11,
which had a much higher difference of −1.07◦C. Three devices were excluded from the
bias drift calculations, where drift is the change in bias over two boxed instrument tests,
as a; they were not available for both tests (iMets 5-6), or b; they were damaged between
or during one of the tests.
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Table 3.2: iMet temperature statistics for 12.11.2022 for the sheltered instrument setup

Instrument StDev Bias RMSE Bias Drift
iMet01 0.16◦C 0.05◦C 0.057◦C 0.10◦C
iMet03 N/A N/A N/A N/A
iMet04 0.14◦C 0.14◦C 0.162◦C 0.19◦C
iMet05 0.16◦C −0.05◦C 0.070◦C N/A
iMet06 0.17◦C −0.40◦C 0.399◦C N/A
iMet10 0.17◦C −0.12◦C 0.128◦C −0.11◦C
iMet11 0.16◦C 0.16◦C 0.164◦C −1.07◦C
iMet12 0.17◦C −0.06◦C 0.071◦C −0.15◦C

average 0.16◦C −0.04◦C 0.150◦C −0.21◦C
ensemble 0.15◦C

3.1.2 Exposed sensors

Figure 3.3: Temperature variability between the iMets compared to the reference PT100 sensor
for 16.09.2022, top: temperature [◦C], bottom: temperature anomaly between iMets and PT100
[◦C]

Figure 3.3 shows an entirely different result from the sheltered sensors, with the test
taking place at 08:00-13:00 UTC 16.09.2022 with windy semi-overcast conditions. While
the iMets were fully exposed to the elements, except for some fence shading, the reference
instrument had a sun shield, causing lower overall temperatures and leading to positive
biases for all sensors, as shown in table 3.3. The figure also indicates distinctive peaking,
likely due to sunlight briefly piercing the clouds.

As expected, the peaks and differences between the reference and the iMets increase
the bias compared to the sheltered setup, especially when excluding the outliers. The
standard deviation ranges from 0.45◦C to 0.70◦C, and the RMSE between 0.27◦C and
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0.82◦C, where even the lowest value is higher than the mean in tables 3.1-3.2 in section
3.1.2.

Table 3.3: iMet temperature statistics for 16.09.2022 for the exposed instrument setup

Instrument StDev Bias RMSE
iMet01 0.47◦C 0.13◦C 0.303◦C
iMet03 0.53◦C 0.23◦C 0.411◦C
iMet04 0.45◦C 0.10◦C 0.270◦C
iMet05 0.45◦C 0.11◦C 0.276◦C
iMet06 0.47◦C 0.11◦C 0.284◦C
iMet11 0.70◦C 0.59◦C 0.820◦C
iMet12 0.57◦C 0.37◦C 0.544◦C

average 0.52◦C 0.23◦C 0.415◦C
PT100 0.38◦C

3.2 Car-mounted sensor variability

3.2.1 Stationary heating

Figure 3.4: Test runs for the temperature variability of car-mounted iMets, instruments mounted
on the roof and near the bottom of the car, including asphalt and gravel ground materials.

Figure 3.4 illustrates the temperature variability for a stationary vehicle, including read-
ings from the shaded lower front section of the car and the roof. It includes ten test
runs, for each plot, showcasing considerable variability with some notable outliers. The
best example of such an outlier is in the lower left section, where there is a dotted blue
line with clearly anomalous behavior. Its temperature stays close to its equivalent roof
temperature.
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The variability can be more easily investigated by looking at the test runs in figure
3.5, where we can see a more distinctive pattern revealing discrete heating patterns while
stationary on an asphalt surface, with a more complicated evolution on a gravel surface.
Temperature drops are recorded when parking on a gravel surface next to the road,
remaining relatively stable, except for a brief maximum at around the 30-second marker,
which incidentally is near the local minimum of the bottom mount over asphalt.

The hump detected at the 30-second marker for the gravel surface is likely due to air
from the road being pushed over by passing cars, as the traffic around the circuit was
quite consistent, with one car passing by for each test run.

Due to missing data values caused by faulty GPS readings, some test runs can be up
to 5 seconds delayed.

Figure 3.5: Average temperature variability ensembles for different surfaces and mount points

3.2.2 Acceleration and movement

Examining the information in figures 3.6-3.7, it is apparent that accelerating or moving
the vehicle can have a profound impact on the temperature registered by the sensors
as surrounding air displaces the air around the car. Such a process generally implies a
cooling effect on the vehicle, but this is not always the case.

The bottom readings over gravel increase in temperature for up to 9 seconds, per-
haps unsurprisingly after the investigation of stationary heating showing a significantly
stronger temperature increase over time for asphalt than gravel (section 3.2.1). In fact,
this difference in heat emitted by the surface makes it harder to diagnose differences in
temperature for the surfaces, as the difference in starting temperature is around 4◦C.
Making it more likely to cool as the surrounding air is pulled toward the car.
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Figure 3.6: Shows the temperature evolution on the roof while the vehicle accelerates from a
standstill, with temperature in the top plot and speed in the lower plot.

Figure 3.7: Shows the temperature evolution on the shaded lower front while the vehicle accel-
erates from a standstill, with temperature in the top plot and speed in the lower plot.

Figures 3.6-3.7 contain the temperature response while accelerating/moving, with the
temperature evolution in the top plot and speeds in the lower field. Figures are divided
into Roof and Bottom, respectively.

The roof has smaller temperature differences between the asphalt and gravel surface,
although still notable at around two degrees. Both gravel and asphalt surfaces show a
decline in temperature, and an increase in variability when the temperature nears 13◦C.
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Increases in variability could be caused by changes in direct sunlight and wind exposure,
or by passing through sections of warm air caused by areas of increased surface albedo,
like darker patches of asphalt, or areas with less ventilation (near trees).

While the gravel surface produces mixed results when accelerating, the asphalt keeps
to a predictable cooling pattern. Reducing consistently between speeds of 10-30km/h,
until it gets closer to the ambient temperature of 13− 14◦C.

3.2.3 Variability while driving

Figure 3.8 contains measurements from a car’s roof and bottom with the vehicle hav-
ing a silver-white color. With measurements spanning daytime, 13:00-13:22 UTC, and
evening, 20:00-20:26 UTC. The upper row contains roof measurements, with the lower
row containing the lower engine intake measurements, and time increases from left to
right. The area covers Northern Karmøy, part of an island just west of Haugesund,
Rogaland.

Figure 3.8: Spatial temperature plots for day and nighttime trial runs, including roof and engine
went mount points, top row: roof measurements, daytime on the left, and nighttime on the
right, bottom row, intake vent measurements same layout as the top row. Observations from
29.09.2022.
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The figure illustrates that the instrument is sensitive enough to register local tem-
perature differences with sufficient response times and that the GPS can reliably place
the GPS coordinates on the road. Furthermore, it confirms small localized areas with
significant temperature drops during the evening and regions with higher temperatures
than surrounding areas.

This is expanded in figure 3.9, where the data is presented as a time series, including
the drive to the test route, which contains interesting heating data as there a many small-
scale temperature-variations that would not be resolved in a weather model. Daytime
observation concurs with the results of sections 3.2.1-3.2.2, with heat building up faster on
the bottom sensor, although it shows that the difference between the roof and bottom is
minimal while driving. In the evening, they mostly equalize, albeit with a slight reversal
of the daytime situation. The roof is slightly warmer than the engine vent, except when
the vehicle is stationary.
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Figure 3.9: Time series comparison of roof mounting and lower engine vent mounting for day
and evening conditions, 29.09.2022



4 Model Comparison

4.1 Analysis

4.1.1 Haugesund 28.09.2022 22:00 UTC

The first set of results shown in fig 4.1 & 4.2 shows a partition in model bias between
the northern and southern section of the test area, visible in both the iMet and Netatmo
datasets. The area to the south and southwest holds the major population centers, with
Haugesund situated in the southwestern corner and suburbs sprawling in every direction.
However, the suburb population is denser on the eastern side of Haugesund than on the
Northern side, and there is more traffic passing through due to two major roads passing
through (E39 & E134).

The MEPS 1.0km product fits better to the observations, which is unsurprising as
the Netatmo data is used in the post-processing (Meteorologisk Institutt , 2018). How-
ever, some selection/wetting algorithms are used as they are not treated equally. A
vetting process was also conducted on these datasets as they are commercially avail-
able private weather stations; they are not always ideally placed, leading to inaccurate
readings. However, assessing which readings are valid without other observations can be
challenging, as there can be a significant degree of natural variation even in a single grid
cell.

As for the temperature bias, the model is around two degrees Celsius warmer in the
northern half of the post-processed domain, with an exception to the west just above
the midpoint, which is up to 4-5 degrees too cold, which is worse than the result from
the 2.5km model. The 2.5km model has a bias of around 3-4 degrees in the northern
half. For the southern section, it is a bit more chaotic. Still, the temperature anomaly
generally decreases from the 2.5km to the 1.0km model, except for the area just east
of Haugesund, which is notably warmer. The grid averaging in fig 4.2 gives the same
pattern but reduces the peak temperatures by 1-2 degrees.
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Figure 4.1: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 28.09.2022 22Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Figure 4.2: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, observations are averaged by grid cell, time:
28.09.2022 22Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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4.1.2 Haugesund 29.09.2022 04:00 UTC

Figures 4.3 & 4.4 give the same general temperature distribution albeit with more uni-
form temperature differences, i.e., less variation in temperature difference within the
northern/southern region. The exceptions noted in section 4.1.1, namely the cold bias
around the domain midpoint to the west, and the warm section east of Haugesund, have
all but disappeared or at least strongly diminished. Additionally, the models’ tempera-
tures have decreased, unsurprisingly, as 04:00 UTC is 06:00 local time, about 1.5 hours
before sunrise, being near the diurnal minimum under stable conditions.

As a result, the gridded mean staying around ±1◦C, with outliers around ±3◦C for
the observations. Precise statistics can be found in table 4.1. While the results have less
variation, it is interesting that the Netatmo data in the northern half are less consistent
with the iMet, especially in the northwestern quadrant of the 2.5km grid. The Netatmo
stations report that the model is too cold while previously having the same sign and
roughly the same values as the iMet.The southern section shows near identical values for
the 2.5km model, with a strong cold bias.

Figure 4.3: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 29.09.2022 04Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 4.4: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, observations are averaged by grid cell, time:
29.09.2022 04Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.1.3 Haugesund 29.09.2022 10:00 UTC

The midday run shows a much more mixed result between the Netatmo stations and the
iMet, where the model is heavily biased according to the iMet readings, showing that the
model is too cold over the road (figs: 4.5 & 4.6). However, there is more variation in the
Netatmo data, specifically in the 1.0km product, where there is less of a discernable bias
pattern. Do note that the color bar does not have equally spaced ticks for positive and
negative values, as the max and min values are -8.0 and 2.2, respectively. When averaged
over larger grid cells, it is apparent that the model bias is predominantly negative, as
the Netatmo data averaged to the 2.5km grid cells shows a similar tendency to that of
the iMet.

There is also a discernable improvement from the 2.5km model to the 1.0km model,
lessening the overall negative bias and resulting in much better results for the road
measurements, with the mean bias being reduced by around 1.5◦C. The mean model
bias with respect to the Netatmo data was also reduced by nearly 2.0◦C, but this is
less impressive considering the Netatmo values are more spread between positive and
negative values, resulting in a lower average.
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Figure 4.5: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 29.09.2022 10Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Figure 4.6: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, observations are averaged by grid cell, time:
29.09.2022 10Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.



4.1 Analysis 29

4.1.4 Haugesund 29.09.2022 16:00 UTC

The early evening run is almost precisely opposite from the midday run (figs: 4.7 & 4.8),
with iMet values showing that the model is too warm for the roads. Interestingly the
2.5km model seems to outperform the 1.0km model from the iMet perspective, likely
due to the Netatmo stations implying that the 2.5km model is too cold, resulting in a
post-processing adjustment. Again, the result is likely impacted by the diurnal cycle as
sundown was around 19:30, which means that the run was taken between 1.5h to 0.5h
before sundown. The resulting sun angle, topography, and vegetation likely impact the
2.5km and 1.0km model data, contributing to the overall warm bias. Full statistics are
shown in table 4.1.

Figure 4.7: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 29.09.2022 16Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 4.8: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, observations are averaged by grid cell, time:
29.09.2022 16Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.1.5 Haugesund 18.11.2022 23:00 UTC

The last run of the Haugesund route was driven later in autumn on 18.11.2022 and
had a more distinct temperature anomaly distribution. The 2.5km model shows a pre-
dominantly cold bias, which differs from the previous evening example in section4.1.1.
However, daylight savings ended earlier in the month, resulting in a later starting time
in UTC, fewer daylight hours, and less environmental heating.

The post-processing for the 1.0km data has been rather effective at lessening the bias,
which is especially apparent when looking at the gridded averages in fig 4.10. The mean
gridded bias for the iMet changes sign from −0.922◦C to 0.208◦C, while the Netatmo
mean bias changes from −0.503◦C to −0.182◦C (table 4.1). Again, some of the reduction
of the mean bias is likely due to the increased frequency of sign changes introduced to
the bias in the post-processed product and not necessarily due to the smaller bias.
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Figure 4.9: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 18.11.2022 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL

Figure 4.10: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left),
and MEPS 2,5km model (right), represented by mesh grids over a map tile, observations are averaged by grid cell, time:
18.11.2022 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL
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4.1.6 Haugesund statistics

Looking at the observation runs in table 4.1, there is a decrease in the MSE and RMSE
for most runs when going from 2.5km to 1.0 km, the drop is not universal, but it is
apparent when taking the mean errors for all runs. Additionally, the standard deviation
is reduced for all runs, perhaps unsurprisingly, as the 2.5km product has lower minimums
for all runs and higher maximums for most runs, with a majority of negative biases in
the 2.5km product and all but one positive for the 1.0km product.

Similarly, the Netatmo stations highlight the 2.5km model data have a mean bias
that is entirely negative for all runs, but keep in mind that the pure Netatmo values are
not plotted. Moving on to the 1.0km data, the mean bias is still negative for the majority
of the runs, albeit much smaller in magnitude, which is to be expected as these Netatmo
observations are used in the post-processing. Standard deviation is comparable with the
2.5km model, albeit slightly higher on average, likely due to the minimums being lower
across all runs and the maximums being comparable in value. MSE and RMSE show a
similar pattern with the standard deviation, where the averaged errors overall runs are
slightly higher, albeit by a minimal amount.

The grid averaged values for the iMet and Netatmo observations give minimum, and
maximum values of lesser magnitude, which is to be expected as averaging will reduce the
outliers for grid cells with multiple Netatmo/iMet readings. They also show an increase
in the mean bias for all but the last run for the 1.0km iMet readings and are overall
equivalent for the 2.5km model. Mean model bias relating to Netatmo observations is of
lesser magnitude with gridded averages for the 2.5km model and similar magnitude for
the 1.0km model. For the RMSE, the gridded means reduced the average error by 17%
for the 1.0km model RMSE and 18% for the 2.5km model RMSE (tab: 4.1).
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Table 4.1: Temperature anomaly statistics between MEPS 1.0km and 2.5km datasets to iMet
and Netatmo observations, including gridded averages, for the Haugesund route.
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4.1.7 Bergen 20.01.2023 23:00 UTC

The evening of January 20th, 2023 (figs: 4.11 & 4.12), shows a decent correlation between
the iMet measurements and the model data, particularly for the northern half of the
domain. The southern section shows a strong, warm bias in the 2.5km model, primarily
corrected in the 1.0km model. While the bias is mainly corrected, a small area remains
with a solid warm bias, perhaps due to the gap in the Netatmo coverage, preventing
corrections during the post-processing for the 1.0km model. The magnitude of the bias
is interesting, as there is a significant difference of up to 9.2◦C in the 2.5km model
and 6.4◦C in the 1.0km model, as shown in table 4.2, which could cause issues if the
temperature was closer to the freezing point.

Similarly, the Netatmo observations near the car route have warm biases in the 2.5km
model and are more mixed in the 1.0km model. However, the bias generally becomes
negative/more negative further away from the road, especially on the western side. This
change might be due to the proximity of the ocean causing a warmer ambient temperature
by heat exchange, as the ocean typically does not freeze. Furthermore, it is noteworthy
that the topography around the southern half of the route is generally dominated by
north-south facing valleys, potentially inducing cold pools along sections of/along the
road. Bodies of water are present along the route, but due to the low temperature, most
freshwater lakes and slow-flowing rivers are likely frozen. Keep in mind that the 1.0km
model does not resolve lakes, which is likely a contributing factor to the cold biases found
near the lake at the center of the domain, relating to the Netatmo stations (fig: 4.12).

Figure 4.11: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 20.01.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 4.12: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
20.01.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.1.8 Bergen 21.01.2023 11:00 UTC

Figure 4.13: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 21.01.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 4.14: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
21.01.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Around midday of January 21st, 2023 (figs: 4.13 & 4.14), the bias has reversed and
weakened in magnitude. The 2.5km model is almost exclusively negatively biased, which
is again primarily corrected by the observations in the 1.0km model. The strongest bias
in the 2.5km model is found near the middle of the domain, next to a large body of
water. In comparison, the most significant anomaly is located in the southern area for
the 1.0km model (fig: 4.13).

Interestingly, the post-processing performed in the 1.0km product fits better with the
iMet measurements than the Netatmo observations for the lake, as mentioned earlier in
section 4.1.7. Remember that the Netatmo measurements are grid averaged and are likely
further away from the water. Overall, the Netatmo and iMet measurements indicate an
accurate analysis, as there is little model bias in the domain, potentially helped by the
stable conditions, resulting in less temperature variability.

4.1.9 Bergen 26.01.2023 23:00 UTC

The evening of January 26th, 2023 (figs: 4.15 & 4.16), shows a similar bias to the analysis
at 26.01.2022, 23:00 (section 4.1.7), but with a smaller magnitude. Biases are mostly
positive for the road measurements and mixed for Netatmo observations hovering around
−2◦C to 2◦C for most areas, with a mostly negative bias in the northern domain, south
of the city center. The car observations are more stable causing a consistent weak warm
bias in the models throughout the domain, with the warmest anomaly at the lake in the
center of the domain(fig: 4.15). Grid-averaged iMet values are similar to the gridded
Netatmo counterparts close to the road, albeit reporting a weak warm model bias instead
of the weak cold bias that is prevalent from the Netatmo data (fig: 4.16).
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Figure 4.15: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 26.01.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Figure 4.16: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
26.01.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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4.1.10 Bergen 27.02.2023 11:00 UTC

The remaining car measurements were influenced by a prolonged weather situation as-
sociated with a sudden stratospheric warming, caused by a disruption of the polar vor-
tex, that occurred at the end of February 2023 (Liberto, 2023), causing cold and stable
weather for the remainder of the observing period. Nevertheless, the evening of February
27th, 2023 (figs: 4.17 & 4.18), features a robust and cold model bias for both Netatmo
and iMet observations in the 2.5km model. It persists in the 1.0km model with a di-
minished but significant magnitude, except for the Netatmo readings, which now include
positive biases in several locations over the entire domain.

Note the pronounced warm zone in the northwestern corner of the 1.0km model do-
main (fig: 4.17), covering Danmarksplass, Solheimsviken, Møllendal, and Nygård, among
others. The area experiences large amounts of traffic and experiences great heating on
warm, clear days, and likely some heat exchange with Store Lungegårdsvann and Dams-
gårdssundet on cold days (the area in the northwestern corner in fig 4.17, obscured by
the positive bias markers from the car observations. Both iMet and Netatmo measure-
ments suggest a correction due to the warm bias, albeit lesser in magnitude than the
cold bias in the 2.5km model.

Figure 4.17: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 27.02.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 4.18: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
27.02.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.1.11 Bergen 27.02.2023 23:00 UTC

On February 27th, 2023, there is again an evening bias (figs: 4.19 & 4.20), as shown
before on 20.01.2022 23:00 UTC (sections: 4.1.7 & 4.1.9). The bias is weak overall but
has some problems for RWF, such as the areas with temperatures between 0◦C and 4◦C
with warm biases indicating actual temperatures of below 0◦C, that are not forecasted.
Forecast errors at these temperatures potentially result in reduced readiness among road
maintenance workers and perhaps a lack of preventative measures for slippery conditions.

The 1.0km forecast shows limited correction, likely due to the Netatmo observations
showing little to no bias in the 2.5km model, except for the southernmost section, which
has a warm bias in both observation sets.
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Figure 4.19: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 27.02.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Figure 4.20: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
27.02.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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4.1.12 Bergen 28.02.2023 11:00 UTC

Daytime measurements on February 28th, 2023, follow the patterns of the previous day
described in section 4.1.10, with a strong cold bias in the 2.5km model for both observa-
tion sets (figs: 4.21 & 4.22), and a reduced, yet significant cold bias in the 1.0km model
for the car observations. Biases with respect to Netatmo observation are mixed in the
1.0km model, with a negative tendency across the domain.

The warm section in the northwestern corner, covering the Bergen city center on
27.02.2022, 11:00 UTC (fig: 4.17 has returned and is more pronounced. Again, the iMet
and Netatmo data give strong warm model biases, indicating another potential over-
correction. It is interesting, as it is the only large area with a consistently strong warm
bias.

Figure 4.21: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 28.02.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 4.22: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
28.02.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.1.13 Bergen 28.02.2023 23:00 UTC

The evening of February 28th, 2023 (figs: 4.23 & 4.24), diverges from the previous
evening/nighttime by having a lightly mixed bias for Netatmo and iMet readings on
both models. The mean biases are lower than 0.45◦C in magnitude for both the iMet
and Netatmo data (table 4.2). There are some outliers, with the stronger ones found
in the Netatmo data next to bodies of water, potentially influencing the temperature
through heat exchange, causing temperatures to be higher than forecast, resulting in a
cold bias.

The low biases in the 2.5km model and 1.0km model might be caused by a more
uniform temperature distribution both vertically and horizontally, as the mountaintops
are not as pronounced as on previous days (figs: 4.11,4.15, & 4.19), and there is less
variation in temperature along the road and domain in general. Resulting in an accurate
forecast according to the observations, especially for the grid averaged observations (fig:
4.24).
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Figure 4.23: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 28.02.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Figure 4.24: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, All observations are averaged by grid cell, time:
28.02.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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4.1.14 Bergen 01.03.2023 11:00 UTC

Measurements taken during the day on March 1st, 2023 (figs: 4.25 & 4.26) repeat the
bias patterns of the previous days described in sections: 4.1.8, 4.1.10, & 4.1.12, with a
magnitude on a similar scale as the previous two days. The iMet bias is entirely negative
for the 2.5km model, with the Netatmo obs having a max positive bias of 1.4◦C on the
figure border (not visible).

The warm zone at the northwestern corner has returned with the same behavior and
size described in sections: 4.1.10, 4.1.12, & 4.1.12.

Figure 4.25: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 01.03.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 4.26: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
01.03.2023 11Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.1.15 Bergen 01.03.2023 23:00 UTC

Measurements taken during the evening on March 1st, 2023 (figs: 4.27 & 4.28), are
similar to the patterns found in previous evening runs, with a strong positive bias on
the iMet measurements, for both models and Netatmo observation close to the road
with little to no bias on the 2.5km, except for the southernmost section which has a
pronounced warm bias. The 1.0km model still produces mixed biases with a tendency
toward a cold bias compared with Netatmo data.
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Figure 4.27: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, Netatmo observations are averaged by grid cell,
time: 01.03.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Figure 4.28: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-processed model (left), and
MEPS 2,5km model (right), represented by mesh grids over a map tile, all observations are averaged by grid cell, time:
01.03.2023 23Z. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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4.1.16 Bergen statistics

Based on the iMet measurements, it appears that the models used have distinct biases
during the day and night. During the night, the model temperatures are warmer than the
observations, causing warm biases. Conversely, during the day, the model temperatures
are colder than the observations, resulting in cold biases. It’s possible that the models
react slowly to temperature changes caused by the diurnal cycle and advected air masses,
especially in areas close to the road. For the 1.0 km model, the mean bias is positive
for all evening runs, but negative for the daytime runs. The 2.5 km model follows the
same pattern, except for the evening of February 28th, where there is a negative bias of
-0.391◦C.

Netatmo mean bias is negative during all car runs but is of greater magnitude during
the daytime runs for both 1.0km and 2.5km models. Remember that these are not the
plotted values; they were grid averaged to not obscure the plots. The grid averaged
Netatmo-related mean bias is still negative for all but two runs for the 1.0km and three
runs for the 2.5km, where the positive mean biases are from night observations (table
4.3). Still, the positive biases are more than a degree colder than those corresponding to
the iMet observations, suggesting a significant difference in temperature, and questioning
whether the Netatmo observations are representative of road conditions.

Further investigation shows that the mean daytime bias related to the iMets is twice
that of those related to the Netatmo observations in the 1.0km model, with values of
−0.82◦C and −0.41◦C respectively. The mean nighttime bias shows the biggest discrep-
ancy with bias values of 1.01◦C for the 1.0km iMet-related bias, and −0.12◦C for the
1.0km Netatmo-related bias. Interestingly, the difference in bias in relation to the iMet
and Netatmo observations doubles at nighttime.

It appears that the 1.0km model is generating warmer temperatures compared to the
iMet observations. This discrepancy could be attributed to the incorporation of Netatmo
data during the model’s post-processing. It’s essential to acknowledge that Netatmo
readings may be affected by heat emissions from their surroundings. These sensors are
typically situated on structures like residential buildings, leaving them susceptible to
external factors, such as heat emanating from vents, open windows, and poor insulation.
If the Netatmo stations are affected by these variables and report higher temperatures
than the model, it would result in a cold bias, which could potentially alter the model
output.

All minimums are negative, meaning no positive biases. However, not all maximums
are positive; daytime runs in February/March have negative maximums for the car obser-
vations, implying a cold tendency in the model at noon, local time. As this is a recurring
observation, over varying non-precipitating conditions, observed in relation to both iMet
and Netatmo observations, it is likely caused by the models’ radiation schemes and the
ability of the surface to absorb and emit shortwave/longwave radiation. Resulting in the
model bias related to the iMet measurements being entirely negatively biased, meaning
the model is too cold for the entire period according to the car observations.

Minimums are not all negative for the grid-averaged iMet measurements, with the
2.5km model showing positive values for 4/5 nighttime observations. Still, the maximums
retain their sign, having positive values for all nighttime observations, resulting in the
runs at Jan 20th, Jan 26th, Feb 23rd, and Mar 1st for the 2.5km model being entirely
positively biased. Leading to an overestimation of temperature along the road according
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to the iMet observations, which could prove problematic if the temperature is close to
the freezing point.

The 1.0km model has a maximum standard deviation of 1.35◦C, while the 2.5km
model has a maximum of 1.85◦C, in relation to the iMet observations (tab: 4.2). In
contrast, the Netatmo observations have a higher maximum standard deviation of 1.99◦C
and 2.08◦C, respectively (tab: 4.2). On average, the Netatmo observations exhibit higher
values, which can be attributed to a larger variation in station placement, particularly
in terms of verticality. This includes remote data from mountainsides, coastal areas, and
everything in between.

The standard deviation of iMet-related data has an average of 1.0◦C for the 1.0km
model and 0.9◦C for the 2.5km model(tab: 4.2). In comparison, Netatmo observations
show a standard deviation of 1.5◦C and 1.6◦C for the 1.0km and 2.5km models, respec-
tively (tab: 4.2). The iMet-related mean standard deviation is likely smaller due to the
consistent road surface and lack of frequent large altitude changes during observations,
unlike the Netatmo data. Grid-averaged standard deviation values follow the same pat-
tern but have slightly lower values due to the averaging out of some of the extreme values
(tab: 4.3 ).

The 1.0km model shows little variation in RMSE in relation to the iMet observations
between day and nighttime for the full dataset, with only a 0.01◦C difference in mean
RMSE. In contrast, the Netatmo-related RMSE is lower than the corresponding iMet-
related RMSE for nighttime observations, but higher during the day with a difference of
nearly 0.5◦C. The 2.5km model has a higher RMSE for both observation sets, with an
especially high error during the day, likely due to varying solar insolation due to cloud
cover, and sun angle affecting heat absorption in conjunction with vegetation and local
topography.

Interestingly when grid averaging the Netatmo observations there is an increase in
nighttime error, and a decrease in the daytime error, indicating that a substantial portion
of the daytime error is linked to outliers in the datasets related to heating. The grid
averaging of the iMet observations does not produce a large difference in RMSE during
the day, likely because the instrument is actively cooled by a constant flow of fresh air,
reducing the impact of insolation, and heating emitted by the car.
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Table 4.2: Temperature anomaly statistics between iMet and Netatmo observations to the MEPS
1.0km post-processed product, and MEPS 2.5km model for the Bergen route
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Table 4.3: Temperature anomaly statistics between grid averaged iMet and Netatmo observations
to the MEPS 1.0km post-processed product, and MEPS 2.5km model for the Bergen route
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4.2 Forecast validation

4.2.1 Haugesund forecasts for 28.09.2022 22:00 UTC

4 Hour lead time

Starting with the forecast from 18:00 with a four-hour lead time, there is a warm bias
throughout the domain for both the 1.0km and the 2.5km models, with a single grid cell
having a cold bias relative to the Netatmo temperature(fig: 4.29). The southern half of
the domain has lower bias but higher differences between the Netatmo and iMet obser-
vations. Compared to the analysis in figure 4.2 (section 4.1.1), the model temperature
is substantially different, with the forecast temperature mainly in the 12− 14◦C range.
In contrast, the analysis stays mainly within the 8 − 12◦C, showing a lower in model
temperature for both models.

The grid-averaged iMet-related mean bias is 3.60◦C for the 1.0km model and 4.13◦C
for the 2.5km model (tab: 4.7). Similarly, the grid-averaged Netatmo-related mean bi-
ases are 2.12◦C and 2.35◦C, respectively (tab: 4.9). These results suggest a consistent
temperature difference between the iMet and Netatmo observations, which raises con-
cerns about the representability of Netatmo observations for road conditions.

Figure 4.29: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 28.09.2022 18Z+4H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.



52 Model Comparison

10 Hour lead time

Moving on to the forecast from 12:00 with a 10-hour lead time, there is a further increase
in model temperature for both models, resulting in a warm bias for the entire domain,
with an increase of around 2◦C (fig: 4.30). The increasing temperature, when looking
back to the previous forecast, suggests there might have been a shift in the weather
situation, with colder air being advected through the domain.

As expected, mean model bias related to the grid-averaged iMet observations is higher
with 6.17◦C for the 1.0km model and 6.25◦C for the 2.5km model (tab: 4.7), with
Netatmo- related biases of 4.75◦C and 4.42◦C (tab: 4.9), respectively. There is a slight
difference between the datasets caused by changes in temperature in grid cells that do
not have corresponding iMet data. This is noteworthy because the closest Netatmo
observation could be in a neighboring grid cell due to the observations being averaged
to the model grid.

Figure 4.30: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grid over a map
tile, observations are averaged by grid cell, time: 28.09.2022 12Z+10H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

16 Hour lead time

The forecast from 06:00 with a 16-hour lead time (fig: 4.31) shows a much better re-
sult, with mean bias values of 1.243◦C (1.0km) and 2.538◦C (2.5km)(table: 4.7), and
bias/temperature distribution mimicking that of the analysis (fig: 4.2, section 4.1.1),
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with warmer model biases in the northern domain, with cold spots to the west, south-
west, south, and east for the 1.0km model. The 2.5km is more uniform but retains some
cold bias spots in the southern domain.

The 1.0km model forecast shows significant variation between the bias related to the
iMet and Netatmo, with a greater amount of diverging grid-cell in the southern domain,
but also some notable differences in the northern domain around 59.525− 59.55◦N(fig:
4.31). Indicating varying degrees of representability when considering Netatmo observa-
tions for road conditions, once again highlighting the issues when comparing to neighbor-
ing grid cells, as these do not have a consistent difference in bias between the datasets.

Figure 4.31: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grid over a map
tile, observations are averaged by grid cell, time: 28.09.2022 06Z+16H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

22 Hour lead time

For the last forecast initiated at 00:00 with a 22-hour lead time (fig: 4.36), the pattern
from 06:00 grows in magnitude, with the cold bias in the southern section expanding,
and the northern area retaining its warm bias, resulting in a lower mean bias of just
0.892(1.0km) & 1.586 (2.5km)(table: 4.7). Remember that the mean bias is low due to
near equally divided temperature biases between the cold and warm sides and is still
significant on the northern and southern sides.
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Figure 4.32: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grid over a map
tile, observations are averaged by grid cell, time: 28.09.2022 00Z+22H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.2.2 Haugesund Forecasts for 29.09.2022 10:00 UTC

4 Hour lead time

The forecast from 06:00 with a four-hour lead time (fig: 4.33) shows a similar temperature
distribution to the analysis (fig: 4.6, section 4.1.1), albeit without any of the warm biases.
Making the forecast entirely cold-biased for both the 1.0km model and the 2.5km model.
With temperature ranges from the models lowered by 4◦C, resulting in a substantial
increase in cold bias magnitude for both models.

The pronounced cold bias could have implications for temperature-dependent activ-
ities, like road maintenance, and could be caused by inaccurate initial conditions in the
models, or an unexpected development in the weather situation. Additionally, it could
indicate that the model is too slow to react to heating, as 10:00 UTC was noon local
time, which is relatively early in the day.
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Figure 4.33: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grid over a map
tile, observations are averaged by grid cell, time: 29.09.2022 06Z+4H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

10 Hour lead time

The 00:00 forecast with a 10-hour lead time (fig: 4.34) is mostly unchanged from 06:00,
but the cold bias in Haugesund has reduced in magnitude across most of the city. Model
temperature distribution has changed slightly for both models, with higher temperatures
in the northwestern and southwestern corners. The mean model bias from the iMet data
is reduced by ∼ 1◦C(table: 4.7). In contrast, the 2.5km bias remains unaffected, with a
comparable drop in the model bias relating to Netatmo data (table: 4.9). Resulting in
the same implications as in the previous section.
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Figure 4.34: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grid over a map
tile, observations are averaged by grid cell, time: 29.09.2022 00Z+10H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

16 Hour lead time

Moving further back to 28.09, 18:00 with a 16-hour lead time (fig: 4.35), there is a sig-
nificant decrease in bias, with the mean biases being more than halved for both 1.0km
and 2.5km models concerning iMet and Netatmo observations(tables: 4.7 & 4.9). Re-
sulting in an accurate forecast according to the observations, mainly as biases are almost
entirely negative, meaning the local biases are small.

The reduction in bias magnitude reveals a reemergence of the bias difference pattern
observed between the iMet and Netatmo observations noted in section 4.2.1. It is in-
triguing that the bias induced by the Netatmo observations, which lack corresponding
iMet observations, appears to be lower or entirely gone for several areas. This difference
in bias is likely also affected by the uncertainty in the NWP model, especially the data
assimilation and initial conditions. As there are fewer stations when moving away from
the city and major roadways.
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Figure 4.35: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grid over a map
tile, observations are averaged by grid cell, time: 28.09.2022 18Z+16H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

22 Hour lead time

Finally, the forecast from 28.09, 12:00 with a 22-hour lead time (fig: 4.36) flips the bias
from cold to warm and improves the mean bias for both models and all observations,
with all mean bias values below 1◦C (table: 4.7 & 4.9).

Again, notice that biases are mixed, pushing down the mean bias but retaining high
local biases. That being said, the model biases relating to iMet data have improved
for most areas, except Haugesund, which has stronger warm biases. Interestingly, the
Netatmo-related model biases have greater magnitudes than the iMet-related biases,
which are also most pronounced outside of Haugesund.
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Figure 4.36: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grid over a map
tile, observations are averaged by grid cell, time: 28.09.2022 12Z+22H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.2.3 Forecast Results Haugesund

Minimum and maximum bias values are consistent between the 1.0km and 2.0km models
with differences of less than 1.5◦C for the un-gridded iMet (table: 4.6), and less then
2.7◦C for the gridded models (table: 4.7), with the biggest differences found in the
maximums. However, there is no discernable tendency between the size of the difference
and the lead time of the models, which also applies to the mean model biases. Biases
tend to vary by tenths of a degree but can vary by up to 1.3◦C between the models(tab:
4.6, 4.7, & 4.4).

The mean standard deviation relating to the iMet observations is consistent between
1.0km and 2.0km models, with a variation of ±0.1◦C (tab: 4.4). Showing less variation
in forecasts with longer lead times, referring to lead times of more than 10 hours.

The mean RMSE follows the same pattern as the standard deviation with smaller
errors for the longer lead times, which is surprising as the shortest lead time has the
second-highest error. Indicating that the short-range forecast, 4-10 hours in this case,
performs worse than those with longer lead times, according to the observations. The
error is consistent between the 1.0km and 2.5km models, with a maximum difference of
0.4◦C (tab: 4.4).
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Table 4.4: Averaged MEPS-iMet values from tables: 4.6 & 4.7 separated into lead time averages,
and total averages

MEPS - iMet
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
4H 3.248 2.897 1.546 1.555 3.721 3.427
10H 4.357 4.662 1.630 1.509 4.659 4.927
16H 2.824 3.247 1.365 1.486 3.263 3.664
22H 0.707 1.030 1.377 1.439 1.578 1.802
all 2.784 2.959 1.479 1.497 3.305 3.455

MEPS - grid averaged iMet
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
4H 3.473 3.058 1.372 1.322 3.836 3.525
10H 4.595 4.967 1.466 1.202 4.833 5.137
16H 2.987 3.511 1.186 1.219 3.302 3.769
22H 0.857 1.320 1.219 1.183 1.514 1.790
all 2.978 3.214 1.311 1.231 3.371 3.555

The Netatmo results show larger gaps in minimum and maximum bias values between
the 1.0km and 2.0km models, with the bias being comparable for both the gridded and
un-gridded data (table: 4.8 & 4.9). However, the difference between standard deviations
for the models tends to be smaller, with values frequently below 0.1◦C (tab: 4.5).

Table 4.5: Averaged MEPS-Netatmo values from tables: 4.8 & 4.9 separated into lead time
averages, and total averages

MEPS - Netatmo
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
4H 2.280 2.209 1.541 1.618 2.890 2.894
10H 4.097 4.268 1.638 1.625 4.429 4.572
16H 2.710 2.973 1.588 1.627 3.373 3.579
22H 0.808 0.724 1.552 1.559 1.777 1.782
all 2.474 2.544 1.580 1.607 3.117 3.207

MEPS - grid averaged Netatmo
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
4H 2.295 2.144 1.362 1.344 2.821 2.741
10H 4.173 4.408 1.459 1.354 4.430 4.612
16H 2.731 3.058 1.404 1.378 3.284 3.499
22H 0.806 0.781 1.319 1.233 1.574 1.550
all 2.501 2.598 1.386 1.327 3.027 3.100

The Netatmo-related RMSE is more consistent than the iMet-related errors, with a
lower average RMSE for both the standard and grid-averaged observations (tab: 4.4 &
4.5). Much of the difference is likely due to the Netatmo observations being used in the
data assimilation and post-processing of the models leading to overall lower bias.
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Table 4.6: Temperature anomaly statistics between iMet observations to the forecasts from MEPS
1.0km model, and MEPS 2.5km model for the Haugesund route
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Table 4.7: Temperature anomaly statistics between grid averaged iMet observations to the fore-
casts from MEPS 1.0km model, and MEPS 2.5km model for the Haugesund route
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Table 4.8: Temperature anomaly statistics between Netatmo observations to the forecasts from
MEPS 1.0km model, and MEPS 2.5km model for the Haugesund route
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Table 4.9: Temperature anomaly statistics between grid averaged Netatmo observations to the
forecasts from MEPS 1.0km model, and MEPS 2.5km model for the Haugesund route
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4.2.4 Forecasts for Bergen 20.01.2023 23:00 UTC

5 Hour lead time

The forecast from 18:00, with a five-hour lead time (fig: 4.37) is quite similar to the
analysis (fig: 4.11), with a general warm bias in most of the domain, but warmer in the
southern half close to the road for the 1.0km model. The 2.5km model sees a reduction
in magnitude for Netatmo-related cold bias but remains essentially unchanged through
the rest of the domain, having a weak warm bias in the western half of the domain, with
a more substantial warm bias on the eastern side, which holds for iMet-related bias as
well. Overall the forecast is almost identical to the analysis, with only minor changes in
the magnitude of the biases. Netatmo-related mean biases are 0.77◦C & 0.24◦C (table:
4.13), and iMet-related mean biases are 3.35◦C & 4.01◦C (table: 4.12), for the 1.0km
and 2.5km models respectively.

Figure 4.37: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 20.01.2023 18Z+5H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

11 Hour lead time

Moving further back to the forecast from 12:00, with an 11-hour lead time (fig: 4.38),
the model temperature has increased for both models, completely removing the cold
bias from the 2.5km model, and removing all but the most substantial cold biases from
the 1.0km model. Increasing the temperature also increases the existing warm bias
throughout the domain of both models, with a mean temperature increase of around
2 − 3◦C for large portions of the domain. Netatmo-related mean biases are 2.17◦C &
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2.97◦C (table: 4.13), and iMet-related mean biases are 4.73◦C & 6.51◦C (table: 4.12),
for the 1.0km and 2.5km models respectively.

Figure 4.38: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 20.01.2023 12Z+11H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

17 Hour lead time

Receding to the 06:00 forecast, with a 17-hour lead time (fig: 4.39), both model temper-
atures get colder, resulting in a distribution closer to that of the forecast from 18:00, and
the analysis (figs: 4.37, 4.11 ), but with colder Netatmo-related temperature biases along
the mountains surrounding Bergen city center and southwards. The iMet-related tem-
perature biases are low through most of the domain, except the area around 60.25◦N ,
which has a strong warm bias. Netatmo-related mean biases are −0.27◦C & −0.74◦C
(table: 4.13), and iMet-related mean biases are 2.00◦C & 2.56◦C (table: 4.12), for the
1.0km and 2.5km models respectively.
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Figure 4.39: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 20.01.2023 6Z+17H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

23 Hour lead time

Finally, the forecast from 00:00, with a 23-hour lead time (4.40) is similar to the 06:00
forecast (fig: 4.39), but has increased temperature in the colder mountainous regions, and
valleys. The temperature distribution stays essentially the same, with some heating in
the domain’s southern part and the mountains surrounding Bergen in the northwestern
quadrant. Netatmo-related mean biases are 0.56◦C & 0.43◦C (table: 4.13), and iMet-
related mean biases are 3.10◦C & 4.02◦C (table: 4.12), for the 1.0km and 2.5km models
respectively.

It is noteworthy how little variation there is between the iMet and Netatmo data
within the grid cells, with only a single area having a sizeable, consistent difference at
60.28◦N for the 1.0km model and no significant differences within the 2.5km model. This
observation applies to all of the forecasts described in this section.



4.2 Forecast validation 67

Figure 4.40: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 20.01.2023 00Z+23H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.2.5 Forecasts for Bergen 21.01.2023 11:00 UTC

5 Hour lead time

The forecast from 06:00, with a lead time of 5 hours (fig: 4.41) is around 2 − 4◦C
colder than the analysis (fig: 4.14) for most areas, with some regions being substantially
colder, like the southern section of the road (in the lower half of the domain), and the
northeastern corner(around 60.37◦N , 5.49◦E), for the 1.0km model. Additionally, the
northwestern corner around Bergen now has a weak cold bias instead of being neutral
with a warm tendency. The 2.5km model is also warmer but lacks the cold peaks in
the 1.0km model. As a result of the lower temperatures, both forecasts have strong cold
biases through most of the domain, with weaker biases near the coast. Netatmo-related
mean biases are −2.99◦C & −2.37◦C (table: 4.13), and iMet-related mean biases are
−4.12◦C & −2.45◦C (table: 4.12), for the 1.0km and 2.5km models respectively.
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Figure 4.41: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 21.01.2023 06Z+5H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

11 Hour lead time

Earlier, the forecast from 00:00, with a lead time of 11 hours (fig: 4.42), shows even
colder model temperatures than that of the forecast from 06:00 (fig: 4.41). The cold
regions are still present, but the surrounding areas have gotten colder as well, with the
change visible in both the 1.0km model and the 2.5km model. They result in increased
cold bias in relation to both iMet and Netatmo observations, especially for the previously
warmer areas. Netatmo-related mean biases are −4.86◦C & −5.04◦C (table: 4.13), and
iMet-related mean biases are −5.93◦C & −4, 55◦C (table: 4.12), for the 1.0km and 2.5km
models respectively.
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Figure 4.42: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 21.01.2023 00Z+11H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

17 Hour lead time

The forecast from the previous day at 18:00, with a lead time of 17 hours (fig: 4.43)
retains the temperature distribution from the previous forecast but has higher model
temperatures. On average, the temperature has increased by around 2◦C, placing the
temperatures in the range between the two first forecasts. Leading to Netatmo-related
mean biases of −4.19◦C & −4.65◦C (table: 4.13), and iMet-related mean biases of
−4.44◦C & −3.84◦C (table: 4.12), for the 1.0km and 2.5km models, respectively.
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Figure 4.43: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 20.01.2023 18Z+17H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

23 Hour lead time

Lastly, the forecast from 20.01.2022, 12:00 (fig: 4.44), loses several of the cold areas from
the previous forecast (fig: 4.43), only retaining the most pronounced cold spots in the
south and northeast, with the 2.5km model only keeping the cold spot in the northeastern
corner of the domain. The 2.5km model has the most substantial temperature increase
with most temperatures in the range of −2◦C to 2◦C, in contrast to the 1.0km models
−6◦C to 2◦C. Resulting in lower model biases for both models as the forecasted values
are closer to the observations. Netatmo-related mean biases are −2.80◦C & −1.93◦C
(table: 4.13), and iMet-related mean biases are −2.99◦C & −1.32◦C (table: 4.12), for
the 1.0km and 2.5km models respectively.
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Figure 4.44: Model bias from iMet(points) and Netatmo(triangles) to the MEPS 1km post-
processed model (left), and MEPS 2,5km model (right), represented by mesh grids over a map
tile, observations are averaged by grid cell, time: 20.01.2023 12Z+23H. Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4.2.6 Forecast Results Bergen

The results from the forecasting section have been summarized in tables: 4.10 & 4.11,
which include both grids averaged and complete observation sets. The summary tables
are a compacted version of the main result tables (tables: 4.12-4.17), created by taking
the mean of each lead time bracket and calculating the mean for selected error statistics,
MAE, standard deviation, and RMSE. Note that the mean bias has been changed to the
mean of the absolute mean bias (MAE), with the absolute mean bias referring to the
values from the table, not raw data.

Interestingly, the summary tables (tabs: 4.10 & 4.11) show that the 17H & 23H lead
times produce the best results, with lower MAE, standard deviations, and RMSE, both
in relation to the iMet and Netatmo data. Furthermore, the 11-hour lead time is the
worst, with MAE and RMSE of more than 1◦C higher than its closest neighbor in relation
to the iMet data and around 0.7− 0.8◦]C for the Netatmo(1k.m model) with outliers of
2− 3◦C for the Netatmo-related and iMet related data (2.5km model), respectfully.
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Table 4.10: Averaged MEPS-iMet values from tables: 4.12, 4.14, & 4.17 separated into lead
time averages, and total averages

MEPS - iMet
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
5H 4.739 3.938 1.279 1.108 4.937 4.146
11H 5.785 5.954 1.147 1.154 5.911 6.082
17H 2.660 2.914 0.993 1.032 2.901 3.158
23H 2.560 2.217 0.989 0.980 2.837 2.492
all 3.936 3.756 1.102 1.068 4.146 3.970

MEPS - gridded iMet
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
5H 4.801 4.070 1.188 0.963 4.973 4.218
11H 5.820 6.061 1.071 1.039 5.930 6.164
17H 2.751 2.959 0.879 0.919 2.935 3.152
23H 2.655 2.238 0.897 0.862 2.879 2.478
All 4.007 3.832 1.008 0.946 4.179 4.003

Finally, when including all lead times, the table shows that the 1.0km model is
worse than the 2.5km model in all categories in relation to the iMet observations. In
contrast, the opposite is true for the Netatmo observations, where the error data relating
to Netatmo observations are better for the 1.0km model. As mentioned in previous
sections, it is unsurprising as the Netatmo data is used in the post-processing for the
1.0km model, which would lower the bias and thereby lower the errors.

Table 4.11: Averaged MEPS-Netatmo values from tables: 4.13, 4.16, & 4.17 separated into lead
time averages, and total averages

MEPS - Netatmo
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
5H 3.290 2.703 1.653 1.706 3.746 3.335
11H 4.086 4.518 1.669 1.682 4.453 4.844
17H 1.738 2.299 1.601 1.687 2.602 2.967
23H 1.553 1.320 1.585 1.650 2.507 2.455
All 2.667 2.710 1.627 1.681 3.327 3.400

MEPS - gridded Netatmo
Leadtime MAE 1.0 MAE 2.5 Stdev 1.0 Stdev 2.5 RMSE 1.0 RMSE 2.5
5H 3.306 2.774 1.407 1.447 3.657 3.278
11H 4.081 4.507 1.438 1.381 4.358 4.732
17H 1.775 2.306 1.364 1.429 2.444 2.825
23H 1.561 1.302 1.323 1.353 2.295 2.176
All 2.681 2.722 1.383 1.403 3.189 3.253
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Table 4.12: Temperature anomaly statistics between gridded and un-gridded iMet observations
to the forecasts from MEPS 1.0km model, and MEPS 2.5km model for January, Bergen
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36.886

7.041
6.073
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Table 4.13: Temperature anomaly statistics between gridded and un-gridded Netatmo observa-
tions to the forecasts from MEPS 1.0km model, and MEPS 2.5km model for January, Bergen
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-4.835
14.126

13.442
0.760

0.329
1.789

2.076
3.776

4.419
1.943

2.102
20230120T12Z+11H

-2.176
-1.467

15.518
15.330

2.208
2.975

1.882
2.081

8.419
13.182

2.901
3.631

20230120T06Z+17H
-5.538

-5.964
13.784

11.814
-0.304

-0.820
1.813

2.067
3.379

4.945
1.838

2.224
20230120T00Z+23H

-4.416
-4.951

14.232
13.159

0.547
0.421

1.811
2.055

3.578
4.401

1.892
2.098

20230121T06Z+5H
-12.501

-9.262
6.429

6.615
-3.060

-2.359
1.749

1.533
12.425

7.918
3.525

2.814
20230121T00Z+11H

-12.987
-10.743

5.798
3.252

-5.037
-5.114

1.679
1.508

28.186
28.430

5.309
5.332

20230120T18Z+17H
-10.919

-10.872
4.654

3.794
-4.227

-4.663
1.434

1.431
19.922

23.786
4.463

4.877
20230120T12Z+23H

-9.702
-8.287

5.727
6.339

-2.781
-2.025

1.430
1.403

9.781
6.069

3.128
2.464

20230126T18Z+5H
-3.803

-4.159
9.137

8.427
2.061

1.157
1.266

1.454
5.850

3.454
2.419

1.859
20230126T12Z+11H

-0.710
-0.453

11.926
11.576

4.513
4.396

1.340
1.396

22.163
21.270

4.708
4.612

20230126T06Z+17H
-0.542

-0.786
10.340

10.290
3.702

3.320
1.260

1.365
15.293

12.887
3.911

3.590
20230126T00Z+23H

0.760
0.494

11.618
11.868

5.481
4.989

1.305
1.384

31.743
26.811

5.634
5.178
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B
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S
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S
E
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S
E
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R

M
S

E
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R
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S
E

2.5km
20230120T18Z+5H

-4.036
-4.835

11.190
6.794

0.771
0.244

1.584
1.904

3.104
3.685

1.762
1.920

20230120T12Z+11H
-1.375

-1.467
11.846

10.007
2.174

2.965
1.687

1.874
7.574

12.302
2.752

3.507
20230120T06Z+17H

-4.984
-5.611

9.629
6.484

-0.272
-0.740

1.600
1.872

2.632
4.054

1.622
2.013

20230120T00Z+23H
-4.401

-3.814
10.428

6.916
0.555

0.425
1.622

1.838
2.939

3.558
1.714

1.886
20230121T06Z+5H

-12.501
-8.948

6.429
1.248

-2.990
-2.373

1.705
1.672

11.850
8.426

3.442
2.903

20230121T00Z+11H
-12.987

-10.743
5.798

0.726
-4.857

-5.039
1.700

1.619
26.476

28.013
5.145

5.293
20230120T18Z+17H

-10.919
-10.872

4.654
0.554

-4.186
-4.646

1.359
1.560

19.365
24.019

4.401
4.901

20230120T12Z+23H
-9.702

-8.287
5.727

2.657
-2.804

-1.933
1.329

1.487
9.626

5.948
3.103

2.439
20230126T18Z+5H

-3.803
-4.159

6.908
4.587

2.110
1.466

1.024
1.296

5.501
3.828

2.346
1.956

20230126T12Z+11H
-0.710

-0.167
9.332

7.609
4.548

4.476
1.088

1.114
21.873

21.278
4.677

4.613
20230126T06Z+17H

-0.542
-0.128

8.640
6.521

3.776
3.592

1.007
0.982

15.273
13.870

3.908
3.724

20230126T00Z+23H
0.760

1.216
9.567

8.338
5.448

5.205
1.068

1.006
30.819

28.101
5.551

5.301
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Table 4.14: Temperature anomaly statistics between iMet observations to the forecasts from
MEPS 1.0km model, and MEPS 2.5km model for Feb-March, Bergen
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S
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S
E

1.0km
M

S
E

2.5km
R

M
S

E
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R
M

S
E

2.5km
20230227T06Z+5H

-9.351
-8.779

-2.078
-1.626

-5.492
-5.723

1.746
1.914

33.211
36.423

5.763
6.035

20230227T00Z+11H
-7.927

-7.668
-2.031

-1.890
-4.646

-5.281
1.423

1.491
23.615

30.114
4.860

5.488
20230226T18Z+17H

-3.946
-6.341

1.417
-0.056

-1.517
-3.195

1.326
1.554

4.060
12.623

2.015
3.553

20230226T12Z+23H
-3.871

-3.220
0.731

1.371
-1.157

-0.963
0.836

1.041
2.037

2.010
1.427

1.418
20230227T18Z+5H

2.548
1.475

7.327
6.182

4.984
3.853

0.846
0.880

25.558
15.620

5.056
3.952

20230227T12Z+11H
4.487

3.905
9.787

10.291
6.970

7.452
1.173

1.309
49.958

57.240
7.068

7.566
20230227T06Z+17H

-1.263
-1.703

3.408
2.608

0.997
0.748

0.773
0.699

1.593
1.049

1.262
1.024

20230227T00Z+23H
-0.918

-0.750
4.311

2.997
1.880

1.241
0.813

0.610
4.195

1.912
2.048

1.383
20230228T06Z+5H

-10.362
-9.412

-4.462
-4.263

-7.455
-6.490

1.430
0.968

57.621
43.056

7.591
6.562

20230228T00Z+11H
-9.113

-9.217
-4.812

-5.290
-6.897

-7.333
0.868

0.793
48.327

54.407
6.952

7.376
20230227T18Z+17H

-4.968
-6.173

-0.746
-1.494

-2.673
-3.862

0.886
0.710

7.931
15.420

2.816
3.927

20230227T12Z+23H
-3.738

-2.082
1.047

1.551
-0.785

-0.305
0.798

0.707
1.253

0.593
1.119

0.770
20230228T18Z+5H

-0.761
-1.390

5.218
4.322

2.359
0.964

1.126
1.178

6.832
2.318

2.614
1.522

20230228T12Z+11H
0.786

1.155
7.620

7.279
4.338

3.733
1.227

1.253
20.324

15.505
4.508

3.938
20230228T06Z+17H

-6.617
-4.648

-0.033
1.366

-3.300
-2.299

1.156
1.257

12.229
6.865

3.497
2.620

20230228T00Z+23H
-4.783

-5.596
-0.169

0.674
-2.765

-3.152
0.945

1.244
8.536

11.481
2.922

3.388
20230301T06Z+5H

-9.679
-8.447

-3.032
-3.646

-5.952
-6.464

1.438
0.775

37.491
42.384

6.123
6.510

20230301T00Z+11H
-6.889

-7.916
-2.249

-3.284
-4.937

-6.141
0.908

0.734
25.197

38.251
5.020

6.185
20230228T18Z+17H

-4.552
-5.716

-0.026
-1.031

-2.601
-4.020

0.706
0.674

7.263
16.615

2.695
4.076

20230228T12Z+23H
-2.774

-3.115
2.530

1.740
-0.573

-1.268
1.167

0.662
1.690

2.047
1.300

1.431
20230301T18Z+5H

3.339
1.270

8.292
6.356

5.873
3.777

0.951
0.937

35.391
15.141

5.949
3.891

20230301T12Z+11H
4.562

4.251
10.292

9.801
7.740

7.165
1.218

1.109
61.392

52.561
7.835

7.250
20230301T06Z+17H

-0.026
-0.898

4.715
3.602

1.981
1.562

0.876
0.843

4.690
3.150

2.166
1.775

20230301T00Z+23H
0.863

-0.584
5.432

4.116
3.061

1.889
0.816

0.883
10.035

4.348
3.168

2.085
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Table 4.15: Temperature anomaly statistics between grid averaged iMet observations to the
forecasts from MEPS 1.0km model, and MEPS 2.5km model for Feb-March, Bergen
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E
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S

E
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R
M

S
E
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R

M
S

E
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20230227T06Z+5H
-8.501

-8.165
-2.481

-2.295
-5.782

-6.187
1.576

1.648
35.921

40.998
5.993

6.403
20230227T00Z+11H

-7.077
-6.970

-2.434
-2.559

-4.882
-5.545

1.312
1.292

25.558
32.419

5.056
5.694

20230226T18Z+17H
-3.424

-5.466
1.014

-0.725
-1.796

-3.472
1.203

1.419
4.671

14.067
2.161

3.751
20230226T12Z+23H

-3.682
-2.125

0.189
0.702

-1.345
-1.071

0.814
0.847

2.471
1.865

1.572
1.366

20230227T18Z+5H
3.644

2.603
6.429

5.305
5.086

4.047
0.771

0.795
26.462

17.009
5.144

4.124
20230227T12Z+11H

4.839
5.033

8.799
9.000

7.009
7.780

1.113
1.206

50.368
61.989

7.097
7.873

20230227T06Z+17H
-0.151

-0.289
2.115

1.539
1.099

0.697
0.679

0.542
1.669

0.779
1.292

0.883
20230227T00Z+23H

0.154
0.378

2.971
2.048

1.999
1.320

0.708
0.440

4.497
1.936

2.121
1.392

20230228T06Z+5H
-9.660

-8.232
-4.802

-4.998
-7.406

-6.365
1.362

0.839
56.699

41.218
7.530

6.420
20230228T00Z+11H

-8.451
-8.025

-5.524
-5.823

-6.927
-7.330

0.824
0.664

48.663
54.165

6.976
7.360

20230227T18Z+17H
-4.266

-4.667
-1.207

-2.230
-2.738

-3.785
0.842

0.626
8.204

14.716
2.864

3.836
20230227T12Z+23H

-3.662
-1.615

0.432
0.942

-0.814
-0.051

0.853
0.629

1.391
0.398

1.180
0.631

20230228T18Z+5H
-0.418

-0.677
4.013

2.795
2.244

1.027
1.052

0.853
6.145

1.782
2.479

1.335
20230228T12Z+11H

1.129
1.869

6.108
5.752

4.195
3.837

1.166
0.939

18.959
15.606

4.354
3.950

20230228T06Z+17H
-5.400

-3.655
-2.174

-0.161
-3.280

-2.198
0.858

1.029
11.493

5.890
3.390

2.427
20230228T00Z+23H

-4.197
-4.823

-1.375
-0.853

-2.801
-3.163

0.705
0.978

8.344
10.961

2.889
3.311

20230301T06Z+5H
-8.781

-7.637
-3.829

-4.743
-6.093

-6.370
1.334

0.733
38.901

41.110
6.237

6.412
20230301T00Z+11H

-6.250
-6.951

-3.244
-4.381

-5.044
-6.062

0.815
0.663

26.102
37.183

5.109
6.098

20230228T18Z+17H
-4.182

-4.566
-1.420

-2.128
-2.700

-3.918
0.652

0.640
7.716

15.763
2.778

3.970
20230228T12Z+23H

-2.635
-2.020

2.238
0.643

-0.749
-1.108

1.044
0.643

1.652
1.641

1.285
1.281

20230301T18Z+5H
3.844

2.106
6.939

5.126
5.887

3.949
0.864

0.812
35.399

16.253
5.950

4.031
20230301T12Z+11H

5.067
5.087

9.620
8.571

7.738
7.352

1.133
0.962

61.164
54.982

7.821
7.415

20230301T06Z+17H
0.510

-0.062
3.173

2.913
2.025

1.730
0.782

0.744
4.712

3.545
2.171

1.883
20230301T00Z+23H

1.595
0.252

4.144
3.223

3.074
2.038

0.726
0.788

9.975
4.773

3.158
2.185
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Table 4.16: Temperature anomaly statistics between Netatmo observations to the forecasts from
MEPS 1.0km model, and MEPS 2.5km model for Feb-March, Bergen

M
E

P
S

-N
etatm

o
D

atetim
e

M
in

1.0km
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S
tdev

1.0km
S

tdev
2.5km
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E
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M
S

E
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R
M

S
E
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R

M
S

E
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20230227T06Z+5H
-11.756

-12.648
0.469

0.984
-4.120

-4.734
2.023

2.114
21.072

26.875
4.590

5.184
20230227T00Z+11H

-10.287
-11.298

2.182
1.287

-2.729
-3.888

2.005
2.000

11.467
19.115

3.386
4.372

20230226T18Z+17H
-7.578

-9.654
3.908

2.565
-0.449

-1.981
1.942

1.992
3.973

7.892
1.993

2.809
20230226T12Z+23H

-7.305
-6.435

4.135
4.455

-0.182
0.321

1.887
1.929

3.595
3.825

1.896
1.956

20230227T18Z+5H
-1.516

-2.426
10.536

9.345
3.390

2.289
1.381

1.480
13.399

7.432
3.660

2.726
20230227T12Z+11H

-0.327
0.402

12.354
11.775

4.183
5.007

1.598
1.584

20.054
27.583

4.478
5.252

20230227T06Z+17H
-5.606

-5.853
6.869

7.384
-0.785

-1.401
1.340

1.460
2.413

4.094
1.553

2.023
20230227T00Z+23H

-3.793
-4.721

7.938
7.120

0.601
-0.552

1.343
1.370

2.163
2.181

1.471
1.477

20230228T06Z+5H
-13.356

-14.086
-0.089

1.396
-5.759

-5.304
2.012

2.062
37.215

32.383
6.100

5.691
20230228T00Z+11H

-14.001
-13.129

0.137
0.093

-5.390
-6.135

1.863
1.923

32.521
41.340

5.703
6.430

20230227T18Z+17H
-8.956

-10.326
3.154

3.265
-1.552

-2.657
1.796

1.858
5.633

10.515
2.373

3.243
20230227T12Z+23H

-7.375
-6.603

4.915
6.341

-0.767
0.060

1.881
1.908

4.127
3.642

2.031
1.908

20230228T18Z+5H
-4.852

-6.518
8.415

7.367
1.806

0.720
1.153

1.144
4.591

1.828
2.143

1.352
20230228T12Z+11H

-2.471
-3.090

10.108
9.917

3.617
3.382

1.196
1.172

14.512
12.813

3.809
3.580

20230228T06Z+17H
-9.911

-11.241
3.727

5.196
-2.884

-2.431
1.369

1.504
10.190

8.170
3.192

2.858
20230228T00Z+23H

-8.958
-10.250

3.937
3.893

-2.515
-3.254

1.208
1.311

7.785
12.308

2.790
3.508

20230301T06Z+5H
-12.950

-13.211
1.681

0.553
-4.852

-5.483
2.044

2.039
27.717

34.220
5.265

5.850
20230301T00Z+11H

-11.614
-12.580

2.388
1.620

-3.868
-4.767

1.968
2.025

18.835
26.829

4.340
5.180

20230228T18Z+17H
-9.083

-9.607
3.867

3.441
-1.721

-2.809
2.009

1.992
7.000

11.861
2.646

3.444
20230228T12Z+23H

-6.899
-7.189

7.300
5.561

0.102
-0.148

1.995
1.989

3.990
3.978

1.997
1.995

20230301T18Z+5H
-0.274

-2.186
11.202

9.220
3.801

1.950
1.456

1.455
16.566

5.919
4.070

2.433
20230301T12Z+11H

0.259
0.723

12.528
12.336

5.233
5.000

1.489
1.446

29.607
27.095

5.441
5.205

20230301T06Z+17H
-5.104

-5.711
8.351

7.052
0.015

-0.613
1.450

1.513
2.104

2.666
1.451

1.633
20230301T00Z+23H

-4.114
-4.806

8.939
7.366

1.000
0.106

1.407
1.504

2.979
2.272

1.726
1.507
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Table 4.17: Temperature anomaly statistics between grid averaged Netatmo observations to the
forecasts from MEPS 1.0km model, and MEPS 2.5km model for Feb-March, Bergen
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5 Discussion

5.1 Benchmarking

There is a significant distinction between paved and unpaved roads when considering
surface heating effects, and the effect on car temperature sensors as seen in section 3.2.1.
The difference in heating is caused by differing albedo, roughness, and insulation in the
surface material, with gravel having a less uniform surface, and particles insulated by
air in the uncompacted surface layer, reducing internal heat transfer. While gravel roads
are less common than asphalt roads, they still serve small rural communities, farms, and
some reroute roads. These roads are generally much cheaper to build and can be equally
durable as paved roads if built properly, not to mention cheaper to maintain. They are
thus unlikely to disappear any time soon, requiring them to be included in any complete
RWF product, with the difference in radiated surface heat accounted for observational
products.

The difference in radiated surface heat can be lessened by avoiding having tempera-
ture sensors close to the ground, as seen in section 3.2.1 where the roof-mounted sensor is
colder than the bottom-mounted counterpart. Traditionally, cars have had their temper-
ature sensors in front of the engine compartment by the vents, which has the unfortunate
effect of being susceptible to both engine heat(for combustion engines) and surface heat
(Bell et al., 2022). Some car manufacturers have caught on, and are using alternative
mounting locations, with the door mirrors becoming a popular new location, providing
a middle ground between the bottom and the roof of the car.

Still, filtering can be applied to remove data from stationary and slow-moving vehicles
to remove the undesirable heating effects. Additionally, moving vehicles tend to have a
much smaller temperature difference between sensor locations due to cooling provided
by the constant supply of fresh air (fig: 3.7).

5.2 Analysis

After analyzing the data in section 4.1, it has been determined that both the Bergen
and Haugesund routes have unresolved temperature variations. These variations follow a
consistent diurnal pattern with warm biases during the night and cold biases during the
day, particularly on the Bergen route. The models exhibit slow reaction times, taking
too long to warm up during early to midday and too slow to cool down in the evening.
This is influenced by various factors, including the radiation scheme, cloud cover, cloud
microphysics, flora, topography, and available observations. The cause of the biases is
likely a result of several of these factors, but assumptions in cloud microphysics have been
known to impact the radiation scheme by increasing the outgoing longwave radiation,
causing unrealistic cold biases (Müller et al., 2017).

The city center of Bergen serves as an intriguing example of regional weather pat-
terns that consistently deviate from the expected model output. During the day, tem-
peratures in Bergen tend to be warmer than anticipated, while at night, they often drop
below expectations, which is the opposite of the rest of the domain. This discrepancy
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is likely caused by the urban microclimate and geographical influence of the surround-
ing mountains, making it less exposed to advection. However, note that the observed
temperatures might be skewed as they are likely mounted closer to buildings than the
official Met-Norway weather station at Florida, outside the geophysical institute.

It’s crucial to recognize that observation stations, including privately-owned weather
stations such as Netatmo stations, may not always provide accurate weather conditions
experienced on the road. Though these stations offer valuable meteorological data, they
may not fully capture localized microclimates and variations that can exist along road-
ways. Elevation changes, proximity to bodies of water, or urban heat islands can signif-
icantly impact the drivers’ weather experiences and may not be adequately reflected in
official or privately owned weather station data.

Depending solely on data from observation stations may not give a complete under-
standing of the real conditions on the road. This is especially true when it comes to
temperature readings, as the heat absorption of the asphalt and the surrounding envi-
ronment can cause temperature fluctuations that deviate from the readings obtained by
fixed sensors. However, having access to several sources of data for the same area can
make it easier to validate observations that would otherwise be flagged as inaccurate due
to perceived excessive differences from model results. Effectively opening another path-
way to improve operational forecasting by ensuring more reliable quality control among
the observations.

The 2.5km model uses a sophisticated surface model that includes 1.0km high-
resolution tiles for lakes, vegetation, and land types. In contrast, the 1.0km model uses
high-resolution GIS data and not the downscaled land area fraction from the 2.5km,
resulting in the removal of lake tiles (Nypen, 2023). Thus the 1.0km model only dis-
tinguishes between land and sea tiles, theoretically resulting in larger model biases near
lakes. However, the 1.0km model compensates by having more observation points, en-
abling temperature corrections to mitigate the missing high-resolution surface model
data, if observations are available.

There were some similarities and differences between the 2.5km and 1.0km models
near lake tiles. In a few cases, the 2.5km model performed better than the 1.0km model,
as seen near Haugesund (figs: 4.1 & 4.9), where there was a noticeable hot spot near the
central southern area east of Haugesund, with a stronger warm bias in the 1.0km model.
The western half of the hot spot was located on the bank of a small lake, which was hidden
by the temperature markers. It is possible that the temperature corrections from the
Netatmo observations caused this, as the model showed almost zero bias compared to the
Netatmo measurements, indicating a difference in temperature between the residential
areas and the road. The housing located in the vicinity of the lake is at varying altitudes
from the road, mainly because of the steep slope on the eastern side. The central area
lacks any housing, while the houses on the western side are situated in an offshoot valley.

5.3 Forecast

Evaluating the forecast in relation to car observations and Netatmo observations shows
substantial increases in model bias for most of the forecast runs, often skewing the models
to be near entirely warm or cold-biased. Some lead times for the forecasts make the model
biases change sign, for example, the forecast for 29.09.2022 10:00 UTC with a lead time
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of 22 hours (section 4.2.2) where the mean model bias switches from cold to warm and
reduces in magnitude. The change in mean model bias between the forecast runs shows
much variability between the different forecast reference times. With generally larger
variability for the two shortest lead times (4-5H, & 10-11H), and less variability for the
two longest lead times (16H, & 22H). Interestingly the longer lead times tend to be more
accurate, at least for the period investigated, with the 16-17 hour and 22–23-hour lead
times performing best on average.

After comparing the forecast with car and Netatmo observations, it was noticed that
the model bias tends to lean towards either being warm or cold-biased. The degree of
similarity to the analysis varies. While most of the forecast reference times produced
slightly stronger or weaker biases than their neighbors, some instances showed a change
in the bias’s sign. These events indicate times/areas of great uncertainty within the
models, which can pose problems for accurate RWF products. The short-range fore-
casting’s average performance for the Bergen area, with lead times between 4-11 hours,
was particularly worrying, performing worse than the longer-range forecasts with lead
times between 16-23 hours. However, it’s important to note that the testing period was
relatively short and regionally confined, which may not be representative of other areas.

5.4 Future use of RWS and observation products

Although the current forecast state may not be ideal for predicting road conditions, there
are various options available to enhance the forecast. The major challenge in achieving
accurate forecasting lies in having an incomplete picture of current and past conditions.
This becomes more apparent when examining the RWF from Statens Vegvesen (Statens
Vegvesen, 2022), where data from official road weather stations (RWS) are used to ap-
proximate the conditions. To provide some context, when driving along the Haugesund
route, I did not pass a single RWS for the entirety of the route, with only one station
located nearby (eastern dot in figure 5.1). This often results in forecasts that are inaccu-
rate and have a wide temperature range. At the time of writing the site is only available
by a link, as it is not advertised on Statens Vegvesen’s main web page, route planning
page, or road condition page, with all references to weather going to individual RWS or
to the forecast from yr.no, which is the state-owned official weather provider.
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Figure 5.1: Snapshot from Vegær (RWF), green dots are observation stations, the color over
the roads is the estimated temperature with red corresponding to 10◦C or higher, temperature
ranges are divided into 7-degree intervals for values between −10◦C and 10 ◦ C, precise values
for each section is given if click on Statens Vegvesen (2022).

One potential solution for improving weather forecasts involves utilizing crowdsourced
temperature data from vehicles. Many modern cars have internet connectivity for soft-
ware updates and can easily upload data. However, establishing efficient data collection
and distribution networks is essential to gather relevant information and disseminate
it to the appropriate forecasting and road maintenance organizations. Collecting data
can be challenging since both temperature and location data are required, which raises
privacy concerns. To address this, data must be anonymized either by the car before up-
loading or by the receiving data center, including both car identifiers and GPS locations
in low-traffic areas where routes can be inferred.

One way to improve privacy and reduce the load on collection servers is to store
the model grid points in the vehicle and only upload a single value for each grid cell
for a given time interval. This would ensure that the precise location of the car cannot
be accurately determined and simultaneously reduce the load on network bandwidth
and storage space. In addition, it is worth noting that many modern cars are equipped
with GPS systems that remember the locations of the driver’s home and workplace.
This information can be used to filter out grid cells near those areas, further enhancing
privacy and security. The GPS can also be used to determine if the car is moving in
case the car does not have a digital velocity readout, which is useful for filtering out
data from stationary cars to reduce the effect of heat radiating from the engine and road
surface.
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It is possible to use indirect measurements to gain insights into weather conditions.
For instance, windscreen wiper usage and ABS and traction control data can help deduce
rainfall, rain intensity, and road friction. This method allows for a more comprehensive
understanding of the weather without requiring extra equipment. Road friction alerts
are already in use in some cars, where the cars will upload safety-related traffic data to
the cloud, sharing them with the road authorities and other nearby cars (Volvo Cars ,
2017). Given appropriate privacy considerations these systems could likely also provide
the location of the slippery sections through the car’s navigation system. However, this
might be unwanted as it could enable reckless driving when there are other undetected
slippery sections nearby, as a car may be unable to detect the change in friction when
there is no braking, acceleration, or turning.

Simply improving the RWF products is not sufficient if they remain unused. To
address this issue, we must first identify the reasons why they are not being utilized.
Some possible explanations include a lack of awareness about their existence, difficulty
in locating or obtaining them, impracticality, or lack of forecast accuracy. However, even
in areas where they are readily available, they are still not widely used, as in the example
by Nurmi et al. (2013), as most people do not seem to alter their routes based on forecast
information.

There are several steps that can be taken to remedy these problems, starting with
increasing the reliability of the forecast through crowdsourced data as described earlier.
Second, the forecast product needs to be available where it is most needed, in the car.
If people won’t actively look up the forecast it needs to be delivered to them in an
unintrusive and useful way. Troublesome sections of the road should be highlighted
on the car’s navigation system, assuming it has one so that drivers are aware and can
take appropriate precautions before approaching the area. Third, nearby road conditions
should be available on the local weather apps, with options to add your daily commute, to
include both your local road conditions and the conditions along your commute. Fourth,
dangerous weather should be indicated in the different map apps if present along the
route.

Finally, it is worth noting that the advancements in the field of deep learning show
great potential in improving forecast products given large dense datasets, with ECMWF
reporting a reduction in RMSE for T2m by 13% for a 3-day lead time (Kim et al., 2022).
Deep learning in conjunction with car data has the potential to produce a better forecast
by virtue of understanding temperature patterns and responses without needing the deep
physical knowledge required by NWP models, with the quality of the model depending
on the quality and abundance of the training material, i.e., previous observations. At
the moment of writing, there is not much mention of deep learning used in conjunction
with car data, but there are an increasing number of articles utilizing machine learning
algorithms with car observations, such as Yang et al. (2019) and Bojer (2022), in addition
to an official ECMWF machine learning roadmap for 2021-2030 (Bauer et al., 2022).



6 Summary and Conclusion

The AROME-MetCoOp analysis (closest forecast for 2.5km) MEPS 2.5km model and the
1.0km post-processed product from Met-Norway (Müller et al., 2017) showed promising
results, with acceptable bias values for most car runs, for both routes. However, there
is a clear indication of diurnal bias patterns, with warm bias around midnight and cold
bias around noon (local time). Due to its consistency, this points to slow temperature
response times in the model, indicating an inaccurate parametrization, likely related to
the radiation, cloud microphysics, cloud cover, vegetation, or topography. The diurnal
pattern is present for both models but tends to be most pronounced in the 2.5km model.

Similarly, the 2.5km model frequently has a higher mean bias than the 1.0km model,
most likely due to the increased resolution in the 1.0km model grid, and the use of
Netatmo weather stations for bias corrections (Nipen et al., 2020).

The forecast products were less promising, with higher MBE, RMSE, and variabil-
ity. Surprisingly the shorter lead times (4-5H, 10-11) performed the worst, which was
interesting as the lead time was short, and thus the uncertainty should be lower. The
amount of uncertainty shown by the changes in local model bias and mean model bias
illustrates that the forecasts were not reliable as the temperature could vary by over 5◦C
(section: 4.2.1 & 4.2.2).

Netatmo data generally performed better than the iMet car data for both 1.0 and
2.5km models, both in terms of model bias and RMSE, which is unsurprising as parts
of it are included in the observation product and used for post-processing(Nipen et al.,
2020). However, comparisons between the Netatmo and iMet data in both the analysis
(sec: 4.1) and forecast sections (sec: 4.2) reveal that not all of the Netatmo observations
are representable for the road conditions, with certain stations close to the road in the
southern half of the Bergen route being particularly prone to significant differences. Still,
the dense coverage of Netatmo stations in conjunction with the grid average, removed
many of the largest outliers containing unrealistic temperature observations.

Adding car data to the observation network can enhance the density and provide
observations from thinly populated areas. However, it calls for new quality control mea-
sures due to surface heat sensitivity in stationary vehicles (Bell et al., 2022). This data is
crucial for real-time road weather forecasting and sharing updates on road conditions via
cloud-storage solutions between cars, benefitting both authorities and the public (Volvo
Cars , 2017).

In conclusion, the AROME-MetCoOp model products are a decent starting point
for RWF but leave something to be desired in small-scale variability, as confined small-
scale differences have been found with more than 6◦C difference between predicted and
observed value for both the forecast and analysis. Netatmo observations generally cor-
respond well with neighboring car observations but have several outliers, some of them
consistent but others displaying significant variation. An expansion of the observation
network is required to fully capture the small-scale variability present along roadways,
improve observational products for weather forecasting, and create an accurate nowcast-
ing product designed to seamlessly integrate into existing weather and mapping products,
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even into cars. The seamless integration is essential as research shows that a significant
portion of people does not check the forecast, even if readily available (Nurmi et al.,
2013), requiring the forecast to be integrated into services that are already in use.
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