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1 Introduction

This thesis will be an extended (though not complete) exposition of the material
in the article ”Axiomatic homotopy theory for operads”, by Berger and Moerdijk
[2]. We will assume the reader is familiar with the theory of monoidal and
model categories, but we will not assume any previous knowledge of operads.
By operad we mean symmetric operad unless stated otherwise, and we give the
definition in section 2. There we will also establish some conventions which
will be used thoughout the thesis. Section 3 will be about the construction
of the monad associated to an operad, and using it to define algebras over
operads. Section 4 will deal with the transfer of model structure to the category
of operads. In section 5 we will construct the functor from collections to operads.
Section 6 will consider the relationship between symmetric and braided operads.

2 Definitions and conventions

We begin by establishing some conventions. The symbol E will be used to refer
to some closed symmetric monoidal category which is complete and cocomplete.
That E is closed means that there is for each object X of E a right adjoint to
the functor − ⊗ X, denoted by (−)X . This means, among other things, that
colimits commute with tensor products in the following sense; if D1, . . . ,Dn is a
collection of small categories, and F1 : D1 → E , . . . , Fn : Dn → E is a collection
of functors, then we have an isomorphism

colimD1
F1 ⊗ · · · ⊗ colimDn

Fn ∼= colimD1×···×Dn
F1 ⊗ · · · ⊗ Fn,
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where F1 ⊗ · · · ⊗ Fn : D1 ⊗ · · · ⊗ Dn → E denotes the functor defined by

(X1, . . . , Xn) 7→ F1(X1)⊗ · · · ⊗ Fn(Xn),

for (X1, . . . , Xn) some object of D1 × · · · × Dn, and

(f1, . . . , fn) 7→ F1(f1)⊗ · · · ⊗ Fn(fn),

for (f1, . . . , fn) : (X1, . . . , Xn) → (Y1, . . . , Yn). This is a fact we will use fre-
quently throughout the thesis, and when we do we may sometimes omit men-
tioning it. We will also often omit mentioning the domain of a functor when
taking its colimit, e.g. we will generally write colimF1 instead of colimD1

F1.
Sometimes the monoidal structure of E will be the cartesian product, in this
case we keep writing ⊗ for the monoidal product.

Given some group G, which we may consider as a category with a single
object denoted by ∗, and some object X of E , a left G-action on X is a functor
G → E with ∗ 7→ X, and we usually denote the morphism g ∈ G is sent to
by g∗. By a right G-action, we shall mean a similar functor Gop → E , which
sends gop ∈ Gop to g∗. When talking about a right action of G on X we will
usually not consider the opposite category of G but instead consider it as a
contravariant functor sending g ∈ G to g∗. If X and Y are some objects of
E with a right and a left G-action, respectively, we will mean by X ⊗G Y the
coend of the functor

Gop ×G→ E ,
defined by ∗ 7→ X ⊗ Y , (g, h) 7→ g∗ ⊗ h∗. Since G is a group the elements are
invertible, and the coend is the same as the colimit of the functor

Gop → E ,

the diagonal right action on X ⊗ Y , defined by ∗ 7→ X ⊗ Y and g 7→ g∗ ⊗ g∗,
where the action in the second factor is defined by g∗ = (g−1)∗ = (g∗)

−1. This
is the same as the colimit of the functor

G→ E ,

where we instead invert the action in the first factor.
We denote the category of objects of E with a right G-action by EG, it is

the category of functors from Gop to E . In particular we can let G run over the
symmetric groups, Σn for n ≥ 0, and define the category of collections:

Coll(E) =
∏
n≥0

EΣn .

Thus an object of this category, called a collection, is a sequence of objects of
E , K = (K(n))n≥0, with a Σn action in degree n. A morphism of collections is
a sequence of morphisms of E , with the one in degree n being Σn-equivariant.

The following definition is taken from [12]. We remark that in the cases
one takes a tensor product of zero things, it should be interpreted as being the
monoidal unit, I, and that the composition map P (0)⊗I → P (0) should be the
canonical isomorphism.
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Definition 1. An operad in E is a collection, P , in E , together with a unit map,
e : I → P (1), and for each collection of numbers n, k1, . . . , kn a composition map

γ : P (n)⊗ P (k1)⊗ · · · ⊗ P (kn) → P (Σiki),

which is associative, unital and equivariant in the following ways.
The following associativity diagram should commute for each collection of

numbers n, k1, . . . , kn and i1s, . . . , i
ks
s , for each 1 ≤ s ≤ n, where we have set

k = k1 + · · ·+ kn, is = i1s + · · ·+ ikss :

P (n)⊗
(

n⊗
s=1

P (ks)

)
⊗

n⊗
s=1

ks⊗
t=1

P (its)

shuffle

��

γ⊗id // P (k)⊗
n⊗
s=1

ks⊗
t=1

P (its)

γ

��
P (i1 + · · ·+ in)

P (n)⊗
n⊗
s=1

(
P (ks)⊗

ks⊗
t=1

P (its)

) id⊗
n⊗

s=1
γ

// P (n)⊗
n⊗
s=1

P (is).

γ

OO
(1)

The following unit diagrams should commute:

I ⊗ P (n)

e⊗id
��

∼= // P (n)

P (1)⊗ P (n)

γ

88
P (n)⊗ I⊗n

id⊗e⊗n

��

∼= // P (n)

P (n)⊗ P (1)⊗n

γ

88

.

(2)

Let σ ∈ Σn and τi ∈ Σki , for 1 ≤ i ≤ n. Let σ (k1, . . . , kn) ∈ Σk1+···+kn
denote the permutation that permutes the blocks of k1, k2, . . . , and kn numbers
as σ permutes the numbers from 1 to n, and let τ1⊕· · ·⊕τn ∈ Σk1+···+kn denote
the one which permutes the first k1 numbers as τ1 does, the next k2 ones as τ2
does, etc. Then the following equivariance diagrams should commute:

P (n)⊗
n⊗
i=1

P (ki)
σ∗⊗σ−1

//

γ

��

P (n)⊗
n⊗
i=1

P (kσ(i))

γ

��
P (k1 + · · ·+ kn)

σ(kσ(1),...,kσ(n))
∗

// P (kσ(1) + · · ·+ kσ(n))

(3)

and

P (n)⊗
n⊗
i=1

P (ki)

γ

��

id⊗
n⊗

i=1
τ∗
i

// P (n)⊗
n⊗
i=1

P (ki)

γ

��
P (k1 + · · ·+ kn)

(τ1⊕···⊕τn)∗ // P (k1 + · · ·+ kn).

(4)

4



Definition 2. For two operads P and Q, a morphism or map of operads f :
P → Q is a morphism of the underlying collections, f = (fn)n≥0 : (P (n))n≥0 →
(Q(n))n≥0, making the diagram

I

e

}}

e

!!
P (1)

f1 // Q(1)

commute, as well as all diagrams of the form

P (n)⊗
n⊗
i=1

P (ki)
γ //

fn⊗
n⊗

i=1
fki

��

P (k1 + · · ·+ kn)

fk1+···+kn

��
Q(n)⊗

n⊗
i=1

Q(ki)
γ // Q(k1 + · · ·+ kn).

The operads in E form a category, denoted by Oper(E).

3 The algebras over an operad

The article [2] mentions that any operad in E gives rise to a monad on E , though
does not prove this. We therefore write out the details, and afterwards we use
this to give a definiton of an algebra over an operad.

Any collection P = (P (n))n≥0 induces a functor from E to itself by sending
an object X of E to

P (X) =
∐
n≥0

P (n)⊗Σn
X⊗n,

and sending any morphism f : X → Y to the morphism induced by the mor-
phisms idP (n) ⊗ f⊗n : P (n) ⊗ X⊗n → P (n) ⊗ Y ⊗n. If additionally P has the
structure of an operad, the functor P forms a monad with unit defined by the
composition

X
∼= // I ⊗X

e⊗idX // P (1)⊗X �
� // P (X) ,

and multiplication defined as follows.
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We have isomorphisms

P (P (X)) =
∐
m≥0

P (m)⊗Σm

(∐
n≥0

P (n)⊗Σn
X⊗n

)⊗m
∼=−→
∐
m≥0

P (m)⊗Σm

( ∐
n1≥0,...,nm≥0

⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
))

∼=−→
∐
m≥0

( ∐
n1≥0,...,nm≥0

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni

))
/Σm

so in order to define the multiplication of the monad, we need only define it on

each component P (m)⊗
⊗m

i=1

(
P (ni)⊗Σni

X⊗ni

)
, and show that it is consistent

with the colimits.
We remark that

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni

)
∼=
(
P (m)⊗

m⊗
i=1

(
P (ni)⊗X⊗ni

))
/ ∼,

where the ∼ denotes taking the colimit over Σn1
× · · ·×Σnm

of the right action
(σ1, . . . , σm) 7→ id ⊗

⊗m
i=1 σ

∗
i ⊗ σ−1

i . Thus, we (again) define the map on each
component P (m) ⊗

⊗m
i=1

(
P (ni) ⊗ X⊗ni

)
and show that it is consistent with

the colimits.
For the rest of this section, take N to mean n1 + · · ·+nm, and take

∐
n1,...,nm

to mean
∐

n1≥0,...,nm≥0

. We define the map to be the composition

P (m)⊗
m⊗
i=1

(
P (ni)⊗X⊗ni

) ∼=−→
(
P (m)⊗

m⊗
i=1

P (ni)
)
⊗

m⊗
i=1

X⊗ni

γ⊗∼=−−−→ P (N)⊗X⊗N .

Given a group element (σ1, . . . , σm) ∈ Σn1
×· · ·×Σnm

, in the following diagram

P (m)⊗
m⊗
i=1

(
P (ni)⊗X⊗ni

) ∼= //

id⊗
m⊗

i=1
σ∗
i ⊗σ

−1
i

��

(
P (m)⊗

m⊗
i=1

P (ni)
)
⊗

m⊗
i=1

X⊗ni

γ⊗∼=

%%(
id⊗

m⊗
i=1

σ∗
i

)
⊗

m⊗
i=1

σ−1
i

��

P (N)⊗ΣN
X⊗N

P (m)⊗
m⊗
i=1

(
P (ni)⊗X⊗ni

) ∼= //
(
P (m)⊗

m⊗
i=1

P (ni)
)
⊗

m⊗
i=1

X⊗ni

γ⊗∼=

99
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the left square commutes by Mac Lane’s coherence theorem [9], and the right
triangle is seen to commute by expanding it to the following diagram(

P (n)⊗
m⊗
i=1

P (ni)
)
⊗

m⊗
i=1

X⊗ni
γ⊗∼= //

(
id⊗

m⊗
i=1

σ∗
i

)
⊗

m⊗
i=1

σ−1
i

��

P (N)⊗X⊗N

proj.

''(
m⊕

i=1
σi

)∗
⊗

m⊗
i=1

σ−1
i

��

P (N)⊗ΣN
X⊗N

(
P (n)⊗

m⊗
i=1

P (ni)
)
⊗

m⊗
i=1

X⊗ni
γ⊗∼= // P (N)⊗X⊗N

proj.

77

where the left square commutes due to the axiom (4) for an operad and the
canonicity of shuffling isomorphisms, and the triangle commutes due to the
definition of the colimit.

Now to move out through parentheses and show that the definition works
well with the group action of Σm. Suppose we have some element σ ∈ Σm.
Then one has a commutative diagram

P (m)⊗

( ∐
n≥0

P (n)⊗Σn
X⊗n

)⊗m
∼= // ∐

n1,...,nm

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
)

P (m)⊗

( ∐
n≥0

P (n)⊗Σn
X⊗n

)⊗m
∼= //

σ∗⊗id

OO

id⊗σ
��

∐
n1,...,nm

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
)

∐
n1,...,nm

σ∗⊗
m⊗

i=1
id

OO

��

P (m)⊗

( ∐
n≥0

P (n)⊗Σn
X⊗n

)⊗m
∼= // ∐

n1,...,nm

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
)
,

where the bottom right vertical map is the one which sends the factor indexed
by (n1, . . . , , nm) to the factor indexed by (nσ−1(1), . . . , nσ−1(m)), and with each
component being id ⊗ σ. Alternatively, it is the map which is induced by
in(nσ−1(1),...,nσ−1(m))

◦ (id⊗ σ) on the factor indexed by (n1, . . . , nm). Thus, to
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see that we have a well defined map we need only show that

∐
n1,...,nm

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
)
∐
γ◦∼=

**∐
n1,...,nm

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
)

∐
n1,...,nm

σ∗⊗
m⊗

i=1
id

OO

��

∐
n1,...,nm

P (N)⊗ΣN
X⊗N

∐
n1,...,nm

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
)∐ γ◦∼=

44

commutes, where the unnamed arrow is as before. This is easily seen from the
fact that

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
) σ∗⊗id //

id⊗σ
��

P (m)⊗
m⊗
i=1

(
P (ni)⊗Σni

X⊗ni
)

γ◦∼=

��
P (m)⊗

m⊗
i=1

(
P (nσ−1(i))⊗Σn

σ−1(i)
X⊗nσ−1(i)

)
γ◦∼= // P (N)⊗ΣN

X⊗N

commutes, which it does by the equivariance axiom (3) and the properties of a
coend.

For the associativity and unit axioms of the monad, it is easy to see that
they are satisfied before quotienting out by the group action, so they hold after
doing so.

We introduce now the notion of an algebra over an operad.

Definition 3. Let P be some operad in E . An algebra over P is an algebra over
the associated monad. That is, it is an object A of E , together with a morphism
a : P (A) → A, making the diagrams

P (P (A))
P (a) //

µA

��

P (A)

a

��
P (A)

a // A

and

A
ηA //

idA !!

P (A)

a

��
A

commute. These diagrams are called the associativity and unit diagrams for the
algebra, respectively (algebras over monads are described in [9, VI.2]).

Note that this definition is different from the usual one (see e.g. [12]), where
one defines an algebra over an operad to be a collection of maps P (n)⊗A⊗n → A
satisfying some conditions. The two definitions are easily seen to be equivalent.
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Example 1. Let P be the commutative operad, P = (I)n≥0, with unit and
composition maps the canonical isomorphisms. An algebra over P is the same
as a commutative monoid in E . The map a : P (A) → A is the same as a
sequence of maps An/Σn → A, n ≥ 0, that is, a sequence of commutative maps
An → A. The associative diagram ensures that all ways of getting from An to
A gives the same map, i.e. associativity, while unit diagram implies the unit
axioms for the monoid.

The algebras are a large part of the motivation for studying operads, and
the possibility of transferring model structures from operads to their algebras
are a large part of the motivation for transferring model strucures to operads.
We will not do so in this thesis, however.

4 The model structure on operads

In this section we give suficient conditions for there to be a model structure on
the category of operads in E . In [2], they transfer model structures from E to
the category of reduced operads, as well as to the category of operads when E
is cartesian. We will, however, only do the latter.

4.1 The transfer principle and path-object argument

We state here the transfer principle, in the form it is stated in [2].

Theorem 1. Let E be a cofibrantly generated model category, and let C be a
category which is complete and cocomplete. Let F : E ⇄ C : U be an adjunction
between the two, with left adjoint F and right adjoint U . Call a morphism f in
C a fibration or a weak equivalence if U(f) is one. Then this defines a cofibrantly
generated model structure on C if the following two conditions are satisfied:

(i) the functor F preserves small objects;
(ii) any sequential colimit of pushouts of images under F of the generating

trivial cofibrations of E yields a weak equivalence in C.

Proof. It follows quickly from either Theorem 2.1.19 in [7], or from Theorem
11.3.1 in [6]. In the latter case, the details are written out right afterwards in
Theorem 11.3.2.

We recall some notions of model categories that will be of particular impor-
tance to us:

Definition 4. For some object X of a model category E , a fibrant replacement
of X is a fibrant object X̃ of E together with a weak equivalence X

∼−→ X̃. A
fibrant replacement functor is a functor (−)̃ : E → E , sending each object onto
a fibrant replacement, with the weak equivalences forming a natural transfor-
mation idE

.−→ (−)̃ .

9



Sometimes, if we have some other (non-model) category C and a forgetful
functor U : C → E , we shall call something in C a fibrant replacement or fibrant
replacement functor if it is one when forgetting down to E .

An example of fibrant replacement functor is the identity functor and identity
natural transformation, if all objexts of the model category are fibrant. This is
the case for Top when given the model structure where the weak equivalences
are weak homotopy equivalences, and the fibrations are Serre fibrations [4]. It
is also the case if Top is given the model structure where the weak equivalences
are (ordinary) homotopy equivalences, and where the fibrations are Hurewicz
fibrations [14]. For a less trivial example, there is the category of simplicial
sets with weak equivalences the maps that are weak homotopy equivalences
when taking the geometric realization, and cofibrations the injective maps. In
this case many objects are non-fibrant, e.g. all the finite non-discrete simplicial
sets. In this example, a fibrant replacement functor is passing to geometric
realization and then taking the singular complex, with weak equivalences the
obvious inclusions.

Definition 5. For some object X of a model category E , a path-object for X
is an object Path(X) of E , a weak equivalence X

∼−→ Path(X), and a fibration
Path(X) ↠ X × X, such that the composition of the two morphisms is the
diagonal.

As with the case of fibrant replacements, we shall sometimes refer to some
object and morphisms in a (non-model) category as a path-object if it is when
we forget down to E .

There is a notion of functorial path-object, where Path : E → E is a functor
and the morphisms form natural transformations idE

.−→ Path and Path .−→ ∆
(∆ being the diagonal functor), but it does not seem necessary in order for the
path-object argument to work.

We will need the following lemma for our proof of the path-object argument.

Lemma 1. For any commutative diagram

A //

��

B //

��

C

��
D // E // F,

where the horizontal compositions are isomorphisms, if the middle vertical mor-
phism is an isomorphism, then so are the left and right vertical morphisms.

Proof. Denote the morphism from A to B by AB, the one from B to C by BC,
etc. Denote (BC ◦ AB)−1 ◦ BC ◦ BE−1 ◦ DE by X and BC ◦ BE−1 ◦ DE ◦
(EF ◦DE)−1 by Y . Then X and Y are the inverses of AD and CF , respectively.
Proving this is pure algebra, for instance, to show that X is a left inverse to

10



AD, write

X ◦AD = (BC ◦AB)−1 ◦BC ◦BE−1 ◦DE ◦AD
= (BC ◦AB)−1 ◦BC ◦BE−1 ◦BE ◦AB
= (BC ◦AB)−1 ◦BC ◦AB
= idA.

To show that X is a right inverse one must remark that AD ◦ (BC ◦ AB)−1 =
(EF ◦DE)−1 ◦CF , but other than that the calculations are equally trivial, and
we omit them. The proof that Y is the inverse of CF is similar, and we omit
it.

In [2] the authors cite several different sources for Quillen’s path-object ar-
gument, but none of the versions cited seem to precisely fit what they need. We
therefore state a version of the argument which does. Specifically, our version
is based on [13, A.3], generalizing it to any model category.

Lemma 2. Let E be some model category. Let C be a category which is complete
and cocomplete. Let F : E ⇄ C : U be an adjunction. Call a morphism of C a
weak equivalence or fibration if it is sent to one by U . If C satisfies the following
conditions

• C has a fibrant replacement functor

• C has path-objects for fibrant objects

then any map in C having the left lifting property (llp) with respect to fibrations
is a weak equivalence.

Note in particular that if E is a cofibrantly generated model category, then
satisfying the conditions of the lemma ensures that condition (ii) of transfer
is satisfied, since any sequential colimit of pushouts of images under F of the
generating trivial cofibrations has the llp with respect to fibrations.

Proof. Let X
γX−−→ X̃ denote the fibrant replacement of X, and let X

αX−−→
Path(X)

βX−−→ X × X denote the path-object. Suppose f : X → Y is some
morphism in C which has the llp with respect to fibrations. We can then find a
lift in the following diagram:

X
γX //

f

��

X̃

����
Y

r

??

// ∗

We then find a lift in the following diagram:

11



X
f //

f

��

Y
γY // Ỹ

αỸ // Path(Ỹ )

βỸ����
Y

44

(γY ,f̃◦r)
// Ỹ × Ỹ

The solid diagram commutes since it commutes in each factor of Ỹ × Ỹ .
Applying U to the lower triangle yields a right homotopy from U(γY ) to

U(f̃ ◦ r). This implies that they get sent to the same map in the homotopy
category [4, 5.10]. Since U(γY ) is sent onto an isomorpism [4, 5.8], so is U(f̃ ◦r).
Apply Ho ◦ U on the commutative diagram

X
id //

f

��

X
γX //

γX
��

X̃

f̃
��

Y
r // X̃

f̃ // Ỹ

and notice that then the two horizontal compositions are isomorphisms (Ho
denotes the homotopy category functor). By applying Lemma 1 we see that
Ho(U(f)) is an isomorphism. This means that U(f) is a weak equivalence [4,
5.8], which is what we wanted to prove.

4.2 The model structure on operads

We say that a functor, F : (C,⊗C , IC , τC) → (D,⊗D, ID, τD) between symmetric
monoidal categories is symmetric monoidal if it comes equipped with a mor-
phism ID → F (IC), and a collection of morphisms F (X)⊗DF (Y ) → F (X⊗CY ),
natural in X and Y , making some diagrams commute [2, 2.4]. Informally, the
axioms say that it doesn’t matter in which order one ”takes out” F from tensor
products, that removing the monoidal unit before applying the functor is the
same as doing it after, and that applying a twist and ”moving out” F is the
same as fist moving out and then twisting. For details, see [9, XI.2]. One thing
to note is that some sources call what we have defined here a ”lax” monoidal
functor, and when not specifying that their monoidal functor is lax mean that
the equipped morphisms are all isomorphisms. We call such monoidal functors
strong. An important property of symmetric monoidal functors is that they pre-
serve operads: if P = (P (n))n≥0 is an operad in C, then F (P ) = (F (P (n)))n≥0

is an operad in D with unit

ID −→ F (IC)
F (e)−−−→ F (P (1)),

and with operad composition

F (P (n))⊗D F (P (k1))⊗D · · · ⊗D F (P (kn))

−−→ F (P (n)⊗C P (k1)⊗C · · · ⊗C P (kn))

F (γ)−−−→ F (P (k1 + · · ·+ kn)).

12



Checking that the associativity, unit, and equivariance diagrams commute is
simple, and we omit the proof. In particular, if C is some cartesian closed
category, then for any object A of C the functor (−)A : (C,⊗, I, τ) → (C,⊗, I, τ)
is strong symmetric monoidal since right adjoints preserve limits, and so for
any operad P in C there is an operad PA = (P (n)A)n≥0. From now on when
dealing with symmetric monoidal functors, we shall state that they are so, and
write them simply as F : C → D, omitting giving special names to the tensor
products in the monoidal categories.

For symmetric monoidal functors there is a notion of symmetric monoidal
natural transformations; for two symmetric monoidal functors F,G : C → D, a
symmetric monoidal natural transformation from F to G is an ordinary natural
transformation α : F .−→ G, which makes all diagrams

I

�� ��
F (I)

αI // G(I)

and

F (X)⊗ F (Y )
αX⊗αY//

��

G(X)⊗G(Y )

��
F (X ⊗ Y )

αX⊗Y // G(X ⊗ Y )

commute [10, Definition 20.3]. A symmetric monoidal fibrant replacement func-
tor is a fibrant replacement functor which is also symmetric monoidal, and where
the natural transformation is symmetric monoidal.

A symmetric monoidal model category is a category which is closed symmet-
ric monoidal and a model category, and satisfies some axioms that relate the
two structures (see [7, Definition 4.2.6]). If the monoidal structure is cartesian,
we call it a cartesian closed model category.

We introduce one final notion of monoidal model categories before proving
what is Theorem 3.2 in [2]. An interval is a pair of morphisms

I ⨿ I ↣ J
∼−→ I,

the first one being a cofibration and the second one a weak equivalence, such

that the composition is the folding map I ⨿ I
id+id−−−→ I. Every monoidal model

category has an interval, which can be seen by using the appropriate factoriza-
tion axiom on the folding map.

Theorem 2. Let E be a cartesian closed model category such that

• E is cofibrantly generated and the terminal object of E is cofibrant;

• E has a symmetric monoidal fibrant replacement functor.

Then, there is a cofibrantly generated model structure on the category of operads,
in which a map P → Q is a weak equivalence (resp. fibration) iff for each n,
the map P (n) → Q(n) is a weak equivalence (resp. fibration) in E.

Proof. The proof follows [2] closely. We shall construct the model structure
on operads by transfer (Theorem 1) using the path-object argument (Lemma
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2). One can show that the forgetful functor is monadic and preserves filtered
colimits (we will not show this), and this together with the category of collections
in E being complete and cocomplete ensures that the category of operads in E
is complete and cocomplete [3, Proposition 4.3.6]. That the forgetful functor
preserves filtered colimits also ensures that condition (i) of the transfer principle
is satisfied.

Let P be an operad and let P̃ be the collection defined by P̃ (n) = P (n)̃
for n ≥ 0, where X 7→ X˜ is the symmetric monoidal fibrant replacement
functor in E . Since the fibrant replacement functor is symmetric monoidal,
the operad structure on P induces an operad structure on P̃ , so that P̃ is a
fibrant replacement for P in the category of operads. Thus, the first condition
in Lemma 2 holds.

For the construction of a path-object for fibrant operads, we use the fact that
in a cartesian closed category exponentiation is product preserving and hence
strong symmetric monoidal. This implies that for any interval I ⨿ I ↣ J

∼−→ I,
mapping into a fibrant operad P yields a sequence of morphisms of operads:
P I

∼−→ P J ↠ P I⨿I , where the first morphism is a weak equivalence since I
is cofibrant [2, Lemma 2.3], and the second morphism is a fibration since P is
fibrant [7, Lemma 4.2.2]. The fact that P ∼= P I can be seen by chasing around
elements in hom-sets related to the adjunction −⊗ I ⇄ (−)I , and the fact that
P I⨿I ∼= P×P follows from E being cartesian closed. Thus we have a path-object
for P .

5 Constructing the free functor

There is an obvious forgetful functor Oper(E) → Coll(E), and it turns out that
there is also a free one Coll(E) → Oper(E). The purpose of this section is
to construct it, and to show that it together with the forgetful one form an
adjunction. To do this we first introduce a kind of trees as well as graftings of
them, which will be used in the construction. We will then do the construction,
before finally showing that we have the adjunction.

5.1 Trees

The trees we are going to use are the combinatorial trees defined in [8]. These
trees differ from what is usually meant by tree in that they are planar and
rooted, and that the edges are allowed to not have vertices at their ends. We
will only give a short description of the trees themselves, for details, see [8]. We
will however give in full detail some definitions which are not to be found in
Leinsters book, such as that of (non-planar) isomorphisms of trees.

Definition 6. A (finite, planar, rooted) tree T consists of

• a finite set v(T ) (the vertices)

• a finite set e(T ) (the edges), a subset in(T ) ⊆ e(T ) (the input edges, or
leaves), and an element o ∈ e(T ) (the output edge)

14



• a function s : e(T )\ in(T ) → v(T ) (source) and a function t : e(T )\{o} →
v(T ) (target)

• for each v ∈ v(T ), a total order on in(v) := t−1(v),

such that there is a unique path from each vertex to the root edge.

The ordering of each set in(v) gives the order from left to right we would
put the edges in if we were to embed the tree in the plane, explaining why we
call them planar. We note in particular the case of having just one edge and
no vertices, in this case we will call the tree trivial. We pick a representative of
these and denote it by |. We define |T | to be |in(T )| and for v ∈ v(T ) we define
|v| to be |in(v)|. For non-trivial trees, the source of the output edge may be of
special interest; we call it the root vertex or simply the root, and denote it by
r(T ) = s(o). If a tree has only one vertex we call it a corolla, and denote an
n-leaved corolla, n ≥ 0, by cn. We now define isomorphisms of trees:

Definition 7. For two trees T, T ′, an isomorphism ϕ : T → T ′ is a pair of
bijections (denoted by the same name) ϕ : v(T ) → v(T ′), ϕ : e(T ) → e(T ′),
satisfying the expressions s(ϕ(e)) = ϕ(s(e)) and t(ϕ(e)) = ϕ(t(e)), e an edge of
T , whenever they are defined. It follows from this that leaves are sent to leaves
and that the root edge is sent to the root edge.

Note in particular that the isomorphisms defined here are non-planar; the
definition makes no use of the planar structure. We shall sometimes consider
the induced maps in(ϕ) : in(T ) → in(T ′) and ϕv : in(v) → in(ϕ(v)) as elements
of symmetric groups, through their planar structures. More explicitly, if p : n→
in(T ) and p′ : n → in(T ′) are the planar orderings of the input edges of T and
T ′ respectively, we may sometimes associate in(ϕ) with

n
p−→ in(T )

in(ϕ)−−−→ in(T ′)
(p′)−1

−−−−→ n,

and similarly with ϕv. Trees and isomorphisms form a category (in fact a
groupoid) which we denote by T, which splits up further into the categories of
trees with n leaves, T(n), for n ≥ 0.

There is a functor λ : T → Set, sending a tree T to the set of all labelings
of its leaves,

λ(T ) = {τ : {1, . . . , |T |} → in(T ) | τ bijection} .

Each isomorphism, ϕ : T → T ′, is sent to a function defined by post-composition
with the bijections in(ϕ) : in(T ) → in(T ′), like so:

λ(ϕ)
(
{1, . . . , |T |} τ−→ in(T )

)
= {1, . . . , |T |} τ−→ in(T )

in(ϕ)−−−→ in(T ′).

Restricting λ to T(n), we get for each σ ∈ Σn a natural transformation σ∗ :
λ .−→ λ, defined by pre-composition/relabeling leaves:

σ∗
T

(
{1, . . . , n} τ−→ in(T )

)
= {1, . . . , n} σ−→ {1, . . . , n} τ−→ in(T ).
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To see that σ∗ is natural, we would like, for each ϕ : T → T ′, the following
diagram to commute:

λ(T )
σ∗
//

ϕ∗

��

λ(T )

ϕ∗

��
λ(T ′)

σ∗
// λ(T ′)

,

which it does, which can be seen by casing an element around:

τ � //
_

��

τ ◦ σ_

��
in(ϕ) ◦ τ � // in(ϕ) ◦ τ ◦ σ

.

We note also that these natural transformations are functorial on Σop
n , and thus

they constitute a right action on λ restricted to n.
Applying the Groethendieck construction (see e.g. [1]) to λ : T → Set gives

us a category T[λ] and a functor π : T[λ] → T. The Groethendieck construction,
T[λ], is the category of labeled trees, and the functor π is defined by forgetting
the labels. Explicitly, a labeled tree is a tree, T , together with a bijection τ :
n → in(T ), where n = |T |. An isomorphism of labeled trees is an isomorphism
of trees which also preserves the labels, i.e. such that

in(T )
in(ϕ) // in(T ′)

n

τ

aa

τ ′

<<

commutes. That labeled trees together with isomorphisms of labeled trees form
a category T[λ] is immediate. Restriction to labeled trees with n leaves gives
us the category T[λ](n), and we may sometimes denote π restricted to this
subcategory as πn. We will sometimes regard a labeling as an element of a
symmetric group; if p : n → in(T ) is the labeling arising from the planar
structure, we associate a labeling τ : n→ in(T ) with

n
τ−→ in(T )

p−1

−−→ n.

In particular, the labeling arising from the planar structure will sometimes be
denoted as id.

Trees, labeled or not, may be grafted onto each other. This procedure can be
imagined as taking some tree with, say, n leaves, and n other trees and glueing
the roots of those n trees onto the leaves of the n-leaved one. Explicitly, let the
numbers n, k1, . . . , kn be given, then there is a functor

−(−, . . . ,−) : T(n)×
n∏
i=1

T(ki) → T(k1 + · · ·+ kn),
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defined by sending (S, T1, . . . , Tn) to the tree S(T1, . . . , Tn), which has vertices
and edges respectively

v(S(T1, . . . , Tn)) = v(S)⨿
n∐
i=1

v(Ti)

and

e(S(T1, . . . , Tn)) = e(S)⨿
n∐
i=1

e(Ti) \ {oi},

the oi denoting the output edge of Ti. We let the output edge be the output
edge of S and the input edges the input edges of the Ti. The source and target
maps are defined by

s(e) =

{
r(Ti) if e is the i-th leaf of S

s(e) otherwise

and
t(e) = t(e),

where the s and t on the right hand side of the equal mark is the appropriate
source and target maps for one of S, T1, . . . , Tn. On isomorphisms, −(−, . . . ,−)
is defined in the obvious way.

Grafting of labeled trees is defined in the following way: for each collection
of numbers n, k1, . . . , kn there is a functor

−(−, . . . ,−) : T[λ](n)×
n∏
i=1

T[λ](ki) → T[λ](k1 + · · ·+ kn),

defined by sending ((S, σ), (T1, τ1), . . . , (Tn, τn)) to the labeled tree with under-
lying tree S(Tσ−1(1), . . . , Tσ−1(n)) and with label the composition

k
∼=−→ k1 ⨿ · · · ⨿ kn

τ1⨿···⨿τn−−−−−−→ in(T1)⨿ · · · ⨿ in(Tn),

where we’ve set k = k1 + · · · + kn. The definition of what the functor does
on isomorphisms is again the obvious one. Note that we have used the same
symbol for grafting of labeled and unlabeled trees; when using it later on it’s
meaning must be understood from context.

When looking at the domain and codomain of the grafting functor for la-
beled trees, one might think that it makes labeled trees into an operad. In
thinking so one would be almost right, for it makes labeled trees into an op-
erad (in groupoids) up to canonical natural isomorphism. The right action of
the symmetric groups is defined through relabeling of the leaves, some σ ∈ Σn
sending (T, τ) to (T, τ ◦ σ). We remark that [2] incorrectly states that it is an
actual (strict) operad, but that this oversight is unimportant, as any problems
disappear when taking colimits. Grafting of unlabeled trees, on the other hand,
does not form an operad, as there is no right action of the symmetric groups.
It is, however, a non-Σ operad [8].
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5.2 Constructing the functor

To define the free functor we first construct some functors on the category of
trees, from which it will be built. We define for each collection K a functor
K : Top → E . We do so inductively on the number of vertices in the trees, first
for the objects, and then for the morphisms. If the number of vertices in a tree T
is 0, then T = | and we define K(|) to be I, the unit in the monoidal category. If
the number of vertices of T is strictly larger than 0, then T decomposes uniquely
as a grafting of trees with a corolla, T = cn(T1, . . . , Tn), and we define

K(T ) = K(cn(T1, . . . , Tn)) = K(n)⊗K(T1)⊗ · · · ⊗ K(Tn).

We see that K(T ) is a tensor product over the vertices v of T of K(|in(v)|), as
well as a monoidal unit for each leaf, with the order depending on the planar
structure. To see this, consider the following inductive argument:

If the number of vertices of T is 1, then K(T ) = K(|v|)⊗ I ⊗ · · · ⊗ I, where
v is the single vertex in the tree and the number of monoidal units is equal to
the valence of v, the number of leaves. Now, if T has more than 1 vertex, then
any vertex v of T is either the root, or it is not. If v is the root, then K(|v|) is
the first term of K(T ), and any leaf on v is some | grafted onto the root, and so
gives a monoidal unit in the tensor product. If v is not the root of T , v is in one
of the trees Ti, and by induction K(|v|) and one monoidal unit for each leaf on
v appears in K(Ti) which appears in K(T ). It is clear that the planar structure
determines the order in which things appear, since if v ∈ v(Ti) and v

′ ∈ v(Tj),
i < j, then K(|v|) appears before K(|v′|), and similarly if we decompose the
trees Ti = cm((Ti)1, . . . , (Ti)m).

To define K on morphisms, suppose first that the number of vertices in T
is 0. Then T = |, and any isomorphism ϕ : T → T ′ is unique, and we let
K(ϕ), which we denote by ϕ∗, be idI . Next, suppose T has 1 or more vertices.
Then ϕ : T → T ′ decomposes into σ(ϕ1, . . . , ϕn), where σ : cn → c′n and
ϕi : Ti → T ′

σ(i). The map σ induces a map in(v) → in(v′), where v and v′

are the roots of T and T ′, which we can regard as an element of Σn through
the planar structure. We shall denote this element as σ also, and we define
ϕ∗ : K(T ′) → K(T ) to be the composition

K(n)⊗K(T ′
1)⊗ · · · ⊗ K(T ′

n)
id⊗σ−1

−−−−−→ K(n)⊗K(T ′
σ(1))⊗ · · · ⊗ K(T ′

σ(n))

σ∗⊗ϕ∗
1⊗···⊗ϕ∗

n−−−−−−−−−−→ K(n)⊗K(T1)⊗ · · · ⊗ K(Tn),

or equivalently

ϕ∗ = σ∗ ⊗
(
(ϕ∗1 ⊗ · · · ⊗ ϕ∗n) ◦ σ−1

)
.

It will sometimes be necessary to work with a different, non-inductive defi-
nition of ϕ∗. To give this new definition, we introduce some notation: if T is a
tree, we use

⊗
v∈v(T ) to denote a tensor product of |v(T )| things, with order de-

pending on the planar structure of T . For instance, if T = cm(T1, . . . , Tm), the
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first tensor factor in
⊗

v∈v(T ) F (v) is F (r(T )), and if v ∈ v(Ti) and w ∈ v(Tj),

i < j, then F (v) comes before F (w). Now, as before let ϕ : T → T ′ be an
isomorphism of trees, and in addition set m = |v(T )| = |v(T ′)|. By removing
the monoidal units in K(T ) and K(T ′) corresponding to non-output leaves one
gets

K(T ) ∼=
⊗

v∈v(T )

K(|v|), K(T ′) ∼=
⊗

v′∈v(T ′)

K(|v′|).

(The reason for the use of non-output leaves is the case m = 0, in this case
interpret

⊗
v∈v(T ) K(|v|) as I.) Using these two isomorphisms, and letting ϕv

denote the element of Σ|v| corresponding to the induced map in(v) → in(ϕ(v)),
we define ϕ∗ to be the composition

⊗
v′∈v(T ′)

K(|v′|) ϕ−1

−−→
⊗

v∈v(T )

K(|ϕ(v)|)

⊗
v∈v(T )

ϕ∗
v

−−−−−−→
⊗

v∈v(T )

K(|v|).

This can be imagined as first moving all the tensor factors into the correct place,
and then using the group actions on them all at once.

Lemma 3. The two definitions of ϕ∗ are equivalent.

Proof. The proof is by induction on the number of vertices. If the number of
vertices is equal to 0, both definitions give ϕ∗ = id, so it is clear. If the number
of vertices is greater than 0, then T and T ′ decompose as cn(T1, . . . , Tn) and
cn(T

′
1, . . . , T

′
n), respectively, and ϕ decomposes into σ : cn → cn and ϕi : Ti →

T ′
σ(i), 1 ≤ i ≤ n. Consider the following diagram

K(n)⊗
n⊗
i=1

K(T ′
i )

∼= //

σ∗⊗σ−1

��

K(n)⊗
n⊗
i=1

⊗
v′∈v(T ′

i )

K(|v′|)

σ∗⊗σ−1

��

K(n)⊗
n⊗
i=1

K(T ′
σ(i))

id⊗
n⊗

i=1

∼=
//

id⊗
n⊗

i=1
ϕ∗
i

��

K(n)⊗
n⊗
i=1

⊗
v′∈v(T ′

σ(i)
)

K(|v′|)

id⊗
n⊗

i=1
ϕ∗
i

��

K(n)⊗
n⊗
i=1

K(Ti)

id⊗
n⊗

i=1

∼=
// K(n)⊗

n⊗
i=1

⊗
v∈v(Ti)

K(|v|),

where the phis on the left are defined inductively and the ones on the right
directly. The upper half commutes by coherence, and the lower by induction.

For each map of collections f : K → C, there is a natural transformation
f : K → C. It is also defined inductively on the number of vertices of each tree
T . If T has 0 vertices then T = |, and we define f

T
= idI . If T has more than

0 vertices, then T decomposes uniquely as cm(T1, . . . , Tm), and we define

f
T
= fm ⊗ f

T1
⊗ · · · ⊗ f

Tm
.

19



To see that this is natural, let ϕ : T → T ′ be given, then if the number of
vertices is 0 it is trivially natural, while if the number of vertices is greater than
0, T again decomposes as cm(T1, . . . , Tm) and the naturality diagram becomes

K(m)⊗
m⊗
i=1

K(T ′
i )

fm⊗
m⊗

i=1
f
T ′
i //

id⊗σ−1

��

C(m)⊗
m⊗
i=1

C(T ′
i )

id⊗σ−1

��

K(m)⊗
m⊗
i=1

K(T ′
σ(i))

fm⊗
m⊗

i=1
f
T ′
σ(i) //

σ∗⊗ϕ∗
1⊗···⊗ϕ∗

m

��

C(m)⊗
m⊗
i=1

C(T ′
σ(i))

σ∗⊗ϕ∗
1⊗···⊗ϕ∗

m

��

K(m)⊗
m⊗
i=1

K(Ti)

fm⊗
m⊗

i=1
f
Ti // C(m)⊗

m⊗
i=1

C(Ti)

The top square commutes by coherence, and the bottom square commutes in the
first factor since f is a map of collections, and in the other factors by induction.

We now define the free functor F : Coll(E) → Oper(E). Let K be some
collection, and let f : K → C be some map of collecions. Then, define

FK = colimT[λ]Kπ

and
Ff = colimT[λ]fπ.

We remark that [2] uses a different definition using coends, however the author
found this definition easier to work with. Since T[λ] splits as a coproduct into
smaller subgroupoids T[λ](n) of labeled trees with n leaves, so does our colimit
split as a coproduct of FK(n) = colimT[λ](n)Kπn.

The object FK =
∐
n≥0 FK(n) has the structure of a collection, i.e. each

FK(n) has a right action of Σn. For each σ ∈ Σn, this action is induced by the
maps

Kπ(T, τ) = Kπ(T, τσ)
in(T,τσ)−−−−−→ colimT[λ](n)Kπn,

where (T, τ) is an object of T[λ](n). This is well defined, for for each isomor-
phism of labeled trees ϕ : (T, τ) → (T ′, τ ′), the following diagram commutes

Kπ(T ′, τ ′)
= //

ϕ∗

��

Kπ(T ′, τ ′σ)

ϕ∗

��

in(T ′,τ′σ)

**
colimT[λ](n)Kπn

Kπ(T, τ) = // Kπ(T, τσ)
in(T,τσ)

44

once we have shown that ϕ : (T, τσ) → (T ′, τ ′σ) is an isomorphism of labeled
trees. It is, since in(ϕ) ◦ (τ ◦ σ) = (in(ϕ) ◦ τ) ◦ σ = τ ′ ◦ σ.
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Having now shown that FK is a collection, we would like to show that it is
also an operad. We start by defining the unit: we let it be the inclusion map

I = K(|)
in(|,id)−−−−→ FK(1).

We define the operad composition to be the composition

FK(n)⊗
n⊗
i=1

FK(ki) = colimT[λ](n)Kπn ⊗
n⊗
i=1

colimT[λ](ki)Kπki

∼= colim
T[λ](n)×

n∏
i=1

T[λ](ki)

(
Kπn ⊗

n⊗
i=1

Kπki

)
∼= colim

T[λ](n)×
n∏

i=1
T[λ](ki)

KπΣiki ◦ −(−, . . . ,−)

→ colimT[λ](Σiki)KπΣiki

= FK(Σiki),

where we on the second line use the fact that tensor products commute with
colimits since E is closed, on the fourth line the map is the one that is induced
colimF ◦G→ colimF whenever one has two composable functors F and G, and
on the third line we use the colimit functor on a natural isomorphism which we
will now describe.

Let ((S, σ), (T1, τ1), . . . , (Tn, τn)) be an object of T[λ](n)×
∏n
i=1 T[λ](ki), and

let (T, τ) = (S, σ)((T1, τ1), . . . , (Tn, τn)). The two objects K(S) ⊗
⊗n

i=1 K(Ti)
and K(T ) are isomorphic to tensor products over the vertices of T :

K(S)⊗
n⊗
i=1

K(Ti) ∼=
⊗
v∈v(S)

K(|v|)⊗
n⊗
i=i

⊗
v∈v(Ti)

K(|v|)

∼=
⊗

v∈v(T )

K(|v|)

∼= K(T ).

We call this composition / symmetry isomorphism sym(S,σ),T1,...,Tn
, or simply

sym if it is clear from context. Our desired natural isomorphism is then

(sym(S,σ),T1,...,Tn
)((S,σ),(T1,τ1),...,(Tn,τn)),

where ((S, σ), (T1, τ1), . . . , (Tn, τn)) ranges over ob(T[λ](n)×
∏n
i=1 T[λ](ki)). To

see that this transformation is natural let

(ψ, ϕ1, . . . , ϕn) : ((S, σ), (T1, τ1), . . . , (Tn, τn)) → ((S′, σ′), (T ′
1.τ

′
1), . . . , (T

′
n, τ

′
n))

be given, with |S| = |S′| = n. Call ψ(ϕ1, . . . , ϕn) : T → T ′ for ϕ. Using
Lemma 3 in order to factor ϕ∗, ψ, ϕ∗1, . . . , ϕ

∗
n, and using the natural isomorphism

K(−) ∼=
⊗

v∈v(−) K(|v|), the commutativity of the naturality square becomes
equivalent to the commutativity of the following diagram.
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⊗
v′∈v(S′)

K(|v′|)⊗
n⊗
i=1

( ⊗
v′∈v(T ′

i )

K(|v′|)

)
sym

∼=
//

ψ−1⊗
n⊗

i=1
ϕ−1
i

��

⊗
v′∈v(T ′)

K(|v′|)

ϕ−1

��⊗
v∈v(S)

K(|ψ(v)|)⊗
n⊗
i=1

( ⊗
v∈v(Ti)

K(|ϕ(v)|)

)
sym

∼=
//

⊗
v∈v(S)

ψ∗
v⊗

n⊗
i=1

( ⊗
v∈v(Ti)

ϕ∗
v

)
��

⊗
v∈v(T )

K(|ϕ(v)|)

⊗
v∈v(T )

ϕ∗
v

��⊗
v∈v(S)

K(|v|)⊗
n⊗
i=1

( ⊗
v∈v(Ti)

K(|v|)

)
sym

∼=
// ⊗
v∈v(T )

K(|v|)

Both the upper and lower square commute by Mac Lanes coherence theorem
[9].

Having now defined the operad structure, we proceed to show that it satisfies
the operad axioms. We begin with the unit axioms, the diagrams (2): let
(T, τ) ∈ T[λ](n) be given, and consider the following diagram.

I ⊗K(T )

id⊗in(T,τ)

��

id⊗id // K(|)⊗K(T )

in(|,id)⊗in(T,τ)

��

∼= // K(T )

in(T,τ)

��

id // K(T )

in(T,τ)

��
I ⊗FK(n)

e⊗id// FK(1)⊗FK(n)
∼= // colimKπn ◦ −(−) // FK(n)

Clearly, the composition along the top is the canonical isomorphism I⊗K(T ) →
K(T ), which implies that the bottom composition is the appropriate canonical
isomorphism, proving the left unit axiom. Proving the right unit axiom is
entirely analogous, and we omit it.

The associativity axiom is satisfied essentially because it holds before tak-
ing colimits. Consider diagram (1), but with P = FK. As the first entry is a
colimit, we can show that γ ◦ (γ ⊗ id) = γ ◦ (id ⊗ (⊗sγ)) ◦ shuffle if we show
that γ ◦ (γ ⊗ id) ◦ in = γ ◦ (id⊗ (⊗sγ)) ◦ shuffle ◦ in, where in is the inclusion
of some factor. To do this, let the labeled trees (S, σ), (T1, τ1), . . . , (Tn, τn),
and (R1

s, ρ
1
s), . . . , (R

ks
s , ρ

ks
s ), 1 ≤ s ≤ n, be given. Let (A,α) be the composi-

tion of them all, i.e. (let (T, τ) = (S, σ)((T1, τ1), . . . , (Tn, τn)) and (Bs, βs) =
(Ts, τs)((R

1
s, ρ

1
s), . . . , (R

ks
s , ρ

ks
s )))

(A,α) = (T, τ)((R1
1, ρ

1
1), . . . , (R

kn
n , ρknn ))

∼= (S, σ)((B1, β1), . . . , (Bn, βn)).

Then one can use the coherence theorem to show that γ ◦ (γ ⊗ id) ◦ in and
γ ◦ (id⊗ (⊗sγ)) ◦ shuffle ◦ in are both equal to the composition

K(S)⊗
(

n⊗
s=1

K(Ts)

)
⊗

n⊗
s=1

ks⊗
t=1

K(Rts)
∼= // K(A)

in(A,α)// FK(i1 + · · ·+ in).
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Finally, we show that equivariance holds. Consider diagram (4), again with
P = FK. Again, the top right entry in the diagram is a colimit, so we see what
the maps are on each component. Let (S, s), (T1, t1), . . . , (Tn, tn) be labeled
trees with |S| = n, |T1| = k1, . . . , |Tn| = kn. One can then easily show that both

γ ◦ (id⊗ τ1 ⊗ · · · ⊗ τn) ◦ in(S,s),(T1,t1),...,(Tn,tn)

and
(τ1 ⊕ · · · ⊕ τn) ◦ γ ◦ in(S,s),(T1,t1),...,(Tn,tn)

are equal to the composition

K(S)⊗
n⊗
i=1

K(Ti)
∼=−→ K(T )

in(T,t◦(τ1⊕···⊕τn))−−−−−−−−−−−−→ FK(k1 + · · ·+ kn),

by using the coherence theorem. Checking that the first equivariance diagram
(3) commutes is similar to checking the second one, although it is made a bit
more complicated by the shuffling around of tensor factors. In the process of
showing that both γ ◦ (σ∗ ⊗ σ−1) ◦ in and σ(kσ(1), . . . , kσ(n)) ◦ γ ◦ in are equal
to the composition

K(S)⊗
n⊗
i=1

K(Ti)
∼=−→ K(T )

in
(T,t◦σ(kσ(1),...,kσ(n)))−−−−−−−−−−−−−−−−→ FK(k1 + · · ·+ kn),

one is required to show that(
T, t ◦ σ

(
kσ(1), . . . , kσ(n)

))
= (S, s ◦ σ)

((
Tσ(1), tσ(1)

)
, . . . ,

(
Tσ(n), tσ(n)

))
.

To see that this equality holds, consider the first equivariance diagram (3), but
with P = T[λ]. Although T[λ] is only an operad up to natural isomorphism, the
indicated equivariance diagram strictly commutes, which yields the equality.

5.3 Proving adjointedness

Before proving that the functor F is left adjoint to the forgetful functor, we first
recall some facts about adjoint functors. The adjointness of the two functors F
and U is equivalent to the existence of two natural transformations

η : idColl(E)
.−→ UF , ε : FU .−→ idOper(E),

called the unit and counit, respectively, of the adjunction, making the following
diagrams commute [9, IV.1]:

F
Fη //

=
""

FUF

εF
��

UFU

Uε
��

U
ηUoo

=
||

F U

(5)
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These diagrams are referred to as the triangle identities, and written alge-
braically becomes

εF ◦ Fη = idF , Uε ◦ ηU = idU .

We shall now construct two such natural transformations.
The unit η is simple to define. Let K be some collection. Define ηK : K →

UF(K) by defining it to be for each n ≥ 0 the composition

K(n)
∼=−→ Kπ(cn, id)

in(cn,id)−−−−−→ colimKπn = UF(K)(n).

These form a map of collections, i.e. they are Σn-invariant, since given σ ∈ Σn
the diagram

K(n)
∼= //

σ∗

��

Kπ(cn, id)
in(cn,id)//

σ∗◦id
��

colimKπn

σ∗

��
K(n)

∼= // Kπ(cn, id)
in(cn,id)// colimKπn

commutes. Note here that the left vertical and right vertical maps are the group
action of σ ∈ Σn on K(n) and colimKπ, respectively, while in the middle vertical
map we consider σ a map cn → cn and apply Kπ on it. The left square in the
diagram obviously commutes, while the right square can be expanded to

Kπ(cn, id)
in(cn,id)//

id

��

colimKπn

σ∗

��
Kπ(cn, σ)

in(cn,σ)//

σ∗

��

colimKπn

Kπ(cn, id).
in(cn,id)

88

Next, we show that η is natural. Let f = (fn)n≥0 : K → C be some map of
collections. Then to check naturalilty we check it in each degree:

K(n)
∼= //

fn

��

Kπ(cn, id)
in(cn,id)//

fn⊗idI⊗n

��

colimKπ

UF(f)(n)

��
K(n)

∼= // Kπ(cn, id)
in(cn,id)// colimKπ

The right square commutes by coherence, and the left one by definition.
The counit is a bit more tricky to define as it is requires use of the operad

structure. We start by defining for each operad P and each tree T a map
ε′P,T : UP (T ) → P (|T |), which we do by induction on the number of vertices in
T . For the base step, suppose |v(T )| = 0, i.e. T = |. In this case UP (T ) = I,
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and we define ε′P,T to be the unit of P , namely e : I → P (1). Suppose now that
|v(T )| > 0, and that the map has been defined for all trees with fewer vertices.
Then T decomposes as T = cm(T1, . . . , Tm). By induction, the map is defined
for each Ti, and so we define ε′P,T to be the composition

UP (T ) = UP (cm(T1, . . . , Tm))

= P (m)⊗ UP (T1)⊗ · · · ⊗ UP (Tm)

id⊗ε′P,T1
⊗···⊗ε′P,Tm−−−−−−−−−−−−−→ P (m)⊗ P (|T1|)⊗ · · · ⊗ P (|Tm|)

γ−→ P (|T |).

We will show later that the maps ε′P,T are natural in T (Lemma 4).
We now define the counit: define each component εP of ε to be in each

degree induced, for each (T, τ) in T[λ](n), by the maps

UP (T )
ε′P,T−−−→ P (|T |) τ∗

−→ P (n).

This induces a map out of FU(P )(n) = colimT[λ](n)UPπn, because the following
diagram commutes for each ϕ : (T, τ) → (T ′, τ ′).

UP (T ′)
ε′
P,T ′
//

ϕ∗

��

P (|T ′|)

ϕ∗

��

(τ ′)∗

''
P (n)

UP (T )
ε′P,T // P (|T |)

τ∗

77

The square commutes by Lemma 4, and the triangle commutes because τ∗ϕ∗ =
ϕτ∗ = (τ ′)∗.

Now that we have shown that εP is well defined, we need to show that it is
a map of operads. That is, for n, k1, . . . , kn ∈ N, we need to show that

FU(P )(n)⊗
n⊗
i=1

FU(P )(ki)

εP (n)⊗
n⊗

i=1
εP (ki)

��

γ // FU(P )
(

n∑
i=1

ki

)
εP

(
n∑

i=1
ki

)
��

P (n)⊗
n⊗
i=1

P (ki)
γ // P

(
n∑
i=1

ki

)
commutes. To show this we first show that, for all (S, σ), (T1, τ1), . . . , (Tn, τn),
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|S| = n, (T, τ) = (S, σ)((T1, τ1), . . . , (Tn, τn)), the outer diagram commutes:

UP (π(S, σ))⊗
n⊗
i=1

UP (π(Ti, τi))
symσ //

ε′S⊗
n⊗

i=1
ε′Ti

��

UP (π(T, τ))

ε′T

��
P (|S|)⊗

n⊗
i=1

P (|Ti|)

σ∗⊗
n⊗

i=1
τ∗
i

��

id⊗σ // P (|S|)⊗
n⊗
i=i

P (|Tσ−1(i)|)
γ // P (|T |)

τ∗

��

P (n)⊗
n⊗
i=1

P (ki)
γ // P

(
n∑
i=1

ki

)
,

(6)

with the maps out of the top two entries being natural with respect to maps of
labeled trees. We have here removed P from each ε′ for simplicity, and we have
added a subscript to sym to clarify that it is dependent on σ. The fact that
the lower square commutes is the equivariance diagram (3), so we need only to
show that the top half commutes. Furthermore, we need only show it commutes
in the special case σ = id, which can be seen by observing the diagram

UP (π(S, σ))⊗
n⊗
i=1

UP (π(Ti, τi))

id⊗σ
��

symσ

**
UP (π(S, id))⊗

n⊗
i=1

UP (π(Tσ−1(i), τσ−1(i)))

ε′S⊗
n⊗

i=1
τ∗
σ−1(i)

◦ε′T
σ−1(i)

��

symid // UP (π(T, τ))

(τσ−1(1)⊕···⊕τσ−1(n))
∗◦ε′T

��
P (n)⊗

n⊗
i=1

P (kσ−1(i))

σ∗⊗σ−1

��

γ // P (kσ−1(1) + · · ·+ kσ−1(n))

σ(k1,...,kn)
∗

��
P (n)⊗

n⊗
i=1

P (ki)
γ // P (k1 + · · ·+ kn).

Note that the left and right vertical compositions are σ∗ ◦ ε′S ⊗
⊗n

i=1 τ
∗
i ◦ ε′Ti

and τ∗ ◦ ε′T , respectively. We show that the top half of (6) commutes in the
case σ = id by induction on the number of vertices of T .

If |v(T )| = 0, then S = T1 = T = | and diagram (6) reduces to

I ⊗ I
λ=ρ //

e⊗e
��

I

e

��
P (1)⊗ P (1)

γ // P (1),
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which commutes by the unit laws of an operad, and which satisfies the (trivial)
naturality requirement.

Now suppose that |v(T )| > 0, and that we have shown that the required
properties hold for all trees with fewer vertices. Then we can decompose T and S
as T = cm(R1, . . . , Rm) (think R for ”cut at the Root”) and S = cm(S1, . . . , Sm).
Let hj = |Sj |. We give the trees T1, . . . , Tn some additional names: let T ji =
Tk1 + · · · + kj−1 + i, where 1 ≤ i ≤ hj . We then have the relation Rj =

Sj(T
j
1 , . . . , T

j
hj
). We expand the upper half of diagram (6) to

UP (π(S, id))⊗
n⊗
i=1

UP (π(Ti, τi))
sym //

=

��

UP (π(T, τ))

=

��
UP (S)⊗

n⊗
i=1

UP (Ti)
sym //

(
id⊗

m⊗
j=1

ε′Sj

)
⊗

n⊗
i=1

ε′Ti ��

UP (T )

id⊗
m⊗

i=1
ε′Ri

��(
P (m)⊗

m⊗
j=1

P (|Sj |)

)
⊗

n⊗
i=1

P (|Ti|)

(
id⊗

m⊗
j=1

γ
)
◦∼=
//

γ⊗
n⊗

i=1
id

��

P (m)⊗
m⊗
j=1

P (|Rj |)

γ

��
P (|S|)⊗

n⊗
i=1

P (|Ti|)
γ // P (|T |)

(7)

The top square obviously commutes, and the bottom square commutes as it is
the associativity axiom for an operad. To see that the middle square commutes,
transpose it and expand it to

P (m)⊗
m⊗
j=1

UP (Sj)⊗
n⊗
i=1

UP (Ti)
id⊗

m⊗
j=1

ε′Sj
⊗

n⊗
i=1

ε′Ti

//

∼=
��

P (m)⊗
m⊗
j=1

P (Sj)⊗
n⊗
i=1

P (Ti)

∼=
��

P (m)⊗
m⊗
j=1

(
UP (Sj)⊗

hj⊗
i=1

UP (T ji )
)

//

id⊗
m⊗

j=1

(
ε′Sj

⊗
hj⊗
i=1

ε′
T

j
i

)

id⊗
m⊗

j=1
symid

��

P (m)⊗
m⊗
j=1

(
P (Sj)⊗

hj⊗
i=1

P (T ji )

)
id⊗

m⊗
j=1

γ

��

P (m)⊗
m⊗
j=1

UP (Rj)
id⊗

m⊗
i=1

ε′Ri

// P (m)⊗
m⊗
j=1

P (|Rj |).

The top square commutes by coherence, and the lower one commutes by induc-
tion since each Ri has fewer vertices than T . The fact that the diagram satisfies
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the naturality requirement follows quickly from the fact that it hold for each
Ri.

Finally, the transformation just defined is natural since any map of operads
f = (fn)n≥0 : P → Q commutes with the operad compositions γ, and each
component of ε is more or less a large composition of γs.

Theorem 3. The functor F : Coll(E) → Oper(E) is left adjoint to the forgetful
functor U : Oper(E) → Coll(E).

Proof. The proof is based on the proof for Theorem 1.91 in [11]. All that
remains is to show that the natural transformations just defined satisfy the
triangle identities.

Now that we have defined the unit η : idColl(E)
.−→ UF and the counit

ε : FU .−→ idOper(E) we show that the triangle identities are satisfied.
First we show that the second diagram in (5) commutes. We pick an operad

P and n ≥ 0. The following diagram clearly commutes, which proves it.

P (n)
ηUP (n)//

∼= $$

FUP (n)
UεP (n)// P (n)

UP (cn)

in(cn,id)

OO

∼=

@@

To show that first diagram in (5) commutes, we show that it commutes for
each collection, K, and for each degree n ≥ 0. Let (T, τ) be some n-leafed
labeled tree. Consider the following diagram:

Kπn(T, τ)

in(T,τ)

��

ηKπ(T,τ) // UFKπn(T, τ)

in(T,τ)

��

ε′FK,T // FK(n)

τ∗

��
FK(n)

F(ηK)(n) // FUFK(n)
εFK(n) // FK(n)

(8)

Both squares in this diagram commute by definition. We would like to show
that the composition of the bottom two horizontal maps is the identity. To do
this we include into the colimit FK(n) a factor Kπn(T, τ) and show that the
composition is in(T,τ). We do this with an inductive argument on the number
of vertices in the tree. We first do the argument assuming all labelings to be
the trivial/planar labelings, and afterwards show that it holds for all labelings.

For the base case of T having 0 vertices, T = |, and diagram (8) becomes

I
idI //

in|

��

I
in| //

in|

��

FK(1)

idFK(1)

��
FK(1)

F(ηK)(1) // FUFK(1)
εFK(1) // FK(1),
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and it is clear. Suppose now that T has more than 0 vertices. Then (T, id) de-
composes uniquely as (cn, id)((T1, id), . . . , (Tm, id)), and by definition the com-
position along the top and right sides of diagram (8) becomes

K(T )

ηK(m)⊗
m⊗

i=1
ηK

Ti// FK(m)⊗
m⊗
i=1

UFK(Ti)

id⊗
m⊗

i=1
ε′K,Ti

// FK(m)⊗
m⊗
i=1

FK(|Ti|)
γ // FK(n).

Since the compositions ε′K,Ti
◦ ηKTi

are in(Ti,id) by induction hypothesis, we

need only check that γ ◦ ηK(m)⊗
⊗m

i=1 inTi,id = in(T,id). To see this, consider
the following commutative diagram.

K(m)⊗
m⊗
i=1

K(Ti)

ηK⊗
m⊗

i=1
in

//

∼=⊗
m⊗

i=1
id

��

FK(m)⊗
m⊗
i=1

FK(|Ti|)
γ //

∼=
��

FK(n)

K(cm)⊗
m⊗
i=1

K(Ti)
in //

∼= --

in⊗
m⊗

i=1
in

66

colimKπm ⊗
m⊗
i=1

Kπ|Ti|
∼= // colimKπn ◦ −(−, . . . ,−)

OO

Kπn(cm(T1, . . . , Tm))

in(cm,T1,...,Tm)

OO

The top right vertical morphism is the one described after defining the operad
composition on page 21. Starting in the upper left corner and going down
and then down right gives us the identity, by coherence of symmetric monoidal
categories. Going from the lower right to the top right is the inclusion, and so
we have shown that the composition along the top is the inclusion.

Now to show that it holds for all labeled trees, and not just the trivially
labeled ones. Assume now that the label of (T, τ) need not be trivial. Consider
then the diagram

Kπn(T, id)
in(T,id) //

id

��

FK(n)
εFK◦F(ηK)(n)//

τ∗

��

FK(n)

τ∗

��
Kπn(T, τ)

in(T,τ) // FK(n)
εFK◦F(ηK)(n)// FK(n).

The left square commutes by definition and the right square commutes since
εFK ◦ F(ηK) is a map of operads. The composition of the top two horizontal
morphisms is in(T,id), and since τ∗ ◦ in(T,id) = in(T,τ), going from the top left
to the bottom right in the diagram is equal to in(T,τ), and this is equal to the
composition of the bottom two horizontal maps.
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Lemma 4. The maps ε′P,T : UP (T ) → P (|T |) are natural in T , i.e. for each
isomorphism of trees ϕ : T → T ′, the diagram

UP (T ′)

ε′
P,T ′

��

ϕ∗
// UP (T )

ε′P,T

��
P (|T ′|)

ϕ∗
// P (|T |)

(9)

commutes.

Proof. We prove this by induction on the number of vertices. If the number of
vertices in T is 0, then diagram (9) becomes

I
id //

e

��

I

e

��
P (1)

id // P (1),

which clearly commutes. If the number of vertices in T is greater than 0, then
T = cm(T1, . . . , Tm) and T ′ = cm(T ′

1, . . . , T
′
m) and we can expand the diagram

to the following:

UP (T ′)

id⊗
m⊗

i=1
UP(ϕσ−1(i))

//

id⊗
m⊗

i=1
ε′
P,T ′

i

��

P (m)⊗
m⊗
i=1

UP (Tσ−1(i))
σ∗⊗σ−1

//

id⊗
m⊗

i=1
ε′P,T

σ−1(i)

��

UP (T )

id⊗
m⊗

i=1
ε′P,Ti

��

P (m)⊗
m⊗
i=1

P (|T ′
i |)
id⊗

m⊗
i=1

ϕ∗
σ−1(i)

//

γ

��

P (m)⊗
m⊗
i=1

P (|Tσ−1(i)|)
σ∗⊗σ−1

//

γ

��

P (m)⊗
m⊗
i=1

P (|Ti|)

γ

��
P (n)

⊕m
i=1 ϕ

∗
σ−1(i) // P (n)

σ(|T1|,...,|Tm|)∗ // P (n)

The top left square commutes by induction, the top right commutes by the
coherence of a symmetric monoidal category, and the bottom two squares com-
mute by the equivariance axioms for an operad. Furthermore, the composition
of the horizontal maps at the bottom of the diagram is exactly ϕ∗.

6 Braided operads

For n ≥ 0, let Bn denote the braid group on n strings. Let qn : Bn → Σn
denote the natural projection, or just q if there is no possibility of confusion.
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By considering objects of E with right actions of the braid groups, we can define
the category of braided collections, CollB(E), in the same way we defined the
category of symmetric collections. Furthermore, one can define braided operads:

Definition 8. [5, Definition 3.1] A braided operad in a symmetric monoidal
category E is a braided collection, P = (P (n))n≥0, together with a unit map,
e : I → P (1), and for each collection of nonnegative numbers n, k1, . . . , kn, a
composition map

γ : P (n)⊗ P (k1)⊗ · · · ⊗ P (kn) → P (k1 + · · ·+ kn),

making certain associativity, unit, and equivariance diagrams commute. The
associativity and unit diagrams are identical to those of a symmetric operad,
while the equivariance requirement is as follows. For each collection of braids
β ∈ Bn, αi ∈ Bki for 1 ≤ i ≤ n, let β (k1, . . . , kn) denote the braid in Bk1+···+kn
which braids the blocks of k1, k2, ... , and kn strings as β braids n strings, and
let α1 ⊕ · · ·⊕αn denote the braid in Bk1+···+kn which braids the first k1 strings
as α1 does it, the next k2 in the way α2 does it, etc. Then the following two
diagrams commute:

P (n)⊗
n⊗
i=1

P (ki)
β∗⊗q(β)−1

//

γ

��

P (n)⊗
n⊗
i=1

P (kq(β)(i))

γ

��
P (k1 + · · ·+ kn)

β(kq(β)(1),...,kq(β)(n))
∗

// P (kq(β)(1) + · · ·+ kq(β)(n))

and

P (n)⊗
n⊗
i=1

P (ki)

id⊗
n⊗

i=1
αi

//

γ

��

P (n)⊗
n⊗
i=1

P (ki)

γ

��
P (k1 + · · ·+ kn)

(α1⊕···⊕αn)
∗
// P (k1 + · · ·+ kn).

Morphisms of braided operads are defined analagously to morphisms of sym-
metric operads, and so braided operads in E make up a category, OperB(E).
Braided operads occurs in places where it is not only relevant that something
moved to a place, but also the path it took to get there. For an example of
a braided operad, see section 3 of [5]. We will not investigate whether or not
it is possible to transfer the model structure of some monoidal model category
to its category of braided operads, but if one were to do so, and attempt it
in the manner one does it for symmetric operads, a crucial step would be the
construction of a free functor CollB(E) → OperB(E). One might hope that one
could simply take the construction we have performed in section 5, and replace
all permutations with braids, so to speak.
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In the process of investigating adjunctions Coll(E) ⇄ Oper(E) and CollB(E) ⇄
OperB(E), it may be of interest to ask whether or not there exist adjunctions
CollB(E) ⇄ Coll(E) and OperB(E) ⇄ Oper(E), induced by the quotient maps
qn : Bn → Σn. There is, and the forgetful functors are easy to give: any
symmetric collection or operad can be considered to be a braided one by com-
posing the symmetric group actions with the quotient maps, letting the action
of β ∈ Bn be that of qn(β). Functoriality is immediate since nothing is changed
in the morphisms themselves, and the commutativity of any axiom-diagram is
immediately inherited from the corresponding symmetric one. It is also quite
easy to define the free functors; they are, roughly, defined by modding out by the
kernel of qn in each degree. It is, however, necessary to do some work in showing
that this is well defined, and that the symmetric axiom-diagrams commute.

We begin with the case of the collections. This follow from a more general
result, which we state here.

Lemma 5. Let G be some group, H some normal subgroup, and C some category
with colimits of the shape Hop → C. Then there is a functor F : CG → CG/H
which is left adjoint to the forgetful functor U : CG/H → CG.

Proof. We start by showing that F is well defined on objects. Let c be some
object of CG. Let [g] be some element of G/H, and define the action of it, [g]∗,
to be the map induced by

c
g∗−→ c

proj.−−−→ c/H.

To show that this is well defined, we must show that for each h ∈ H, the
following diagram commutes:

c

h∗

��

proj .◦g∗

))
c/H

c proj .◦g∗
55 .

Since H is normal, we can pick h′ ∈ H such that hg = gh′. Expand the above
diagram to the following one

c

h∗

��

g∗ // c

h′∗

��

proj.

))
c/H

c
g∗ // c proj.

55
,

which clearly commutes. We now show that the action is independent of our
choice of representative: let g′ ∈ [g] be some other representative, then there
exists some h ∈ H such that g′ = gh, and so we get the commutative diagram

c

g∗

��

g′∗ // c

proj .

��
c

proj .//

h∗
==

c/H,
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which proves it. For some [g], [g′] ∈ G/H, the fact that [g]∗[g′]∗ = ([g′][g])∗ is
easily shown to be the case, proving that F is well defined on objects. In a
similar fashion, one sees that F is well defined on morphisms.

To show that there is an adjunction, let X be some object of EG and Y some
object of EG/H , and define the isomorphism EG/H(F(X), Y ) → EG(X,U(Y ))
by sending f/H : X/H → Y to f : X → Y , and define the isomorphism in the
other direction to send f to f/H. These are obviously inverse, so we need only
show that they are well defined and natural. That the first is well defined is
clear, as it is simply pre-composition with the projection X → X/H. That the
second is well defined is clear since the diagram

X
f //

h∗

��

Y

h∗=q(h)∗=idY
��

X
f // Y

commutes, where h ∈ H. That the isomorphism EG/H(F(X), Y ) → EG(X,U(Y ))
is natural can be seen by chasing elements around, and this also proves the nat-
urality of the inverse isomorphism.

Proposition 1. There is an adjunction F : CollB(E) ⇄ Coll(E) : U , where F
is the left adjoint, defined by quotienting out by ker(qn) in degree n, and U is
the the right adjoint, defined to be the obvious forgetful functor.

Proof. For each n ≥ 0, use Lemma 5 with C = E , G = Bn, and H = ker(qn)
to get an adjunction EBn ⇄ EΣn . An adjunction in each degree yields an
adjunction on the product, so we have an adjunction CollB(E) ⇄ Coll(E).

Proposition 2. There is an adjunction F : OperB(E) ⇄ Oper(E) : U , where
F is the left adjoint, defined by quotienting out by ker(qn) in degree n, and U is
the right adjoint, defined to be the obvious forgetful functor.

Proof. That the forgetful functor is well defined is clear. The free functor clearly
maps to collections and maps of collections, and so we need to define the op-
erad structure and show that all necessary axioms are satisfied, before showing
that the two functors are adjoint. Let P = (P (n))n≥0 be some braided operad.

Then, define the operad unit of F(P ) to be I
e−→ P (1) = P (1)/Σ1, and de-

fine the operad composition as follows. Given n, k1, . . . , kn, define an action of
ker(qn)× ker(qk1)× · · · × ker(qkn) on P (k1 + · · ·+ kn) by sending (s, s1, . . . , sn)
to (s(k1, . . . , kn) ◦ s1 ⊕ · · · ⊕ sn)

∗. Then the (braid) operad composition in P
induces a map

P (n)/ ker(qn)⊗
n⊗
i=1

P (ki)/ ker(qki) → P (k1 + · · ·+ kn)/ ker(qn)×
n∏
i=1

ker(qki),
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since the necessary diagram

P (n)⊗
n⊗
i=1

P (ki)
γ //

s∗⊗
n⊗

i=1
s∗i

��

P (k1 + · · ·+ kn)

(s(k1,...,kn)◦s1⊕···⊕sn)∗

��
P (n)⊗

n⊗
i=1

P (ki)
γ // P (k1 + · · ·+ kn)

can be reduced to the two equivariance diagrams (note that we don’t get any
shuffling around since s is in the kernel). The composition is defined to be this
map, followed by the map

P (k1 + · · ·+ kn)/ ker(qn)×
n∏
i=1

ker(qki) → P (k1 + · · ·+ kn)/ ker(qk1+···+kn),

which is the projection map, where we consider ker(qn) × ker(qk1) × · · · ×
ker(qkn) to be a subgroup of ker(qk1+···+kn) by the assignment (s, s1, . . . , sn) 7→
s(k1, . . . , kn) ◦ s1 ⊕ · · · ⊕ sn.

The unit condition is obviously satisfied, while the associativity condition
can be checked by checking it on each component of the colimit. That the
isomorphisms of hom sets are well defined and natural is easy to check.
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