
University of Bergen
Department of Informatics

Line Harp: Importance-Driven

Sonification for Dense Line Charts

Author: Egil Bru

Supervisors: Stefan Bruckner

May, 2023

Abstract

Accessibility in visualization is an important yet challenging topic. Sonification, in par-

ticular, is a valuable yet underutilized technique that can enhance accessibility for people

with vision deficiencies. However, auditory information is presented sequentially, and for

this reason, interactivity is key in making full use of its potential. In this thesis, we

present a novel approach to visualization accessibility that utilizes a sonified interactive

lens and selections in the context of dense line charts. This approach takes advantage

of the inherent directions of lines for sonification and dynamically scales amplitude for

improved density perception. Combined, this produces a visualization that not only uses

sonification as an additional information channel but also as a complementary element.

Finally, we discuss the potential of our contribution based on a set of case studies.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Stefan Bruckner, for his

unwavering guidance and support throughout this thesis. I am also deeply thankful to

Thomas Trautner for his assistance with the thesis and implementation, as well as for

his creative ideas. I would also like to thank friends and family for their unwavering

encouragement and support during this academic journey. Lastly, I want to give special

thanks to my significant other for her unwavering support and helping me overcome the

challenges faced during this thesis.

Egil Bru

Wednesday 31st May, 2023

Contents

1 Introduction 1

1.1 Contribution . 2

2 Related Work 3

2.1 Accessibility . 3

2.2 Sonification . 5

2.2.1 Auditory Icons . 6

2.2.2 Parameter Mapping Methods . 7

2.2.3 Model-Based Approach . 8

2.3 Interactive Lenses . 9

2.4 Shock Wave Approaches . 10

3 Methodology 12

3.1 Background . 12

3.2 Line Harp . 14

3.3 Sonification . 15

3.3.1 Frequency . 15

3.3.2 Amplitude . 19

3.4 Interactive Tools . 23

3.4.1 Interactive Sonic Lens . 24

3.4.2 Auditory Selections . 25

3.5 Auditory-Visual Interactions . 26

4 Implementation 28

4.1 Chosen Technologies . 29

4.2 Visuals . 29

4.2.1 Overview . 29

4.2.2 Tessellation Stage . 30

4.2.3 Selections . 32

i

4.2.4 Auditory-Visual Interactions . 33

4.3 Sonification . 34

4.3.1 Producing Notes . 35

4.3.2 Reading Notes . 36

4.3.3 Pluck Sound Synthesis . 37

4.3.4 Consuming Notes . 38

5 Results 39

5.1 Performance . 40

5.2 Audio Performance . 41

5.3 Audio Visualizations . 42

5.4 Usage Examples . 44

5.4.1 Clusters . 44

5.4.2 Lens Functionality . 46

5.4.3 Outliers and Selections . 47

5.4.4 Real-World Datasets . 50

6 Discussion and Limitations 52

7 Conclusion and Future Work 54

Bibliography 56

ii

Chapter 1

Introduction

Data visualization, the art of transforming complex data into visually intuitive represen-

tations, has emerged as a powerful tool for facilitating data exploration and comprehen-

sion. Visualizations primarily target the visual channel of the user, as it is the highest

bandwidth information channel in the human perceptual system. However, despite visual

displays becoming the standard in data analysis, there is a significant population that

faces challenges in fully accessing and interpreting visual information.

Visual displays inadvertently exclude individuals with visual impairments or those

who struggle with visual processing. By incorporating audio into data visualization, ac-

cessibility can be greatly improved, ensuring that everyone can access and comprehend

data-driven insights. Audio cues, descriptions, and interactive auditory elements provide

an alternative channel for perceiving and understanding data, offering a complementary

approach. Humans are equipped with a powerful listening system which is often under-

utilized in data visualizations. The act of identifying sound sources, spoken words, and

melodies, even under noisy conditions, is a supreme pattern recognition task often over-

looked in data visualizations. The fact that it appears to work so effortlessly is perhaps

the main reason that we are not aware of the incredible performance of auditory systems,

and perhaps why it is often overlooked.

In general, extensive research has been conducted on accessibility within data vi-

sualizations [48, 50]. Several distinct approaches exist for different purposes, such as

physicalization [45] and haptification [60]. However, one prominent yet underutilized

tool for improving accessibility in data visualization is sonification [42]. Sonification of-

fers the potential to enhance visualization accessibility by providing an additional channel

1

to encode important information. Nevertheless, due to the limited degree of parallelism

in auditory information, effectively conveying complex information in a responsive and

efficient manner can be challenging.

1.1 Contribution

This thesis proposes a novel interactive approach for sonifying dense line charts. Our ap-

proach incorporates a frequency audio mapping that leverages the inherent directionality

of lines to improve angle perception and enhance navigation. Additionally, we propose

the use of dynamically scaled amplitude to improve the audible perception of density in

clustered lines. By mimicking the responsiveness of real-life stringed instruments, our

goal is to enhance the user experience for those with visual impairments. The main

contributions of our work can be summarized as follows:

• We introduce a direction-based frequency mapping to improve angle perception and

graph navigation.

• We present dynamically scaled amplitude, which adjusts the audio based on data

density, improving the perception of density and clusters.

• We include various interactive tools to reduce overall complexity: a lens that el-

evates overlapping clusters and reduces the required sonification, and a selection

tool for focusing on outliers or gaining more details.

2

Chapter 2

Related Work

In this chapters we outline related work conducted on accessible visualizations design.

Our attention is directed towards sonification approaches that leverage auditory cues for

the purpose of visual data analysis. Moreover, we will explore interactive lenses both in

terms of visuals and audio.

2.1 Accessibility

Data visualization is the process of using visual elements such as charts, graphs, and maps

to represent and communicate data. The goal of data visualization is to enable people to

easily interpret and understand patterns, trends, and insights from data, which can help

inform decision-making, support analysis, and improve communication. However, visual-

izations are visual in nature, which can create barriers for users with visual impairments

or other disabilities. To ensure that all users can access and understand data visual-

izations, it is important to design visualizations with accessibility in mind [48]. While

there are several guidelines and best practices for designing accessible visualizations [50],

some users may still face barriers due to their individual needs and abilities. There ex-

ist many different limiting factors that can influence the accessibility of visualizations

(e.g., motor, visual, cognitive impairment), however in this thesis we primarily focus on

visual impairments. There is in fact a significant population of individuals who experi-

ence visual impairments, which encompass a wide range of conditions. According to the

World Health Organization (WHO) [59], there are at least 1 billion people worldwide who

suffer from visual disabilities, encompassing a spectrum from moderate to severe visual

impairments or blindness.

3

Color blindness is one of the most common visual impairments, and as such it has

received significant attention and development within the field of data visualization. Color

blind friendly palettes have been a standard in many visualization programs [72] and

libraries [53] for many years. In contrast, visual impairments such as reduced vision or

even full blindness have been relatively under developed. The term visual impairment

refers to reduced visual acuity of the visual field, ranging from blindness to low vision [50].

There are various vision symptoms, such as blurred vision, loss of central or peripheral

vision, and extreme light sensitivity [59]. Figure 2.1 simulates some examples of seeing a

data visualization with vision disabilities.

Figure 2.1: (A) Clouded and spotted vision as caused by Diabetic Retinopathy, (B) loss of
peripheral vision as caused by Glaucoma, (C) loss of central vision as caused by Macular
Degeneration and (D) blurry vision as caused by Cataracts. Figure from Kim et al. [50].

Physical representations, also known as physicalizations, offer tangible and spatial

ways to explore, navigate, and interact with data. They have the potential to make data

analysis more accessible for visually impaired individuals [45]. Traditional approaches

have employed raised paper to convey charts and maps [28, 22], resulting in mostly static

physicalizations. However, more dynamic physicalization methods have been explored,

such as using 3D printers to create raised lines quickly [73], shape-changing interfaces

[66], and robotics [51]. Nonetheless, these approaches often require specific devices and

vary in their application across different scenarios.

In contrast, haptification focuses on incorporating haptic feedback and touch-based

sensations into virtual models. Similarly, this technique can be employed to present in-

formation to blind or visually impaired users. Haptic data visualizations utilize abstract

models that encode numerical values or abstract concepts rather than a physical environ-

ment [60]. Haptification has been explored in various applications, including line graphs

[86], maps [47], and bar charts [85], with recent emphasis on its integration with virtual

reality [68]. Optimal utilization of haptification often necessitates specific devices such as

4

gloves or exoskeletons to produce force feedback. Conversely, sonification only requires

an audio output device and can offer greater dynamism compared to haptification and

physicalization.

2.2 Sonification

Sonification is a technique for representing data using sound, which can be particularly

useful for users with visual impairments or for those who may benefit from a multimodal

approach to data analysis. The Sonification Handbook [42] provides a comprehensive

overview of the state of the art in sonification, including theory, practice, and applications

contributed from several researchers in the field.

The interdisciplinary nature of sonification, as depicted in Figure 2.2, means that it

is easy to become disoriented and overwhelmed when confronted with its many different

facets, ranging from computer science to psychology, from sound design to data min-

ing. For clarification sonification is a component of the Auditory Display domain, which

encompasses all aspects of a human-machine interaction system, including the setup,

speakers or headphones, modes of interaction with the display system, and any techni-

cal solution for the gathering, processing, and computing necessary to obtain sound in

response to the data [41]. Specifically, sonification involves the technique of rendering

sound in response to data and interactions.

Generally sonification has numerous real-life applications beyond that of data visual-

ization like air traffic control [19] and medical monitoring equipment [69]. Furthermore,

sonification has been extensively researched for real-time monitoring applications, includ-

ing monitoring EEG signals [40] and the stock market [44]. However, these approaches

are time-dependent and solely provide audio feedback for monitoring or altering purposes.

These methods are often referred to as audification, which is defined as the direct trans-

lation of a data waveform into sound [41]. In contrast, sonifications often utilize abstract

data-audio mappings.

5

Figure 2.2: The interdisciplinary circle of sonification and auditory displays: the outer
perimeter depicts the transformations of information during the use cycle, the inner circle
lists associated scientific disciplines. Figure from Hermann et al. [41].

2.2.1 Auditory Icons

Auditory icons attempt to mimic everyday non-speech sounds that we might be familiar

with from our everyday experience of the real world [56]. These are commonly associated

with desktop interfaces, such as deleting a document being represented with the sound

of crumbling paper. For instance SonicFinder [33] was incorporated with the Apple

operating system’s file management application using auditory icons. The strength of the

SonicFinder was that it reinforced the desktop user interface metaphor, which enhanced

the illusion that the components of the system were tangible objects that could be directly

manipulated [41]. An evaluation of auditory icons was carried out to see whether they are

an effective means of communicating information in sound and found that musical notes

were more effective than simple tones [8]. In our approach, we build on this concept by

representing our lines as musical strings, providing an abstract representation that further

reinforces the audio-visual experience. However, it is important to note that auditory

icons often serve specific purposes and may not always function effectively with complex

data visualizations. Therefore, careful consideration is necessary when incorporating

them into intricate visual representations.

6

2.2.2 Parameter Mapping Methods

Parameter mapping methods is widely used and is perhaps the most established technique

for sonifying data. This technique involves mapping data to sound elements such as pitch,

amplitude and timbre. The sound can either be used as an addition to the visualization

or as a complement to it. In this section, we will review previous work and evaluations

on parameter mapping methods for data exploration.

Substantial research have been conducted on evaluation of good or bad mappings [31].

Further research has been conducted to evaluate which types of data and polarities are

more naturally mapped to particular sound attributes [79, 80]. The studies found that an

increase in the sound dimension (rising frequency), should represent a natural increase in

the data dimension, (rising temperature). Additionally, it was suggested that non-visually

impaired participants preferred different polarities than visually impaired participants.

Both studies were evaluated based on magnitude estimation tasks. However, parameter

mapping has also been shown to be useful for interpreting line graphs.

Figure 2.3: Depiction of a common approach to parameter mapping sonifications. As the
y-value increases the pitch of the musical note gets higher. Figure derived from Brown
et al. [12].

Research has previously demonstrated that participants can effectively interpret line

graphs through only sonification, by mapping each data point to a musical note (fre-

quency) and moving along the x-axis (time) [32] (see Figure 2.3). Participants were

tasked with redrawing single line graphs based on a audio playback of the inherent data.

Expanding on this one study found that participants were able to successfully redraw

multiple lines and find intersections while listening to two separate lines in each ear [11].

Furthermore, even higher-dimensional audio environments have been proposed for visual-

izing even more lines [12]. However, the effectiveness of this approach is severely limited

by the density of the data. As the number of lines being sonified increases, audio noise

also increases, which can make it difficult for users to distinguish individual data points.

7

Moreover, parameter mapping lacks the interactive capabilities that are typically asso-

ciated with modern visualization models. Common concepts such as pause, play, back,

and forward may aid in the navigation of the parameter based graphs [10], but they do

not fully address the limitations of the audio environment for complex visualizations.

2.2.3 Model-Based Approach

To address the aforementioned issues associated with parameter mapping approaches,

researchers have proposed a model-based sonification approach [82]. This method differs

from parameter mapping, as it involves transforming the data set into a dynamic model

that can be interactively explored by the user, rather than directly sonifying the data.

The concept of model-based sonification was first introduced by Hermann and Ritter [37].

There are various variations of this method with different interaction techniques, as its

application can be highly specific to the task and problem at hand [41]. The underlying

principle of model-based sonification stems from the observation that most of our daily

interactions are accompanied by an acoustic response, suggesting that sonification can

also benefit from this concept.

Figure 2.4: Demonstration of two model-based approaches. From Bovermann et al. [7],
(A) depicts a tangible line that can be oriented, enabling the intersection of the line with
data points. From Herman and Ritter [37], (B) shows a shock wave gradually expanding
to sonify data points intersecting with the wave. Figures from Hermann [38].

Building upon interactive concepts from parameter mappings, Bovermann et al. [7]

propose an interactive tool that allows for altering the sequence in which sonified data

is presented. Their approach involves using a tangible plane that can be oriented and

positioned through touch or sliders, facilitating the intersection between the plane and

8

data points. The intersection excites the data objects, enabling interactive auditory

brushing. Figure 2.4 provides a visual depiction of this approach, showcasing the use of

a line to intersect data points.

Another approach suggests utilizing the principle curve technique to compute a

smooth path through the data set [39]. Users can then navigate this path sequentially,

receiving audio feedback along the way. Both techniques heavily rely on the density and

distribution of the data. Many previous model-based sonification approaches employ new

and complex interaction methods, making them challenging to learn and use, often spe-

cific to particular domains. In our approach, we aim to address this by focusing on simple

interactive methods that most analysts are familiar with. Additionally, we incorporate

established interactive tools such as lens and selection to reduce the complexity of the

user experience.

2.3 Interactive Lenses

In visualization, interactive lenses are an well-established class of visualization methods

that facilitate multi-faceted data exploration [4]. With interactive lenses, the visualization

can temporarily be altered to show more details or different arrangements [75]. In the

data visualization field there exists many different types of lenses that achieve varying

results depending methods. In this section we will mainly cover visual lenses that use

distortion techniques.

Lenses can distort edges in graphs to reduce edge congestion. The approach by Wong

et al. [84] uses a lens that bends edges based on a bubble or splines. The key attributes

that their approach does is that it maintains the original layout and reveals hidden infor-

mation underneath the graph structure. Likewise, a lens can distort 3-dimensional data,

whereby the distortion clears a visual path to the focus. The approach by Carpendale

et al. [21] works by distorting data points that are obscures in a 3-dimensional model or

dataset and is further demonstrated in Figure 2.5. Their lens utilize the notion of a lens

depth that can be toggled for specific data points in focus. Our approach aims to combine

already established visualization techniques for lenses with the addition of sonification.

9

Figure 2.5: 3-dimensional distortion technique presented by Carpendale et al. [21]. Shows
ordinal lattice with and without distortions and a 2D cross-section of a view aligned
distortion.

2.4 Shock Wave Approaches

Radial sonification have already been attempted in the context of model-based sonifica-

tion. Herman and Ritter [37] proposed using a shock wave, as depicted in Figure 2.4,

that gradually enlarges to sonify data points that intersect with the wave. This technique

was later expanded upon with multi-touch interactions [77]. While this approach was not

originally intended for lenses, it can be effectively applied in this context. As shown by

Enge et al. [29], where a shock wave was used within the lens to sonify intersecting data

points in focus (see Figure 2.6). While the shock wave approach can be effective for cer-

10

tain types of visualizations, such as scatter plots, it is less suitable for line charts. This

is because the shock wave approach does not effectively convey relationship information.

Figure 2.6: Demonstration of SoniScope from Enge at al. [29]. Users specify an area in
the scatterplot that will be sonified and a mouse click triggers the sound generation.

11

Chapter 3

Methodology

Line Harp introduces a novel approach to enhance accessibility in the visualization of

dense line charts by utilizing sonification. The objective of Line Harp is to improve

the accessibility of dense line chart visualizations through the application of sonifica-

tion. However, sonifying complex visualizations can be challenging due to the limited

bandwidth of the auditory channel. To address this challenge, we also present additional

interactive tools aimed at reducing complexity and improving the experience.

In this chapter, we first provide the background for our method, focusing on the

visual approach, which is based on Line Weaver as presented by Trautner and Bruckner

[76]. Subsequently, we introduce our sonification approach, highlighting its necessity,

functionality, and how it works conceptually. Finally, we present our supplementary

interactive tools, including a lens and selection mechanisms.

3.1 Background

We base our approach on the importance-driven visualization technique for dense line

charts presented by Trautner and Bruckner [76]. This method uses the notion of an

importance function associated with each line, which allows them to interweave individual

lines such that the most important lines segments occlude those with lower importance.

Following Trautner and Bruckner [76], we regard line data as set D = {L1, L2, ..., Ln}
of N polylines with its members Li = (P1, P2, ..., Pm) represented as tuples of M ordered

two-dimensional points Pi = (xi, yi). The resulting parametric curve li(u) of each member

12

is a polyline generated by linear interpolation between its associated points. Furthermore,

we use their notion of an importance function βi(u) ∈ [0, 1] which associates a scalar

importance value with every position along the curve. In practice, there are many different

ways to define importance, such as using underlying data, results of a features detection

algorithm, or fundamental properties of the lines. In their paper, for instance, Trautner

and Bruckner [76] present an algorithm that generates importance values based on a

heuristic optimization of screen space utilization for multiple sets of lines within the

same chart.

Line Weaver addresses the problem that the rendering order can substantially affect

the resulting visualization, when the number of lines in a chart increases. While normally

transparent lines can be useful, the current approaches of ignoring or naively using the

blending order can lead to misleading visuals. To overcome this issues they proposed a

technique utilizing the aforementioned importance function that correctly considers the

blending order without any prior sorting of the data. This is further demonstrated in

Figure 3.1. The effectiveness of their approach was demonstrated through experiments on

both synthetic and real-world data sets, where traditional or naive approaches would fail.

Overall, their approach is an effective way to visualize dens line charts, and we therefore

explore the use of interactive sonification to make it more accessible and potentially

further improve the utility.

Figure 3.1: Line weaver was inspired by techniques from textile production where multiple
threads are interwoven to form fabrics. If the blending order is (a) ignored or naively
used, essential visual information is lost, even if (b) outlines and halos are added or
(c) clusters are colored. If, however, the ordering of clusters is (d) optimized, both (e)
outlines and halos as well as (f) colors can help perceiving clusters [76].

To enhance accessibility for Line Weaver and line charts in general, our investigation

focuses on various techniques for incorporating sonification. These chosen techniques are

guided by specific objectives identified as crucial for enhancing accessibility, both in a

general sense for line charts and specifically for Line Weaver. Our objectives are also

derived in the understanding that our approach should be applicable to both visual and

auditory experiences. The following objectives summarize our aims:

13

Meaningful audio interactions: The Audible response produced by interaction should

feels natural and important.

Audible density: The visual density should correspond to the audible density, while

maintaining dynamism to capture information about outliers and individual lines.

Angle perception: The trends and characteristics of clusters and individual lines should

be conveyed solely through audio frequency.

Audio navigation: The frequency mapping should improve graph navigation for users

with visual impairments.

Reducing audio information with a lens: The lens should serve as a tool to minimize

the amount of sonification, thereby reducing the required user bandwidth.

Overplotting reducing lens: The lens should be employed to address overplotting

issues in dense line charts, both in terms of visual distortions and the audio channel.

Audio filtering with selection: Simple selection tools should be available for further

filtering the sonification of single lines or clusters. These filtering capabilities should be

applicable to both visual and audio representations.

3.2 Line Harp

While prior research has primarily explored static parameter mapping for sonification

of line charts [11, 32], we argue that an interactive approach is better suited for the

characteristics of dense line charts. As audio allows for limited parallelism, a static

playback of dense data would either need to be excessively lengthy or too fast for proper

perception, or require considerable abstraction. Considering the prevalence of acoustic

responses in our daily interactions, it is reasonable to expect that data visualization can

benefit from incorporating audio.

In real-world scenarios, audio feedback is influenced by various factors, such as mate-

rial properties and interaction types. For example, hitting a table or throwing a rock pro-

duces distinct acoustic signatures that are distinguishable. Audio perception is typically

an automatic and effortless process, with the transformation from audio to ”meaning”

occurring within a fraction of a second [57]. Our interaction approach is based on line-

mouse intersections, which is a natural extension of how humans interact with stringed

14

instruments like the harp. However, since we are not constrained by real-world physics,

we can generate audio based on any desired measure or magnitude.

In our approach, moving the mouse cursor ”plucks” the intersected lines, resembling

the action of playing an instrument such as a harp. This reduces overall complexity, as

most individuals have had some experience with stringed instruments. However, playing

musical instruments can often be challenging, and similarly, sonification has been found

to require more training than regular visualizations for complex data [71, 81]. To address

this, we incorporate additional interactive tools based on established techniques, such as

lenses and selections, to reduce complexity.

The frequency of sound generated by plucking a string in a real-world musical in-

strument is influenced by various factors, such as the material properties of the string

and the tension it is under. For the purpose of sonification, we use frequency to encode

the directionality of the corresponding line segment. In line charts, with their common

left-to-right reading order, this is relevant in the identification of salient features such

as trends (e.g., an upwards or downwards development in a time series). Amplitude is

similarly an expressive audio channel and is naturally mapped to an increase in magni-

tude. Our amplitude is mapped to the notion of importance, which is further described

in Section 3.1.

3.3 Sonification

In this section, we will introduce our sonification approach, encompassing a directional

frequency mapping and dynamic amplitude based on importance. We will provide a

comprehensive explanation of the purpose and necessity of our sonification approach, as

well as outline how it works conceptually.

3.3.1 Frequency

In music, the frequency of a sound refers to the property that most determines its pitch

[62] and is perhaps the auditory dimension most frequently used to represent data. The

major advantage of using frequency is that it can easily be mapped to changes in data.

However, previous work suggests that individual differences in musical ability impact the

effectiveness of perceiving frequency changes [57]. We utilize the inherent directions of

15

line segments for mapping frequencies. In contrast our frequency mapping can instead

be used for identification of salient features such as trends. Additionally, it serves a tool

for navigating the visualization especially for users with visual impairments.

In order to understand the concept of frequency, it is important to differentiate be-

tween the musical term ”pitch” and the scientific term ”frequency”. While they both

describe the same underlying phenomenon, they are not synonymous. Pitch is a rela-

tive measure commonly used in music and relies on consensus among musicians, whereas

frequency is an objective, absolute measurement [54].

When a musical note is played, it produces a composite audio wave composed of mul-

tiple sinusoidal waves with different frequencies [54]. These individual sinusoidal waves

are known as partials or overtones. Each partial corresponds to a specific frequency and

contributes to the overall timbre or tone quality of the audio. Among these partials, the

lowest frequency is called the fundamental frequency. It directly relates to the perceived

pitch of the note. The concept of the fundamental frequency and partials/harmonics is

illustrated in 3.2, where a composite audio wave is depicted as the combination of three

sinusoidal waves with distinct frequencies. The combination of multiple frequencies is

what gives a sound its characteristic quality[58].

Figure 3.2: Demonstration of how a composite audio wave consists of partial tones (har-
monics) and how the fundamental frequency (pitch) is the lowest frequency. Figure from
University of North Carolina [58].

16

Due to the aforementioned perceptual characteristics of our ears, directly mapping

numerical frequency values to angles does not yield a meaningful auditory experience. n

contrast, mapping angles to discrete music notes more closely resembles how instruments

produce sound and more importantly how humans perceive frequency. Therefore, we

employ Scientific Pitch Notation (SPN) [43] for frequency mappings, which combines a

musical note name and an octave number (e.g., B4, A
#
2 , and A4).

Each musical note corresponds to a specific frequency that is mathematically related to

each other and is defined in relation to a central note, A4, which is set at 440 Hz [43]. The

SPN spans a range from 8.1 Hz to 31 KHz, but through experimentation, we determined

that limiting the scale to a range of 110 Hz to 880 Hz (A2 to A5) produced the most

pleasing auditory results. Furthermore, this range is commonly associated with stringed

instruments and provides sufficient variation for our purposes. Figure 3.3 illustrates the

musical pitch scale, where the highlighted red points indicates our frequency range.

cents
1200 2400 3600 4800

frequency

55Hz

110Hz

165Hz

220Hz

275Hz

330Hz

385Hz

440Hz

495Hz

550Hz

605Hz

660Hz

715Hz

770Hz

825Hz

880Hz

0

A1

A2

A3

A4

A5

Figure 3.3: The frequencies and value in cents tuned to central pitch A4. Twelve-tone
equal temperament divides each octave into 12 semitones of 100 cents each, where the 6
distinct semitones are visualized as grey data point (Bn → Gn). Figure derived from [25]
.

17

In the context of sonification, selecting the appropriate polarities for mapping audio

parameters is essential. Polarities, in this context, refer to the directionality of a data

attribute. For instance, ”positive polarity” maps lower values in a channel to lower data

values and higher values in a channel to higher data values; ”negative polarity” maps the

opposite [83]. For sonification establishing a logical relationship between changes in audio

and corresponding changes in the data is crucial [57]. Previous studies have indicated that

an increase in the sound dimension (e.g., rising frequency) should correspond to a natural

increase in the data dimension (e.g., temperature) [79, 80]. Following this principle,

our approach adopts a positive polarity mapping, where an increase in angle ideally

corresponds to an increase in frequency. As a result, in our sonification , frequencies are

positively correlated with angles.

For the directional mapping of frequencies, as mentioned earlier, we utilize the direc-

tion of a line segment to control the generated frequency. In practice, frequencies are

mapped to degrees ranging from 0 to 180. Given the typical left-to-right reading order of

line charts, straight upward lines are mapped to the highest frequencies, while straight

downward lines are mapped to the lowest frequencies. Mapping angles exceeding 180 is

redundant since the angle information is preserved, and the frequencies instead adopt a

negative polarity mapping. Figure 3.4 depicts a polar chart, where frequency is mapped

to angles from 0 to 180.

A2

A4

A5

A3

60°

220 Hz

440 Hz

880 Hz

120°

300°

240°

180°

0°

110 Hz

Figure 3.4: Polar chart demonstrating our directional frequency mapping. Each circle
indicates a step in octave and is colored based on Figure 3.3.

18

3.3.2 Amplitude

Loudness is a perceptual dimension that correlates with the amplitude of an acoustic

signal. The use of loudness change in sonification, although not as common as the use of

frequency change, is nonetheless ubiquitous [57]. However, similar to frequency, loudness

can pose challenges in discriminating between different intensities and lacks the resolu-

tion required to represent precise magnitudes. Additionally, the perception of loudness

is influenced by other audio dimensions, such as frequency and timbre, leading to incon-

sistencies. To address these issues, we propose a mapping of loudness to a measure that

does not necessitate exact estimations, such as the importance of individual lines.

Another crucial consideration in visually dense line charts, particularly parallel co-

ordinates [36], is overplotting. Overplotting refer to the situation, where multiple data

points or lines overlap or cluster closely together, making it difficult to distinguish indi-

vidual elements and extract meaningful information from the chart. This issue is also

applicable to our sonification approach and the sonification of dense line charts in general.

From an audio perspective, overplotting occurs when too many lines are sonified, leading

to a noisy and loud output. To address this, we propose utilizing the importance value,

as outlined in section 3.1, to regulate the loudness of the note. In other words, lines

that are visually occluded due to their lower importance will also be deprioritized in the

sonification process, mitigating the issue of overplotting in the auditory representation.

Loudness or amplitude is typically quantified using decibels (dB), a logarithmic unit

that represents the relative intensity or power of a sound wave. The relationship between

decibel and amplitude is logarithmic rather than linear. This is because the human

perception of sound intensity follows a logarithmic response [20]. Recognizing this char-

acteristic, we have determined that an exponential mapping of importance to amplitude

is more appropriate than a linear mapping. By utilizing an exponential map to scale

the amplitudes, the non-linear nature of perceived loudness can be accurately captured,

aligning with human perception.

In most cases, auditory feedback is presented sequentially, which essentially requires

the user to wait for the next note. However, this approach is not ideal as it contradicts

the swift response time of visual interactions, which typically require a response within

50-100ms [74], equivalent to playing notes at a tempo of 1200-600 beats per minute (bpm).

A study on auditory inspection time, where participants where tasked with discern-

ing the difference between a high tone and a low tone, found that 95% of participants

19

responded correct when the frequency changed every 100-200 ms[46]. However, since

the study solely focused on the ability of participants to distinguish between two easily

discernible frequencies, its findings may have limited applicability to our specific context.

Nevertheless, the results suggest that slower changes in frequencies may not always be

optimal for perception.

As mentioned in Section 3.3.1, a composite audio wave is composed of multiple sinu-

soidal waves with distinct frequencies. This principle also applies to the accumulation

of different sounding notes [49]. An analogy can be drawn to a guitar, where playing

musical chords involves plucking multiple notes simultaneously. For example, when the

notes C, E, and G are played together, a C major chord is produced. In practice, this

entails adding the sinusoidal components of all currently active notes, with ”active notes”

referring to objects that are currently vibrating and producing sound. Objects capable

of producing sound, such as guitar strings, exhibit a more complex spectrum compared

to pure sine waves. This complexity contributes to a more pleasing and perceptually dis-

tinguishable sound [65]. In our approach, we utilize synthesized instrument to generate

sound, incorporating the previously mentioned principles.

Figure 3.5: The Attack and Decay (AD) envelope commonly used in producing plucked
string sound. Attack represents the initial build-up of sound, while decay characterizes
the gradual decrease in amplitude over time.

In the realm of music and sound, the envelope refers to the dynamic changes a sound

undergoes over time, and different instruments may exhibit distinct envelopes (see Figure

20

3.5). For instance, when a piano key is struck and held, it produces an immediate initial

sound that gradually diminishes in volume until it reaches silence.

To convey the acoustic impression of our lines, we have opted to utilize the sound of

a plucked string instrument. Previous studies have employed various strategies, such as

using different instruments to represent different lines [11] or assigning different instru-

ments to separate clusters [67]. In contrast, our approach involves employing a single

instrument that remains consistent throughout, with only the frequency and amplitude

varying. This choice is based on the fact that not all instruments are capable of produc-

ing all frequencies, and even if they are, the resulting sound may differ depending on the

frequency [9]. Moreover, the plucked string instrument possesses a distinct pitch and a

decay that aligns well with our objectives.

In the context of a plucked string instrument, the decay refers to the duration it

takes for the amplitude of a sound to decrease from its peak to zero. For these types

of instruments, an AD (Attack, Decay) envelope is commonly used, with the attack

representing the time it takes for the sound to reach its peak loudness after the key is

pressed. In our case, we aim to achieve a near-immediate initial sound (Attack) followed

by a relatively quick initial decay that gradually fades away to silence. This envelope is

visually represented in Figure 3.5.

In order to achieve rapid response times, our approach does not involve waiting for the

next note, but instead focuses on accumulating the amplitudes of all notes simultaneously.

However, it is crucial to consider that when accumulating the amplitudes of numerous

notes, there is a potential risk of audio clipping or excessive loudness, as demonstrated

in the lower audio visualization in Figure 3.6.

To address this issue, we incorporate a dynamically scaled amplitude and decay.

Specifically, the amplitude is adjusted based on the total cumulative loudness of all active

notes, ensuring that it remains within an acceptable range. Additionally, the decay is

proportionally reduced based on the number of active notes being played. By dynamically

scaling the amplitude and decay, we maintain a balanced and pleasant auditory expe-

rience while mitigating the risk of audio clipping and maintaining clarity in the sound

output. The result of this approach is depicted in the upper audio visualization in Figure

3.6.

21

With dynamic amplitude

Without dynamic amplitude
-1

-1

0

1

1

0

Figure 3.6: Audio visualization of the sound generated by a predefined mouse paths, with
both visualizations indicating the amplitude of the audio. The top row represents the
audio with dynamic amplitude scaling applied, while the bottom row shows the audio
without any scaling.

Considering that each note has a unique amplitude, which is exponentially mapped

to its importance, the sound produced by a note n is defined as:

noten(t) = a · pluck(t) (3.1)

Here, pluck(t) ∈ [−1.0, 1.0] represents the unique wave equation (e.g., sin(t)), a is the

amplitude for a specific noten(t), and t represents time. The amplitude a is defined within

the range [0.0, 1.0] and is derived from the importance of the line.

The total cumulative amplitude can be described as the sum of the absolute values of

all active notes:

c =
∑
n

|noten(t)| (3.2)

The final audio output produced by a set of active notesN = {note1(t), note2(t), ..., noten(t)}
is defined as:

out(t) =
∑
n

noten(t) ·
m

c
(3.3)

where c represents the cumulative amplitude defined in Equation 3.2, and m ∈ [0.0, 1.0]

refers to the maximum volume or loudness. In implementation it is recommended for m

to be less than 1.0 to avoid clipping. In practice, this approach ensures that when playing

loud (important) lines rapidly, they do not become excessively loud, while playing less

important lines still results in a relatively loud sound. This maintains a balanced audio

output that accurately reflects the relative importance and density of the data.

22

On the other hand, the dynamic decay ensures that transitions between different loud-

ness and frequency levels occur more quickly when multiple notes are played, making the

output more responsive to interactive changes. Each amplitude a is reduced proportion-

ally to the number of active notes in N . In practice, this means that as more notes are

played, the decay happens more rapidly. Consequently, the audio feedback generated by

the system emphasizes the first note slightly louder and extends the duration of the last

note slightly longer [9]. This concept is further illustrated in Figure 3.7.

Amplitude

Figure 3.7: Audio feedback produced from evenly spaced lines played in succession, illus-
trating the accentuation of the initial note and the slight extension of the last note.

3.4 Interactive Tools

By default, our system ”plucks” all line segments intersecting the current location when-

ever the mouse cursor moves, generating notes according to the importance values at the

point of intersection. However, we also offer additional interactive tools that allow for

more user control and interactivity. In this section, we will explore these tools and discuss

how our auditory and visual components interact with each other. We will also examine

the conceptual foundations of each tool and its benefits.

23

To begin, we must consider the need for additional interactive tools. Interaction has

been viewed as an essential aspect of data visualization, both for managing increasingly

large data sets [27] and for enhancing human-driven exploration [26]. These ideas also ex-

tend to sonified data visualization, particularly with model-based sonification approaches,

as detailed in Section 2.2.2. However, sonified data visualization can be complex and of-

ten requires training for optimal results. Our interactive tools provide additional means

of interacting with the data visualization, beyond mouse-line interactions, that reduce

the overall complexity.

Our approach includes two distinct interactive tools that are controlled by different key

bindings: an interactive lens and line selection capabilities. Although other techniques

may be suitable for our data types, we found that they were most effective for our

objectives. The interactive lens enables users to zoom in on specific regions of interest,

while the line selection feature allows users to select individual line segments for further

analysis. These tools are useful for our sonified data visualization system as they provide

an additional layer of control and interactivity for users.

3.4.1 Interactive Sonic Lens

In many cases sonification can be overwhelming for various reasons, such as lack of

training or prior music knowledge. This is especially the case for dense line charts where

a lot of different sounds are produced. We therefore propose a lens that can potentially

reduce this complexity by limiting the number of sonified lines. For dense line charts and

specifically parallel coordinates, overplotting is also a potential issue [36]. We address

this issue with the use of spatial distortion based on the importance of lines. It also is

useful for investigating regions where multiple clusters intersect. We therefore offer the

capability of allowing users to reveal lines with lower importance.

The lens can be toggled on/off and is placed at the mouse position. Additionally, the

user can adjust the radius and modify the importance threshold. Visually, we employ

a variation of the distortion lens approach by Carpendale et al. [21] to displace lines

(see Figure 3.8) with importance values above a certain threshold, while sonically, this

amounts to only playing notes for lines below the threshold. Furthermore, we also provide

a lens playback feature, which quickly sonifies every line in the lens in importance order.

This provides a quick and easy way to gain an overview of all lines within the lens radius.

Both the lens and the lens playback is further demonstrate in Figure 5.5.

24

Figure 3.8: Showcase of visual displacement, where (A) is without displacement, and B)
is with full displacement.

3.4.2 Auditory Selections

When it comes to Shneiderman’s information-seeking mantra [70], the lens provides the

zoom and filter, while the selection offers the details-on-demand part. In dense datasets,

visualizing every detail can be impractical. Therefore, our auditory selection method of-

fers a way to sonify data based on the users requests. While selecting individual lines may

be appropriate for providing details on specific data points, a similarity based selection

approach is better suited for dense line charts, particularly parallel coordinates [36].

Our selection approach is based on similarity measures, more specifically, line similar-

ity, which is a real-valued function that measures the similarity between two lines. There

exist several line similarity measures with varying purposes and performance [61], and in

our approach, we include several types outlined by Writz and Paulus [61]. We also incor-

porate a single line selection approach, which is useful for providing details for individual

lines. We enable line selection through mouse click, and selected lines are highlighted in a

different color as seen by the red lines in Figure 3.9. For all types of similarity measures,

a range can be selected that determines how similar a line must be to the original to be

considered selected and highlighted. The intensity of redness indicate their similarity.

The sonification can be toggled to a ”similar mode,” which utilizes similarity as the

amplitude, instead of the original importance. This means that the actual selection

can be further analyzed without other non-similar lines interfering. This same concept

25

Figure 3.9: Various selection methods with different selected lines. We see in the bottom
row how the visualization changes when the similarly decided which lines are rendered
on top of each other. In A) and C) the non-selected lines remain constant, however in B)
the non-selected lines are deprioritized.

also applies to all the lens functions which depend on importance. The visuals depend

on importance to determine which lines are rendered on top of each other. With the

selections this can be changed to instead depend on the line similarly measure, which

means that the most similar lines are rendered on top of the other lines. This concept is

further demonstrated in the bottom row of Figure 3.9, where the selected lines, highlighted

in red, are rendered on top of the other lines. Ultimately, this results in a dynamic

selection method that supports cluster selection and provides details-on-demand.

3.5 Auditory-Visual Interactions

While human perception of audio is quite robust, we often associate audio with some form

of visual stimulus. Auditory-visual interactions refer to how audio and visuals interact

and how we perceive them together. Therefore, it is crucial for sonification to match

26

or provide some visual indication of the sound produced. The ”McGurk Effect” is a

phenomenon that occurs when visual and auditory speech tokens are mismatched but

presented simultaneously [55]. This effect can ”trick” the brain into hearing a different

sound depending on the visuals presented (see [3] for a video demonstration). As such,

it has been found to be advantageous for sonification to be accompanied by appropriate

visuals [57]. To tackle this issue, we visually indicate the lines played using a vibration

effect to reinforce the musical instrument analogy. The played lines can optionally be

highlighted using color.

Figure 3.10: Possible processing route whereby activation from auditory (e.g., string
sound) or visual (e.g., visual vibrations) stimuli could strengthening the salience of the
visual object.

In fact, most of our sonifications are accompanied by some visual animations to vary-

ing degrees. The primary animation being the vibration effect when plucking strings,

which is essentially a direct mapping of the sound to the line ”vibration.” This ensures

that the user is aware of which lines they have actually played and which lines are cur-

rently contributing to the soundscape. Furthermore, in cases where the vibration effect

might be obscured, the user has the option to highlight the lines that produce sound.

27

Chapter 4

Implementation

We developed our Line Harp approach using OpenGL [35], while the sonification was

implemented with Gamma [64]. In this chapter, we will elaborate on the implementation

process and demonstrate how we utilized the OpenGL and Gamma Application Program-

ming Interfaces (API). Firstly, we will provide an overview of the project, building upon

the source code from Line Weaver [76]. Secondly, we will delve into the additional visual

implementations that were incorporated. Finally, we will elaborate on the integration of

sonification with the visuals.

We built our application on top of the existing source code from Line Weaver [76].

This allowed us to focus on the implementation of the audio without needing to recreate

the entire visualization from scratch. However, we also needed to make additional visual

changes to support our sonification objectives. While we will briefly introduce the original

Line Weaver source code in the following sections, our primary focus will be on the new

audio/visual implementations.

Line Weaver [76] source code is available at:

https://github.com/TTrautner/LineWeaver

Our source code is available at:

https://github.com/Egglis/LineHarp

28

https://github.com/TTrautner/LineWeaver
https://github.com/Egglis/LineHarp

4.1 Chosen Technologies

Our application was implemented using C++ and OpenGL [35]. The Graphical User

Interface (GUI) was implemented using ImGui [23]. The sonification was implemented

with the use of the Gamma library, which is a generic synthesis library for C++ [64]. We

chose this library as it provides some flexibility for audio while also being a high-level

library. Gamma is oriented towards real-time sound and graphics applications, which is

important for producing responsive interactive audio. The Gamma library also provides

a set of tools and functions for working with digital audio signals, including filters, oscil-

lators, envelopes, and more. However, we decided to utilize the already provided Pluck

class, which provides a synthesised plucked string sound based on frequency. This meant

that we did not have to implmented our own synthesised string. However, the Pluck

class was encapsulated within a Note class, which provided us with control over the key

parameters of amplitude and frequency.

4.2 Visuals

In this section, we will delve into the details of our visual implementations. To enable

line displacements, we integrated a tessellation stage into the rendering pipeline (see

Figure 4.1). This addition facilitates the necessary deformations and enhances the visual

quality of the lines. Next, we will discuss the visual implementation of our interactive

tools. Furthermore, we will explore the implementation of auditory-visual interactions,

as conceptually outlined in Section 3.5.

4.2.1 Overview

In our implementation loading as well as pre-processing the data are performed on the

Central processing unit (CPU) while the rendering itself runs in parallel on the Graphics

Processing Unit (GPU). Selection of detests to be visualized as well as additional user-

dependent parameters, such as line color or width, can be adjusted with the GUI.

Line rasterization: The input of our rendering pipeline is three buffers containing

the x and y coordinates, and corresponding importance. Ordering of lines within the

buffer is unnecessary as they are sorted in the blending phase [76]. In the fragment shader,

29

we utilized a Signed Distance Function (SDF) in order to determine the fragments covered

by the line segment and evaluate their colors. The result, together with its importance

value, is then added to a per-pixel linked list. We used an image object to store the index

of the last list entry for each pixel, as well as a Shader Storage Buffer Object (SSBO) to

store the fragment data. The fragment data includes line directions and identification in

order to facilitate our directional frequency mapping and enable line mouse interactions.

Fragment blending: We used a screen-filling quad to traverse the linked list for

each pixel, performing blending based on their importance-driven blending [76]. We also

implemented halos, if enabled, based on the method of Luft et al [52].

Figure 4.1: Simplification of the rendering pipeline.

4.2.2 Tessellation Stage

To achieve the desired bending or distortion effect for line displacements, we introduced

an additional tessellation stage in the shading pipeline. This implementation effectively

supports the required line deformations. Traditionally, a line spanning two data points

is represented by two triangles forming a triangle strip. However, in our approach, we

needed the lines to be bendable as well. To accomplish this, we employed linear interpo-

lation to interpolate additional vertices, allowing for bendable lines.

While this interpolation could be performed as a pre-processing step on the CPU,

OpenGL offers a tessellation shader that can handle this task efficiently. The tessellation

shader also has the advantages of requiring fewer executions of the vertex shader and

generally less CPU draw calls. Additionally, performing the computation for per-vertex

lens displacements within the shader pipeline offered the flexibility to dynamically adjust

the number of vertices representing a single line segment. This dynamic adjustment

enabled us to finely control the level of detail and smoothness of the line deformations.

The tessellation shader is an optional stage in the OpenGL rendering pipeline where

patches of vertex data are subdivided into smaller primitives [34]. This stage consists of

30

two components: the Tessellation Control Shader (TCS), which determines the number of

subdivisions, and the Tessellation Evaluation Shader (TES), which computes new vertex

values and performs vertex displacement.

For our implementation, we utilized the OpenGL primitive type isolines to generate

Nsubdivisions for each line segment. The TES provides a interpolation value t = [0, 1],

which allowed us to use the GLSL function mix(a, b, t) for linear interpolation between

vertex values a and b. This interpolation was essential for achieving the bending effect

of the lines. The level of detail (LOD) or the number of subdivisions N was computed

based on whether any vertex contributing to a line fell within the lens circle. This

calculation determined the appropriate LOD for each line segment, ensuring that the line

deformations were accurately represented.

To render thick continuous lines, we utilize triangle strips that maintain connectivity

even for bent lines and acute angles. The generation of triangle strips are preformed in the

TES stage since the necessary neighborhood information was only available at this stage

of the rendering pipeline. Within each iteration of the TES, we perform interpolation

for both the previous and next vertices, which is essential for constructing a miter joint.

A miter joint is formed by cutting each of the two parts to be joined across the main

surface, and it can comprise any angle greater than 0 degrees. This technique enables us

to create smooth and visually pleasing transitions at the corners of the lines. Figure 4.2

provides a visual demonstration of how the miter joints are constructed.

Figure 4.2: Demonstration of how previous and next vertex information is used to con-
struct a miter joint.

The final stage of the tessellation process involves implementing lens distortion as a

per-vertex displacement operation. This displacement is calculated by considering the

relative positions of each vertex and the lens. By implementing this in the tessellation

stage, we can accurately adjust the LOD of the lines based on the magnitude of the

31

displacement. This ensures that the visual representation of the lines is appropriately

adjusted to reflect the lens distortion effect.

The displacement vector is computed as a product of a direction vector d⃗ and a weight

scalar w. The direction vector is determined by the relative positions of the vertex and

the lens. The weight scalar w is defined as:

w = 1− smoothstep(0, r, d) (4.1)

Where r is the radius of the lens and d is the distance between the lens and vertex posi-

tion and is used to determine the magnitude of the displacement vector. The smoothstep

function, which is a Hermite interpolation function available in OpenGL Shading Lan-

guage (GLSL) [34], provides a smooth transition between 0 and 1 based on the relative

distance between the lens and the vertex positions. This approach is effective in avoiding

visual artifacts that can arise from sudden changes in displacement magnitude, while

simultaneously adhering to the physical constraints of the lens geometry. Furthermore,

the use of the smoothstep function in the weight formula ensures that the displacement

operation is computationally efficient and suitable for real-time graphics applications.

4.2.3 Selections

The selection of lines is achieved by utilizing a framebuffer-sized texture image that

contains line identification. However, a detailed explanation of this process is provided in

Section 4.3.1. Therefore, the focus of this subsection is on the implementation how our

similarity functions.

We incorporate several types of similarity measures as outlined by Writz and Paulus

[61]. With the exception of importance and single selection, we calculate similarity ma-

trices that contains the similarity between all combinations of line pairs. This is demon-

strated in Figure 4.3, where a corresponding similarity matrix is visualized. The computa-

tion of the similarity matrix is performed as a pre-processing step during dataset loading

due to its computational complexity. To optimize loading time, we have implemented

caching of similarity matrices to improve efficiency.

32

1

0

2

3

4

5

6

7 98 10 11 12 13

Figure 4.3: A grid dataset and a visualization of its similarity matrix. The matrix
visualization is of the Hausdorff [5] similarity measure.

4.2.4 Auditory-Visual Interactions

In our approach, we have incorporated auditory-visual interactions to emulate the phys-

ical vibrations of stringed musical instruments. Further details on this can be found in

Section 3.5. Simulating the physics and movement of a plucked string is a computation-

ally demanding task. To address this, we implemented optimization techniques that aim

to mimic the real-world auditory-visual interactions.

For animations or movements with a fixed start and end, we employed an elastic easing

function, which provides a smooth and natural transition between the two states. This

ensures that the visual representation of the string’s movement closely aligns with the

expected auditory response. Additionally, for string vibrations resulting from plucking

with the mouse, we applied a ”vibration” effect that displaces each line segment in the

direction of its normal. This effect creates a visually dynamic representation of the

string’s oscillation, as depicted in Figure 4.4. These optimization techniques enable us to

approximate the complex auditory-visual interactions, without the computational impact.

33

Figure 4.4: Easing functions used for animations and how we implemented the direct
mapping of amplitude to ”vibration”.

4.3 Sonification

As previously mentioned, the audio was implemented with Gamma and requires a sep-

arate thread from the visual per their specification [64]. Since our audio is dependent

on visual interaction it meant that the main visual thread needed to communicate with

the audio thread. This presents the possibility of major synchronization issues and pos-

sible corrupted audio. To prevent synchronization issues and enable dynamic amplitude

control, we employed a buffer with a producer-consumer semantics (see Figure 4.5). The

buffer ensures that data is available when required, allowing the visual and auditory

threads to operate independently without interference or data loss. It also simplifies the

accumulation of all active notes, which is crucial for our dynamic amplitude. The general

functions of the buffer can be summarized as follows:

1. A interaction that requires a audible feedback adds a note to the buffer.

2. The audio thread reads the buffer and accumulates the final audio output.

3. The audio thread removes notes from the buffer that are no longer active.

34

Figure 4.5: Note buffer operations. The main visual thread produces notes through user-
generated interactions, while the audio thread both reads the buffer and consumes the
notes.

4.3.1 Producing Notes

In the blending phase, outlined in section 4.2.1, we assign a unique identifier to each

line. This information is written to a framebuffer-sized texture image that additionally

contains x and y directions for the particular line segment. We furthermore utilize a

mechanism to read from that texture at a particular pixel, that in OpenGL is performed

using glReadPixel. With this implementation we can perform mouse lines intersection

by reading the pixel at the mouse position and adding the corresponding note to the note

buffer. glReadPixel requires the CPU to wait until the GPU has finished all rending

before it can receive any results [34]. However, since we only need to read a single pixel

we reduce this performance impact.

Another way in which our sonification system operates is through the use of a note

queue system, which differs from the single-note approach outlined earlier. This approach

is necessary for the sonification of the lens, as it requires information about each line

within the lens to be processed simultaneously. To accomplish this, we implemented an

additional SSBO that contains information about each line in the lens. This ”lens buffer”

is then accessed from the CPU via the OpenGL function glGetBufferSubData [34]. Each

note in the buffer is pushed into a first-in-first-out (FIFO) queue, which is popped at

intervals of n seconds. and added to the note buffer. The delay n can be adjusted in

the GUI, but by default, it is set to 0.025 seconds. To facilitate synchronization between

visuals and audio, the adding of new notes is handled by the main thread, rather than the

audio thread. While reading an SSBO can be expensive in terms of performance, its use

is limited to key presses, and therefore has negligible impact on the overall performance

of the program. Both approaches for handling the audio interactions is demonstrated in

Figure 4.6.

35

Figure 4.6: Overview of the audio pipeline

4.3.2 Reading Notes

Commonly audio programming involves buffering, which is a separate concept from our

note buffer, and acts as a temporary storage area for incoming or outgoing audio samples.

This buffering is entirely handled by the Gamma library [64], however the specification

for the buffer is adjustable. In audio programming, buffers are commonly utilized to

process audio in fixed-size chunks or frames, where each frame contains a predetermined

number of audio samples. The crucial factors to consider in this context are the buffer

size and sample rate.

The buffer size refers to the quantity of audio samples contained within a single buffer,

determining the volume of audio data processed or played back at any given time. A larger

buffer size enables the processing or playback of a greater number of audio samples in

each iteration, reducing the risk of audio glitches or dropouts. However, it is important to

note that larger buffer sizes also introduce increased latency between audio input/output

and processing. In our implementation, we have opted for a buffer size of 128 samples

and a sample rate of 44.1 kHz, a widely adopted standard for audio CDs. This choice

ensures a relatively low audio latency without excessively burdening the computational

load on the system.

During each iteration of the buffer, the audio thread reads from the note buffer and

accumulates the final sound wave. The resulting sound wave is then scaled according

to our dynamic amplitude, as defined by Equation 3.3. The final audio wave is repre-

sented a floating-point value ranging from −1.0 to 1.0, which is subsequently processed

by the Gamma library to generate waveform data that is ultimately passed to the sound

hardware.

36

4.3.3 Pluck Sound Synthesis

The synthesis of the sound wave is performed by the Pluck class from the Gamma library,

while the management of loudness is handled separately in our custom Note class. The

composite sound wave comprises the combined contributions of both the Pluck class and

our Note class. By integrating various elements such as noise generation, decay envelope,

filtering, and comb filtering, the Pluck class offers a convenient and efficient solution for

synthesizing plucked string sounds [64]. Our plucked sound synthesis algorithm can be

described as follows:

1. Initially, a noise generator represented by noise() produces a random white

noise signal that emulates the plucking action. This noise signal serves as the

initial excitation for the plucked string sound.

2. The noise signal is then scaled based on the decay envelope , represented by

decay(), which is a function that returns a floating-point value representing the

amplitude at the current time. The expression noise() * decay() combines the

generated noise signal with the amplitude envelope defined by the decay function.

This multiplication scales the noise signal according to the envelope, effectively

applying the desired shape to the noise signal. The shape of the decay envelope is

further illustrated in Figure 3.5.

3. The resulting signal obtained by multiplying the noise and decay functions is passed

through a filter. In our case, a Biquad low-pass filter is employed [63], which at-

tenuates higher frequencies while allowing lower frequencies to pass through. The

output of the filtering operation, filter(noise() * decay()), represents the fil-

tered signal that has been shaped by the low-pass filter.

4. The filtered signal is then fed into a comb filter. The comb filter simulates the

resonant properties of a vibrating string, emphasizing or dampening certain fre-

quencies to generate the characteristic resonances and harmonics associated with

plucked string instruments. The comb filter frequency and decay properties are set

during its initialization [63].

The final plucked sound synthesis algorithm can thus be expressed as:

comb(filter(noise() * decay()))

37

This formulation represents the unique wave function for a note, referred to as pluck()

in Equation 3.1. The sound synthesis algorithm is conceptually depicted in Figure 4.7,

where a initial noise signal is decayed and filtered to produce a plucked string sound with

a frequency of 440 Hz.

Noise() Noise() * Decay() Comb(Filter(Noise() * Decay()))

Decay Filtering

Figure 4.7: Demonstration of how the plucked sound synthesis algorithm transforms a
noise signal into a music note with a frequency of 440 Hz

4.3.4 Consuming Notes

In the case of real-world instruments that vibrate, they eventually lose all energy and

cease producing sound. This is simulated with the decay envelope, as illustrated in Figure

4.7, where the amplitude is gradually reduced. However, according to the specifications

of the Decay in Gamma [63], the decay does not actually reach zero but is considered

”complete” when the amplitude falls below 0.001. The decay of the Pluck class is static,

meaning that once it is initialized, it maintains a consistent reduction of amplitude over

time.

In our implementation, we have introduced an additional element called dynamic de-

cay, which adjusts the decay based on the current soundscape. In practice, the amplitude

of a note is reduced at each time step, depending on the magnitude of the notes present

in the note buffer. We implemented this as an extra reduction in amplitude for each

iteration of the audio thread. Consequently, when the note buffer is read, any notes with

an amplitude less than 0 are identified for removal. These marked notes are then safely

removed from the note buffer after it has been read.

38

Chapter 5

Results

In this chapter we will present our results. First we will present the performance of our

application both visually and audibly. Finally, we will demonstrate the strengths and

versatility of Line Harp based on usage examples.

Figure 5.1: Screenshot of the GUI, settings correspond to those used when measuring
FPS in Table 5.1.

39

5.1 Performance

Considering that our application is dependent user interactions, it is important the the

application runs with interactive frame rates which we consider to be at least 20 Frames

per Second (FPS). The visualization can depict different amounts of lines and vertices.

The FPS is also heavily dependent on the type of interactions and we therefore measure

both a static FPS and a interactive FPS. The interactive FPS is measured based on a

pre determined movement, while the static FPS is measured without any user inputs. All

interactive FPS measures are performed on equal settings, since displacement magnitude,

line width and lens radius impact the overall performance. The tests was run on computer

connected to a screen with resolution 1920x1080. The computer was running Windows 10

as operating system, with an Intel(R) Core(TM) i5-12600K CPU and a NVIDIA GeForce

GTX 1070 graphics card. The results for this setup were as follows:

Dataset - Figure Lines Static FPS Interactive FPS

4C.6-150N - 5.4 350 107.5108.9106.2 96.4100.890.0

1C.4-out - 5.6 49 411.2432.0385.2 394.8415.1375.3

3C.6-out - 5.7 144 144.7147.1140.6 132.6139.7126.2

AndrewsPlot - 3.1 1000 19.422.216.3 13.317.410.3

IrisData - 5.8 150 180.9183.8179.3 172.4179.9160.5

PlainWeave - 4.3 14 665.4772.6610.4 640.5731.2574.0

Table 5.1: Summary table of performance for varying datasets, including figure numbers,
the number of lines in the dataset, and the average FPS (avgmax

min) for static and interactive
measurements.

The performance measurements presented in Table 5.1 indicate that, in most scenar-

ios, the implementation achieves interactive frame rates. However, when the number of

lines becomes excessive, the performance starts to impact the user experience. For larger

datasets, simple adjustments can be made to achieve better frame rates. For example by

adjusting the line width, which is set to a default value of 16.0, interactive frame rates

can be achieved even for larger datasets. However, it should be noted that this comes at

the cost of reduced readability of individual lines.

40

5.2 Audio Performance

Another important aspect for our implementation is the audio performance. There are

numerous different aspects that can impact the audio performance, for example audio

quality, latency, dynamic-range and noise. Audio performance can also be affected by

several factors that do not depend on our implementation, such as the acoustic environ-

ment of the user, the quality of audio equipment, and the auditory perception capabilities

of users. Therefore, we will only focus on audio performance measures that falls within

the scope of our implementation.

Audio latency commonly refers to the delay or lag between the generation of an au-

dio signal and its playback. In our case, we define audio latency as the measured time

between an interaction and the corresponding audio output. This approach allows us to

specifically isolate and assess the latency within our implementation, thereby bypassing

the latency introduced by the input device and the audio device. Lower latency is highly

desirable, particularly in real-time applications, as it ensures that audio events are per-

ceived without noticeable delays. Additionally, minimizing audio latency is crucial for

maintaining synchronization between our visual elements and their accompanying audio

feedback.

In our application, we measure audio latency across the entire interaction-audio

pipeline, which considers the combined processing time of both the interaction pipeline,

specifically the glReadPixel operation, and the audio processing. Most of our auditory

actions are controlled by the visual main thread, making them dependent on the frame

rate (FPS). However, audio processing, which involves note accumulation, dynamic am-

plitude scaling, and the removal of finished notes, relies entirely on the performance of the

audio thread. Utilizing our hardware, we observed an average audio processing speed of

under 2 ms across all densities and playback speeds. The audio processing time is solely

determined by the number of notes in the note buffer and, due to our dynamic decay,

it consistently remains relatively short. These results indicate that, in the majority of

cases, audio processing time will have a negligible impact on the overall audio latency.

On the other hand, we measured the total audio latency using our hardware and found

an average latency of 9.1 ms, with a maximum of 19 ms for mouse line interactions. This

result highlights that the interaction pipeline is the primary contributor to audio latency.

Nonetheless, the audio latency for mouse line interactions still remains relatively low.

As detailed in section 4.3, we also employed a alternative implementation for providing

41

audio feedback for the lens. This audio latency was measured from key press to audio

output, yielding an average latency of 10.0 ms, with a maximum of 18 ms using our

hardware. These findings suggest that the audio interactions in our application meet

the timing requirements for real-time visual interactions of 50-100 ms, as established

by Tominski et al. [74]. Overall, our measurements indicate that the audio latency in

our implementation falls within acceptable limits, providing users with a responsive and

immersive audio-visual experience.

5.3 Audio Visualizations

To visualize the audio generated by our method, we utilized the recording software Au-

dacity [1]. Our audio visualizations encompass both amplitude (waveform) and frequency

visualizations (spectrogram). The amplitude is plotted along the y-axis, while the x-axis

represents time. The amplitude is represented by a numerical value ranging from −1.0 to

1.0 and centered on zero. The dark blue waveform displays the tallest peak in the area,

meanwhile the light blue part displays the average RMS (Root Mean Square) value of

the same group (see Figure 5.2). Although, Audacity support decibel (db) visualizations

the numerical approach more accurately reflects our representation of amplitude in our

implementation [2].

Highest Peak Amplitude

Amplitude

Average RMS

Figure 5.2: Demonstration of what the two shades of blue represents. The dark blue is
the peak amplitude, meanwhile the light blue is the average RMS.

42

The frequency visualization is a spectrogram that highlights the contour of the fun-

damental frequency (musical pitch) of the audio, utilizing the Enhanced Autocorrelation

(EAC) algorithm [1]. This algorithm provides a mathematical representation of pitch

changes in an audio piece and is the recommended method for visualizing note pitch.

The frequency axis in the spectrogram is displayed on a logarithmic scale, as recom-

mended by Audacity [1], aligning with the logarithmic nature of the SPN pitch scale.

The fundamental frequency, or pitch, characterizes the perceived frequency of the

sound. While the audio visualizations include frequencies above and below the pitch, it

is the pitch that defines the perceptual tone of the sound. For instance, in the audio

visualization depicted in Figure 5.3, the most intense regions indicate the pitch, while

the less intense areas represent partial tones that are whole multiples of the pitch, called

harmonics. This concept of fundamental frequency (pitch) and harmonics is further

illustrated in Figure 3.2.

Partial Tones (Harmonics)

Frequency (Hz)

Fundamental Frequency (Pitch)

Figure 5.3: Demonstration of the frequency spectogram. The most intense sections indi-
cate the pitch, meanwhile the less intense areas represents its partial tones.

Since our audio feedback is interaction-dependent, we utilized a consistent method of

recording the audio feedback. This means a fixed programmed mouse paths that also

has a fixed duration. The path is visually represented with a red line as seen on the top

in Figure 5.4. The audio produced by the mouse following this path is then visualized

in the corresponding audio visualizations. Most of the following usage example follows

this mouse-path audio visualizations format, however we also recommend watching the

supplementary videos showcasing both the audio and the visuals for the examples. The

videos can be found on the figures and as references in the bibliography.

43

5.4 Usage Examples

In this section we present several usage examples created with our implementation of

Line Harp. Each example is accompanied by audio visualizations as outlined in Section

5.3 and video demonstrations [13, 14, 17, 18, 15, 16]. The usage examples demonstrates

common data analysis tasks, lens functionality and analysis of a real-world dataset. All

of our synthetic datasets are derived from Blumenschein et al. [6], which provided a

synthetic benchmark dataset for clustering analysis. The real-world dataset is based on

the Iris dataset [30].

5.4.1 Clusters

Identifying clusters in dense line charts and parallel coordinates is a common task in data

analysis, and understanding the trends and features within these clusters is equally vital

in many cases. In this context, we argue that our sonification approach can enhance

the perception of clusters. To demonstrate this, we utilized an example dataset that

comprises four distinct clusters, each exhibiting varying features, as depicted in Figure

5.4. This synthetic dataset [6] also includes 150 random lines (depicted in dark green),

which are of lower importance compared to the clustered lines.

With our sonification approach, the speed of mouse movement plays a crucial role in

determining the level of detail conveyed through audio feedback. Faster mouse movements

result in a more generalized overview of the clusters, while slower movements provide

more detailed and nuanced audio representations. In Figure 5.4, we employed a fixed

mouse movement speed for a duration of 5 seconds, represented by the red line. This

is a relatively slow mouse movement and provides adequate details. This video [13]

demonstrates pseudo random mouse movements and how they impact the audio feedback.

In Figure 5.4 we have visualized both the amplitude and frequency of the audio

feedback produced by the highlighted red line. Each cluster is marked in the graph and

the audio visualization, additionally the duration of each cluster is further depicted in

the timeline. A video demonstration of this sonification can be seen in [14]. Observing

the audio visualization in Figure 5.4, we can discern that whenever the mouse transitions

from one cluster to another, there is a noticeable spike in amplitude, accompanied by a

corresponding change in frequency.

44

1.0

0.0

-1.0
1200

Frequency (Hz)

Amplitude

500

700

300

200

100

Figure 5.4: The audio visualization represents the sound produced by the mouse path
highlighted in red. Clusters within the dataset are numbered, colored, and marked ac-
cordingly in the audio visualization. The dataset consists of 150 randomly generated
lines, with four distinct clusters, each containing 50 lines. See Video [14].

45

5.4.2 Lens Functionality

When clusters overlap, the audio feedback generated by our sonification approach prior-

itizes the most important lines similar to the visuals. However, this is not ideal when

we want to analyze obscured clusters, as shown in Figure 5.4, where the gray cluster is

rendered on top of the yellow cluster. For the visual channel this can be solved with

the use of lenses that displace overlapping clusters [4, 21]. For our application such an

approach for the visual channel was incorporated, but the audio channel also requires a

function to filter and focus the audio feedback. Figure 5.5 shows how our lens feature

can be utilized for filtering and focusing, based on a section of a dataset that has two

overlapping clusters.

Figure 5.5: On the left two overlapping clusters are visualized, where the grey cluster
is visually displaced by the lens. Right audio visualization demonstrates our playback
feature, where all intersecting lines within the lens is sonified in order of importance.
Each line is ”plucked” with a 0.05-second delay (1200 bpm). See Video [17].

The operations for the lens are all mapped to various key bindings, while the most

frequent settings are mapped to the mouse, thus ensuring that they are easily available

at all times. This can be specifically useful for users with visual impairments as they may

have difficulties navigating the GUI. Settings that are mapped to the mouse include the

lens radius and the importance threshold. When the threshold is set to visually reveal the

yellow cluster, as shown on the left-hand side of Figure 5.5, the corresponding sonification

ignores the displaced lines.

46

Importantly when the importance threshold is manipulated a corresponding line with

equal importance and within the lens is sonified. This ensures that one can tune the im-

portance threshold based on audio as well. This functionality can further be utilized for

inspecting the lens region in more details, by gradually altering the threshold. Further-

more, using our lens playback feature, all line segments contained within the lens radius

are played back in importance order. This use useful for gaining a quick overview with-

out having to manually change the importance threshold. The resulting audio output,

visualized on the right-hand side of Figure 5.5, includes both amplitude and frequency.

We see that the audio feedback changes frequency when the iteration reaches the lower

second cluster (yellow), allowing users to distinguish between overlapping clusters and

providing an indication for their overall directionality as well as their homogeneity.

5.4.3 Outliers and Selections

Another important task for dense line graphs, and especially parallel coordinates, is

outlier detection [36]. Identifying outliers is important in data analysis because they

can have a substantial impact on statistical measures and data interpretations. With

or sonification approach detecting outliers can be troublesome, and we therefore also

demonstrate how our selection tools can be used to enhance this task. To illustrate

this, we will examine two synthetic dataset [6] containing a single artificially introduced

outliers with appropriate importance.

In Figure 5.6 the outlier is easily detectable both visually and audibly and is demon-

strated in video [18]. However, when dealing with more complex datasets, we recommend

utilizing the selection tools. To demonstrate this, we present an example involving a more

intricate dataset containing three distinct clusters that produce similar sounds when soni-

fied. This dataset is depicted in Figure 5.7, where the outlier is annotated. In this Figure

5.7 the outlier is selected and the intensity of redness indicate the similarity between the

selected line and the remaining lines. For the audio visualizations we include two am-

plitude visualizations, the first is in regular ”importance mode”, meanwhile the second

is ”similarity mode”. In similarity mode, the selected line becomes the loudest, while

other similar lines are quieter based on their level of similarity. This feature is further

demonstrated in video [15]. Both modes can easily be swapped with key presses.

47

Ou
tlie
r

Figure 5.6: Simple scenario where the outlier is easily detected both visually and audibly.
The audio is produced based on the red mouse path and has a duration of 5 seconds. See
Video [18].

48

Amplitude: Similarly mode

1.0

0.0

-1.0

Amplitude: Importance mode

1.0

0.0

-1.0

Outlier

Outlier

Figure 5.7: Comparison of amplitude output from ”importance mode” and ”similarity
mode”. The intensity of redness of lines indicate how similarly lines are. The dataset
consists of 3 clusters and 1 outlier. In the audio visualization the outlier is highlighted
by a red line. See Video [15].

49

5.4.4 Real-World Datasets

In previous sections, we demonstrated our sonification approach using synthetic datasets.

However, in this section, we present our results using a real-world dataset for a more

practical analysis. The dataset we used is derived from the Iris dataset [30], which

involves the classification of iris flowers. The goal is to analyze the various characteristics

of the dataset with the aid of our sonification technique. The Iris dataset consists of 150

lines, with each cluster or flower species containing 50 lines. Each cluster is assigned a

distinct importance value based on its clustering.

The audio visualization in Figure 5.8 represents the amplitude and frequency of a

defined mouse path, highlighted in red. By analyzing the audio visualizations, we can

identify distinct clusters and approximate their trends in specific areas of the dataset.

50

1.0

0.0

-1.0
1200 Frequency (Hz)

Amplitude

500

700

300

200

100

Figure 5.8: The audio visualization represents the sound produced by the mouse path
highlighted in red. Clusters within the dataset are numbered, colored, and marked ac-
cordingly in the audio visualization. This dataset is derived from the Iris dataset [30].
See Video [16].

51

Chapter 6

Discussion and Limitations

Based on our experiments, we believe that our approach can support the perception

of density variations, clusters and outliers in line charts. Furthermore, we believe that

the addition of a sonified lens can further improve the sonification by filtering the audio

feedback. However, to substantiate our claims, empirical evaluations and comparisons are

required. Previous research already suggests that an interactive approach to sonification

of line charts is preferable for complex data visualization over direct mappings [42]. For

instance, a study that aimed to identify high density areas in complex line charts found

that sonification can improve accuracy [67]. Their approach to audio interactions is

comparable to ours, since they used similar mouse line interactions. The study suggests

that while sonification can be effective in identifying the most densely populated areas,

it may not be as useful for other tasks.

While the main focus of our sonification approach is to enhance data visualizations,

it also can benefit the entertainment value of a data visualization. While audio is often

overlooked as a channel for displaying data, it has the capacity to transform dull and

uninspiring visualizations into captivating auditory experiences. Given that data analysts

can spend countless hours poring over dry and unengaging visualizations, incorporating

sonification techniques can help to add a new level of interest and engagement to the

task at hand. As such, exploring the use of sonification as a means of improving the

entertainment value of data visualization is a worthwhile pursuit even if it may not

always be viewed as strictly scientific or objective.

Like many sonification models based on complex data visualizations, training is often

required for optimal performance. Unlike visual charts, which most humans are taught

52

how to read from a very young age through formal education systems, auditory charts

require longer training for optimal usage. While our approach aims to provide an intuitive

sonification model, it still suffers from the fact that the audio feedback can be difficult to

interpret at times. However, studies have shown that training can improve accuracy in

point estimation tasks and may even lead to better performance than a standard visual

graph with sufficient training [71, 81]. Take, for instance, an inexperienced individual

who listens to the sound of a car engine and senses that there is an issue without being

able to pinpoint it. In contrast, a skilled car mechanic can extract highly specific details

about the exact source of the problem from that very same sound clue. How training

and experience might impact the accuracy of our model requires further evaluation, but

generally accuracy should improve over time.

In the context of point estimation-tasks, our sonification approach is limited by lack of

auditory context provided, where context refers to the purposeful addition of non-signal

information to a display [82]. In visual displays context refers to axes or tick marks which

provide some way to estimate the value at any point. For auditory graphs it is suggested

to inform users when they reach graph boundaries and use stereo panning to indication

location [12]. However, we argue that when using a touch screen, assuming the graph

uses the entire screen space, a user will be able detect boundaries and location due to

human proprioception. Proprioception is the human ability to sense self-movement, force,

and body position [78]. This has also been found to be just as effective for people with

reduced eye sight [24].

53

Chapter 7

Conclusion and Future Work

In this work, we introduced Line Harp, a new sonification approach for dense line charts

that combines interactive audio feedback with visual representations of data. We pre-

sented an importance-driven sonification method that combines a frequency-based encod-

ing of line direction with interactive lenses and provides a way to focus the audio output.

Our directional frequency mapping supports line chart angle perception while also serving

as an aid for chart navigation. Furthermore, we proposed a technique that dynamically

scales amplitudes to emphasize clustered lines and reduce the overall influence of less im-

portant lines to improve density perception. Overall, Line Harp is a promising tool that

could potentially enhance the accessibility of visualizations for individuals with visual

impairments, or provide a more immersive experience for data analysts.

In the future, there are several directions that can be explored to further expand the

scope and applicability of Line Harp. Firstly, it would be valuable to investigate the

sonification of other interactive tools beyond dense line charts. For instance, applying

a similar approach to sonification for network data [84]- While Line Harp has combined

sonification with lenses and selections, the visualization field offers numerous other excit-

ing interactive tools that could also benefit from audio integration.

By exploring the use of sonification in conjunction with different visualization tech-

niques, such as parallel coordinates and other interactive tools, we can enhance the under-

standing and analysis of complex datasets. This opens up new possibilities for audio-based

data exploration and provides a multi-modal experience for users.

To further validate and justify the effectiveness of Line Harp, future empirical evalu-

ations should ideally involve both normal users and visually impaired participants [71].

54

This approach would provide valuable insights into the overall usability and accessibility

of our sonification approach. By comparing the experiences and feedback of different user

groups, we can gain a deeper understanding of the potential benefits and limitations of

LineHarp for individuals with visual impairments, as well as its potential utility for data

analysts in general.

55

Bibliography

[1] Audacity. Spectrogram view. https://manual.audacityteam.org/man/

spectrogram view.html, 2000. Accessed: 2023-March.

[2] Audacity. Audacity waveform. https://manual.audacityteam.org/man/

audacity waveform.html, 2000. Accessed: 2023-March.

[3] BBC. Try this bizarre audio illusion! - bbc. https://www.youtube.com/watch?v=

G-lN8vWm3m0, 2011. Accessed: 2023-May.

[4] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose.

Toolglass and magic lenses: The see-through interface. In Proceedings of the ACM

SIGGRAPH, page 73–80, 1993. doi: 10.1145/166117.166126.

[5] T. Birsan and D. Tiba. One hundred years since the introduction of the set dis-

tance by dimitrie pompeiu. In F. Ceragioli, A. Dontchev, H. Futura, K. Marti, and

L. Pandolfi, editors, System Modeling and Optimization, pages 35–39, 2006.

[6] Michael Blumenschein, Xuan Zhang, David Pomerenke, Daniel A. Keim, and Jo-

hannes Fuchs. Evaluating reordering strategies for cluster identification in par-

allel coordinates. Computer Graphics Forum, 39(3):537–549, 2020. doi: https:

//doi.org/10.1111/cgf.14000.

[7] Till Bovermann, Thomas Hermann, and Helge J. Ritter. Tangible data scanning

sonification model. In Proceedings of ICAD, pages 77–82, 2006.

[8] Stephen A. Brewster, Peter C. Wright, and Alistair D. N. Edwards. An evalua-

tion of earcons for use in auditory human-computer interfaces. In Proceedings of

INTERACT and ACM CHI, page 222–227, 1993. doi: 10.1145/169059.169179.

[9] Stephen A Brewster, Peter C Wright, and Alistair DN Edwards. Experimentally

derived guidelines for the creation of earcons. In Proceedings of HCI, pages 155–159,

1995.

56

https://manual.audacityteam.org/man/spectrogram_view.html
https://manual.audacityteam.org/man/spectrogram_view.html
https://manual.audacityteam.org/man/audacity_waveform.html
https://manual.audacityteam.org/man/audacity_waveform.html
https://www.youtube.com/watch?v=G-lN8vWm3m0
https://www.youtube.com/watch?v=G-lN8vWm3m0

[10] Lorna Brown, Stephen Brewster, Rameshsharma Ramloll, Wai Yu, and Beate Riedel.

Browsing modes for exploring sonified line graphs. Proceedings of BCS-HCI, 2:6–9,

2002.

[11] Lorna M Brown and Stephen A Brewster. Drawing by ear: Interpreting sonified line

graphs. In Proceedings of ICAD, pages 152–156, 2003.

[12] Lorna M Brown, Stephen A Brewster, SA Ramloll, R Burton, and Beate Riedel.

Design guidelines for audio presentation of graphs and tables. In Proceedings of

ICAD, pages 284–287, 2003.

[13] Egil Bru. Line harp - mouse sonification. https://youtu.be/155dVn3P8XU, 2023.

Accessed: 2023-May.

[14] Egil Bru. Line harp - clustering. https://youtu.be/er8QORJrm3g, 2023. Accessed:

2023-May.

[15] Egil Bru. Line harp - outlier with selection tools. https://youtu.be/s97j8yurh8Y,

2023. Accessed: 2023-May.

[16] Egil Bru. Line harp - iris dataset. https://youtu.be/AIaN440u-aU, 2023. Accessed:

2023-May.

[17] Egil Bru. Line harp - lens playback. https://youtu.be/6 x4cghfRcQ, 2023. Ac-

cessed: 2023-May.

[18] Egil Bru. Line harp - simple outlier. https://youtu.be/vp2yT9 rocs, 2023. Ac-

cessed: 2023-May.

[19] Densil Cabrera, Sam Ferguson, and G. W. Laing. Considerations arising from the

development of auditory alerts for air traffic control consoles. In Proceedings of

ICAD, pages 242–245, 2005.

[20] Simon Carlile. Psychoacoustics. In The Sonification Handbook, chapter 3, pages

41–61. Logos Publishing House, 2011.

[21] M Sheelagh T Carpendale, D J Cowperthwaite, and F D Fracchia. Distortion viewing

techniques for 3-dimensional data. In Proceedings of IEEE InfoVis, pages 46–53,

1996. doi: 10.1109/INFVIS.1996.559215.

[22] Ben P Challis and Alistair DN Edwards. Design principles for tactile interaction. In

Proceedings of Haptic HCI, pages 17–24, 2001. doi: https://doi.org/10.1007/3-540-

44589-7 2.

57

https://youtu.be/155dVn3P8XU
https://youtu.be/er8QORJrm3g
https://youtu.be/s97j8yurh8Y
https://youtu.be/AIaN440u-aU
https://youtu.be/6_x4cghfRcQ
https://youtu.be/vp2yT9_rocs

[23] Omar Cornut. Imgui. https://github.com/ocornut/imgui, 2023. Accessed: 2020-

October.

[24] Hassan Daneshmandi, Ali Norasteh, and Hamed Zarei. Balance in the blind: A

systematic review. Physical Treatments: Specific Physical Therapy Journal, 11:1–12,

2021. doi: 10.32598/ptj.11.1.430.2.

[25] Datumizer. File:music frequency diatonic scale.svg. https://

commons.wikimedia.org/wiki/File:Music frequency diatonic scale.svg,

2008. Wikipedia, Accessed: 2023-March.

[26] Evanthia Dimara and Charles Perin. What is interaction for data visualization?

IEEE Transactions on Visualization and Computer Graphics, 26(1):119–129, 2019.

doi: 10.1109/TVCG.2019.2934283.

[27] Alan Dix and Geoffrey Ellis. Starting simple - adding value to static visualisa-

tion through simple interaction. In Proceedings of AVI, pages 124–134, 1998. doi:

10.1145/948496.948514.

[28] Polly Edman. Tactile graphics. American Foundation for the Blind, 1992.

[29] Kajetan Enge, Alexander Rind, Michael Iber, Robert Höldrich, and Wolfgang

Aigner. Towards multimodal exploratory data analysis: Soniscope as a proto-

typical implementation. In Proceedings of EuroVis, pages 67–71, 2022. doi:

10.2312/evs.20221095.

[30] R. A. FISHER. The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7(2):179–188, 1936. doi: https://doi.org/10.1111/j.1469-

1809.1936.tb02137.x.

[31] John H. Flowers. Thirteen years of reflection on auditory graphing: Promises, pit-

falls, and potential new directions. In Proceedings of ICAD, pages 406–409, 2005.

[32] John H. Flowers and Terry A. Hauer. Musical versus visual graphs: Cross-

modal equivalence in perception of time series data. Human Factors: The Jour-

nal of Human Factors and Ergonomics Society, 37(3):553–569, 1995. doi: 10.1518/

001872095779049264.

[33] William Gaver. The sonicfinder: An interface that uses auditory icons. Human-

Computer Interaction, 4:67–94, 1989. doi: 10.1207/s15327051hci0401 3.

[34] The Khronos Group. Opengl 4.5 reference pages. https://registry.khronos.org/

OpenGL-Refpages/gl4/, 2023. Accessed: 2023-April.

58

https://github.com/ocornut/imgui
https://commons.wikimedia.org/wiki/File:Music_frequency_diatonic_scale.svg
https://commons.wikimedia.org/wiki/File:Music_frequency_diatonic_scale.svg
https://registry.khronos.org/OpenGL-Refpages/gl4/
https://registry.khronos.org/OpenGL-Refpages/gl4/

[35] The Khronos Group. Opengl. https://www.opengl.org, 2023. Accessed: 2023-April.

[36] Julian Heinrich and Daniel Weiskopf. State of the art of parallel coordinates. In

Proceedings of Eurographics, pages 95–116, 2013. doi: 10.2312/conf/EG2013/stars/

095-116.

[37] T. Hermann and H. Ritter. Listen to your data: Model-based sonification for data

analysis. Advances in Intelligent Computing and Multimedia Systems, 8:189–194,

1999.

[38] Thomas Hermann. Model-based sonification. In The Sonification Handbook, chap-

ter 16, pages 399–427. Logos Publishing House, 2011.

[39] Thomas Hermann, Peter Meinicke, and Helge J. Ritter. Principal curve sonification.

In Proceedings of ICAD, pages 81–86, 2000.

[40] Thomas Hermann, Gerold Baier, Ulrich Stephani, and Helge Ritter. Vocal sonifica-

tion of pathologic eeg features. In Proceedings of ICAD, pages 158–163, 2006.

[41] Thomas Hermann, Andy Hunt, and John G. Neuhoff. Introduction. In The Sonifi-

cation Handbook, chapter 1, pages 1–6. Logos Publishing House, 2011.

[42] Thomas Hermann, Andy Hunt, and John G Neuhoff. The sonification handbook,

volume 1. Logos Verlag Berlin, 2011.

[43] ISO. Acoustics — standard tuning frequency (standard musical pitch). Technical

Report ISO 16:1975, International Organization for Standardization, 1975.

[44] Petr Janata and Edward Childs. Marketbuzz: Sonification of real-time financial

data. In Proceedings of ICAD, 2004.

[45] Yvonne Jansen, Pierre Dragicevic, Petra Isenberg, Jason Alexander, Abhijit Karnik,

Johan Kildal, Sriram Subramanian, and Kasper Hornbæk. Opportunities and chal-

lenges for data physicalization. In Proceedings of ACM CHI, pages 3227–3236, 2015.

[46] Arthur R. Jensen. Reaction time as a function of experimental conditions. In Clocking

the Mind, pages 43–54. Elsevier Science Ltd, 2006. doi: https://doi.org/10.1016/

B978-008044939-5/50004-5.

[47] Wooseob Jeong and Myke Gluck. Multimodal geographic information systems:

Adding haptic and auditory display. Journal of the American Society for Infor-

mation Science and Technology, 54(3):229–242, 2003. doi: https://doi.org/10.1002/

asi.10202.

59

https://www.opengl.org

[48] Shakila Cherise S Joyner, Amalia Riegelhuth, Kathleen Garrity, Yea-Seul Kim,

and Nam Wook Kim. Visualization accessibility in the wild: Challenges faced

by visualization designers. In Proceedings of ACM CHI, pages 1–19, 2022. doi:

10.1145/3491102.3517630.

[49] Timothy Justus and Jamshed Bharucha. Music perception and cognition. In Stevens’

Handbook of Experimental Psychology, pages 453–492. John Wiley & Sons Inc, 2002.

doi: 10.1002/0471214426.pas0111.

[50] N. W. Kim, S. C. Joyner, A. Riegelhuth, and Y. Kim. Accessible visualization:

Design space, opportunities, and challenges. Computer Graphics Forum, 40(3):173–

188, 2021. doi: https://doi.org/10.1111/cgf.14298.

[51] Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-Daniel Fekete, Pierre Drag-

icevic, and Sean Follmer. Zooids: Building blocks for swarm user interfaces. In

Proceedings UIST, page 97–109, 2016. doi: 10.1145/2984511.2984547.

[52] Thomas Luft, Carsten Colditz, and Oliver Deussen. Image enhancement by unsharp

masking the depth buffer. ACM Trans. Graph., 25(3):1206–1213, 2006. doi: 10.1145/

1141911.1142016.

[53] matplotlib. Choosing colormaps in matplotlib. https://matplotlib.org/stable/

tutorials/colors/colormaps.html#overview, 2002. Accessed: 2023-May.

[54] Electronic Musician. Understanding the difference between pitch and fre-

quency. https://www.musicradar.com/how-to/understanding-the-difference-

between-pitch-and-frequency, 2020. Accessed: 2023-May.

[55] Audrey Nath and Michael Beauchamp. A neural basis for interindividual differences

in the mcgurk effect, a multisensory speech illusion. NeuroImage, 59:781–7, 2011.

doi: 10.1016/j.neuroimage.2011.07.024.

[56] Michael Nees and Bruce Walker. Auditory Interfaces and Sonification, pages 507–

521. CRC Press, 2009. doi: 10.1201/9781420064995-c32.

[57] John G. Neuhoff. Perception, cognition and action in auditory display. In The

Sonification Handbook, chapter 4, pages 63–85. Logos Publishing House, 2011.

[58] University of North Carolina. Frequency analysis of sound waves. https://

www.webassign.net/sample/unc/lab 8/manual.html, 2011. Accessed: 2023-May.

60

https://matplotlib.org/stable/tutorials/colors/colormaps.html#overview
https://matplotlib.org/stable/tutorials/colors/colormaps.html#overview
https://www.musicradar.com/how-to/understanding-the-difference-between-pitch-and-frequency
https://www.musicradar.com/how-to/understanding-the-difference-between-pitch-and-frequency
https://www.webassign.net/sample/unc/lab_8/manual.html
https://www.webassign.net/sample/unc/lab_8/manual.html

[59] World Health Organization. Blindness and vision impairment. https:

//www.who.int/news-room/fact-sheets/detail/blindness-and-visual-

impairment, 2022. Accessed: 2023-May.

[60] Sabrina Paneels and Jonathan C. Roberts. Review of designs for haptic data vi-

sualization. IEEE Transactions on Haptics, 3(2):119–137, 2010. doi: 10.1109/

TOH.2009.44.

[61] Dietrich Paulus and Stefan Wirtz. Evaluation of established line segment distance

functions. Pattern Recognition and Image Analysis, 26:354–359, 2015. doi: https:

//doi.org/10.1134/S1054661816020267.

[62] M. Pilhofer and H. Day. Music Theory For Dummies. Wiley, 2007. ISBN

9780470167946.

[63] Lance Putnam. Gamma: C++ generic synthesis library tutorial. https://

w2.mat.ucsb.edu/gamma/dl/gammaTutorial.0.9.5.pdf, 2012. Accessed: 2023-May.

[64] Lance Putnam. Gamma. https://w2.mat.ucsb.edu/gamma/, 2023. Accessed: 2023-

January.

[65] Rameshsharma Ramloll, Stephen Anthony Brewster, Wai Yu, and Beate Riedel.

Using non-speech sounds to improve access to 2d tabular numerical information for

visually impaired users. In Proceedings of BCS HCI/IHM, pages 515–529, 2001. doi:

https://doi.org/10.1007/978-1-4471-0353-0 32.

[66] Majken K. Rasmussen, Esben W. Pedersen, Marianne G. Petersen, and Kasper

Hornbæk. Shape-changing interfaces: A review of the design space and open

research questions. In Proceedings of the SIGCHI, page 735–744, 2012. doi:

10.1145/2207676.2207781.

[67] Niklas Rönnberg and Jimmy Johansson Westberg. Interactive sonification for visual

dense data displays. In Proceedings of ISon CITEC, pages 63–67, 2016.

[68] K. Salisbury, F. Conti, and F. Barbagli. Haptic rendering: introductory con-

cepts. IEEE Computer Graphics and Applications, 24(2):24–32, 2004. doi: 10.1109/

MCG.2004.1274058.

[69] Penelope Sanderson, S Eunice, L Philippe, and W Alexandra. Auditory alarms,

medical standards, and urgency. In Proceedings of ICAD, 2006.

61

https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://w2.mat.ucsb.edu/gamma/dl/gammaTutorial.0.9.5.pdf
https://w2.mat.ucsb.edu/gamma/dl/gammaTutorial.0.9.5.pdf
https://w2.mat.ucsb.edu/gamma/

[70] B. Shneiderman. The eyes have it: a task by data type taxonomy for information

visualizations. In Proceedings of IEEE Symposium on Visual Languages, pages 336–

343, 1996. doi: 10.1109/VL.1996.545307.

[71] Daniel R. Smith and Bruce N. Walker. Effects of auditory context cues and training

on performance of a point estimation sonification task. Applied Cognitive Psychology,

19(8):1065–1087, 2005. doi: https://doi.org/10.1002/acp.1146.

[72] Tableau software. 5 tips on designing colorblind-friendly visualizations.

https://www.tableau.com/blog/examining-data-viz-rules-dont-use-red-

green-together, 2016. Accessed: 2023-April.

[73] Saiganesh Swaminathan, Thijs Roumen, Robert Kovacs, David Stangl, Stefanie

Mueller, and Patrick Baudisch. Linespace: A sensemaking platform for the blind.

In Proceedings of CHI, page 2175–2185, 2016. doi: 10.1145/2858036.2858245.

[74] Christian Tominski and Heidrun Schumann. Interactive Visual Data Analysis. AK

Peters Visualization Series. CRC Press, 2020. doi: 10.1201/9781315152707.

[75] Christian Tominski, S. Gladisch, Ulrike Kister, Raimund Dachselt, and H. Schu-

mann. Interactive lenses for visualization: An extended survey. Computer Graphics

Forum, 36(6):173–200, 2017. doi: 10.1111/cgf.12871.

[76] T. Trautner and S. Bruckner. Line weaver: Importance-driven order enhanced ren-

dering of dense line charts. Computer Graphics Forum, 40(3):399–410, 2021. doi:

https://doi.org/10.1111/cgf.14316.

[77] René Tünnermann, Kolbe, Till Lukas Bovermann, and Thomas Hermann. Surface

interactions for interactive sonification. In Proceedings of ICAD, page 166–183, 2009.

doi: https://doi.org/10.1007/978-3-642-12439-6 9.

[78] John C. Tuthill and Eiman Azim. Proprioception. Current Biology, 28(5):194–203,

2018. doi: https://doi.org/10.1016/j.cub.2018.01.064.

[79] B Walker and David Lane. Psychophysical scaling of sonification mappings: A

comparison of visually impaired and sighted listeners. In Proceedings of ICAD, pages

90–94, 2001.

[80] Bruce Walker. Magnitude estimation of conceptual data dimensions for use in

sonification. Journal of experimental psychology: Applied, 8(1):211–21, 2003. doi:

10.1037/1076-898X.8.4.211.

62

https://www.tableau.com/blog/examining-data-viz-rules-dont-use-red-green-together
https://www.tableau.com/blog/examining-data-viz-rules-dont-use-red-green-together

[81] Bruce N Walker and Michael A Nees. Brief training for performance of a point

estimation sonification task. In Proceedings of ICAD, 2005.

[82] Bruce N Walker and Michael A Nees. Theory of sonification. The sonification

handbook, 1:9–39, 2011.

[83] R. Wang, C. Jung, and Y. Kim. Seeing through sounds: Mapping auditory dimen-

sions to data and charts for people with visual impairments. Computer Graphics

Forum, 41(3):71–83, 2022. doi: https://doi.org/10.1111/cgf.14523.

[84] N. Wong, S. Carpendale, and S. Greenberg. Edgelens: an interactive method for

managing edge congestion in graphs. In Proceedings of IEEE InfoVis, pages 51–58,

2003. doi: 10.1109/INFVIS.2003.1249008.

[85] Wai Yu and S. Brewster. Comparing two haptic interfaces for multimodal

graph rendering. In Proceedings of HAPTICS, pages 3–9, 2002. doi: 10.1109/

HAPTIC.2002.998934.

[86] Wai Yu, Ramesh Ramloll, and Stephen Brewster. Haptic graphs for blind computer

users. In Haptic Human-Computer Interaction, pages 41–51, 2001. doi: https://

doi.org/10.1007/3-540-44589-7 5.

63

	Introduction
	Contribution

	Related Work
	Accessibility
	Sonification
	Auditory Icons
	Parameter Mapping Methods
	Model-Based Approach

	Interactive Lenses
	Shock Wave Approaches

	Methodology
	Background
	Line Harp
	Sonification
	 Frequency
	Amplitude

	Interactive Tools
	Interactive Sonic Lens
	Auditory Selections

	Auditory-Visual Interactions

	Implementation
	Chosen Technologies
	Visuals
	Overview
	Tessellation Stage
	Selections
	Auditory-Visual Interactions

	Sonification
	Producing Notes
	Reading Notes
	Pluck Sound Synthesis
	Consuming Notes

	Results
	Performance
	Audio Performance
	Audio Visualizations
	Usage Examples
	Clusters
	Lens Functionality
	Outliers and Selections
	Real-World Datasets

	Discussion and Limitations
	Conclusion and Future Work
	Bibliography

