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Abstract

This thesis presents the development and analysis of a mathematical model for avascular
tumor growth. The model considers the influence of externally supplied nutrients as growth-
promoting factors, growth-inhibiting factors produced by tumor cells during the cell cycle or
excreted by necrotic cells, and growth-inhibiting factors produced by the surrounding tissue as
a result of the immune system’s response to the tumor. The concentrations of these factors are
modeled using advection-diffusion partial differential equations. The mathematical model is
implemented using forward Euler, backward Euler, and Finite Element methods for discretiza-
tion. The FEniCS library has been used with respect to the Finite Element method during
the implementation. Furthermore, the implementation shows that the mathematical model
is in alignment with known tumor evolution. Examinations of various model parameters are
conducted, revealing their impact on avascular tumor growth. The examinations showed that
alterations in parameters related to nutrients and the internally produced/excreted growth-
inhibiting factors had the most significant impact on tumor development. Therefore, it is
crucial that these parameters are set to biologically accurate magnitudes to ensure that the
simulated tumor development and patterns are qualitatively correct. Additionally, the strong
dependency on these parameters suggests that drugs targeting and influencing these param-
eters have the potential to inhibit tumor growth. Additionally, it was observed that modifi-
cations of parameters related to the internally generated or the externally supplied growth-
inhibiting factors could significantly alter where quiescent regions formed, and thus result in
completely different growth patterns. Furthermore, altering the proportion constituted by the
extracellular matrix within the tumor was also observed to significantly influence tumor evo-
lution. Moreover, these findings highlight the potential benefits of developing more detailed
models that comprehensively analyze the influence of these parameters. Such models could
contribute to the development of experimental approaches and enhance our understanding of
tumor evolution.
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List of symbols

Symbol Explanation
sc Length scaling parameter (e.g., from cm to mm).
T Time scaling parameter (e.g., from minutes to seconds).
h Element size.
k Time step.
n0 Initial number of cells.
nloc Number of cells per unit volume.
rc Radius of a single cell.
uN Nutrient concentration.
uG1 G1 concentration.
uG2 G2 concentration.
uN,0 Initial nutrient concentration.
uG1,0 Initial G1 concentration.
uG2,0 Initial G2 concentration.
DN Nutrient diffusion coefficient.
DG2 G2 diffusion coefficient.
DG1 G1 diffusion coefficient.
c⃗N Nutrient velocity field.
c⃗G2 G2 velocity field.
αpro Rate of consumption of nutrients in proliferating regions.
αqui Rate of consumption of nutrients in quiescent regions.
αnec Rate of consumption of nutrients in necrotic regions.
γproqui Rate of consumption of G1 in proliferating and quiescent regions.
γnec Rate of consumption of G1 in necrotic regions.
S Production/excretion of G1.
λ Parameter scaling the production/excretion of G1.
ξproqui Rate of consumption of G2 in proliferating and quiescent regions.
ξnec Rate of consumption of G2 in necrotic regions.
κ Constant supply of nutrients at the boundary.
ψ Constant supply of G2 at the boundary.
pextrm Percentage of the tumor volume the extracellular matrix constitute.
m Mitotic function.
η Parameter determining the contribution of nutrients to growth.
ν1 Parameter determining the contribution of G1 to growth.
ν2 Parameter determining the contribution of G2 to growth.
ρ Parameter scaling the mitotic value.
θN Nutrient threshold.
θG Growth-inhibitor threshold.
Ω Domain.
Ωpro Part of the domain only consisting of proliferating cells.



Introduction

Cancer is a leading cause of death worldwide, with 19.3 million new cases and 9.9 million
deaths registered in 2020. It is estimated that by 2040, the number of new cases will increase
to approximately 28.9 million, with 16.2 million deaths [1]. Consequently, cancer research is of
great importance, as it has the potential to improve existing treatments and hopefully find a
cure. There are many types of cancer, and understanding the factors that affect their growth
and spreading is complex and comprehensive, making it challenging to gain full overview of
the disease.

How can mathematics help with understanding and treating tumors? Developing a math-
ematical model involves writing a system of equations that describes the dynamics of the
tumor and all the factors enabling and preventing its growth. By solving such a model, it is
possible to study in detail how a specific factor influences the spatial and temporal behavior
of tumor growth. In other words, mathematical models of tumor growth have the potential to
be highly useful in cancer research, providing qualitative answers that can be used as guide-
lines for new experiments, such as indicating what injection rates and injection locations to try.

There are several stages of tumor growth before a tumor becomes large enough to reduce
a patients quality of life or cause death. The two main stages are the avascular and vascular
phases [2]. An avascular tumor refers to a stage in tumor development where the tumor lacks
its own blood supply, particularly before the process of angiogenesis occurs. Angiogenesis is
the formation of new blood vessels that supply nutrients and oxygen to the growing tumor
[3]. In the early stages of tumor formation, i.e., the avascular phase, it relies on diffusion
of nutrients and oxygen from the surrounding tissues to sustain its growth [4]. On the other
hand, a vascular tumor is a tumor in which angiogenesis has occurred, meaning that the tumor
is connected to the vascular system and has its own blood supply. This allows the tumor to
metastasize, i.e., spread, to other parts of the body through the vascular system [2].

In a 1966 paper [5], Burton presented a mathematical model proposing that nutrient con-
sumption could limit tumor growth. The model had the ability to calculate the radius of the
tumor’s central zone, and the growth curve generated by the model exhibited a good fit with a
widely recognized mathematical function called the Gompertzian function [6]. Thereafter, in
1972, Greenspan [7], introduced the first tumor growth model that incorporated distinct layers
of proliferative, quiescent, and necrotic cells. The model accounted for the regulation of these
cells by mitotic inhibitors and necrotic decomposition. Additionally, the model considered
cell adhesion of living cells [6]. Subsequent models introduced various levels of complexity re-
garding cell movement. Some models assumed convective movement of cells [8, 9, 10, 11, 12],
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while others incorporated active diffusion [13, 14, 15, 16, 17] or diffusive/chemotactic behav-
ior [18, 10, 13]. Earlier models primarily considered tumor cell proliferation and death to be
influenced by a single generic nutrient. However, more recent models have taken into account
additional factors such as growth-inhibiting factors and adhesion forces that can influence cell
proliferation and death [2, 19, 20, 21, 22].

This thesis aims to present a model that describes the growth of avascular tumors. The avas-
cular stage is crucial in tumor development as it sets the foundation for subsequent stages.
Therefore, studying avascular tumor growth is essential for understanding the early dynamics
of tumor formation and identifying factors that contribute to tumor progression. Moreover,
avascular tumor growth models offers a significant advantage in terms of mathematical mod-
eling simplicity when compared to vascular tumor growth models, while still encompassing
numerous phenomena that need to be addressed in a comprehensive model of vascular tumor
growth. Additionally, it is well known that the growth kinetics of spherical in vitro tumors
are very similar to those of avascular in vivo tumors [2]. Consequently, due to the ease and
reproducibility of avascular tumors in vitro, the quality and accuracy of experiments of avas-
cular tumors exceeds that of vascular tumors.

In the thesis we will explain the development of the mathematical avascular tumor growth
model and its assumptions in detail. In contrast to most avascular tumor growth models,
this model includes growth-inhibiting factors that are produced both within the tumor and
externally supplied through the tumor boundary. Moreover, we will implement the model
and perform a sensitivity analysis to ensure that it behaves in accordance with known tumor
growth patterns and to explore the impact of various factors on growth.

Outline

Chapter 1 provides the reader with an exposition of the background material upon which
the development and implementation of the mathematical model is built. Specifically, Sec-
tion 1.1 provides information on what a tumor is and the factors that influence its growth.
Additionally, the concept of modeling tumor growth is explained in detail. Furthermore, in
Section 1.2, the numerical methods used in the implementation will be described, along with
derivations and results regarding the accuracy of the methods. Additionally, in Section 1.3,
a finite element library named FEniCS [23], which has been used in the implementation, will
be explained.

Chapter 2 is dedicated to the mathematical model. In Section 2.1, the mathematical model
will be derived, and all the underlying assumptions will be stated and explained. Addition-
ally, there will be a discussion about the expected behavior of the model from a mathematical
perspective. Furthermore, in Section 2.2, the model will be discretized. Then, in Section 2.3,
the structure of the implementation will be explained, along with a flow chart depicting the
main steps of the implementation.

Chapter 3 presents the numerical results obtained from the implementation of the mathe-
matical model, which will be discussed in detail. In Section 3.1 a reference case will be stated,
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and numerical results with respect to that case will be displayed. Moreover, in Section 3.2, a
sensitivity analysis of the model will be conducted to ensure that it behaves as expected both
mathematically and in accordance with known tumor evolution patterns.

Chapter 4 provides a summary of the results and a discussion on their implications for avascu-
lar tumor growth. It explores the findings in terms of their qualitative aspects and highlights
areas that would be intriguing for future research.

Chapter 5 introduces an extension model that builds upon the model presented and ana-
lyzed in the thesis. The chapter describes the development of the extension model, which
aims to further investigate and explore certain aspects related to the original model.
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Chapter 1

Basic theory & background material

1.1 Tumors

Cancer is a complex and devastating disease that affects millions of people worldwide. Under-
standing the dynamics of tumor growth is essential for the development of effective treatments.
Mathematical models have become an essential tool for studying tumor growth and have the
potential to provide valuable insights into the spatial and temporal behavior of cancer. By
developing mathematical models, it is possible to study how different factors, such as cell
proliferation rates and nutrient diffusion, affect tumor growth.

1.1.1 What is a tumor and what are the main factors of tumor
growth?

A tumor is an abnormal mass of tissue that develops due to a malfunction in the process of cell
division. In such instances, damaged or abnormal cells exhibit accelerated duplication com-
pared to normal cells, and may also evade programmed cell death. Tumors can be classified as
either malignant, commonly referred to as cancerous, or benign, non-cancerous [24][25]. The
determination of whether a tumor is cancerous or benign hinges on its potential to spread,
metastasize, to other regions of the body.

During the initial stages of tumor development, referred to as the avascular phase, there
is no connection between the tumor and the vascular system, specifically the blood vessels.
Tumors that remain in this avascular phase are typically benign. However, when tumors estab-
lish connections with the vascular system, transitioning into the vascular phase, they become
cancerous tumors [25]. This connection to the circulatory system enables the transportation
of cancer cells through the vessels to distant parts of the body, where they can give rise to
secondary tumors [25].

The following questions naturally arise: What factors contribute to tumor growth? How
can we determine if a tumor will be benign or cancerous? These questions are highly complex,
and even oncologists do not have definitive answers to them. However, extensive research
indicates that nutrient supply and the concentration of growth-inhibitor factors (GIFs) play
a crucial role [2, 4, 26, 27, 28]. GIFs are produced by cells during the cell cycle, and the

17



18 CHAPTER 1. BASIC THEORY & BACKGROUND MATERIAL

immune system also produces them in response to tumors [19, 7]. Furthermore, studies have
demonstrated that adhesive forces between cells and between cells and the extracellular ma-
trix (referring to all fluids, molecules, etc., surrounding the cells) significantly influence the
tumor’s ability to maintain its shape and promote growth [20, 21, 22].

1.1.2 Mathematical modeling of tumor growth

To model tumor growth mathematically means to develop a system of equations that de-
scribes the physical processes within the tumor, such as proliferation rate and nutrient supply.
However, tumor growth is an exceedingly complex phenomenon. It relies on a combination
of biological, chemical, and mechanical factors, all of which contribute to its evolving struc-
ture [29]. Describing this complexity with equations would result in a massive system, posing
significant mathematical challenges in terms of ensuring well-posedness (the existence of a
unique and stable solution) and in terms of solving the system effectively. Moreover, incor-
porating additional phenomena into the model, which requires introducing more equations,
also necessitates knowledge of a greater number of physical parameters [29]. Mathematicians
rely on the expertise of oncologists to ensure the reasonableness of the chosen parameters.
Consequently, the development of better tumor models necessitates enhanced collaboration
between mathematicians and oncologists, among other things.

Because of the aforementioned reasons, mathematical models of tumor growth are often much
simpler than the in vivo tumor growth they represent. Nevertheless, if the models are not
overly simplistic, they can still provide valuable qualitative insights. For instance, mathemat-
ical modeling can help streamline and optimize experiments [29].

Before constructing the mathematical model we have to decide what type of model it should
be. Should it be a continuous or discrete model? Maybe a combination? Moreover, are we
sure that the physical parameters are accurate, meaning we can represent them deterministi-
cally or should they be represented as stochastic variables, allowing some uncertainty?

Cells exist as discrete entities, suggesting the suitability of a discrete model. However, it
is important to note that all cells are immersed in liquids, indicating a continuum phase.
Does this imply the need for a continuous model? Furthermore, the cell cycle encompasses
stochastic components [29]. To what extent does this randomness impact the overall processes,
and would it no longer be sensible to formulate a deterministic model?

Determining a suitable model type is evidently a complex process that heavily relies on the
specific problem and desired objectives. For instance, when dealing with a tumor consisting
of relatively few cells, a discrete model would be the natural choice. On the other hand, a
continuous model with local average values would not be appropriate in this scenario, as the
averaged values are derived from data from a relatively small number of cells [29].

As mentioned, mathematical modeling of tumors is mainly divided into discrete and con-
tinuous models. Hence, let us take a closer look at what they entail. In the discrete case,



1.2. NUMERICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS 19

one focuses on individual cells, meaning that one describes single-cell-scale phenomena. This
includes describing its position in the cell cycle, its interaction with neighbouring cells and
the local biochemical environment, etc. [4]. Then upscaling techniques such as cellular au-
tomata and lattice Boltzmann methods are used to obtain information about the large-scale
phenomena of tumor growth. In all of the main upscaling approaches, the state of a cell is
characterized by a vector w = [x,v,u], where x is the position of the cell, v is the velocity
and u is a vector describing its internal biological state [4].

In continuous models, often the initial shape of the tumor is assumed to be spherical or
disk-shaped. The cells are represented through cell densities, meaning that the cells are de-
scribed in an averaging sense. In most continuum models of avascular tumors, it is assumed
that tumor growth is affected by available nutrients and growth-inhibitor factors (GIFs). This
is modelled by conservation equations ∂Ci

∂t
+∇·Ni = Pi, where Ci denotes the concentration of

the i-th species, Ni denotes the flux of the species inside the spherical tumor and Pi denotes
the net rate of consumption/production of the species both by the tumor cells and due to
chemical reactions with other species [4]. In some papers with continuous models, the main
focus has been on how cell-cell and cell-matrix adhesion forces affect tumor growth [20, 21, 22].

1.2 Numerical methods for solving differential equations

Many differential equations cannot be solved analytically, meaning it is not possible (at least
not yet) to solve them using known mathematical rules such as addition, subtraction, associa-
tivity, commutativity, etc. Therefore, one has to approximate the solutions using numerical
methods. Since the mid-20th century, numerical analysis has been an active research field.
The field entails everything from creating methods, analyzing and understanding them, to
actually implementing them [30].

The numerical methods used in this thesis are Forward Euler to approximate ordinary dif-
ferential equations, Backward Euler to approximated time derivatives in partial differential
equations, and the Finite Element Method, abbreviated FEM, to discretize the resulting time
independent set of equations with respect to space.

1.2.1 Forward Euler

Forward Euler is one of the simplest numerical methods for solving initial value problems,
IVPs. Given the general IVP:

dy

dt
= f(t, y(t)), y(t0) = y0 (1.1)

where f(t, y(t)) is a function depending on t and y, and y0 denotes the known solution at
initial time t0, the forward Euler method is as follows:

yn+1 = yn + τf(tn, yn). (1.2)

The time interval t ∈ [t0, tfinal] has been divided into m discrete times, m =
tfinal−t0

τ
, where

τ denotes the distance between two adjacent times, and yn denotes the approximate solution
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at time tn. From equation (1.2) it is evident that the method only uses known values when
computing the next approximation, hence forward Euler is termed an explicit method.

Given the initial value problem

dy

dt
= ty + t3, y(0) = 1, t ∈ [0, 1]. (1.3)

The analytic solution and the forward Euler approximation are plotted in Figure 1.1.

Figure 1.1: Forward Euler approximation and analytic solution

One can think of the initial value problem as giving the slope of the tangent line at specific
time. The forward Euler method approximates the solution by moving a short distance along
the tangent line and re-evaluating the slope at the stopping point, continuing in this manner
until the final time is reached. How good the approximation is depends highly on how often
the slope is re-evaluated, and also on how much the slope changes [31].

The error produced in one step of the method is called a local truncation error, en. The
local error is defined as the absolute value of the difference between the approximation in
this step and the analytic solution given the approximation in the previous step as the initial
value, that is, ỹ(tn) = yn, i.e., en+1 = |yn+1− ỹ(tn+1)|. yn+1 denotes the approximate solution,
while ỹ denotes the analytic solution. At a specific time, say tn+1, using Taylor expansion one
can rewrite the exact solution ỹ(tn+1) (assuming it is sufficiently smooth) as

ỹ(tn+1) = ỹ(tn + τ) = ỹ(tn) + ỹ′(tn)τ +
ỹ′′(s)

2
τ 2 (1.4)
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for some tn < s < tn+1. Substituting ỹ
′(tn) with f(tn, ỹ(tn)) gives

ỹ(tn+1) = ỹ(tn + τ) = ỹ(tn) + f(tn, ỹ(tn))τ +
ỹ′′(s)

2
τ 2. (1.5)

Using the expansion in calculating the local truncation error leads to

en+1 = |yn+1 − ỹ(tn+1)| = |yn + τf(tn, yn)− (ỹ(tn) + τf(tn, ỹ(tn)) +
ỹ′′(s)

2
τ 2)|. (1.6)

Remembering ỹ(tn) = yn results in the following expression,

en+1 =
|ỹ′′(s)|

2
τ 2. (1.7)

Assuming |ỹ′′(s)| has an upper bound M on the interval [tn, tn+1] we get that

en+1 ≤
M

2
τ 2. (1.8)

Hence, en+1 = O(τ 2) and one can conclude that the local truncation error of the forward Euler
method is of second order.

The following definition and results are needed to deduce the order of the global error.

Definition 1 (Lipschitz continuous function [31]). A function f(t, y) is Lipschitz contin-
uous in the variable y on a convex set S if there exists a constant L satisfying

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|

∀(t, y1), (t, y2) ∈ S.

Theorem 1.2.1 (Existence and uniqueness of solutions [31]). Assume that f(t, y) is Lipschitz
continuous in the variable y on a convex set S and y0 is in the y domain of definition. Then
there exists a constant c in the t domain of definition such that the initial value problem

y′ = f(t, y)

y(t0) = y0

for t ∈ [t0, c] has exactly one solution. Moreover, if the y domain of definition is (−∞,∞),
then one knows that there exists exactly one solution given the entire t domain of definition.

Theorem 1.2.2 (Bound on difference between solutions defined on the same set with different
initial values [31]). Assume that f(t, y) is Lipschitz continuous in the variable y on a convex
set S. If Y (t) and Z(t) are solutions on S of the differential equation

y′ = f(t, y)

with initial conditions Y0 and Z0 respectively, then

|Y (t)− Z(t)| ≤ eL(t−t0)|Y0 − Z0|
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Proof. If Y0 = Z0 then one knows by Theorem 1.2.1 that there exists only one solution
and hence that Y (t) = Z(t). Thus the inequality is satisfied trivially. Now assume that
Y0 ̸= Z0. This implies that Y (t) ̸= Z(t) ∀t in the interval, if not the uniqueness statement is
contradicted. Define u(t) := Y (t)− Z(t), which is either strictly positive or strictly negative.
The inequality depends on |u| so the sign is not relevant, and one may therefore assume that
u(t) > 0. Taking the derivative of u results in

u′(t) = Y ′(t)− Z ′(t) = f(t, Y (t))− f(t, Z(t))

using the assumption that u is positive and the definition of Lipschitz continuity gives us

u′(t) = |f(t, Y (t))− f(t, Z(t))| ≤ L|Y (t)− Z(t)| = L|u(t)| = Lu(t) (1.9)

giving the relation
u′(t)

u(t)
≤ L.

Using the Mean Value Theorem and the fact that ln(u(t))′ = u′(t)
u(t)

one gets

ln(u(t))− ln(u(t0))

t− t0
≤ L

which simplifies to

ln

(
u(t)

u(t0)

)
≤ L(t− t0).

Adding the exponential function on both sides of the above equation gives the desired result

u(t) ≤ eL(t−t0)u(t0).

The global error at step n is gn = |yn−y(tn)|, which is the difference between the approximate
solution and analytic solution at time tn. In the following y denotes the analytic solution of
the initial value problem with initial condition y(ti) = y(ti), while ỹ denotes the analytic
solution of the same IVP, but with y(ti) = yi as the initial condition. At n = 0 the global
error is g0 = |y(t0) − y(t0)| = 0. Thus at n = 1 the global error is g1 = e1 = |y1 − ỹ(t1)|. In
the next step one will divide the global error into local error and previous global error.

g2 = |y2 − y(t2)| = |y2 − ỹ(t2) + ỹ(t2)− y(t2)| (1.10)

|y2 − ỹ(t2) + ỹ(t2)− y(t2)| ≤ |y2 − ỹ(t2)|+ |ỹ(t2)− y(t2)|. (1.11)

The first term is the local truncation error e2, the second term is the difference between to
solutions of the same IVP but with different initial values, hence we can estimate the difference
using theorem 1.2.2.

g2 ≤ e2 + eL(t2−t1)|ỹ(t1)− y(t1)| = e2 + eLτg1 = e2 + eLτe1. (1.12)

Doing the same calculations for n = 3 results in

g3 ≤ e3 + eLτ (e2 + eLτe1) = e3 + eLτe2 + e2Lτe1. (1.13)
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By using induction, one can show that the i− th global error is bounded in the following way

gi ≤ ei + eLτei−1 + e2Lτei−2 + · · ·+ e(i−2)Lτe2 + e(i−1)Lτe1. (1.14)

Due to the local truncation error being of second order, we have that ej ≤ Cτ 2 ∀j. Substituting
this relation into the global truncation error estimate results in

gi ≤ Cτ 2(1 + eLτ + · · ·+ e(i−1)Lτ ) = Cτ 2
eiLτ − 1

eLτ − 1
(1.15)

≤ Cτ 2
eL(ti−t0) − 1

Lτ
=
Cτ

L
(eL(ti−t0) − 1). (1.16)

Therefore, we can conclude that the global truncation error is proportional to τ , implying that
the forward Euler method is a first order method.

The advantage of this method is that it is explicit, and thus very easy to implement. A
drawback is that the time step has to be sufficiently small, otherwise, the solution will di-
verge. What is ”sufficiently small” depends on the specific problem at hand. The reason why
the method diverges for time steps that are not ”sufficiently small” is because, in those cases,
the method progresses along the tangent lines for too long. As a result, the method fails to
detect possible changes in the slope of the analytic solution.

Additionally, it should be mentioned that if forward Euler and a spatial discretization method
are used to discretize a PDE, then for the numerical solution to converge, the domain of de-
pendency of the method must include the mathematical domain of dependency [32]. This is
a necessary condition for stability of a numerical method and was first described in a 1928
paper by Richard Courant, Kurt Friedrichs, and Hans Lewy [32]. The condition is commonly
referred to as the CFL-condition, named after the pioneering work of Courant, Friedrichs, and
Lewy.

1.2.2 Backward Euler

Backward Euler is another numerical method for solving initial value problems. It is the sim-
plest implicit method, which means that the method depends on the unknown solution.

Given the general IVP:
dy

dt
= f(t, y(t)), y(t0) = y0 (1.17)

where f(t, y(t)) is a function depending on t and y, and y0 denotes the known solution at
initial time t0, the backward Euler method is as follows:

yn = yn−1 + τf(tn, yn). (1.18)

The time interval t ∈ [t0, tfinal] has been divided into m discrete times, m =
tfinal−t0

τ
, where τ

denotes the distance between two adjacent times, and yn denotes the approximate solution at
tn.
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Given that the method is implicit, it does not provide a formula that can be directly solved for
the next approximation. Instead, the equation must be rewritten. If the resulting equation is
nonlinear with respect to the unknown, a nonlinear solver method must be used at each time
step, in addition to the backward Euler method, to solve the problem. This approach can
require a considerable amount of additional work. However, unlike the forward Euler method,
this method converges when dealing with stiff problems.

By Taylor expanding y about t the local truncation error of the method can be studied.
As stated in the previous section, the local truncation error is the error accumulated by one
iteration of the method. That is, en = |yn − ỹ(tn)| where yn denotes the approximate solu-
tion at time tn and ỹ(tn) denotes the analytic solution at time tn, but with initial condition
ỹ(tn−1) = yn−1 such that the approximation and analytic solution is equal at the beginning of
the iteration. If that was not the case, it would not be possible to solely compute the difference
between the solutions at that particular time step, which is the local truncation error.

y(t− τ) = y(t) + y′(t)(t− τ − t) +
y′′(s)

2
(t− τ − t)2 (1.19)

for some s ∈ ⟨t− τ, t⟩. Rewriting the equation yields the following

y(t) = y(t− τ) + y′(t)τ − y′′(s)

2
τ 2. (1.20)

Substituting the above equation, (1.20), for the analytic solution and the definition of the
numerical method yields the following local truncation estimate

en = |yn − ỹ(tn)| = |yn−1 + τf(tn, yn)− (ỹ(tn−1) + τ ỹ′(tn)−
ỹ′′(s)

2
τ 2)| (1.21)

Further using that ỹ(tn−1) = yn−1 and ỹ′(tn) = f(tn, ỹ(tn)) results in

en = |yn−1 + τf(tn, yn)− yn−1 − τf(tn, ỹ(tn)) +
ỹ′′(s)

2
τ 2| (1.22)

en ≤ τ |f(tn, yn)− f(tn, ỹ(tn))|+ | ỹ
′′(s)

2
τ 2|.

Assuming that f is Lipschitz continuous in the second variable, the first term on the left side
can be bounded, and as a result, a larger bound can be reached

en ≤ τL|yn − ỹ(tn)|+ | ỹ
′′(s)

2
τ 2|

where L is the Lipschits constant.

en(1− τL) ≤ | ỹ
′′(s)

2
τ 2|

=⇒ en ≤ τ 2

2(1− τL)
|ỹ′′(s)|

Thus, as long as τ < 1
L
and |ỹ′′(s)| is bounded, the local truncation error has an upper bound.

Due to τ 2 the local truncation error is said to be of second order.
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There exists a theorem related to one-step ODE solvers that pertains to the order of the
global truncation error, which is equivalent to the order of the method. The theorem states
that if the local truncation error en is proportional to O(τ k+1), then the global truncation
error gn is proportional to O(τ k) at time tn. For the Backward Euler Method, this means that
the global truncation error is of first order, indicating that the method itself is of first order.

1.2.3 The Finite Element Method (FEM)

The Finite Element Method, FEM, is a numerical method mainly used to discretize a par-
tial differential equation, PDE, with respect to space. The idea of the method is to divide
the spacial domain into a finite number of non-overlapping elements, and approximate the
solution at each element using local functions. To perform this approximation, one must first
rewrite the given problem in its weak form. Next, a finite dimensional space is selected in
which to search for solutions, and the weak form is approximated within this space [33]. The
finite dimensional problem can be expressed as a system of equations on the form Ax = b.
Once solved, x represents the vector of solution values at the degrees of freedom of the mesh.
To obtain the approximate solution at an element, one interpolates between the computed
solution values at its nodes. Repeating this process for all elements while assuming continuity
between adjacent elements yields the approximate solution for the entire domain. It is im-
portant to note that the choice of a finite dimensional function space greatly influences the
accuracy of the method, as well as which known results are applicable. Furthermore, FEM
has the advantage that the numerical formulation closely resembles the mathematical weak
formulation of a PDE, which has been extensively studied by mathematicians. Consequently,
in many cases there are known error estimates available, both a priori and a posteriori [33].

The following will provide a detailed explanation of how to obtain the weak form of a PDE
and how the FEM discretization process operates. Furthermore, results pertaining to the
existence and uniqueness of solutions will be presented.

1.2.3.1 Hilbert Spaces

As previously mentioned, the choice of function spaces used in the weak formulation signifi-
cantly impacts the existence and uniqueness of solutions. Hilbert spaces are a specific class
of spaces, that possess several advantageous properties which enable qualitative analysis of
the approximate solution. As a result, the function spaces utilized in this thesis are Hilbert
spaces. This class of spaces will be examined in greater detail in the following.

Before proceeding with the definition of a Hilbert space, it is important to be acquainted
with some preliminary definitions. These will now be presented.

Definition 2 (Real vector space [34]). A real vector space is a triple (V, + , ·), in which V
is a set, and + and · are binary operations satisfying the following axioms.

(i) If x and y belong to V then so does x+ y

(ii) x+ y = y + x



26 CHAPTER 1. BASIC THEORY & BACKGROUND MATERIAL

(iii) x+ (y + z) = (x+ y) + z

(iv) V contains a unique element, 0, such that x+ 0 = x for all x in V.

(v) With each element x there is associated a unique element, −x, such that x+ (−x) = 0

(vi) If x ∈ V and λ ∈ R, then λ · x ∈ V

(vii) λ · (x+ y) = λ · x+ λ · y, λ ∈ R

(viii) (λ+ µ) · x = λ · x+ µ · x, λ, µ ∈ R

(ix) λ · (µ · x) = (λµ) · x

(x) 1 · x = x.

Note that the terms vector space and linear space are interchangeable.

Definition 3 (Norm [34]). Given a vector space V, a norm, ∥·∥, is a function on V with
values in the non-negative reals having the following properties:

(i) ∥v∥ ≥ 0 ∀v ∈ V
∥v∥ = 0 ⇐⇒ v = 0

(ii) ∥c · v∥ = |c| · ∥v∥ ∀c ∈ R, v ∈ V

(iii) ∥v + w∥ ≤ ∥v∥+ ∥w∥ ∀v, w ∈ V (the triangle inequality)

Definition 4 (Normed linear space [34]). A normed linear space is a linear space in which
a norm has been introduced.

Definition 5 (Metric [35]). A metric, d(·, ·), is as a distance function on a set X satisfying
the following relations for all points p, q ∈ X

(i) d(p, q) > 0, if p ̸= q

(ii) d(p, p) = 0

(iii) d(p, q) = d(q, p)

(iv) d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X

where d(p, q) is a real number called the distance from p to q.

Note that all norms are metrics. Thus all normed linear spaces can also be termed metric
spaces.

Definition 6 (Cauchy sequence [35]). A sequence {xj} in a metric space, (X,d(·, ·)), is said
to be a Cauchy sequence if ∀ϵ > 0 ∃ an integer N such that

d(xn, xm) < ϵ

for all n,m ≥ N .
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Definition 7 (Convergence of a sequence [35]). A sequence {xj} in a metric space, (X,d(·, ·)),
is said to converge to a point x ∈ X if ∀ϵ > 0 ∃ an integer N such that

d(xn, x) < ϵ ∀n ≥ N

Definition 8 (Complete space [35]). A metric space (a space endowed with a distance function,
e.g., a norm) is termed complete if every Cauchy sequence converges to a point in the space.

Definition 9 (Inner-product space [36]). A (real or complex) inner-product space is a (real
or complex) vector space V with an inner product specified. An inner product is a rule which,
given any x, y ∈ V , specifies a (real or complex) number ⟨x, y⟩, called the inner product of x
and y, such that

(i) ⟨x, x⟩ ∈ R+ ∀x ̸= 0

(ii) ⟨0, 0⟩ = 0

(iii) ⟨x, y⟩ = ⟨y, x⟩

(iv) ⟨λx, y⟩ = λ⟨x, y⟩ for any λ ∈ R (respctively C) and x, y ∈ V

(v) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩, ∀ x, y, z ∈ V.

In an inner-product space, one defines the norm of an element x to be ∥x∥ :=
√

⟨x, x⟩.

Definition 10 (Hilbert space [34]). A Hilbert space is a complete inner-product space.

In the setting of variational formulations, the most usefull Hilbert spaces are those where
differentiation can be preformed. These spaces are denoted Hk(Ω) and are special cases of
Sobolov spaces W k

p , more precisely where p = 2.

In order to define Hk(Ω) and W k
p , the concepts of Lp-spaces and weak derivatives must be

introduced.

Definition 11 (Lebesgue norm [33]). For 1 ≤ p <∞, let

∥f∥Lp(Ω) :=

(∫
Ω

|f(x)|pdx
) 1

p

and for the case p = ∞ set

∥f∥L∞(Ω) := ess sup{|f(x)| : x ∈ Ω}

Definition 12 (Lebesgue spaces [33]).

Lp(Ω) := {f : ∥f∥Lp(Ω) <∞}

with two functions f, g identified as equal if ∥f − g∥Lp(Ω) = 0, implying that the functions only
differ on a set of measure zero. In this context one can consider Lp(Ω) as a set of equivalence
classes of functions with respect to the identification relation.
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The multi-index notation is a short-hand notation for calculus partial derivatives. Let α denote
a multi-index, which is an n-tuple of non-negative integers, αi. The length of α is given by

|α| =
n∑

i=1

αi

For ϕ ∈ C∞ let Dαϕ denote the usual (pointwise) derivatives(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

ϕ =
∂|α|ϕ

∂α1
x1 ∂

α2
x2 · · · ∂αn

xn

The order of the derivative above is given by |α|.

Definition 13 (Compact set [34]). A subset K in a normed linear space is said to be compact
if each sequence in K has a subsequence that converges to a point in K.

Definition 14 (Support and Compact Support of a function defined on a subdomian of Rn

[36]). Let u be a continuous function. Then the support of u is the closure of the (open) set
{x : u(x) ̸= 0}. In other words, it is the closure of the set that does not map to zero. If this
set is compact (i.e., bounded) and a subset of the interior of a set Ω then we say that u has
compact support with respect to Ω. Outside the support it is natural to define the function
to be zero and thus extend the function to be defined on all of Rn. Hence, if Ω ⊂ Rn and u
is a continuous function compactly supported with respect to Ω we say that u vanishes in a
neighborhood of ∂Ω.

Definition 15 (C∞(Ω) [37]). C∞(Ω) is the space of functions that are infinitely many times
differentiable. C∞

0 (Ω) denotes the set of C∞(Ω) with compact support in Ω.

Definition 16 (Set of locally integrable functions [33]). Given a domain Ω, the set of locally
integrable functions is denoted by

L1
Loc(Ω) := {f : f ∈ L1(K) ∀ compactK ⊂ Ω}

Definition 17 (Generalized (weak) derivatives [33]). We say that a given function f ∈ L1
Loc

has a weak derivative, Dα
wf , provided there exists a function g ∈ L1

Loc such that∫
Ω

g(x)ϕ(x)dx = (−1)|α|
∫
Ω

f(x)Dαϕ(x)dx ∀ϕ ∈ C∞
0 (Ω)

If such a g exists, we define Dα
wf = g.

Sobolev spaces are complete normed linear spaces of weakly differentiable functions. In other
words, Sobolev norms and spaces are generalizations of Lebesgue norms and spaces to include
derivatives.
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Definition 18 (Sobolov norm [33]). Let k be a non-negative integer, and let f ∈ L1
Loc(Ω).

Suppose that the weak derivatives Dα
wf exist for all |α| ≤ k. Define the Sobolev norm

∥f∥Wk
p (Ω) :=

∑
|α|≤k

∥Dα
wf∥

p
Lp(Ω)

 1
p

=

∑
|α|≤k

∫
Ω

|Dα
wf |pdx

 1
p

(1.23)

for 1 ≤ p <∞, and in the case p = ∞

∥f∥Wk
∞(Ω) := max

|α|≤k
∥Dα

wf∥L∞(Ω) (1.24)

Definition 19 (Sobolov spaces [33]). For 1 ≤ p ≤ ∞ we define the Sobolev space to be

W k
p (Ω) := {f ∈ L1

Loc(Ω) : ∥f∥Wk
p (Ω) <∞} (1.25)

By setting p = 2 the resulting norm is induced by an inner-product, and is therefore a Hilbert
space. As mentioned earlier these spaces are often termed Hk.

Definition 20 (Hk(Ω) [33]). Hk := {f ∈ L2(Ω) : ∥f∥Wk
2 (Ω) <∞}.

In the thesis, the function space used in variational formulations is the Hilbert space

H1
g (Ω) := {f ∈ H1(Ω) : trace(f) = g}.

This space requires a function to have existing weak first derivative.

1.2.3.2 Variational Formulation

The Finite Element Method is a numerical method used to approximate the weak solution of
a PDE. Therefore, to apply this method, the problem must first be formulated in weak form,
also known as variational form. The term ”weak” refers to the fact that this formulation
relaxes some of the requirements that a solution must satisfy [38]. It is important to note that
many PDEs only have weak solutions, not strong ones. Moreover, it is worth mentioning that
a strong solution is always a weak solution, but the converse is not necessarily true.

Given the following partial differential equation, the objective is to find its corresponding
variational formulation.

Find u satisfying {
∇ · (−D∇u+ c⃗u) = F for x ∈ Ω

u = 0 for x ∈ ∂Ω.
(1.26)

Note that (1.26) requires the solution, u, to be satisfied at all points of the domain, i.e., in a
point-wise sense. Furthermore, in the cases where u = g at ∂Ω and g ̸= 0, it is worth noting
that the problem can be reformulated to seek a solution w = u− g̃, subject to the boundary
condition w = 0. Here, g̃ represents a continuous extension of g on the entire domain Ω.

To obtain the variational form, one start by multiplying the equation by a so-called ”test
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function” v and integrating over the domain. Here, v is an arbitrary function in H1
0 (Ω). It is

important to note that a test function is compactly supported on the parts of the boundary
where the solution is known, i.e., at these parts v ≡ 0.∫

Ω

∇ · (−D∇u+ c⃗u)v =

∫
Ω

Fv (1.27)

By using the method of integration by parts, one can rewrite the integral on the left-hand side
in the following way, ∫

Ω

∇ · (−D∇u+ c⃗u)vdx =∫
Ω

(D∇u− c⃗u) · ∇vdx+
∫
∂Ω

n⃗ · (−D∇u+ c⃗u)vds

(1.28)

where n⃗ denotes the normal outward pointing unit vector on the boundary. Due to the com-
pact support of the test function, i.e., v ≡ 0, the boundary term vanishes, leaving us with the
following variational formulation,

Find u ∈ H1
0 (Ω) that satisfies∫

Ω

(D∇u− c⃗u) · ∇vdx =

∫
Ω

Fvdx (1.29)

for all v ∈ H1
0 (Ω)

By comparing the strong formulation (1.26) with the variational formulation (1.29), it be-
comes clear that the former requires the solution to be twice continuously differentiable, while
the latter only requires it to be one time continuously differentiable. Moreover, in the strong
formulation, the solution must be twice continuously differentiable at every point in the do-
main, whereas in the variational formulation, the solution only needs to satisfy the equality
in an integral sense. This means that the variational solution can even be discontinuous, as
long as its integral satisfies the equation for all test functions.

Define a(u, v) :=
∫
Ω
(D∇u − c⃗u) · ∇vdx and L(v) :=

∫
Ω
Fvdx. Based on the following defini-

tions, it will be shown that a(u, v) and L(v) are bilinear and linear forms, respectively.

Definition 21 (Linear form [34]). A linear form on a vector space X is a linear mapping
f : X → R. I.e., the mapping satisfies

f(αu+ βv) = αf(u) + βf(v)

for all α, β ∈ R and for all u, v ∈ X

Definition 22 (Bilinear form [33]). A bilinear form a(·, ·) on a vector space X is a mapping
a : X ×X → R such that each of the maps u 7→ a(u, v) and v 7→ a(u, v) is a linear form on
X. It is a symmetric bilinear form if a(u, v) = a(v, u).
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a(αu+ βw, v) =

∫
Ω

(D∇(αu+ βw)− c⃗(αu+ βw)) · ∇vdx

=

∫
Ω

(D∇αu− c⃗αu+D∇βw − c⃗βw) · ∇vdx

=

∫
Ω

(α[D∇u− c⃗u] + β[D∇w − c⃗w]) · ∇vdx

= α

∫
Ω

(D∇u− c⃗u) · ∇vdx+ β

∫
Ω

(D∇w − c⃗w) · ∇vdx

= αa(u, v) + βa(w, v).

(1.30)

a(u, αv + βw) =

∫
Ω

(D∇u− c⃗u) · ∇(αv + βw)dx

=

∫
Ω

(D∇u− c⃗u) · [∇αv +∇βw)]dx

=

∫
Ω

(D∇u− c⃗u) · ∇αv + (D∇u− c⃗u) · ∇βwdx

= α

∫
Ω

(D∇u− c⃗u) · ∇vdx+ β

∫
Ω

(D∇u− c⃗u) · ∇wdx

= αa(u, v) + βa(u,w).

(1.31)

L(αv + βw) =

∫
Ω

F (αv + βw)dx =

∫
Ω

Fαvdx+

∫
Ω

Fαwdx

= α

∫
Ω

Fvdx+ α

∫
Ω

Fwdx

= αL(v) + βL(w).

(1.32)

The above calculations utilized the fact that integrals, dot products, and gradients are linear
operators to demonstrate that a(u, v) is a bilinear form and L(v) is a linear form.

1.2.3.3 Discretization

To discretize the variational formulation, the Galerkin method is used. This involves re-
placing the test and trial function spaces, i.e., the spaces to which u and v belong, with
finite-dimensional subspaces and seeking solutions within these spaces. Let VN ⊂ H1

0 (Ω) be a
finite N-dimensional subspace of H1

0 (Ω) with basis functions {ϕ1(x), ϕ2(x), . . . , ϕN(x)}. The
Galerkin method has several advantages, such as allowing for the use of standard linear alge-
bra techniques to solve the resulting system of equations, and providing a flexible framework
for adapting the discretization to the problem at hand. The finite dimensional variational
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problem is written in the following way.

Find uh ∈ VN that satisfies ∫
Ω

(D∇uh − c⃗uh) · ∇vhdx =

∫
Ω

Fvhdx (1.33)

for all vh ∈ VN

Moreover, one defines

a(uh, v) :=

∫
Ω

(D∇uh − c⃗uh) · ∇vhdx (1.34)

L(v) :=

∫
Ω

Fvhdx. (1.35)

By following the same steps presented in (1.30)-(1.32), one can demonstrate that a(uh, v) and
L(v) are bilinear and linear forms, respectively.

Since uh and vh belong to the finite-dimensional subspace VN , they can be expressed as linear
combinations of the basis functions of VN . Specifically, one can write uh =

∑N
i=1 ũiϕi(x) and

vh =
∑N

j=1 ṽjϕj(x), where ũi and ṽj are coefficients. Substituting these expressions for uh and
vh into (1.33), one obtains∫

Ω

(D∇(
N∑
i=1

ũiϕi)− c⃗(
N∑
i=1

ũiϕi)) · ∇(
N∑
j=1

ṽjϕj)dx =

∫
Ω

F (
N∑
j=1

ṽjϕj)dx (1.36)

where ϕi and ϕj are the basis functions of VN .

Since the coefficients are independent of space and the gradient is a linear operator, one can
apply the gradient directly to the basis functions inside the sum. Moreover, ũi is a common
factor in the difference term of the first integral, allowing it to be factored out. Additionally,
constants can be taken outside of integrals. As noted, (1.36) must hold for all vh =

∑N
j=1 ṽjϕj,

and since all vh are linear combinations of {ϕj}Nj=1, it suffices to verify the equation for each
basis function. Thus, the problem can be expressed as follows.

N∑
i=1

ũi

∫
Ω

(D∇ϕi − c⃗ϕi) · ∇(ϕj)dx =

∫
Ω

Fϕjdx for j ∈ {1, 2, ..., N} (1.37)

The above system of equations can be written in matrix vector form Au = b with

A =

(∫
Ω

(D∇ϕi − c⃗ϕi) · ∇(ϕj)dx

)N

i,j=1

∈ RN×N =
∫
Ω
(D∇ϕ1 − c⃗ϕ1) · ∇(ϕ1)dx

∫
Ω
(D∇ϕ2 − c⃗ϕ2) · ∇(ϕ1)dx · · ·

∫
Ω
(D∇ϕN − c⃗ϕN) · ∇(ϕ1)dx∫

Ω
(D∇ϕ1 − c⃗ϕ1) · ∇(ϕ2)dx

∫
Ω
(D∇ϕ2 − c⃗ϕ2) · ∇(ϕ2)dx · · ·

∫
Ω
(D∇ϕN − c⃗ϕN) · ∇(ϕ2)dx

...
. . .∫

Ω
(D∇ϕ1 − c⃗ϕ1) · ∇(ϕN)dx

∫
Ω
(D∇ϕ2 − c⃗ϕ2) · ∇(ϕN)dx · · ·

∫
Ω
(D∇ϕN − c⃗ϕN) · ∇(ϕN)dx
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u = (ũi)
N
i=1 =


ũ1
ũ2
...
ũN

 ∈ RN , b =

(∫
Ω

Fϕjdx

)N

j=1

=


∫
Ω
Fϕ1dx∫

Ω
Fϕ2dx
...∫

Ω
FϕNdx

 ∈ RN

It has now been shown that solving (1.33) is equivalent to solving the linear system Au = b
with A,u and b as defined above.

Note that both A and b only contain known quantities. This means that they can be com-
puted and the system Au = b can be solved for u. The discrete solution provides the solution
values at the degrees of freedom of the mesh. Then, it only remains to interpolate over each
element and assemble the solutions to obtain the solution on the entire domain. Additionally,
it is worth noting that many finite element bases result in a significant number of elements
in matrix A being equal to zero, leading to a sparse matrix structure. This sparsity property
greatly simplifies the process of solving the system of equations, making it computationally
easier and more efficient.

1.2.3.4 Results regarding existence and uniqueness, and errors of solutions to
variational problems

When solving a mathematical problem, it is desirable to know whether or not the problem
has a solution, and if there is only one possible solution or if there are multiple solutions.
In the following, a theorem that provides conditions for a unique solution to exist will be
presented. Furthermore, a theorem that provides an upper bound on the error of the Galerkin
approximation will also be presented.

Theorem 1.2.3 (Lax Milgram [38]). Given a

• Hilbert space (V, (·, ·))

• bilinear form a(·, ·) satisfying

– |a(v, w)| ≤ M∥v∥V ∥w∥V ∀v, w ∈ V with M > 0 a constant (continuity)

– a(v,v) ≥ α∥v∥2V ∀v ∈ V with α > 0 a constant (coercivity)

• linear functional L(·) satisfying

– |L(v)| ≤ C∥v∥V ∀v ∈ V with C > 0 a constant. (Continuity)

then there ∃! u ∈ V such that
a(u, v) = F (v) ∀v ∈ V.

Proof. See for example [33].

Lemma 1.2.4 (Céa’s lemma [38]). Assume

1. |a(u, v)| ≤M∥u∥∥v∥, M > 0, ∀u, v ∈ V

2. a(u, u) ≥ α∥u∥2, α > 0, for u ∈ V
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with ∥·∥ denoting a norm on V . Then the following error estimate for the Galerkin solution
holds:

∥u− uh∥ ≤ M

α
min{∥u− v∥ | v ∈ Vh}. (1.38)

Proof. If ∥u−uh∥ = 0, then the inequality will always hold because all the terms on the right
hand side are non-negative, and there is nothing to prove. Therefore, assume u ̸= uh. Further
assume that v ∈ Vh. One can then write the difference between the continuous variational
formulation, i.e., a(u, v) = b(v), and the discrete variational formulation, i.e., a(uh, v) = b(v),
as follows:

a(u, v)− a(uh, v) = b(v)− b(v) = 0 =⇒ a(u− uh, v) = 0. (1.39)

Note that v is an arbitrary element of Vh, meaning that the relation hold for all elements of Vh.

Due to the second assumption of the lemma one can write

α∥u− uh∥2 ≤ a(u− uh, u− uh). (1.40)

Since uh and v are elements of Vh, a linear space, one knows that uh − v also is contained in
Vh. Therefore, one have that a(u− uh, uh − v) = 0, and one can rewrite as follows:

α∥u− uh∥2 ≤ a(u− uh, u− uh) + a(u− uh, uh − v). (1.41)

Using the fact that a(·, ·) is a bilinear form and the first assumption of the lemma one gets
the following

α∥u− uh∥2 ≤ a(u− uh, u− uh) + a(u− uh, uh − v)

= a(u− uh, u)− a(u− uh, uh) + a(u− uh, uh)− a(u− uh, v)

= a(u− uh, u)− a(u− uh, v) = a(u− uh, u− v)

≤M∥u− uh∥∥u− v∥

=⇒ ∥u− uh∥ ≤ M

α
∥u− v∥ v ∈ Vh

Since it holds for all v ∈ Vh, one gets that the smallest upper bound on the error is

∥u− uh∥ ≤ M

α
min{∥u− v∥ | v ∈ Vh} (1.42)

which is the desired result.

1.3 FEniCS

FEniCS is a powerful open-source finite element library widely used for solving partial dif-
ferential equations (PDEs). It provides a user-friendly interface and efficient computational
capabilities for researchers and practitioners in various scientific and engineering fields [23].

With FEniCS, users can express their PDE problems using a high-level mathematical lan-
guage, making it easier to translate mathematical formulations into computationally efficient
code [23]. The library handles many aspects of finite element computations, such as mesh
generation, function space definitions, and variational problem formulations, allowing users to
focus on the mathematical and physical aspects of their problems [23].



Chapter 2

The mathematical model

2.1 Derivation of the mathematical model

In this chapter, we will develop a two-dimensional continuous model of avascular tumor growth
in vitro using deterministic parameters. Afterward, we will discuss the expected behavior of
the model before proceeding to discretize it. Finally, we will also discuss the structure of the
implementation.

The Mathematical Model
To enhance our understanding of the model and its development, we will begin by examining
the underlying assumptions on which it is based.

Assumptions and comments:

• It is assumed that the tumor is comprised of three main components: viable cells (includ-
ing both proliferating and quiescent cells), dead cells, and the extracellular matrix. The
extracellular matrix encompasses all fluids, proteins, molecules, and other substances
that surround the cells.

• One assumes that the tumor initially has a circular shape and grows in a radially sym-
metric manner, maintaining its circular shape over time. Furthermore, any constraints
imposed by the surrounding geometry is disregarded.

• Moreover, it is assumed that the volume fraction of the extracellular matrix remains
constant throughout the growth process. In other words, the extracellular matrix always
constitutes a fixed percentage, denoted as p%, of the total volume. This assumption
implies that both living and dead cells, even considering volume loss, maintain a uniform
spatial arrangement within the tumor.

• The influence of cell-cell adhesion forces and cell-matrix adhesion forces are neglected in
the model.

• Advection-diffusion type of PDEs will be used to model the concentrations of nutrients
and growth-inhibitor factors (GIFs) in a tumor. The model will incorporate three growth
factors. Firstly, we will consider externally supplied nutrients as growth-promoting

35



36 CHAPTER 2. THE MATHEMATICAL MODEL

factors. Secondly, we will account for growth-inhibitor factors that are produced by
cells within the tumor during the cell cycle or excreted by necrotic cells. Lastly, we will
include externally supplied growth-inhibitor factors that represent the immune system’s
response to the tumor.

– An advection-diffusion equation will be formulated to represent the nutrient con-
centration within the tumor. The equation will not include a source term since
we assume that nutrients are only externally supplied and not produced within
the tumor. However, it will include a sink term to account for the consumption
of nutrients by the cells. Furthermore, we will assume that the nutrient level in
the surrounding area of the tumor remains fixed, indicating a constant supply of
nutrients. This condition will be expressed by a positive Dirichlet boundary data.

– A diffusion equation will be formulated to represent the growth-inhibitor factors,
G1, produced or excreted internally by the cells. The PDE is in accordance with
the one presented in [2]. The equation incorporates both source and sink terms,
representing the production/excretion and consumption of G1 within the tumor,
respectively. Moreover, we assume that these GIFs do not exist outside the tumor,
which is reasonable considering they are a product of the cells specific to the tumor.
Hence, we assume no transport of G1 across the tumor boundary. This condition
will be represented by a homogeneous Neumann boundary condition.

– We will represent the growth-inhibitor factors, G2, produced by the immune sys-
tem in the surrounding tissue using an advection-diffusion equation. Since G2 is
not produced within the tumor, the equation will not contain a production term.
However, it will include a sink term to account for the cells consumption of G2.
Additionally, we will assume that the concentration of G2 in the tissue surround-
ing the tumor remains constant. Therefore, the boundary supply of G2 will be
represented by a positive Dirichlet boundary condition.

• The viable and dead cells will not be explicitly addressed or solved for; instead, they will
be implicitly represented by the nutrient and GIF concentrations within the tumor. A
GIF threshold will be introduced, denoted as θG, which serves as an upper limit for GIF
concentration allowing cells to proliferate. If the GIF concentration exceeds θG, it will
inhibit mitosis, leading to cell quiescence or death, depending on the current nutrient
level. Additionally, a nutrient threshold will be defined, denoted as θN , as the minimum
nutrient concentration required for cell growth. In order for a cell to have the potential
to proliferate, the nutrient concentration must surpass θN . If the nutrient concentration
falls below this threshold, the cell will become quiescent or die. The tumor is divided
into proliferating, quiescent, and necrotic cells based on the following criteria

– Proliferating if

uN > θN and w1(w2uG1 + w3uG2) < θG (2.1)

– Quiescent if

uN > θN and w1(w2uG1 + w3uG2) ≥ θG (2.2)
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or

uN ≤ θN and w1(w2uG1 + w3uG2) < θG, for less than a stated time period
(2.3)

– Necrotic if

uN ≤ θN and w1(w2uG1 + w3uG2) < θG for longer than the stated time period
(2.4)

or

uN ≤ θN and w1(w2uG1 + w3uG2) ≥ θG (2.5)

with w1, w2, w3 ∈ R being weights, θN , θG the threshold values, and uN the nutrient
concentration, uG1 the concentration of G1 growth-inhibitor factors and uG2 the concen-
tration of G2 growth-inhibitor factors.

• All necrotic cells remain necrotic, even though nutrient diffusion might alter the nutrient
concentration such that necrotic cells later will satisfy either quiescent or proliferating
criteria.

• We will introduce a function to represent the mitotic rate, which denotes the rate at
which a cell divides into two daughter cells. This rate will depend on the nutrient and
GIF concentrations.

• The volume of the tumor is determined by the following factors

– the number of cells in the tumor, assuming that each cell has a constant volume

– the percentage of the total volume made up by the extracellular matrix (ECM)

– the assumption that the tumor has a perfectly circular shape, meaning that its vol-
ume, due to the model being two-dimensional, can be calculated using the formula
VT = πr2T .

Let nc represent the total number of cells, rc the fixed radius of a single cell, VT the total
volume of the tumor, Vc the total volume of the cells, and p% the percentage of the total
tumor volume that the extracellular matrix constitute. Then the tumor volume can be
computed in the following way

Vc = ncπr
2
c (2.6)

VT =
1

1− p
100

Vc. (2.7)

This indicates that as long as we know the number of cells we can always compute the
tumor volume.

• As shown in the bullet point above, this model represents tumor growth through changes
in the number of cells. The change in the number of cells is modeled by an ODE that
depends on the mitotic rate.



38 CHAPTER 2. THE MATHEMATICAL MODEL

The advection-diffusion equation for nutrient concentration, uN , is as follows

∂tuN +∇ · (−DN∇uN + c⃗NuN) = ϕ(nloc, uN) ∀x⃗ ∈ Ω. (2.8)

In the equation above, uN represents the nutrient concentration. The equation describes how
the nutrient concentration changes over time, ∂tuN , within the tumor. This change is influ-
enced by both advective forces, c⃗NuN , which represent the transport of nutrients throughout
the tumor, and diffusive forces, −DN∇uN , which account for the spreading of nutrients. Fur-
thermore, the sink term, ϕ, represents the consumption of nutrients and contributes to the
temporal changes in concentration. The constant diffusion coefficient, DN , determines the
rate at which nutrients diffuse in the direction opposite to the gradient of uN . The negative
gradient, −∇uN , always points towards regions of lower nutrient concentration, reflecting the
movement of nutrients driven by molecular processes. Lastly, c⃗N denotes the velocity field re-
sulting from the extracellular matrix, indicating the speed and direction of nutrient transport
within the tumor facilitated by the ECM.

The sink-term is defined as follows

ϕ(nloc, uN) = −αnlocuN (2.9)

with α ∈ R+ representing the sink coefficient, uN denotes the nutrient concentration, and nloc

represents the local number of cells, i.e. the number of cells at a given point. However, due
to the assumption that the cells are uniformly distributed and comprise a constant percent-
age of the tumor, the value of nloc remains constant. It can be computed using the formula
nloc = N0

πr20
, where N0 is the initial number of cells and πr20 corresponds to the initial tumor

volume.

The amount of nutrients consumed by a cell depends on its cell type. Proliferating cells,
which actively grow and divide, have high nutrient demands. Quiescent cells, while not ac-
tively proliferating, are still alive and therefore require nutrients, albeit at a lower rate com-
pared to proliferating cells. On the other hand, necrotic cells are already dead and no longer
consume any nutrients. These differences are accounted for in the model by representing the
sink coefficient α as a discontinuous function with different constant values for each cell type.

α(x⃗) =


0 if x⃗ ∈ necrotic cell

αqui if x⃗ ∈ quiescent cell

αpro if x⃗ ∈ proliferating cell

with αqui, αpro ∈ R+ and αqui << αpro.

The Dirichlet boundary condition w.r.t uN is

uN = κ ∀x⃗ ∈ ∂Ω (2.10)

where κ > 0 represents the constant nutrient supply at the boundary.
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The diffusion equation for the concentration of growth-inhibitor factors produced/excreted
by the tumor cells, uG1, is as follows

∂tuG1 +∇ · (−DG1(x, y)∇uG1) = −γuG1 + λS(x, y) ∀x⃗ ∈ Ω. (2.11)

In the above equation, uG1 represents the concentration of growth-inhibitor factors pro-
duced/excreted by the cells within the tumor. The equation describes how the concentration
changes over time, ∂tuG1, taking into account the diffusion of the factors, which refers to
their spreading through molecular movements. The equation also considers a sink term that
represents the consumption of the factors and a production term that represents their gener-
ation/excretion within the tumor. The parameters γ ∈ R+ and λ ∈ R+ are fixed constants.
The decay constant γ determines the rate at which the concentration of G1 is consumed, while
the production constant λ controls the rate at which the factors are produced/excreted within
the tumor.

In this PDE, the diffusion coefficient is not constant but rather a monotonically decreas-
ing function, denoted as DG1(x, y) = 5 × 10−7(1 − 0.2(x2 + y2)). By incorporating a space-
dependent nonlinear function for DG1, the model takes into account the possibility of varying
or disrupted intercellular signals caused by the cellular heterogeneity within the tumor [2].
The diffusion coefficient is highest at the center of the tumor and decreases as one moves away
from the center, for tumors with radii less than

√
5. Figure 2.1(a) illustrates this diffusion

pattern.

Furthermore, the source function S(x, y) = 1− (x2+y2)
R2 , with R being the radius of the tumor,

describes the distribution of G1 production/excretion within the tumor [2]. The function
is space-dependent and indicates that G1 production/excretion is highest at the center and
gradually decreases towards zero as one approaches the boundary of the tumor. S is chosen
to be space-dependent to account for cellular heterogeneity within the tumor [2]. Refer to
Figure 2.1(b) for a visual representation of this source function.

(a) The diffusion equation, DG1(x, y). (b) The source function, S(x, y).

Figure 2.1: Displaying the diffusion and production/excretion functions in the G1 PDE.
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As mentioned, different types of cells consume factors at different rates. In the case of the
growth-inhibiting factors G1, they are consumed at an equal rate by proliferating and quiescent
cells, while necrotic cells do not consume them at all. Therefore, the decay constant γ must
be represented as a discontinuous function that reflects these consumption rates. It can be
expressed in the following form

γ(x⃗) =

{
0 if x⃗ ∈ necrotic cell

γproqui if x⃗ ∈ quiescent cell or proliferating cell

with γproqui ∈ R+.

The Neumann boundary condition w.r.t. uG1 is

n⃗ · (−DG1(x, y)∇uG1) = 0 ∀x⃗ ∈ ∂Ω (2.12)

with n⃗ being the outward pointing unit normal vector at the boundary. This boundary con-
dition ensures that there is no diffusion of uG1 across the boundary.

The advection-diffusion equation for the growth-inhibitor factor concentration pro-
duced by the immune system, uG2, is as follows

∂tuG2 +∇ · (−DG2∇uG2 + c⃗G2uG2) = −ξnlocuG2 ∀x⃗ ∈ Ω. (2.13)

In the equation above, uG2 denotes the concentration of growth-inhibitor factors produced by
the immune system in response to the presence of the tumor. The equation states that the
change of uG2 with respect to time within the tumor, i.e., ∂tuG2, is related to the diffusion,
−DG2∇uG2, of uG2 due to molecular movements and to how the factors are being transported
by the velocity field c⃗G2 induced by the extracellular matrix. Moreover, the consumption of
G2 by the cells also contributes to altering uG2 over time. Furthermore, ξ ∈ R+ is the decay
constant of G2. As G2 is consumed at an equal rate by proliferating and quiescent cells, while
no factors are consumed by necrotic cells, ξ has to be represented as a constant discontinuous
function, as follows

ξ(x⃗) =

{
0 if x⃗ ∈ necrotic cell

ξproqui if x⃗ ∈ quiescent cell or proliferating cell

with ξproqui ∈ R+.

The Dirichlet boundary condition w.r.t. uG2 is

uG2 = ψ ∀x⃗ ∈ ∂Ω (2.14)

with ψ ∈ R+ denoting the constant non-negative uG2 supply at the boundary.

The mitotic function states the rate at which mitosis occurs. Mitosis is the biological
process of a cell dividing into two identical daughter cells. The rate is dependent on the
concentrations of growth-promoting and growth-inhibiting factors.

m(uN , uG1, uG2) =


0 if x⃗ ∈ necrotic cell

0 if x⃗ ∈ quiescent cell

ρ[−ν1uG1 − ν2uG2 + ηuN ] if x⃗ ∈ proliferating cell

(2.15)
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with ρ, ν1, ν2, η ∈ R+ representing weights and uG1, uG2, uN representing the growth-inhibiting
and growth-promoting factor concentrations.

The ODE governing the change of number of cells is as follows

dnc

dt
= nloc

∫
Ω

mdx. (2.16)

The equation above indicates that the rate of change in the number of cells is directly in-
fluenced by the mitotic function, which represents the rate at which cells are proliferating.
As mentioned previously, quiescent and necrotic cells do not undergo growth, resulting in a
mitotic function of zero in these regions. Therefore, when integrating over the entire tumor,
the integral simplifies to the integral over the proliferating cells only. Thus, the ordinary
differential equation (ODE) can be expressed as follows.

dnc

dt
= nloc

∫
Ωpro

mdx = nloc

∫
Ωpro

ρ[−ν1uG1 − ν2uG2 + ηuN ]dx (2.17)

nc represents the total number of cells in the tumor, and ρ, ν1, ν2, η ∈ R+ are mitotic weights.
uG1, uG2, uN represent, as always, the growth factor concentrations. The term nloc represents
the constant number of cells per unit volume of the tumor, and Ωpro denotes the areas of the
tumor consisting exclusively of proliferating cells.

A summary of all the equations and cell type requirements
Find uN , uG1, uG2 and nc such that the following equations are satisfied

∂tuN +∇ · (−DN∇uN + c⃗NuN) = −αnlocuN ∀x⃗ ∈ Ω (2.18)

α(x⃗) =


0 if x⃗ ∈ necrotic cell

αqui if x⃗ ∈ quiescent cell

αpro if x⃗ ∈ proliferating cell

uN = κ ∀x⃗ ∈ ∂Ω (2.19)

∂tuG1 +∇ · (−DG1(x, y)∇uG1) = −γuG1 + λS(x, y) ∀x⃗ ∈ Ω (2.20)

DG1(x, y) = 5× 10−7(1− 0.2(x2 + y2)), S(x, y) = 1− (x2 + y2)

R2

γ(x⃗) =

{
0 if x⃗ ∈ necrotic cell

γproqui if x⃗ ∈ quiescent cell or proliferating cell

n⃗ · (−DG1(x, y)∇uG1) = 0 ∀x⃗ ∈ ∂Ω (2.21)

∂tuG2 +∇ · (−DG2∇uG2 + c⃗G2uG2) = −ξnlocuG2 ∀x⃗ ∈ Ω (2.22)
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ξ(x⃗) =

{
0 if x⃗ ∈ necrotic cell

ξproqui if x⃗ ∈ quiescent cell or proliferating cell

uG2 = ψ ∀x⃗ ∈ ∂Ω (2.23)

m(uN , uG1, uG2) =


0 if x⃗ ∈ necrotic cell

0 if x⃗ ∈ quiescent cell

ρ[−ν1uG1 − ν2uG2 + ηuN ] if x⃗ ∈ proliferating cell

(2.24)

dnc

dt
= nloc

∫
Ωpro

ρ[−ν1uG1 − ν2uG2 + ηuN ]dx (2.25)

• Proliferating if
uN > θN and w1(w2uG1 + w3uG2) < θG (2.26)

• Quiescent if
uN > θN and w1(w2uG1 + w3uG2) ≥ θG (2.27)

or

uN ≤ θN and w1(w2uG1 + w3uG2) < θG, for less than a stated time period (2.28)

• Necrotic if

uN ≤ θN and w1(w2uG1 + w3uG2) < θG for longer than the stated time period
(2.29)

or
uN ≤ θN and w1(w2uG1 + w3uG2) ≥ θG (2.30)

with w1, w2, w3 ∈ R being weights, θN , θG the threshold values, and uN the nutrient concen-
tration, uG1 the concentration of G1 growth-inhibitor factors and uG2 the concentration of G2
growth-inhibitor factors.

Furthermore, note that all necrotic cells remain necrotic, even though nutrient diffusion might
alter the nutrient concentration such that the necrotic cells later will satisfy either quiescent
or proliferating criteria.

2.1.1 What type of behavior to expect from the model

Initially, the entire tumor is composed of proliferating cells. However, as the tumor grows,
there will be a point/region inside the tumor where one or both of the thresholds θN and θG are
reached. The specific location within the tumor where this occurs, as well as which threshold
is reached first, or if they are reached simultaneously, is influenced by various parameters.

For instance, the difference between the initial concentrations and threshold values plays
a significant role in determining the duration of tumor growth. If an initial condition is close
to its respective threshold value, it will not take long before the threshold is reached, leading
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to the formation of quiescent and necrotic regions within the tumor. Conversely, if there is a
substantial difference between the initial concentrations and their respective threshold values,
the tumor will continue proliferating for a longer period of time before reaching the thresholds.

Additionally, the diffusion coefficients have a substantial impact on tumor growth dynamics.
A high nutrient diffusion coefficient facilitates faster transport of nutrients from the boundary
towards the center of the tumor. As a result, the tumor would need to grow larger before the
nutrient supply at the center falls below the nutrient threshold. Conversely, a low nutrient
diffusion coefficient leads to a slower distribution of nutrients from the boundary throughout
the tumor domain. With a growing tumor, it becomes increasingly challenging for nutrients
to reach the center, and as a consequence, the nutrient threshold is reached sooner. Thus, the
diffusion coefficients directly affect the nutrient availability and can influence the tumor’s size
and nutrient supply dynamics.

In the model, the presence of both internally generated and externally supplied growth-
inhibitor factors introduces additional complexity to the formation of GIF quiescent regions
within the tumor. The locations within the tumor where the weighted sum of these two
concentrations reaches the GIF-threshold can vary significantly based on changes in the dis-
tribution of either type of growth-inhibitor factors. Consequently, the initial time of formation
of GIF quiescent regions and the locations are highly dependent on the diffusion coefficients
and decay constants of G1 and G2, and also on the production/excretion constant of G1.
These parameters directly influence the distribution of the growth-inhibiting concentrations
within the tumor. Moreover, it’s important to note that the comparison to the GIF-threshold
is done using a weighted sum of the concentrations. Therefore, the weights assigned to each
concentration also play a crucial role. By adjusting the weights, one can control the relative
importance of each growth-inhibitor factor concentration in determining the location and ex-
tent of the quiescent regions.

In the equation for G1, the difference between the sink and production/excretion coefficients
has a significant impact on whether the concentration of G1 will increase or decrease over
time. In [2], the production/excretion coefficient is much larger than the sink coefficient,
therefore in the reference problem used in the sensitivity analysis in the next chapter this
relation will be maintained. Furthermore, suppose that uG1 > uG2. If uG1 is so large that uG2

becomes negligible in the weighted sum, the GIF quiescent region will be a disk in the center.
If the concentrations are of the same order and both contribute to the weighted sum, then
the threshold will be reached in an annulus shape somewhere inside the tumor. The location
highly depends on both diffusion coefficients. On the contrary, if uG1 < uG2 and uG2 is the
only significant contributor in the weighted sum, it will take a significant amount of time
before the GIF-threshold is reached because uG2 is only being consumed within the tumor.
Therefore, one would have to wait until uG1 becomes so large that the threshold is reached.

In addition to all the aforementioned factors, the variation in decay constants across dif-
ferent regions also affects tumor evolution. These decay constants are zero in necrotic regions,
small in quiescent regions, and larger in proliferating regions. The diffusion coefficients, how-
ever, remain constant. This means that in necrotic regions, nutrients are still diffused into
the regions even though there is no consumption. Similarly, in quiescent regions, some nutri-
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ents are consumed, but not to the same extent as in proliferating regions. As a result, the
concentration of nutrients increases in quiescent and necrotic regions. Consequently, after a
certain period of time, the nutrient concentration may actually exceed the nutrient threshold.
Therefore, it is possible for quiescent cells due to nutrient deficiency to become proliferating
again. On the other hand, the necrotic cells remain necrotic, as this is explicitly stated as a
part of the model. Hence, modifying the nutrient diffusion coefficient and decay constant will
affect the extent to which nutrient-deficient cells can regain their proliferative capacity.

Some possible combinations of regions are shown below. Blue regions represent proliferat-
ing areas, red regions represent quiescent areas (both types), and black regions represent
necrotic areas.

(a) (b) (c)

Figure 2.2: Possible quiescent regions

Figure 2.2 shows three possible combinations of proliferating and quiescent regions. In Fig-
ure 2.2(a), there is an outer annulus-shaped proliferating region, while the center consists of
quiescent cells. The entire quiescent region may be composed of either only GIF quiescent
cells or only nutrient-deprived quiescent cells. There is also a third option where the quiescent
annulus outside the white stapled circle is composed of GIF quiescent cells, while the inner
disk is composed of nutrient-deprived cells. This third option is related to the distribution in
Figure 2.2(c), where the annulus-shaped quiescent region consists of GIF quiescent cells and
the inner quiescent disk of nutrient-deprived cells. However, note that the quiescent regions
are smaller in this case, and there is a proliferating region in between them. In Figure 2.2(b),
there are no nutrient-deprived regions, only an annulus-shaped region where the GIF concen-
trations have surpassed θG.

Figure 2.3 displays two possible combinations of all three types of regions. The distribu-
tion in Figure 2.3(a) can occur if the previous combination of just proliferating and quiescent
regions were distributed as in Figure 2.2(a), when both quiescent cell types were present, or
equivalently as in Figure 2.2(c). The distribution in Figure 2.3(a) occurs if either the nutrient-
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deprived area and/or the GIF quiescent area has grown such that these two regions overlap.
When this happens, the cells in the overlapping area will have GIF concentrations above θG
and nutrient levels below θN , and therefore become necrotic. Another possibility is that the
previous quiescent region consisted entirely of nutrient-deprived cells, and then a GIF quies-
cent annulus-shaped region formed within this disk. This would cause the cells in the annulus
to become necrotic.

The distribution in Figure 2.3(b) can result from several different cell type combinations.
One possibility is that the entire center was previously quiescent due to high GIF levels, and
when an inner part of the center was deprived of nutrients, the necrotic region formed. An-
other possibility is that the quiescent region initially was a disk-shaped region consisting solely
of nutrient-deprived cells, and when the GIF concentrations became too high it happened in
the center, and therefore the necrotic region formed in the center. Or the cells in the center
had been deprived of nutrients for too long, that would also lead to a necrotic center. A third
possibility is that the quiescent region consisted of an annulus-shaped region of GIF cells with
an inner disk of nutrient-deprived cells. If the cells closest to the center were deprived of
nutrients for too long, a necrotic disk would form, with an adjacent annulus-shaped region
of quiescent nutrient-deprived cells, which, in turn, is adjacent to a GIF quiescent region
displayed by the white stapled line in Figure 2.3(b).

(a) (b)

Figure 2.3: Possible necrotic regions
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2.2 Discretization of the mathematical model

In this section, we will discretize the model with respect to time and obtain the variational
formulations.

The ODE representing the change in number of cells in the tumor is discretized using
the forward Euler method. The ODE is as follows

dnc

dt
= nloc

∫
Ωpro

ρ[−ν1uG1 − ν2uG2 + ηuN ]dx (2.31)

and the resulting discretized equation is

nnew
c = npreviously

c + τnloc

∫
Ωpro

ρ[−ν1uG1 − ν2uG2 + ηuN ]dx (2.32)

where τ represents the time step and npreviously
c denotes the number of cells the tumor was

comprised of at the previous time.

The PDE representing the evolution of nutrient concentration is given by

∂tuN +∇ · (−DN∇uN + c⃗NuN) = −αnlocuN . (2.33)

To discretize the PDE, we start by approximating the time derivative using the backward
Euler method, resulting in the following equation

unN + τ∇ · (−DN∇unN + c⃗Nu
n
N) = −ταnlocu

n
N + un−1

N . (2.34)

Proceeding to discretize with respect to space, we will use the Finite Element method with P1
elements. To obtain the finite dimensional variational formulation, we multiply the equation
by a test function, vnN and integrate over the domain. Moreover, gathering all terms containing
the unknown unN on the left side results in∫

Ω

unNv
n
N + ταnlocu

n
Nv

n
N dx+

∫
Ω

τ∇ · (−DN∇unN + c⃗Nu
n
N)v

n
N dx =

∫
Ω

un−1
N vnN dx. (2.35)

Furthermore, by applying integration by parts to the second term on the left-hand side, we
can rewrite the term as follows∫

Ω

τ∇ · (−DN∇unN + c⃗Nu
n
N)v

n
N dx = (2.36)

−τ
∫
Ω

(−DN∇unN + c⃗Nu
n
N) · ∇vnN dx+ τ

∫
∂Ω

ν · (−DN∇unN + c⃗Nu
n
N)v

n
N ds (2.37)

where ν denotes the outward pointing unit normal vector at the boundary. Due to vnN having
compact support on the boundary, vnN is equal to zero at the boundary. Thus, we are left with
the following equality.∫

Ω

τ∇ · (−DN∇unN + c⃗Nu
n
N)v

n
N dx = τ

∫
Ω

(DN∇unN − c⃗Nu
n
N) · ∇vnN dx. (2.38)
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The resulting finite dimensional variational formulation is∫
Ω

unNv
n
N + ταnlocu

n
Nv

n
N dx+ τ

∫
Ω

(DN∇unN − c⃗Nu
n
N) · ∇vnN dx =

∫
Ω

un−1
N vnN dx. (2.39)

The bilinear form is

aN(u
n
N , v

n
N) :=

∫
Ω

unNv
n
N + ταnlocu

n
Nv

n
N dx+ τ

∫
Ω

(DN∇unN − c⃗Nu
n
N) · ∇vnN dx (2.40)

and the linear form is

LN(v
n
N) :=

∫
Ω

un−1
N vnN dx. (2.41)

The PDE representing the evolution of G2 concentration is as follows

∂tuG2 +∇ · (−DG2∇uG2 + c⃗G2uG2) = −ξnlocuG2. (2.42)

By following the exact same steps as when discretizing the nutrient PDE, we obtain the finite
dimensional variation formulation for G2, which is as follows∫

Ω

unG2v
n
G2 + τξnlocu

n
G2v

n
G2 dx+ τ

∫
Ω

(DG2∇unG2 − c⃗G2u
n
G2) · ∇vnG2 dx =

∫
Ω

un−1
G2 v

n
G2 dx. (2.43)

With the bilinear form

aG2(u
n
G2, v

n
G2) :=

∫
Ω

unG2v
n
G2 + τξnlocu

n
G2v

n
G2 dx+ τ

∫
Ω

(DG2∇unG2 − c⃗G2u
n
G2) · ∇vnG2 dx (2.44)

and linear form

LG2(v
n
G2) :=

∫
Ω

un−1
G2 v

n
G2 dx. (2.45)

Regarding the discretization of the G1 PDE, it should be noted that the boundary con-
dition is of Neumann type. This implies that the value of uG1 is not known on the boundary.
Consequently, a test function vG1 will not have compact support at the boundary.

The G1 PDE is as follows

∂tuG1 +∇ · (−DG1(x, y)∇uG1) = −γuG1 + λS(x, y). (2.46)

Following the same approach as used for the other two PDEs, we will discretize the time
derivative using the backward Euler method for this PDE as well. This leads to the following
time-discrete, space-continuous equation,

unG1 + τ∇ · (−DG1∇unG1) = −τγunG1 + τλS + un−1
G1 . (2.47)

To discretize the equation with respect to space, we multiply the preceding equation by a test
function vnG1 and integrate it over the domain.∫

Ω

unG1v
n
G1 dx+

∫
Ω

τγunG1v
n
G1 dx+

∫
Ω

τ∇ · (−DG1∇unG1)v
n
G1 dx =

∫
Ω

τλS dx+

∫
Ω

un−1
G1 v

n
G1 dx.

(2.48)
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Applying integration by parts to the third term on the left-hand side results in the following
equality.∫

Ω

τ∇·(−DG1∇unG1)v
n
G1dx = −τ

∫
Ω

(−DG1∇unG1)·∇vnG1dx+τ

∫
∂Ω

n⃗·(−DG1∇unG1)v
n
G1ds (2.49)

where n⃗ denotes the outward pointing unit normal vector at the boundary. The Neumann
boundary condition states that n⃗ · (−DG1∇unG1) = 0. Therefore, the preceding equality sim-
plifies to ∫

Ω

τ∇ · (−DG1∇unG1)v
n
G1 dx = τ

∫
Ω

(DG1∇unG1) · ∇vnG1 dx. (2.50)

The resulting finite dimensional variational problem is∫
Ω

unG1v
n
G1dx+

∫
Ω

τγunG1v
n
G1dx+τ

∫
Ω

(DG1∇unG1)·∇vnG1dx =

∫
Ω

τλSdx+

∫
Ω

un−1
G1 v

n
G1dx (2.51)

where the bilinear from is

aG1(u
n
G1, v

n
G1) :=

∫
Ω

unG1v
n
G1 dx+

∫
Ω

τγunG1v
n
G1 dx+ τ

∫
Ω

(DG1∇unG1) · ∇vnG1 dx (2.52)

and the linear form is

LG1(vG1) :=

∫
Ω

τλS dx+

∫
Ω

un−1
G1 v

n
G1 dx. (2.53)

Summary of the discretized equations

nnew
c = npreviously

c + τnloc

∫
Ωpro

ρ[−ν1uG1 − ν2uG2 + ηuN ]dx. (2.54)

aN(u
n
N , v

n
N) :=

∫
Ω

unNv
n
N + ταnlocu

n
Nv

n
N dx+ τ

∫
Ω

(DN∇unN − c⃗Nu
n
N) · ∇vnN dx. (2.55)

LN(v
n
N) :=

∫
Ω

un−1
N vnN dx. (2.56)

aG2(u
n
G2, v

n
G2) :=

∫
Ω

unG2v
n
G2 + τξnlocu

n
G2v

n
G2 dx+ τ

∫
Ω

(DG2∇unG2 − c⃗G2u
n
G2) · ∇vnG2 dx. (2.57)

LG2(v
n
G2) :=

∫
Ω

un−1
G2 v

n
G2 dx. (2.58)

aG1(u
n
G1, v

n
G1) :=

∫
Ω

unG1v
n
G1 dx+

∫
Ω

τγunG1v
n
G1 dx+ τ

∫
Ω

(DG1∇unG1) · ∇vnG1 dx. (2.59)

LG1(v
n
G1) :=

∫
Ω

τλS dx+

∫
Ω

un−1
G1 v

n
G1 dx. (2.60)
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2.3 Implementation of the mathematical model

The implementation has been written in Visual Studio Code (VS Code) using the Python
programming language. VS Code is deployed within a Docker container. For the finite ele-
ment method, the FEniCS library has been utilized. This library enables writing a substantial
portion of the code in a way that closely resembles the notation used in finite element theory.
For instance, the library handles the generation of the function space, requiring the coder
only to specify the desired space. As a result, FEniCS greatly simplifies the process of solving
partial differential equations using the finite element method.

The code structure
To begin with, one needs to choose parameter values and define the functions that form the
partial differential equations. Additionally, decisions must be made regarding the initial num-
ber of cells, the size of each cell, the percentage of extracellular matrix within the tumor,
the size of triangular elements, the time step, boundary data, initial values, threshold values,
and unit conversions. Although the code represents time and length dependent variables in
seconds and centimeters, it allows for easy modification of values to accommodate different
units (e.g., from seconds to minutes or centimeters to millimeters).

Given the initial number of cells, the size of each cell, and the percentage of extracellular
matrix, the radius of the assumed circular domain can be computed. Furthermore, by speci-
fying an element size, the initial mesh can be generated using FEniCS. The mesh generation
process involves defining a domain object and utilizing a built-in mesh generation function,
which takes the domain and the desired number of elements as input. In addition, one de-
fines the function space over the triangular elements, known as P1-elements, using the newly
created mesh. FEniCS provides a built-in function space class that facilitates this process,
requiring the mesh, function type, and function degree as inputs. This stage of the implemen-
tation closely follows the notation used in finite element theory. Furthermore, boundary and
initial data are connected to the mesh using FEniCS built-in functions and classes.

With all the necessary components in place, it is time to start solving the growth prob-
lem. The code performs the following calculations at each time step until all proliferating
regions have vanished, i.e., the tumor has stopped growing. First, the vertices of the mesh
are classified into proliferating, quiescent, or necrotic regions. To accomplish this, a function
has been implemented to take the current mesh (i.e., the vertices), concentration solutions,
and threshold values as input. It evaluates the concentration values at each vertex against
the cell-type criteria, and ensures that all necrotic vertices remain necrotic. Utilizing the
functionality provided by FEniCS, the mesh is divided into subdomains based on the coor-
dinates of these vertices. The subdomains represent proliferating regions, quiescent regions
due to high growth-inhibitor concentrations, quiescent regions due to nutrient deficiency, and
necrotic regions.

Once the proliferating regions are identified, the growth of the tumor can be calculated, which
means to calculate the new number of cells. The number of cells is determined by solving an
ordinary differential equation (ODE) using the forward Euler method. The mitotic function,
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which is non-zero only in proliferating regions, contributes to the cell count calculation. The
next step involves computing the new tumor radius using the previously mentioned function,
which depends on the number of cells, the radius of a single cell, and the percentage of extra-
cellular matrix. Subsequently, the corresponding new mesh and P1-elements are defined using
FEniCS functions and classes. Furthermore, the concentrations obtained from the previous
step, when the mesh was smaller, need to be extrapolated onto the new mesh. While extrap-
olation can be challenging, FEniCS provides a built-in mechanism to handle this, simplifying
the process.

With the concentrations defined on the mesh, the next step involves redefining the mesh
to include proliferating, quiescent, and necrotic subdomains. This is done by following the
same procedure as described above. Using FEniCS functionality the boundary data and other
space-dependent parameters are adjusted to be valid on the new mesh. Additionally, trial,
test, and solution functions are defined with respect to the new mesh.

Having the new mesh and the previous concentrations defined on it, one can proceed to solve
the equations and obtain solutions at the current time. This involves solving the variational
problems of the partial differential equations, where the time derivatives have been discretized
using the backward Euler method. A class has been implemented to generate the necessary
bilinear and linear forms for the variational problem. This class takes all region-dependent
variables as input and utilizes FEniCS functionality to define the respective bilinear and linear
forms.

To solve the variational problems, the built-in solver in FEniCS is utilized. In this case,
a Multifrontal Massively Parallel Sparse direct Solver (MUMPS) is used. The equations are
solved in the following order: first, the nutrient equation, then the first growth-inhibitor equa-
tion, and finally the second growth-inhibitor PDE.

After solving the equations, the process continues to the next time step, repeating the classi-
fication of mesh vertices based on the new solutions, and assessing the tumor’s growth. The
iteration continues until there are no more proliferating regions, indicating that the tumor has
ceased growing.

The structure of the code is schematized in the flow chart below.
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Start

State all parameter values

Make initial mesh,
and divide it into
proliferating,
quiescent and
necrotic regions

Does the mesh contain
any proliferating regions?

Yes
End

No
Calculates new
number of cells,

and the new radius

Defines new
mesh and P1
function space

Extrapolate the
previous solutions
on to the new
and larger mesh

Solves the equations us-
ing FEM in the following
order, first the nutrient
eq., then the G1 eq.
and at last the G2 eq.

Divides the mesh into
proliferating, quiescent
and necrotic regions
based on the new

concentration values

Figure 2.4: Flow chart of the code structure.
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Chapter 3

Numerical results

In this chapter, numerical results produced by the mathematical model will be presented.
First, we will define and examine the reference solution, followed by an exploration of how
modifying parameters affect tumor growth.

3.1 The reference solution

The reference case was chosen such that the initial tumor is classified as a small tumor. The
size is defined as the longest length of the tumor, which is the distance between the two
points farthest from one another [39]. Given that avascular tumors usually do not become
particularly large, this is a reasonable initial size. The initial radius is 0.5677 mm meaning
the size, which is the diameter due to the model assumption that a tumor is perfectly circular,
is 1.1354 mm. Initially, the tumor is fully proliferating, but after 630 minutes, a disk in the
center of the tumor has insufficient nutrients to sustain proliferation and becomes quiescent.
As a result, only a smaller part of the tumor continues to proliferate, leading to slower growth.
Thus, it is possible for enough nutrients to diffuse into the quiescent region and cause cells
to proliferate again. This cycle of alternating proliferation and quiescence continues until the
tumor becomes so large that nutrient-deficient regions persist. In addition, after 780 minutes
the growth-inhibitor concentrations have increased enough to surpass the growth-inhibitor
threshold, θG, causing a larger portion of the tumor to become quiescent. Ten minutes later,
the center of the tumor experiences both growth-inhibitor concentrations above θG and nu-
trient concentration below θN , leading to cell death and the formation of a necrotic region.
After 1780 minutes, approximately 29 hours, all cells have become quiescent or necrotic, and
tumor evolution ceases.

In Figure 3.1, we can observe the changes in radius over time, while Figure 3.2 displays
the variations in the number of cells. It is evident that the curves in both figures exhibit
similar shapes. This is because there is a linear relationship between a tumor’s radius and the
number of cells comprising the tumor. From both figures, we can see that the tumor grows
fastest in the beginning, which makes sense because then the entire tumor is fully proliferat-
ing. After approximately 800 minutes, the growth slows down, which is when the quiescent

53
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regions have become significantly large, and necrotic regions form. From there on the growth
rate decreases until the entire tumor stops growing.

Figure 3.1: Radius vs time, reference solution

Figure 3.2: Number of cells vs time, reference solution

In Figure 3.3 we can see how the tumor has grown, and also how the cell type distribution
has altered. The light brown regions represent proliferating cells, the blue regions represent
quiescent cells, and the red regions represent necrotic cells.
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(a) (b) (c)

(d) (e)

Figure 3.3: (a) Initial cell distribution (b) The cell distribution after 445 minutes (c) The
cell distribution after 890 minutes (d) The cell distribution after 1330 minutes (e) The final
cell distribution. In the transition between subdomains, FEniCS has significantly refined the
mesh to ensure an accurate approximation in these regions where the cell types alters.

From Figure 3.3(a), we observe that the tumor was initially in a state of full proliferation.
Furthermore, Figure 3.3(b) illustrates that after 445 minutes the tumor has grown and remains
fully proliferating. By the 890th minute, as shown in Figure 3.3(c), both quiescent and necrotic
regions have emerged in the central area. In Figure 3.3(d), we can see a significant growth
of the quiescent region, with only a small annulus-shaped proliferating region remaining.
The necrotic region appears to have undergone minimal changes. Additionally, Figure 3.3(e)
portrays the cell distribution at the point where tumor growth ceased, consisting exclusively
of quiescent and necrotic cells.
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Parameter Value
sc 10
T 60
n0 25000
rc [mm] sc× 3.5× 10−4

pextrm 0.05
h [mm2] 0.05
k [min] 10

αpro [mm2

min
] T × sc2 × 10−8

αqui [mm2

min
] T × sc2 × 0.5× 10−8

αnec [mm2

min
] 0

γproqui [min−1] T × 5× 10−5

γnec [min−1] 0
λ [mm−2min−1] T

sc2
× 0.00325

ξproqui [mm2

min
] T × sc2 × 10−8

ξnec [mm2

min
] 0

κ 3
ψ 0.1

η [mm2

min
] T × sc2 × 10−6

ν1 [mm2

min
] T × sc2 × 10−7

ν2 [mm2

min
] T × sc2 × 10−7

ρ [mm2] sc2 × 0.5× 10−3

DN [mm2

min
] T × sc2 × 5× 10−4

DG2 [mm2

min
] T × sc2 × 5× 10−4

DG1(x, y) [mm2

min
] T × sc2 × 5× 10−7 × (1− 0.2(x2 + y2))

c⃗N [mm
min

] [T × sc× 10−5, 0]
c⃗G2 [mm

min
] [T × sc× 10−5, 0]

uG1,0 0.1
uG2,0 0
uN,0 3
θN 2.81
θG 0.416
Nutrient deprivation time 6 hours

Table 3.1: Reference values.

3.2 Sensitivity analysis

The purpose of conducting a sensitivity analysis is to determine the extent to which a param-
eter affects the growth and how it influences it. Furthermore, the sensitivity analysis allows
us to assess whether the mathematical model aligns with the expected tumor evolution and
conforms to physical and biological principles. Throughout the remaining chapters, all re-
sults will be compared to the reference solution, see Table 3.1 for the reference values, unless
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otherwise specified.

3.2.1 Diffusion coefficients

In this section, we will explore how altering the diffusion coefficients, one at a time, will affect
the growth. Remember that, with respect to the mathematical model, the diffusion coefficients
determine the rate at which their respective concentrations diffuse. That is, they govern how
fast a substance move from an area of high concentration to an area of low concentration. For
the nutrients and G2 concentrations, diffusion leads to a flow directed inwards towards the
center of the tumor. This is because they are supplied at the boundary, thus having the high-
est concentration there, and are only consumed inside, resulting in the lowest concentration
at the center, farthest from the boundary. On the other hand, G1 is produced/excreted inside
the tumor with the highest production/excretion level at the center, gradually decreasing to-
wards zero at the boundary. In other words, the G1 concentration is highest in the center and
lowest at the boundary, indicating that diffusion will induce a flow from the center towards
the boundary in this case.

Figures 3.4 and 3.5, and Table 3.2 show the impact of the nutrient diffusion coefficient on
tumor growth. It is important to note that nutrients are only supplied at the boundary and
consumed inside the tumor. When the diffusion coefficient is small, the nutrients supplied at
the boundary move slowly inwards. Consequently, the tumor in this case has a lower nutrient
concentration at the center compared to the reference solution. The lower nutrient concen-
tration leads to earlier formation of quiescent regions, where cells become dormant due to a
lack of nutrients. This phenomenon is evident in Table 3.2, specifically in the fifth column for
sensitivity cases (i), (ii), (iii), and (iv). Once quiescent regions have formed, only a smaller
portion of the tumor remains actively proliferating, resulting in slower growth. Due to the slow
growth, it is possible for nutrients to diffuse into the quiescent regions and transition the cells
back to proliferative state. This is particularly likely immediately after the initial formation
of nutrient-deprived quiescent regions when these regions are small. Although this alternating
cycle between fully proliferating and partially proliferating inhibits growth, its impact is not
significant.

Nutrient
diffusion
coefficient

DN

(T × sc2)
Final radius

(mm)
Quiescent,

GIF’s
Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

5.000×10−4 0.9591 780 630 790 1780

(i) 3.000×10−4 0.7903 830 160 790 930
(ii) 3.500×10−4 0.8121 810 240 790 980
(iii) 4.000×10−4 0.8228 790 380 780 990
(iv) 4.500×10−4 0.8456 780 530 790 1070
(v) 5.500×10−4 0.9602 780 750 790 1790
(vi) 6.000×10−4 1.2640 780 - 2130 3260
(vii) 6.500×10−4 1.3292 780 - 2320 3580
(viii) 7.000×10−4 1.3800 780 - 2510 3620

Table 3.2: Tumor evolution, altered DN .
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Regarding the formation of growth-inhibitor quiescent regions, one should note that the
G1 concentration is the main contributor in reaching the GIF threshold, θG. Furthermore,
it should be noted that the source term of G1 is space dependent, with highest produc-
tion/excretion in the center and decreasing towards zero at the boundary. Hence, the larger
the domain, the higher the G1 production/excretion is within a given area. In cases with
smaller nutrient diffusion coefficients, the growth of the tumor will be slightly smaller com-
pared to the reference case due to the earlier formation of quiescent regions caused by nutrient
deprivation. Therefore, in these cases, since the tumor sizes are smaller, one would expect
the formation of quiescent regions due to high growth-inhibitor concentrations to occur later
than in the reference case. This is evident in Table 3.2, specifically in the fourth column for
sensitivity cases (i)-(iii). For sensitivity case (iv), the diffusion coefficient has been reduced,
but apparently not enough to substantially alter the concentrations of growth-inhibitors. As
a result, in this case, the formation of growth-inhibitor-induced quiescent regions occurred at
the same time as in the reference solution.

Necrotic regions can form as a result of either a lack of nutrients for more than 6 hours
or a combination of nutrient deficiency and high growth-inhibitor (GIF) concentrations. In
Table 3.2, for sensitivity cases (i)-(iv) the formation time of necrotic regions for decreased nu-
trient diffusion coefficients can be observed in the sixth column. Since the timing of necrotic
region formation is quite similar across all cases and considering that nutrient-deprived cells
alternate between dormant and proliferating states, it is reasonable to conclude that necrotic
cells are a result of high GIF concentrations and nutrient deficiency.

As mentioned, the early onset of nutrient-deprived quiescent cells leads to a smaller pro-
liferating area earlier than in the reference problem, resulting in smaller growth. The necrotic
regions are thus formed in a smaller tumor compared to the reference case, leading to an over-
all smaller growth and growth period. This trend can be observed in Table 3.2, specifically
in the third and seventh columns for sensitivity cases (i)-(iv), respectively. The same pattern
is visualized in Figure 3.4, where the radius at each time step is plotted for all the different
cases. The four lower graphs represent the cases where the nutrient diffusion coefficient has
decreased. It can be observed that these cases grow for approximately 1000 minutes before
ceasing to grow, and their growth is always below the reference graph, indicating a smaller
radius.
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Figure 3.4: Radius vs time, altered DN .

In the lower half of Table 3.2, the nutrient diffusion coefficients have increased compared to the
reference coefficient. A higher diffusion coefficient means that nutrients supplied at the bound-
ary are transported faster towards the center, where the concentration is lowest. Consequently,
the tumor center in these cases has a higher nutrient concentration compared to the reference
case. A higher nutrient concentration implies that it takes more time before nutrient-deprived
quiescent regions form. Furthermore, it is possible that the diffusion is so high that quiescent
regions due to excessive growth-inhibitor concentrations have already formed and are large
enough that when the nutrient level drops below the threshold, necrotic regions immediately
form. This was observed in the three cases with the highest nutrient diffusion coefficients
analyzed. From the onset of necrosis, it is evident that it took a long time for the nutrient
concentration to decrease enough to reach the threshold, as shown in Table 3.2, column 6,
for sensitivity cases (vi)-(viii). Regarding sensitivity case (v), a nutrient-deprived quiescent
region formed, but much later compared to the reference solution, as expected. In this case,
the necrotic region formed immediately after the GIF quiescent region formed. It can be seen
from Table 3.2 that in these cases with high diffusion coefficients, quiescent regions due to
excessive growth-inhibitors formed at the same time as in the reference case. Therefore, the
increase in growth rate is not significant enough to result in earlier formation of quiescent
regions due to excessive growth-inhibitors.

In all these cases with high diffusion coefficients, the tumor remains fully proliferating for
a longer period of time compared to the reference case. Additionally, the nutrient concen-
tration is more evenly distributed, leading to increased growth at each time step. Therefore,
one would expect these tumors to grow for a longer duration and reach larger sizes than the
reference tumor. Figure 3.4 clearly shows that the cases with increased nutrient diffusion
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coefficients grow for a longer period of time than the reference case, and that their final radii
are larger (as indicated by the curves being above the reference curve). In Figure 3.5, the final
radii is plotted against the respective nutrient diffusion coefficient values. It demonstrates
that increasing the diffusion coefficient results in a larger final radius, while decreasing the
nutrient coefficient leads to smaller growth. It is evident, expect for small alterations in DN ,
that increasing the nutrient diffusion coefficient has a greater impact on growth compared to
decreasing it.

Figure 3.5: Final radius vs DN .

Before proceeding to analyze the results obtained by modifying the diffusion coefficient for
the second growth-inhibitor factor, G2, it is important to note that G2 is externally supplied
and is only consumed within the tumor. Additionally, it is worth noting that G2 is combined
with internally produced/excreted G1 in a weighted sum, which is then compared to the GIF
threshold, θG. However, it is observed that the G1 concentration surpasses the G2 concen-
tration relatively quickly, making G1 the primary contributor to reaching θG. Consequently,
any changes in the G2 diffusion coefficient would not be expected to significantly alter tumor
growth. In fact, when examining all the cases tested in Table 3.3, it is evident that the oc-
currence of different types of regions happens at the same time as in the reference case. This
indicates that the overall tumor evolution has not been significantly affected. The formation
of GIF quiescent regions consistently occurs after 780 minutes, nutrient-lacking quiescent re-
gions after 630 minutes, and necrotic regions after 790 minutes.

Altering the diffusion coefficient influences how fast G2 is transported towards the center
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of the tumor where the concentration is smallest. When the diffusion coefficient is small,
one would expect the quiescent region to either appear as an annulus closer to the boundary
compared to the initial quiescent region in the reference case, or alternatively as a disk with
larger radius compared to the initial quiescent region in the reference case. This is because
smaller diffusion coefficients result in lower G2 concentrations in the center, requiring one to
move closer to the boundary for the G2 concentration to be high enough for θG to be reached.
Furthermore, it’s worth noting that since G1 is produced/excreted within the tumor and has
the highest production/excretion level in the center, the annular quiescent region will soon
become disk-shaped. Consequently, in cases with decreased G2 diffusion coefficients, the qui-
escent regions covers a larger portion of the tumor. As a result, one would expect the final
tumor size to be smaller compared to the reference case.

On the other hand, when the diffusion coefficient increases, the supply of G2 at the boundary
is transported faster towards the center. In these cases, the G2 concentration in the center
will be higher compared to the G2 concentration in the center of the reference case. Therefore,
one would expect the initial quiescent region to appear closer to the center compared to the
reference solution. As a result, the tumor should grow faster, due to a larger part of the tumor
remaining proliferating, and lead to a larger final size compared to the reference solution. It is
also possible that the diffusion coefficient becomes so high that the G2 concentration becomes
evenly distributed, resulting in minimal difference between the concentration at the boundary
and the concentration at the center. In such cases, one would expect the initial quiescent
region to be disk-shaped with a larger radius than the initial quiescent region in the reference
case. Consequently, the tumor would experience slower growth and reach a smaller final size.

Second
growth-inhibitor
factor diffusion
coefficient

DG2 (T × sc2) Final radius (mm) Stop time (minutes)

The reference case 5.000× 10−4 0.9591 1780
(i) 3.000× 10−4 0.9543 1760
(ii) 3.500× 10−4 0.9555 1790
(iii) 4.000× 10−4 0.9552 1740
(iv) 4.500× 10−4 0.9558 1790
(v) 5.500× 10−4 0.9660 1910
(vi) 6.000× 10−4 0.9730 1970
(vii) 6.500× 10−4 0.9843 2110
(viii) 7.000× 10−4 0.9723 1950
(ix) 7.500× 10−4 0.9695 1940
(x) 8.000× 10−4 0.9578 1790
(xi) 8.500× 10−4 0.9531 1740

Table 3.3: Tumor evolution, altered DG2.

For sensitivity cases (i)-(iv) of Table 3.3 the diffusion coefficient is reduced compared to the
reference case. As expected, all final radii are slightly smaller than the reference radius. How-
ever, when comparing the final radii and total growth time for the cases with smaller DG2, it
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becomes clear that they are not strictly decreasing. This is because the evolution of the tumor
is influenced by the shape of the initial quiescent region. If it is annulus-shaped, the remaining
proliferating region is larger for a short period until the quiescent region becomes disk-shaped.
Consequently, the tumor grows at a higher rate for a short period of time, and as a result,
achieves a slightly larger final tumor size compared to cases where the initial quiescent region
is disk-shaped. Furthermore, the reason why one can have an increase in growth time, even
though the total growth is smaller, is because when the growth rate decreases so does the
production/excretion of G1. In other words, the quiescent GIF region will grow slower.

In Figure 3.6, the relationship between final radii and diffusion coefficients is plotted. It
is evident that when the diffusion coefficient is reduced compared to the reference case, the
final radius also decreases relative to the reference end radius. However, perhaps the most
important observation is that decreasing DG2, relative to the reference case, only has a minor
effect on growth.

Figure 3.6: Final radius vs DG2.

For the sensitivity cases (v)-(xi) in Table 3.3, the diffusion coefficient DG2 has been increased
relative to the reference case. By examining the column listing the final radii and referring
to Figure 3.6, where final radii have been plotted against their respective diffusion coefficient
values, it becomes apparent that a slight increase in the diffusion coefficient leads to larger
growth. However, as the increase becomes more significant, the growth also increases but
to a lesser extent, and after further increasing DG2 the growth actually starts to decrease.
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This aligns with the expected behavior discussed earlier. Nevertheless, the changes resulting
from altering the G2 diffusion coefficient are relatively minor. This is clearly demonstrated in
Figure 3.7, where the radius at each time step is plotted for all the cases. It can be observed
that all the curves are closely aligned, with only slight variations towards the end. This implies
that modifications in DG2 do not have a significant impact on the growth, as anticipated.

Figure 3.7: Radius vs time, altered DG2.

As mentioned previously, G1 plays a significant role in reaching and surpassing the threshold
θG. Therefore, it is reasonable to expect that modifying its distribution within the tumor
would impact its growth. Additionally, since G1 is produced/excreted internally and has the
highest production/excretion rate in the center, diffusion processes contribute to transporting
G1 away from the center and towards the boundary.
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First
growth-
inhibitor
factor
diffusion
coefficient

DG1

(T × sc2)
Final radius

(mm)
Quiescent,

GIF’s
Necrotic Stop time

(minutes)

The
reference
case

5.000× 10−7 0.9591 780 790 1780

(i) 3.500× 10−7 1.1521 720 730 2960
(ii) 4.000× 10−7 1.1141 740 750 2680
(iii) 4.500× 10−7 1.0906 760 770 2660
(iv) 5.500× 10−7 0.9064 800 810 1400
(v) 6.000× 10−7 0.8832 820 810 1220
(vi) 6.500× 10−7 0.8528 840 830 1060

Table 3.4: Tumor evolution, altered DG1.

When the diffusion coefficient is reduced compared to the reference case, the transportation of
G1 concentration towards the boundary slows down, resulting in higher G1 concentration in
the center. Consequently, the quiescent region is expected to form based solely on the elevated
G1 concentration in the center, as G2 is only consumed within the tumor and will therefore
never reach the threshold on its own. Due to the increased G1 concentration, the quiescent
regions form earlier compared to the reference case and take on a disk-shaped form. However,
the disk will be relatively small due to the proximity of the high G1 concentration to the cen-
ter, caused by the limited diffusion. Additionally, the reduced diffusion also slows down the
evolution of the quiescent regions. As a result, a larger portion of the tumor remains prolif-
erating, leading to faster and prolonged growth. This ultimately results in a larger final radius.

For the sensitivity cases (i)-(iii) in Table 3.4, where DG1 has decreased compared to the
reference case, one can observe the expected growth patterns based on the columns displaying
the final radius and total growth time. These trends are also evident in Figure 3.8, where
the radius at each time step is plotted for all the cases. The tumor growth becomes more
significant as DG1 becomes smaller. Furthermore, it should be noted that the quiescent region
due to nutrient deprivation appeared at the same time, that is, after 630 minutes, for all
the cases in Table 3.4. Since GIF quiescent regions appear after nutrient deprived quiescent
regions have formed, necrotic regions form immediately afterwards.
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Figure 3.8: Radius vs time, altered DG1.

With increased diffusion coefficients, G1 is transported faster towards the boundary. There-
fore, one would anticipate the boundary of the GIF quiescent region (which is now determined
by the weighted sum of G1 and G2) to be closer to the tumor boundary, but formed at a later
time. This is because, despite the higher G1 concentration towards the boundary, it still takes
a longer time for the concentration to reach a level high enough, due to the increased distance
from the center compared to the reference case, for the weighted sum to surpass the threshold
θG. However, once the threshold is initially reached, the evolution of the quiescent region
progresses rapidly due to the fast supply of G1 from the center, facilitated by the increased
diffusion coefficient. Furthermore, the proximity of the quiescent region to the boundary in-
dicates that a smaller portion of the tumor is actively proliferating compared to the reference
case. Consequently, one should expect smaller growth and a shorter growth period. In Table
3.4, it can be observed that for the sensitivity cases (iv)-(vi) where the diffusion coefficient
has increased compared to the reference case, both the final radii and the growth period have
decreased as expected. This trend is also clearly observed in Figure 3.8.

We have now observed the effects of altering the diffusion coefficients on tumor growth. Among
the factors we considered, changing the nutrient diffusion coefficient has the most significant
impact on the growth, resulting in both the largest and smallest sizes observed. Furthermore,
we found that modifying the G1 diffusion coefficient had a greater impact on growth than
altering the G2 diffusion coefficient. Interestingly, we discovered that increasing DG2 did not
always lead to the same growth pattern.
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3.2.2 Sink and source coefficients

In this section, we will examine how modifying the sink and source coefficients for different
concentrations impacts tumor evolution. The sink coefficients represent constants that deter-
mine the rate at which concentrations are consumed, while the source coefficient scales the
source function, thereby determining the amount of a growth factor generated.

It is important to note that different cell types do not necessarily consume the same quantity
of each concentration. Proliferating cells have a high nutrient consumption rate, while quies-
cent cells consume nutrients at a lower rate. On the other hand, necrotic cells do not consume
any nutrients. Regarding the growth-inhibitor factors, both proliferating and quiescent cells
consume the same amount, whereas necrotic cells do not consume any. Additionally, it should
be emphasized that G1 is the only factor produced/excreted within the tumor, and thus it is
the only factor associated with a source coefficient.

The nutrient sink coefficient in the proliferating region, denoted by αpro, states the rate at
which nutrients are consumed in this region.

Nutrient
sink
coefficient
in prolif-
erating
regions

αpro

(T × sc2)
Final radius

(mm)
Quiescent,

GIF’s
Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

1.000×10−8 0.9591 780 630 790 1780

(i) 1.400×10−8 0.8173 790 240 800 990
(ii) 1.200×10−8 0.8430 780 430 790 1080
(iii) 0.800×10−8 1.1051 780 - 1730 2380
(iv) 0.600×10−8 1.1331 780 - 1870 2490

Table 3.5: Tumor evolution, altered αpro.

If the sink coefficient in the proliferating regions increases, more nutrients are consumed,
leading to lower concentration in these regions. Thus θN will sooner be reached, and as a
result quiescent regions due to lack of nutrients will form earlier on. These quiescent regions
form when the tumor is relatively small, and it is likely that they will transition back to
proliferating regions as nutrients diffuse into the area. This transition causes the tumor to
grow more rapidly compared to the previous time step. The new tumor will be large enough
such that diffusion no longer is enough to keep the entire region proliferating, and a nutrient
lacking quiescent region will form again. This cyclic process of quiescent and proliferating
regions continues until the tumor becomes large enough such that nutrient lacking cells remain
nutrient deprived. When the quiescent regions are present the proliferating regions become
smaller, and therefore the growth rate decreases. As a result of the transition between fully
proliferating and partially proliferating states from an early stage, one should anticipate that
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the overall growth will be smaller compared to the reference case. For sensitivity cases (i)
and (ii), where αpro has increased, the expected growth tendency can be observed in Table
3.5 and Figure 3.9.

Figure 3.9: Radius vs time, altered αpro.

Conversely, if the sink coefficient in the proliferating regions decreases, it results in a higher
nutrient concentration in these regions. Consequently, proliferating areas with reduced sink
coefficients exhibit larger growth compared to the equivalent regions in the reference case. It
also takes a longer time before any cells become nutrient deprived. Therefore, one can expect
the formation of nutrient-deprived quiescent regions and necrotic regions to occur much later
than in the reference case. This is seen to be the case in Table 3.5, for the sensitivity cases
(iii) and (iv) where αpro is decreased. As a result, one should anticipate a larger final size and
an extended growth period. Figure 3.9, which plots the radius at each time step for all cases,
confirms that decreasing αpro indeed leads to increased growth and a longer growth period.

Now we will proceed to analyze how modifications in the nutrient sink coefficient in the
quiescent regions, denoted by αqui, impact tumor growth. Note that αqui states the rate at
which nutrients are consumed in the quiescent regions. Furthermore, note that αqui does not
affect the growth until a quiescent region is formed. Therefore, until that happens the tumor
evolution should be identical with the evolution in the reference case. In all the cases analyzed
the first quiescent region that appeared was the nutrient-deprived quiescent region after 630
minutes. Which coincides with the first quiescent region formed in the reference case.
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Nutrient
sink
coefficient
in quiescent
regions

αqui

(T × sc2)
Final radius

(mm)
Quiescent,

GIF’s
Necrotic Stop time

(minutes)

The reference
case

0.500× 10−8 0.9591 780 790 1780

(i) 0.100× 10−8 0.9716 780 790 1920
(ii) 0.300× 10−8 0.9695 780 790 1910
(iii) 0.700× 10−8 0.9070 800 780 1400
(iv) 0.900× 10−8 0.8676 800 780 1170

Table 3.6: Tumor evolution, altered αqui.

When the sink coefficient in the quiescent regions is increased, a greater amount of nutrients is
consumed, resulting in a decrease in nutrient concentration. This creates a more pronounced
nutrient gradient between the proliferating and quiescent regions, leading to increased trans-
port of nutrients from the proliferating to the quiescent regions. As a consequence, the prolif-
erating regions experience a slightly lower nutrient concentration and exhibits reduced growth
compared to the reference case. Moreover, the lower nutrient concentration in the quiescent
regions makes it more challenging for a nutrient-deprived quiescent region to transition back
to a proliferating state. Therefore, it can be expected that the overall growth will be smaller
compared to the reference case, as observed in Table 3.6 and depicted in Figure 3.10 for the
sensitivity cases (iii) and (iv) where αqui is increased.

Figure 3.10: Radius vs time, altered αqui.
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On the contrary, if the sink coefficient in the quiescent regions decreases, fewer nutrients are
consumed, resulting in an increase in nutrient concentration. As a result, the nutrient gradient
between proliferating and quiescent regions becomes less steep, and the transport of nutrients
from the proliferating to the quiescent regions decreases. Consequently, the proliferating re-
gion has a slightly higher nutrient concentration, which should lead to a larger tumor size.
Additionally, with a lower consumption of nutrients, it becomes easier for nutrient-deprived
quiescent regions to transition back into proliferating regions. As a result one should expect
longer growth periods and larger final radii. This expectation is supported by the observed
longer growth period and larger final radii, compared to the reference case, for sensitivity cases
(i) and (ii) of Table 3.6, and illustrated in Figure 3.10. Moreover, it is evident that increasing
αqui has a more significant effect on the growth compared to decreasing αqui.

Now we will proceed to analyze how modifications in the G2 sink coefficient, denoted by
ξproqui, in both proliferating and quiescent regions affect tumor growth. The sink coefficient
ξproqui determines the rate at which G2 is consumed in these regions. As mentioned earlier,
G2 is not the main factor contributing to reaching the threshold θG. Therefore, changes in
ξproqui are not expected to have a significant impact on the initial formation of the quiescent
GIF regions. In fact, in all the cases analyzed, the different regions appeared initially at the
same time as in the reference case. Specifically, the initial GIF quiescent region formed after
780 minutes, the nutrient-deprived quiescent region after 630 minutes, and the necrotic region
after 790 minutes.

G2 sink coefficient
in proliferating
and quiescent
regions

ξproqui (T × sc2) Final radius (mm) Stop time (minutes)

The reference case 5.000× 10−8 0.9591 1780
(i) 4.600× 10−8 0.9582 1810
(ii) 4.800× 10−8 0.9745 1940
(iii) 5.200× 10−8 0.9709 1940
(iv) 5.400× 10−8 0.9849 2160

Table 3.7: Tumor evolution, altered ξproqui.

If the sink coefficient ξproqui decreases, it implies that less G2 is consumed, leading to an
increase in the G2 concentration. When ξproqui becomes slightly smaller than the reference
case, as in sensitivity case (ii) of Table 3.7, one would expect the formation of the quiescent
region (due to high GIF) to occur closer to the center compared to the reference case, due to the
slight increase in G2 concentration. Since this region forms closer to the center, simultaneously
with the reference case, the proliferating region will be larger. Consequently, one can anticipate
slightly faster growth and a slightly larger final radius. However, if the sink coefficient decreases
more significantly, it would result in a larger initial GIF quiescent region compared to the
reference case. This is because with minimal G2 consumption, the G2 concentration becomes
more evenly distributed within the tumor, leading to an enlarged GIF quiescent region. As
a consequence, the proliferating regions would be smaller. Consequently, one would observe
slower growth, and due to the spatial dependency of G1 production/excretion, there would
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also be a decrease in G1 generation, resulting in smaller overall growth but a prolonged growth
period. This trend is clearly seen for sensitivity case (i) in Table 3.7 and is illustrated in Figure
3.11, which display the radius at each time step for all the cases.

Figure 3.11: Radius vs time, altered ξproqui.

On the contrary, if the G2 sink coefficient is increased, more G2 is consumed, resulting in a
decrease in its concentration. As a result, the GIF quiescent region is more likely to be formed
solely based on G1, causing it to be located closer to the center of the tumor. Consequently,
a larger portion of the tumor remains in proliferating state, contributing to its growth. More-
over, the reduced concentration of G2 implies a lower presence of growth-inhibiting factors in
the proliferating regions, further enhancing the growth. Therefore, when the ξproqui value is
increased, one can expect a larger final radius and a longer growth period. These trends can
be observed in Table 3.7.

Now we will analyze the impact of modifying the G1 sink coefficient, denoted by γproqui,
on tumor growth. γproqui determines the amount of G1 that will be consumed in proliferating
and quiescent regions. As mentioned earlier, G1 plays a crucial role in reaching the thresh-
old θG and forming GIF quiescent regions. Therefore, it is expected that altering γproqui will
significantly affect the growth dynamics.
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G1 sink
coefficient
in
quiescent
regions

γproqui (T ) Final radius
(mm)

Quiescent,
GIF’s

Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

5.000×10−5 0.9591 780 630 790 1780

(i) 4.600×10−5 0.7782 610 - 620 820
(ii) 4.800×10−5 0.8128 680 630 690 950
(iii) 5.200×10−5 0.9796 940 630 930 1680
(iv) 5.400×10−5 1.0473 1220 630 1190 1790

Table 3.8: Tumor evolution, altered γproqui.

If the G1 sink coefficient is increased in both proliferating and quiescent regions, the con-
centration of G1 will decrease. As a result, it will take longer time for the threshold θG to
be reached, leading to a delayed formation of GIF quiescent regions within the tumor. Ad-
ditionally, with lower G1 concentration, there will be fewer growth-inhibiting factors in the
proliferating regions. Consequently, for sensitivity cases (iii) and (iv), one can anticipate that
the tumor will grow larger, as it will experience more significant growth at each time step
compared to the reference case. The accelerated tumor growth should also lead to an increase
in G1 production/excretion. Therefore, the overall growth period may not differ significantly
from the reference growth time. Table 3.8 and Figure 3.12 illustrate the expected tumor
evolution when the G1 sink coefficient, γproqui, is increased.

Figure 3.12: Radius vs time, altered γproqui.
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On the contrary, if the G1 sink coefficient decreases, less G1 will be consumed, leading to an
increase in G1 concentration. The elevated concentration of G1 will cause θG to be reached
earlier and potentially cover a larger area within the domain. Since G1 plays a crucial role
in reaching the threshold θG, this reduction in sink coefficient is expected to substantially
shorten the growth period and result in a smaller final radius. This trend is clearly observed
comparing sensitivity cases (i) and (ii) to the reference case in Table 3.8 and is illustrated in
Figure 3.12 where the tumor evolution aligns with the expected outcomes.

Now, we will examine how modification of the G1 source coefficient, denoted by λ, affects
tumor growth. The value of λ determines the scale of G1 generation. A higher value of λ
leads to a greater production/excretion of G1, while a smaller value results in less G1 produc-
tion/excretion. Since G1 plays a crucial role in reaching the threshold θG, any alterations in
its generation are expected to have a substantial impact on tumor growth.

G1 source
coefficient

λ ( T
sc2

) Final radius
(mm)

Quiescent,
GIF’s

Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

0.00325 0.9591 780 630 790 1780

(i) 0.00305 1.2561 1160 630 1160 3040
(ii) 0.00315 1.1851 940 630 930 3090
(iii) 0.00335 0.8202 680 630 690 990
(iv) 0.00345 0.7881 610 - - 880

Table 3.9: Tumor evolution, altered λ.

As mentioned earlier, when the G1 source coefficient increases, more G1 is produced/excreted,
leading to an increase in its concentration. Consequently, the threshold θG is reached sooner
and covers a larger area of the tumor. Moreover, there will be a higher presence of growth-
inhibiting factors in the proliferating regions throughout the growth process. Therefore, one
should expect an earlier onset of GIF quiescent regions and a reduced growth rate at each time
step. Ultimately, this should result in smaller final radii and shorter growth periods. These
expectations align with the observations in Figure 3.13 and Table 3.9, and in particular when
comparing the sensitivity cases (iii)-(iv) with the reference case.

If the source coefficient decreases the G1 concentration will be smaller and thus it will take
longer time before a GIF quiescent region is formed. In other words, the tumor will remain
fully proliferating for a longer period of time, and grow more at each time step because there
are less growth-inhibiting factors present. Additionally, when GIF quiescent regions eventu-
ally form, they will exhibit slower growth. Therefore, one can expect both the growth period
and the final radius of the tumor to significantly increase. These observations are consistent
with the findings in Figure 3.13 and Table 3.9, and in particular when comparing sensitivity
cases (i) and (ii) with the reference case.
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Figure 3.13: Radius vs time, altered λ.

Now we have observed how altering the sink and source parameters affect tumor evolution.
Modifying the production/excretion coefficient λ for the G1 factor has the most significant
impact on growth, resulting in the largest and second smallest sizes observed. Among the sink
coefficients, it was observed that altering αpro and γproqui have the most significant impact
on tumor evolution. This is reasonable because αpro alters the nutrient concentration in the
proliferating regions, which is directly connected to the growth calculations. Meanwhile, γproqui
affects the concentration of the main contributor to the formation of GIF quiescent regions, so
one should expect a significant alteration in growth. Changes to αqui also affected the growth,
but on a much smaller scale compared to αpro. This is reasonable as the alterations do not
affect the growth until quiescent regions form. Additionally, it was observed that alterations
to ξproqui only led to minor changes in growth, as expected since G2 is a secondary contributor
to the formation of GIF quiescent regions.

3.2.3 Boundary data

In this section, we will investigate the impact of modifying the Dirichlet boundary data on
tumor evolution. Specifically, we will examine how changes in the supply of nutrients, de-
noted by κ, and G2, denoted by ψ, at the boundary influence the tumor’s development. It
is important to note that both nutrients and G2 are constantly provided across the entire
boundary.
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Nutrient
boundary
data

κ Final radius
(mm)

Quiescent,
GIF’s

Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

3.000 0.9591 780 630 790 1780

(i) 2.950 0.8238 800 290 790 1030
(ii) 2.975 0.8440 780 490 790 1080
(iii) 3.025 1.1573 800 780 780 3370
(iv) 3.050 1.3172 780 - 2180 3500

Table 3.10: Tumor evolution, altered κ.

As previously mentioned, κ represents the constant supply of nutrients at the boundary.
Within the tumor, nutrients are solely consumed, highlighting the significant impact of the
boundary’s nutrient supply on the concentration level. When the supply decreases, fewer
nutrients are transported into the tumor, resulting in a lower nutrient concentration. Con-
sequently, θN will be reached earlier, inhibiting growth. Consequently, one should expect an
earlier onset of nutrient-deficient quiescent regions. Additionally, the proliferating regions will
experience reduced growth at each time step due to the lower nutrient concentration. There-
fore, if the nutrient supply at the boundary is decreased, one can expect a shorter growth
period and a smaller final size. The anticipated growth pattern can be observed in Table 3.10,
in particular when comparing sensitivity cases (i) and (ii) to the reference case, as well as in
Figure 3.14, which depicts the radius at each time step for all the analyzed cases.

Figure 3.14: Radius vs time, altered κ.
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On the contrary, if the nutrient supply at the boundary increases, the concentration within
the tumor will also increase. Consequently, the proliferating regions will experience enhanced
growth at each iteration due to the generally higher nutrient concentration. Moreover, it will
take a longer time for the nutrient concentration to decrease to the level of θN . As a result,
the formation of nutrient-deficient quiescent regions will occur later compared to the reference
case. Therefore, when κ is increased compared to the reference case, one can expect the tu-
mor to exhibit faster and prolonged growth compared to the reference scenario. The expected
growth trend can be observed in Figure 3.14 and Table 3.10, in particular when sensitivity
cases (iii)-(iv) are compared to the reference case.

Now, we will analyze the impact of modifying the constant supply of G2 at the boundary,
denoted as ψ, on the growth. It is important to note that G2 is solely consumed within the
tumor, and ψ represents the only source of G2. Therefore, altering ψ is expected to have an
effect on the tumor’s evolution.

G2
boundary
data

ψ Final radius
(mm)

Quiescent,
GIF’s

Necrotic Stop time
(minutes)

The reference
case

0.1000 0.9591 780 790 1780

(i) 0.0960 1.1315 840 830 2680
(ii) 0.0975 1.0979 820 810 3100
(iii) 0.1025 0.8626 760 750 1170
(iv) 0.1040 0.8516 740 750 1130

Table 3.11: Tumor evolution, altered ψ.

If ψ decreases, the G2 concentration will also decrease. As a result, it will take longer time for
θG to be reached, and the formation of GIF quiescent regions will be delayed. Moreover, there
will be fewer growth-inhibiting factors in the proliferating regions, leading to larger growth at
each time step. Therefore, one can expect a larger final tumor size and longer growth period.
This growth tendency is observed in Table 3.11, in particular when comparing sensitivity cases
(i)-(ii) with the reference case, and in Figure 3.15, which depicts the radius at each time step
for all the analyzed cases. Furthermore, it is important to note that modifying the G2 supply
does not impact the nutrient supply. Therefore, in all the analyzed cases, the formation of
nutrient-deficient quiescent regions occurred at the same time as in the reference case, which
was after 630 minutes.

On the contrary, if the supply of G2 increases, the G2 concentration will also increase. Con-
sequently, GIF quiescent regions will form at an earlier stage. Furthermore, higher G2 con-
centration implies the presence of more growth-inhibiting factors in the proliferating regions,
leading to reduced growth at each time step compared to the reference case. Therefore, one
can expect both the tumor size and growth period to be smaller than in the reference scenario.
This is evident from comparing sensitivity cases (iii) and (iv) with the reference case in Table
3.11, and also in Figure 3.15.
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Figure 3.15: Radius vs time, altered ψ.

We have now examined the effects of modifying the constant supplies of nutrients and G2 at
the boundary on tumor evolution. Since the supplies at the boundary are the sole sources of
nutrients and G2, altering them has a significant impact on the concentration levels within the
tumor. Increasing the nutrient supply, κ, resulted in increased growth, whereas increasing the
G2 supply, ψ, inhibited growth and led to smaller growth. Conversely, decreasing κ resulted
in smaller growth, while decreasing ψ resulted in larger growth.

3.2.4 The weights in the mitotic function

The equation that calculates the new number of cells, equation (2.25), in other words, the
growth, depends on the mitotic function, equation (2.24). Therefore, altering the parameters
in the mitotic function is expected to influence the growth.

The parameter ρ represents the weight that scales the entire mitotic function. When ρ in-
creases, the number of cells produced at each time step will also increase. Conversely, if ρ
decreases, fewer cells will be generated at each time step. Figure 3.16 illustrates the relative
differences in the number of cells for each sensitivity case compared to the reference solution.
The relative difference is calculated as nc−ncref

ncref
, the difference in number of cells divided by the

reference number of cells.
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Figure 3.16: Relative difference in number of cells vs time, altered ρ. The dots denote when
nutrient lacking quiescent regions initially occurred.

In Figure 3.16, we can observe that when ρ increases compared to the reference case (indicated
by the red and green curves), the cell difference becomes positive, as expected. Initially, the
difference increases as one would anticipate due to the heightened mitotic function. However,
after a certain period, the difference plateaus and eventually decreases. This phenomenon
occurs because nutrient-deficient regions form earlier compared to the reference case, and
additionally, GIF quiescent regions cover a larger portion of the tumor due to increased G1
production/excretion resulting from rapid growth. The decrease in cell difference can be
attributed to the earlier formation of quiescent regions, leading to a shorter overall growth
period compared to the reference case. Table 3.12 and Figure 3.17 demonstrate that an
increase in ρ results in a smaller final size and a shorter growth period when compared to the
reference case.

ρ,
weighting
m

ρ (sc2) Final radius
(mm)

Quiescent,
GIF’s

Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

0.500×10−3 0.9591 780 630 790 1780

(i) 0.450×10−3 0.8465 800 730 790 1250
(ii) 0.475×10−3 0.8853 790 660 800 1390
(iii) 0.525×10−3 0.8807 790 600 790 1160
(iv) 0.550×10−3 0.8883 770 570 780 1110

Table 3.12: Tumor evolution, altered ρ.



78 CHAPTER 3. NUMERICAL RESULTS

Figure 3.16 shows that decreasing ρ also leads to the anticipated decrease in new cells at
each time step. Additionally, Table 3.12 demonstrates that quiescent regions due to nutrient
deficiency form later on in these cases, primarily due to the slow increase and the time required
for the tumor to become large enough for the center to be deprived of nutrients. Consequently,
these tumors remain fully proliferating for an extended period. Therefore, decreasing ρ results
in longer growth periods compared to increasing ρ. As seen in Figure 3.16, for decreased ρ,
the cell difference becomes increasingly negative towards the end of the growth period. This
occurs because in the case of decreased ρ, the tumor ceases to grow earlier than the reference
case, i.e., fewer new cells are produced. This is due to the formation of GIF quiescent and
necrotic regions, which occur almost simultaneously as in the reference case but in a much
smaller tumor size. Hence, it takes less time for the entire tumor to become quiescent and/or
necrotic. Therefore, one should expect the final radius to be smaller and the growth period
to be shorter compared to the reference case. The anticipated growth tendency is observed in
Figure 3.17 and in Table 3.12 when comparing sensitivity cases (i) and (ii) with the reference
case.

Figure 3.17: Number of cells vs time, altered ρ. The dots denote when nutrient lacking
quiescent regions initially occurred.

Now, let us analyze the impact of modifying η, which is the parameter that determines
how much the nutrient concentration contributes to the mitotic rate. Nutrients are growth-
promoting factors, so if η is increased, one would anticipate a higher production of new cells at
each time step. Conversely, if η decreases, fewer new cells should be produced at each time step.

By examining Figure 3.18, which illustrates the relative cell difference at each time step for all
the analyzed cases, it becomes evident that increasing η results in a higher production of new
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cells at each time step. However, as shown in Table 3.13 and Figure 3.19, increasing η leads
to a shorter growth period and a smaller final radius. This is due to the rapid growth of the
tumor, which causes quiescent nutrient-deficient regions to appear earlier and cover a larger
portion of the tumor. Furthermore, in rapidly growing tumors, the production/excretion rate
of G1 increases, leading to faster evolution of the GIF quiescent region. Comparing sensitivity
cases (iii) and (iv) in Table 3.13, it is observed, as expected, that the case with the highest η
value (sensitivity case (iv)) exhibits the shortest growth period and the earliest formation of
nutrient-lacking quiescent regions.

Figure 3.18: Relative difference in number of cells vs time, altered η. The dots denote when
nutrient lacking quiescent regions initially occurred.

η,
weighting
the
nutrient
concentra-
tion

η (T × sc2) Final radius
(mm)

Quiescent,
GIF’s

Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

1.000×10−6 0.9591 780 630 790 1780

(i) 0.940×10−6 1.0824 800 660 790 2890
(ii) 0.970×10−6 1.0837 800 650 790 3130
(iii) 1.030×10−6 0.9407 780 610 790 1520
(iv) 1.060×10−6 0.8812 790 590 780 1140

Table 3.13: Tumor evolution, altered η.
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Figure 3.18 also demonstrates that decreasing η, compared to the reference case, leads to the
expected reduction in the production of new cells at each time step. Additionally, Figure 3.19
reveals that decreasing η results in a fundamentally different growth pattern for the tumor
compared to the cases where η is increased. The decrease in cell production, or slower growth,
should correspondingly lead to the formation of nutrient-deprived quiescent regions at a later
stage. As a result, the tumor should continue its fully proliferating state for a longer duration.
Furthermore, slower growth implies less production/excretion of G1 compared to the reference
case. However, it is noteworthy that the case with the largest decreased η (sensitivity case
(ii) in Table 3.13) exhibits the greatest overall growth. This occurs because, over time,
the quiescent and necrotic regions in sensitivity case (ii) of Table 3.13 become sufficiently
large, causing the remaining proliferating region to be so small that the increase in cell count
becomes smaller than in sensitivity case (i), despite the higher value of η in sensitivity case
(ii). Consequently, sensitivity case (ii) can sustain a longer growth period.

Figure 3.19: Number of cells vs time, altered η. The dots denote when nutrient lacking
quiescent regions initially occurred.

The curvature observed in the curves of Figure 3.18, which occurs after the formation of non-
proliferating regions, can be attributed to the significantly different growth periods compared
to the reference case. For η = 1.03×10−6 and η = 1.06×10−6, the growth periods are shorter,
causing the rate of cell increase to slow down towards the end. In contrast, the reference case
continues to grow, resulting in a decrease in the difference in the number of cells for the red
and green curves. On the other hand, for η = 0.94 × 10−6 and η = 0.97 × 10−6, the growth
period is extended. Therefore, when the reference case reduces cell production, these cases
continue with the same cell production. As a result, the difference in cell count decreases, as
observed in the plot for the black and blue curves.
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Now we will analyze the effect of modifying the parameter ν1, which determines how much
the G1 concentration contributes to the mitotic rate. Since G1 is a growth-inhibiting factor,
increasing ν1 should lead to a lower production of new cells at each time step, whereas de-
creasing ν1 should result in a higher production of cells at each time step. However, it should
be noted that at the beginning of the simulation, the concentration of G1 is very small, so
changes in ν1 are not expected to substantially alter growth.

Figure 3.20: Number of cells vs time, altered ν1.

From Figures 3.20 and 3.21, it becomes apparent that initially changes in ν1 have a negligible
effect. It is only after a certain period, coinciding with the onset of necrosis, that the G1
concentration becomes sufficiently large to impact mitosis. Figure 3.21 clearly demonstrates
that increasing ν1 results in a tendency of fewer new cells being produced at each time step.
Conversely, an increasing trend in cell production is observed for decreased ν1. (The small
oscillations are assumed to be caused by rounding errors.)

ν1, weighting the
G1 concentration

ν1 (T × sc2) Final radius (mm) Stop time (minutes)

The reference case 1.000× 10−7 0.9591 1780
(i) 0.940× 10−7 0.9850 2090
(ii) 0.970× 10−7 0.9736 1970
(iii) 1.030× 10−7 0.9577 1800
(iv) 1.060× 10−7 0.9497 1720

Table 3.14: Tumor evolution, altered ν1.

Table 3.14 and Figure 3.20 indicate that the overall impact of modifying ν1 has had minimal
effect on the growth. The formation of quiescent and necrotic regions occurred at the same
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time as in the reference case. It was only after the formation of these regions that altering ν1
began to have an impact on the growth.

Figure 3.21: Relative difference in cells vs time, altered ν1. The dots denote the initial
formation of necrotic regions.

Now we will analyze the impact of modifying ν2, which determines the contribution of G2
to the mitotic rate. Since G2 is a growth-inhibiting factor, increasing ν2 should result in
a decrease in cell production at each time step. Conversely, decreasing ν2 should lead to
an increase in cell production at each time step. However, it is important to note that the
concentration of G2, except during the initial stages of growth, is much lower compared to the
nutrient and G1 concentrations. Therefore, altering ν2 is not expected to have a significant
effect on the overall growth. Actually, for all the cases analysed the quiescent and necrotic
regions formed at the same time as in the reference case.

ν2, weighting the
G2 concentration

ν2 (T × sc2) Final radius (mm) Stop time (minutes)

The reference case 1.000× 10−7 0.9591 1780
(i) 0.850× 10−7 0.9784 2000
(ii) 0.900× 10−7 0.9716 1920
(iii) 1.100× 10−7 0.9557 1800
(iv) 1.150× 10−7 0.9489 1690

Table 3.15: Tumor evolution, altered ν2.

From Table 3.15 and Figure 3.22, it is evident that increasing ν2 leads to a slightly smaller
final size, whereas decreasing ν2 results in a slightly larger final size, as anticipated.
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Figure 3.22: Number of cells vs time, altered ν2.

From Figure 3.23, it is apparent that changes in ν2 do not significantly affect the growth until
after the formation of necrotic regions. However, we can observe that prior to the formation
of necrotic regions, an increase in ν2 leads to a lower production of new cells, while a decrease
in ν2 results in a higher production of new cells. This aligns with our expectations.

As the proliferating regions become smaller, the contribution of G2 in the mitotic function
becomes more pronounced, as shown in Figure 3.23. The reason why the red curve rep-
resenting ν2 = 1.15 × 10−7 is above the green curve representing ν2 = 1.1 × 10−7, despite
1.15× 10−7 > 1.1× 10−7, is because the necrotic region in sensitivity case ν2 = 1.15× 10−7 is
smaller than the necrotic region in sensitivity case ν2 = 1.1 × 10−7. Consequently, there are
more proliferating regions in the ν2 = 1.15 × 10−7 case, and at a certain point, they become
large enough to produce more new cells compared to the ν2 = 1.1 × 10−7 case, even though
the mitotic function in the ν2 = 1.15× 10−7 case generates fewer cells at each time step.
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Figure 3.23: Relative difference in cells vs time, altered ν2. The dots mark initial formation
of necrotic regions. (The oscillations are due to rounding errors.)

Now that we have analyzed how modifying the parameters in the mitotic function affects tumor
evolution, we can conclude that altering η had the most significant effect on growth, resulting
in both the largest and smallest sizes observed. We also observed significant alterations in
growth when changing ρ, whereas modifications to ν1 and ν2 only had minor effects on growth.

3.2.5 The extracellular matrix

The extracellular matrix comprises all the fluids and molecules present in the tumor that are
not part of the cells. In this model, the proportion of the tumor occupied by the extracellular
matrix remains constant. The new radius is related to the percentage of extracellular matrix,
denoted as pextrm, according to the following relationship:

rnew =

√
1

(1− pextrm)
ncr2c . (3.1)

Here, nc represents the number of cells and rc represents the radius of a single cell. Equation
(3.1) illustrates that when the extracellular matrix occupies a larger percentage of the tumor,
compared to the reference case, one can expect the radius to increase more at each time step
relative to the reference case. This is because the fraction becomes larger. Conversely, if the
percentage is decreased, the fraction becomes smaller, leading to a smaller new radius at each
time step.
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The ECM
percent-
age of the
tumor.

pextrm Final radius
(mm)

Quiescent,
GIF’s

Quiescent,
lack of

nutrients

Necrotic Stop time
(minutes)

The
reference
case

0.0500 0.9591 780 630 790 1780

(i) 0.0400 1.0792 780 630 790 2850
(ii) 0.0450 0.9700 780 630 790 1940
(iii) 0.0550 0.9409 780 630 790 1610
(iv) 0.0600 0.9052 800 620 780 1350

Table 3.16: Tumor evolution, altered pextrm.

From Table 3.16 and Figure 3.24, it is evident that increasing the percentage of extracellular
matrix leads to a shorter growth period and smaller tumor size. Conversely, decreasing the
percentage results in a longer growth period and larger tumor size. This can be attributed
to the presence of quiescent and necrotic regions in more rapidly growing tumors (due to
pextrm having increased) which are larger and cover a greater portion of the tumor. As a
result, these regions can effectively limit the growth and contribute to the smaller final size.
In contrast, slower-growing tumors (due to pextrm having decreased) have smaller and slower-
evolving quiescent and necrotic regions, allowing them to grow for a longer period and attain
a larger size.

Figure 3.24: Radius vs time, altered pextrm.

In the figure below, Figure 3.25, we can observe that larger percentages of extracellular matrix
correspond to larger radii when the tumor is in the fully proliferating phase. Conversely,
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smaller percentages of extracellular matrix result in smaller radii, as expected. It is evident
that once quiescent and necrotic regions form, the growth patterns undergo a noticeable
change. As mentioned earlier, a higher extracellular matrix percentage leads to larger quiescent
and necrotic regions, consequently resulting in smaller increase in new radii after these regions
have formed. This leads to a smaller difference between these radii and the reference radii
after those regions have formed, as can be seen in Figure 3.25. On the other hand, for
lower extracellular matrix percentages, the quiescent and necrotic regions are relatively small,
causing the increase in new radii to remain somewhat similar after their formation. As a result,
the difference in radii becomes less pronounced when comparing the radii of the sensitivity
cases (i) and (ii) to the reference case radius. This is because smaller increases in radii are
observed in the reference case following the formation of necrotic and quiescent regions. This
trend is illustrated in Figure 3.25 by the graphs of pextrm = 0.04 and pextrm = 0.045 increasing.

Figure 3.25: Difference in radius relative to the reference solution vs time, altered pextrm. The
dots mark initial formation of necrotic regions.



Chapter 4

Discussion & Conclusions

In this thesis, we have developed a mathematical model for avascular tumor growth. Addi-
tionally, we implemented the model and observed that it aligns with the established patterns
of tumor evolution. Furthermore, we conducted an analysis to examine the impact of different
model parameters on avascular tumor growth.

We observed that modifying the nutrient diffusion coefficient, DN , and the diffusion coef-
ficient associated with the internally produced/excreted growth-inhibiting factors, DG1, had
a substantial influence on tumor growth. Thus, it is crucial for these parameters to be accu-
rately set in terms of their magnitude. Specifically, increasing DN resulted in extended growth
periods and larger final tumor sizes. Conversely, decreasing DN led to a reduction in both
the growth period and final tumor size. Since nutrients serve as growth-promoting factors
and diffusion affects their distribution within the tumor, higher diffusion leads to more even
distribution of nutrients throughout the tumor, while lower diffusion results in poor nutrient
distribution, these growth trends are reasonable. On the other hand, increasing DG1 caused a
decrease in the final tumor radius and growth period, while decreasing DG1 led to an increase
in both the growth duration and final tumor size. Considering that G1 represents growth-
inhibiting factors, these growth patterns align with what one would expect.

On the other hand, altering the diffusion coefficient of the externally supplied growth fac-
tors, DG2, had relatively minor effects on the evolution, yet it yielded interesting observations.
When DG2 was increased compared to the reference case, slight increases resulted in longer
growth periods and larger tumor sizes. This was due to the formation of the GIF quiescent
region, which is influenced by a weighted sum of G2 and G1, occurring closer to the center.
As a result, a larger portion of the tumor remained in a fully proliferating state compared to
the reference case. This trend persisted until DG2 was significantly increased, causing the G2
distribution to be so evenly spread that the GIF quiescent region extended not only close to
the center but also further away, encompassing a larger portion of the tumor. Thus the growth
duration and final tumor sizes from then on experienced a decreasing trend. Conversely, when
DG2 was decreased, the GIF quiescent regions formed either as disks or annuli closer to the
boundary compared to the reference case. This was because the G2 concentration was lower
in the center, resulting in the GIF threshold being reached only in proximity to the boundary.
Since G1, the internally produced/excreted growth-inhibiting factors, is the main contributor
to reaching θG, the annular regions soon transformed into disk-shaped regions. Consequently,

87
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when DG2 was decreased, the GIF quiescent regions occupied a larger portion of the tumor,
leading to fewer proliferating cells. As a result, the growth durations were shorter and the
final tumor sizes were smaller compared to the reference case. Depending on whether the
initial GIF quiescent region was annulus-shaped or disk-shaped, the decrease in tumor size
and growth duration did not necessarily follow a strictly decreasing pattern.

Moreover, it was observed that modifying the rate of nutrient consumption in the proliferating
regions had a significant impact on tumor development. Increasing the nutrient consumption
in the proliferating regions, represented by αpro, led to shorter growth durations and smaller
final tumor sizes, which is reasonable given the reduced presence of growth-promoting factors.
Conversely, decreasing αpro, indicating an increase in growth-promoting factors, resulted in
longer growth periods and larger final tumor sizes. In the sensitivity cases with decreased αpro,
nutrient-deprived quiescent regions did not form due to the increased availability of nutrients.
Furthermore, changes in the nutrient consumption within the quiescent regions, denoted as
αqui, exhibited similar growth tendencies as modifying αpro, albeit to a lesser extent. This is
reasonable because adjustments in αqui do not affect growth until quiescent regions are estab-
lished. Moreover, it was observed that increasing αqui had a more significant impact on the
growth pattern compared to decreasing αqui. This can be attributed to the fact that increas-
ing αqui creates a steeper nutrient concentration gradient between proliferating and quiescent
regions, causing more nutrients to be transported away from the proliferating regions. Con-
sequently, this leads to reduced growth and a shorter growth period.

Modifications in the consumption of G1 growth-inhibitors, denoted as γproqui, also exerted
a significant influence on tumor development. Increasing the consumption of G1 resulted
in larger final tumor sizes, which is reasonable considering the reduced presence of growth-
inhibiting factors. The reduction in growth-inhibiting factors prolonged the period of full
proliferation and facilitated greater growth at each time step. However, it was observed that
the growth period did not exhibit a significant alteration compared to the reference case.
This can be attributed to rapidly growing tumors also experiencing more rapidly growing
quiescent regions. Conversely, decreasing γproqui, indicating an increase in growth-inhibiting
factors, led to shorter growth periods and smaller final radii. In the sensitivity case with the
most pronounced decrease in γproqui (case (i) in Table 3.8), the GIF quiescent region actually
formed earlier than the nutrient-deprived quiescent region due to the increased presence of G1.
Additionally, modifications to the production/excretion of G1, represented by λ, exhibited a
significant effect on the growth pattern. Decreasing λ resulted in longer growth periods and
larger final tumor sizes, as expected due to the reduced presence of growth-inhibiting factors.
Conversely, increasing the production/excretion of G1 led to smaller tumor sizes and growth
periods. In fact, in the sensitivity case with the greatest increase in λ (case (iv) in Table
3.9), the abundance of growth-inhibiting factors caused the entire tumor to become quiescent
due to high GIF concentrations before either nutrient-deprived quiescent regions or necrotic
regions formed.

On the other hand, variations in the consumption rate of G2, denoted as ξproqui, had mi-
nor effects on tumor growth. Interestingly, these alterations did not consistently lead to larger
or smaller final tumor sizes. Therefore, despite the small magnitude of these changes, further
investigations into the influence of these factors would be valuable. When ξproqui was increased,
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slightly larger tumor sizes and growth periods were observed, which is reasonable considering
the reduced presence of growth-inhibiting factors. However, when ξproqui was decreased, the
tumor growth pattern did not consistently exhibit a decreasing or increasing trend. A slight
decrease in ξproqui resulted in larger final tumor size and growth period compared to the refer-
ence case. This can be attributed to the slight increase in G2 levels, causing the GIF quiescent
region to occur closer to the center. As a result, a slightly larger portion of the tumor remained
in a fully proliferating state. Notably, a more significant decrease in ξproqui led to a slightly
smaller final tumor size and a longer growth period. This was due to lower consumption of
G2, resulting in higher and more evenly distributed G2 concentration within the tumor. Con-
sequently, the initial GIF quiescent region was larger compared to the reference case, leading
to slower growth at each time step. Moreover, it is worth noting that the production and
excretion of G1 depend on the spatial distribution within the tumor. Consequently, when the
tumor exhibits slower growth, the GIF quiescent region will also grow more gradually. As a
result is it is possible for the growth period to be prolonged.

Furthermore, it was observed that alterations in the supply of nutrients and G2 growth-
inhibitor factors at the boundary significantly influence tumor development. This finding
suggests that drugs targeting and influencing these supplies have the potential to inhibit tu-
mor growth and hinder the transition into the vascular phase. Specifically, increasing the
nutrient supply, κ, resulted in longer growth periods and larger tumor sizes, which is logical
considering the increased presence of growth-promoting factors. Conversely, decreasing κ led
to shorter growth periods and smaller tumor sizes, aligning with the reduced availability of
growth-promoting factors. On the contrary, augmenting the supply of G2 growth-inhibitor
factors, ψ, led to shorter growth periods and smaller tumor sizes, as expected due to the in-
creased concentration of growth-inhibiting factors. In contrast, reducing ψ resulted in larger
tumor sizes and longer growth periods, reflecting the decreased availability of growth-inhibiting
factors.

Through the analysis of the mitotic function, it became evident that the parameters with
the most significant influence on growth were ρ, which scaled the mitotic value, and η, which
determined the contribution of nutrients to growth. Increasing the parameter ρ resulted in a
higher production of new cells at each time step, indicating more rapid tumor growth com-
pared to the reference case. This increased growth was accompanied by an elevation in the
production/excretion of G1. Consequently, the final tumor sizes and growth periods were
smaller relative to the reference case. Conversely, decreasing ρ led to a reduction in the num-
ber of new cells produced at each time step, resulting in overall smaller growth and a shorter
growth duration compared to the reference case. Similarly, when the parameter η was in-
creased, there was an increase in the production of new cells at each time step. However,
as observed with increased ρ, the rapidly growing tumor also developed a rapidly evolving
quiescent region, leading to smaller overall growth periods and tumor sizes compared to the
reference case. On the other hand, decreasing η resulted in a lower production of cells at each
time step. This prolonged the tumor’s growth period and led to a larger final tumor size.
However, it is important to note that the sensitivity case where η was decreased the most
(case (i) in Table 3.13) had a shorter growth period and smaller final tumor size compared to
the case with a lesser decrease in η. This is due to the quiescent and necrotic regions forming
around the same time in both cases. Consequently, the smallest tumor, corresponding to the
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sensitivity case with the smallest η value, ceased to grow sooner, as observed.

In contrast, modifying the parameters ν1 and ν2, which governed the influence of growth-
inhibiting factors on tumor growth, had minimal effects. Increasing these parameters led to a
slight decrease in the final tumor size compared to the reference case. Conversely, decreasing
ν1 and ν2 resulted in a slight increase in the final tumor size.

Furthermore, it was observed that the composition of the extracellular matrix, specifically the
percentage it comprised within the tumor, had a significant impact on tumor development.
Therefore, it is crucial to select the appropriate percentage from a biological standpoint, as
it plays a vital role in tumor behavior and progression. Specifically, an increase in the per-
centage of ECM led to accelerated tumor growth at each time step, whereas a decrease in the
percentage resulted in slower growth at each time step.

During the sensitivity analysis, it was observed that alterations in parameters related to
nutrient concentration and G1 concentration had the most significant influence on tumor de-
velopment. Therefore, it is crucial to set these parameters to biologically accurate magnitudes
to ensure that the simulated tumor development and patterns are qualitatively correct. The
strong dependency on these parameters also suggests that drugs targeting and influencing
these factors have the potential to inhibit tumor growth. Thus, there is a need to develop
models that incorporate the influence of these factors to a greater extent, as it would be of
great interest.

Furthermore, the sensitivity analysis revealed that GIF quiescent regions can appear at differ-
ent locations within a tumor, resulting from the interaction of externally supplied and inter-
nally produced/excreted growth-inhibitor factors. This variability in quiescent region locations
lead to different growth patterns in tumors. Therefore, there is a need to develop models that
extensively investigate the effect of both internally and externally supplied growth-inhibiting
factors on tumor growth patterns. Such models have the potential to provide a more com-
prehensive understanding of tumor growth and generate novel insights into treatments and
experimental strategies.

Additionally, the sensitivity analysis revealed that the proportion of extracellular matrix
(ECM) within a tumor directly impacts its growth dynamics. This highlights the signifi-
cance of considering ECM composition in models for avascular tumor growth to accurately
understand and predict tumor behavior. Therefore, models should more extensively include
the extracellular matrix and its composition within tumors.

These findings highlight the potential benefits of developing more detailed models that com-
prehensively analyze the influence of these parameters. Such models have the potential to
contribute to the development of experimental approaches and significantly enhance our un-
derstanding of tumor evolution.



Chapter 5

Extension model

In this chapter, we will introduce an extension model that builds upon the framework devel-
oped and analyzed in the thesis. The key modifications include the incorporation of additional
equations to account for the densities of different cell types. Furthermore, the growth of the
tumor will be influenced by the rates of change of these cell densities.

The following assumptions and comments are made with respect to the extension model.

• It is assumed that a tumor consists of three components. Those are, living cells (denot-
ing both proliferating and quiescent cells), necrotic cells and the extracellular matrix,
abbreviated ECM.

• Advection-diffusion type PDEs will be used to model the concentration of growth factors.
The model will incorporate three growth factors. Firstly, we will consider externally
supplied nutrients as growth-promoting factors. Secondly, we will account for growth-
inhibitor factors that are produced by cells within the tumor during the cell cycle or
excreted by necrotic cells. Lastly, we will include externally supplied growth-inhibitor
factors that represent the immune system’s response to the tumor.

– An advection-diffusion equation will be formulated to represent the nutrient con-
centration within the tumor. The equation will not include a source term since
we assume that nutrients are only externally supplied and not produced within
the tumor. However, it will include a sink term to account for the consumption
of nutrients by the cells. Furthermore, we will assume that the nutrient level in
the surrounding area of the tumor remains fixed, indicating a constant supply of
nutrients. This condition will be expressed by a positive Dirichlet boundary data.

– A diffusion equation will be formulated to represent the growth-inhibitor factors,
G1, produced or excreted internally by the cells. The PDE is in accordance with
the one presented in [2]. The equation incorporates both source and sink terms,
representing the production/excretion and consumption of G1 within the tumor,
respectively. Moreover, we assume that these GIFs do not exist outside the tumor,
which is reasonable considering they are a product of the cells specific to the tumor.
Hence, we assume no transport of G1 across the tumor boundary. This condition
will be represented by a homogeneous Neumann boundary condition.

91



92 CHAPTER 5. EXTENSION MODEL

– We will represent the growth-inhibitor factors, G2, produced by the immune sys-
tem in the surrounding tissue using an advection-diffusion equation. Since G2 is
not produced within the tumor, the equation will not contain a production term.
However, it will include a sink term to account for the cells consumption of G2.
Additionally, we will assume that the concentration of G2 in the tissue surround-
ing the tumor remains constant. Therefore, the boundary supply of G2 will be
represented by a positive Dirichlet boundary condition.

• There will be introduced a GIF threshold, denoted by θG, and a nutrient threshold,
denoted by θN , which will be used to categorize the cells as proliferating, quiescent or
necrotic. If the growth-inhibiting concentrations exceeds θG, mitosis will be inhibited
and lead to cell quiescence or death, depending on the current nutrient level. Moreover,
θN represent the minimum nutrient concentration required for cell growth. In order for
a cell to have the potential to proliferate, the nutrient concentration must surpass θN .
If the nutrient concentration falls below this threshold, the cell will become quiescent or
die. Moreover, if a cell has died, it will remain dead.

• We will introduce a function to represent the mitotic rate, which denotes the rate at
which a cell divides into two daughter cells.

• To model the cell densities, we will utilize diffusion-type PDEs. The model includes
three distinct cell densities: the density of proliferating cells, the density of quiescent
cells, and the density of necrotic cells.

– We will formulate a diffusion equation to describe the density of proliferating cells
within the tumor. This equation will include a sink term that accounts for pro-
liferating cells transitioning into a quiescent state. Additionally, there will be two
source terms, one representing the increase of proliferating cells resulting from mito-
sis and another representing the transition of quiescent cells back to a proliferating
state.

– The density of quiescent cells is also modeled using a diffusion PDE. The equation
incorporates two sink terms, representing the decrease in quiescent cells due to
their transition to a necrotic state and their transition back to a proliferating state.
Additionally, there is a source term accounting for the increase in quiescent cells
resulting from proliferating cells transitioning to a quiescent state.

– We will employ a PDE to model the density of necrotic cells. Unlike the previous
cell density equations, this equation does not include a sink term, as all dead cells
remain in a necrotic state. Moreover, the PDE does not include a diffusion term
as the cells are dead and do not exhibit molecular movements. However, it does
incorporate a source term to represent the death of quiescent cells.

• In the model, we make the assumption that only living cells actively consume nutrients
and growth-inhibiting factors. Necrotic cells, on the other hand, do not consume any
substances but solely excrete growth-inhibiting factors.

• In the model, we neglect adhesion forces between cells, as well as between cells and the
extracellular matrix (ECM). Furthermore, we disregard any constraints imposed by the
surrounding geometry.



93

We denote the concentrations of nutrients, G1 growth-inhibiting factors, and G2 growth-
inhibiting factors as uN , uG1, and uG2, respectively. Additionally, we use the variables P to
represent the density of proliferating cells, Q to represent the density of quiescent cells, and D
to represent the density of necrotic/dead cells. The model consist of the following equations.

∂uN
∂t

+∇ · (−DN∇uN + c⃗NuN) = −rN(uN , uG1, uG2, P,Q) ∀x⃗ ∈ Ω (5.1)

uN = κ ∀x⃗ ∈ ∂Ω.

Equation (5.1) describes the temporal changes in nutrient concentration as influenced by
diffusive and advective forces, as well as the consumption of nutrients by proliferating and
quiescent cells. The consumption term rN depends not only on uN , P , and Q, but also
on the concentrations of growth-inhibiting factors. This dependency arises because higher
concentrations of growth-inhibiting factors lead to reduced proliferation and cell viability,
resulting in a decreased demand for nutrients.

∂uG1

∂t
+∇ · (−DG1∇uG1) = −rG1(uN , uG1, uG2, P,Q) + SG1(uN , uG1, uG2, P,Q,D) ∀x⃗ ∈ Ω.

(5.2)
ν⃗ · (−DG1∇uG1) = 0 ∀x⃗ ∈ ∂Ω.

Here ν denotes the outward pointing unit normal vector at the boundary. Equation (5.2)
describes the changes in G1 concentration resulting from diffusive forces, as well as the pro-
duction/excretion and consumption of G1. The sink term rG1 represents the consumption of
G1 by both quiescent and proliferating cells. On the other hand, the source term SG1 accounts
for the increase in G1 due to its production by both proliferating and quiescent cells, as well
as the excretion of G1 by necrotic cells. It is important to note that both rG1 and SG1 depend
on all three growth factors, as these factors influence the state of a cell and determine how
much G1 it can consume and produce/excrete.

∂uG2

∂t
+∇ · (−DG2∇uG2 + c⃗G2uG2) = −rG2(uN , uG1, uG2, P,Q) ∀x⃗ ∈ Ω (5.3)

uG2 = ψ ∀x⃗ ∈ ∂Ω.

Equation (5.3) describes the changes in G2 concentration resulting from diffusive and advec-
tive forces, as well as the consumption of G2 by the living cells. The sink term, rG2, represents
the consumption of G2 by both proliferating and quiescent cells. Notably, it becomes apparent
that the consumption rate depends on the current levels of all three growth factors.

The mitotic rate, the rate at which proliferating cells divide into two identical daughter cells,
is denoted by m(uN , uG1, uG2) and depends on the concentrations of growth factors.

∂P

∂t
+∇ · (−DP∇P ) = −rP,Q(uN , uG1, uG2, P ) + SP,m(m,P ) + SP,Q(uN , uG1, uG2, Q). (5.4)

Equation (5.4) models the density of proliferating cells. It describes the changes in density
resulting from diffusion forces, as well as factors that decrease or increase the number of
proliferating cells. The sink term rP,Q represents the decrease in density due to proliferating
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cells transitioning to a quiescent state. On the other hand, the source term SP,Q represents
the increase in density resulting from quiescent cells transitioning back to a proliferating
state. Additionally, the term SP,m denotes the increase in proliferating cells due to mitosis.
Importantly, it should be noted that all the sink and source terms depend on the current
concentrations of growth factors. Moreover, note that SP,Q depends on Q.

∂Q

∂t
+∇ · (−DQ∇Q) = rP,Q(uN , uG1, uG2, P )− SP,Q(uN , uG1, uG2, Q)− rQ,D(uN , uG1, uG2, Q).

(5.5)
Equation (5.5) models the density of quiescent cells. It describes the changes in density
over time resulting from diffusive forces and factors that increase or decrease the amount of
quiescent cells. As mentioned, the term rP,Q represents proliferating cells transitioning to a
quiescent state, which contributes as a source term in this equation while serving as a sink term
in equation (5.4). Conversely, the term SP,Q, which represents quiescent cells transitioning
back to a proliferating state, acts as a sink term in equation (5.5) while being a source term
in equation (5.4). Additionally, the term rQ,D represents quiescent cells dying and becoming
necrotic, contributing as a sink term. Furthermore, it is important to note that equation (5.5)
depends on the density of proliferating cells, P , and the concentrations of all three growth
factors.

∂D

∂t
= rQ,D(uN , uG1, uG2, Q). (5.6)

Equation (5.6) represents the density of necrotic cells. Since necrotic cells are dead, they
do not exhibit molecular movements. Therefore, there is no diffusive term in this equation.
Additionally, necrotic cells cannot transition to a quiescent or proliferating state, so there are
no sink terms. However, the term rQ,D, which represents quiescent cells transitioning to a
necrotic state, is included as a source term in equation (5.6). This term accounts for the only
way in which cells can become necrotic. Furthermore, note that equation (5.6) depends on
the quiescent cell density, Q, and all three growth factors.

dV

dt
= C

∫
Ω

SP,m + SP,Q − rP,Q − rQ,D dx. (5.7)

Equation (5.7) describes the change in tumor volume, where V represents the volume of the
tumor. The evolution of the tumor volume is dependent on the rate of change of the cell den-
sities, which are influenced by the increase and decrease of specific cell types. Additionally,
there is a constant C, which depends on the extracellular matrix.

Upon examining the equations in the extension model, it becomes evident that they are
coupled, meaning that they depend on each other. As a result, employing splitting schemes
becomes necessary in order to solve the model. Two main types of splitting schemes commonly
used are fully-implicit and iterative coupling [40, 41].

Fully-implicit methods involve simultaneously solving the complete system of coupled equa-
tions. These methods possess the advantage of being unconditionally stable. However, a
drawback is that they are computationally expensive. On the other hand, the iterative cou-
pling approach divides the coupled problem into sub-problems and solves them independently,
utilizing only the most recent solution information from the other sub-problems. At each time
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step, the sub-problems are iteratively solved, utilizing the newly computed solutions until
convergence is achieved within a specified tolerance [40, 41]. By utilizing iterative methods, it
is possible to employ different discretizations for the sub-problems, which proves valuable as
they often represent distinct physical phenomena such as flow and mechanics [40, 41, 42]. Fur-
thermore, if the iterative method employs the same spatial discretization as the fully-implicit
method on all the sub-problems, the iterative and fully-implicit solutions should be identical
at each time step once the iterative method has converged [40, 41].

Furthermore, since the concentrations of the growth factors and the cell densities likely oper-
ate on different time scales, it would be sensible to utilize multirate iterative schemes [43, 44].
Additionally, when dealing with nonlinear coupled terms, a linearization method such as the
L-scheme [45, 46, 47] or the Newton method must be applied alongside a splitting scheme.

Refer to Appendix A for a straightforward coupled problem of tumor growth, which is solved
using an iterative splitting scheme. The convergence rates are also presented in the appendix.
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Appendix A

A straightforward coupled tumor
growth problem

An iterative splitting scheme has been applied to solve a set of fully coupled equations on
a dynamically evolving domain. Although the problem being addressed is simpler than the
extension model presented in the thesis, it encompasses all the crucial relationships. Specifi-
cally, the problem involves a circular domain that expands at each time step, along with two
fully coupled partial differential equations. These PDEs are solved using iterative coupling,
implicit Euler, and finite element method at each time step.

The general PDEs used are

∂u1
∂t

+∇ · (−D1∇u1 + c⃗1u1) = F1(u2) ∀ x ∈ Ω (A.1)

∂u2
∂t

+∇ · (−D2∇u2 + c⃗2u2) = F2(u1) ∀ x ∈ Ω (A.2)

where all coupling terms are included in the function on the right-hand side.

In order to assess the convergence of the approximate solutions, the exact solutions for both
u1 and u2 were selected as uexact = (1 + x2 + 2y2)t. The right-hand sides of the equa-
tions were defined as F1 = f1 − u2 and F2 = f2 − u1, where f1 and f2 do not represent
coupling terms. These right-hand sides were determined by substituting the exact solution
into the respective PDEs and defining them as the resulting expressions. Specifically, f1 =
(1+x2+2y2)(1+t)−6tD1+2xtc11+4ytc12 and f2 = (1+x2+2y2)(1+t)−6tD2+2xtc21+4ytc22.
Where D1 = 1, D2 = 2, c⃗1 = [−1, 1] and c⃗2 = [2, 3].

For the boundary conditions, Dirichlet boundary conditions were chosen, where the boundary
values are set to equal the exact solution on the boundary. In other words, the boundary
conditions are specified in a way that matches the exact solution. As for the initial solutions,
they were set to equal the exact solution at the initial time. Hence,

u1 = u2 = (1 + x2 + 2y2)t on ∂Ω,

u1 = u2 = 0 at t = 0
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The growth relation for the problem was defined as rnew = rinitial + 0.5t, where rinitial = 1 is
the initial radius and t is the time. The circular domain was computed using the formula
Acircle = πr2new, where rnew represents the updated radius at each time step. The calculations
were performed using P1-elements, which correspond to piece-wise linear functions on triangu-
lar elements. As a result, we can anticipate that the solutions will converge with second-order
accuracy in terms of the L2-norm.

To solve the problem, an iterative splitting scheme was employed using implicit Euler in
time and finite element in space. At each time step, the following procedure was followed:

1. Make an initial guess for u2.

2. Solve the PDE for u1 using the previous solution of u2.

3. Solve the PDE for u2 using the newly computed solution of u1.

4. Recalculate u1 using the updated solution of u2.

5. Repeat steps 2-4 until the sum of the L2-norms of the differences between the current
and previous solutions of both u1 and u2 is less than or equal to the tolerance of 10−6.
I.e., (∥u1 − u1,previous∥L2 + ∥u2 − u2,previous∥L2) ≤ 10−6.

This iterative process continues until the solutions converges within the specified tolerance,
ensuring the accuracy of the numerical solutions for u1 and u2 at each time step.

Table A.1 shows the L2-errors of the final solutions obtained. It can be observed that when the
number of elements is doubled, the error decreases by a factor of approximately four for both
approximate solutions. This indicates that the approximate solutions exhibit second-order
convergence.

Number of elements ∥uexact − u1∥L2 ∥uexact − u2∥L2

16 0.062696 0.042758
32 0.016089 0.010955
64 0.003973 0.002693
128 0.000989 0.000671

Table A.1: Convergence rates.
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