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Abstract

In the realm of modeling with big data including high-dimensional datasets, the challenge lies

in extracting the most relevant and informative information while avoiding overfitting of gen-

eral models, especially when it comes to prediction based on the given dataset. This thesis

focuses on utilizing sparse methods especially sparse Bayesian learning methods to construct

models that mitigate the risk of overfitting by utilizing only the most crucial aspects of the data

in the framework of supervised learning. By employing these well-developed techniques, the

most informative observations or variables can be extracted to reveal the systematic pattern

of the dataset as well as further prediction. Six methods are examined, including well-known

techniques such as LASSO, Ridge Regression, Bayesian Lasso, and the relevance vector ma-

chine (RVM), as well as two recently developed methods: RVMBLS and RVMBLSX . The latter,

RVMBLSX is proposed by the author of this thesis.
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Chapter 1

Motivation and Contribution

In the current day and age, methods for gathering data have become easier and more accessi-

ble all over the world. This leads to a vast amount of large datasets for data analysis with the

aim of discovering systematic patterns and relationships within the datasets. The extracted or

revealed knowledge from existing data can even help further predictions. The corresponding

drawback for analyzing "big" datasets is that it will be more complicated and computation-

ally expensive to implement mathematical and statistical learning models as well as utilizing

computational techniques to extract information from data. Especially when it comes to the

prediction using existing datasets. We can observe large datasets, whereas we only need the

most informative data which can reflect the systematic structure of the data patterns, instead

of using the whole dataset which can often include redundant information. This thesis will

focus on ways of analyzing datasets that contain redundant information in supervised learn-

ing. Our main focus will be methods of Sparse Bayesian learning that can achieve variable

selection and sample size reduction in the framework of Bayesian Analysis. Sparse Bayesian

learning is one type of supervised learning where we try to extract the most informative parts

of datasets for probabilistic prediction, whilst still achieve point estimation, when using the

mean or the mode of the predictive distribution for the posterior distribution as point estimates

for prediction. Our focus will be on the following six methods: Least Absolute Shrinkage and

Selection Operator (LASSO), Ridge Regression, Bayesian Lasso, The relevance vector ma-

chine (RVM), RVMBLS and RVMBLSX . While the first four are quite well known, the last two

method are recently developed, whereas RVMBLSX is my modification for RVMBLS [Helgøy

and Li, 2023]. These methods will be illustrated within the Bayesian framework and among

them are Lasso, RVM, RVMBLS and RVMBLSX can achieve variable selection/dimensional re-
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duction and sample selection/sample size reduction by automatic data driven algorithms, in

the way that certain estimated weight parameters of variables or samples will be set to zero

after the learning process, while Ridge and Bayesian Lasso can not. For Ridge and Bayesian

Lasso we need to identify a manual threshold for the estimated weight coefficient if we want

to achieve variable selection whereas the weights with estimated values under this threshold

being set to zero. This thesis will present detailed mathematical modeling and statistical infer-

ence process of those methods, compare them, and implement those methods using different

empirical datasets.

My own contribution in this thesis is the method tentatively named RVMBLSX , which is an

extension of RVMBLS that [Helgøy and Li, 2023] developed. RVMBLS is an extension of the

RVM from [Tipping, 2001], as the RVMBLS use the type-II maximum likelihood estimation

method implemented in RVM to estimate the hyperparameter in prior, while the hierarchical

structure in RVMBLS is from the Bayesian Lasso model ([Park and Casella, 2008][Helgøy and

Li, 2023]). In RVMBLS, the hyperparameter in both hierarchical prior and hyperprior are es-

timated by maximizing the same marginal likelihood with the respect to the hyperparameters

separately. RVMBLSX utilize Gibbs sampling method in [Park and Casella, 2008] to identify

the hyperparameter in the hyperprior, before learning the hyperparameter in hierarchical prior

by using type-II maximum likelihood estimation. Thus the RVMBLSX method implements the

type-II maximum likelihood method to estimate the hyperparameter in the hierarchical prior

wile Gibbs sampling to get the estimate hyperparameter in hyperprior.

Here is the structure for the following chapters: Chapter 2 of the thesis provides general

background on sparse learning within the Bayesian framework. Chapter 3 will explore well-

known sparse methods such as Lasso, Ridge, and Bayesian Lasso. In Chapter 4, we will delve

into the development and procedure of two specific methods: RVMBLS and RVMBLSX . The

former was developed by [Helgøy and Li, 2023], while the latter is my own contribution and

serves as an extension of RVMBLS. This chapter will offer a comprehensive walkthrough of

both methods, going in-depth into the mathematics behind the models and the implementation

algorithm. Chapter 5 is the result section, where we will compare each model on different

benchmark datasets. The final conclusion and discussion for further work will be presented in

chapter 6.



Chapter 2

General background

2.1 Sparse Modeling in supervised learning

As mentioned in chapter 1, when dealing with large datasets, algorithms that use all the avail-

able data can become slow and computationally expensive thus sparse learning methods is

needed. The sparse learning in this thesis is within the framework of supervised learning. The

sparse supervised learning methods can extract and identify the most informative samples and

variables for further prediction with less computational burden, which can help us to interpret

the model and patterns within the dataset better.

In supervised learning, we are given a dataset with n observations with input vectors {xi}n
i=1,

where xi = (xi1,xi2, ...,xip)
T ∈ Rp is the i‘th observation’s input vector (generally denoted as

x) containing observed values from p input variables. The n observed values for the scalar tar-

get is denoted as {ti}n
i=1 [Tipping, 2001]. From this dataset, we aim to construct and learn a

model to study dependency of the target variable on the inputs with the objective of making

accurate prediction of target variable y, especially for the previously unseen values of x. Often

we can build the model upon some function y(x) in the following form of [Tipping, 2001] to

approximate the relationship of input variables and target variable:

y(x;w) =
M

∑
m=1

wmφm(x) = wT
φ(x),

t = y+ ε, ε ∼ i.i.d.N(0,σ2)

(2.1)

where the output can be approximated as a weighted sum of M, generally nonlinear and

fixed, basis functions of input variables as φ(x) = (φ1(x),φ2(x), ..,φM(x))T . Analysis of equa-
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tion (2.1) is facilitated since (2.1) is the linear combination of weighted basis functions where

the weights are weight parameters w = (w1,w2, ...,wM)T appear linearly. One of the main ob-

jectives of learning is to estimate the values of those parameters based on certain optimization

criteria.

In the field of machine learning, there is one well known supervised sparse learning method

which utilize kernel basis functions, the support vector machine (SVM) ([Schölkopf et al.,

2001], [Boser et al., 1992], [Vapnik et al., 1997]). The regression model in SVM makes pre-

diction based on the function:

y(x;w) =
n

∑
i=1

wiK(x,xi) (2.2)

Where K(x,xi) is a kernel function utilized as a basis function. When defining one basis

function for each individual sample’s xi, i = (1, ..,n) in the training set, then the support vector

machine based on equation (2.2) can be learned to be a sparse model which achieves sample

size reduction, as only few of the estimated n sample weight parameters will be non-zero after

the learning process. SVM model can avoid over-fitting as well as achieving good general-

isation, and which furthermore results in prediction dependent only on a subset of non-zero

weighted kernel function associated training samples xl,(l = 1, ..,L) with (L < n) with L sup-

port vectors, and instead of using the whole sample set that contains n samples. Thus the SVM

extract only the most informative sample for predictions and can be viewed as sample size

reduction method. This thesis will introduce RVMBLS [Helgøy and Li, 2023] in the frame-

work of sample size reduction method, while however we will concentrate most on the sparse

method which deal with high dimensional data, so that the most important input variables can

be selected for prediction. My own extension RVMBLSX is illustrated in the framework of di-

mensional reduction or variable selection learning.

From the point of a statistical view, the term high dimensional data is often used to refer to

dataset, where the number of input variables (p) is near or exceeds the number of observations

(n). When it comes to model such data, there are several potential limitations that must be

considered. One such limitation is the curse of dimensionality [Bellman, 1966], which arises

when the number of variables increases, then the number of observations required to avoid

significant bias increases exponentially. Thus, it is often the case that there are not enough

observations in high-dimensional data to account for all the variables present. Additionally,

when modeling with high dimensional data, overfitting can occur, leading to models that are
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too complex and capture random noise in the data into the model structure[Bellman, 1966]. To

mitigate these issues, models that perform variable selection or dimensionality reduction are

necessary. These models aim to identify the most important features that impact the predicted

output variable, resulting in more parsimonious models with better generalization capabilities.

By utilizing sparse methods which can achieve variable selection, we can create more efficient

and effective models that account for high dimensional data.

To summarize, variable selection is one type of sparse statistical method used to identify

and select a subset of important variables from a large set of candidate variables of the high

dimensional data for more precise prediction of output variables in a statistical model. The goal

of variable selection is to improve the accuracy and interpretability of the statistical model by

reducing the complexity of the model[Chowdhury and Turin, 2020], eliminating irrelevant or

redundant variables as well as increasing the model’s prediction precision.

2.2 Bayesian view of model learning

Even though the SVM is sparse and have good generalization property, from the view of

Bayesian statistics, it has certain disadvantages in its methodology. Support Vector Machines

(SVM) are known to produce a point estimate, which implies that the predictions made by this

method are not probabilistic in nature. From a statistical point of view, it is desirable to obtain

an estimate of the conditional distribution on given information on the data in order to quan-

tify the uncertainty of the predictions. The posterior distribution which can combine the prior

knowledge as well as given data information can achieve the goal to quantify the uncertainty

of prediction. This is especially important in classification tasks where posterior probabili-

ties of class membership play a crucial role in adapting to varying class priors and asymmetric

misclassification costs. Another disadvantage is that the kernel function K(x,xi) used in SVM

must satisfy Mercer’s conditions, which state that it must be a continuous, symmetric kernel of

a positive integral operator. While the more general kernel functions which do not satisfy Mer-

cers conditions can be desired as basis function in certain cases[Tipping, 2001]. Tipping then

developed a new sparse learning method in the Bayesian framework, which can be utilized as

a more general type of kernel function and can also give output in probabilistic prediction, and

this method is called the relevance vector machine (RVM) [Tipping, 2001]. RVM possesses a

Bayesian view of model learning and we will give a short background introduction of sparse



6 General background

learning in the Bayesian view in the rest of this section.

When dealing with larger datasets, estimating parameters for w in equation (2.1) by using

the frequentist statistical method such as ordinary least square regression (OLS) can be com-

putationally intensive and time-consuming for each analysis. Moreover, for high dimensional

data where the samples size of the dataset n is near the number of input variables p, estimation

by use of the original OLS method can end up in estimated parameters that possess high vari-

ance. As will be illustrated later, OLS fails in high dimensional multivariate regression where

p exceeds n. Then penalized regression learning is needed by including additional penalty on

the coefficients to least squares loss function. The Bayesian approach however, places a sparse

prior distribution directly on the weight parameter w. While frequentist modeling deals with

uncertainty in data by using only the additional random term such as ε in (2.1) to account for

noise and random errors, Bayesian modeling additionally seeks to capture uncertainty in mod-

els and associated parameters. This is accomplished by incorporating prior knowledge and

treating parameters w as random variables. Through this approach, we can gain greater insight

to quantify the uncertainty surrounding model parameters and final prediction.

In frequentist statistics, we assume the existence of a vector of unknown but fixed param-

eters w and aim to estimate them as accurately as possible using certain criteria. In contrast, a

Bayesian approach does not assume the existence of a single true value for w, but rather seeks

to identify a distribution of the parameters which is called the posterior distribution, calculated

from likelihood of the observed data and prior distribution of the parameter. The calculation

of the posterior distribution will utilize the following Bayes Theorem:

P(A|B) = P(B|A)P(A)
P(B)

(2.3)

where A and B denotes random events. By using Bayesian theorem we obtain the posterior

distribution over the parameters as:

posterior =
likelihood×prior

normalizing constant
(2.4)

In equation (2.4), to determine the likelihood of observing the current data denoted as t,

we define the probability p(t|w), where w represents the model parameters. Furthermore, we

specify a prior distribution for the parameters, which reflects our prior beliefs or expectations

about the parameter before any observations are made. This distribution is denoted as p(w).
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By denoting p(w|t) as the posterior distribution for w, the corresponding concrete statistical

formula of (2.4) is:

p(w|t) = p(t|w)p(w)

p(t)
(2.5)

After getting the posterior distribution, we can predict new data points t∗ in a probabilistic

way by using the following predictive distribution:

p(t∗|t) =
∫

p(t∗|w)p(w|t)dw (2.6)

As we marginalize over the parameter w, the predictive distribution relies solely on the

observed data t, without the need for any additional information within the Bayesian frame-

work. Moreover, Bayesian learning can provide a measure of uncertainty in the predictions.

The key advantage of Bayesian learning, particularly in our scenario, is the ability to obtain a

complete predictive and posterior distribution, instead of only providing a deterministic point

estimate as with a fully deterministic approach. Further more, when a sparse prior is set for the

w, the posterior combines the dataset information represented by the likelihood together with

the prior information of parameter and end up in a posterior distribution such as the weight

parameter w in (2.1) will spike at zero, and thus sparsity is achieved.
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Chapter 3

Common Sparse Learning Methods

3.1 Multiple Linear Regression

As mentioned in chapter 1 and 2, the sparse learning methods introduced in this thesis are in the

framework of supervised learning. This chapter begin with the most simple supervised learning

model, the multiple linear regression, to introduce the mathematical framework needed for

further sparse models [Douglas C. Montgomery, 2013]. Multiple linear regression is a model

that can be used to predict the output variable Y based on the values of a set of independent

input variables denoted as X = (X1, ...,Xp). The multiple linear regression model has the

ability to measure the relative contribution of each independent variable in the explanation or

prediction of the output variable. The most simple multiple linear regression assumes a linear

relationship between Y and X. When assuming the intercept term is zero, the multiple linear

regression formula can be denoted as follows:

Y = β1X1 +β2X2 + ...+βpXp + ε, ε ∼N(0,σ2) (3.1)

Thus equation (3.1) is the linear combination of the weighted variables while equation

(2.2) can be viewed as linear combination of the weighted kernel functions where the kernel

function is associated with samples. The slope coefficients for the predictor variables in (3.1)

are denoted by βk. Specifically, βk represents the true average increase in the response variable

Y associated with a one-unit increase in the value of predictor variable Xk, where k ranges

from 1 to p, while holding the values of all other predictor variables constant. Thus, the

slope coefficients provide a measure of the marginal effects of each predictor variable on the
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response variable, while controlling for the other predictor variables in the model.

Multiple linear regression enables us to make direct predictions based on information from

p input variables simultaneously, while also allowing us to observe the unique effect of each

predictor on Y [Douglas C. Montgomery, 2013]. The unknown parameter vector is denoted

by β = (β1, ...,βp)
T , and the corresponding estimation is denoted by β̂ = (β̂1, ..., β̂p)

T . β j

represents the true average increase in Y when Xk (where k = 1, ..., p) is increased by one unit

while the values of all other variables are constant. After obtaining the estimation β̂ , the fitted

value for Y is Ŷ = β̂1X1 + ...+ β̂pXp, where e = Y − Ŷ is called the residual. Residuals are

estimates of the true random error ε . The most common frequentist statistical way to estimate

the parameter β is to obtain the estimation that minimizes the sum of squared residuals, also

known as the Residual Sum of Squares, simplified as RSS. We can rewrite Y as a vector and X

as a matrix after obtaining observations from n samples:

Y = (y1, ...yn)
T (3.2)

X =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

... . . . ...

xn1 xn2 . . . xnp

 (3.3)

Now we can obtain the RSS(β ) as a function of β and the corresponding first and second

order derivatives of RSS(β ) as follows:

RSS(β ) = (Y −Xβ )T (Y −Xβ )

dRSS(β )
dβ

=−2XT (Y −Xβ )

d2RSS(β )
dβdβ T = 2XT X

(3.4)

If we set the first derivative to equal zero, we obtain the estimation for the parameter vector

β using the ordinary least squares (OLS) method, denoted as β̂
OLS

:

β̂
OLS = (XT X)−1XTY (3.5)

Thus the RSS(β ) is minimized when β̂ OLS = (XT X)−1XTY as the second order of deriva-



3.1 Multiple Linear Regression 11

tive of RSS(β ) = 2XT X is larger than zero. β̂ OLS represents the estimated coefficients of β

obtained through minimizing the residual sum of squares (RSS). The covariance matrix for

β̂ OLS can be derived as follows:

Varβ̂ OLS = [(XT X)−1XT ]VarY [(XT X)−1XT ]T

= σ
2(XT X)−1(XT X)((XT X)−1)T

= σ
2(XT X)−1

(3.6)

where:

(XT X)−1 =


ζ1 . . .

. ζ2 . .

. .
. . . .

. . . ζp

 (3.7)

ζ refers to the diagonal elements of the matrix in (3.7). While minimizing RSS(β ) with

respect to β directly to obtain β̂ OLS in equation (3.5) may be appropriate for datasets with a

sample size much larger than the number of variables, it may not suffice for more complex

datasets in scenarios where the number of predictors p is approximately equal to the sample

size n. When p is near n, it is common for some of the predictor variables to exhibit high

correlation with each other. Consequently, the determinant of the product of the predictor

matrix X and its transpose, XT X, tends to approach zero, resulting in small values of ζ . This,

in turn, leads to an increase in variance of β̂ as:

Var(β̂ j) =
σ2

ζ j
(3.8)

Furthermore, in cases where the number of observations n is less than the number of pre-

dictors p, the predictor matrix X loses its ability to have linearly independent columns. This

can result in a situation of 100% multicollinearity, where the columns of X become linearly

dependent on each other. This, in turn, renders the product of XT and X non-invertible, i.e., a

singular matrix and OLS fails. To address the challenges posed by high-dimensional multiple

regression problems, we introduce two widely used regularized models: LASSO[Tibshirani,

1996] and Ridge regression (Hoerl and Kennard [1970a] [Hoerl and Kennard, 1970b]).



12 Common Sparse Learning Methods

3.2 Lasso

LASSO is a an acronym for "Least Absolute Shrinkage and Selection Operator[Tibshirani,

1996]. It is a popular regularized regression technique used in high-dimensional data analysis.

It effectively performs variable selection by introducing a penalty term to RSS(β ). In LASSO

we estimate the β ’s by minimizing the following penalized RSS with respect to β [Tibshirani,

1996].

RSS(β )λ =
n

∑
i=1

(yi −
p

∑
j=1

β jxi j)
2 +λ

p

∑
j=1

|β j|

= RSS(β )+λ

p

∑
j=1

|β j|
(3.9)

Minimizing the above RSS will result in certain estimated coefficients in equation (3.9)

being exactly zero. We can rewrite (3.9) in the following formula:

min
β

{
(Y −Xβ )T (Y −Xβ )+λ

p

∑
j=1

|β j|
}
, (3.10)

Assuming that the predictor matrix X is of full rank and can be standardized into an or-

thonormal matrix, such that XT X = I = (XT X)−1, the optimization problem of LASSO can

be expressed as follows:

min
β

{
Y TY −Y T Xβ −β

T XTY +β
T XT Xβ +λ

p

∑
j=1

|β j|
}

∝ min
β

−
{
[β̂ OLS]T β −β

T
β̂

OLS +β
T

β +λ

p

∑
j=1

|β j
}

= min
β1,...,βp

{ p

∑
j=1

(−2β̂
OLS
j β j +β

2
j +λ |β j|)

}
=

p

∑
j=1

(min
β j

−2β̂
OLS
j β j +β

2
j +λ |β j|)

(3.11)

Let β̂ L denote the estimation of the lasso coefficient which can maximize (3.11). After

certain calculation we can get if:

|β̂ OLS
j |< λ

2
⇔

(β̂ OLS
j − λ

2 )< 0

(β̂ OLS
j )+ λ

2 > 0
(3.12)
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then β̂ L
j = 0. Otherwise if |β̂ OLS

j |> λ

2 .

β̂
L
J =

β̂ OLS
j − λ

2 (β̂ L
j > 0)

β̂ OLS
j + λ

2 (β̂ L
j < 0)

(3.13)

The result from equation (3.12) and (3.13) induces that the model achieves sparsity, which

allows for variable selection in a linear model as the variables whose coefficients being 0 are

deleted in the final estimated model. Consequently Lasso achieves as a sparse predictive model

that is easy to interpret as it is only the most significant input variables are extracted to explain

the relationship between input variables and output variable.

3.3 Ridge Regression

Ridge regression and LASSO are both regularization techniques used in linear regression to

prevent overfitting. However, they differ in the type of penalty term added to RSS(β ). Instead

of using L1 penalty term in the way of being the sum of absolute value for the coefficients, ridge

regression uses an L2 penalty term, which is the sum of the squares of the coefficients ([Ho-

erl and Kennard, 1970a],[Hoerl and Kennard, 1970b],[Melkumova and Shatskikh, 2017]).The

effect of this penalty is to shrink the magnitude of the coefficients towards zero, but they are

never exactly zero. This can help reducing the impact of multicollinearity, where predictors

are highly correlated with each other. More concretely, ridge gets the estimation of β by min-

imizing the following penalized RSS with respect to β :

min
β

{
(Y −Xβ )T (Y −Xβ )+λ

p

∑
j=1

β
2
j
}

(3.14)

The strength of the penalty term is controlled by the tuning parameter λ . When λ is set

to zero, the Ridge regression estimate reduces to the standard linear regression estimate. On

the other hand, when λ is set to infinity, all the coefficients are shrunk towards zero, result-

ing in a constant term estimate of zero (β̂ ridge = 0). For intermediate values of λ , the Ridge

regression method balances the trade-off between shrinking the coefficients and fitting a lin-

ear model. This results in a set of coefficients that are smaller in magnitude compared to the

linear regression coefficients, while still maintaining a good fit to the data. The fundamental

objective behind incorporating the penalty term in Ridge Regression is to mitigate overfit-
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ting by shrinking the estimated coefficients([Hoerl and Kennard, 1970a],[Hoerl and Kennard,

1970b],[Melkumova and Shatskikh, 2017]), thereby reducing the variance of the model.

Owing to the effect of shrinkage, Ridge Regression is unable to assign coefficients of

exactly zero to any variables. Therefore, it does not perform variable selection. Instead, Ridge

Regression optimizes the coefficients to achieve a balance between fitting the data well and

reducing the impact of multicollinearity among the predictor variables. Due to the inclusion of

the penalty term in the objective function, ridge regression reduces the impact of the predictor

variables without excluding them from the model. This results in a model that fits the data

better and handles multicollinearity, but it doesn’t perform variable selection.

3.4 Interpretation of LASSO in a Bayesian point of view

If we want to look at LASSO from a Bayesian standpoint, we would need to assume the usual

linear model with normal distributed random errors and combine it with a specific prior distri-

bution which can impose sparsity for the coefficient parameters β . For LASSO this distribution

is a double exponential (Laplace) distribution with mean zero and a scale parameter.

Start with a simple model represented directly by observations,

yi =
p

∑
j=1

β jxi j + εi, i = (1, ...,n) (3.15)

where εi ∼ N(0,σ2), and the residual yi − ŷi = δi. Then the likelihood data for the data

would be[James et al., 2013a]:

L(Y |X ,β ) =
n

∏
i=1

1√
2πσ

exp
(
− δ 2

i
2σ2

)
=

(
1√

2πσ

)n

exp

(
− 1

2σ2

n

∑
i=1

δ
2
i

)
(3.16)

Assuming that we know that the following Laplace prior for parameter vector β is:

p(β ) = (1/2b)exp(−|β |/b) (3.17)

The posterior for β would be calculated:

p(β |X ,Y ) ∝ L(Y |X ,β )p(β |X) = L(Y |X ,β )p(β ) (3.18)
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And then by substitution of the prior and the likelihood functions we get:

p(β |X ,Y ) = L(Y |X ,β )p(β )

=

(
1√

2πσ

)n

exp

(
− 1

2σ2

n

∑
i=1

δ
2
i

)[
1

2b
exp
(
−|β |

b

)] (3.19)

The LASSO estimate is actually the mode for β of the posterior distribution in (3.19) when

the LASSO solution is fulfilled. To prove this, we can rearrange the expression and show:

L(Y |X ,β )p(β ) =
(

1√
2πσ

)n

exp

(
− 1

2σ2

n

∑
i=1

δ
2
i

)[
1

2b
exp
(
−|β |

b

)]

=

(
1√

2πσ

)n( 1
2b

)
exp

(
− 1

2σ2

n

∑
i=1

δ
2
i − |β |

b

) (3.20)

Now we take the natural logarithm of the product so that we can simplify the equation.

ln
[(

1√
2πσ

)n( 1
2b

)]
−

(
1

2σ2

n

∑
i=1

δ
2
i +

|β |
b

)
(3.21)

This makes it easier to formulate a strategy, which is to maximize the whole expression:

maximize
β

{
ln
[(

1√
2πσ

)n( 1
2b

)]
−

(
1

2σ2

n

∑
i=1

δ
2
i +

|β |
b

)}
(3.22)

In order to maximize the whole expression, we need to minimize the second term of it:

argmin
β

(
1

2σ2

n

∑
i=1

δ
2
i +

|β |
b

)
= argmin

β

(
1

2σ2

n

∑
i=1

δ
2
i +

1
b

p

∑
j=1

|β j|

)

=argmin
β

1
2σ2

(
n

∑
i=1

δ
2
i +

2σ2

b

p

∑
j=1

|β j|

)
= argmin

β

(
n

∑
i=1

δ
2
i +λ

p

∑
j=1

|β j|

)

=argmin
β

(
RSS(βλ )+λ

p

∑
j=1

|β j|

) (3.23)

By substituting λ = 2σ2

b in place of b in equation (3.23), the process of solving the opti-

mization problem presented in equation (3.23) is equivalent to minimizing equation (3.10). In

other words, the optimization problem in equation (3.10) can be viewed as the search for the

mode of the posterior in equation (3.23).
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3.5 Bayesian Lasso

Section 3.4 demonstrates that the estimation of the Lasso parameter can be interpreted as a

Bayesian posterior mode estimate, assuming independent double-exponential distributions as

priors on the regression parameters. However, [Park and Casella, 2008] highlight that employ-

ing the prior from (3.17) results in the presence of multiple posterior modes for joint posterior

distribution of β and σ2, which introduces conceptual and computational challenges. They

further introduce the Bayesian Lasso model, where a conditional Laplace prior is utilized for

β . Here, we rephrase (3.15) in the following manner:

Y = Xβ + ε, (3.24)

In this model, β = (β1, ...,βp)
T while Y is the n× 1 vector of the observed response val-

ues. X is the standardized regressors with n× p matrix of observed values for input variables,

and ε is the n× 1 vector of i.i.d. normal errors with mean 0 and unknown variance σ2[Park

and Casella, 2008].

As mentioned in section 3.3 the Lasso estimates are viewed as L1-penalized least square esti-

mates, and the minimization problem in Lasso is:

min
β

{
(Y−Xβ )T (Y−Xβ )+λ

p

∑
j=1

|β j|
}

(3.25)

As also mentioned in section 3.3, the Lasso estimates can be interpreted as the posterior

mode estimates when the regression parameters have i.i.d. Laplace priors which is uncondi-

tional on σ2.

π(β ) =
p

∏
j=1

λ

2
e−λ |β j| (3.26)

By utilizing the unconditional prior from (3.26), the joint posterior distribution of β and

σ2 have more than one mode. The presence of multiple modes in the posterior distribution can

significantly slow down the convergence of the Gibbs Sampler and diminish the interpretabil-

ity of point estimates. [Park and Casella, 2008] considers a full Bayesian analysis using a

conditional Laplace prior which is conditional on the variance σ2:

π(β |σ2) =
p

∏
j

λ

(2
√

σ2)
e−λ |β j|

√
σ2

(3.27)
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With the non-informative scale-invariant marginal prior π(σ2) = 1
σ2 . Conditioning on σ2

is crucial in (3.27) to achieve a unimodal full posterior instead of getting multi-mode by using

the unconditional prior in (3.26). Furthermore the Gibbs sampler implementation is utilized

to sample the posterior distribution of β ,σ2 and to sample hyperparameter λ in (3.27). [Park

and Casella, 2008].

Bayesian Lasso, unlike traditional Lasso regression, does not inherently guarantee spar-

sity in the estimated coefficients [Park and Casella, 2008]. Instead, it employs a prior distri-

bution on the regression coefficients that encourages sparsity, resulting in some coefficients

being shrunk towards zero. However, not all coefficients will be exactly zero. The degree of

shrinkage is determined by the hyperparameter λ , which control the strength of the prior dis-

tribution. In contrast, traditional Lasso regression imposes a penalty on the sum of absolute

values of the regression coefficients, directly promoting sparsity by setting many coefficients

to exactly zero. Therefore, while Bayesian Lasso can promote sparsity in the estimates, it does

not guarantee a fully sparse solution.

3.6 Sparse Bayesian Learning to reduce sample size n

This section will give a short presentation of probabilistic Sparse Bayesian Learning to reduce

sample size n and extract the most important samples for prediction. As stated in Chapter

2, while SVM kernel-based sparse learning methods provides deterministic predictions, the

probabilistic sparse learning method called relevance vector machine (RVM) introduced by

[Tipping, 2001], offers a different approach which is in the framework of Bayesian inference

and can also achieve sparse learning and probabilistic prediction. Our focus is on presenting

RVM [Tipping, 2001] as a kernel-based method for reducing the sample size and do sample

selection based on equation (2.2):

y(x;w) =
n

∑
i=1

wiK(x,xi)+ ε, ε ∼N(0,σ2) (3.28)

This is the same as equation (2.2) but with an added noise term ε . Thus RVM define M = n

in equation (2.1) and φ j(x) = K(x,x j),( j = 1,2, ...,n) where K(·, ·) is a kernel function. Each

weight parameter in w and basis function are associated with one individual sample’s input
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vector in a training dataset. After the learning process, most of the estimated value of the

weight parameters w = (w1, ..,wn)
T will be close to zero or strictly zero. What remaining is

the relevance input vectors corresponding to the non-zero weights, and those relevance vectors

instead of the whole dataset, are left for model construction and prediction. Further more,

RVM places an parameterized "automatic relevance determination" (ARD) Gaussian prior on

the weight parameters w [Tipping, 2001]:

p(w|α) =
n

∏
i=1

N(wi|α−1
i ) (3.29)

where α = (α1, ...,αn)
T denoting the inverse of the variances for each weight which can

be viewed as precision hyperparameters, so that we obtain a individual hyperparameter αi

associated independently with weight wi. RVM will estimate those hyperparameters by using

type-II maximum likelihood method. RVM use a gamma distribution as a hyperprior for α

and for the inverse of the variance for random error δ = 1
σ2 :

p(α) =
n

∏
i=1

ba

Γ(a)
α

a−1
i e−bαi

p(δ ) =
dc

Γ(c)
δ

c−1
i e−dδ

(3.30)

The parameters above can often be set to zero in order to obtain uniform hyperpriors such

that a = b = 0. If this is the case will be the basic prior for the weights become the improper

prior[Tipping, 2001]:

p(wi) ∝
1
|wi|

(3.31)

From [Tipping, 2001] we know that (3.31) can enforce sparsity also as it sharply peaked

at 0. To maximize the marginal likelihood with respect to the hyperparameter α , the learning

process for the RVM employs the type-II maximum likelihood method. During estimation,

many values of α are set to infinity, resulting in corresponding posteriors for w being sharply

peaked at zero and the corresponding estimated w values are set as 0. As a result, only a

small number of relevance vectors that correspond to non-zero weights remain in the dataset,

achieving sparsity by using the most informative samples with "relevant input vectors" for

prediction [Tipping, 2001].
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3.6.1 Type-II Maximum Likelihood Estimation

This section gives a short description of type-II maximum likelihood estimation. Type-II

maximum likelihood, also known as empirical Bayes or evidence approximation[Jamil and

Ter Braak, 2012], is a method for estimating hyperparameters in Bayesian hierarchical mod-

els. In Bayesian inference, the hyperparameters can represent the parameters in the prior

distribution, which can be used to model uncertainty about the parameters[Tipping and Faul,

2003]. Type-II maximum likelihood, involves estimating the hyperparameters by maximizing

the marginal likelihood of the observed data, averaged over all possible values of the param-

eters[Jamil and Ter Braak, 2012]. This method allows the hyperparameters to be estimated

from the data itself, rather than being fixed or chosen subjectively.

Given model where t represents the observed data, p(t|θ) denotes the likelihood function

for the model given θ , are assumed to be a unknown vector of all parameters. In Bayesian

hierarchical models, we can identify a hierarchical prior distribution for the parameter θ con-

ditional on the hyperparameters, denoted as α . We can also identify a hyperprior distribution

for the hyperparameter. Mathematically, we can get a joint distribution of θ and α as:

p(θ ,α) = p(θ |α)p(α) (3.32)

Here, p(θ |α) denotes the hierarchical prior distribution of the parameters conditioned on

the hyperparameters, and p(α) represents the prior distribution of the hyperparameters them-

selves. The marginal likelihood can be calculated by the following integrating process:

p(t|α) =
∫

p(t|θ)p(θ |α)dθ (3.33)

In equation (3.33), p(t|θ) is the likelihood function associated with the model, describing

the probability of the observed data given the parameter values for θ . By integrating out the

parameter θ , weighted by the prior distribution p(θ |α), we obtain the marginal likelihood of

the data as function of hyperparameters.

To estimate the hyperparameters, we maximize the marginal likelihood with respect to α ,

seeking the values that yield the highest likelihood for the observed data [Jamil and Ter Braak,

2012]. This estimation is expressed as:
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α̂ = argmax
α

p(t|α) (3.34)

By solving this optimization problem, we obtain the maximum likelihood estimates of the

hyperparameters, denoted as α̂ . The estimated α̂ is obtained by plugging it into the posterior

distribution of θ for further probabilistic inference of θ . Numerical optimization methods are

commonly employed to find the values of α that maximize the marginal likelihood. Type-II

maximum likelihood helps to avoid overfitting and reduce bias in parameter estimates. How-

ever, it can be computationally expensive and requires careful selection of the prior distribution

for the hyperparameters [Tipping and Faul, 2003].



Chapter 4

New Sparse Learning Methods

4.1 RVMBLS

The RVMBLS method [Helgøy and Li, 2023] utilizes the hierarchical structure from the

Bayesian Lasso and the type-II maximum likelihood method described in section 3.6.1 to

achieve sparse Bayesian learning. This method can be applied to both sample size reduction

and dimensionality reduction, but in this paper, we focus on the former in terms of algorith-

mic introduction and variable selection in the result. In the RVMBLS method, each individual

weight parameter wi is associated with an individual sample with an input vector xi ∈ Rp.

In the regular RVM, Tipping utilizes the ARD prior from (3.29) for w. RVMBLS instead use

another ARD prior introduced in the following section as a prior for w. This prior is condi-

tional on σ2, similar to the approach used by [Park and Casella, 2008]. In this new model,

each weight is associated with an independent individual hyperparameter, is associated with

the variances of the weights, rather than the precision hyperparameter α from (3.29). Thus

the estimated zero hyperparameters in the ARD prior of RVMBLS correspond to the associated

weighted parameters peaked at zero, and lead to the vectors with zero weight being pruned.

Since the prior for w is conditional on σ2, we can analytically prove that these hyperparam-

eters will be set to zero by a certain threshold, while the threshold will be estimated directly

from the data and is controlled by σ2. Usually, σ2 reflects the level of noise in a dataset. Once

the hyperparameters have been estimated, the mode of the posterior weight parameter w can

be used as a point estimate for w. When presented with a new input x∗, a point prediction for

the corresponding target output can be obtained as follows:
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y∗ =
n

∑
i=1

ŵiφi(x∗)+ ŵ0 (4.1)

Here, ŵ = (ŵ1, . . . , ŵn)
T represents the point estimation for sample weights. Since the

hyperparameters represent the variances of the weights, only the estimated nonzero hyper-

parameters will result in nonzero ŵ. As a result, the RVMBLS method achieves sample size

reduction by using only those ŵ corresponded input sample vectors in prediction and model

construction. In the following section, we will provide a more detailed explanation of the

RVMBLS algorithm.

4.1.1 RVMBLS for sample size reduction

In RVMBLS the likelihood function of the data set y is given by [Helgøy and Li, 2023];

p(y|w,σ2) =N(y|Φw,σ2), (4.2)

Φ represents the kernel matrix which contain the matrix elements Φ1i = 1 for n = (1, ...,n)

and Φmn = K(xm, xn), i = (2, ...,n+ 1);n = (1, ..,n). the ARD prior of the weights RVMBLS

follows the conditional prior from equation (4.2), and is written:

p(w|γ,σ2) =
n

∏
i=0

N(wi|γi,σ
2), (4.3)

where γ = (γ0, ...,γn)
T is the individual hyperparameter associated with the variance for

the weights. More precise, the full conditional prior on w conditional on σ2:

p(w|γ,σ2) =
n

∏
i=0

N(wi|0,γiσ
2) (4.4)

Here we see that the variance for w is the combination of both hyperparameter and the

variance within the data. The prior used for γ is an exponential hyperprior:

p(γ|λ ) =
n

∏
i=0

λ

2
exp(−λγi

2
) (4.5)

The priors for σ2 and λ is:
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p(λ ) =
ba

Γ(a)
λ

a−1e−bλ

p(σ2) =
dc

Γ(c)
(σ2)c−1

i e−dσ2
(4.6)

The prior for the model parameters follows a gamma and inverse gamma distribution, with

a = b = c = d = 0. With the prior structure established, the posterior distribution of all the

model parameters can be calculated given the observed data y:

p(w,γ,σ2,λ |y) = p(y|w,σ2)p(w|γ,σ2)p(γ|λ )p(λ )p(σ2)

p(y)
(4.7)

Where p(y|w,σ2)p(w|γ,σ2)p(γ|λ )p(λ )p(σ2) is the joint distribution of parameters, hy-

perparameters and data. The predictive distribution can be utilized to obtain predictions for y∗

when presented with a new test input x∗:

p(y∗ |y) =
∫

p(y∗|w,σ2)p(w,γ,σ2,λ |y)dwdγdσ
2dλ (4.8)

However to obtain p(w,γ,σ2,λ |y) we need the following decomposition:

p(w,γ,σ2,λ |y) = p(w|y,γ,σ2)p(γ,σ2,λ |y) (4.9)

The first term on the right side in (4.9) , which is the posterior of w conditional on y and

other parameters p(w|y,γ,σ2), can be calculated analytically by using Bayes rule, and is a

Gaussian distribution with the mean vector and covariance[Helgøy and Li, 2023]:

µ = σ
−2

ΣΦ
T y

Σ = [σ−2
Φ

T
Φ+Λ

−1]−1
(4.10)

The matrix Λ is defined as diag(γiσ
2). To estimate γ , [Helgøy and Li, 2023] employ

the similar type-II maximum likelihood estimation process from [Babacan et al., 2010] which

involves maximizing the second term in the decomposition (4.9) p(γ,σ2,λ |y) with respect to

each individual hyperparameter γi:

p(γ,σ2,λ |y) = p(y,γ,σ2,λ )

p(y)
∝ p(y,γ,σ2,λ ) (4.11)

Thus, to obtain a type-II maximum likelihood estimate of γ , the joint distribution
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p(y,γ,σ2,λ ) can be maximized. This is done by integrating out the weight parameter w,

yielding the following expression:

p(y,γ,σ2,λ ) =
∫

p(y|w,σ2)p(w|γ,σ2)p(γ|λ )p(λ )p(σ2)dw

= (
1

2π
)n/2|C|−1/2e−

1
2 yT C−1y p(γ|λ )p(λ )p(σ2)

(4.12)

where C = (σ2In +ΦΛΦT ). The log of p(y,γ,σ2,λ ) is:

L =− 1
2

log |C|− 1
2

yT C−1y+n log
λ

2
− λ

2 ∑
i

γi

+a logb− logΓ(a)+(a−1) logλ −bλ

+ c logd − logΓ(c)− (c+1) logσ
2 − d

σ2

(4.13)

Due to the type-II maximum likelihood estimation by maximizing (4.13) with respect to

γ , resulting in some γi values will be set to zero, and the corresponding basis function is

pruned out from the model. Thus resulting in a sparse model. The process of estimating the

hyperparameters can be achieved using the fast optimization algorithm described in the next

section.

4.1.2 Fast optimization algorithm

The RVM is a popular choice for utilizing Bayesian framework for sparse supervised learn-

ing, but it does have some disadvantages that should be considered. One such disadvantage

is the sensitivity of the RVM to hyperparameters, including the choice of kernel function and

regularization parameter. Proper tuning of these hyperparameters is necessary to achieve good

performance, but this can be challenging and time-consuming [Tipping, 2001]. Another po-

tential issue with the RVM is its susceptibility to overfitting, especially when working with

small training sets or noisy datasets. If overfitting occurs, the model’s ability to generalize to

new data may be poor [Tipping, 2001]. In addition, the maximization of the type-II likelihood

can be slow when computing the initial iterations, which require computations on the order

of O(n3). The RVM starts by including all basis functions in the model and then iteratively

updates the hyperparameters while pruning some of the basis functions [Tipping, 2001]. [Tip-

ping and Faul, 2003] fixes this by using the Fast optimization algorithm for sparse Bayesian

Models. The normal case of this algorithm updates the parameter γ (which represent a vector
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of parameters) for all versions, whilst in Fast algorithm it only updates a single parameter γi

for each iteration.

In order to obtain the derivatives of L with respect to each single hyperparameter γi we

rewrite the formula for L as:

L(γ) =− 1
2
[log |C−i|+yT C−1

−i +y ∑
j 6=i

γi]

+
1
2
[log

1
1+σ2γisi

+
q2

i σ2γi

1+σ2γisi
−λγi]

(4.14)

where si = ΦT
i C−1

−i and qi = ΦT
i C−1

−i y. The log likelihood function has now been decom-

posed to two parts, the first one, where γi and the corresponding φi is excluded, and the second

part contains the terms that involve γi. The covariance matrix in the log likelihood for (4.14)

can be decomposed as:

C = σ
2I+∑m 6=iσ

2
γmφmφ

T
m +σ

2
γiφiφ

T
i

= C−i +σ
2
γiφiφ

T
i

(4.15)

C−i denotes C without the basis function i. Applying the Woodbury identity on the covari-

ance matrix will give us the inverse of the covariance matrix as:

C−1 = C−1
−i −

C−1
i φiφ

T
i C−1

−i

σ−2γ
−1
i +φ T

i C−1
i φi

(4.16)

and the determinant identity has been used to obtain the following decomposition of the

determinant:

|C|= |C−i||1+σ
2
γiφ

T
i C−1

i φi| (4.17)

Now onto the derivative of L(γ) with respect to γi, where all other parameters are fixed:

dL(γ)
dγi

=
1
2
[− si

σ−2 + γisi
+

q2
i σ−2

(σ−2 + γisi)2 −λ ]

=−(γik1 + γik2 + k3)

2(σ−2 + γisi)2

(4.18)

where k1 = λ s2
i , k2 = s2

i +2siλσ−2 and k3 = σ−2(λσ−2 + si −q2
i ). The numerator has a

quadratic form while the denominator is always positive so that dL(γ)
dγi

= 0 is satisfied at
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γi =
−(s2

i +2siλσ−2)±
√

Θ

2λ 2
i

(4.19)

where

Θ = (s2
i +2siλσ

−2)2 −4λ s2
i σ

−2(λσ
−2 + si −q2

i ) (4.20)

The solution for the equation for γi is similar to the corresponding expression from

[Babacan et al., 2010], by analysing the terms we can see that if q2
i − si < λσ−2 then

Θ < s2
i + 2siλσ−2, and both solutions are for γi are negative. Since L(γ)

dγi
at 0 is negative,

the maximum of L(γ) occurs at γi = 0. When q2
i − si > λσ−2, there are two solutions. One

negative and one positive since L(γ)
dγi

us positive when γi = 0 and negative at γi = ∞.

The positive solution for γi maximizes L(γ). So the maximum of L(γ) when all other compo-

nents are fixed, is therefore obtained at:

γi =


−(s2

i +2siλσ−2)±
√

Θ

2λ 2
i

if q2
i − si > λσ−2

0 otherwise
(4.21)

If we want to estimate λ from this equation we can just use the equation from earlier

L =− 1
2

log |C|− 1
2

yT C−1y+n log
λ

2
− λ

2 ∑
i

γi

+a logb− logΓ(a)+(a−1) logλ −bλ

+ c logd − logΓ(c)− (c+1) logσ
2 − d

σ2

(4.22)

Take the derivative of (4.22) with respect to λ and set it to zero, we get:

λ̂ =
2(n+a−1)
∑i(γi +2b)

(4.23)

To estimate the value of σ2, we can apply a similar approach. Upon closer examination,

we observe that we can separate σ2 from the other components in the equation involving C.

This separation can be expressed as C = σ2C̃, where C̃ represents C with the component σ2

excluded. Based on this separation, we can obtain the estimate for σ2 as follows:

σ̂
2 =

yT C̃−1y+2d
n+2+2c

(4.24)
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In the optimization algorithm, both si and qi needs to be updated, where [Helgøy and Li, 2023]

and [Babacan et al., 2010] show that:

si = φ
T
i C−1

φi =
Si

1− γiσ2Si
,

qi = φ
T
i C−1y =

Qi

1− γiσ2Si

(4.25)

where:
Si = σ

−2
φ

T
i φi −σ

−2
φ

T
i φΣφ

T
φiσ

−2

Qi = σ
−2

φ
T
i y−σ

−2
φ

T
i φΣφ

T yσ
−2

(4.26)

In the equations (4.26), Σ and φ represents those basis functions that are currently included in

the model. As mentioned in [Babacan et al., 2010], both Σ and µ are updated effectively for

each iteration process, as well as only one hyperparameter γi is updated. By considering only

the basis functions currently included in the model, the computation becomes significantly

faster compared to the initial scenario where all n basis functions exist. Furthermore from

(4.21), [Helgøy and Li, 2023] pointed out that the criteria for setting γi = 0 is dependent

on λ and the variance σ2. [Helgøy and Li, 2023] also proved as σ2 tends to infinity, the

hyperparameters γi will be set to zero. The RVMBLS method takes advantage of this property by

incorporating information about σ2 to adaptability adjust the number of zero hyperparameters

during the estimation process of γ . In contrast, methods like regular RVM do not consider σ

in their calculations. This can result in a lack of distinction between actual signal information

and noise, leading to only a small number of γi being set to zero. Consequently, the regular

RVM method may struggle to effectively identify and eliminate irrelevant features from the

model when dealing with very noisy dataset. The following algorithm outlines the suggested

implementation of RVMBLS[Helgøy and Li, 2023]:
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Algorithm 1 The RVM with conditional Laplace priors

Initialize σ2 to some value 0.01 for example
Initialize all γi = 0 and λ = 0
while convergence criteria are not met, do

Choose a γi
if q2

i − si > λσ−2 and γi = 0 then
Add γi to the model

else if q2
i − si > λσ−2 and γi > 0 then

Re-estimate γi
else if q2

i − si < λσ−2 then
Prune i from the model (set γi = 0

end if
Update σ2 using equation (4.24)
Update λ using equation (4.23)
Update Σ and µ

Update si and qi using equation (4.25) and (4.26)
end while

4.1.3 Making Predictions based on the estimated sparse

model

When the learning algorithm converge we are left with a L(L < n+1) non-zero γi and each of

them correspond to a relevance basis function and a relevance input vector from the training

data. We denote the vector that contains those L non-zero γi as γMP, for any new input data x∗

we can now make predictions based on the posterior of the weights while conditioning on γMP

and σ2. The predictive distribution (4.8) can be approximated by:

p(y∗|y,γMP, σ̂
2) =

∫
p(y∗|y,γMP, σ̂2)p(w|y,γMP, σ̂2)dw (4.27)

The distribution is Gaussian and analytically tractable, the predictive mean and variance is

given by:

y∗ = φ(x∗)µMP

σ
2∗ = σ̂

2 +φ(x∗)T
ΣMPφ(x∗),

(4.28)

µMP and ΣMP is calculated by:
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µMP = σ̂
2
ΣMPΦ

T
MPy,

ΣMP = [σ̂2
Φ

T
MP +Λ

−1
MP]

−1
(4.29)

In this setup φ(x∗) = [φ1(x∗), ...,φL.(x∗)]T and φ j(x∗) = K(x∗,x j), j = (1, ...,L) where x j

is the j′th relevance input among the total L relevance input vectors within the total amount of

relevance input vectors L. ΦMP = [φ1, ...,φL] is the n×L design matrix with the column vectors

being φ j = [φ1(x1), ...,φ1(xn)]
T . The estimated diagonal matrix ΛMP with elements σ̂2γMP is a

L×L matrix making µMP and ΣMP the estimated posterior mean vector and covariance matrix

over the weight. They only contain L non-zero elements that correspond to those non-zero

elements in γMP [Helgøy and Li, 2023]. In a practical sense, the predictive mean is used for

point prediction and the predictive variance can be used to construct a prediction interval.

4.1.4 Marginal Prior for RVMBLS and RVM

Here we give a simple comparison for the marginal prior in RVMBLS and RVM. Integrating

out the hyperparameters γ in equation (4.5), we obtain the marginal prior for w. This is given

by:

p(w|σ2) =
∫

p(w|σ2,γ)p(γ)dγ =
n

∏
i=0

√
λ

2
√

σ2
e−

√
λ |wi|/

√
σ2

(4.30)

The prior used is known as a Laplace prior conditioned on σ2. Which is the same type of

conditional prior used in bayesian Lasso as in equation (3.27) set on the weight parameter β

for the variables, the conditional prior in (4.30) is set to the weight parameter w. This prior

can be derived from the Laplace distribution, which is a scaled mixture of Gaussians with an

exponential mixing density [Andrews and Mallows, 1974]:

√
v

2
e−

√
v|x| =

∫
∞

0

1√
2πλ

e−x2/(2λ ) v
2

e−vλ/2dλ (4.31)

If we compare equation (4.31) with the marginal prior for w in RVM:

p(w) =
∫

p(w|α)p(α)dα (4.32)

the hyperparameter is the inverse of the variance for each weight, while marginalized the
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hyperprior will result in a student-t distribution.

p(wi) =
∫

p(w|αi)p(αi)dαi

=
baΓ(a+ 1

2)

(2π)
1
2 Γ(a)

(b+w2
i /2)−(a+ 1

2 )
(4.33)

Both the Laplace Prior in (4.31) and student-t distribution in (4.33) is sparse[Tipping,

2001], which enhance the sparsity in both models.

4.2 RVMBLSX

In this section, I will discuss my extension of the RVMBLS, which I have tentatively named

RVMBLSX . The RVMBLSX method is developed to achieve variable selection ans is based on

the multivariate linear regression model:

y = Xβ + ε, ε ∼N(0,σ2In), (4.34)

RVMBLSX adopts the hierarchical structure in Bayesian Lasso proposed by [Park and

Casella, 2008]:

Likelihood p(y|β ,σ2) =N(y|βX,σ2)

Hierarchical - Prior p(β |γ,σ2) =
p

∏
j=1

N(β j|0,γ jσ
2)

Hyper - Prior p(γ|λ ) =
p

∏
j=1

λ

2
exp−

λγ j
2

(4.35)

The Bayesian Lasso method employs a conditional marginal prior, which is obtained by

integrating out the hyperparameter γ from the hierarchical prior from (4.35). This results in

the following expression for the marginal prior:

p(β |σ2) =
P

∏
j=1

λ

2σ2 exp(−λ
|β |
σ2 ) (4.36)

To sample the hyperparameter λ , the [Park and Casella, 2008] recommended utilizing

a Markov Chain Monte Carlo Expectation-Maximization (MCEM) algorithm in combination

with a Gibbs sampler. In the implementation of the MCEM, a λ value is estimated in each iter-

ation of the algorithm, and this value is then used to run the next iteration of the Gibbs sampler.
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Within the RVMBLSX we employ the same hierarchical structure that [Park and Casella, 2008]

introduced for the regression model (4.34), where the weight parameter is the coefficient for

the variable and Xβ is the linear combination of the variables X1, ..,Xp. In RVMBLS from sec-

tion 4.1 the same type hierarchical structure is applied for the model (3.28) where the weight

parameter is the sample weight, and φ(w) is the weighted combination of the kernel basis

function K(x,xi) where each kernel is associated with one sample. Since we employ the same

hierarchical structure as the Bayesian Lasso, we should also estimate λ the same way as the

Bayesian Lasso does. Both RVMBLS and RVMBLSX will utilize type-II maximum likelihood

to estimate the hyperparameter γ in the ARD prior. In RVMBLS the hyperparameter λ in the

hyperprior from (4.35) is estimated by maximizing the same marginal likelihood function di-

rectly to λ . Whereas in the original [Park and Casella, 2008] λ is sampled through Gibbs

sampling. In this section we will calculate λ by using the same method that[Park and Casella,

2008] used in their paper. And the process is as follows:

(a) Let k = 0 and choose initial λ (0)

(b) Generate a sample from the posterior distribution of β ,σ2,γ2
1 , ...,γ

2
p using the Gibbs

sampler with λ set to λ k

(c) (E-step:) Approximate the expected "complete-data" log likelihood for λ by substitut-

ing averages based on the Gibbs sample of the previous step for any term involving

β ,σ2,γ2
1 , ...,γ

2
p

(d) (M-step:) Let λ (k+1) be the value of λ that maximises the expected log likelihood of the

previous step

(e) Return to the second step and iterate until desired level.

After Gibbs sampling the complete log likelihood for λ by substituting averages based on

Gibbs sampling it becomes.

−((n+ p−1)/2+a+1)ln(σ2)− 1
σ2 ((ỹ−Xβ )T (ỹ−Xβ )/2+ γ)

− 1
2

p

∑
j=1

ln(γ2
j )−

1
2

p

∑
j=1

β 2
j

σ2γ2
j
+ p ln(λ 2)− λ

2

p

∑
j=1

γ
2
j

(4.37)
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In this case, we omit certain additive constant terms that do not involve the parameter λ . To

obtain the ideal E-step for the iterates at k, we calculate the expected value of the log likelihood

conditioned on ỹ under the current iterate λ k.

Q(λ |+λ
k) = pln(λ 2)

λ 2

2

p

∑
j=1

E
λ (k)[γ

2
j |ỹ] (4.38)

Then the M-step becomes a simple analytical solution:

λ
k+1 =

√
2p

∑
p
j=1 E

λ (k)[γ
2
j |ỹ]

(4.39)

The conditional expectations is replaced with the sample averages from the Gibbs samplers

run.

The use of Monte Carlo techniques offers a practical means to approximate the likelihood

function, making their implementation straightforward [Park and Casella, 2008]. By employ-

ing these techniques, we can estimate the likelihood function without the necessity of deriving

explicit expressions for it [Park and Casella, 2008]. Let θ = (β ,σ2,γ2
1 , ..,γ

2
p), allowing us to

express the likelihood ratio for any λ as:

L(λ |ỹ)
L(λ0|ỹ)

=
∫ L(λ |ỹ)

L(λ0|ỹ)
πλ (θ |ỹ)dθ =

∫ fλ (ỹ,θ)πλ0(θ |ỹ)
πλ (θ |ỹ) fλ0(ỹ,θ)

dθ

=
∫ fλ (ỹ,θ)

fλ0(ỹ,θ)
dθ

(4.40)

The complete joint density above is denoted as fλ for any particular given λ and πλ is the

full posterior of the model. Since the complete density is known for all λ we can use the final

expression to approximate the likelihood ratio as a function of λ from a single Gibbs sample

taken at the fixed λ0:

fλ (ỹ,θ)
fλ0(ỹ,θ)

= (
λ 2

λ 2
0
)pexp

{
−(λ 2 −λ

2
0 )Σ

p
j=1

γ2
j

2

}
(4.41)

Making it that the approximation in the neighbourhood of λ0:

L(λ |ỹ)
L(λ0|ỹ)

= (
λ 2

λ 2
0
)p
∫

exp
{
−(λ 2 −λ

2
0 )Σ

p
j=1

γ2
j

2

}
πλ0(γ

2
1 , ...,γ

2
p|ỹ)dγ

2
1 , ..,γ

2
p (4.42)

The empirical Bayes approach of utilizing the marginal maximum likelihood estimate for λ
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is an approach that does not automatically account for uncertainty in the maximum likelihood

estimate [Park and Casella, 2008]. However, the effect of this uncertainty can be evaluated

by considering the range of values that are contained within a 95 percent confidence interval

where λ lies. The new algorithm for RVMBLSX consists of two algorithms which is as follows:

Algorithm 2 Gibbs sampler for Bayesian Lasso Empirical Bayes
Inputs: x (Matrix of predictors), y (Response vector), nmax (Number of iterations), EB (Flag
for empirical Bayes estimation), a (Shape parameter), b (Scale parameter), print.it (Flag for
printing iteration information)
Convert x to a matrix and obtain the dimensions n and p
Scale the data: subtract mean of x and y from each variable
Compute XT X and XTY
Initialize simulation matrices: beta.sim, sigma2.sim, tau2.sim, lambda.sim, llkhd
Initialize parameters: β , σ2, γ2, λ

if EB is TRUE then
Set a = 0, b = 0
Define log-likelihood function Q
Calculate initial log-likelihood L0

else
Set λ (Lasso tuning parameter) to a desired value

end if
Set iteration counter iter = 1
while iter < nmax do

Update β by sampling from its full conditional distribution
for j = 1 to p do

Update β j by sampling from its full conditional distribution and apply Lasso thresh-
olding

end for
Update σ2 by sampling from its full conditional distribution
Update γ2 by sampling from its full conditional distribution
if EB is TRUE then

Update λ based on empirical Bayes estimation
end if
if iter > burn then

Save current values of β , σ2, γ2, λ for posterior statistics
end if
Increment iter by 1

end while
Compute posterior statistics using saved samples
Return posterior statistics
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Algorithm 3 The RVM with conditional Laplace priors and estimated λ

Initialize σ2 to some value 0.01 for example
Initialize all γi = 0
Initialize all λ through algorithm 2
while convergence criteria are not met, do

Choose a γi
if q2

i − si > λσ−2 and γi = 0 then
Add γi to the model

else if q2
i − si > λσ−2 and γi > 0 then

Re-estimate γi
else if q2

i − si < λσ−2 then
Prune i from the model (set γi = 0)

end if
Update σ2

Update Σ and µ

Update si and qi
Update λ

end while

Algorithm 3 is nearly identical to algorithm 1. The initialization of λ is the key difference.

The next chapter explores this further to see if the proposed model RVMBLSX can achieve

sparsity and still contain strong predictive power.



Chapter 5

Results and Discussion

In this chapter we compare the models described in this thesis through several empirical anal-

yses. We will compare the models by looking into the predictive performance as well as

illustrate the sparsity of the models. We will look at examples from three benchmark datasets,

the diabetes dataset from LARS[Efron et al., 2004], Boston housing and the Friedman #1 data.

Diabetes

The diabetes dataset in the "lars" package is a well-known dataset commonly used in re-

gression analysis and machine learning. The dataset contains 442 diabetes patients measured

on 10 variables which include age, sex, body mass index (BMI), average blood pressure, and

six blood serum measurements. The response variable is a quantitative measure of disease

progression one year after baseline[Efron et al., 2004].

Boston Housing

The Boston Housing Dataset is a widely used dataset in machine learning and statistics,

often used as a benchmark for regression models. It was first introduced by Harrison and Ru-

binfeld in 1978 [Harrison and Rubinfeld, 1978] and is based on data collected from the Boston,

Massachusetts area. The dataset consists of 506 samples, each representing a different suburb

of Boston. For each suburb, 13 features are provided, including both numerical and categorical

variables such as he per capita crime rate, average number of rooms per dwelling, proportion of

residential land zoned for lots over 25,000 square feet, and others, and corresponding response

variable medv which is the median value of occupied homes in 1000’s.

Friedman #1 Data

The Friedman 1 dataset is a synthetic dataset or evaluating regression algorithms. It was

introduced by Jerome H. Friedman in 1991 [Friedman, 1991]. The Friedman 1 dataset is
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generated based on a mathematical function that simulates a complex nonlinear relationship.

It is designed to mimic real-world scenarios where the relationship between predictors and

the target variable is nonlinear and exhibits interactions among the predictors. The dataset

consists of 10 input features and a response variable. The input variables are random uniform

input variables from [0,1]. The formula is:

y(x) = 10sin(πx1x2)+20(x3 −0.5)+10x4 +5x5 (5.1)

The response variable is only dependent on the first five features while the remaining five

features are noise columns. We use a sample of 200 when evaluating our models.

5.1 LASSO, Ridge and Bayesian Lasso

Benchmark datasets

In this section we will compare some of the results gathered from the models from section 3

in the thesis. In these examples, we divide the data into a training set and a test set, with 70%

of the data allocated to the training set and the remaining 30% is the test set. We repeat this

process 100 times with randomly chosen partitions of the training and the test set each time,

and calculate the average RMSE of the test set across these repetitions. The result is printed in

the following table:

Table 5.1: RMSE for methods used in Chapter 3

Method
Dataset

Boston Housing Diabetes Friedman 1 Data

Lasso 4.563 51.278 2.25
Ridge 4.896 50.770 2.33
Bayesian Lasso 23.940 169.450 13.615

Both Lasso and Ridge produces similar results whilst the Bayesian Lasso produces obvi-

ously much larger root mean squared error (RMSE). In these three scenarios, the Bayesian

Lasso have the worst performance.

To compare the estimated coefficient values of the variables in each model, I have chosen to

illustrate the average value of each coefficient estimation in the diabetes dataset over 100 rep-

etitions and the result is presented in figure 5.1, 5.3 and 5.6. We also present frequency plots
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in figures 5.2, 5.4, 5.5, 5.7 and 5.8 illustrates how many times each features is chosen over 100

repetitions.

LASSO

Figure 5.1: Average Coefficient Values for Lasso

From Figure 5.1 we can observe that there are are some coefficients as bmi and ltg that is much

is larger than the coefficient variables for eg. age, which means the variable of bmi and ltg can

be more influential than age when it come to the prediction of the output variable . If we look

at the sparsity of the model, we can use the following figure which shows the frequency of

each feature chosen in 100 repetitions:
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Figure 5.2: Chosen features over 100 repetitions Lasso

We can see from Figure 5.2 that the variables such as age and ldl gets chosen less then 70%

of the times whilst features as map and bmi gets chosen almost 100% of the repetitions.

Ridge Regression

Figure 5.3: Average value of coefficients in 100 repetitions Ridge
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If we should compare Figure 5.3 with Figure 5.1 we could say that they look very much alike.

It is not identical, but the pattern is the same where the model values BMI the most and age

the least. If we look at the sparsity of the model by using Figure 5.3:

Figure 5.4: Chosen features over 100 repetitions Ridge

This model is not sparse at all, this is as we explained in section 3 that Ridge is not an

automatically sparse model. If we adjust our model to have a balanced combination of L1 and

L2 penalty term the result may differ. This is done within the package in R "glmnet" where we

tune the α value to a number between 0-1. If we set the model to 1 it will be a Lasso model, if

we set it to zero it will be as figure 5.4. Setting α to 0.5 produces this result:
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Figure 5.5: Chosen features over 100 repetitions Ridge Spars

Figure 5.5 gives us a more sparse model than 5.4, which was the desired outcome. This is

called a elastic-net method which combines L1 and L2 regularization[Zou and Hastie, 2005]

which can be described as a combination of the Ridge and Lasso model. This is not strictly a

ridge regression model but is how we can achieve sparse results similar to the ridge regression.

Bayesian Lasso

For the Bayesian Lasso we will use the R package "monomvn". As mentioned in chapter 3,

the original Bayesian Lasso can not achieve sparsity automatically, since none of the estimated

coefficients is exactly zero.
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Figure 5.6: Chosen features over 100 repetitions Bayesian Lasso

Figure 5.6 shows us how the Bayesian Lasso estimation of the coefficients can be near

zero, but never be exactly zero. Thus, the frequency table will be of the following kind:

Figure 5.7: Chosen features over 100 repetitions Bayesian Lasso

Figure 5.7 shows that all features are included for each repetition. However, during the

algorithm’s implementation, a manual threshold is applied to the estimated coefficient values.
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Any coefficient value below the threshold is set to zero. Resulting in a sparse model:

Figure 5.8: Chosen features over 100 repetitions Bayesian Lasso sparse

Figure 5.8 illustrates a Bayesian Lasso that is also sparse.

5.2 RVM, RVMBLS and RVMBLSX

In this section we will test and compare the new sparse learning methods introduced in chapter

4. We will mainly look at the sparsity of each model but also as well look at prediction power

in certain datasets. The following table compares the prediction performance of the models

mentioned in chapter 4.

Table 5.2: RMSE for methods used in Chapter 4

Method
Dataset

Boston Housing Diabetes Friedman 1 Data

RVM 6.127 61.242 2.239
RVMBLS 4.587 51.251 2.218
RVMBLSX 4.641 50.2752 2.222

Table 5.2 shows the RMSE for the three methods. Already we can notice that the RVM is
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getting outperformed by our newer models. The following section will illustrate the sparsity

of the models RVMBLS and RVMBLSX .

Diabetes dataset

Figure 5.9: Frequency of chosen features in RVMBLS in the Diabetes Dataset

Figure 5.10: Frequency of chosen features in RVMBLSX in the Diabetes Dataset
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In Figures 5.9 and 5.10 the analysis reveals that on average, both models tend not to select

all available features. Specifically, the variables age and ldl exhibit a high frequency of non-

selection within the models. This observation of sparsity is noteworthy as it indicates that the

models prioritize a subset of features while disregarding others. The consistent exclusion of

age and ldl suggests that these variables may have limited impact or contribute little to the

predictive performance of the models.
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Boston Housing dataset

Figure 5.11: Frequency of chosen features in RVMBLS for Boston Dataset

Figure 5.12: Frequency of chosen features in RVMBLSX for Boston Dataset

Previous research on housing markets has suggested that the concentration of nitric oxide

(nox) should play a significant role in understanding housing dynamics. However, in our

models, the inclusion of the nox feature seems to have an opposite effect, which goes against

previous research [Harrison and Rubinfeld, 1978]. While the exact reasons for this is not yet
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clear, it is essential to acknowledge that machine learning models are not infallible and may

encounter challenges in capturing the complexities of certain datasets. For more than 80% of

the samples, the selected models do not incorporate all available features, indicating that the

models tend to identify and utilize only a subset of the available predictors. RVMBLSX values

nox slightly more than RVMBLS over the repetitions and excludes the RAD and TAX variable

a bit more often.
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Friedman #1 dataset

Figure 5.13: Frequency of chosen features in RVMBLS for Friedman #1 Data

Figure 5.14: Frequency of chosen features in RVMBLSX for Friedman #1 Data

The figures 5.13 and 5.14 reveal a consistent pattern. The algorithms consistently select at

least 4 out of the 5 columns containing relevant information from the dataset, capturing the es-

sential features with a 100% selection rate. However, when it comes to the noise columns, the

algorithms exhibit a lower selection rate, indicating their ability to differentiate between rele-
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vant features and irrelevant noise. Notably, the RVMBLSX algorithm demonstrates a tendency

to select fewer features over time, as indicated by the slightly lower selection rate for the third

and fourth columns. This trend is also observable in the selection of noise columns, suggest-

ing that the algorithm recognizes the minimal impact these columns have on the predictions

and tends to exclude them. This trade-off between feature selection and noise exclusion is a

desired outcome in the analysis of the Friedman dataset. The ultimate goal is for the algo-

rithms to assign less importance to the last five columns, effectively ignoring them due to their

minimal effect on the predictions[Friedman, 1991].

5.3 Variance within the model

While experimenting with my results i noticed however how dependent the results on the

initialized σ2. In [Tipping, 2001] suggests a value of σ2 = var(y) ∗ 0.01 , while [Babacan

et al., 2010] suggests a value of var(y)∗0.1 .

Figure 5.15: Frequency of chosen features in
RVMBLSX with initialized as σ2 = var(y)×0.1

Figure 5.16: Frequency of chosen features in
RVMBLSX with initialized σ2 = var(y)×0.01
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The figure above show the difference in the same model with different values for σ2. When

σ2 is initialized with var(y)×0.01 it becomes less sparse. It still gives sparse samples but for

the majority of repetitions it includes the majority of the features. This indicates that the

initialized σ2 might need to be estimated within the model.
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Chapter 6

Discussion and Further Work

The aim of this thesis is to get an in depth look at different techniques for supervised learning

methods within the Bayesian Framework that could automatically or manually achieve variable

selection, and show how each model performs on empirical examples. In statistical learning,

there is no best model that fits for all examples as shown, however the models represented do

have their advantages in certain scenarios over other models. We present different supervised

learning models where Ridge and Bayesian Lasso can not achieve sparsity automatically, while

Lasso can. We also illustrated the model estimation in frequentist and Bayesian perspectives.

The odd thing out is the predictive power of Bayesian Lasso, as it seems to be worse then both

Lasso and Ridge, this might have to do with initialization of the model in R, or it just happens

to be the case for these datasets.

We have successfully developed and implemented a new method RVMBLSX which seems to

outperform (on these examples) the RVM with better prediction and sparsity which is a desired

result. However, RVMBLSX is small modification on the original RVMBLS, as our result in terms

of prediction seem to stay in the same area as RVMBLS. This might be for different reasons as

for different datasets it might work better or worse, but as of these three examples illustrated

in the paper, RVMBLSX cannot be deemed as a significant improvement in prediction. If we

compare the RVMBLS and RVMBLSX in terms of sparsity, RVMBLSX seems marginally sparser

on these three datasets. This might imply that it produces more sparse models in general, but

that is hard to determine with three examples.

For further work, I would suggest to estimate σ2 from a Gibbs sampler within the algorithm

and extend RVMBLSX to classification.



52 Discussion and Further Work



Appendix A

Appenix

A.1 Hierarchical Model And Gibbs sampler

The Gibbs Sampler is a Markov chain Monte Carlo algorithm employed to generate a sequence

of observations that approximate a specific multivariate probability distribution when direct

sampling from the model becomes challenging [Park and Casella, 2008].

For the Bayesian Lasso, we utilize a Gibbs sampler that leverages the representation of the

Laplace distribution as a scale mixture of normals with an exponential mixing density [Park

and Casella, 2008]).

a
2

e−a|z| =
∫

∞

0

1√
2πs

e
−z2
2s

a2

2
e−

a2s
2 ds,

a > 0

(A.1)

In ([Andrews and Mallows, 1974],[Park and Casella, 2008]) it is suggested that the hierar-

chical representation of the model is:

y|µ,X,β ,σ2 ∼Nn(µ1n +Xβ ,σ2In)

β |τ2
1 , ...,τ

2
p,σ

2 ∼Np(0p,σ
2Dτ),

Dτ = diag(τ2
1 , ...,τ

2
p),

τ
2
1 , ...,τ

2
p ∼

p

∏
j=1

λ 2

2
e−λ 2τ2

j /2dτ
2
j , τ

2
1 , ...,τ

2
p > 0

σ ∼ π(σ2)dσ
2

(A.2)

By integrating out τ2
1 , ...,τ

2
p, we can obtain the desired form for the conditional prior on
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β . Additionally, if we use inverse-gamma priors for σ2, conjugacy is preserved. Since the

columns of X are centered, integrating out µ from the joint posterior under the independent

flat prior becomes straightforward. We often find that µ is not particularly informative, so

marginalizing it out simplifies the computations and improves speed. Importantly, marginal-

izing µ does not affect conjugacy. To sample from the conditional distribution of β , σ2, and

τ2
1 , ...,τ

2
p, we need to consider their dependencies on the vector ỹ.

The full conditional for β is just the multivariate normal with mean A−1XT ỹ and variance

σ2A−1 where A = XTX+D1
τ . And the full conditional for σ2 is a inverse-gamma with shape

parameter:
(n−1)

2
+

p
2

(A.3)

And scale parameter:
(ỹ−Xβ )T(ỹ−Xβ )

2+β TD−
τ 1β/2

(A.4)

Where τ2
1 , ...,τ

2
p are conditionally independent with 1

τ2
j

conditionally inverse-Gaussian with

parameters:

µ =

√
λ 2σ2

β 2
j

λ = λ
2

(A.5)

The density of the inverse-Gaussian density is given by:

f (x) =

√
λ ′

2π
x−3/2exp

{
− λ ′(x−µ ′)2

2(µ ′)2x

}
x > 0

(A.6)

These full conditionals form the basis of an efficient Gibbs sampler with block updating of

β and (τ2
1 , ...,τ

2
p).

A.1.1 Implementation of the Gibbs Sampler

We use the inverse gamma prior distribution om σ2
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π(σ2) =
γa

Γ(a)
(σ2)−a−1e

γ

σ2

σ
2 > 0

(a > γ > 0)

(A.7)

The conjugate priors can vary from models but we stick to one[Park and Casella, 2008].

Here we assume a independent, flat prior on µ with the hierarchy of:

y|µ,X,β ,σ2 ∼Nn(µ1n +Xβ ,σ2In)

β |σ2,τ2
1 , ...,τ

2
p ∼ np(0p,σ

2Dτ),

Dτ = diag(τ2
1 , ...,τ

2
p),

σ
2,τ2

1 , ...,τ
2
p ∼ π(σ2)dσ

2
p

∏
j=1

λ 2

2
e
−λ2τ2

j
2 dτ2

j

σ
2,τ2

1 , ...,τ
2
p > 0

(A.8)

By integrating out all the hyperparameters in the second equation above, we get the

marginal prior for β as the following conditional priors:

π(β |σ2) =
p

∏
j

λ

(2
√

σ2)
e(−λ |β j|

√
σ2) (A.9)

making the joint density:

f (y|µ,β ,σ2)π(σ2)π(µ)
p

∏
j=1

π(β j|τ2
j ,σ

2)π(τ2
j ) =

1
(2πσ2)n/2 exp(

1
2σ2 )(y−1n −Xβ )T (y−µ1n −Xβ )

× γa

Γ(a)
(σ2)−a−1eγ/σ2

p

∏
j=1

1
(2πσ2τ2

j )
1/2 exp(

1
(2σ2τ2

j )
1/2 β

2
j )

λ 2

2
e−λ 2τ2

j /2

(A.10)

If we define ȳ as the average of the elements of y we get:

(y−µ1n −Xβ )T (y−1n −Xβ )

= (ȳ−µ1n)
T (ȳ1n −µ1n)+(ỹ−Xβ )T (ỹ−Xβ )

= n(ȳ−µ)2 +(ỹ−Xβ )

(A.11)

Since the columns of X are standardised, the full conditional of µ is normal with the mean
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of ȳ and variance σ2

n . As done previously we can integrate µ out, leaves us with a joint density

which is only marginal over µ proportional to:

1
(σ2)(n−1)/2

exp(− 1
2σ2 )(ỹ−Xβ )T (ỹ−Xβ )(σ2)−a−1eγ/σ2

p

∏
j=1

1

(σ2τ2
j )

1
2

e
1

2σ2τ2
j β

2
j e−λ 2τ2

j /2

(A.12)

The expression above depends on y only through ỹ. The conjugacy of the other parameters

remains unaffected and thus making it easy to form a Gibbs sampler for β ,σ2 and (τ p
1 , ...,τ

2
p)

based on this density [Park and Casella, 2008]. For β the full conditional is multivariate normal

and the exponent terms involving β is:

− 1
2σ2 (ỹ−Xβ )T (ỹ−Xβ )−− 1

2σ2 β
T (XT +X+D−1

τ )β −2ỹT (Xβ + ỹT ỹ) (A.13)

If we let A = XT X+D−1
τ and do a square transformations, the above equation turns into:

β
T Aβ −2ỹT Xβ + ỹT ỹ = (β −A−1XT ỹ)T A(β −A−1XT ỹ)+ ỹT (In −XA−1XT )ỹ (A.14)

This makes β conditionally multivariate normal with mean A−1XT ỹ and variance σ2A−1

[Park and Casella, 2008].

A.2 Unimodality under prior π

The joint posterior π(β ,σ21̃) with a β and a σ2 > 0 under the prior

π(β |σ2) = π(σ2)
p

∏
j

λ

(2
√

σ2)
e−λ |β j|

√
σ2) (A.15)

When considering the statistical context, a unimodal distribution refers to a probability

distribution that exhibits a single peak. In this context, the term "mode" refers to any peak

of the distribution, not limited to the specific definition of mode in traditional statistics. For

typical choices of π(σ2) (the prior distribution for σ2) and for any choice of λ ≥ 0, it can be

observed that the conditional distribution of σ2 is unimodal. In the context of the upper level

set, denoted as c > 0, it can be expressed as follows:



A.3 Basis function 57

{(β ,σ2)|π(β ,σ2|ỹ)> c,σ2 > 0} (A.16)

The upper level set is connected, and the log posterior is:

ln(π(σ2))− n+ p−1
2

ln(σ2)− 1
2σ2 ỹ−Xβ

2
2 −λφ (A.17)

The coordinate transformation when we exclude β and σ2 is then defined by:

φ ⇔ β√
σ2

p ⇔ 1√
σ2

(A.18)

The conditional distribution of σ2 is continuous and exhibits a continuous inverse when

0 < σ2 < ∞. This implies that there is a one-to-one mapping between the values of σ2 and the

corresponding probabilities, allowing for a smooth transformation between the two.Further-

more, unimodality in the original coordinates is equivalent to unimodality in these transformed

coordinates. Therefore, if the conditional distribution of σ2 is unimodal in the original coor-

dinates, it remains unimodal after the transformation. To express the equation for the upper

level set, denoted as c > 0, we can proceed as follows:

ln(π(σ2))+(n+ p−1)ln(p)− 1
2
||pỹ−Xφ ||22 −λ ||φ ||1 (A.19)

The 2. and 4. terms in the equation above is concave in (φ , p) and the 3. term is a concave

quadratic in (φ , p) making the equation concave and this the posterior is unimodal, as long as

ln(π( 1
p)) is concave. This can result in instances where σ2 has the scale invariant prior 1

σ2 or

any inverse-gamma prior.

A.3 Basis function

This section is strictly from [Tipping and Faul, 2003] explaining the mathematical operations

behind how we operate with the basis functions within all extensions of the RVM.
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Adding a new basis function

2∆L=
Q2

i −Si

Si
+ log

Si

Q2
i
,

Σ̃ =

Σ+β 2ΣiiΣΦT φiφ
t
i ΦΣ −β 2ΣiiΣΦT φi

β 2Σii(ΣΦT φi)
T Σii


µ̃ =

µ −µiβΣΦT φi

µi


S̃m = Sm −Σii(βφ

T
m ei)

2

Q̃m = Qm −µi(βφ
T
m ei)

(A.20)

where Σii = (αi +Si)
−1 and µi = ΣiiQi. Where we define ei

∆
= φi −βΦΣΦT φi .

Re-Estimating a Basis Function

Define k j as k j
∆
= (Σ j j +(α̃i −αi)

−1)−1 and Σ j as the j-th column of Σ.

2∆L=
Q2

i

Si +[α̃−1
i −α

−1
i ]−1

Σ̃ = Σ− k jΣ jΣ
T
j

µ̃ = µ − k jµ jΣ j

S̃m = Sm + k j(βΣ
T
j Φ

T
φm)

2

Q̃m = Qm + k jµ j(βΣ
T
j Φ

T
φm)

(A.21)

Deleting a Basis function

2∆L=
Q2

i
Si −αi

− log(1− Si

αi
)

Σ̃ = Σ− 1
Σ j j

Σ jΣ
T
j

µ̃ = µ −
µ j

Σ j j
Σ j

S̃m = Sm +
1

Σ j j
(βΣ

T
j Φ

T
φm)

2

Q̃m = Qm +
µ j

Σ j j
(βΣ

T
j Φ

T
φm)

(A.22)
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