
University of Bergen
Department of Informatics

SmartSwarm - A Multi-Agent

Reinforcement Learning based

Particle Swarm Optimization

Algorithm

Author: Herman Jangsett Mostein

Supervisors: Ahmad Hemmati

Co-supervisors: Ramin Hasibi

June, 2023

Abstract

Particle Swarm Optimization is a renowned continuous optimization method that uti-

lizes Swarm Intelligence to find solutions to complex non-linear optimization problems

efficiently. Since its proposal, many developments have been put forward to improve its

capabilities by enhancing the stochastic and tunable component of the algorithm. This

thesis introduces SmartSwarm, a variant of Particle Swarm Optimization that utilizes

Multi-Agent Reinforcement Learning to control the velocity of a swarm of particles. This

framework has the capability of incorporating domain-specific information in the opti-

mization process, as well as adapting a self-taught velocity function. We show how this

framework has the ability to discover a velocity function to maximize the performance of

the algorithm.

Keywords:

Particle Swarm Optimization · PSO · Multi-Agent Reinforcement Learning

· Reinforcement Learning · Continuous Optimization · PPO · Swarm Intelligence

· Deep Learning · Machine Learning

Acknowledgements

I want to thank my competent supervisor Ahmad Hemmati, who has provided me

with much guidance and help throughout the writing of this thesis. I would also like to

thank my co-supervisor, Ramin Hasibi, who has helped me with both code and writing,

even while he was abroad. This thesis would not have been possible without them.

I also want to express my gratitude to my friends Thorarinn S. Gunnarsson, Sigurd

Roll Solberg, Halvor Helland Barndon, Eskil Hamre Isaksen, Vegard Birkenes, and Fredrik

Nestvold Larsen, who has helped me by giving me their knowledgeable insights into the

writing and experiments of this thesis. Their thoughtful critiques are much appreciated.

In addition, I would like to thank the rest of my co-students at Machine Learning for

many rich technical discussions and other uplifting, hilarious, and rewarding moments

that I will never forget.

I would also like to thank my girlfriend, Vanessa Marie Haaland, for providing moral

support and motivation and dealing with many lengthy expositions on technical details.

Finally, my gratitude goes out to my family for cheering me on throughout the work on

this thesis.

Herman Jangsett Mostein

Thursday 1st June, 2023

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis outline . 3

2 Theoretical background 4

2.1 Optimization . 4

2.1.1 PSO - Particle Swarm Optimization 7

2.1.2 Objective functions . 10

2.2 Reinforcement Learning . 11

2.2.1 DRL - Deep Reinforcement Learning 15

2.2.2 PPO - Proximal Policy Optimization 19

2.3 MARL - Multi-Agent Reinforcement Learning 22

3 Related work 25

4 SmartSwarm 28

4.1 The algorithm . 28

4.2 The agent . 31

4.2.1 The state representation . 31

4.2.2 Action . 32

4.2.3 Reward function . 33

4.2.4 Architecture and hyperparameters 35

4.3 Training setup . 35

5 Experiments 37

5.1 Experimental setup . 37

5.1.1 Experimental environment . 37

5.1.2 Baseline . 37

5.1.3 Implementation . 38

5.1.4 Experiment structure . 39

i

5.2 Experiments on the Rastrigin Function 40

5.2.1 Experiment results . 41

5.2.2 Discussion . 42

5.3 Experiments on the Sphere Function . 46

5.3.1 Experimental results . 46

5.3.2 Discussion . 47

5.4 Experiments on the Rosenbrock Function 50

5.4.1 Experimental results . 51

5.4.2 Discussion . 52

6 Conclusion and future work 53

6.1 Conclusion . 53

6.2 Future work . 54

Bibliography 55

A Notes on the standard deviation of output under learning 59

ii

List of Figures

2.1 Illustration of particles in a 2D field, using PSO to find the global optimum

(red dot). The green dot is the best-found solution (g), with opaque dots

being historic positions. 8

2.2 3D Plot of the Rastrigin Function . 11

2.3 An illustration of the Reinforcement Learning training cycle. The agent

receives observations (s ∈ S) and a reward (r ∈ R), and produces a new

action (a ∈ A) . 12

2.4 Plot of the Sigmoid, ReLU, and Tanh functions. 16

2.5 An illustration of a neural network with 4 layers. 17

2.6 LCLIP as a function of r by equation 2.13. The loss is bounded from above

in both cases, but when A is negative, we allow for a larger negative loss.

Figure from (Schulman et al., 2017) . 20

2.7 Different setting for MARL. In (a) we observe how we can use a centralized

policy to receive observations from the agents and distribute actions. In

(b) the agents share information with each other and pick their actions by

themselves. 24

4.1 A figure of how the SmartSwarm algorithm works. The velocities of the

particles are defined by a policy that all the particles use. 29

4.2 Plot of the reward function as a function of the ratio between the current

solution and the initial solution. 34

5.1 A 3D Plot of the Rastrigin Function . 40

5.2 Plot showing the learned variability in the action of PPO over time on

experiment 1. 42

5.3 Plot illustrating the objective value of the best-found solution during the

training phase of experiment 1. 43

iii

5.4 Plot illustrating the iteration of which the best-found solution is found

on experiment 1. This model is training with searches lasting for 100

iterations. High values, mean that the best-found solution is found late in

the search. 44

5.5 Plot illustrating the objective of the best-found solution during training

of the medium-large instance (experiment 2). The objective value declines

up to a point and then stagnates at approximately the same value. 45

5.6 A 3D Plot of the Sphere Function . 46

5.7 Plot of the objective of the best-found solution on the smallest instance of

the sphere function. 48

5.8 A plot of the agent’s response to different values of relative distance to

the global best position, and its own best position. Brighter areas indicate

that the policy would output a large value for these values, and darker

indicate a smaller response. 49

5.9 A 3D Plot of the Rosenbrock Function 50

5.10 Plot illustrating the objective value of the best-found solution during the

training phase of the largest instance on the Rosenbrock function. 52

5.11 Plot illustrating the mean reward pr agent per timestep for each batch

during training. 52

A.1 A figure of the training progression of one training session using a high

initial standard deviation on the model (brown color), and one training

session with a smaller standard deviation (blue color). The initial standard

deviation of the agents displayed by a brown line was 1, while the standard

deviation of the agents behind the blue line was e−1. 59

iv

List of Tables

4.1 State features and their descriptions . 31

4.2 PPO Hyperparameters . 35

5.1 Hyperparameters for PSO Algorithm . 38

5.2 Experiment parameters for Rastrigin function 41

5.3 Objective values for SmartSwarm and baselines on Rastrigin 41

5.4 Improvement values for SmartSwarm and baselines on Rastrigin 41

5.5 Experiment parameters for Sphere function 47

5.6 Objective values for SmartSwarm and baselines on Sphere 47

5.7 Improvement values for SmartSwarm and baselines on Sphere 47

5.8 Experiment parameters for Rosenbrock function 51

5.9 Objective values for SmartSwarm and baselines on Rosenbrock 51

5.10 Improvement values for SmartSwarm and baselines on Rosenbrock 51

v

Chapter 1

Introduction

1.1 Motivation

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is a widely-used

continuous optimization method that can be applied to solve complex nonlinear problems.

Drawing inspiration from nature, the algorithm mimics how animals communicate and

collaborate to find resources and safety. PSO leverages a swarm of particles to search

a defined space, guided by an objective function, to identify the global optimum. A

simple set of rules directs each particle and make them follow each other strategically

to find better objective values. PSO has been deployed in many applications such as

training machine learning algorithms (Phong et al., 2022), finding optimal positions of

wind turbines (Song et al., 2018), diagnosing Alzheimer’s disease (Zeng et al., 2018), and

more (Gad, 2022).

PSO is an example of Swarm Intelligence (SI). SI is a field of artificial intelligence in

which we use numerous entities that perform simple actions and exploit cooperation to

solve complex problems or tasks. There are many examples of SI in optimization, such

as Ant Colony Optimization, Genetic Algorithms, and Bacterial Foraging Optimization

Algorithm.

One of the disadvantages of PSO is that it often gets stuck in local minima when

optimizing in high dimensional spaces and thus cannot find the global optima. Several

versions of PSO have been developed, many of which involve dynamically changing the

1

parameters of the algorithm to improve the efficiency of the algorithm. One example of

this is the TVAC-PSO, in which the parameters of PSO are changed during the search

to find the optimal solution more effectively (Ratnaweera et al., 2004).

Reinforcement Learning (RL) is a branch of machine learning that has proved its

capability in recent years through multiple exciting breakthroughs. In RL, an agent con-

tinually engages in an environment, adapting its behavior in response to a system of

rewards. This differs from other types of machine learning in that we do not only want

the model to perform a single action but rather to construct a sequence of actions that

combine to perform a task. Examples of such tasks might be driving a car from one place

to another, controlling the temperature in a closed environment by letting warm air in

and out, or playing an Atari game. For most real-world applications of RL, especially

in recent years, Neural Networks (NNs) have played a significant role. Neural Networks

have many desirable attributes that aid RL, such as universal approximation and a ro-

bust capacity for handling high-dimensional spaces. These attributes have allowed us to

attack large-scale problems that were previously impossible.

Numerous examples showcase the interaction between optimization and RL, most

commonly seen in applying optimization techniques to train RL agents. Furthermore,

there are also instances where RL is used to enhance optimization techniques. Some

of these methods have tried to apply Reinforcement Learning to PSO by tuning the

parameters of the algorithm dynamically to improve the performance of the algorithm.

In this thesis, we propose a novel variant of PSO in which we use Multi-Agent RL to

determine particles’ velocity directly. This distinguishes our approach from existing RL-

incorporated PSO variants, where the agent indirectly influences the particles’ behavior

through the algorithm’s parameters. This means we do not use a set velocity function

in this framework but rather a continuous RL agent that observes the search process

and makes decisions to improve the algorithm’s performance. Furthermore, we wish to

investigate whether a Multi-Agent RL algorithm can adapt to the SmartSwarm framework

and learn its velocity function.

The optimization algorithm in this framework allows for incorporating domain-specific

variables that may guide particles toward superior optima. Examples could be terrain fea-

tures and environmental factors in placing wind turbines, risk and diversification metrics

when optimizing financial portfolios, or activation functions and regularization measures

2

for machine learning model optimization. By enabling the RL agent to observe these

domain-specific factors, it can potentially expedite the finding of optimal solutions.

Furthermore, using RL to control the velocity of particles directly allows for more

flexibility in the optimization process. Traditional PSO algorithms often require manual

tuning of parameters, which can be time-consuming and lead to suboptimal results. By

using RL to dynamically adapt the velocity of particles based on the observed search

process, we can avoid manually tuning these parameters.

Another potential advantage of our proposed method is that it has the potential to

improve the interpretability of the optimization process. By observing the decisions made

by the RL agent, we can gain insight into the underlying dynamics of the optimization

process and identify areas for further improvement. This can lead to a better understand-

ing of the problem being optimized and ultimately lead to more efficient solutions.

1.2 Thesis outline

Chapter 2 - Theoretical background covers the background theory and information

relevant to our algorithm. This will include the basics of optimization and Particle Swarm

Optimization (PSO), as well as machine learning and reinforcement learning (RL). We

will go into depth about Proximal Policy Optimization (PPO) and cover the basics of

Multi-Agent Reinforcement Learning (MARL).

Chapter 3 - Related work will present research related to our method, such as the

various developments of PSO. We will also present work that incorporates RL in PSO.

Chapter 4 - SmartSwarm will cover the mechanisms of our proposal SmartSwarm

in depth. We will cover pseudo algorithms, as well as the details of the model architecture

and hyperparameters.

Chapter 5 - Experiments contains the experimental setup and the details of how

our experiments have been conducted, as well as the experimental results and discus-

sions. The algorithm has been tested on three benchmarks, and its performance will be

compared to PSO.

Chapter 6 - Conclusion and future work will conclude the thesis and discuss

areas for future research and opportunities related to our work.

3

Chapter 2

Theoretical background

2.1 Optimization

Optimization is a specialized area within the field of informatics that employs mathemat-

ical techniques to discover optimal solutions for various optimization problems. These

problems involve determining the lowest or highest point within an objective function,

which typically represents a specific value like cost, time, distance, or any other relevant

metric. The significance of optimization extends across numerous industries, including

green tech, transportation and shipping, and finance, where it plays a pivotal role in

enhancing efficiency and effectiveness.

Often in the field of optimization, we come across problems that are easy to verify,

but hard to solve. The famous traveling salesman problem is one example. In this

problem, we seek to find a cycle in a complete graph that minimizes the total cost of

that cycle. For every cycle in such a graph, it is easy to calculate what the total cost

is, but hard to find out what the cheapest cycle is. There is no known algorithm that

can compute this in a reasonable time scale, and it is assumed to be an impossible feat.

However, there are several techniques that can find an adequate solution to the problem,

without guaranteeing an optimal solution. A class of algorithms that can do this is

Meta-Heuristics.

Meta-Heuristics are high-level frameworks for applying heuristics to solve an optimiza-

tion problem. This means that these Meta-Heuristics use heuristics to solve problems,

and provides a framework to use these heuristics in an effective way. There are many ex-

amples of Meta-Heuristics such as Simulated Annealing (Kirkpatrick et al., 1983), Particle

4

Swarm Optimization (Kennedy and Eberhart, 1995), and Tabu Search (Glover, 1989).

These methods do not guarantee to find optimal solutions to optimization problems but

aim to find good solutions. Often, these solutions are close to the global optimum in

objective value, and sometimes they are not. This usually depends on the size of the

problems. Large problems with many possible solutions are harder to search effectively,

and it might be challenging to find something close to the optimum.

Meta-Heuristics are often divided into two categories, Generative Meta-Heuristics,

and Perturbative Meta-Heuristics. Generative Meta-Heuristics will try to generate a so-

lution to the problem from scratch, while a perturbative method will start with a solution

that it changes iteratively over time. The latter category is the one we will mainly inves-

tigate in this thesis.

When employing a perturbative Meta-Heuristic approach, the initial solution serves as

a starting point from which we iteratively modify and refine it in pursuit of an improved

solution. In this search, we often refer to the concept of neighborhoods to assess the

proximity or similarity between solutions. When one solution can be transformed into

another by applying our heuristics, we consider them as neighbors. Conversely, if the

intersection of their neighborhoods is small, they are deemed distant or far apart.

The neighborhood of a solution s can be defined as:

Nh(s) = {s′ | Prob(s′ = h(s)) > 0} (2.1)

where h is the heuristic that is used in the search. Different heuristics have different

neighborhoods for the same solution, and if we use a Meta-Heuristic that uses many

heuristics, then the neighborhood is the union of the neighborhoods of each heuristic.

This can be expressed mathematically as:

NH(s) =
⋃
h∈H

Nh(s) (2.2)

where H is the pool of heuristics used in the search.

If an algorithm starts its search with a particular solution and confines itself to a close

vicinity, focusing solely on nearby solutions, it inevitably overlooks a broad spectrum of

5

alternative solutions. Nevertheless, there is a reasonable assurance that the algorithm

will discover one of the finest solutions within this localized neighborhood.

Conversely, when an algorithm consistently ventures far away from the current solu-

tion without fine-tuning its trajectory, it may encounter a diverse range of solutions, but

they might not possess the same level of quality. This balance between seeing many so-

lutions, and finding the best ones in a neighborhood is what we call the balance between

diversification and intensification.

The balance between diversification and intensification is important for creating ef-

ficient optimization algorithms. Diversification is the aforementioned large step in the

search space, that finds a large variety of solutions, while intensification is the finetuning

of an already found solution. We typically want to use diversification to find a nice neigh-

borhood to search, and later intensify on this neighborhood to find the best solutions in

this area. The optimal balance of diversification and intensification can be quite tricky,

and there are several methods that aim to find efficient ways of balancing the two.

We often divide the field of optimization into two subfields. One is discrete opti-

mization, in which we want to optimize a function with respect to discrete variables.

This could mean the order of operation in a given problem or scheduling problems. The

other subfield of optimization is continuous optimization, in which we wish to opti-

mize some function with regard to continuous variables. This is the subfield in which

this thesis will focus. In the domain of continuous optimization, we can think of most

problems as discovering optima in some subspace of a scalar field in Rn. For many, this

might seem familiar from calculus, where most functions are differentiable, which makes

finding an optimum easier. However, in many cases, we might not have sufficient infor-

mation to solve the problem with these classical mathematical methods. This poses a

challenge that requires other optimization methods. In the following subsection, we will

discuss one such technique called Particle Swarm Optimization.

6

2.1.1 PSO - Particle Swarm Optimization

PSO is an example of an algorithm based on Swarm Intelligence (Kennedy, 2006). These

types of algorithms are based on a certain degree of chaos and messiness but rely mainly

on the cooperation of simple agents. The concept is based on the natural phenomena in

which animals cooperate. For example, if many animals stay together in groups, they

may follow each other and benefit from each other’s discoveries of food and resources. If

one animal finds a valuable resource, the animals that follow it will also find this, and the

group stays stronger. In PSO, we want the particles to discover points in a space where a

certain objective function has a minimum. We create a setting in which the particles can

communicate with each other, and share information. As the particles share information,

they may utilize this to find optima.

The algorithm works as follows. Start off by defining a bounded space X ⊂ Rn. Now

we can define every point x ∈ X to represent a solution to an optimization problem with

an objective function f : X 7→ R. The intention of the algorithm is to find the solution x

where f(x) ≤ f (x′) ∀x′ ∈ X.
Now we place a set of particles S in the space and assign them a coordinate xi ∈ X. We

keep track of which of these positions is the best position each particle has seen, and

the best position of the swarm, and call them pi and g respectively. Every particle is

then assigned a velocity vi that changes the particle’s position for each timestep in the

algorithm. This velocity is given by:

vi,d ← ωvi,d + ϕprp(pi,d − xi,d) + ϕgrg(gi,d − xi,d) (2.3)

for particle i in dimension d where rp, rg are random numbers and ϕp, ϕg, ω are tuned

hyperparameters. See Algorithm 1 for full pseudo code. Through this mechanism, the

particles will move around the search space and see many different solutions to the prob-

lem. As they move toward the best solutions, the assumption is that they will find other

low-objective solutions nearby.

Upon inspecting formula 2.3 we might notice how the velocity of one particle is influenced

by the best position the particle has seen (pi), and also the best position the swarm has

found together (g).

7

Figure 2.1: Illustration of particles in a 2D field, using PSO to find the global optimum
(red dot). The green dot is the best-found solution (g), with opaque dots being historic
positions.

Just like the animals described at the beginning of this section, these particles will

follow each other and benefit from each other’s success. Notice that the user has some

control over the algorithm by tuning the hyperparameters ϕp, ϕg. The relationship and

size of these parameters control how much intensification and diversification the algorithm

will attain. With a high ϕg the particles will follow the best position more closely and

thus intensify, while ϕp will play the same role for diversification. ϕp and ϕg are often

called the cognitive and the social parameters respectively.

In our proposed algorithm, we will substitute 2.3 for a trained machine learning model

that will define a new velocity function based on other features of the search process.

There have been many other versions of PSO that change the velocity function (Poli

et al., 2007). These methods often involve finding better ways of controlling the balance

of diversification and intensification, as well as the magnitude of the velocity vectors. The

inertia weight ω in equation 2.3 was not included in the original proposal (Kennedy and

Eberhart, 1995), but rather an addition to controlling the velocity of the particles (Shi

and Eberhart, 1998).

8

9

Algorithm 1 Particle Swarm Optimization

1: for each particle i = 1, ..., S do
2: Initialize the position of the particle: xi ∼ U(bl, bu)
3: Initialize the particle’s best-known position: pi ← xi

4: if f(pi) < f(g) then
5: Update the best position in the swarm: g ← pi
6: end if
7: Initialize the velocity of the particle: vi ∼ U(−|bu − bl|, |bu − bl|)
8: end for
9: repeat until stopping criterion met
10: for each particle i = 1, ..., S do
11: for each dimension d = 1, ..., n do
12: Pick random numbers: rp, rg ∼ U(0, 1)
13: Update velocity by: vi,d ← ωvi,d + ϕprp(pi,d − xi,d) + ϕgrg(gi,d − xi,d)
14: end for
15: Update position of the particle: xi ← xi + vi
16: if f(xi) < f(pi) then
17: Update best-known position of the particle: pi ← xi

18: if f(pi) < f(g) then
19: Update best-known position of the swarm: g ← pi
20: end if
21: end if
22: end for
23: until stopping criterion met

2.1.2 Objective functions

Objective functions are the functions we want to find a minimum in when doing opti-

mization. The objective functions usually reflect a certain value or cost that we want to

minimize. In the transport sector for example, we would like to minimize the cost, the

carbon footprint, the time, and many other values in our transporting efforts. Thus, we

need a route or a plan that allows for low costs.

Note that we could also consider maximization when doing optimization. For example,

a financial manager would like to maximize their expected return or their sales. However,

maximization and minimization are mathematically equivalent. This follows from the

observation that minx f(x) = maxx −f(x). Because of this equivalence, we will only

consider minimization in this thesis, as there is no loss of generality.

For performing experiments on optimization methods, it is not uncommon to use

standardized benchmark functions. These are functions that we know the global op-

tima of, and they we can test and compare optimization methods on. Such benchmark

functions can come in many shapes, such as Bowl-shaped, Valley shaped, Plate shaped,

or functions with many local minima. These shapes pose different challenges for the

optimization techniques, and some methods might be more suitable for certain search

objective functions.

When we do optimization, we often talk about the search space or, a solution space.

This is the space of all the possible solutions to our problem. In continuous optimization,

this space is a subset of Rn. So every solution to a continuous optimization can be de-

noted as a vector of real values. In combinatorial optimization, these solutions and their

representations are typically more complex and specific to each problem.

10

Figure 2.2: 3D Plot of the Rastrigin Function

A frequently used benchmark function is the Rastrigin function (Rastrigin, 1974):

f(x) = An+
n∑

i=0

[
x2
i + Acos(2πxi)

]
(2.4)

where n is the dimension of x. As we can see from Figure 2.2, this function has many

optima, that would typically throw off optimization methods. We often want to pick a

function that can handle many different dimensional spaces, as is the case for Rastrigin.

This allows us to use the same functions but at different levels of complexity. Typically,

higher dimensional functions will be harder to optimize.

2.2 Reinforcement Learning

Machine learning is often divided into three subfields. Supervised Learning, Unsupervised

Learning, and Reinforcement Learning. Supervised Learning is concerned with learning

tasks by seeing multiple samples of labeled data and approximate functions that can

match the data with its labels. Unsupervised Learning aims to process data without any

labels and learn from it by finding patterns. Reinforcement Learning works in a different

way. Instead of taking a single data point and giving a certain label, Reinforcement

Learning wants to give a sequence of actions, that are appropriate for the observations

11

the agent encounters. This could, for example, be a self-driving car that encounters an

obstacle on the road, and that wants to maneuver away from the dangerous situation. It

could be a walking robot in a maze that wants to find its way out, or perhaps a chess-

playing AI. In all of these examples, it is not sufficient for the agent to perform a single

advantageous move, but rather a sequence of moves that leads to a beneficial outcome in

the future.

In recent years, Reinforcement Learning has been applied in numerous areas, including

well-known games like chess (Silver et al., 2017), Go (Silver et al., 2016), and Starcraft

(Vinyals et al., 2019). Moreover, it has been utilized in practical applications, such

as language models (Ouyang et al., 2022), self-driving cars (Jebessa et al., 2022), and

healthcare (Yu et al., 2021).

Figure 2.3: An illustration of the Reinforcement Learning training cycle. The agent
receives observations (s ∈ S) and a reward (r ∈ R), and produces a new action (a ∈ A)

The way Reinforcement Learning works is by the agent being placed in an environ-

ment. When in this environment, the agent will receive observations about the state of

the environment and will perform an action that changes the state. The agent is free to

try different actions in different situations and explore the space. If an agent does some-

thing desirable, we can give it a reward. This reward can be larger or smaller depending

on how good the action was, and negative if the action is undesirable. In this way, the

agent will learn from the rewards it is given and will start to act as we want it to.

Problems that can be solved by RL are usually modeled by a Markov Decision

Process (MDP). The formal definition of a MDP is a tuple (S,A,P ,R). Here, the state

12

space S is a set of states. The action space A is a set of actions, that the agent can

perform. P is a transition matrix, denoting the probability of one state being followed by

another, given a certain action a ∈ A. The reward functionR is a map from (s, s′, a)→ R
where the s, s′ is a state and the state following it, and a is the action performed for that

transition. The reward function is the previously described indicator of how well the

agent does. (Sutton and Barto, 2018)

In an MDP, we can create a policy π : S → A. This policy is the ”actor” and de-

termines the behavior of the agent. Policies can be deterministic, where a certain state

will lead to the same action every time. They can also be probabilistic and may per-

form different actions in the same state, following a certain probability distribution. The

agent’s policy is trained to act in a way that obtains the most rewards during an episode.

For the agent to learn, we need the agent to sometimes choose actions that are not

optimal. Reinforcement Learning is based on trial and error, and the only way for the

agent to learn the mechanics of the environment is for the agent to try actions that it

might consider suboptimal at first. Since the agent has not had the time to explore

the space, its evaluation of a certain state-action pair might be unreliable. This leads

to a central element in training RL agents, exploration vs exploitation. When training,

we want to explore the environment to learn how it works, but we do not want to ex-

plore all the time, because this will lead to less reward. There are several methods of

balancing exploration and exploitation, and we will discuss some of these in later sections.

Reinforcement Learning agents often rely on a value function vπ. The value func-

tion is an estimation of the return. The return is defined as the sum of rewards from a

certain timestep until the end of the episode. This sum is usually discounted with a factor

γ. This reflects that most applications will be more concerned with a reward in the short

run than the same reward in the future. Thus the return is defined as
∑∞

k=1 γ
kRt+k+1.

With this definition, the value function can be defined as:

vπ(s) = Eπ[Gt | St = s] = Eπ

[
∞∑
k=1

γkRt+k+1

∣∣∣ St = s

]
(2.5)

Where Gt is the return from the timestep t, St is the state in the current timestep,

s is the observed state, and Rt is the reward in timestep t. When a RL agent utilizes a

value function, it is easier to pick an action, since the agent can find the action that will

lead to more rewards.

13

Another way of estimating the future rewards is by using a q-function. This works

in much the same way as the value function, but instead of estimating the value of a

state, the q-function estimates the value of a state-action pair. So if the agent receives

a certain observation, the agent uses the q-function to clarify what action will give the

best return. This is done by estimating the q-value of each action in that given state and

picking the action with the highest q-value. The q-function is given by:

qπ(s, a) = Eπ[Gt | St = s, At = a] = Eπ

[
∞∑
k=1

γkRt+k+1

∣∣∣ St = s, At = a

]
(2.6)

We often categorize the methods of Reinforcement Learning into three categories. Policy-

based, Value-based , and Actor-Critic algorithms.

Policy-based RL algorithms use a learned policy to perform actions instead of relying

on an evaluation of the state-action pairs. This means that the policy is changed directly

from training, and the agent is not concerned with estimating the value function during

the learning process. One famous example of a policy-based RL method is REINFORCE

(Williams, 1992). This algorithm calculates the returns of an episode and adjusts its

policy directly, to make better decisions. This adjustment relies on the Policy-Gradient

theorem that shall be addressed in the next subsection.

Policy-based RL has the advantage of directly optimizing the policy, instead of having to

go the long way of updating a value function. The disadvantage of these algorithms is

that you usually have to go through an entire episode before updating parameters, thus

increasing the variance during training.

Value-based RL is mainly leaning on a value function to perform actions. This is typically

done by tuning the value function and having a policy that simply picks the action that

the value function recommends. One example of this is SARSA (Rummery and Niranjan,

1994). This algorithm uses a q-function to estimate the values of taking a certain action

in a certain state and adjusts this estimate based on the value of the following state and

action. While value-based methods can help reduce the variance problems with policy-

based methods, they can suffer from some instability since we are not acting directly on

the policy, but rather indirectly optimizing it.

14

Actor-Critic methods are a mixture of policy-based and value-based RL. In these methods,

we use a parameterized policy that we do updates on, while we also use an estimated

value function that assists the policy in performing parameter updates and learning.

These methods remove some of the problems with using only a policy by having a policy

that relies heavily on a value function. Proximal Policy Optimization is one example of

an Actor-Critic method, that we will discuss in detail in Section 2.2.1.

2.2.1 DRL - Deep Reinforcement Learning

Deep Reinforcement Learning is a subfield of Reinforcement Learning in which we use

neural networks to create efficient RL methods. Many applications of Reinforcement

Learning have obstacles that are hard to overcome with traditional RL methods but can

be drastically improved by the use of neural networks. The most common of these obsta-

cles is when the state space is too large to handle with tabular methods. This is especially

the case for continuous state spaces, where it is impossible to assign a value or an action

to each state in a table. With neural networks, we can take a vectorized representation

of the state as an input to the network, and have it approximate a function that returns

an action or a value.

ANN - Artificial neural networks

Deep neural networks are function approximators that apply a sequence of non-linear

operations on a vectorized input and are trained to produce a certain output. Each of

these operations is called a layer in the neural network and can be written as:

h(n) = g(n) (W(n)h(n−1) + b(n)) (2.7)

where h(n−1) is the output from the previous layer and h(0) is the input vector x. W(n)

and b(n) are called the weights and the biases of the layer n in the neural network. They

are trained iteratively to improve the performance of the network. The function gn is

the activation function of the layer n in the network. This is a non-linear function, that

is meant to improve the capacity of the network, or the ability to approximate a larger

class of functions. There are many activation functions, but some of the most popular are

15

the sigmoid function σ = 1
1+e−x , the ReLU f(x) = max(0, x), and the hyperbolic tangent

function f(x) = tanh(x). Note that without the activation functions, a composition of

the linear operation Wx + b will itself be a linear function, and will not be an efficient

function approximator for non-linear relations.

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

x

y

Sigmoid, ReLU, and Tanh Functions

Sigmoid
ReLU
Tanh

Figure 2.4: Plot of the Sigmoid, ReLU, and Tanh functions.

For computing an output we will apply 2.7 to the input x. This result is considered

the output from the first layer in the neural network. We will then apply equation 2.7 to

that result, and continue this iterative process n times, one for each layer of the network.

The final hn will be the final output. Depending on the task at hand, one can consider

hn itself to be the output from the network, or one can consider the index of the largest

value in hn to represent a class that the network outputs. The process of iteratively

applying 2.7 is called forward-propagation.

For the neural network to shape the output to match our task, we assign it a loss

function. This function is meant as an indicator of how far the neural network is from

performing in an optimal way. If the loss is high, that means that the neural network

is not performing close to optimal on the task. During training, we optimize the loss

function with regards to its weights W(n) and b(n). This way, the neural network will

gradually improve its performance and the loss will decrease. The loss function can be

constructed in many different ways, and we will return to the relevant loss functions for

16

Figure 2.5: An illustration of a neural network with 4 layers.

this thesis in a later section. The optimization of the loss function is usually done by a

gradient-based optimization method. This is because they have shown high performance,

and take advantage of the fact that the loss function often is differentiable with regard

to the weights and biases. There are many gradient-based optimization algorithms, but

the most frequently used is a variant of the aforementioned Stochastic Gradient Descent

(SDG) algorithm. The act of computing the gradient of the network parameters and up-

dating the weights based on these is called back-propagation. The equation for SDG

is

θt+1 = θt − α ˆ∇J(θt) (2.8)

where θ is the parameters of the neural network, α is a learning rate, and J is a cost

function that we wish to minimize. Usually, this cost function is a sum of loss functions,

for multiple forward propagations.

17

Policy Gradient Theorem

Since neural networks allow us to predict high-dimensional and complicated, non-linear

relationships accurately, they are precious to the modern Reinforcement Learning world.

In practice, they can be used in several ways, but the most common is by having a neural

network function as a value function, an action-value function, or as the policy itself. For

Actor-Critic methods, we usually use neural networks for both the policy and the value

function. It is not obvious how we can use backpropagation in the RL case, and especially

not in the policy-based methods, but as we will see, there is a theoretical foundation for

this.

One critical theorem that provides a theoretical framework for many of the Deep

Reinforcement Learning applications is the policy gradient theorem. The policy gradient

theorem gives the equation:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ) (2.9)

where µ is the distribution of state probabilities and J is some function to indicate

how well the model performs. J is usually set to be vπθ
(s0) as this is the expected return

for the entire episode. This provides a nice indication of the performance of our agent

and may function similarly to an ”inverse” loss function. The main takeaway from this

theorem is that we can apply this to a general update function like:

θt+1 = θt + α ˆ∇J(θt) (2.10)

This provides a way for us to update the policy weights with gradient-based optimiza-

tion algorithms such as SGD, and will then again make Deep Reinforcement Learning

easier to implement. Note that this formula is more representative of gradient ascent,

and it is different than 2.8. Since J is set to be vπθ
(s0), the expected episodic return, we

would like to maximize J .

18

This is important, not only for the policy-based methods but also for the Actor-Critic

based methods. In these methods, we will need to update both the policy and the esti-

mator of the value function. In fact, for updating the value function, we can use a similar

update method to 2.10 but use a different J to optimize:

wt+1 = wt − α [vπ(St)− v̂(St,w)]∇v̂(St,wt) (2.11)

where α is a constant learning rate, v̂ is the approximated value function and vπ is the

actual value function. Note that this update function attempts to minimize the difference

between the estimated value function and the actual value function. In most cases we do

not know the actual value function in a given environment, we would not need to estimate

it at all if it was known. However, we can find its value in a given state by calculating

the discounted return after the episode and updating the weights accordingly. We can

also use bootstrapping to perform this update function.

In the next section, we will investigate a modern algorithm, called Proximal Policy Op-

timization.

2.2.2 PPO - Proximal Policy Optimization

Proximal Policy Optimization (Schulman et al., 2017) is an on-policy Actor-Critic learn-

ing algorithm that has become popular due to its stability and ease of training. It was

developed by OpenAI and has been widely adopted for different applications, one of

which is the algorithm behind the famous language model ChatGPT (Ouyang et al.,

2022). PPO aims to stabilize learning by restricting how fast the model can change over

time. Since PPO is an on-policy model, if the changes to the policy are too large, the

agent’s behavior will change drastically. This will cause the agent to observe a different

part of the state space, and this way, the agent will struggle to learn. However, by using

clipping, or KL-divergence, PPO can prevent this from happening.

19

The main source of the success of PPO comes from the construction of the loss func-

tion:

LCLIP+V F+S
t (θ) = Êt[L

CLIP
t (θ) + c1L

V F
t (θ) + c2S[πt](st)] (2.12)

(Schulman et al., 2017)

where θ is the model parameters, c1, c2 are coefficients, S[πt] is the statistical entropy

on the policy output. Having the entropy in the loss is meant to ensure exploration. LV F

is the mean-squared error loss of the value function.

LCLIP is a clipped policy loss defined by:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât] (2.13)

where rt = πθ(at|st)
πθold

(at|st) and Ât is the advantage, as calculated by a chosen advan-

tage function. The term clip(rt(θ), 1 − ϵ, 1 + ϵ) will limit rt(θ) to stay within the range

(1 − ϵ, 1 + ϵ). This means that the relationship between the current policy output and

the previous policy output is limited, thus restricting how different the behavior is in the

current policy versus the old policy. Note that we also include a minimum function of

the weighted advantage and the clipped term. What this effectively does, is that it can

revert bad decisions. If the advantage is negative and rt is large, that means that the

current policy will pick a bad action with a high probability. This will result in poor

performance, so we allow the loss function to escape the clipping and do a large reverting

step from this suboptimal behavior.

Figure 2.6: LCLIP as a function of r by equation 2.13. The loss is bounded from above
in both cases, but when A is negative, we allow for a larger negative loss. Figure from
(Schulman et al., 2017)

20

Another way of restricting rapid change in the policy is by using a KL-divergence

penalty. This can be achieved by replacing the LCLIP term in the loss function 2.12 with

LKLPEN(θ) = Êt[rt(θ)Ât − βKL(πθold(·|st), πθ(·|st))] (2.14)

where β is a coefficient and KL is the KL divergence. β is usually adjusted by setting

a target value for the KL-divergence term, decreasing β if the divergence is too low, and

increasing it if not.

While this method is common and can be used, either in combination with or instead of

clipping, it is not considered to be as effective as clipping (Schulman et al., 2017).

The aforementioned advantage function can be chosen in many ways. One of the simplest

ways is to calculate A(s, a) = Q(s, a)−V (s), where Q(s, a) is the calculated q-value, and

V (s) is the estimated value in the current state. However, the most common advantage

function for PPO is a version of generalized advantage estimation:

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1 (2.15)

where δt = Rt + γV (st+1) − V (st), in which Rt denotes the reward in timestep t, γ

is the discount rate, and λ is a tuned parameter. V is the learned value estimation from

our critic. The strength of this advantage function is that it looks ahead, and also uses

the estimated value function, instead of the Monte Carlo method, which can often lead

to unstable training.

PPO should be considered a learning framework rather than a specific learning algo-

rithm, because of its many versions, and optional features. We can apply the framework

to both continuous and discrete settings, as well as Recurrent Neural Networks (RNN),

and other more concrete applications. In this thesis, the main focus will be the continu-

ous version of PPO in which we only wish to obtain a single one-dimensional continuous

value from the agent. This is done by having the policy network output a single number,

that will represent a mean value for a normal distribution. This normal distribution can

have a standard deviation that is a fixed constant, a trainable parameter, or an output

from the actor network. When the agent acts in the environment, we will simply sample

an action from the continuous normal distribution, and use this as our action. The reason

why we sample from this normal distribution is to explore the search space.

21

Another promising feature of PPO is the fact that it can be used efficiently in Reinforce-

ment Learning problems in which we have more than one agent acting in the environment

(Yu et al., 2022). This is called Multi-Agent Reinforcement Learning and will be discussed

further in the following section.

2.3 MARL - Multi-Agent Reinforcement Learning

Some Reinforcement Learning problems require more than one agent. This could for

example be games in which two or more agents play against each other or other settings

in which multiple agents cooperate on a common goal. These kinds of settings are often

different from traditional Reinforcement learning problems because the environment is

affected by other Learning agents.

We usually categorize Multi-Agent RL into three categories: fully cooperative, fully

competitive, and mixed settings. The cooperative settings involve cases where we want

different agents to cooperate on achieving the same thing. Often in these settings, each

agent benefits from the success of others and they have an incentive to help each other.

In competitive settings, we have different agents, that do not benefit from the success of

the other agents. We usually model these environments as zero-sum games, in which the

gain of one agent is the loss of another. These agents often have the incentive to get into

the other agents’ way, and only succeed by themselves. In the mixed settings, we may

have elements from both the cooperative setting and the competitive settings. In this

thesis, we will mainly focus on the cooperative setting, since our work is built on this

principle.

For Multi-Agent systems, it is natural for us to define our problem in a different way

from the single-agent problems. Thus we define the Markov game (Zhang et al., 2019):

Definition 2.3.1. A Markov Game is defined as a tuple: (N ,S, {Ai}i∈N ,P , {Ri}i∈N)

where N = {1, ..., N} is the set of N > 1 agents, S is the state space, Ai is the action

space for agent i in the environment, and thus we also define A = A1 × ...×AN .

P : S × A → ∆(S) is the transition probability, and Ri is the reward function for agent

i.

22

This definition is very similar to the MDP of the single-agent settings, except for the

inclusion of the set of agents, and the allowance for an action space and reward that

is different for each agent. While the problem may look similar, the inclusion of many

agents will often complicate training quite extensively. This can be seen clearly when

revisiting the definition of the value function, but taking many agents into account:

Vπi,π−i = E

[∑
t≥0

γtRi(st, at, st+1)
∣∣∣ ait ∼ πi(·|st), s0 = s

]
(2.16)

Where −i denotes every index except for i, and at ∈ A is the joined action of all

agents. When there are several agents in the environment, each agent has to take the

other agents’ behavior into account to maximize its own reward. As every agent is train-

ing and improving, the dynamics of the environment will also change, thus making the

agent’s knowledge obsolete. This makes the training unstable.

Because of the aforementioned interdependence of the agents, we often have to take

game theory into account. We would like the agents to find an optimal policy that lives

in equilibrium with the policies of the other agents. One concept that may help us here

is the Nash equilibrium Zhang et al. (2019):

Definition 2.3.2. A Nash Equilibrium of a Markov game (N ,S, {Ai}i∈N ,P , {Ri}i∈N)

is a joint policy π∗ = (π1,∗, ..., πN,∗) such that for any s ∈ S and i ∈ N

V i
πi,∗,π−i,∗(s) ≥ V i

πi,π−i,∗(s), ∀πi (2.17)

This concept illustrates a situation in which none of the agents are incentivized to

change their policy. Note that this does not necessarily guarantee that every agent will

receive its maximum reward, because the reward depends on the other policies. However,

in a Nash equilibrium, the agents have maximized their rewards given the policy of the

other agents.

Another important distinction in Multi-Agent Reinforcement Learning is the com-

munication framework. Often, we would like for our agents to be able to communicate

with each other. This is especially true in cooperative settings. This can be achieved in

different ways.

In centralized settings each agent is controlled by a single controller. This would

23

(a) Centralized setting
(b) Decentralized setting with networked
agents

Figure 2.7: Different setting for MARL. In (a) we observe how we can use a centralized
policy to receive observations from the agents and distribute actions. In (b) the agents
share information with each other and pick their actions by themselves.

involve a joint policy, a joint reward system, and joint observations. Because the cen-

tralized controller can access the joint observation of all agents and can control all of

their behaviors, this makes it much easier to develop cooperation between agents. The

practical weakness in such a scheme is that such a controller can get quite large. It would

need a joint observation space O =
∏

i∈N Oi and a joint action space A =
∏

i∈N Ai. For

practical applications, with many agents, this can be hard to train.

Another way of doing this is to remove the joint controller and have the agents com-

municate with each other in a network. This can be done by including information from

other agents in the observation of an agent so that it can take the other agents’ infor-

mation into account. This is called a decentralized setting with networked agents.

These types of learning schemes may be more sensitive to the instability that often arises

in MARL. When one agent updates its policy, its neighbor will experience a different

observation than before. This will make it harder for the neighbor agent to learn, and

we can sometimes see an oscillating behavior in the training process. This is a more

managable learning scheme than the centralized setting. We do not have to deal with

the large joint observations and action spaces, which makes learning easier. One way of

dealing with these settings is to use shared parameters, in which every agent uses the

same policy map from the observation to the action space. This simplifies implementa-

tion and training but requires a symmetric setup for each agent.

Sometimes we do not need the agents to communicate with each other at all. This

is called a decentralized setting. This is typically the case for competitive settings, in

which we do not want the contenders to have information about each other.

24

Chapter 3

Related work

One of the most interesting developments of the PSO algorithm is the previously men-

tioned work of Shi and Eberhart (1998). They introduced the inertia weight (see equation

2.3) that limits the momentum of the velocity of the particles. What they realized is that

the original velocity function without the inertia weight can create a compounding effect

that makes the velocities quite large if the particles move in the same direction many

timesteps. By using an inertia weight ω < 1, they controlled this compounding effect

to a larger degree, and the particles will not end up with such a large velocity. The

inertia weight can be defined in different ways, where one of the alternatives is a constant

weight that is less than one. Another alternative is to use a linearly varying inertia weight

defined by the following equation.

ω = (ω1 − ω2)×
itermax − iter

itermax

+ ω2 (3.1)

where ω1, ω2 are constants, iter is the current iteration in the search, and itermax is

the maximum number of iterations. We can consider ω1 to be the initial inertia weight

and ω2 the final inertia weight, and ω gets linearly changed from one to the other. The

thought behind this is to use a larger weight at the beginning of the search to encourage

diversification and decrease it to a more intensifying, lower value towards the end. This

made a large improvement to PSO and is widely applied today.

25

This work inspired another large breakthrough in the development of PSO, which

is the work of Ratnaweera et al. (2004). They realized that the social and cognitive

parameters should be adjusted to make the particles diversify at the beginning of the

search and intensify later. This will help find better optima because the particles will

have discovered better areas to intensify on when they have searched larger portions of

the search space first. This was done by adjusting the social and cognitive parameters

in a similar way as the work of Shi and Eberhart (1998) did for the inertia weight.

The social parameter was increased over the search, while the cognitive parameter was

decreased. This work explored two versions of their new proposal, where one of the two

is a mutation scheme for the particles (MPSO-TVAC). The idea is to prevent particles

from getting stuck in local optima, by perturbing their velocities if the particles are

stuck. This means, that the velocity will be changed randomly in a random direction if

the number of timesteps since the last global improvement gets large. This makes the

particle escape the local minima, and they are free to keep exploring the search space.

The other version, named HPSO-TVAC, does not include the velocity from the previous

timestep in the velocity function and only uses the social and cognitive components.

However, if the velocity is zero, they will reinitialize the velocity to a random value. This

makes sure that the particles do not stagnate at a local minimum, and also prevents

exploding velocities because of the momentum.

There are several different applications of Reinforcement Learning to PSO. Samma

et al. (2016) proposed a variant of PSO in which a reinforcement learning algorithm

indirectly influenced the velocity of the particles. In this algorithm, the reinforcement

learning agent was tasked to pick from five actions: exploration, convergence, high jump,

low jump, and fine-tuning. Each of these actions corresponds to a particular update

equation for the position of the particles. Using this approach, the reinforcement learn-

ing model is not responsible for picking the actual velocity but rather the velocity function

appropriate for each timestep. In this work, the authors have used a tabular Q-learning

method to pick these actions.

A similar setup has been used for combinatorial optimization in the work of Kallestad

et al. (2023). This reinforcement learning application had the agent pick between heuris-

tics to apply to a particular optimization problem on a specific solution. This agent was

given information about the search process that could assist the agent in picking what

kind of heuristic was appropriate. In this algorithm, the agent can choose from a pool of

diversifying heuristics and intensifying heuristics. While this algorithm is not a version of

PSO, it has a similar use of Reinforcement Learning as the application mentioned above,

as well as what will be proposed in this thesis.

26

In the work by Yin et al. (2023), the authors present an approach in which the param-

eters of PSO are adjusted by Reinforcement Learning. These parameters include the ones

in the velocity function 2.3 and play a big part in the algorithm’s efficiency. By tuning

these parameters during the search, we can optimize the algorithm to work optimally at

all times during the search. In this paper, they utilize the DDPG algorithm and input

a state representation of the swarm and the search process. This state representation

consists of measures of how far in the search process we currently are, as well as mea-

sures of the shape of the swarm, and how far apart the particles are in relation to each

other. This is processed by an RL policy to output how to change the parameters of

the PSO algorithm. The swarm is divided into five groups, where each group receives a

4-dimensional action to use for tuning the parameters. As a reward function, they give

the agent a positive reward value of 1 if the swarm has found a better global solution,

and -1 if not.

The work of Liu et al. (2019). demonstrates a Q-learning-based version, in which

intensifying and diversifying parameters are tuned by Reinforcement Learning. They use

a tabular Q-learning model, that is adjusted with their reward signal. This way, the

agent has a set of possible variables, and the combinations of variables are given a value

based on their performance. This is a method of finding the optimal set of variables to

be used for optimization.

We have not seen any other algorithms that apply Reinforcement Learning to decide

the particles’ velocity in PSO directly. However, this is what we wish to investigate in

this thesis.

27

Chapter 4

SmartSwarm

In this section, we will present the SmartSwarm algorithm, a Multi-Agent Reinforcement

Learning-based version of Particle Swarm Optimization. The algorithm aims to use

Reinforcement Learning to improve the velocity function of the particles in PSO, and

thus improve the algorithm’s performance.

4.1 The algorithm

The main difference between our algorithm and the traditional PSO algorithm is how

the velocity of each particle is computed. The traditional PSO uses an equation 2.3,

that utilizes information about the other agents and the particle’s history to compute a

velocity. The aim of our algorithm is to learn a new velocity function. This is done by

having every particle be a Reinforcement Learning agent and having the RL agents learn

a policy that will function as their velocity function. These agents will, as the traditional

PSO algorithm, receive information about the environment and compute the velocity

based on this. This information can consist of any value that will help the performance.

Since every particle is an agent of its own, and they are communicating with each other,

this is an example of a cooperative Multi-Agent Reinforcement Learning setting.

28

SmartSwarm considers one search as one episode for the RL algorithm, and one

timestep is one move of the particles in a certain dimension. Thus, the agent will re-

ceive one state representation, output one velocity, and receive one reward each timestep.

Since this is a Multi-Agent setting, this will happen once for each of the particles within

a timestep.

Figure 4.1: A figure of how the SmartSwarm algorithm works. The velocities of the
particles are defined by a policy that all the particles use.

The SmartSwarm uses a networked agent communication structure between particles,

with shared parameters. This means that every agent shares the same policy, and this

policy will learn from all agents. This is to simplify the algorithm and to exploit the fact

that every agent has the same goals and objectives. If every particle has its own policy,

we would have a much longer and more complicated training process, and we would lose

invariance to the number of particles in the algorithm.

29

The networked communication between particles lies in the state representation. It

includes information about the other particles, such as the best-found solution, and how

much better the best solution is, relative to the current particle. This provides useful

information to the agent, with regard to diversification and intensification. If the agent

receives information from the other agents that there are much better solutions to be

found, the agent may choose to diversify. However, if the agent is in the best-found solu-

tion, it might choose to intensify. Note that this is also incorporated in the PSO velocity

function (equation 2.3), but in our version, the policy is free to act in a more complex

manner based on these signals. The agent may decide to keep diversifying if it does not

think it is beneficial to follow the best solution found.

Algorithm 2 SmartSwarm

for each particle i = 1, ..., S do
Initialize the position of the particle: xi ∼ U(bl, bu)
Initialize the particle’s best-known position: pi ← xi

if f(pi) < f(g) then
Update the best position in the swarm: g ← pi

end if
Initialize the velocity of the particle: vi ∼ U(−|bu − bl|, |bu − bl|)

end for
while a termination criterion is not met do

for each particle i = 1, ..., S do
for each dimension d=1, ..., n do

Define current state: st,i,d
Update velocity with RL agent vi,d = π(st,i,d)

end for
Update position of the particle: xi ← xi + vi
if f(xi) < f(pi) then

Update best-known position of the particle: pi ← xi

if f(pi) < f(gi) then
Update best-known position of the swarm: g ← pi

end if
end if

end for
end while

30

4.2 The agent

The Reinforcement Learning framework used to train the SmartSwarm policy is the Prox-

imal Policy Optimization framework as described in section 2.2.1. We apply a continuous

version of PPO where the output of the actor is a one-dimensional scalar value, that

is further applied as the mean of a normal distribution the action is drawn from. This

section will cover the details behind this RL agent.

4.2.1 The state representation

The state representation is meant to convey as much information about the environment

as possible to the agent. This information should allow the agent to make qualified deci-

sions and allow the agents to understand their position in the search progress. It includes

features such as best found solution, current solution, or how far we have come in the

search process. This allows the agent to make more strategic choices since it can under-

stand easily when to intensify or when to diversify.

As in the traditional PSO algorithm, our agent should receive information about the

other particles, to get an understanding of the function space, and where to go. This

may however cause instability since it is impossible for the agent to predict the value of

these features in the coming timesteps. Because of this, we have limited the number of

such features.

Feature Description

dist to global best The relative distance from the particle to the global best-found
solution in this dimension.

dist to particle best The relative distance from the particle to the particle’s best-found
solution in this dimension.

v The current velocity of this particle in this dimension
dim The current dimension
ratio The ratio between the objective in this solution and the initial

best-found solution.
best ratio The ratio between the objective in the global best-found solution

and the initial best-found solution
iter Share of iterations performed

Table 4.1: State features and their descriptions

31

For ease of training, the state will be normalized prior to its input into the agent.

This is to avoid the instability that follows with outliers, and large changes in the state.

The states are normalized by

Xi =
Xi −X

σ
(4.1)

where Xi is an observation, Xi is the mean of observations, and σ is their standard

deviation.

4.2.2 Action

In our version of this algorithm, we have chosen to only output the velocity in a sin-

gle dimension for each particle. The reason for this is that one trained agent can be

used in problems with different dimensionality than what it was trained on. This does

however assume some level of independence of the function in the different dimensions.

Neural networks have the ability to output a high dimensional velocity, but this requires

a fixed dimension in the problems to which the agent is applied. It is possible to apply

a Recurrent Neural Network to solve this issue, but that is beyond the scope of this thesis.

For our agent to be able to optimize any objective function with any boundary restric-

tions, it is important to normalize the outputs of the agent with the size of the space the

particles may move in. Because of this, we include a tanh function as the particles are

passed to the environment. This could be done in the model architecture, but this may

cause some gradient vanishing in the neural network.

As previously described, the action is sampled from a normal distribution created by

the output of the actor network. This works by having the PPO agent output a value

that is considered the mean of the distribution. The variance of this distribution is a

learned parameter, that is not dependent on the state of the input. Then, the action that

is used in the environment is drawn randomly from this distribution.

This is done to ensure exploration during the training process. Usually, since the models

will get better over time during training, the model will learn to decrease the variance

of the distribution through the learnable parameter. This means that the normal distri-

bution usually will become sharper during training, and the model will rely more on the

mean output. It is not uncommon to simply use the outputted mean as the action during

32

validation.

In our case, it is not necessarily a bad thing to include the normal distribution also in

the evaluation. As randomness plays a role in PSO, this could ensure the diversification

of our particles in our algorithm, and we will therefore keep it. The standard deviation is

a trainable parameter in our agent, so it will naturally be decreased as the agent learns.

If we were to remove it completely, this would be an obstructing change to the policy, as

the agent has adapted its policy to the normal distribution during training.

To make sure the action is sized proportionally to the space in which the particles

move, we need to scale up the action after it is normalized. This is done by using the

previously mentioned tanh function and then scaling with the diameter of the space.

v =
diam(S)

β
· tanh(a)

=

√
d

β
· (xmax − xmin) · tanh(a)

where S is the search space, a is the action from the agents, d is the dimension of the

search space, and xmax, xmin is the boundaries of the search space. β is the least number

of steps we want the agent to use to get across the search space. If it is set low, the

particles will move slowly, and if set high, they will move fast.

4.2.3 Reward function

For the agent to learn to perform the search effectively, it is essential for the agent to

receive a reward signal it can understand. The reward function is perhaps the most

important part of RL development. We need a reward function that reflects the final

goal we want the agent to achieve, while also giving the agent enough information along

the way for it to find a high-functioning policy. We give the agent a reward based on the

objective value of the current solution that the particle has found. This will eventually

make the particle search for the best possible solution because it will receive a higher

reward for doing so.

33

One weakness of this reward function is that the particles spawn randomly, and some

particles might get lucky and spawn in a low-objective location. This will cause the agent

to receive a high reward without doing any work to achieve it. This can cause instability

in learning because the agent gets high rewards without having learned a good policy.

To fight this problem, we scale the objective by the initial objective, as seen in equation

4.2. To give more rewards for very small objective values, we use a negative logarithm.

The reward function is given as

Rt
i = − log

f(xt
i)

f(x0)
(4.2)

where f is the objective function, xt
i is the position of particle i on timestep t. f(x0)

represents the average objective value of all the particles at the beginning of the search.

This value is used, because it will be more stable every search, than a single objective

value by itself. This will give a reward only when the agent actually acts in a way that

improves the solution, and not if it is lucky with its initial position. Note that this reward

function will also incentivize the agent to find a nice solution as fast as possible since the

RL agent wants to maximize its return and not the reward of a single timestep.

0.5 1 1.5 2

−1

1

2

3

4

f(xt
i)

f(x0)

Rt
i

Rt
i = − log

f(xt
i)

f(x0)

Figure 4.2: Plot of the reward function as a function of the ratio between the current
solution and the initial solution.

34

4.2.4 Architecture and hyperparameters

PPO uses an Actor-Critic structure that applies neural networks as both the policy and

the value function. Our architecture uses a neural network of two hidden layers of 64

nodes, as well as an output layer with 64 nodes. Both the actor and the critic have this

architecture and an output dimension of one. We use ReLU activation functions between

all layers.

Table 4.2: PPO Hyperparameters

Hyperparameter Value

Learning rate (decreasing) 5× 10−4

Clip range 0.1
Value function coef. 1
Entropy coef. 0
Batch size 64
Number of steps per rollout 4096
Optimizer Adam

4.3 Training setup

The training algorithm starts with the agent performing nepisodes searches, and saving

information such as the observations, rewards, and actions it performs. Then the agent

will go back into the experience replay and update the weights of the model according to

the PPO update process described in the background section.

35

When training the SmartSwarm algorithm, one should be aware of overfitting to ob-

jective functions. For the agent to be able to generalize to other spaces, the agent needs

to train on a variety of spaces. This may include different function classes, or simply

scaling or dragging the functions. This process will make the agent more robust in dif-

ferent objective functions, but may not be as specialized. The agent has the capability

of training on different dimensional problems as well.

Algorithm 3 SmartSwarm training algorithm

Require: Hyperparameters: nagents, nepisodes, nsteps, nepochs

Initialize policies πθi and value functions Vϕi
for i = 1, . . . , nagents

for update← 1...nupdates do
for episode← 1...nepisodes do

Initialize environment and get initial states si for all agents i
for t← 1, nsteps do

for i← 1, nagents do
Choose action ai ∼ πθi(ai|si) for agent i

end for
Execute actions ai for all agents and observe rewards ri and next states s′i
Compute advantage estimates and returns for current states and rewards for

all agents i
Update states si ← s′i for all agents i

end for
Add episode information to replay log

end for
for episode← 1...nepisodes do

for epoch← 1, nepochs do
for i← 1, nagents do

Update policy πθi and value function Vϕi
for agent i using PPO and the

computed advantage estimates and returns
end for

end for
end for

end for

36

Chapter 5

Experiments

5.1 Experimental setup

5.1.1 Experimental environment

The experiments were performed on a Macbook Pro with an Apple M2 Pro chip with 16

GB memory running Ventura 13.2 operating system.

5.1.2 Baseline

Particle Swarm Optimization

The first baseline we compare our model to is the standard PSO algorithm as described

in PSO - Particle Swarm Optimization. This is chosen because our algorithm aims to

expand on and improve PSO.

PSO has a few parameters that will influence the performance of the algorithm. These

are set as the values in Table 5.1. We will use a version of PSO where we include a constant

inertia weight as proposed in the work of Shi and Eberhart (1998). Other parameters

such as the number of particles, and the number of iterations of the search will be the

same as described for SmartSwarm in each experiment, as these parameters have a similar

influence on the two algorithms.

37

Table 5.1: Hyperparameters for PSO Algorithm

Hyperparameter Value

Inertia weight 0.7
Cognitive parameter (ϕp) 1.5
Social parameter (ϕg) 2.0

Random Swarm

We will also use a random baseline, to verify that the agent is better than what it would

be if it performed random actions. This works by using an action that is sampled from

a uniform distribution (equation 5.1):

vti ∼ U(−1, 1) (5.1)

This action will function in the exact same way that the actions from the SmartSwarm

policy does. It will also be scaled in the same way as the SmartSwarm action does. If our

agent does not learn, it is expected to perform similarly to a random agent, since there

is no intention behind the actions that are performed. However, if the agent does in fact

learn from the environment, and makes intentional attempts to find a better optimum,

it will exceed the performance of the random baseline.

This baseline has no parameters, except those related to the environment. This in-

cludes the number of agents, dimensionality, objective functions, etc. All of these will be

kept the same as for PSO, and SmartSwarm, to create a realistic comparison.

5.1.3 Implementation

All experiments and algorithms are implemented with Python 3.10.11. The Reinforce-

ment Learning model is a PPO model implemented with PyTorch (Paszke et al., 2019).

The environment is developed using the Petting Zoo API. Petting Zoo (Terry et al.,

2020) is a Python framework for Multi-Agent RL that is built on Gym. This drastically

simplifies the implementation and allows for vectorized environments for ease of training.

38

5.1.4 Experiment structure

These experiments were conducted by training the model on several instances of the

objective functions we experiment on. During the training of the algorithm, we translate

the functions by a randomized value, to ensure that the model learns the function space

and not just certain coordinates. In other words, we want to prevent overfitting by doing

it this way.

Each experiment is tested by doing 100 searches for each of the three algorithms. We

will evaluate the performance of these algorithms by noting the mean of the objective

values of the global best-found solutions, as well as their standard deviation. The standard

deviation may give an indication of the consistency of the algorithms.

In our experiments, we use a relatively small number of timesteps and low dimen-

sionality compared to other literature. This will create a larger difference between the

high-performance methods, and the low-performance methods since the low-performance

will not have the time to randomly find low-objective solutions by coincidence. It will

also benefit methods that can find a low-objective solution fast.

39

5.2 Experiments on the Rastrigin Function

The Rastrigin function is a highly noisy function with many local minima close together.

It is a function on which it is hard to find the global optima because of the many dis-

tracting local optima.

The function is given by

f(x) = An+
n∑

i=0

[
x2
i + Acos(2πxi)

]
(5.2)

where n is the dimension of x, and A is a parameter that can be tuned. We have set A

to be 10.

The global minimum is in x = [0, ..., 0] with objective value 0. It is restricted by

xi ∈ [−5.12, 5.12] ∀i.

Figure 5.1: A 3D Plot of the Rastrigin Function

Table 5.2 displays the hyperparameters that are used for each of the experiments. All

the parameters are the same for all of the three methods tested, except for the Initial Stan-

dard deviation, which indicates the standard deviation of the action of the SmartSwarm

actor-network. The table displays three different experiments, with increasing complexity

and size of the search space.

40

5.2.1 Experiment results

Table 5.3 shows the mean objective values and the standard deviation in the experiments

conducted on the Rastrigin functions. In all cases, the SmartSwarm is outperformed by

PSO, and in the larger instances, the method does not show signs of learning, since it is

outperformed by the Random algorithm as well.

Table 5.2: Experiment parameters for Rastrigin function

Parameters

Experiment Particles Dimensions Timesteps trained Iterations Initial std

1 50 2 35 mill 100 e−1

2 100 5 50 mill 100 e−0.5

3 100 10 100 mill 100 e−0.5

Table 5.3: Objective values for SmartSwarm and baselines on Rastrigin

Experiment Objective (Standard deviation)

SmartSwarm PSO Random

1 5.55× 10−3 (7.333× 10−3) 1.77× 10−3 (1.99× 10−3) 0.531 (0.441)

2 13.602 (3.296) 2.816 (1.025) 12.661 (2.835)

3 70.154 (10.674) 26.050 (4.376) 64.921 (7.365)

In Table 5.4 we can see the improvement of the objective value of the final best solution

compared to the best initial solution. As can be seen from the table, the SmartSwarm

algorithm is close to the performance of PSO in the smallest instance, but not on the

experiments with higher dimensional spaces.

Table 5.4: Improvement values for SmartSwarm and baselines on Rastrigin

Experiment Improvement in % (Standard deviation)

SmartSwarm PSO Random

1 99.900 (1.477× 10−3) 99.970 (0.0414) 88.3324 (14.7240)

2 62.457 (0.136) 92.175 (3.730) 65.8658 (9.7913)

3 31.884 (0.124) 75.797 (4.967) 38.6044 (9.3050)

41

5.2.2 Discussion

Our experiments revealed that during the training process, the global best-found solution

discovered in each episode consistently decreased in objective value. As the agents found

better solutions in the searches, we saw the standard deviation decrease in experiment 1.

This indicated that the agents got more confident in their ability to control the particles,

and wanted less variability

This effect is depicted in Figure 5.2, which illustrates the decreasing standard devia-

tion over time. By learning to adjust the variability as a parameter, the agent recognized

the benefits of lower standard deviation, which gave it more control over the output.

This finding indicated that the agent is in fact learning, as it became less reliant on

randomness.

Figure 5.2: Plot showing the learned variability in the action of PPO over time on
experiment 1.

Similarly, the gradual improvement in the quality of solutions discovered by the agents

was also noticeable, as depicted in Figure 5.3. This graph highlights the progression of

the agent and its performance improvement throughout the training process.

42

Figure 5.3: Plot illustrating the objective value of the best-found solution during the
training phase of experiment 1.

As for the chosen strategy of the model, the training data indicates that the agent is

aware that it should diversify at the start of an episode, and increase its intensification

towards the end of an episode. As previously described, we would like the particles to

disperse at the start of the episode while moving toward each other in the final stages

of the search. This allows the agents to gather as much information as possible before

intensifying, thus finding the best minimum to focus on. During the training process, it is

apparent that the best-found solution is found later in the search when the performance

of the algorithm is increased. As can be seen from 5.4, during the final stages of training,

the model finds the global best solution around iteration 60 out of 100.

43

Figure 5.4: Plot illustrating the iteration of which the best-found solution is found on
experiment 1. This model is training with searches lasting for 100 iterations. High values,
mean that the best-found solution is found late in the search.

As we can see, the SmartSwarm algorithm learns and adapts to the problem in the

smaller instance. However, it does not perform as well in the larger instances. This is

likely caused by the fact that the problem is complex and hard to adapt to. As can be

seen from the performance of the larger problems (figure 5.5), the agent is struggling to

learn the environment dynamics and the expected returns, which causes trouble as the

agents attempt to pick the optimal actions. While this might be improved with more

training time and resources, it seems to be a tough learning task.

The agent seems to be able to improve its strategy slightly, but the trend breaks very

early. The agent learns to improve its objective value up to a point, but then the agent

cannot progress anymore. This stagnation of progress signals that the agent struggles to

learn in more challenging environments, such as the high-dimensional Rastrigin function.

It is likely that the algorithm would benefit from longer training sessions than what

was possible under the time constrictions of this thesis. Longer training sessions would

allow the agents to explore more, and adapt to the more complex environments as well

as the simpler ones.

44

Figure 5.5: Plot illustrating the objective of the best-found solution during training of
the medium-large instance (experiment 2). The objective value declines up to a point
and then stagnates at approximately the same value.

During the experiments on the larger instances, we can see an opposite effect from

what is observed in the smallest instance, when it comes to the standard deviation of

the output. Instead of decreasing, as a result of confidence, it increases. This is likely

because the agent cannot find an effective policy in the complex environment, and when

the model tries to decrease its variability in the outputs, the agent receives less reward.

In this situation, the agent adjusts its weights to maximize the expected reward, thus

increasing the randomness.

45

5.3 Experiments on the Sphere Function

This is a very stable function with no noise or unpredictability. This makes it easy to

find the global optimum because there are no local optima except the global one. This

objective function belongs to a category of functions called Bowl-shaped functions.

f(x) =
n∑

i=0

x2
i (5.3)

The Sphere function has a global optimum in x = [0, ..., 0] with an objective value of

0. It is restricted by xi ∈ [−5.12, 5.12] ∀i.

Figure 5.6: A 3D Plot of the Sphere Function

5.3.1 Experimental results

As we can see in the relative improvement in Table 5.7, the SmartSwarm has a dip in

performance as we go into higher dimensions, but it is not as large as for the Rastrigin

function. For the Sphere function, we can see the performance staying relatively high in

both dimensions 2 and 5, and getting worse on the 10-dimensional instance.

46

Table 5.5: Experiment parameters for Sphere function

Parameters

Experiment Particles Dimensions Timesteps trained Iterations Initial std

1 50 2 35 mill 100 e−1

2 100 5 50 mill 100 e−0.5

3 100 10 100 mill 100 e−0.5

Table 5.6: Objective values for SmartSwarm and baselines on Sphere

Experiment Objective (Standard deviation)

SmartSwarm PSO Random

1 2.571× 10−4 (2.691× 10−4) 2.447× 10−5 (2.923× 10−5) 0.01771 (0.0194)

2 2.178 (1.228) 0.0199 (0.0111) 4.9256 (2.9129)

3 51.719 (14.659) 0.796 (0.232) 50.431 (13.555)

Table 5.7: Improvement values for SmartSwarm and baselines on Sphere

Experiment Improvement in % (Standard deviation)

SmartSwarm PSO Random

1 99.933 (0.00321) 99.997 (0.00899) 96.278 (11.702)

2 89.804 (0.0925) 99.877 (0.1512) 80.160 (14.670)

3 56.443 (0.157) 99.289 (0.2684) 56.029 (14.587)

5.3.2 Discussion

The results of the experiments on the Sphere function verify the claim in the previous

section about complex objective functions. The SmartSwarm algorithm seems to learn

much quicker and finds better optima on the Sphere function than what it did on the

Rastrigin function. However, the results are still not as good as what PSO achieves.

Note that the Random baseline is behind in experiments 1 and 2 while being on par with

SmartSwarm in the largest instance. This indicates the same tendency as for Rastrigin

that SmartSwarm struggles in higher dimensions.

47

Figure 5.7: Plot of the objective of the best-found solution on the smallest instance of
the sphere function.

Part of the reason that the agent can learn in experiment 2 on the Sphere function,

but not in the Rastrigin functions, is that the objective values are much more predictable.

For the agent to learn, it is necessary that the agent can estimate the return of the states

it observes, and that is very hard to do in noisy functions. The Sphere function is much

easier to approximate and estimate the value of under a certain action.

From Figure 5.8 we can interpret some of the agent’s behavior in the smallest instance

of the Sphere function. As we can see, in the areas where there is a large positive relative

distance to the global best solution (y-axis in Figure 5.8), the agent prefers to output

a larger valued action. Indicating that the agents try to move towards the global best

solution.

48

Figure 5.8: A plot of the agent’s response to different values of relative distance to the
global best position, and its own best position. Brighter areas indicate that the policy
would output a large value for these values, and darker indicate a smaller response.

49

5.4 Experiments on the Rosenbrock Function

The Rosenbrock function is a function with little noise, but many points that have a zero

gradient in some directions. There is a band of points around the global minima that is

flat in one direction but not in another, which might cause some difficulty for optimization

methods. This function belongs to a category of functions called Valley-shaped functions.

This classification becomes clear when inspecting the shape of the function in Figure 5.9.

f(x) =
n−1∑
i=1

[100(xi+1 − x2
i)

2 + (xi − 1)2] (5.4)

The global optimum of this function is in x = [1, ..., 1] with objective value 0. While

this function can sometimes be restricted by xi ∈ [−2.048, 2.048] ∀i, we have used the

more frequently used alternative, which is xi ∈ [−5, 10] ∀i.

Figure 5.9: A 3D Plot of the Rosenbrock Function

50

5.4.1 Experimental results

Table 5.8: Experiment parameters for Rosenbrock function

Parameters

Experiment Particles Dimensions Timesteps trained Iterations Initial std

1 50 2 35 mill 100 e−1

2 100 5 50 mill 100 e−0.5

3 100 10 100 mill 100 e−0.5

As with the other benchmark functions, we can see that the difference between the PSO

and SmartSwarm is larger in the bigger instances.

Table 5.9: Objective values for SmartSwarm and baselines on Rosenbrock

Experiment Objective (Standard deviation)

SmartSwarm PSO Random

1 0.0250 (0.0683) 3.158× 10−4 (3.23× 10−4) 0.05613 (0.0669)

2 13.416 (5.908) 2.625 (0.954) 93.934 (62.259)

3 5089.612 (2722.441) 45.790 (15.109) 5625.6569 (2407.835)

Table 5.10: Improvement values for SmartSwarm and baselines on Rosenbrock

Experiment Improvement in % (Standard deviation)

SmartSwarm PSO Random

1 99.144 (0.0250) 99.937 (0.487) 96.603 (11.138)

2 97.285 (0.0443) 99.702 (0.287) 86.645 (16.871)

3 66.533 (0.221) 99.639 (0.297) 58.699 (22.0410)

51

5.4.2 Discussion

As can be seen from the experimental results, the method still struggles in higher di-

mensions. This is most probably still a symptom of the learning problems related to

complicated high-dimensional objective functions.

Figure 5.10: Plot illustrating the objective value of the best-found solution during the
training phase of the largest instance on the Rosenbrock function.

As can be seen from Figure 5.10, the agent learns for a while, and then the learning

speed drastically goes down. The same effect is observed in the reward the agent receives

in Figure 5.11, as the reward stops improving. This happens around episode 500, which is

the same time as the agent stops improving its objective value. At this point, it is likely

that the agent has found some policy that it struggles to improve on, and that cannot

match the performance of PSO.

Figure 5.11: Plot illustrating the mean reward pr agent per timestep for each batch during
training.

52

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we have proposed the novel PSO variant SmartSwarm. This is a Multi-

Agent Reinforcement Learning based version of PSO that uses continuous models to

dictate the velocity of particles in PSO. Furthermore, the algorithm utilizes Multi-Agent

RL’s cooperative and complex nature to allow for more advanced behaviors in the swarm.

This framework aims to adapt to the specific optimization task and search for an optimal

policy to determine the best velocity for each particle in every setting.

In the process of conducting experiments using three widely-recognized bench-

marks—Rastrigin, Sphere, and Rosenbrock functions—across a range of problem sizes,

we have successfully demonstrated the capacity of our Multi-Agent Reinforcement Learn-

ing algorithm to adapt and learn within some of these environments. Furthermore, our

observations suggest that SmartSwarm exhibits greater ease of learning and improvement

in simpler environments than in more complex ones. While our algorithm has not been

able to surpass the performance of PSO in our experiments, we regard this as a stepping

stone for future work.

53

6.2 Future work

Future work should explore domain-specific uses of SmartSwarm in which we can use

additional parameters that will give the algorithm more information than PSO can ex-

ploit. To include more information in the model, we need parameters that relate to the

objective function we want to optimize, such that the agent can find patterns in the ob-

servations and thus search the space more efficiently. This should be compared to PSO

to investigate whether such parameters will aid the optimization process.

One exciting area of research is to use this algorithm as a meta-learning optimization

technique. This could involve using SmartSwarm instead of a typical gradient-based

method. Such a learning scheme could incorporate different learning parameters, such as

regularization parameters or model architecture, to find an optimal model more efficiently.

SmartSwarm has the potential to employ several other learning frameworks that could

potentially improve its performance. An example of this could be a Recurrent Neural

Network that could handle all dimensions of the problem in a single forward pass for

each agent. A Recurrent Neural Network could create a more complex policy that will

consider all dimensions when determining the velocities of the particles.

Other Reinforcement Learning methods should be explored to enhance the SmartSwarm

algorithm further. This may include off-policy learning methods that could learn a fixed

velocity function and attempts to fine-tune this policy. This way, we can ensure learning

to a higher degree of certainty but may suffer from bias towards the velocity function

used for pretraining the model. In addition, it might be worth exploring longer training

times for the models investigated in this work, as this might allow PPO to learn in higher

dimensional spaces.

As SmartSwarm has a learned policy, it could potentially hold some interesting strate-

gies to be explored further. When studying these strategies, we could gain a deeper

understanding of the optimal movement of a swarm. Furthermore, by mimicking these

learned strategies, we might find algorithms with enhanced performance.

54

Bibliography

Ahmed G Gad. Particle swarm optimization algorithm and its applications: A systematic

review. 29:2531–2561, 2022. doi: 10.1007/s11831-021-09694-4.

URL: https://doi.org/10.1007/s11831-021-09694-4.

Fred Glover. Tabu search—part i. ORSA Journal on Computing, 1(3):190–206, 1989.

doi: 10.1287/ijoc.1.3.190.

URL: https://doi.org/10.1287/ijoc.1.3.190.

Estephanos Jebessa, Kidus Olana, Kidus Getachew, Stuart Isteefanos, and Tauheed Khan

Mohd. Analysis of reinforcement learning in autonomous vehicles. In 2022 IEEE 12th

Annual Computing and Communication Workshop and Conference (CCWC), pages

0087–0091, 2022. doi: 10.1109/CCWC54503.2022.9720883.

Jakob Kallestad, Ramin Hasibi, Ahmad Hemmati, and Kenneth Sörensen. A general deep

reinforcement learning hyperheuristic framework for solving combinatorial optimization

problems. European Journal of Operational Research, 309:446–468, 8 2023. ISSN 0377-

2217. doi: 10.1016/J.EJOR.2023.01.017.

J. Kennedy. Swarm intelligence. In A.Y. Zomaya, editor, Handbook of Nature-Inspired

and Innovative Computing. Springer, Boston, MA, 2006. doi: 10.1007/0-387-27705-6 6.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 -

International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4, 1995.

doi: 10.1109/ICNN.1995.488968.

S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.

Yaxian Liu, Hui Lu, Shi Cheng, and Yuhui Shi. An adaptive online parameter con-

trol algorithm for particle swarm optimization based on reinforcement learning. In

2019 IEEE Congress on Evolutionary Computation (CEC), pages 815–822, 2019. doi:

10.1109/CEC.2019.8790035.

55

https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1287/ijoc.1.3.190

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-

man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter

Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to

follow instructions with human feedback, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-

son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

Pytorch: An imperative style, high-performance deep learning library. In Advances in

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,

2019.

URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

Nguyen Huu Phong, Augusto Santos, and Bernardete Ribeiro. PSO-convolutional neural

networks with heterogeneous learning rate. IEEE Access, 10:89970–89988, 2022. doi:

10.1109/access.2022.3201142.

URL: https://doi.org/10.1109%2Faccess.2022.3201142.

R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm Intelligence,

1:33–57, 2007. doi: 10.1007/s11721-007-0002-0.

L. A. Rastrigin. Systems of Extreme Control. Nauka, Moscow, 1974.

A. Ratnaweera, S.K. Halgamuge, and H.C. Watson. Self-organizing hierarchical particle

swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on

Evolutionary Computation, 8(3):240–255, 2004. doi: 10.1109/TEVC.2004.826071.

Gavin Rummery and Mahesan Niranjan. On-line q-learning using connectionist systems.

Technical Report CUED/F-INFENG/TR 166, Cambridge University, 1994.

Hussein Samma, Chee Peng Lim, and Junita Mohamad Saleh. A new reinforcement

learning-based memetic particle swarm optimizer. Applied Soft Computing Journal,

43:276–297, 6 2016. ISSN 15684946. doi: 10.1016/J.ASOC.2016.01.006.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-

imal policy optimization algorithms. 7 2017. doi: 10.48550/arxiv.1707.06347.

URL: https://arxiv.org/abs/1707.06347.

56

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109%2Faccess.2022.3201142
https://arxiv.org/abs/1707.06347

Y. Shi and R. C. Eberhart. A modified particle swarm optimizer. In Proceedings of the

IEEE international conference on evolutionary computation, pages 69–73, Piscataway,

1998. IEEE.

D Silver, A Huang, C Maddison, and et al. Mastering the game of go with deep neural

networks and tree search. Nature, 529(7587):484–489, 2016. doi: 10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,

Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Tim-

othy P. Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi

by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815,

2017.

URL: http://arxiv.org/abs/1712.01815.

MengXuan Song, Kai Chen, and Jun Wang. Three-dimensional wind turbine posi-

tioning using gaussian particle swarm optimization with differential evolution. Jour-

nal of Wind Engineering and Industrial Aerodynamics, 172:317–324, Jan 2018. doi:

10.1016/j.jweia.2017.10.032.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The

MIT Press, second edition, 2018.

URL: http://incompleteideas.net/book/the-book-2nd.html.

Justin K. Terry, Benjamin Black, Ananth Hari, Luis S. Santos, Clemens Dieffendahl,

Niall L. Williams, Yashas Lokesh, Caroline Horsch, and Praveen Ravi. Pettingzoo:

Gym for multi-agent reinforcement learning. CoRR, abs/2009.14471, 2020.

URL: https://arxiv.org/abs/2009.14471.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Lau-

rent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets,

Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James

Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman

Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,

Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.

Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature 2019

575:7782, 575:350–354, 10 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z.

URL: https://www.nature.com/articles/s41586-019-1724-z.

57

http://arxiv.org/abs/1712.01815
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2009.14471
https://www.nature.com/articles/s41586-019-1724-z

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8(3-4):229–256, May 1992. doi: 10.1007/

BF00992696.

URL: https://doi.org/10.1007/BF00992696.

S. Yin, M. Jin, H. Lu, et al. Reinforcement-learning-based parameter adaptation method

for particle swarm optimization. Complex Intell. Syst., 2023.

URL: https://doi.org/10.1007/s40747-023-01012-8.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in

healthcare: A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and

Yi Wu. The surprising effectiveness of ppo in cooperative, multi-agent games, 2022.

Nianyin Zeng, Hong Qiu, Zidong Wang, Weibo Liu, Hong Zhang, and Yurong Li. A

new switching-delayed-pso-based optimized svm algorithm for diagnosis of alzheimer’s

disease. Neurocomputing, 320:195–202, 2018.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A

selective overview of theories and algorithms. 11 2019.

URL: http://arxiv.org/abs/1911.10635.

58

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/s40747-023-01012-8
http://arxiv.org/abs/1911.10635

Appendix A

Notes on the standard deviation of output under learning

The experiments have shown a large dependence on the initial standard deviation in

the policy network of the SmartSwarm algorithm. As mentioned in earlier chapters, the

action of the PPO algorithm is sampled from a normal distribution to ensure exploration

during training. When the velocity is drawn from the normal distribution of the actor,

the probability of the actor picking that action is adjusted according to how good that

action was. So even if the agent never would have picked a certain velocity, the algorithm

still learns from the outcome.

Note that the standard deviation of the output is actually a learnable parameter, and

it is tuned by gradient descent as the other parameters of the model are. This value will

be set to what benefits the agent most. This thinking makes it easy to ignore the initial

standard deviation as it will be tuned. But the initial value of the standard deviation

has a lot of influence on the progression of the training.

Figure A.1: A figure of the training progression of one training session using a high initial
standard deviation on the model (brown color), and one training session with a smaller
standard deviation (blue color). The initial standard deviation of the agents displayed
by a brown line was 1, while the standard deviation of the agents behind the blue line
was e−1.

59

From Figure A.1 we can see that in the session in which we used a smaller standard

deviation, the agent gives an impression of it not learning. But this is countered by a

very rapid decrease in the objective values of the solutions found in the search and a

performance that is better than the other agent with a larger standard deviation. This is

an effect that comes from the agent’s ability to precisely determine its actions. When the

standard deviation is high, it is hard for the agents to accurately control their behavior,

and this affects their performance. It also follows that the agents will encounter a larger

number of states and that they might learn more from these observations with a higher

standard deviation.

Striking a beneficial balance between exploration and exploitation through the stan-

dard deviation is critical and has a large effect on the final model. A low initial standard

deviation will often lead to high-performance agents but will learn slower. Conversely, a

high initial standard deviation will have the opposite effect.

60

	Introduction
	Motivation
	Thesis outline

	Theoretical background
	Optimization
	PSO - Particle Swarm Optimization
	Objective functions

	Reinforcement Learning
	DRL - Deep Reinforcement Learning
	PPO - Proximal Policy Optimization

	MARL - Multi-Agent Reinforcement Learning

	Related work
	SmartSwarm
	The algorithm
	The agent
	The state representation
	Action
	Reward function
	Architecture and hyperparameters

	Training setup

	Experiments
	Experimental setup
	Experimental environment
	Baseline
	Implementation
	Experiment structure

	Experiments on the Rastrigin Function
	Experiment results
	Discussion

	Experiments on the Sphere Function
	Experimental results
	Discussion

	Experiments on the Rosenbrock Function
	Experimental results
	Discussion

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Notes on the standard deviation of output under learning

