
University of Bergen
Department of Informatics

Optimizing Feeder Network Design

with Deep Reinforcement Learning:

A Hyperheuristic Approach

Author: Fredrik Nestvold Larsen

Supervisors: Ahmad Hemmati

July, 2023

Abstract

Across the globe, hundreds of shipping networks form an intricate web of trade routes

forming the backbone of international commerce. These networks are responsible for an

estimated 80 percent of all cargo transported globally and are known as Liner Shipping

Network Design Problem (LSNDP) in the literature. This thesis will focus on a variant

of the LSNDP known as the feeder networks. It is the problem of serving a number

of shipping requests using a fleet of vessels. Each request involves moving a number

of containers from the origin port to the destination port. Our objective is to design

routes that connect all ports in the most optimized order such that pickup and deliveries

correspond with the lowest cost possible. We will implement, adapt and compare two

state-of-the-art frameworks, where one (Adaptive Heuristic) framework is optimized and

created for the FNDP while the other (Deep Reinforcement Learning Hyperheuristic)

is a more general framework for a multitude of different Combinatorial Optimization

Problems.

Acknowledgements

First and foremost, I would like to thank my supervisor Ahmad Hemmati for his guidance

and continuous help throughout the master project. I also want to express my heartfelt

gratitude to my family, friends, and especially my girlfriend for their unwavering support

and encouragement throughout this journey. Their presence and belief in me have kept

me motivated and focused throughout this last year. Lastly, I want to acknowledge

and appreciate the efforts of my fellow Machine Learning students. The opportunity to

learn, grow, and exchange ideas with such talented individuals has been invaluable. This

journey would not have been the same without you.

Fredrik Nestvold Larsen

Saturday 1st July, 2023

Contents

1 Introduction 8

1.1 Context and Motivation . 9

1.2 Thesis Outline . 9

2 Background and Related work 11

2.1 Combinatorial Optimization Problems 11

2.1.1 Liner Shipping Network Designs Problem 12

2.2 Solution Methods . 13

2.2.1 Exact Approach . 13

2.2.2 Heuristic Approach . 13

2.2.3 Metaheuristics . 15

2.3 Hyperheuristic . 16

2.4 Reinforcement Learning . 16

2.4.1 Agent-Environment Interface . 17

2.4.2 RL methods . 19

2.5 Deep Learning . 20

2.5.1 Proximal Policy Optimization . 21

2.6 Related Work . 22

1

3 Problem Sets 23

3.1 Feeder Network Design Problem with Optional Transshipment 23

3.1.1 Daughter route structures . 25

3.1.2 Mathematical Model . 26

3.2 FNDP-OT with OD patterns . 30

3.2.1 Speed Optimization . 31

3.2.2 Mathematical Model . 32

3.3 Solution Representation . 36

3.4 Vessel Data . 38

3.5 Instances . 39

4 Adaptive Heuristic 40

4.1 An Overview of Adaptive Heuristic . 40

4.1.1 Reward system . 41

4.1.2 Acceptance criterion . 42

4.2 Escape algorithm . 43

4.3 Selecting heuristics and weight adjustment 44

4.4 Heuristics . 44

4.4.1 Random swap . 45

4.4.2 Reinsert in mother . 45

4.4.3 Reinsert in daughter . 45

4.4.4 Mother route to daughter route 45

4.4.5 Daughter route to mother route 46

4.4.6 Butterfly route to simple route 46

4.4.7 Simple route to butterfly route 46

4.4.8 Optimize transshipment vector 46

4.4.9 Enable demand . 47

4.4.10 Reject demand . 47

2

5 DRLH 48

5.1 Deep Reinforcement Learning Hyperheuristic 48

5.2 Heuristics . 49

5.3 Acceptance Criteria and Stopping Conditions 50

5.4 Deep Reinforcement Learning Agent . 51

5.4.1 State Representation . 51

5.4.2 Action . 52

5.4.3 Reward function . 52

5.4.4 Training loop . 53

5.5 Solution Representation and Initial Solution 53

6 Experimental Setup 55

6.1 Experimental Environment . 55

6.1.1 Training of DRLH . 55

6.2 Baseline Models . 56

6.2.1 Adaptive Heuristic (AH) . 56

6.3 Hyperparameter and Parameter Selection 56

6.3.1 Hyperparameters for DRLH . 56

6.3.2 Parameters for AH . 57

6.4 Dataset Generation . 57

3

7 Results 58

7.1 Results of FNDP-OT . 58

7.1.1 ABC instances . 58

7.1.2 Performance comparison between DRLH and AH 59

7.2 Results of FNDP-OT with OD-patterns 61

7.2.1 ABC instances . 62

7.2.2 Adapted LINER-LIB instances 62

7.2.3 Performance comparison between DRLH and AH 63

7.3 Heuristic Selection Strategies . 65

8 Conclusion and Future Work 68

List of Acronyms and Abbreviations 69

Bibliography 71

A Experiments on Different Reward Functions 73

A.1 R5310
t . 73

A.2 Improvement-based reward functions . 74

4

List of Figures

2.1 Overview of liner shipping network categories 12

2.2 Agent interaction w/ environment . 17

3.1 A feasible solution for a Feeder Network with Optional Transshipment

along the Norwegian coast. Effectively managing cargo shipment with one

mother route and three daughter routes. Credit: Msakni et al. (2020). . . 24

3.2 Feeder Network Structures . 25

3.3 FNDP-OT . 37

3.4 FNDP-OT Origin-Demand . 37

7.1 DRLH improvement over AH on ABC instances 60

7.2 Boxplot of AH and DRLH performance on the ABC instances for FNDP-OT 61

7.3 Boxplot of AH and DRLH performance on the ABC and adjusted LINER-

LIB instances for FNDP-OT with OD-patterns 64

7.4 DRLH improvement over AH on the ABC instances with OD-patterns . . 64

7.5 DRLH improvement over AH on adapted LINER-LIB 64

7.6 Boxplot of AH and DRLH performance on different instance sizes for

FNDP-OT with OD-patterns . 65

7.7 Actions selection probabilities for Adaptive Heuristic 66

5

7.8 Action selection probabilities for DRLH with applied smoothing 66

7.9 The objective cost of the incumbent over the search for instance A1

(DRLH: yellow, AH: blue) . 67

7.10 The best-found objective over the search for instance A1

(DRLH: yellow, AH: blue) . 67

A.1 Reward function R5310
t . 73

A.2 The RPM
t action probabilities over 1k iterations on 5000 random instances 74

A.3 The RAX
t action probabilities over 1k iterations on 5000 random instances 74

A.4 The RBX
t action probabilities over 1k iterations on 5000 random instances 75

A.5 The RCX
t action probabilities over 1k iterations on 5000 random instances 75

A.6 The best objective found for all reward functions on the 5000 instances . 76

A.7 The number of solutions explored for all reward functions on the 5000

instances . 76

6

List of Tables

3.7 Detailed overview of the different vessels available 38

3.8 Detailed information about instance A, B, C and adapted LINER-LIB. . 39

5.1 The different heuristics available to the DRLH for the FNDP and FNDP-OT. 50

5.2 State representation for Feeder Network Design Problem with Optional

Transshipment (FNDP-OT) and Feeder Network Design Problem with

Origin-Destination (FNDP-OT with OD-patterns) patterns 52

6.1 The hyperparameters used during training for the Agent of DRLH 56

6.2 The parameters used for AH . 57

7.1 Detailed results on DRLH applied to the ABC instances 59

7.2 Comparison of results on the ABC instances 60

7.3 Detailed DRLH results on the ABC instances with OD-patterns 62

7.4 Detailed DRLH results on the adapted LINER-LIB instances with OD-

patterns . 62

7.5 Comparison of results on the ABC and adapted LINER-LIB instances with

OD-patterns . 63

7

Chapter 1

Introduction

Liner shipping, often considered the backbone of global supply chains, involves the trans-

portation of tens of thousands of containers on fixed routes using over 7,000 container

and roro ships and over 1,900 liner shipping services worldwide. These services provide

regular and scheduled transportation between ports, facilitating the loading and unload-

ing of containers at seaports globally, connecting ports worldwide in an intricate web of

trade. (wor).

The challenge of creating networks of services for these container ships gives rise

to complex planning problems, such as the Liner Shipping Network Design Problem

(LSNDP). This thesis focuses a specific variant of the LSNDP, the Feeder Network Design

Problem (FNDP) with the possibility of hub-and-spoke structure within the network.

The FNDP involves designing feeder networks that revolve around a single hub port and

several feeder ports, aiming to transport several containers either originating from or

destined for the hub port. These demands are known in advance, and the task is to

decide on a set of routes and a fleet of vessels that transport the containers between the

hub port and the feeder ports on a weekly schedule.

We developed a hyperheuristic based on the Deep Reinforcement Learning Hyper-

heuristic (DRLH) framework by Kallestad et al. (2023) and also a variant of the Adaptive

Heuristic (AH) by Bergmann et al. (2023) framework to address this complex challenge

of optimizing feeder networks.

8

1.1 Context and Motivation

Globalization has led to an exponential increase in the complexity and scale of shipping

networks, thereby intensifying the importance of optimal planning and scheduling. The

FNDP is at the heart of this logistical challenge, representing an essential component of

this global process, with the efficient design of these feeder networks acting as a crucial

determinant of overall supply chain performance.

The FNDP is traditionally approached through various metaheuristics, owing to the

high-dimensionality and non-linearity of the problem. However, these classical methods

often require domain knowledge and extensive computational resources. Moreover, they

may fail to adapt effectively to dynamic changes in the system, such as variations in

container demand or port availability. On the other hand, Deep Reinforcement Learning

(DRL) is an emerging field of machine learning that demonstrates promise in addressing

complex optimization problems. DRL can handle large-scale, dynamic problems and learn

from its environment over time. However, the application of DRL in the feeder network

domain remains relatively unexplored. Given these circumstances, the motivation of

this thesis lies in analyzing the performance of a powerful metaheuristic - the Adaptive

Heuristic - against an adapted version of Deep Reinforcement Learning Hyperheuristic

(DRLH) in solving the FNDP. This study aims to provide insights into the strengths

and weaknesses of these two heuristic approaches, to potentially derive a hybrid that

incorporates the advantages of both.

1.2 Thesis Outline

The outline of the rest of the thesis is as follows:

Chapter 2 - Background and Related Work gives the theoretical background

related to combinatorial optimization, deep learning, and reinforcement learning required

for this thesis. It also covers related works and different solution methods previously

utilized to solve combinatorial optimization problems.

Chapter 3 - Problem Sets introduces two different versions of the Feeder Network

Design Problem. This gives the necessary knowledge to understand better what we are

trying to solve. It goes deeper into different structures, restrictions, and conditions of the

problem at hand.

9

Chapter 4 - Adaptive Heuristic introduces the latest state-of-the-art meta-

heuristic used to solve FNDP. It offers a detailed overview of the framework, helping

to understand its workings better and giving insight into the heuristics.

Chapter 5 - DRLH introduces the Deep Reinforcement Learning Hyperheuristic

model that we use in this thesis. It offers a detailed overview of the framework, helping

to understand its workings better.

Chapter 6 - Experimental Setup contains the specifics of the environment the

experiments were conducted. This includes hardware, baseline, parameters for the Adap-

tive Heuristic and hyperparameters for DRLH, and the generation of the training data

utilized by DRLH.

Chapter 7 - Results presents the findings of the thesis and discusses their relevance

and impact.

Chapter 8 - Conclusion and Future Work summarizes and concludes the work

and float some ideas for future work related to this thesis.

10

Chapter 2

Background and Related work

The purpose of this background section is to provide the necessary foundational informa-

tion to understand the research conducted in this study. It covers the essential concepts

and components that are crucial for comprehending the core objectives and findings of

the research. By exploring this background, readers will understand the fundamental ele-

ments that form the basis of the research and its importance within the broader scientific

context.

2.1 Combinatorial Optimization Problems

Optimization is the science of making the best possible decision. Whether we seek a min-

imum or a maximum, the goal remains the same: identify the solution that best satisfies

the predetermined criteria. A subset of optimization, Combinatorial Optimization (CO),

applies this concept to finite, often discrete structures. The goal is to find the optimal

object from a finite set of objects (Schrijver, 2003).

Combinatorial Optimization Problem (COP) revolves around the goal of optimally

allocating finite resources, which can only be separated into distinct, indivisible units, to

maximize or minimize a specific objective. These problems are often challenging to solve

using traditional methods, and their complexity increases with the number of variables

or constraints. COPs are present in various domains, such as logistics, transportation,

scheduling, and finance. Examples of COPs are but not limited to Scheduling Problem

(SP), Knapsack Problem (KP), Vehicle Routing Problem (VRP) and Minimum Spanning

Tree (MST).

11

2.1.1 Liner Shipping Network Designs Problem

Liner Shipping Network Design Problem (LSNDP) involves creating optimal plans for the

routes of container ships and the allocation of cargo, considering operational constraints

and business requirements. This type of problem aims to minimize the network’s objec-

tive costs, such as fuel consumption, port charges, and transit time, while ensuring service

frequency and connectivity among ports. In LSNDP, the most common unit of measure-

ment is the Twenty-foot equivalent unit (TEU), a standard size for shipping containers.

Some studies (Brouer et al., 2014) may also use the less common Forty-foot equivalent

unit (FEU), which is equal in length to two TEUs, allowing for efficient stacking of the

containers.

Research in this field has been divided into four categories (Meng et al., 2014), as

illustrated in Figure 2.1.

(a) Feeder network (b) Hub and spoke network

(c) Routes without transshipment (d) General liner shipping network

Figure 2.1: Overview of liner shipping network categories

LSNDPs are complex and computationally challenging problems that have been stud-

ied using operations research and optimization models. They are known to be NP-hard

12

problems, meaning that they are at least as hard as the hardest problems in NP (non-

deterministic polynomial time) class, and there is no known algorithm to solve them

efficiently.

2.2 Solution Methods

Various methodologies are available for resolving COPs. For a better understanding, these

approaches can be categorized into two primary groups, exact approaches and heuristic

approaches. Although this thesis primarily focuses on heuristic approaches and their

various categories, it is essential to note that exact approaches are also available as an

alternative method for solving COPs. To provide context for the alternative methods,

we will briefly explain what constitutes an exact approach when solving COPs.

2.2.1 Exact Approach

The main objective of the exact approach is to find the globally optimal solution for

the problem. This approach involves exploring the entire search space to ensure that

the solution found is the best possible solution based on the constraints and objective

function of the problem. Although this can result in high run times, which scale with

the complexity and size of the problem, it guarantees an optimal solution for the given

problem.

2.2.2 Heuristic Approach

The heuristic approach aims to find an approximate solution to a combinatorial problem

in a reasonable amount of time without guaranteeing to find the optimal solution. How-

ever, the solutions found are usually satisfactory to the specific use case of the search.

Compared to exact methodologies, heuristic strategies often prove faster and become the

go-to alternatives for large-scale instances where pinpointing the globally optimal solu-

tion is not feasible. Over several decades, this has led to the popularity and extensive

study of heuristics within the optimization community.

Two main ways of conducting a search exist when using the heuristic approach: con-

structive heuristics and perturbative heuristics (also known as local search heuristics).

While the former involves systematically assembling a solution from scratch, the latter

focuses on enhancing an existing solution through targeted modifications. In the following

sections, we will examine each of these methodologies in greater detail.

13

Constructive

A constructive heuristic is a type of approach that incrementally builds a solution, adding

one element at a time until the solution is complete. Compared to random strategies,

this method generally yields better results. However, it may struggle to match the per-

formance of exact or perturbative heuristic methods. One advantage of constructive

heuristics is their speed—they produce solutions swiftly. As a result, they are frequently

utilized to create initial feasible solutions.

Perturbative

The power of perturbative heuristics lies in their ability to navigate through the solution

space effectively, balancing between exploring new areas (diversification) and improving

the best-found solutions (intensification).

A perturbative heuristic is an approach that makes alterations to an existing solution

(s) to generate a new solution (s′). This form of heuristic is widely used in optimization

research. These heuristics can be universally applicable to a range of different problems

or specifically tailored to a unique problem, depending on the problem distinct character-

istics and constraints. A significant aspect of perturbative heuristics involves the concept

of a neighborhood. The neighborhood of a solution includes all potential solutions that

can be attained by making small modifications or moves to the current solution using

the heuristic. These moves typically involve swapping, inserting, or removing elements in

the solution. This neighborhood concept is crucial in controlling how much the solution

should be changed and exploring the solution space efficiently.

When using a perturbative heuristic, it is common practice to create a pool of several

heuristics rather than relying on a single one. This tactic often leads to better results,

enabling a broader and more diverse exploration of the solution space and offering more

opportunities to escape local optima and reach global optima. This strategy of combining

multiple heuristics was shown to yield better results as early as the work of Fisher and

Thompson (1963).

14

2.2.3 Metaheuristics

A metaheuristic is a high-level problem-independent algorithmic framework that provides

a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen

and Glover, 2013). The beauty of metaheuristics is that they are not tailored to a specific

problem. Instead, they are general-purpose strategies that can be applied to a wide range

of problems.

Metaheuristics can be characterized by their ability to balance between exploration

(diversification) and exploitation (intensification) in the search process (i.e., efficiently

exploring the solution space of the problem). Metaheuristics are strategies that “go be-

yond” standard heuristics to find solutions to challenging optimization problems. Popular

metaheuristics include Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search

(TS), and Ant Colony Optimization (ACO), among others. Diverse phenomena, such as

biological evolution, thermodynamics, human memory, and the behavior of ant colonies,

have inspired these techniques. Each of these techniques uses a different strategy. Still,

they all aim to find a near-optimal solution to optimization problems where the exact

solution is often hard or impossible to find within a reasonable time frame.

Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) is a metaheuristic framework frequently

used to tackle complex COPs. ALNS was first introduced by Ropke and Pisinger (2006)

and is an extension of the Large Neighborhood Search (LNS) framework of Shaw (1998).

ALNS works by repeatedly exploring a broad neighborhood of possible solutions, then

adaptively fine-tuning the search based on the solutions’ quality. To achieve this, ALNS

uses a set of predefined heuristics, which perform various modifications on the solution.

These modifications might include removal, insertion, deletion, swap, or any other suitable

change depending on the problem. During the search, ALNS evaluates these operators

based on their effectiveness in improving the solution or leading to less desirable outcomes.

It then dynamically chooses the operators for use based on these evaluations, giving

preference to those operators that have consistently led to better solutions.

15

2.3 Hyperheuristic

While traditional heuristics solve problems by directly finding solutions, hyperheuristics

work differently. They take a step back, and instead of looking for solutions themselves,

they look at how to choose or create the best method (or heuristic) to find these solu-

tions. This ’meta’ approach provides hyperheuristics with a versatile edge, enabling their

application across a diverse array of problem types.

The concept of a hyperheuristic was first mentioned in 1997, but it was not used in

the context of combinatorial optimization until 2001 by Cowling et al.. Cowling et al.

characterized a hyperheuristic as “heuristics to choose based on the characteristics of the

region of the solution space currently under exploration.” This definition was expanded

upon by Burke et al. in 2010, who proposed that a hyperheuristic is “a search method or

learning mechanism for selecting or generating heuristics to solve computational search

problems.” Burke et al. (2010) also state “We consider a hyperheuristic to be a learning

algorithm when it uses some feedback from the search process,” which makes it very

applicable to Reinforcement Learning.

2.4 Reinforcement Learning

Machine learning is traditionally categorized into Supervised Learning, Unsupervised

Learning, and Reinforcement Learning (RL). Each category holds its unique value and

serves distinct purposes in various contexts.

Supervised Learning operates on labeled datasets where each input corresponds to a

specified output. During training, the model receives an input and generates an output.

Based on the comparison with the actual output (label), the model is instructed on how

to improve. The goal is for the model to generalize from this experience so it can make

accurate predictions on unseen data. This ability to predict unseen data is the true

strength of Supervised Learning.

Unsupervised Learning is a powerful approach that focuses on analyzing unlabeled

data to unveil inherent structures, patterns, and relationships. Instead of making pre-

dictions, its purpose is to gain insights into the underlying structure and patterns within

the data. This methodology is particularly valuable in situations where labeled data

16

is limited or unavailable or when the primary objective is to comprehend the inherent

characteristics of the data.

Reinforcement Learning (RL) differs significantly from both Supervised and Un-

supervised Learning. The key concept of RL revolves around an agent that interacts

with an environment. Its fundamental goal is to accumulate as much reward as possi-

ble. Doing so optimizes a policy, essentially the decision-making process that dictates

the agent’s actions. The uniqueness of RL lies in its trial-and-error approach, where

the agent learns which actions are beneficial in specific situations through environmen-

tal interaction. There are no labels to guide the agent. The only feedback it receives

is the reward signal from the environment, which shifts over time based on the agent’s

experiences and interactions.

The types of problems that RL tackles are those in which the underlying model of the

environment is unknown and is affected by the agent’s choice of actions Sutton (2018).

2.4.1 Agent-Environment Interface

The Agent-Environment Interface is a fundamental concept in RL that illustrates the

interaction between the agent and the environment. This interface separates the agent’s

decision-making process from the environment’s dynamics, see Figure 2.2.

Figure 2.2: Agent interaction w/ environment

Credit: Sutton and Barto, “An introduction to Reinforcement Learning”, 2018

At each time step, the agent observes the current state of the environment, chooses

an action based on its policy, receives a reward from the environment, and transitions

to a new state. The agent fine-tunes its policy through repeated interactions with the

environment, improving its ability to select actions that increase the cumulative reward.

17

Environment

The environment in RL is essentially a simulation of the problem to be solved. It can

take a variety of forms - it could be a virtual representation of a city for a self-driving

car, or it could be something more abstract, such as a mathematical problem in our case.

The environment plays a crucial role in the learning process, as it defines the dynamics of

the problem, including what actions are possible and what constraints exist. It responds

to the agent’s actions by presenting a new state and a corresponding reward, guiding the

agent’s learning trajectory.

Agent

The agent is the entity that observes its surroundings, learns from the feedback it receives,

and makes decisions accordingly. Positioned within an environment, the agent perceives

the current situation or state and executes an action based on these observations. After

taking an action, the agent receives feedback from the environment in the form of a

reward and a new state. This feedback serves as valuable information for the agent,

providing insights into the outcomes of its actions and shaping its learning process. The

agent’s primary objective is to maximize the total accumulated reward over time, thereby

acquiring the ability to make optimal decisions throughout the learning process.

Reward Signal

The reward signal (denoted r) is a vital part of the feedback loop in RL. It is a signal

that the agent receives from the environment after each action, which informs the agent

about the quality or effectiveness of the action executed. The agent’s primary goal is to

learn how to maximize the total reward over time. In other words, the agent wants to

make decisions that lead to the highest possible rewards in the long run. The reward

signal sets the objective for the RL problem. It is also worth noting that the design of

the reward signal is essential, as it can directly influence the agents learning trajectory

and behavior.

18

Policy

A policy (denoted π) in RL can be viewed from several perspectives. However, Sutton

(2018) offers a straightforward definition by describing the policy as “the agent’s chosen

method of behavior at a given time.” In more concrete terms, the policy gives us the

probability distribution π(at|st), which represents the likelihood of the agent taking action

a from the action set A(st) when in state st from the state space S. The ultimate goal

in RL is to discover an optimal policy (denoted as π∗), which maximizes the expected

cumulative reward over time for each state, thus ensuring the best long-term payoff for

the agent. It is important to note that policies can be deterministic, returning one action,

or stochastic, which provides a probability distribution over all possible actions.

Value function

The concept of the value function vπ(s) plays a crucial role in estimating the desirability

or goodness of being in a specific state for an agent. It measures the expected cumulative

reward that an agent can obtain starting from a particular state and following a given

policy π. By estimating the value function, the agent gains insights into the long-term

benefits and potential outcomes of being in different states, allowing it to make informed

decisions and navigate the environment more effectively.

2.4.2 RL methods

RL approaches can be categorized into value-based, policy-based, and actor-critic meth-

ods, as defined by Sutton (2018). These approaches differ in the following key aspects:

• Value-based methods: These approaches focus on estimating and optimizing

the value function, such as the state-value or action-value functions. They aim to

determine the value of different states or state-action pairs and derive an optimal

policy based on these value estimates.

• Policy-based methods: Unlike value-based methods, policy-based approaches

directly learn and improve the policy function without explicitly estimating the

value function. They explore different policies and update the policy parameters to

maximize the expected cumulative reward.

19

• Actor-critic methods: Actor-critic methods combine elements of both value-

based and policy-based approaches. They maintain an actor, responsible for select-

ing actions based on a policy, and a critic, which evaluates the actions the actor

takes using value-based methods. This combination allows for more stable and

efficient learning by utilizing the strengths of both approaches.

2.5 Deep Learning

Deep Learning (DL) is a powerful and rapidly advancing subset of machine learning that

has revolutionized various fields, from computer vision to natural language processing.

At its core, DL involves using neural networks, which are complex mathematical models

inspired by the structure and function of the human brain. These networks are designed to

learn patterns and relationships within large datasets, enabling them to make predictions,

classifications, and decisions with remarkable accuracy and speed.

DL has become increasingly popular in recent years due to the explosion of big data

and the availability of powerful computing resources. By leveraging these resources, DL

models can be trained on big amounts of data to identify complex patterns and relation-

ships that would be impossible for humans to detect. This has led to breakthroughs such

as image recognition, speech recognition, and autonomous driving. In recent years, ad-

vances in DL have led to the development of deep reinforcement learning, which combines

RL with neural networks to enable agents to learn from high-dimensional inputs such as

images or speech. This has expanded the range of applications of RL and opened up new

research directions.

Policy gradient methods, a subset of policy search methods from traditional RL,

use neural network weights to encode the policy π(a|s, θ) parameter θ. As a result,

optimizing the parameters of θ to discover the optimal policy equates to optimizing the

neural network’s weights. This is advantageous because deep learning techniques, like

back-propagation, can be utilized to find the optimal policy. Due to their network-

based structure, deep RL methods have been highly effective in addressing RL tasks.

One of the key benefits of policy gradient methods is their stable convergence property,

which ensures steady improvement at each time step. This stands in stark contrast to

value-based methods, where updates to the value function can trigger dramatic behavior

changes, resulting in considerable oscillations during training. Moreover, policy gradient

methods perform well under conditions of uncertainty, as they are adept at learning

stochastic policies. However, they also have a known disadvantage: they are prone to

converge to local optima, as opposed to the global optimum (Sutton (2018)).

20

2.5.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) was first introduced by Schulman et al. (2017) from

OpenAi. PPO has had a significant impact on the field of RL. The PPO algorithm was

designed to address the challenges associated with other policy optimization methods,

such as Policy Gradient (PG) and Actor-Critic (AC) methods in RL, particularly the

issue of harmful, large policy updates. By creating a more cautious approach to policy

updates, PPO ensures a more stable learning process and prevent policy collapse, where

policy performance degrades significantly and never recovers.

Priniciple of PPO

The underlying principle of PPO is limiting the policy update at each iteration to ensure

that the learning process is more stable. PPO modifies the objective function rather than

directly optimizing the expectation of the sum of future rewards as in conventional policy

optimization. This modification results in a new ’surrogate’ objective that bounds the

policy update, thus preventing overly large and potentially destabilizing updates.

Mathematical framework

The variable rt signifies the ratio of probabilities between the current policy, πθ, and the

prior policy, πθold , as shown in rt =
πθ(at|st)
πθold(at|st)

.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât] (2.1)

Here, Ât represents the advantage. The clip operation is used to restrict the value of rt(θ)

within the boundary [1 − ϵ, 1 + ϵ]. This implies a constrained relationship between the

present and preceding policy outcomes, thereby moderating the variance in the behavior

exhibited by the current policy as compared to its preceding counterpart.

21

2.6 Related Work

Bergmann et al. (2023) proposed a metaheuristic framework that tackled two variants

of the Feeder network design, which incorporates a general origin-destination pattern

and speed optimization. Performance is compared against an Adaptive Large Neighbor-

hood Search framework on instances from the literature and outperformed the previous

framework. To evaluate the effectiveness of the AH, computational experiments were

conducted on various problem instances. These instances were derived from the adapted

LINER-LIB benchmark suite Brouer et al. (2014), adapted from previous studies, and

generated in-house. The results demonstrated that AH outperformed the exiting results

in terms of solution quality and computation time.

Kallestad et al. (2023) proposed a general hyperheuristic framework named Deep

Reinforcement Learning Hyperheuristic, demonstrating its efficacy when applied to a

select range of COPs. In order to assess the framework’s performance, the researchers

conducted computational experiments on an assortment of problem instances. They

then compared the outcomes with those from the Adaptive Large Neighborhood Search

(ALNS) and a straightforward Uniform Random Sampling (URS) framework. The results

indicated that the proposed hyperheuristic framework consistently produced superior

solutions.

22

Chapter 3

Problem Sets

The Feeder Network Design Problem (FNDP) revolves around the optimization of feeder

networks to balance costs and efficiency in liner shipping. The goal is to maximize

profits while minimizing expenses, which often involves using large vessels, known as

mother vessels, capable of carrying substantial amounts of cargo – up to 18,000 TEU

(Twenty-foot equivalent unit) or 9,000 FEU (Forty-foot equivalent unit). However, the

use of such large vessels introduces its own set of challenges. While some major ports,

such as Shanghai Port and Singapore Port, are equipped to handle these colossal ships,

many smaller ports lack the necessary infrastructure. Thus, these smaller ports are

unable to accommodate mother vessels, primarily due to their size. Additionally, liner

shipping networks regularly visit all ports within their network while adhering to specific

time windows and constrictions. This complex balancing act necessitates the use of

smaller vessels, known as daughter vessels, to service parts of the network. By employing

daughter vessels, we can maximize the utilization of each ship, thereby minimizing costs

and emissions. This approach ultimately results in an optimized network tailored to the

specific set of ports. In this chapter, we consider two variants of Feeder Networks and

include mathematical models to define the problems better.

3.1 Feeder Network Design Problem with Optional

Transshipment

While FNDP concerns planning direct transport routes from a central hub to various

locations, Feeder Network Design Problem with Optional Transshipment (FNDP-OT)

23

introduces the flexibility of transferring demands between vessels along the route for

increased efficiency and adaptability as shown in Figure 3.2. The FNDP-OT requires

designing a network of routes for a given hub (continental port), a set of feeder ports, and

a number of vessel types to ensure the weekly demand of all ports is met. Additionally,

it involves determining the fleet of vessels required to service these routes. Each port

has a certain number of containers, usually measured in TEUs, that must be transported

to and from the hub. These container movements are known as pickups and deliveries.

The vessels are subject to maximum capacity, the maximum number of TEUs they can

carry, and a weekly time charter rate (TC rate) and fuel consumption. The TC rate

includes the cost of operating a given vessel for a given time period, excluding the fuel

consumption incurred while sailing between ports. In this thesis, we consider the same

version of the FNDP as Variant 2b, as proposed by Msakni et al. (2020), which allows

for hub-and-spoke structures within the feeder network.

Figure 3.1: A feasible solution for a Feeder Network with Optional Transshipment along
the Norwegian coast. Effectively managing cargo shipment with one mother route and
three daughter routes. Credit: Msakni et al. (2020).

To achieve this hub-and-spoke structure within the network, we consider mother and

daughter routes. A mother route originates and ends at the hub while visiting a subset

24

of ports in between. Daughter routes, on the other hand, are routes that originate and

end at a feeder port (i.e., a transshipment port) and visit a subset of ports in between.

However, the daughter routes cannot include the hub. Therefore there must exist at least

one mother route to activate a transshipment port from a feeder port for daughter routes

to be enabled. Any feeder port may be visited once, with the exception of transshipment

ports, where one mother route and multiple daughter routes may visit. Different types

of vessel service mother and daughter routes. We call these mother vessels and daughter

vessels. Due to the enabling of daughter routes and the fact that they are only optional,

we denote this version of the problem as Feeder Network Design Problem with Optional

Transshipment (FNDP-OT).

Transshipment of cargo

In the context of liner shipping, transshipment involves moving cargo from one ship to

another, typically at a transshipment or feeder port. Transshipment within the feeder

network reduces costs, improves connectivity, and enhances scalability.

3.1.1 Daughter route structures

The left network in Figure 3.2 illustrates a possible solution for a conventional feeder

network consisting solely of mother routes, while network on the right is a possible solution

for a feeder network that allows hub-and-spoke structure, this is made possible with the

inclusion of daughter routes.

(a) A feeder network (b) A feeder network with optional transship-
ment

Figure 3.2: Feeder Network Structures

25

In this thesis, two kinds of daughter routes are to be considered: simple routes and

butterfly routes, and establish a one-week (7 days) time window for both types of daughter

routes based on practical considerations.

A simple route (the purple route in Figure 3.1) is a round trip that begins and ends at

the same feeder port, visiting a subset of other ports in between. It is a straightforward,

efficient route plan that allows the daughter vessel to load, transport, and unload cargo

in one continuous journey.

A butterfly route (the yellow route in Figure 3.2), by contrast, is essentially a concate-

nation of two simple routes, starting and ending at the same feeder port. The necessity

for butterfly routes arises when a daughter vessel’s capacity constraints do not allow it to

transport all the cargo in one run. Instead, the vessel makes two distinct loops, visiting a

set of ports on each loop and returning to the origin feeder port in between. Despite this

additional complexity, the butterfly route must still fit within the one-week time window.

It is worth noting that this two-tiered structure of simple and butterfly routes within

daughter routes provides a balance of simplicity and flexibility. It allows the network to

adapt to varying cargo demands while maintaining the efficiency of operations within the

established time constraints.

3.1.2 Mathematical Model

The mathematical framework for the FNDP-OT is an updated model by Msakni et al.

(2020). We include it to provide a clear mathematical representation of the problem.

Definitions of various sets, parameters, and decision variables are introduced as follows:

Sets

K set of available mother vessel types (in TEUs)

RM set of candidate mother routes

RM
p set of candidate mother routes that include feeder port p

RD set of ports that precede the visit of port p in mother route r

RD
rp subset of daughter routes that can do transshipment at port p with mother route

r

26

Pr set of served feeder ports by mother route r

P−
rp set of ports that precede the visit of port p in mother route r

DR set of route pairs where a pair indicates which daughter route can be connected

to which mother route i.e., DR = {(r, d), r ∈ RM, p ∈ Pr, d ∈ RD
rp}

DR
p subset of DR for mother and daughter routes pairs that are connected using port

p

Parameters

CMH
k weekly time charter cost of a mother vessel of type k

CRM
rk sailing cost of mother route r using vessel type k, composed of port, bunker and

handling costs

CD
d total operational cost of daughter route d, including both weekly time charter

costs, sailing costs, port costs, cargo handling costs, and transshipment costs

Uk capacity in TEUs of a mother vessel of type k

Dp demand of cargo (number of containers) to deliver to feeder port p from the hub

port

Pp demand of cargo (number of containers) to pick up from feeder port p for trans-

portation to the hub port

L−
d total number of containers to deliver to feeder ports visited by daughter route d

L+
d total number of containers to pick up from feeder ports visited by daughter route

d

HE cargo handling rate at the hub port (in TEUs per hour)

Hp cargo handling rate at feeder port p (in TEUs per hour)

Sr sailing time of mother route r (in hours)

N the maximum number of daughter vessels that can do the transshipment at any

feeder port

Decision variables

27

xrk takes value 1 if mother route r is sailed with vessel of type k and 0 otherwise

yrk number of mother vessels of type k used on mother route r

qr maximum number of containers carried on mother route r including containers

of daughter routes connected to r

trk total time (sailing time and cargo handling time) of mother route r with vessel

type k

zrd takes value 1 if daughter route d is selected and connected to an active mother

route r and 0 otherwise

The mathematical model of the underlying problem is as follows:

(F2) : min
∑

r∈RM

∑
k∈K

(CMH
k yrk + CRM

rk) +
∑

(r,d)∈DR

CD
d zrd (3.1)

subject to:

28

∑
k∈K

xrk ≤ 1, r ∈ RM (3.2)∑
r∈RM

p

∑
k∈K

xrk +
∑

(r,d)∈DR
p

zrd ≥ 1, p ∈ P (3.3)

N
∑
k∈K

xrk ≥
∑

(r,d)∈DR

zrd, r ∈ RM (3.4)

qr ≥
∑
p′∈Pr

Dp′

∑
k∈K

xrk +
∑

(r,d)∈DR

zrdL
−
d zrd

+
∑

p′∈P−
rp

(
(Pp′ −Dp′)

∑
k∈K

xrk +
∑

(r,d)∈DR
p′

(L+
d − L−

d)zrd

)
, r ∈ RM, p ∈ Pr (3.5)

∑
k∈K

Ukxrk ≥ qr, r ∈ RM (3.6)

trk ≥ Srxrk +
∑
p∈Pr

(Pp +Dp

HE

+
Pp +Dp

Hp

)
xrk

+
∑
p∈Pr

∑
(r,d)∈DRp

(L+
d + L−

d

HE

+
L+
d + L−

d

HP

)
zrd, r ∈ RM, k ∈ K (3.7)

yrk ≥
trk
168

, r ∈ RM, k ∈ K (3.8)

xrk ∈ {0, 1}, r ∈ RM, k ∈ K (3.9)

yrk ∈ N , r ∈ RM, k ∈ K (3.10)

yrd ∈ {0, 1}, (r, d) ∈ DR (3.11)

qr ≥ 0, r ∈ RM (3.12)

trk ≥ 0, r ∈ RM, k ∈ K (3.13)

The objective function 3.1 aims to minimize the weekly operational costs. This cost

calculation comprises two components. The first and second terms estimate the weekly

operational expenses for the chosen mother and daughter routes. These weekly opera-

tional costs encapsulate the weekly TC rate for the mother or daughter vessels in use,

port expenses, fuel charges, and costs related to cargo handling. Additionally, the second

term incorporates the transshipment costs.

Constraint 3.2 ensures that each route is sailed by only one type of vessel. Con-

straint 3.3 requires each port to be visited either by a mother or a daughter route, while

Constraint 3.4 specify that any selected daughter route must be linked to a mother route.

29

Constraint 3.5 calculates the maximum volume of containers (measured in TEUs)

transported by a mother route. The first term on the right side determines the number

of containers delivered to various feeder ports along the mother route, and the second

term calculates the volume of containers delivered to daughter routes at transshipment

points along the same route. These two quantities comprise the initial load of containers

at the hub. The third term accounts for the containers picked up and delivered for the

ports in the mother route and connected daughter routes. By considering these values,

the correct maximum load of the mother routes can be computed. This information is

then utilized in Constraint 3.6 to identify the necessary vessel size from which the vessel

type can be derived.

Constraint 3.7 computes the total duration of routes. This includes sailing time

and cargo handling time needed for delivering and picking up containers to and from

the visited ports. The number of mother vessels on a mother route, as regulated by

Constraint 3.8, is determined by the number of weeks required to sail the route. Lastly,

Constraints 3.9 to 3.13 define the domain of the decision variables.

3.2 FNDP-OT with OD patterns

The Origin-Destination (OD) variant builds upon the problem description from Chapter

3.1, with a couple of notable distinctions. We now include the demand for cargo to be

transported to and from the central hub port and between feeder ports. This means

instead of considering just a set of ports with demand flowing to and from the hub, the

problem also incorporates a set of OD pairs, where a specific volume of cargo needs to

be transported from one feeder port to another.

In this model, cargo may be transshipped up to three times before reaching its final

destination. For example, it could be moved at a transshipment port, at the hub, and

then at another transshipment port. Additionally, demands between feeder ports are

considered optional and can be rejected. If cargo is rejected, a penalty is incurred for

each container not delivered (1000 $). Rejection is all-or-nothing - either all containers of

the demand are handled, or all are rejected. We denote this problem as Feeder Network

Design Problem with Origin-Destination (FNDP-OT with OD-patterns).

30

3.2.1 Speed Optimization

We included a speed optimization algorithm that calculates the ideal speed s for a vessel

v. The reason behind this is to increase flexibility, regulations, asset utilization, and fuel

efficiency. The speed of a vessel has a significant impact on its fuel consumption. In

general, slower speeds result in less fuel use, which can dramatically decrease operating

costs. Considering the volatility of fuel prices and the growing concern about environ-

mental sustainability, improving fuel efficiency has become a key objective in the shipping

industry.

Algorithm 1: Speed optimization algorithm

Function SpeedOpt(distance, peak load, load time, set of vessels V):

min cost ←∞
vessel ← None

speed ← 0

foreach v ∈ V such that vcapacity ≥ peak load do

t← calculate sail time for the given distance at speed vmax

weeks ← ⌈(t+ load time)/(24× 7)⌉
if weeks > time limit then

continue

end

tmax ← (weeks ×24× 7) - load time

x← t/tmax

s← max (vmax × x, vmin)

costs ← calculate route with regards to v and s

if costs < min cost then

min cost ← costs

vessel ← v

speed ← s

end

end

return if vessel = null then infeasible else (vessel, speed)

Algorithm 1 processes each vessel with a capacity equal to or greater than the peak

load. For every individual vessel, the sail time is calculated at maximum speed. If the

calculated time is feasible, it implies that the route itself is also feasible. The algorithm

then determines the lowest possible speed required to complete the journey within the

set time limit. Ultimately, it returns the selected vessel along with its optimal speed.

31

3.2.2 Mathematical Model

We also include a mathematical model by Msakni et al. (2020) for the FNDP-OT with

OD-patterns to provide a clear mathematical representation of the problem after includ-

ing OD-patterns and speed optimization. The different sets and parameters, as well as

decision variables, are defined in the following:

Sets

RM set of mother routes.

RD set of daughter routes.

R set of all routes, R = RM ∪RD.

Kr set of available ship sizes to sail route r.

Sk set of vessel speeds that can be sailed by a ship size k, k ∈ K.

RM
p subset of mother routes that include a visit to port p.

RD
P subset of daughter routes that do transshipment at port p.

P set of local ports.

Pr set of port visited by route r.

DR
j set of route pairs of mother and daughter routes that can do transshipment at

port j, (m, d) ∈ DR
j if m ∈ RM, d ∈ RD, j ∈ Pm, the transshipment port of d is

j, and the ports visited by d are not visited by m (except for the transshipment

port).

DR set of mother and daughter route pairs that can be connected.

A set of port pairs with demand (a, b) ∈ A, a, b,∈ P .

AM set of mandatory demand, which is related to demand from or to the continental

port.

AO set of optional demand, which is related to any demand between local ports.

Ād subset of port pair demands (a, b) that is delivered by daughter route d (a, b ∈
Pd), where the cargo of delivering (a, b) goes through the transshipment port of

d.

32

E set of all possible edges in the model, (i, j) ∈ E , where i, j ∈ P .

Er set of edges of route r.

Parameters

CMH
k weekly time charter cost of a mother vessel of type k.

CRM
rks operation cost of mother route r sailing at speed s using vessel type k; this cost

includes fuel cost and port calls.

CD
d total cost of daughter route d; the cost includes the weekly time charter, bunker,

and transshipment costs.

Uk capacity of vessel of type k (in FEU).

Fj cargo handling rate at port j (in FEU per hour).

Hj cargo handling cost at port j.

Trs sailing time of mother route r with speed s (in hours).

Dab the number of containers to transport from a to b, (a, b) ∈ A.

Oab Revenue from transporting one container of the optional demand (a, b), (a, b) ∈
AO.

Ōab Penalty cost for not serving one container from the optional demand

(a, b), (a, b) ∈ AO.

N the maximum number of daughter vessels that can do the transshipment at a

port.

M a big value.

Decision variables

xrks a binary variable that takes value 1 if vessel type k is used to sail route r with

speed s, and 0 otherwise.

yrk a positive integer variable that indicates the number of mother vessels of type k

used on mother route r.

33

l
(ab)
ij number of containers of demand (a, b) traveling through edge (ij).

z
r(ab)
j demand (a, b) that enters the system from port j using route r.

crj transshipped cargo transported by mother route r using route j.

trk total sailing time and cargo handling time for mother route r with vessel type

k.

u
(ab)
(r′,r) a binary variable that takes value 1 if demand (a, b) is transshipped between

routes r and r′, and 0 otherwise.

(F1) : min
∑

m∈RM

∑
k∈Km

∑
s∈Sk

(
CMH

k ymk + CRM
mksxmks

)
+

∑
d∈RD

∑
k∈Kd

∑
s∈Sk

CD
d xdks +

2
∑
j∈P

∑
(r,r′)∈DR

j

Hju
(ab)
rr′ +

∑
(a,b)∈AO

∑
r∈R

(
Dab − zr(ab)a

)
Ōab −

∑
(a,b)∈AO

∑
r∈R

Oabz
r(ab)
a

(3.14)

subject to:

34

∑
k∈Kr

∑
s∈Sk

xmks ≤ 1, r ∈ R (3.15)

N
∑
k∈K

∑
s∈Sk

xmks ≥
∑

(r,d)∈DR

∑
k∈Kd

∑
s∈Sk

xdks, r ∈ RM (3.16)

∑
m∈RM

p

∑
k∈Km

∑
s∈Sk

xmks ≤ 1, p ∈ P (3.17)

∑
m∈RD

p

∑
k∈Kd

∑
s∈Sk

xdks ≤ 1, p ∈ P (3.18)

l
r(ab)
ij + z

r(ab)
j +

∑
(r′,r)∈RD

j

u
(ab)
(r′r) =

l
r(ab)
jk +

∑
(r′,r)∈RD

j

, r ∈ R, (a, b) ∈ A, (i, j) ∈ Er, (j, k) ∈ Er, j ̸= b

(3.19)∑
r∈R,a∈Pr

zr(ab)a = Dab, (a, b) ∈ AM (3.20)∑
r∈R,a∈Pr

zr(ab)a = Dab, (a, b) ∈ AO (3.21)∑
(a,b)∈A

l
r(ab)
ij ≤

∑
k∈Kr

∑
s∈Sk

Ukxrks, r ∈ R, (i, j) ∈ Er (3.22)

trk ≥ Trs

∑
s∈Sk

xrks +M
(∑

s∈Sk

xrks − 1
)
+

∑
j∈Pr

(∑
(a,j)∈A,
(i,j)∈Er

l
r(aj)
ij +

∑
(j,b)∈A,
(j,k)∈Er

l
r(jb)
jk +

∑
(a,b)∈A

∑
(r′,r)∈RD

j

(
u
(ab)
(r′,r) + u

(ab)
rr′

))
/Fj, r ∈ RM , k ∈ Kr (3.23)

qmk ≥
tmk

168
, m ∈ RM , k ∈ Km (3.24)

xrks ∈ {0, 1}, r ∈ R, k ∈ K, s ∈ Sk (3.25)

yrk ∈ N, r ∈ RM , k ∈ K (3.26)

u
(ab)
rr′ ∈ {0, 1}, (r, r′) ∈ RD

j (3.27)

z
r(ab)
j ≥ 0, r ∈ R, j ∈ Pr, (a, b) ∈ A (3.28)

l
r(ab)
ij ≥ 0, r ∈ R, (i, j) ∈ Er, (a, b) ∈ A (3.29)

trk ≥ 0, r ∈ RM , k ∈ Kr (3.30)

35

The objective function 3.14 aims to minimize the weekly operational costs. The first

term calculates the operational costs associated with the selected mother routes, while

the second term computes the costs of the selected daughter routes. The third term

determines the costs of transshipment between mother and daughter routes. Additionally,

the fourth term computes the penalty for rejecting containers and the revenue generated

from transporting selected containers.

Constraint 3.15 ensures that each selected route is assigned a specific vessel type and

speed. Constraint 3.16 guarantees that a daughter route can only be selected if it can

be connected to a mother route selected by the model. To maintain efficient operations,

each port is served by either a mother or daughter route, as specified by Constraint 3.17

and Constraint 3.18.

Constraint 3.19 ensures the correct flow of containers, considering transshipment oper-

ations. Constraint 3.20 indicates that a mandatory demand (a, b) must enter the system

through port a. Similarly, Constraint 3.21 states that an optional demand (a, b) may

enter the system through port a.

Constraint 3.22 ensures that the load transported over an edge does not exceed the

capacity of the selected vessel type for the corresponding route. Constraint 3.23 computes

the total duration of routes, taking into account both sailing time and cargo handling

time required to deliver and pick up containers at the visited ports. Constraint 3.24

specifies that for each mother route, the number of vessels deployed on the route must be

greater than or equal to the number of weeks required to sail the entire route. Finally,

Constraints 3.25 to 3.29 define the domain of the decision variables, ensuring that they

satisfy specific ranges or conditions.

3.3 Solution Representation

Solution representation is how we represent our solution to a given problem. When cre-

ating the solution representation, one has to think about scalability. We have two similar

but different types of problems we want to solve, where one is an extended version of the

other. Therefore we utilize a variant of the solution representation proposed by Bergmann

et al. (2023). The solution representation is divided into three main components for the

FNDP-OT, and we include an optional array for the solution representation of FNDP-OT

with OD-patterns to handle the OD.

36

Part 1 represents the sequence of ports visited by one or more mother vessels. The

continental port (hub) is excluded from this representation since all mother routes start

and end at the continental port. If there are multiple mother routes, they are separated

using the mother token (-2).

Part 2 represents the remaining portion of the main vector and depicts the sequence of

ports visited by daughter vessels, if applicable. Daughter routes are separated using the

daughter token (0). In the case of butterfly routes, the butterfly token (-1) is used to

indicate the separation between the first and second loop within a butterfly structure.

The butterfly token (-1) marks the point in the port visit sequence where the daughter

route returns to the transshipment port before continuing.

Transshipment vector represents the transshipment port for each daughter route,

where the index is the daughter route and the value is its transshipment port (origin

port). As seen in Figure 3.3, the first value is 2, which indicates that the origin port of

daughter route 1 is port 2. I.e., the first daughter route is in fact [2, 1, 2, 4, 2] and the

second is then [6, 3, 7, 8, 6].

Figure 3.3: FNDP-OT

The optional field (Figure 3.4) is added for the Feeder Network Design Problem (FNDP)

with OD-patterns. This field is an array of 1 and 0 representing boolean values for whether

we choose to handle the ”Origin-Destination” demands. The length of the optional array

is restricted to the number of Origin-Destination (OD) demands.

Figure 3.4: FNDP-OT Origin-Demand

37

3.4 Vessel Data

We use the same vessel data as Brouer et al. (2014) with the addition of a fifth larger

mother vessel. Figure 3.7 provides an overview of the available vessels for both FNDP-OT

and FNDP-OT with OD-patterns.

Table 3.7: Detailed overview of the different vessels available

Vessel
Capacity
(TEU)

TC-rate
(daily)

min
speed

max
speed

design
speed

design
cons

idle
cons

Fleet A: Data imported from LINER-LIB

Feeder 450 450 5 000 10 14 12.0 18.8 2.4

Feeder 800 800 8 000 10 17 14.0 23.7 2.5

Panamax 1200 1 200 11 200 12 19 18.0 52.5 4.0

Panamax 2400 2 400 21 000 12 22 16.0 57.4 5.3

Post panamax 4 200 35 000 12 23 16.5 82.2 7.4

Sumper panamax 7 500 55 000 12 22 17.0 126.9 10.0

Fleet B: Estimated data for smaller vessels

Small feeder 100 100 1 300 8 13 12.0 10.0 1.9

Small feeder 200 200 2 500 9 13 12.0 12.0 2.1

Small feeder 300 300 3 600 9 14 12.0 16.0 2.2

Table 3.7 provides an overview of the different vessel types. This table encapsulates a

range of information for each vessel class, including capacity, Time Charter (TC) rate,

minimum speed, maximum speed, design speed, fuel consumption at design speed, and

fuel consumption when idle. The table presents data on two distinct fleets. Fleet A,

comprising larger vessels, was introduced by Brouer et al. (2014) (LINER-LIB), while

Fleet B includes smaller feeder vessels. If we ignore speed optimization, the vessel will

travel at design speed.

We utilize the same function for computing fuel consumption as proposed by Brouer

et al. (2014). Given a specific vessel and a desired speed, the fuel consumption is calcu-

lated using the following formula:

ffuel(v, s) = (
s

vdesign
)3vcons (3.31)

38

In this equation, v represents the vessel, s stands for the desired speed, vdesign signifies

the design speed of the vessel, and vcons is the fuel consumption at the design speed. This

calculation provides an efficient method for estimating the fuel consumption of a vessel

at any given speed.

3.5 Instances

In our study, we utilized problem instances from multiple sources. Firstly, we employed

the instances introduced by Msakni et al. (2020), which consisted of two sets. The first set

included ports along the Norwegian coastline, while the second set is adapted instances

from LINER-LIB Brouer et al. (2014). Both sets of instances were constructed using

realistic data.

Table 3.8 provides an overview of the instances introduced by Msakni et al. (2020).

The table includes information such as the number of feeder ports in each instance, a

brief description, and the total number of demands measured in TEUs. It is worth noting

that the instances are categorized into classes A, B, and C, where each class represents

a smaller set of instances. For these classes, the reported numbers of ports and demands

in Table 3.8 represent ranges rather than exact values.

Table 3.8: Detailed information about instance A, B, C and adapted LINER-LIB.

Category #Ports Description Total demand (TEUs)

Instances introduced by Msakni et al. (2020)

Class A 10 - 11 Rotterdam - Norwegian Coastline 1070 - 1579

Class B 15 Rotterdam - Norwegian Coastline 1074 - 1725

Class C 20 - 22 Rotterdam - Norwegian Coastline 1850 - 4126

Adapted LINER-LIB instances

Baltic 12 Bremerhaven - Baltic sea 4 904

WAF 20 Algericas - West Africa 8 489

Medit 1 33 Algericas - Mediterranean - Canaris 2 705

Medit 2 32 Gioia Tauro - Mediterranean - Canaris 599

39

Chapter 4

Adaptive Heuristic

Adaptive Heuristic (AH) was first introduced in 2023, by the works of Bergmann et al.,

and showed remarkable results when applied to the FNDP-OT and FNDP-OT with OD-

patterns.

4.1 An Overview of Adaptive Heuristic

The metaheuristic AH follow the same structure as ALNS. However, AH enhances these

pre-existing heuristics by introducing an escape algorithm, a unique feature that facili-

tates its evasion from local optima. Besides its unique mechanism, AH has proven to be

highly efficient, demonstrating impressive computational time results, further emphasiz-

ing its practical use.

While this thesis implements the framework in Python, not Kotlin, as in the original

context, it is important to mention that the computational time may increase as a result.

However, this change in programming language will not influence the outcome, ensuring

the validity and comparability of the results.

40

Algorithm 3: Adaptive Heuristic

Function AH :
Input: a set of heuristics H
Generate an initial solution s

sbest ← s

i← 0

repeat

s′ = s

select h ∈ H based on selection parameters

apply heuristic h to s′

if f(s′) < f(sbest) then

sbest = s′

i← 0

end

if accept (s′, s) then

s = s′

algorithm

end

update selection parameters and i← i+ 1

if Escape Condition(i,m) then

Escape Algorithm(s, sbest)

i← 0

end

until stop-criterion met

The Adaptive Heuristic follows the same pattern as ALNS framework. First, it gen-

erates an initial solution and updates best found solution accordingly. After doing so, it

iterates over n number of iterations, selects a heuristic, applies it to the incumbent, and

receives a new solution. Based on this new solution, the heuristic receives a score based on

the improvement of the new solution compared to the incumbent the best found solution.

If the solution has not improved in the last i steps, we utilize the escape algorithm (section

4.2) to escape the local optimum.

4.1.1 Reward system

The reward system serves as a fundamental element within metaheuristics, guiding the

algorithm in prioritizing strategies. This adaptability stands as a primary strength of

41

metaheuristics. By leveraging insights from previous experiences, the algorithm refines

its ability to recognize and employ the most promising heuristics. Consequently, this en-

ables more efficient problem-solving processes and facilitates the generation of improved

solutions. This adaptability proves especially valuable when tackling intricate combina-

torial optimization problems characterized by vast and intricate solution spaces, where

identifying the optimal solution is not readily apparent.

σh =



σ1 if new solution beats best found solution

σ2 if acceptance criteria is met

σ3 if new solution is not previously seen

σ4 otherwise

(4.1)

Bergmann et al. (2023) utilized the following reward system him is research: σ1 = 10, σ2 =

7, σ3 = 4, σ4 = 0. Which rewards exploration, meaning that a heuristic is rewarded when

generating an unseen solution (exploration of the neighborhood) even though it has a

worse objective value.

4.1.2 Acceptance criterion

The acceptance criterion used in Adaptive Heuristic is known in the literature as the

Metropolis acceptance criterion. The probability function can be written as 4.2:

P (s′ | s) =

1 if f(s′) < f(s)

e−
f(s)−f(s′)

T otherwise
(4.2)

where s is the incumbent and s′ is the new solution generated. f(s) and f(s′) are the

objective value of the incumbent and new solution, respectively. T is a parameter called

the temperature, which is gradually reduced during the course of the algorithm. All

better solutions are accepted. If the new solution is worse than the incumbent, it has a

probability of e−
f(s)−f(s′)

T to be accepted, unless it is already seen, then it is declined. This

probability function is designed to allow occasional acceptance of worse solutions, helping

to avoid getting stuck in local optima. The decreasing temperature schedule reduces the

chance of accepting worse solutions as the search progresses, encouraging convergence to

an optimal solution.

42

Cooling Schedule

Besides this, Bergmann et al. utilized the cooling schedule suggested by Crama and

Schyns (2003). The cooling schedule is defined as Ti = αTi−1, where i is the iteration and

α is the cooling factor. The initial temperature, T0 is calculated by:

T0 =
−fT

avg

ln(p)
(4.3)

To tune this, AH runs n iterations with a fixed acceptance probability p and calculates

the average fT
avg of all |f(s)−f(s′)| for all solutions that are worse but accepted, after this,

we can use the initial temperature T0, final temperature Tf and the number of iterations

to calculate the cooling factor α:

α =
(Tf

T0

) 1
n (4.4)

4.2 Escape algorithm

The escape algorithm used in AH is applied if the solution has not improved during the

n last iterations. This means that the search is stuck in a local optimum and needs to

be moved to another place in the solution space. Bergmann et al. suggested the escape

algorithm outlined in Algorithm 4.

Algorithm 4: Escape Algorithm for AH

Function Escape Algorithm(s, sbest):
reject each demand with a probability pesc
repeat

choose a random heuristic h ∈ H
s← h(s)
if f(s) < f(sbest) then

sbest ← s
end

until stop-criterion met
return s, sbest

43

The first thing the escape function does is reject OD demands with a probability p.

This means that each demand already handled has an equal probability of being ignored.

After this, it randomly selects heuristics and performs changes to the solution. This

solution is then the base for the continuing search.

4.3 Selecting heuristics and weight adjustment

At the outset, every heuristic, denoted as h ∈ H, is assigned an initial weight wh. The

probability of choosing heuristic h in the set of heuristics H is given by
wh∑
g∈Hwg

. Where

wh is the weight of the heuristic h.

The selected heuristic is rewarded based on the degree of improvement it achieves. The

scoring system consists of three tiers: (i) high score is awarded if the heuristic discovers

a new best solution. (ii) medium score is given if the heuristic finds a solution better

than the current one. (iii) low score is assigned if the heuristic uncovers a solution that

has not been encountered before.

wh,s = wh,(s−1)r + (1− r)
πh

λh

(4.5)

At the end of each segment, the weights are updated by considering the number of

times each heuristic has been used and the cumulative scores it has obtained (Equation

4.5). This update allows the system to adapt and allocate more weight to heuristics that

consistently perform well. After updating the weights, the scores and use counter are

reset.

4.4 Heuristics

This section describes various heuristics utilized by the AH suggested by Bergmann et al.

(2023). Each heuristic functions uniquely and addresses a specific component of the

solution representation. By employing a combination of these heuristics, our approach

achieves a balanced blend of intensification on promising areas and diversification of

diverse solutions throughout the search process.

44

4.4.1 Random swap

The heuristic first checks if the size of Part 1 (mother routes) is less than 2. If there

are fewer than 2 ports in the Part 1, the function returns infeasible, indicating that the

heuristic cannot be performed. If this is not the case, the heuristic proceeds with the

swapping operation. It selects two random indices and swaps the values. We return the

new solution if this results in a new feasible solution. If not, it returns infeasible.

4.4.2 Reinsert in mother

The heuristic first checks if the size of Part 1 (mother routes) is less than 2. If there

are fewer than 2 ports in the Part 1, the function returns infeasible, indicating that the

heuristic cannot be performed. If this is not the case, the heuristic gathers all indices

of port values in Part 1 and removes a random port (denoted x). It then tries to insert

x in all possible positions in Part 1, including a separate mother route for port x. The

transshipment vector is updated accordingly. If this results in any new feasible solutions,

we return the solution with the lowest objective value. If not, it returns infeasible.

4.4.3 Reinsert in daughter

This heuristic randomly moves a port from Part 2 (daughter routes) and tries to reinsert

it. All possible insertions are tested to keep the best option, including having a new

daughter route. If the selected port is the only port in the original daughter route, this

route is removed, and its corresponding transshipment entry is also removed. If the

original daughter route is a butterfly with only the selected port in one of its loops, it is

converted to a simple daughter route.

4.4.4 Mother route to daughter route

The heuristic first checks if the size of Part 1 (mother routes) is less than 2. If there

are fewer than 2 ports in the Part 1, the function returns infeasible, indicating that the

heuristic cannot be performed. If this is not the case, the heuristic gathers all indices of

port values in Part 1 and removes a random one (denoted x). It then tries to insert x

in all possible positions in Part 2, including a separate daughter route for port x. The

transshipment vector is updated accordingly. If this results in any new feasible solutions,

we return the solution with the lowest objective value. If not, it returns infeasible.

45

4.4.5 Daughter route to mother route

The heuristic gathers all indices of port values in Part 2 (daughter routes) and removes

a random one (denoted x). It then tries to insert x in all possible positions in Part 1,

including a separate daughter route for port x. The transshipment vector is updated

accordingly. If this results in any new feasible solutions, we return the solution with the

lowest objective value. If not, it returns infeasible.

4.4.6 Butterfly route to simple route

The heuristic iterates through Part 2 (daughter routes) and collects all daughter routes

that contain the butterfly token. If there are no butterfly token in Part 2, the function

returns infeasible, indicating that the heuristic cannot be performed. If this is not the

case, the heuristic selects one daughter route containing a butterfly route and removes

the butterfly token, making it a simple route. We return the solution if this results in a

new feasible solution. If not, it returns infeasible.

4.4.7 Simple route to butterfly route

The heuristic iterates through Part 2 (daughter routes) and collects all daughter routes

that do not contain the butterfly token. If there are no simple routes in Part 2, the

function returns infeasible, indicating that the heuristic cannot be performed. If this is

not the case, the heuristic selects one daughter route and tries to insert butterfly token in

all possible positions in that daughter route, making it a butterfly route. We return the

solution if this results in a new feasible solution. If not, it returns infeasible.

4.4.8 Optimize transshipment vector

The heuristic selects one random value in the transshipment vector. We then iterate

through Part 1 (mother routes) and calculate the cost for each port as a feeder port. We

return the best-found solution if this results in a new feasible solution. If not, it returns

infeasible.

46

4.4.9 Enable demand

The heuristic iterates through the Optional vector and randomly selects one False (0)

value. It changes the value to True (1) and then returns the new solution if feasible. If

not, it selects another random False (0) value and tries to reinsert the feeder port and

select another vessel.

4.4.10 Reject demand

The heuristic iterates through the Optional vector and randomly selects one True (1)

value. It changes the value to False (0) and then returns the new solution if feasible. If

not, it returns infeasible.

47

Chapter 5

DRLH

In this chapter, we introduce the Deep Reinforcement Learning Hyperheuristic (DRLH).

DRLH is an innovative approach that combines Deep Reinforcement Learning with ALNS

to solve COPs. DRLH showed great promise when applied to Capacitated Vehicle Rout-

ing Problem, Parallel Job Scheduling Problem, Pickup and Delivery problem, and Pickup

and Delivery Problem with Time Windows (Kallestad et al. (2023)), which are all chal-

lenging combinatorial optimization problems in various domains.

5.1 Deep Reinforcement Learning Hyperheuristic

DRLH, which stands for Deep Reinforcement Learning Hyperheuristic, is a hyperheuristic

first introduced by Kallestad et al. (2023). The framework utilizes an RL agent for

the selection of heuristics. This process enhances the ALNS framework proposed by

Ropke and Pisinger (2006) by integrating the decision-making capability of the RL agent,

allowing it to select the most suitable heuristic to apply to the solution at micro-level for

each iteration. The pseudocode is shown in Algorithm 5.

48

Algorithm 5: DRLH

Function Deep Reinforcement Learning Hyperheuristic:

Generate an initial solution s with objective function f(s)

H ← set of heuristics

sbest ← s

f(sbest)← f(s)

repeat

s′ = s

select h ∈ H based on policy π(h|s, θ)
apply heuristic h to s′

if f(s′) < f(sbest) then

sbest = s′

else

if accept (s′, s) then
s← s′

end

end

until stop-criterion met

return sbest

DRLH takes in a set of heuristics and generates an initial solution. After doing so, it

iterates for a number of iterations, applies a heuristic on the incumbent, and receives a

reward depending on the level of improvement.

5.2 Heuristics

While the original work proposed by Kallestad et al. (2023) introduced an innovative

methodology for generating heuristics by creating a diverse set of heuristics, denoted as

H, there is still room for improvement. This set, H, was assembled by evaluating all

possible permutations of the available removal and insertion operators, thereby form-

ing a comprehensive collection of heuristic strategies for solving COPs. However, this

might cause problems when switching between different subcategories of COPs. For the

FNDP-OT and FNDP-OT with OD-patterns, there is a need for problem-specific opera-

tors; therefore, a potential enhancement might involve incorporating complete heuristics

directly into the set of heuristics H from the start based on the specific problem, rather

49

than relying on the generation from permutations of operators alone. This direct inclu-

sion might save computational time and resources, enhancing the efficiency of the system.

Leveraging complete heuristics will also present an opportunity for incorporating expert

knowledge or high-performing heuristics from prior runs or related problems, making the

approach more adaptive and versatile when comparing the performance with the AH.

Table 5.1: The different heuristics available to the DRLH for the FNDP and FNDP-OT.

Name Description

Random swap Swaps two random ports in part 1

Reinsert mother Removes a port from part 1 and reinserts it into part 1

Reinsert daughter Removes a port from part 2 and reinserts it into part 2

Mother to daughter Removes a port from part 1 and reinserts it into part 2

Daughter to mother Removes a port from part 2 and reinserts it into part 1

Butterfly to simple Randomly select a butterfly route and converts it into a simple
route

Simple to butterfly Randomly select a simple route and converts it into a butterfly
route

Optimize transshipment Selects a random value from the transshipment vector and
finds the optimal value for it

Enable demand Enables a randomly selected demand

Reject demand Rejects a randomly selected demand

As shown, the heuristic pool utilized (Table 5.1) is not the same as proposed by

Kallestad et al. (2023), but rather the one proposed for the AH by Bergmann et al.

described in chapter 4.4. Even though one of the many advantages of a hyperheuristic is

to create or, simply put, combine removal and insertion operators, this gives us a clearer

view of how to measure and evaluate performance when comparing to AH.

5.3 Acceptance Criteria and Stopping Conditions

DRLH uses the same acceptance criteria and stopping condition described in section

4.1.2. Where all better solutions are accepted, and worse solutions are accepted with a

probability p unless it is previously seen.

50

5.4 Deep Reinforcement Learning Agent

The DRLH utilizes an Actor-Critic architecture with Proximal Policy Optimization

(PPO) algorithm to update its policy (πθ). The reason behind doing so is that we get

the best of both value-based and policy-based methods. The Actor selects actions based

on its current policy, while the Critic estimates the value function. PPO iteratively up-

dates the policy by optimizing a surrogate objective while ensuring stability through the

use of a policy clipping mechanism (Eq: 2.1). The implementations of the actor and

critic networks enable the agent to learn complex mappings from states to actions and

value estimates, facilitating effective decision-making in complex environments such as

FNDP-OT and FNDP-OT with OD-patterns or other COPs.

5.4.1 State Representation

The state representation for FNDP-OT and FNDP-OT with OD-patterns builds upon

the original state representation introduced by Kallestad et al. (2023), by adding

three additional values. These include sorted seen solution, sorted accepted solution, and

sorted new best solution, each with a range from [0, 1]. For instance, sorted seen solution

evaluates the quality of a new solution by comparing its rank among all previously

seen solutions. Similar evaluations are conducted for sorted accepted solution and

sorted new best solution, providing comprehensive insight into the value of a given so-

lution within the broader search context. It would be beneficial, in this scenario, to

add more fields, such as nr daughter routes, nr mother routes or opt demands handled.

However, we decided not to do this to keep it as a general framework.

51

Table 5.2: State representation for FNDP-OT and FNDP-OT with OD-patterns patterns

Name Definition

improvement The difference of cost between previous solution and current solution.

dist to best The difference of cost between current solution and best-found solution.

inc obj The cost of the current solution.

best obj The cost of the best-found solution.

temperature The current temperature.

cooling rate The cooling schedule (α).

no improvement The number of iterations since the last improvement.

index step The iteration number.

was changed 1 if the solution was changed, 0 otherwise.

unseen 1 if the solution has not previously been seen in the search, 0 otherwise.

sorted seen solution Value [0, 1] showing the quality rank of the current solution among all seen solutions.

sorted accepted solution Value [0, 1] showing the quality rank of the current solution among all accepted solutions.

sorted new best solution Value [0, 1] showing the quality rank of the current solution among all best solutions.

last action sign 1 if the previous step resulted in a better solution, 0 otherwise.

last action The action in the previous iteration encoded in 1-hot.

5.4.2 Action

The number of actions is equal to the size of the heuristic pool H. In our case, we use

the same heuristic pool as the AH (Table 5.1). At each time step (t) of the episode

(search), the agent chooses a heuristic h ∈ H and applies it to the solution giving us a

new solution, feasible or not. Therefore we can define the policy function π as:

π(h|s, θ) = Pr{At = h|St = s, θt = θ} (5.1)

5.4.3 Reward function

The original DRLH framework by Kallestad et al. (2023) is adaptable to different reward

functions such as:

RALNS
t =



10 if f(s′) < f(sbest)

7 if f(s′) < f(s)

4 if accept(s′, s)

0 otherwise

(5.2) R5310
t =



5 if f(s′) < f(sbest)

3 if f(s′) < f(s)

1 if accept(s′, s)

0 otherwise

(5.3)

52

RPM
t =

1 if f(s′) < f(sbest)

−1 otherwise
(5.4)

where each serves a purpose. A good reward function is crucial in driving the agent toward

desirable behavior and away from undesirable ones. It should accurately represent the

task’s objective and incentivize the agent to achieve the intended goal efficiently. Poorly

designed reward functions may lead to unintended consequences, where the agent finds

ways to ”cheat” by achieving high rewards without actually fulfilling the intended task.

Therefore we had to experiment with different reward functions to avoid reward hacking

Skalse et al. (2022).

5.4.4 Training loop

The training loop for the DRLH agent is illustrated in Algorithm 6. It initializes a random

policy, and for each episode, it resets the problem and executes n heuristic changes to the

incumbent. After each episode, the policy parameters are adjusted according to PPO.

Algorithm 6: DRLH training loop

Result:

Initialize a random policy πθ

for e← 1 to episode do

s0 ← initial state St=0

for t← 1 to steps do

Choose action a ∈ At according to π(a|s, θ)
Perform a and receive Rt = v and s ∈ St+1

end

Update policy parameters θ according to PPO (Schulman et al. (2017))

end

5.5 Solution Representation and Initial Solution

In both FNDP variants, we adopt the same solution representation detailed in sub-chapter

3.3. It is vital to acknowledge that each mother ship embarks from the Hub node, despite

the hub node’s absence in the state representation, to avoid redundancy.

53

We initialize the solution by assigning a mother vessel to each port, which implies

that the number of mother vessels equals the number of ports. The vessel selected is the

smallest one capable of accommodating the two-way cargo. This approach provides a

solid starting point for problem-solving. For FNDP-OT with OD-patterns, we initialize

the optional field with no OD-patterns being accepted.

54

Chapter 6

Experimental Setup

We have used the instances introduced by Msakni et al. (2020) to compare AH and

DRLH, a set of adapted instances from LINER-LIB (Brouer et al. (2014)) based on the

work by Msakni et al. (2020). For the OD version, randomly generated demands between

the feeder ports have been added.

6.1 Experimental Environment

The computational experiments in this thesis were run on a 64-bit Windows 11 operating

system with an AMD Ryzen 7 5800X 8-Core Processor (3.80 GHz) and 32GB DDR5

RAM.

6.1.1 Training of DRLH

The training of Deep Reinforcement Learning Hyperheuristic (DRLH) was performed on

a remote server with an AMD EPYC 7742 64-Core Processor with a clock speed of 3.388

GHz, 256 CPUs, 64 cores per socket, and 8 NUMA nodes CPU and an NVIDIA A100, 80

GB Tensor Core GPU. The reason behind this was due to long training times, and the

computational power needed exceeded local options. For instance, to train 500 iterations

of FNDP-OT or FNDP-OT with OD-patterns with size 150 on took approximately 120

hours

55

6.2 Baseline Models

The baseline framework is Adaptive Heuristic. The reason behind this is that it outper-

formed ALNS and is, therefore, a solid baseline for the comparison of DRLH.

6.2.1 Adaptive Heuristic (AH)

As our approach is improving on the Adaptive Heuristic (AH) algorithm, this method

is chosen as a baseline for performance comparison. This framework measures the per-

formance of each heuristic using a scoring function identical to the one in DRLH in a

segment. At the end of each segment, the weights of each heuristic are updated based on

the performance in the segment.

6.3 Hyperparameter and Parameter Selection

Hyperparameters play a crucial role in machine learning models, including Deep Re-

inforcement Learning Hyperheuristic framework. These parameters are set before the

training process and can significantly impact the model’s performance, training speed,

and stability.

6.3.1 Hyperparameters for DRLH

While training the DRLH agent on FNDP-OT and FNDP-OT with OD-patterns-

patterns, we decided on hyperparameters found in table 6.1

Table 6.1: The hyperparameters used during training for the Agent of DRLH

.

Hyperparameter Value

reward func R5310
t

max epochs 5000

learning rate (α) 1e− 5

batch size 64

first hidden layer (size) 256

second hidden layer (size) 256

discount factor (γ) 0.95

56

After conducting thorough testing, we carefully selected these hyperparameters to opti-

mize our model’s performance. We explored various values within a predefined range to

identify the most suitable hyperparameters.

6.3.2 Parameters for AH

The process of selecting parameters for the AH was straightforward. The parameters

for the original framework were optimized for a run of 20,000 iterations. We scaled

these parameters down for a more manageable count of 1,000 iterations, adjusting the

remaining parameters accordingly Table 6.2. Additionally, we conducted an exploration

of various parameter combinations to ascertain the best comparative analysis.

Table 6.2: The parameters used for AH

.

Hyperparameter Value

nr its 1 000

segment size 200

escape its 50

tune its 200

historic weight 0.8

penalty 1 000

high score 10

medium score 7

low score 4

These chosen values aim to balance optimal performance while preserving both intensifi-

cation and diversification in the search space.

6.4 Dataset Generation

We generate a distinct training set of 5000 instances for all the instance sizes and a

designated test set of 100. These datasets are generated completely randomly. They

have no predefined or set values, all values for both distance, cargo, and OD patterns

scale, within a given predefined range. These are generated to train and evaluate the

DRLH agents performance.

57

Chapter 7

Results

7.1 Results of FNDP-OT

The results presented in this section are strictly bound to Feeder Network Design Problem

with Optional Transshipment, meaning that there is no speed optimization for the vessels,

nor do they consider OD-patterns within the instances. Consequently, this leads to an

augmented higher initial cost and reduced heuristic selection. DRLH and AH was applied

to 12 instances with a number of ports ranging from 10 to 22. The initial costs ranged

from 1,855 044.00 to 6,068,586.00. Each algorithm was executed 10 times on each instance

to ensure comprehensive and robust results.

7.1.1 ABC instances

Table 7.1 displays the DRLH effectiveness at reducing cost in the ABC instances. DRLH

reduced these costs significantly. The best-found objective ranges from 201,886.00 to

555,724.00, while the average objective ranges from 217,419.80 to 618,605.40 across all

12 instances. This indicates substantial improvement from the initial objective to the

best-found objective on all instances, estimating an average improvement of 89.57%. The

relatively high improvement rates across instances and the reasonable computational

times highlight the potential of DRLH as a valuable tool for optimizing feeder networks.

58

Table 7.1: Detailed results on DRLH applied to the ABC instances

Instance #Ports Initial Avg Best Improvement Time

A1 10 1 855 044.00 217 419.80 201 886.00 89.12% 2.84
A2 10 2 284 739.00 238 120.10 230 797.00 89.90% 3.52
A3 11 2 259 021.00 228 315.70 226 254.00 89.98% 3.19
A4 11 2 555 751.00 284 646.50 258 016.00 89.90% 3.13
B1 15 3 010 390.00 441 917.70 350 340.00 88.36% 7.59
B2 15 2 624 494.00 419 610.00 299 323.00 88.60% 6.60
B3 15 2 337 815.00 477 891.80 313 290.00 86.60% 6.82
B4 15 2 907 184.00 372 691.80 275 908.00 90.51% 8.06
C1 20 3 611 139.00 528 345.30 433 627.50 87.99% 17.21
C2 22 4 166 586.00 412 932.30 346 586.00 91.68% 20.39
C3 22 4 851 586.00 466 047.90 420 590.00 91.33% 16.99
C4 22 6 068 586.00 618 605.40 555 724.00 90.84% 20.39

Average 89.57% 9.53

7.1.2 Performance comparison between DRLH and AH

To clarify, the headers on Table 7.2, are defined as follows:

• Instance: The name of the instance

• Ports: The number of ports (including HUB)

• AH: This records the best objective found over 10 runs using the Adaptive Heuristic

(AH) framework

• DRLH: This displays the best objective found over 10 runs using the Deep Reinforcement

Learning Hyperheuristic (DRLH) framework

• ∆ Best: The difference between the best objectives found by AH and DRLH, calculated

as AH best - DRLH best

• ∆ Avg: The difference between the average objectives achieved by AH and DRLH,

calculated as AH average - DRLH average

Table 7.2 demonstrates that, with the exception of one instance (B3), the DRLH

consistently outperforms the AH algorithm on average over 10 runs, often by a signif-

icant margin. The improvements range from 49,153.60 (for instance B2) to as high as

1,657,665.62 (for instance C4). However, for instance B3, the AH algorithm performed

better, with a marginal gain of 42,445.80. Despite the fact that the AH algorithm sur-

passes the best-found solution of DRLH in 4 out of 12 instances, DRLH is deemed more

59

reliable due to its consistent results. These results provide strong evidence that the DRLH

generally performs better than the AH in reducing cost and optimizing routes on these

instances.

Table 7.2: Comparison of results on the ABC instances

Instance Ports AH DRLH ∆ Best ∆ Avg

A1 10.0 192 558.0 201 886.0 -9 328.0 146 141.0
A2 10.0 233 361.0 230 797.0 2 564.0 109 664.5
A3 11.0 226 413.0 226 254.0 159.0 357 043.9
A4 11.0 287 296.0 258 016.0 29 280.0 158 366.0
B1 15.0 360 245.0 350 340.0 9 905.0 476 431.5
B2 15.0 282 332.0 299 323.0 -16 991.0 49 153.6
B3 15.0 251 169.0 313 290.0 -62 121.0 -42 445.8
B4 15.0 304 800.0 275 908.0 28 892.0 432 589.8
C1 20.0 424 755.0 433 627.5 -8 872.5 460 236.2
C2 22.0 474 312.0 346 586.0 127 726.0 856 176.7
C3 22.0 671 284.8 420 590.0 250 694.8 965 950.3
C4 22.0 753 171.5 555 724.0 197 447.5 1 657 665.6

Average 371 808.1 326 028.5 45 779.6 468 914.4

Figure 7.1: DRLH improvement over AH on ABC instances

Figure 7.1 shows the average improvement of DRLH with AH as the baseline. It shows

how well DRLH performs based on instance size (number of ports). 7.1 indicates that

DRLH favors bigger instances and are able to outperform AH on average.

60

Figure 7.2: Boxplot of AH and DRLH performance on the ABC instances for FNDP-OT

Figure 7.2 shows how well DRLH and Adaptive Heuristic (AH) perform over 10 it-

erations. We can clearly see that DRLH is overall more consistent. We can see this by

the size of the box itself, which represents the Interquartile Range (middle 50% of the

results). We can also see that DRLH has fewer outliers than AH.

7.2 Results of FNDP-OT with OD-patterns

The results presented in this section are strictly bound to Feeder Network Design Problem

with Origin-Destination. This means that speed optimization for the vessels and OD-

patterns are now included in each instance. DRLH and AH was applied to 16 instances

with a number of ports ranging from 10 to 33. The initial costs ranged from 1,787,425.02

to 15,127,695.00. Each algorithm was executed 10 times on each instance to ensure

comprehensive and robust results.

61

7.2.1 ABC instances

Table 7.3 represents the efficacy of the DRLH when applied to the ABC instances with

OD-patterns. Upon initial examination, it is apparent that the DRLH significantly re-

duces costs across all instances. With an average improvement of approximately 90.49%,

this demonstrates that DRLH successfully optimizes the routes and outperforms AH on

all instances.

Table 7.3: Detailed DRLH results on the ABC instances with OD-patterns

Instance #Ports Initial Avg Best Improvement Time

A1 10 1 787 425.02 165 363.82 162 094.97 90.93% 3.84
A2 10 2 283 753.94 228 739.93 215 610.03 90.56% 3.57
A3 11 2 232 435.71 207 252.85 198 126.80 91.13% 3.89
A4 11 2 552 118.45 244 171.33 238 281.07 90.66% 4.02
B1 15 2 914 909.61 306 566.05 263 597.42 90.96% 6.66
B2 15 2 519 664.82 331 637.61 271 610.36 89.22% 6.58
B3 15 2 234 808.65 325 516.42 246 148.24 88.99% 6.56
B4 15 2 785 142.02 333 149.47 265 378.83 90.47% 7.44
C1 20 3 473 140.68 497 320.05 381 250.75 89.02% 15.40
C2 22 3 982 235.83 527 084.34 338 532.52 91.50% 20.33
C3 22 4 674 235.83 531 312.68 411 116.06 91.20% 26.65
C4 22 5 992 235.83 581 222.33 528 084.66 91.19% 27.87

Average 90.49% 11.49

7.2.2 Adapted LINER-LIB instances

Table 7.4 shows similar results as for the ABC instances. We see that DRLH is able to

optimize and significantly reduce costs across all instances with an average improvement

of 78.43.

Table 7.4: Detailed DRLH results on the adapted LINER-LIB instances with OD-patterns

Instance #Ports Initial Avg Best Improvement Time

BALTIC 12 5 930 582.18 919 099.62 900 190.53 84.82% 8.88
MEDIT-1 33 7 430 958.32 1 722 655.03 1 365 022.73 81.63% 59.71
MEDIT-2 32 4 110 291.35 1 210 160.27 1 013 134.49 75.35% 46.22
WAF 20 15 127 695.20 4 454 236.93 4 249 151.49 71.91% 9.60

Average 78.43% 31.10

62

7.2.3 Performance comparison between DRLH and AH

Table 7.5 shows that DRLH outperforms AH on 14 out of 16 instances for the best-found

objective. But on average, DRLH outperforms the AH, often by a substantial amount

on all instances. The average improvements range from 218,693,23 (A1) to as high as

4,334,118.77 (WAF).

Table 7.5: Comparison of results on the ABC and adapted LINER-LIB instances with
OD-patterns

Instance #Ports AH DRLH ∆ Best ∆ Avg

A1 10.0 169 459.4 162 095.0 7 364.4 218 693.2
A2 10.0 207 296.0 215 610.0 -8 314.0 471 330.6
A3 11.0 383 765.5 198 126.8 185 638.7 688 309.3
A4 11.0 279 473.6 238 281.1 41 192.5 617 463.6
B1 15.0 358 309.8 263 597.4 94 712.4 690 225.1
B2 15.0 360 605.0 271 610.4 88 994.7 390 064.6
B3 15.0 232 405.5 246 148.2 -13 742.7 294 824.0
B4 15.0 292 281.2 265 378.8 26 902.3 678 244.9
C1 20.0 400 497.8 381 250.8 19 247.1 824 840.7
C2 22.0 1 214 101.1 338 532.5 875 568.6 1 236 663.0
C3 22.0 855 917.0 411 116.1 444 800.9 1 926 362.2
C4 22.0 2 807 765.5 528 084.7 2 279 680.8 2 813 572.1

BALTIC 12.0 1 070 335.4 900 190.5 170 144.9 931 553.3
MEDIT-1 33.0 3 042 545.2 1 365 022.7 1 677 522.5 2 100 478.9
MEDIT-2 32.0 1 789 563.4 1 013 134.5 776 428.9 835 325.2
WAF 20.0 6 997 154.8 4 249 151.5 2 748 003.3 4 334 118.8

Average 1 278 842.3 690 458.2 588 384.1 1 190 754.3

In Figures 7.4 and 7.5, we can clearly see that DRLH improves drastically compared

to AH on all instance sizes. Figure 7.3 shows how consistently DRLH performs compared

to AH.

63

Figure 7.3: Boxplot of AH and DRLH performance on the ABC and adjusted LINER-LIB
instances for FNDP-OT with OD-patterns

Figure 7.4: DRLH improvement over AH on
the ABC instances with OD-patterns

Figure 7.5: DRLH improvement over AH on
adapted LINER-LIB

Performance on different sizes

Figure 7.6 displays how AH and DRLH performes based on instance size, and DRLH

outperforms AH on all instances. There is also clear that DRLH is a lot more persistent

64

Figure 7.6: Boxplot of AH and DRLH performance on different instance sizes for FNDP-
OT with OD-patterns

on average and therefore a more trustworthy approach compared to AH, by consistently

delivered higher-quality solutions.

7.3 Heuristic Selection Strategies

The disparity in action selection probabilities between DRLH and AH is notable. In

Figure 7.7, the action probabilities of AH are illustrated during the search process, for

instance, A1-OD. This differs from the smoothed values for DRLH, as shown in Figure

7.8.

65

Figure 7.7: Actions selection probabilities for Adaptive Heuristic

Figure 7.8: Action selection probabilities for DRLH with applied smoothing

We can see the unique advantage of DRLH lies in its ability to micro-manage the heuris-

tics, enabling precise and quick modifications from iteration to iteration. This dynamic

is powered by the combined strength of Deep Learning and Reinforcement Learning,

which enables DRLH to make the most of the state information available at each search

stage. Consequently, DRLH can optimize the usage of each operator more effectively and

manage a broader pool of heuristics.

Although both the meta-heuristic and the hyperheuristic display a tendency to pri-

oritize specific heuristics over others, updating weights in each segment by AH fails to

provide the adaptability DRLH offers. This results in AH being less responsive to the

particularities of the solution space it operates within. This demonstrates that DRLH is

better at adapting to the state of the solution, exploring the neighborhood, and thereby

maximizing its overall performance. This distinction is evident in Figure 7.9, where the

variation in ALNS is less pronounced compared to AH. Furthermore, Figure 7.10 provides

additional support, clearly demonstrating that DRLH effectively utilizes the micro-level

heuristics from the beginning, allowing it to navigate the neighborhood more effectively

and ultimately works towards better solutions.

66

Figure 7.9: The objective cost of the incumbent over the search for instance A1
(DRLH: yellow, AH: blue)

Figure 7.10: The best-found objective over the search for instance A1
(DRLH: yellow, AH: blue)

We can also observe that the AH initiates with both a lower initial objective and a lower

best objective compared to the DRLH. This outcome is a result of the tune iterations

conducted by AH. While adjusting the temperature for the acceptance criterion, we keep

a record of the incumbent and the best solution identified during this process.

67

Chapter 8

Conclusion and Future Work

In this thesis, we conducted analytic research on two different methods for solving the

complex Feeder Network Design Problem with Optional Transshipment and FNDP-OT

with OD-patterns. One method is tailored to specific problems and utilizes weight dis-

tribution for the selection of low-level heuristics. The other is a general hyperheuristic

framework that utilizes the power of Deep Reinforcement Learning for the selection of

low-level heuristics to be applied to the solution. In our experiments, we showed that

even though the Adaptive Heuristic approach is tailored to the specific problem, the Deep

Reinforcement Learning Hyperheuristic approach is able to achieve better results for a

substantial amount of the problem instances, with some exceptions. We also demon-

strated that DRLH is able to search the neighborhood more efficiently and utilizes the

low-level heuristics better compared to AH, resulting in a more stable and reliable ap-

proach.

Future research should focus on providing a more extensive set of low-level heuris-

tics specifically designed for the FNDP-OT and FNDP-OT-OD problems. Additionally,

implementing simple removal and insertion operators tailored to these problems could

further enhance the DRLH agent’s ability to exploit the problem structure effectively. It

would be interesting to compare the performance of DRLH and AH on larger instances.

Specifically, tests could be conducted with extended searches of up to 20,000 iterations,

as this is the number of iterations under which the original AH was tested.

It would also be valuable to explore other variants of reinforcement learning algorithms

or advanced variations of Deep Reinforcement Learning to identify potential improve-

ments in the solution quality and computational efficiency. By advancing and refining

these techniques, one can make significant progress in solving the Feeder Network Design

Problem with Optional Transshipment and its OD variant.

68

List of Acronyms and Abbreviations

AC Actor-Critic.

ACO Ant Colony Optimization.

AH Adaptive Heuristic.

ALNS Adaptive Large Neighborhood Search.

CO Combinatorial Optimization.

COP Combinatorial Optimization Problem.

CVRP Capacitated Vehicle Routing Problem.

DL Deep Learning.

DRL Deep Reinforcement Learning.

DRLH Deep Reinforcement Learning Hyperheuristic.

FEU Forty-foot equivalent unit.

FNDP Feeder Network Design Problem.

FNDP-OT Feeder Network Design Problem with Optional Transshipment.

FNDP-OT with OD-patterns Feeder Network Design Problem with Origin-Destination.

GA Genetic Algorithm.

IQR Interquartile Range.

KP Knapsack Problem.

LNS Large Neighborhood Search.

LSNDP Liner Shipping Network Design Problem.

MST Minimum Spanning Tree.

OD Origin-Destination.

PDP Pickup and Delivery problem.

PDPTW Pickup and Delivery Problem with Time Windows.

PG Policy Gradient.

PJSP Parallel Job Scheduling Problem.

PPO Proximal Policy Optimization.

69

RL Reinforcement Learning.

SA Simulated Annealing.

SP Scheduling Problem.

TC rate time charter rate.

TEU Twenty-foot equivalent unit.

TS Tabu Search.

VRP Vehicle Routing Problem.

70

Bibliography

Liner shipping: The backbone of world trade. Online. URL https:

//www.worldshipping.org/statements/liner-shipping-the-backbone-of-

world-trade.

Morten Bergmann, Mohamed Kais Msakni, Ahmad Hemmati, and Kjetil Fagerholt. An

adaptive heuristic for feeder network design with optional transshipment. Trans-

portation Research Part E: Logistics and Transportation Review, 176:103153, 2023.

ISSN 1366-5545. doi: https://doi.org/10.1016/j.tre.2023.103153. URL https://

www.sciencedirect.com/science/article/pii/S1366554523001412.

Berit D. Brouer, J. Fernando Alvarez, Christian E. M. Plum, David Pisinger, and

Mikkel M. Sigurd. A base integer programming model and benchmark suite for liner-

shipping network design. Transportation Science, 48(2):281–312, 2014. ISSN 00411655,

15265447. URL http://www.jstor.org/stable/43666638.

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. Woodward. A

Classification of Hyper-heuristic Approaches, pages 449–468. Springer US, Boston,

MA, 2010. ISBN 978-1-4419-1665-5. doi: 10.1007/978-1-4419-1665-5 15. URL https:

//doi.org/10.1007/978-1-4419-1665-5 15.

Peter Cowling, Graham Kendall, and E Soubeiga. A hyperheuristic approach to schedul-

ing a sales summit. pages 176–190, 01 2001. ISBN 3-540-42421-0.

Y. Crama and M. Schyns. Simulated annealing for complex portfolio selection prob-

lems. European Journal of Operational Research, 150(3):546–571, 2003. ISSN

0377-2217. doi: https://doi.org/10.1016/S0377-2217(02)00784-1. URL https:

//www.sciencedirect.com/science/article/pii/S0377221702007841. Financial

Modelling.

H. Fisher and G. Thompson. Probabilistic learning combinations of local job-shop schedul-

ing rules, pages 225–251. Prentice-Hall, Englewood Cliffs, 1963.

71

https://www.worldshipping.org/statements/liner-shipping-the-backbone-of-world-trade
https://www.worldshipping.org/statements/liner-shipping-the-backbone-of-world-trade
https://www.worldshipping.org/statements/liner-shipping-the-backbone-of-world-trade
https://www.sciencedirect.com/science/article/pii/S1366554523001412
https://www.sciencedirect.com/science/article/pii/S1366554523001412
http://www.jstor.org/stable/43666638
https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-1-4419-1665-5_15
https://www.sciencedirect.com/science/article/pii/S0377221702007841
https://www.sciencedirect.com/science/article/pii/S0377221702007841

Jakob Kallestad, Ramin Hasibi, Ahmad Hemmati, and Kenneth Sörensen. A gen-

eral deep reinforcement learning hyperheuristic framework for solving combinato-

rial optimization problems. European Journal of Operational Research, 309(1):446–

468, 2023. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2023.01.017. URL

https://www.sciencedirect.com/science/article/pii/S037722172300036X.

Qiang Meng, Shuaian Wang, Henrik Andersson, and Kristian Thun. Containership

routing and scheduling in liner shipping: Overview and future research directions.

Transportation Science, 48(2):265–280, 2014. ISSN 00411655, 15265447. URL http:

//www.jstor.org/stable/43666637.

Mohamed Kais Msakni, Kjetil Fagerholt, Frank Meisel, and Elizabeth Lindstad. Analyz-

ing different designs of liner shipping feeder networks: A case study. Transportation

Research Part E: Logistics and Transportation Review, 2020. doi: https://doi.org/

10.1016/j.tre.2020.101839. URL https://doi.org/10.1016%2Fj.tre.2020.101839.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40:455–472,

11 2006. doi: 10.1287/trsc.1050.0135.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume B. Springer,

2003.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-

imal policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http:

//arxiv.org/abs/1707.06347.

Paul Shaw. Using constraint programming and local search methods to solve vehicle

routing problems. In Lecture notes in computer science, volume 1520 of Lecture Notes in

Computer Science, pages 417–431, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

ISBN 9783540652243.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining

and characterizing reward hacking, 2022.

K. Sörensen and F. Glover. Metaheuristics, pages 960–970. Springer, 2013. ISBN 978-1-

4419-1137-7. doi: 10.1007/978-1-4419-1153-7 1167.

Richard S. Sutton. Reinforcement learning : an introduction. Adaptive computation and

machine learning series. The MIT Press, Cambridge, Massachusetts, second edition.

edition, 2018. ISBN 0-262-35270-2.

72

https://www.sciencedirect.com/science/article/pii/S037722172300036X
http://www.jstor.org/stable/43666637
http://www.jstor.org/stable/43666637
https://doi.org/10.1016%2Fj.tre.2020.101839
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Appendix A

Experiments on Different Reward Functions

A.1 R5310
t

R5310
t =



5 if f(s′) < f(sbest)

3 if f(s′) < f(s)

1 if accept(s′, s)

0 otherwise

(A.1)

The R5310
t reward function focuses on exploration while encouraging exploitation with

a higher reward. One issue regarding this is reward hacking. For particular instances,

the R5310
t is vulnerable to reward hacking, i.e., the agent learns that by continuously

improving the solution by small amounts, it receives more cumulative reward over the

search than by intensifying heavily. This is why we had to utilize early stoppage on the

smaller instances to retrieve the model before this.

Figure A.1: Reward function R5310
t

This reward function heavily favors some of the operators, but as we can see, it utilizes

the entire pool. Figure A.1 illustrates the selection count of each heuristic through the

search.

73

A.2 Improvement-based reward functions

RPM
t =

{
1 if f(s′) < f(sbest)

−1 otherwise
(A.2) RAX

t =

{
∆ if f(s′) < f(sbest)

0 otherwise
(A.3)

RBX
t =


∆

100000
if f(s′) < f(sbest)

0 otherwise

(A.4)

RCX
t =

∆ if f(s′) < f(sbest)
∆

2
otherwise

(A.5)

These functions are introduced since it was a part of the selection process when solving

the FNDP-OT with OD-patterns. The reward functions were trained on all instance sizes

with 5 000 random instances and tested on the test instances, ABC, and adjusted LINER-

LIB instances. By doing so, we were able to find useful patterns in the data.

Figure A.2: The RPM
t action probabilities over 1k iterations on 5000 random instances

Figure A.3: The RAX
t action probabilities over 1k iterations on 5000 random instances

74

Figure A.4: The RBX
t action probabilities over 1k iterations on 5000 random instances

Figure A.5: The RCX
t action probabilities over 1k iterations on 5000 random instances

The line graphs depicted in Figures A.2, A.3, A.4, and A.5 provide a comprehen-

sive view of the heuristic selection probabilities during the agent’s training phase on the

FNDP-OT with OD-patterns. It is evident from these visual representations that the

inclination towards specific heuristics varies significantly depending on the reward func-

tions; some display a pronounced preference for certain heuristics, while others distribute

their choices more evenly.

Performance

An intriguing correlation surfaces when we compare Figure A.6, which shows the best

solution objective discovered across all 5,000 instances, with Figure A.7, representing the

number of distinct solutions encountered during the search. This parallelism underscores

the efficiency of the agent’s ability to navigate the neighborhood in the solution space,

highlighting its ability to balance exploration and exploitation.

75

The reward functions has the corresponding color:

R5310
t : Black, RAX

t : Blue, RBX
t Green, RCX

t : Pink, RPM
t : Purple.

Figure A.6: The best objective found for all reward functions on the 5000 instances

Figure A.7: The number of solutions explored for all reward functions on the 5000 in-
stances

Figures A.6 and A.7 illustrate that RBX
t fails to converge to an effective policy. This

outcome is likely attributed to its tendency to significantly diminish the reward received

upon making substantial improvements. Consequently, RBX
t is unable to learn since

it primarily relies on the enable demand heuristic (pink A.4). This approach nearly

guarantees a constant reward, as it is the heuristic most likely to ensure an improved

feasible solution compared to the incumbent. As a result, RBX
t demonstrates a minimal

exploration of the state space in comparison to the other reward functions.

The differing impact of the reward functions on exploration is evident. These dif-

ferences further reflect on the best objective found during the search. Agents trained

with the reward functions R5310
t , RPM

t , and RCX
t show improved exploration. Nonethe-

less, RCX
t reveals a more irregular pattern, suggesting that the agent’s policy is adjusted

based on environmental feedback. This indicates a possible convergence towards the local

minimums.

76

	Introduction
	Context and Motivation
	Thesis Outline

	Background and Related work
	Combinatorial Optimization Problems
	Liner Shipping Network Designs Problem

	Solution Methods
	Exact Approach
	Heuristic Approach
	Metaheuristics

	Hyperheuristic
	Reinforcement Learning
	Agent-Environment Interface
	RL methods

	Deep Learning
	Proximal Policy Optimization

	Related Work

	Problem Sets
	Feeder Network Design Problem with Optional Transshipment
	Daughter route structures
	Mathematical Model

	FNDP-OT with OD patterns
	Speed Optimization
	Mathematical Model

	Solution Representation
	Vessel Data
	Instances

	Adaptive Heuristic
	An Overview of Adaptive Heuristic
	Reward system
	Acceptance criterion

	Escape algorithm
	Selecting heuristics and weight adjustment
	Heuristics
	Random swap
	Reinsert in mother
	Reinsert in daughter
	Mother route to daughter route
	Daughter route to mother route
	Butterfly route to simple route
	Simple route to butterfly route
	Optimize transshipment vector
	Enable demand
	Reject demand

	DRLH
	Deep Reinforcement Learning Hyperheuristic
	Heuristics
	Acceptance Criteria and Stopping Conditions
	Deep Reinforcement Learning Agent
	State Representation
	Action
	Reward function
	Training loop

	Solution Representation and Initial Solution

	Experimental Setup
	Experimental Environment
	Training of DRLH

	Baseline Models
	Adaptive Heuristic (AH)

	Hyperparameter and Parameter Selection
	Hyperparameters for DRLH
	Parameters for AH

	Dataset Generation

	Results
	Results of FNDP-OT
	ABC instances
	Performance comparison between DRLH and AH

	Results of FNDP-OT with OD-patterns
	ABC instances
	Adapted LINER-LIB instances
	Performance comparison between DRLH and AH

	Heuristic Selection Strategies

	Conclusion and Future Work
	List of Acronyms and Abbreviations
	Bibliography
	Experiments on Different Reward Functions
	R5310t
	Improvement-based reward functions

