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1. Abstract 
 

Mass spectrometry-based proteomics plays a critical role in identifying and quantifying 

proteins. Proteomics search engines, integral to this process, require meticulous parameter 

selection to achieve accurate results. However, the large number of available search parameters 

makes it challenging to manually choose the optimal combinations. This thesis focuses on 

optimizing and automating the parameter selection process. The main idea is to select and 

search a subset of the data that preserves the properties of the complete dataset, enabling 

efficient parameter exploration while minimizing both computational resources and time 

requirements. The approach has been validated using various mass spectrometry datasets from 

PRIDE analyzed via the SearchGUI and PeptideShaker framework. Easy support for testing 

multiple parameter combinations ultimately leads to overall better parameter selection, thus 

enhancing protein identification accuracy and workflow efficiency, which in turn contributes 

to getting the most out of valuable biological samples.  
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2. Aims 
 

This project aims to optimize the parameter selection for proteomics search engines, which is 

crucial for identifying proteins in mass spectrometry-based proteomics. Most search engines 

have numerous parameters that can be essential for the outcome and to some degree have to be 

tailored to the data being searched. The work builds on the SearchGUI [1] framework for 

executing multiple search engines, and a corresponding tool called PeptideShaker [2] to 

compare the results and explore how they are affected by the search parameters. The main goal 

is to optimize the parameters without having to search all of the mass spectrometry dataset, but 

instead selecting and searching a subset of the data that mimics the properties and structure of 

the complete dataset. A potential benefit would be a reduction of time and computational 

resources, which in turn would make it possible to test for all combinations of parameters at 

once. Ultimately, the goal would be to identify the best combinations of parameters for the 

given dataset.  
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3. Background  
 
For this background section, I will introduce and talk about topics that are important for both 

proteomics and for this thesis. Firstly, I will talk about proteomics in general. Thereafter, protein 

cleavage and peptide fragmentation. Then I will introduce the high-throughput technology mass 

spectrometry and different spectrum file types, before moving on to databases, and proteomics 

search engines and their corresponding parameters. Next up is peptide identification and the 

SearchGUI framework. Lastly, I will talk about existing software on the topic.  

 

3.1 Proteomics 

Proteomics is a rapidly growing field of life science that aims to identify, quantify, and study 

the functions of proteins expressed by either a cell, tissue, or organism. It involves the large-

scale analysis of proteins, which carries out vital functions such as catalysis, regulation, and 

structural support [3]. A proteome is defined as a set of proteins produced in an organism, 

system, or biological context. One may refer to, for instance, the proteome of a species (e.g., 

homo sapiens) or an organ (e.g., the liver). Proteomics research relies heavily on high-

throughput technologies, which enables the identification and quantification of thousands of 

proteins simultaneously. These techniques provide valuable information about protein 

expression, post-translational modifications, protein-protein interaction, and protein 

localization, contributing to our understanding of biological processes and disease mechanisms 

[3]. An overview of the proteomics field is shown in Figure 1.  
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Figure 1: Proteomics overview. Experiments generally collect data on three properties of proteins in a 

sample: location, abundance/turnover and post-translational modifications. The aim is to infer protein 

activity and interactions.  

 

 

3.2 Protein cleavage into peptides 

Peptides are short chains of amino acids that play an important in proteomics. In many ways, a 

peptide can be thought of as a small protein fragment. These fragments are most often analyzed 

in so-called bottom-up proteomics. Peptides are typically generated in samples by 

enzymatically digesting proteins into smaller parts. This process is called enzymatic cleavage, 

and it is done by proteolytic enzymes, also known as proteases. The process is shown in Figure 

2 below. 
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Figure 2: A simplified depiction of proteolytic enzymes cleaving a protein into peptides. 

 

 

Proteases can be classified based on their mechanism of action, specificity, and optimal 

conditions for activity. For example, the most frequently used protease, trypsin, is a protease 

that cleaves peptide bonds on the carboxyl side of basic amino acids, arginine and lysine. 

Chymotrypsin, on the other hand, cleaves on the carboxyl side of hydrophobic amino acids, 

phenylalanine, tryptophan, tyrosine and leucine. Other commonly used proteases include Lys-

C, Asp-N, and Glu-C [4].   

 

Enzymatic cleavage is a critical step in proteomics, as it creates a mixture of peptides that can 

be analyzed to identify proteins and their post-translational modifications.  

 

3.3 Mass spectrometry  

Mass spectrometry has been widely used to analyze biological samples and has evolved into an 

indispensable tool for proteomics research [5]. It has become the main technique for protein 

identification and characterization [6]. The method determines the mass and chemical 

composition of molecules by ionizing them and measuring their mass-to-charge (m/z) ratio. 

Since the molecules are ionized in order for them to be detected, they will always have a charge, 

commonly known as the precursor charge.  
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In mass spectrometry, a sample is first ionized, usually by an electron beam or a laser, and then 

separated based on their mass-to-charge ratio using an electric or magnetic field. The resulting 

ions are detected and measured, allowing for the identification and quantification of the 

sample's constituents. Figure 3 shows a mass spectrometer and the most important elements of 

it. Measuring the masses of the ions in the MS scans are done by an analyzer, and the accuracy 

of this analyzer is often referred to as peptide tolerance, peptide mass error, or precursor 

tolerance [7].  The resulting output is provided as a mass spectrum, and it consists of the m/z 

values plotted against the intensity values. Depending on the software and instrument used, the 

output format can vary. Since the mass spectrometer distinguishes the molecules based on their 

mass, isotopes play a key role because they have different masses. Each isotope will show up 

in the mass spectrum as its own line.  

 

 

 
Figure 3: Simple figure showing how a mass spectrometer works. (From 

https://www.researchgate.net/figure/Schematic-diagram-of-a-mass-spectrometer_fig14_312664731) 

 

 

It is also worth mentioning that there are different forms of mass spectrometry. There is mass 

spectrometry, as described above, referred to as simply MS or MS1, and tandem mass 

spectrometry, commonly referred to as MS/MS or MS2. MS/MS is a two-step technique used 
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to analyze a sample using a single mass spectrometer with several analyzers arranged one after 

another. The analyzers measure the mass of the fragments, and the mass accuracy of the 

analyzer is referred to as fragment tolerance, fragment mass error, or product ion tolerance [7]. 

Tandem mass spectrometry increases the ability to analyze chemical samples and also increases 

specificity [8]. The resulting output from a MS/MS differs somewhat from the MS output since 

in the MS mass spectrum each peak represents a peptide. However, in a MS/MS spectrum, each 

peak represents a fragment of a given peptide, and all of the peaks in the spectrum are from the 

same peptide, only different fragments of it. Figure 4 below shows a typical MS/MS mass 

spectrum.  

 

 

 

 
Figure 4: Example of an MS/MS spectrum. With m/z ratios along the x-axis and intensity along the y-

axis. Each peak represents a component of unique m/z in the sample, and the height of the peaks show 

the relative abundance of the given component in the sample. (Figure from PeptideShaker [2]) 

 

 

3.4 Peptide fragmentation 

An important step in mass spectrometry-based proteomics is peptide fragmentation. It is a 

process in mass spectrometry-based proteomics where peptides are broken down into smaller 

fragments or ions. This fragmentation is essential for the identification of peptides in complex 

biological samples [9]. Fragmentation occurs through different mechanisms such as collision-
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induced dissociation (CID), electron-transfer dissociation (ETD), and higher-energy collisional 

dissociation (HCD). During CID, the peptides are fragmented by colliding with a gas molecule 

in a collision cell. ETD involves transferring electrons to the peptides to induce fragmentation 

[10]. In HCD, the process is similar to that of the CID, however the collision with the gas 

molecule in the collision cell is high-energy. The resulting fragments are then detected by the 

mass spectrometer, and their masses are used to determine the amino acid sequence of the 

peptide, which is in turn used to identify the protein from which the peptide originated [11]. 

This process is shown in Figure 5, which depicts a typical proteomics workflow. 

 

 

 
Figure 5: Proteomics workflow. (From: https://lazear.github.io/sage) 

 

 

Depending on the fragmentation mechanism, one gets different fragment ion types. For CID 

and HCD fragmentation, the most commonly observed ions are b-ions and y-ions. While ETD 

fragmentation usually generate c- and z-type ions [12].  
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3.5 Protein databases 

Protein databases in proteomics are essential resources that store information about the protein 

sequences of various organisms. These databases contain protein sequences obtained from 

various sources, such as experimental studies, computational predictions, and from literature. 

They are used as a reference for peptide identification in mass spectrometry-based proteomics 

studies. A variety of protein sequence databases exist, ranging from simple sequence 

repositories, which store data with little or no manual intervention in the creation of the records, 

to expertly curated universal databases that cover all species [13]. One of the most common is 

The Universal Protein Resource [14], or UniProt for short, a comprehensive resource for protein 

sequence and annotation data. Another popular database is the PRoteomics IDEntifications 

(PRIDE) Archive [15]. It is a public data repository for mass spectrometry proteomics data, 

including protein and peptide identifications and the corresponding expression values, post-

translational modifications and supporting mass spectra.  

 

3.6 Proteomics search engines 

The data stored in spectrum files can be used to identify peptides by importing them and running 

a search in a proteomics search engine. Proteomics search engines are software tools that are 

widely used in mass spectrometry-based proteomics to identify peptides from complex mixtures 

[9]. These tools use databases of protein sequences to match with experimental spectra 

generated by mass spectrometry. It is also possible to do this without a database and deduce the 

sequence of peptides directly from the experimental MS/MS spectra. This method is called “de 

novo” sequencing. However, we will be sticking to database matching in this thesis. 

 

Peptide identification using search engines involves several steps. One of the steps is database 

searching, and it involves the matching of the experimental spectra against protein sequences 

in a database, using algorithms that consider a range of factors such as mass accuracy, peptide 

length, and the presence of post-translational modifications. During the database searching step, 

the proteomics search engines iterate through a protein database.  

 

Post-processing involves filtering and scoring the search results to identify the most confident 

peptide identifications. This step typically involves the use of statistical models to estimate the 

probability of correct identification. The scoring itself is done by comparing experimental 

spectra (the actual mass-to-charge ratio values and intensities observed in a mass spectrometry 

experiment) to theoretical spectra derived from protein databases. The search engine evaluates 
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how well a theoretical spectrum matches an experimental spectrum based on various factors, 

such as the number and intensity of matching peaks, the mass error, the charge state of the 

peptide, and the likelihood of the peptide sequence given the enzyme used for protein digestion 

[16]. 

 

Once the search engine has evaluated each potential peptide match, it assigns a score to each 

peptide-spectrum match (PSM). This score represents the likelihood that the peptide sequence 

is correct and is reported either as a standalone score or alongside a statistical measure, such as 

p-value or e-value [16]. Different search engines use different scoring algorithms, but they all 

aim to balance the need for sensitivity (i.e., finding true positive PSMs) and specificity (i.e., 

avoiding false positive PSMs) in peptide identification. 

 

There are numerous proteomics search engines available, for example, MS-GF+ [17], Mascot 

[18], SEQUEST [19], Comet [20] and X! Tandem [21], to name a few. Some of these are more 

popular and frequently used than others, as shown in Figure 6 and Figure 7 below. The figures 

are an updated version of the supplementary figures from the original paper on the anatomy and 

evolution of proteomics search engines [9]. From the figures it becomes clear that older search 

engines see less and less usage, and that the newer ones, like MaxQuant [22], have gained more 

popularity.  

 

In this thesis, the main focus will be on the search engines featured in SearchGUI [1], an open-

source software tool that provides a graphical user interface (GUI) for configuring and running 

multiple peptide search engines in a single pipeline. SearchGUI also includes various output 

formats for easy integration with downstream data analysis tools. This, combined with the 

ability to run multiple peptide search engines in a single pipeline, allows the user to compare 

and combine the results of different search algorithms.  
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Figure 6: Number of citations per year of the ten most cited proteomics search engines. (Data 

collected from Clarivate Web of Science. © Copyright Clarivate 2023. All rights reserved.) 

 

 
Figure 7: Number of citations per year for the proteomics search engines in the “Other” category in 

Figure 6. (Data collected from Clarivate Web of Science. © Copyright Clarivate 2023. All rights 

reserved.) 
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3.7 Post-translational modifications 

A protein is at any stage of its life cycle susceptible to post-translational modifications (PTMs). 

PTMs refer to the covalent modification of proteins after they have been synthesized from their 

corresponding genes. PTMs are essential for regulating protein activity, stability, localization, 

and function, and are involved in various cellular processes. Proteins can undergo a wide range 

of PTMs, and each PTM can alter the structure and function of the protein in a unique way, 

allowing for precise control of protein activity and function [23]. Search engines generally use 

protein sequence databases to match experimental spectra to theoretical spectra. The protein 

sequences in the databases can be annotated with PTMs, which can result in a large number of 

potential matches for a given experimental spectrum. Searching all possible combinations of 

PTMs causes both the run time and the search space to grow exponentially [24]. However, there 

are methods for addressing this, namely Open Modification Search (OMS) which considers all 

modifications and can handle the complexity. A popular software for performing OMS is for 

example SpecOMS [25]. 

 

To improve the sensitivity and accuracy of peptide identification, search engines typically allow 

for the inclusion of specific PTMs in the search parameters. This can greatly reduce the search 

space and increase the specificity of peptide identification. However, PTMs are a research topic 

on their own, and outside the scope of this master project. 

 

3.8 SearchGUI and PeptideShaker 

The Proteomics Unit at UiB has implemented a software tool for the comprehensive 

interpretation, processing, and inspection of the output from the peptide search engines, called 

PeptideShaker [2]. PeptideShaker provides a user-friendly interface for peptide and protein 

identification and validation, quantification, and visualization of the results from the search 

engines. It assigns a confidence level to each identified peptide and protein using a combination 

of scoring algorithms and statistical tests.  

 

PeptideShaker is also capable of automatically validating and filtering the peptide identification 

results based on various criteria, such as precursor and fragment mass tolerance, and post-

translational modifications, which are parameters the user specifies in SearchGUI before 

running a search. This allows the user to focus on the most reliable and relevant results to avoid 

false positives. PeptideShaker also enables users to export the data in several different file 

formats for further analysis and integration with other tools.  
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3.9 Search engine parameters – general and advanced 

Peptide identification in mass spectrometry-based proteomics is a crucial task that enables the 

characterization of proteins in complex biological samples. The database identification process 

relies on search engines that compare experimental spectra with theoretical spectra derived from 

protein databases. This task is implemented in various search engines. All of these have lots of 

parameters that are vital for the outcome and that, to some extent, have to be tailored to the data 

searched. For example, one has to set which enzyme/protease was used to cleave the proteins 

into peptides, the accuracies for the used mass spectrometer, and the number of charges to 

consider. In addition to these common parameters, there are also numerous custom advanced 

parameters for each search engine that can potentially have a major impact on the results.  

 

Furthermore, there are also different types of parameters. One parameter may take integer 

values as input, while for another parameter one has to choose a value from a list. There are 

also parameters which are just Boolean input.  

 

The different common parameters, and an example selection of custom advanced parameters, 

and their corresponding parameter types are listed in Table 1 and in Table 2.  
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Parameters Type Description 

Fixed modifications List Fixed modifications to consider. 

Variable modifications List Variable modifications to consider. 

Digestion List 

Type of digestion. Enzyme, 

unspecific or whole protein 

digestion. 

Enzyme List 
Proteolytic enzyme used to cleave 

the protein into peptides. 

Specificity List 
Specificity of the enzymatic 

cleavage. 

Max missed cleavages Integer Maximum missed cleavages allowed. 

Fragment ion types List 

Classification of the N-terminal 

charged fragment ions and the C-

terminal charged fragment ions. 

Precursor tolerance Number Precursor mass tolerance. 

Fragment tolerance Number Fragment mass tolerance. 

Precursor charge Range 
A range of peptide charges to 

consider. 

Isotopes Integer Number of isotopes to consider. 

 

Table 1: Overview of the most common search parameters that can be set for all search engines in 

SearchGUI. 
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Parameters Parameter type Description 

Search decoy database Boolean 

Indicates whether to search 

normal (forward only) protein 

sequences, or a decoy file where 

the reversed protein sequences 

are appended to the normal 

protein sequences. 

MS/MS Detector List 
Identifier of the instrument used 

to generate MS/MS spectra. 

Fragmentation method List 

Fragmentation method identifier 

(used to determine the scoring 

model). 

Protocol List 

Protocol identifier. Protocols are 

used to enable scoring 

parameters for enriched and/or 

labeled samples. 

Enzymatic terminals List 

Number of tolerable termini (aka 

tryptic termini). This parameter 

is used to apply the enzyme 

cleavage specificity rule when 

searching the database. 

Peptide length Range 
Min and max length of peptides 

to be considered. 

Max variable PTMs per 

peptide 
Integer 

Maximum number of dynamic 

(variable) modifications per 

peptide. 

Number of spectrum matches Integer 
Number of peptide matches per 

spectrum to report. 

Additional output Boolean 
Changes the verbosity of the 

output. 

Number of tasks Integer 
Manually set the number of tasks 

to create for the search. 

 

Table 2: Overview of the advanced parameters that can be set in the MS-GF+ search engine. 
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3.10 Software for search parameter selection 

Search parameter selection in proteomics plays a crucial role in the accurate identification and 

characterization of peptides from mass spectrometry data. These parameters include enzyme 

specificity, mass tolerances, variable modifications, and database selection. By fine-tuning 

these parameters, researchers can enhance the confidence and depth of their peptide 

identifications, leading to valuable insights into biological systems.  

 

To our knowledge there are only two software tools that provide parameter optimization: 

Preview [26] and Param-Medic [27]. Preview is a program that is part of the ByonicTM [28] 

software package. It analyzes a set of mass spectra for mass errors, digestion specificity, and 

known and unknown modifications, thereby facilitating parameter selection. After making a 

simplifying assumption that the 100 most detectable proteins represent the entire sample, 

Preview is able to run a full database search for digestion-specific peptides in a fraction of the 

time of a standard search program, only performing a single pass over the full protein database. 

Preview then performs all subsequent searches on representative proteins and likely peptides 

from said representative proteins. The program is very much focused on post-translational 

modifications. 

 

The simplifying assumption made by Preview causes some sensitivity loss. Preview assumes, 

as mentioned, that the most detectable proteins represent the entire dataset for the full menu of 

search parameters. This is true for smaller samples with less than 100 proteins. However, it is 

less true for more complex samples [26].  

 

Preview also supports recalibration of m/z measurements, i.e., the process of correcting 

systematic errors that may have occurred during the mass spectrometry measurement. There 

are several causes for this, including instrument drift, mass spectrometer calibration issues, or 

signal processing artifacts. The process involves using a set of reference masses (e.g., peptides) 

to adjust the mass accuracy of the instrument. Recalibration of m/z measurements is, however, 

outside the scope of this master thesis and will not be detailed further.  

 

The second option available is Param-Medic. It is an open source and cross-platform program, 

available as a standalone tool and integrated into the Crux proteomics toolkit [29], where it 

provides parameter selection for the Comet [20] and Tide [30] search engines. Param-Medic 

focuses on two of the most important parameters; precursor mass tolerance and fragment mass 
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tolerance, also known as bin size. Precursor mass tolerance defines the peptide candidates 

considered for each spectrum, and the fragment mass tolerance determines how close the 

observed and theoretical fragments must be in order to be considered a match.  

 

For either of these two parameters, too wide a setting yields randomly high-scoring false peptide 

spectrum matches, whereas a too narrow setting erroneously excludes true peptide spectrum 

matches, in either case lowering the yield of peptides detected at a given false discovery rate 

[27].  

 

To summarize, Param-Medic examines the spectra in a file to best estimate precursor and 

fragment mass tolerance, and Preview heavily targets post-translational modifications. In other 

words, neither of the two focus on the long list of additional adjustable parameters.  
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 4. Methods 
 

4.1 Spectrum file type selection 

In nearly all high-throughput proteomics workflows, extensive analysis with custom software 

is required to translate the mass spectra into peptide identifications and perform abundance 

measurements. As a result, a wide variety of data formats have emerged. Two common data 

formats, mzData and mzXML, were developed around the same time, and stores more or less 

the same information. They both store data on what MS instrument was used, what mass 

analyzer was used, and what the detection method is, to name some. Therefore, the developers 

behind the two formats came together, and the mzML file format was created, including the 

best features from both mzData and mzXML [31].  

 

However, all of these three formats have quite complex overheads containing a lot of 

information, as mentioned above. This makes the file size and access time significantly higher 

than for pure text-based formats [31]. A typical file contains upwards to 1 million spectra, 

making the file size about 1-3 GB. There are however projects working towards bettering this, 

for example the mz5 project [32] and the introduction of mzMLb [33].  

 

The simpler Mascot Generic Files (MGF) format came before the already mentioned file types, 

and it is similar to those formats in that it encodes for multiple MS/MS spectra in a single file 

via m/z intensity pairings. The data stored in MGF files include the spectra of peptide ions and 

their associated data, such as the precursor mass, charge state, and retention time. Figure 8 

shows how an MGF file is structured. The MGF format is likely the most common text format 

in mass spectrometry-based proteomics, probably because of its simplicity [31], and is the 

chosen format used throughout this thesis.  
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Figure 8: Example of (part of) an MGF file. All the information between “BEGIN IONS” and “END 

IONS” represents one spectrum. 

 

 

4.2 Spectrum quality 

When running a search with a spectrum file, it is commonly known that the start and the end of 

the file contains poor-quality spectra. This can be due to several factors, including instrument 

instability, ion suppression, and contamination. The ion source may not be fully stabilized, or 

the sample may not be completely ionized at the beginning of the analysis, leading to poor 

quality spectra. Similarly, at the end of the analysis, the ion source may be depleted, resulting 

in a decrease in ion signal and poor-quality spectra.  

 

Another factor that may contribute to poor spectra at the start and end of the data is 

contamination. Contaminants, such as residual matrix or sample carryover, can interfere with 

ionization and affect the quality of spectra. There may also be a low abundance of peptides at 

the start and end of the file, as seen in Figure 9, but because of mass spectrometers high 

sensitivity, they may pick up and return a hit on what is generally known as “bad spectra.” 

Although the quality of spectra at the start and end of the file may be poor, it is still important 

to include this data in the analysis to ensure that all detectable peptides are identified.  
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Figure 9: Example chromatogram. Indicating that both the start and the end of the file contains low 

abundance spectra, while the middle part contains relatively high abundance spectra. (Image 

generated by Xcalibur™, Thermo Fisher Scientific™) 

 

 

4.3 Selected dataset 

When conducting testing later on, we used an example dataset file generated by a Q Exactive 

(Thermo Fisher Scientific™) mass spectrometer. The Q Exactive file contains 11,332 spectra. 

The properties of the dataset include the number of PSMs and the distribution of these. In terms 

of differentiating and measuring the results from testing, we have chosen the number of PSMs 

compared to the total amount of spectra, also called identification rate, as our test metric.  

 

4.4 Categorizing the PSMs 

In SearchGUI, in the search engine(s) used, every potential peptide match is given a score after 

evaluation. This score represents the likelihood that the peptide sequence is correct and is 

reported either as a standalone score or paired with a statistical metric. In addition to this, each 
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potential PSM is placed in a category by PeptideShaker. Which category the potential PSM is 

put in depends on their score from the search engine. PeptideShaker operates with five 

categories in total. These are No Value, No Validation, Not Validated, Doubtful and Confident. 

When we export the information from PeptideShaker, these categories become numbered 

accordingly: -2, -1, 0, 1, and 2.  

 

If we take the full QExactive dataset mentioned earlier in the Methods chapter as an example, 

Figure 10 shows how the potential PSMs are categorized after a search with MS-GF+ and 

default parameters. 

 

 

 
Figure 10: The number of PSMs from the original dataset are distributed across the five categories in 

PeptideShaker. 

 

 

As we can see, almost no potential PSMs are put in the No Validation category, and very few 
are put in the Doubtful category. For the rest of the testing procedures, our decision was to 
merge categories. We decided to merge category -2 and -1, since they practically mean the 
same, and category 1 and 2, because a significant part of the potential PSMs in category 1 have 
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a high enough score to be considered validated by PeptideShaker overall. Subsequently it also 
becomes easier to handle the categories when there are only three instead of five.  
Table 3 shows the distribution across the new categories.   

 

 

CATEGORY FREQUENCY 
NO VALIDATION 4,334 
NOT VALIDATED 2,855 

CONFIDENT 4,143 

TOTAL: 11,332 
 

Table 3: The number of PSMs from the original dataset distributed across the three new categories we 

will be working with. 

 

 

4.5 Generation of subsets 

Subset generation is done in three different ways later in this thesis. For the first approach, 

subsets were generated using SearchGUI’s built-in function of splitting datasets into smaller 

parts. This built-in function splits the file chronologically and does so by iterating over the file 

and putting a pre-selected number of spectra in each file.  

 

In the two other approaches, the generation of subsets were done by manually coding the subset 

generation itself in Python. This was done by utilizing Pyteomics [34, 35], a collection of handy 

tools and software for handling various proteomics data. Especially the collection’s mgfRead 

and mgfWrite functions came in handy.  

 

For the randomized approach, the following was done. The process includes importing the 

original dataset file, indexing each spectrum, and then creating a random list of indexes, where 

the random indexes indicate which spectra to add to the subset file. This creates a file of spectra 

with random indexes, and the desired number of spectra in the file can easily be decided by 

setting the length of the index list to your desired number of spectra to include in the file.  
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For the n-th approach, the procedure of creating the subsets was again done in Python, with the 

help of Pyteomics. The MGF file is first imported and indexed accordingly by the mgfRead 

function from Pyteomics. From there, the length of the entire file is counted, followed by a 

process where every n-th spectra gets written to the new subset file. The size of the new subset 

file depends on the n-value selected.  

 

4.6 Code for subset generation 

The Python scripts and code used to generate subsets, both by random indexing and by 

selecting a specific n-value, are made available at GitHub (https://github.com/barsnes-

group/automatic-subset-selection).   

 

 



 27 

5. Results 
 

In this project, the approach is slightly different from the existing providers of parameter 

optimization. We will start by extract a subset of spectra from the original spectrum file, greatly 

reducing the runtime and computational resources necessary for a search, and then check 

possible combinations of parameters, hopefully returning a selection of parameters which can 

then be used to search the entire spectrum file to achieve the best possible result for the given 

sample. This can help to improve the accuracy and reliability of the protein identification 

results.  

 

To our knowledge there is no open source and freely available implementation that allows a 

user to carry out such an optimization of their own proteomics searches, especially not for up 

to ten search engines at the same time, and across all of the parameters considered here.  

 

 
5.1 Parameter selection 

Throughout this thesis, SearchGUI and PeptideShaker were the most frequently used tools. A 

screenshot of SearchGUI is provided in Figure 11. At the top of the user interface, the user can 

adjust the search settings, import spectrum and database files, and decide where the output 

should be placed. Under that one has the option to convert raw files, and beneath that again is 

the list of proteomics search engines available in the tool. Depending on the operating system 

of the computer in use, some of the search engines may not be supported, as shown by the 

operating system logos highlighting which OS the search engine supports.  
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Figure 11: Screenshot of SearchGUI. The greyed-out proteomics search engines are search engines 

that cannot be used on the current operating system. 

 

 

The next step is choosing the common parameters. For the post-translational modifications, it 

was decided to go for the most common ones: carbamidomethylation of cysteine (C) as a fixed 

modification, and oxidation of methionine (M) as a variable modification. 

Carbamidomethylation of C is often considered a fixed modifications because it is introduced 

to prevent the cysteine residues from (re-)forming disulphide bonds with one another, while the 

oxidation of M is commonly considered a variable modification because it can occur 

spontaneously during sample preparation, e.g., due to the methionine residues frequently 

reacting with the oxygen in the ionization source environment.  
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The next parameters are digestion, enzyme, and specificity. These parameters should match 

what was done in the sample preparation stage of the experiment. Max missed cleavages is set 

to 2. Increasing this parameter makes the search space increase as well, and since proteases 

sometimes do not cleave the proteins perfectly, it is common to set this parameter to either 1 or 

2.  

 

Precursor and fragment tolerance are two highly customizable parameters. We have set them to 

10 parts per million (ppm) precursor tolerance and 0.02 Dalton (Da) fragment tolerance. 

Precursor tolerance determines the search space, which should be stringent, but broad enough 

to have several entries per search space (e.g., for e-value calculation). 5-10 ppm is commonly 

used for data acquired on well-calibrated MS instruments. Fragment tolerance is the distance 

we allow between the theoretical and the experimental fragment masses. Fragment tolerance 

should also be stringent but provide enough flexibility for statistical assessment.  

 

The precursor charge is set to 2 to 4. If one has knowledge of what charge states are included 

in your data, it is possible to save time by defining a range of just those. The fragment ion types, 

and isotope range are kept at their default values. Figure 12 illustrates the resulting default 

parameter setup.  
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Figure 12: Overview of the common default parameters used in this project. 

 

 

5.2 Generating subsets 

In the background section it was mentioned that proteomics datasets are rapidly growing in size. 

Optimizing parameters on such large datasets takes a substantial amount of time and 

computational resources. To address these limitations, the concept of generating a subset from 

the original file is investigated, aiming to mitigate these constraints while preserving the 

essential properties of the initial dataset. 

    

Three approaches were considered for extracting a subset of the original spectrum file: i) split 

the original file chronologically into smaller files and select one of these, ii) randomly pick x 

spectra from the original file, and ii) pick every n-th spectra from the original file, creating a 

file of desired size depending on the n value. The three approaches are illustrated in Figure 13.  
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Figure 13: The three approaches used when generating a subset dataset file. 

 

Due to the structure of MGF files, splitting the file into multiple smaller files is a straightforward 

process. The spectra are organized one at a time, making it easy to extract one or multiple 

spectra without affecting the rest of the file or the other spectra.  

 

SearchGUI’s built-in feature for splitting large MGF files in a chronological order was utilized 

for the first approach. The decision was to divide the dataset containing 11,332 spectra into 11 

smaller files, each file containing 1000 spectra, except the last one, which includes the 

remaining 132 spectra in addition. Consequently, the last file was slightly larger than the others, 

containing 1132 spectra in total. 
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Figure 14: What categories the potential PSMs are put in for three datasets from different parts of the 

file, compared to the complete file. 

 

 

As mentioned earlier, the quality and abundance of spectra at the start and at the end of mass 

spectrometry data are considered low. Therefore, when running searches on the 11 files created, 

the first file gave an exceptionally low number of confident PSMs, as illustrated in Figure 14. 

The file containing the spectra at the end of the original file gave the same result, a very low 

number of confident PSMs. However, for the file containing the middle section of the original 

file, the number of confident PSMs were high. Almost 3/4 of the spectra present in the file were 

an identified match to a peptide.  

 

This becomes an issue because the files that only get a handful of PSMs out of 1000, obviously 

cannot be used. And the files in the middle that are close to a 75% identification rate are too 

good. The numbers are artificially high in terms of representing the original dataset. This led to 

the next approach: randomizing which spectra to put in the subset file.   
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5.3 Random selection 

Random selection is a widely employed statistical approach. Given the limitations associated 

with the chronological approach, randomization was implemented to select spectra at random 

from the complete file.  

 

Randomizing and selecting which spectra to put in the new file were done in Python, with the 

help of Pyteomics [34, 35]. The process includes importing the original dataset file, indexing 

each spectrum, and then creating a random list of indexes, where the random indexes indicate 

which spectra to add to the subset file. This creates a file of randomly selected spectra from the 

complete file, and the desired number of spectra in the file can easily be decided by setting the 

length of the index list to the desired number of spectra.  

 

During the testing of the randomized approach, ten subsets of 10% of the size of the original 

dataset were created. This percentage was used because it sped up the search time significantly, 

while still including a solid number of spectra, namely 1134. 

 

The randomized subset performed better than the chronological ones in terms of mimicking the 

original dataset, Figure 15 shows the identification rate of ten separate randomized subsets 

containing 1134 spectra.  It did not perform better than the subset containing spectra from the 

middle part of the original dataset, as it had an identification rate of almost 75%. However, in 

terms of keeping the properties of the original dataset, it is a close match. Randomizing the 

subset gave roughly the same identification rate as the original dataset, with a few deviations. 

The original dataset had an ID rate of 36,4%. 
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Figure 15: ID rate of ten randomized subsets. The identification rate of ten separate randomized 

subsets with 1134 spectra in each. The orange line indicates the identification rate of the original 

dataset, i.e., 36,4%. 

 

 

As we can see, the randomized subset has more or less similar ID rates as the original datasets, 

with some smaller deviations, and a few larger ones. The last subset for example, gives an 

identification rate of nearly 50%, indicating that it probably contains more spectra from the 

middle of the file compared to, for example, Subset 4, which has an identification rate of only 

31,6%.  

 

 

5.4 Picking every n-th spectrum 

In order to deal with the complications of randomization, a third option was explored. Taking 

only a set percentage of the file and picking the spectra by extracting every n-th spectrum from 

the file. This ensures a consistent number of spectra from every section of the file. In this 

approach, the main task is selecting an appropriate value for n. Different values were evaluated, 

namely 10, 50, 100 and 200. The results can be seen in Figure 16. 

 

The procedure of creating the subsets was again done in Python, with the help of Pyteomics. 

The MGF file is first imported and indexed by the mgfRead function from Pyteomics. From 
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there, the length of the entire file is counted, followed by a process where every n-th spectra 

gets written to the new subset file. The size of the new subset file depends on the selected value 

of n.  

 

After testing the different values of n, a universal percentage of 10 was chosen, meaning that 

ten percent of the original file will be written to the subset file, in every tenth spectra fashion. 

Selecting a smaller n reduces the runtime further, but not by a great amount compared to a 

subset consisting of ten percent of the spectra. For instance, running a search on the complete 

dataset takes 2 minutes and 28 seconds with MS-GF+, and running it on datasets generated with 

n-values of 10 and 200 takes 25 and 18 seconds, respectively. Figure 17 shows the results of 

the different values of n compared to the chronological approach.  

 

 

 
Figure 16: Testing different n-values. The percentage of spectra in each file in each category with 

different values of n. The orange column represents the complete original dataset. The other colors 

each represent a different value of n, as seen in the figure. 
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Figure 17: Comparing the chronological approach to every n-th spectrum approach. The percentage 

of spectra in each file ending up in each category. The “1st part”, “5th part” and “10th part” indicate 

the subsets with spectra from the start, middle and the end of the original file. The orange column 

represents the complete original dataset. 

 

The figure clearly shows, as stated earlier, that the chronological approach has limitations in 

terms of the low abundance spectra at the start. It also shows that the larger the value of n (i.e., 

the smaller the percentage selected from the original file), the further away the results are from 

the properties of the original file. In addition, it backs up our choice to stick with selected 

percentage of 10, which corresponds to a value of n = 10, because it is the subset that is closest 

to the original in terms of identification rate and how many PSMs were placed in each category.  

 

5.5 Testing different general parameters 

The more common parameters of the search engines, namely the ones already implemented for 

all of them in SearchGUI were tested next. This was conducted on multiple parameters, like 

precursor charge, max missed cleavages, fragment charge, cleavage enzyme, and digestion. An 

example of the findings is shown in Figure 18.  
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Figure 18: Identification rates in percent of the complete file and the subset file generated with n = 10 

when changing the cleavage enzyme. 

 

The results tell us that changing the cleavage parameter on the smaller subset has an effect, both 

on the smaller subset and on the complete file. It becomes clear that running a search with the 

wrong cleavage enzyme can have severe consequences. For the other parameters mentioned in 

the paragraph above, the same trend is present. In other words, changing the parameter on the 

small subset has the same effect when changed on the complete file and some of the parameters 

have a larger impact on the result than others. For example, changing the fragment ion types 

parameter, barely changes the rate of identification, as seen in Figure 19. 
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Figure 19: The different fragment ion type parameter combinations resulting in almost no change in 

the identification rate. 

 

 

5.6 Testing advanced parameters 

When testing the advanced parameters in the different proteomics search engines we used the 

MS-GF+ search engine, mainly because many of the search engines’ lists of parameters are 

very long and it would make the initial testing process very time consuming. In MS-GF+, the 

parameter list however seemed manageable. The parameters of the MS-GF+ search engine is 

listed in Table 2 in the Background section.  

 

From the overview of the MS-GF+ parameters it became clear that some of these will not have 

any effect on the result at all. For example, parameters such as Number of Tasks only affects 

the time and computational resources used when executing the search, and it will not influence 

the resulting output. On the other hand, parameters such as Peptide Length clearly influences 

the result. For example, if this parameter is set to an unusually low number, e.g., from 5 to 10, 

the MS-GF+ search engine will not consider peptides of lengths longer than 10, whereas most 

peptides detected by MS will be in the 6 to 30 amino acids range.  

 



 39 

The remaining MS-GF+ advanced parameters are the MS/MS Detector, the Fragmentation 

Method, and the Protocol. All of these are limited in the sense that they have a finite number of 

choices. However, they might still affect the result.  

 

First, tests on the three parameters MS/MS Detector, Fragmentation Method, Protocol were 

conducted, where all of the choices for the three parameters were tested on the complete dataset 

one at the time. The results can be seen in Figure 20. All of the common parameters were set 

to the values mentioned earlier in this section, and the other search engine specific parameters 

were kept at their default values.  

 

 
Figure 20: The amount of confident PSMs, in percent, for different parameter settings for MS-GF+. 

Purple columns: the MS/MS Detector, green columns: the Fragmentation Method, and blue columns: 

the Protocol. The leftmost purple column named Q-Exactive is the default MS/MS Detector in MS-

GF+, the green CID column is the default Fragmentation Method, and the blue Automatic column is 

the default Protocol. 

 

From Figure 20 it becomes clear that changing the parameters has a small effect in most of the 

cases, however, if Fragmentation Method is wrongly set to ETD, we can see a massive drop in 

PSMs. It becomes clear from the test results that Fragmentation Method is the parameter that 

overall suffers the most from incorrect parameter setting out of the three. In terms of PSMs, the 

most stable parameter seems to be the Protocol, however, when the Protocol parameter is 

incorrectly set to TMT, the number of PSMs decreases by almost 60% compared to the number 

of PSMs when using the default parameters.  
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From these results, one can obviously tell that the parameter setting for these three have an 

effect on the result, as will some of the other parameters such as peptide length, as mentioned 

earlier. Next, it was tested whether the same effect could be seen for the complete dataset.  

 

This was tested by changing the same three parameters on the subset containing 10 percent of 

the spectra from the original file, the subset created by using a value of n = 10. The common 

parameters were kept the same, and only Fragmentation Method, MS/MS Detector and Protocol 

were changed as for the entire dataset. The results are shown in Figure 21. 

 

 
Figure 21: The number of PSMs, in percent, when changing the same parameters on the subset 

containing 10 percent of the spectra from the original dataset. Purple columns: MS/MS Detector, 

green columns: Fragmentation Method, and blue columns: Protocol. 

 

Figure 21 shows that the number of PSMs indeed follows the same trend in the subset as in the 

original dataset. It also shows that the subset with a value of n = 10 mimics the original dataset 

well, and that changes in these parameters seem to affect both datasets in the same way.  

 

 

5.7 Testing the n-th spectra selection on other datasets 

Further testing of the n-th spectra selection with a value of n = 10 was done on three random 

datasets taken from the PRIDE archive. This testing was done to ensure that the results from 

the selected dataset were not a one-time case. It is worth mentioning that in this case, the 
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parameters were set to match that of the experiment, and in other words not run with the default 

parameters. The results can be found in Figure 22. 

 

 

 
Figure 22: Testing other datasets. The identification rates in terms of which spectra are placed in 

which category. The different colors represent the different experiments from PRIDE, and the shade 

represents the subset of the dataset generated with a value of n = 10. 

 

As Figure 22 clearly shows, generating a subset of the original datasets by picking every tenth 

spectra so that you get 10 percent of the original dataset in the subset, still represents the original 

dataset well. There are only minor differences in terms of identification rates and categorization 

between the original datasets and their corresponding subsets, meaning that selecting n = 10 

when generating subsets seems to retain the properties of the original dataset.  

 

5.8 Manual optimization of parameters 

Next, the concept was tested blindly on a dataset. In other words, a dataset from PRIDE was 

selected where the parameters used in the experiments are not looked at, and from there try to 

find the best parameters by testing different combinations. The acquired dataset contained 
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66,444 spectra(PXD030822) and was one of several spectrum files from a study on liver cells 

[36].  

 

The process started with the default parameters of both the common parameters and the MS-

GF+ search engine specific parameters. The advanced search engine specific parameters were 

at first left unchanged, only trying to customize the common parameters.  

 

Firstly, the dataset was downloaded, and a non-random subset with an n-value of 10 was 

generated using the same Python code as earlier. The complete dataset gave 18,248 PSMs when 

run with SearchGUI’s default parameters, with an identification rate of 27,5%. Subsequently, 

testing was performed on different parameters selections where the values were systematically 

both increased and decreased from their default values in order to observe the effect. Thereafter, 

the result was compared to the actual parameter values used in the PRIDE dataset. The number 

of PSMs from the testing is shown in Figure 23. 

 

It is worth mentioning that when observing the parameters used in the experiment, there were 

more post-translational modifications included compared to the standard two PTMs used in this 

thesis. The experiment parameters were run without the extra PTMs included as modification 

parameters, to ensure that the PTMs did not affect the outcome of the testing.  
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Figure 23: The amount of PSMs after searching with MS-GF+ with default parameters, our own 

manual optimization, and with the parameters used in the experiment. The experiment parameters 

were run without the additional non-standard PTMs. 

 

The figure shows that testing enough parameters can indeed yield a better result than using the 

default parameters. The best parameter selection resulted in an increase of almost 1500 PSMs. 

Obviously, the testing also yielded a lower number of PSMs for certain parameter values, 

however, this is of course not the result aimed for.  

 

Compared to the parameter values used in the experiment from which the dataset was acquired 

from, our parameter values are different. However, they do not deviate a whole lot from the 

experiment parameters, as shown in Table 4.  
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Parameter Default value Optimized value Experiment value 

Fixed modification 
Carbamidomethylation 

of C 

Carbamidomethylation 

of C 

Carbamidomethylation 

of C 

Variable modification Oxidation of M Oxidation of M Oxidation of M 

Digestion Enzyme Enzyme Enzyme 

Enzyme Trypsin Trypsin Trypsin 

Specificity Specific Specific Specific 

Max missed cleavages 2 1 2 

Fragment ion types b and y b and y b and y 

Precursor tolerance 10.0 ppm 5.0 ppm 4.5 ppm 

Fragment tolerance 0.02 Dalton 0.01 Dalton 20 ppm 

Precursor charge 2 to 4 2 to 4 N/A 

Isotopes 0 to 1 0 to 1 N/A 

 

Table 4: Table showing the default parameter values, compared to the manual optimization and the 

parameter values used in the experiment itself. 
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6. Discussion 
 
In proteomics today, only a limited number of software tools focus on optimizing parameters, 

and they only explore a small subset of the possible parameter combinations. Exploring all 

possible parameter combinations would require a lot of time and computational resources. 

Testing all parameter combinations is only an option if the datasets are very small, however, 

proteomics datasets are rather continuing to grow in size [37].  

 

The results presented in this thesis indicate that selecting a representative subset of the complete 

dataset, while also keeping the properties of the original dataset, can be an effective approach 

for testing and optimizing multiple parameters at the same time. However, there are some 

remaining challenges that has to be considered.  

 

6.1 Number of PSMs as a test metric 

In this thesis, it was decided to measure and compare the result based on how many PSMs were 

found out of the total number of spectra in the original file, i.e., the identification rate. This 

came from the fact that usually the desired goal is to get as much as possible out of the valuable 

biological data from the spectrum files. Hence, it is preferable to obtain a greater number of 

spectrum matches, particularly those of good quality, in order to determine the presence of 

proteins in the samples. 

 

There is however uncertainty regarding whether this is the correct test metric or not. There may 

be other ways of testing the quality of the results other than PSMs, for example, looking at the 

distribution of scores, or looking at how the PSMs are distributed into each category. 

Furthermore, it could also be possible to evaluate the quality of each peptide-spectrum match 

and employ this information as a metric for testing purposes.  

 

6.2 Possible overfitting 

In terms of optimizing the parameters on a smaller subset, one has to be careful with overfitting. 

Since we tailor the parameters on a smaller subset, there is a chance that the parameters get 

optimized on the small subset provided, and therefore fail to recognize possible PSMs on the 

complete dataset when the parameters have been tailored.  
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6.3 Spectrum quality 

In terms of the quality of the spectra produced by mass spectrometry, there is an ongoing 

discussion on what to label as a good or bad spectrum. As already mentioned, the start and the 

end of the spectrum file contains low number of spectra, however there is uncertainty regarding 

whether these spectra should be considered as bad spectra, because they only contain a 

relatively low number of peaks. Even though these spectra contain a very low number of peaks, 

mass spectrometers today are sensitive enough to detect these and return a hit, even though they 

may be irrelevant.  

 

6.4 Expanding to other proteomics search engines 

In SearchGUI, and in general, there are a lot of proteomics search engines to choose from when 

facilitating peptide identification. Throughout this thesis, testing was done using the MS-GF+ 

search engine, mainly due to its manageable list of advanced parameters. However, the concept 

of subset generation and parameter optimization is not done by the search engines themselves, 

and the results should therefore easily be transferable to other search engines.  

 

For example, since one of the aims is to reduce the search time, one could perform testing in 

one of the reportedly faster proteomics search engines, like Sage [38]. However, one limitation 

is that Sage exclusively supports mzML, which presents a challenge in the subset generation 

process given the specific structure of mzML files.  

 

6.5 Potential consequences of randomizing 

The generation of subsets by randomizing the selection of spectra proved to be a better 

alternative than doing it chronologically. However, there is a risk connected to randomizing. 

One can be unlucky and pick many spectra from either the start or end of the original file, or 

both, resulting in a file which would yield a low amount of PSMs. In turn, one can also end up 

only picking spectra from the middle part of the file, yielding an artificially high number of 

PSMs. It is of course unlikely that such a situation will occur, but there is still a possibility of 

this happening when randomizing. Hence, considering the potential consequences, an 

alternative approach was deemed more suitable.  
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6.6 Choosing an appropriate value of n 

When generating subsets, the n-th approach showed the best results in terms of representing the 

original dataset. The decision was to pick a value of 10, meaning every tenth spectra from the 

file. Selecting this number was logical due to the significantly reduced search time and because 

every tenth spectrum is the same amount as 10% of the complete spectrum file. Selecting 10% 

of the file also appears to be a reasonable choice, because it still maintains the main properties 

from the original dataset. The test results showed that the dataset generated with an n-value of 

10 best represented the original file, while still reducing the time enough such that testing 

multiple parameters was feasible.  

 

It may however be possible to select an even greater n-value, i.e., a smaller percentage of the 

file, on larger datasets, while still keeping the main properties of the complete dataset. Selecting 

10% worked well on the datasets used in this thesis but a lower value could be just as viable on 

other datasets. Furthermore, there are possibilities to reduce the runtime and computational 

resources even further, by increasing the n-value, subsequently selecting a much lower 

percentage of spectra from the file. However, as shown in the results, doing so has its limitations 

because a larger n-value will represent the original dataset more vaguely than what a subset 

generated with a lower n-value would do.  

 

6.7 Testing combinations of parameters 

When conducting testing of the parameters themselves in this thesis, the testing was done 

manually, and by changing one parameter at a time. This approach is the easiest to test, 

however, there might be interactions between parameters that has an effect on the result. Hence, 

there might be some overlooked optimizations of the parameters since combinations of them 

have not been tested.  

 

6.8 Expanding to more data 

On majority of the testing conducted in this thesis , a single example dataset was used. There is 

therefore a possibility that the approach only works on this particular dataset, or on datasets 

with certain properties. The three randomly selected datasets from PRIDE however provided 

further support that picking every tenth spectra seems to mimic the original dataset in a 

sufficient way.  
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7. Future work 
 
Due to the limited time frame of the thesis, various tests and experiments have been deferred 

for future investigation. 

 

MS-GF+ was chosen due to its simpler set of customizable parameters compared to other search 

engines. The extensive parameter lists of other engines would have prolonged the testing 

process. However, this doesn't mean that the concept shouldn't be tested on other proteomics 

search engines. Further investigation is necessary to explore parameter optimization by 

generating subsets with n-th spectra.  

 

It is highly advisable to conduct a comprehensive evaluation of the n-th spectra selection 

concept on a wider scale. A recommended approach would be to perform extensive testing by 

obtaining a diverse range of datasets and systematically applying the concept to test each of 

them. 

 

Automation of the testing procedure should be considered, for example as a command line 

pipeline, to make testing much faster and make it possible to get even more accurate results and 

parameter recommendations. Ideally, the entire process should be implemented into an existing 

framework such that the user can generate subsets, optimize parameters on them, and apply 

those parameters to the complete dataset, all on the same platform.  
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8. Conclusion 
 
This master's thesis aimed to investigate the optimization of proteomics search engine 

parameters by focusing on subsets of the data instead of the entire spectrum file. Through 

comprehensive analysis and experimentation, the study demonstrated promising results and 

shed light on the potential benefits of the approach. 

 

The main findings highlight the effectiveness of optimizing search engine parameters on subsets 

of data. By dividing the spectrum files into manageable subsets that still maintain the main 

properties of the complete dataset, it is possible to optimize search engine parameters 

specifically tailored to each dataset. This strategy not only improved the overall efficiency of 

the search process but also enhanced the quality and accuracy of protein identifications. 

 

By reducing the computational burden and streamlining the search process, subset-based 

optimization can significantly enhance the efficiency and scalability of proteomics analyses. 

This is particularly relevant in large-scale studies involving vast amounts of data, where 

traditional approaches may become prohibitively time-consuming and computationally 

demanding. 

 

While the findings are encouraging, there are still avenues for further exploration. Future 

research could focus on refining the subset selection criteria, exploring different ways to divide 

the data, and investigating the generalizability of the optimized parameters across diverse 

datasets. Additionally, the integration of machine learning algorithms and advanced statistical 

techniques could provide valuable insights into the optimization process and enable more 

sophisticated parameter tuning strategies. 
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