Synthese (2023) 202:79
https://doi.org/10.1007/s11229-023-04264-6

ORIGINAL RESEARCH

®

Check for
updates

Detecting bots with temporal logic

Mina Young Pedersen’® - Marija Slavkovik' - Sonja Smets?

Received: 28 February 2022 / Accepted: 6 July 2023
© The Author(s) 2023

Abstract

Social bots are computer programs that act like human users on social media plat-
forms. Social bot detection is a rapidly growing field dominated by machine learning
approaches. In this paper, we propose a complementary method to machine learning
by exploring bot detection as a model checking problem. We introduce Temporal Net-
work Logic (TNL) which we use to specify social networks where agents can post and
follow each other. Using this logic, we formalize different types of social bot behavior
with formulas that are satisfied in a model of a network with bots. We also consider an
extension of the logic where we explore the expressive power of including elements
from hybrid logic in our framework. We give model checking algorithms for TNL and
its hybrid extension, and show that the complexity of the former is in P and the latter
in PSPACE.

Keywords Social bots - Bot detection - Model checking - Temporal logic - Social
network logic - Hybrid logic

1 Introduction

Software-controlled bots, often called social bots, act like human users on social media:
they interact with other users, both humans and other bots; share content; and target
users that are likely to believe in misinformation (Shao et al., 2018). Social bots may
have beneficial purposes (Gilani et al., 2017), but they can also be used to amplify or

B Mina Young Pedersen
mina.pedersen @uib.no

Marija Slavkovik
marija.slavkovik @uib.no

Sonja Smets

s.j.l.smets@uva.nl

Department of Information Science and Media Studies, University of Bergen, 5007 Bergen,
Norway

2 ILLC, University of Amsterdam, 1098 XG Amsterdam, The Netherlands

Published online: 28 August 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-023-04264-6&domain=pdf
http://orcid.org/0000-0001-8122-6236

79 Page2of39 Synthese (2023) 202:79

direct misinformation. In the worst case, they can be seen as a threat to democracy
(Gorodnichenko et al., 2018).

Bot detecting is a rapidly growing field, mainly dominated by literature on algo-
rithms using machine learning techniques (Cresci, 2020). These algorithms try to catch
bots by identifying behavior such as aggressive following and unfollowing (Lee et al.,
2011), or a “bursty nature”: posting a lot in short periods of time followed by long
periods of inactivity (Chu et al., 2012). Other algorithms try to detect bots by looking
for specific network topologies, such as clusters of bots (Cao et al., 2012), or by con-
sidering content of the bots’ posts and metadata about them (Kudugunta & Ferrara,
2018).

Machine learning approaches require a large amount of labeled data for training. We
are interested in exploring a complementary approach to bot detection that circumvents
this problem: Can social bot detection be done as a model checking problem?

Model checking is a method for verifying whether a formally specified model of a
system meets a given specification. Among several purposes, it has been proposed as an
approach for the analysis of social networks in the context of information and opinion
diffusion properties (Belardinelli & Grossi, 2015; Dennis & Slavkovik, 2020; Dennis
et al., 2022; Machado & Benevides, 2022) and privacy (Dennis et al., 2017; Pardo
& Schneider, 2017). It has also been proposed to identify groups of compromised
smartphones, called mobile botnets, in mobile apps (Bernardeschi et al., 2019). In the
line of work on formal verification of social networks, we propose to use this method
for detecting social bots.

We introduce Temporal Network Logic (TNL) to represent sufficient information
about a social network to detect whether the network contains social bots. In this
framework, bot behavior is expressed in logical formulas. This behavior is based on
existing bot detectors as well as empirical findings on how social bots have acted in
online social networks. By representing a social network as a model of TNL and bot
behavior as a logical formula, checking whether a specific bot formula is satisfied
in a model of TNL checks the presence of that particular bot behavior in the social
network. We also present a simple algorithm for building a TNL model from social
network data, enabling future work to implement this detection method on a real-life
social network.

There are three specific advantages of our bot detection method:

1. We do not need to train classifiers on big data. Social bots are constantly evolving
(Cresci, 2020). Requiring that each type of a bot needs a classifier to be trained
for it, might be an issue because of the amount of training data required. In our
approach, we can formalize certain types of new bot behavior as a new formula.
Once the specification in TNL of the social network is available, we can check both
for properties of agents or for properties of groups of agents in the network.

2. Model checking, unlike some machine learning methods, is directly inspectable
by design. This detection method is relevant to the current need for responsible
algorithms in artificial intelligence research.

3. Detection of logical inconsistencies in agents’ posts is possible. The logic syntax
lets us formalize the content of a post in terms of propositions and logical connec-
tives. In theory, this allows us to, for instance, check for posts that themselves are

@ Springer

Synthese (2023) 202:79 Page3of39 79

logical contradictions. The practical applicability of this option, of course, depends
heavily on the availability of natural language processing tools.

Beyond inconsistencies, a symbolic approach allows us to perform a qualitative
analysis on chosen segments and time intervals of the social network. Intuitively, we
can translate what a human social network user would consider bot behavior into a
property that we can formally verify.

Our approach makes it possible to give an exact logical specification of pre-defined
mechanisms for bot behavior. This builds a direct connection to studies in social
science on information flow in social networks. A limitation of our approach is that
it does not yet offer the possibility of real-time bot detection. This work is perhaps
best described as forensics: we uncover evidence of bot activity in the network in
the past. This, however, is still sufficient to understand the influence that bots have
on propagation of information in the network and to use this information to improve
social network services to limit the power of bots.

The framework we use is a temporal logic that is also interesting in its own respect.
We discuss similarities between TNL and existing logics, such as linear-time temporal
logic and tense logic, and show that TNL is sound and weakly complete by combining
axioms from existing axiomatic systems. In the latter sections of the paper, we take
advantage of the structure of the models of TNL to extend our logical semantics and
evaluate formulas not only from the viewpoint of a global timeline, but also for each
local agent in the social network. This enables us to further analyze powerful network
positions a suspected malicious agent might have. We give model checking algorithms
for both TNL and the extended TNL.

The paper is structured as follows. We begin in Sect. 2 by investigating existing bot
detectors and empirical research on the behavior of social bots. In Sect. 3, we assess
related work. Then, in Sect.4, we introduce TNL with an example and show some
network and agent properties that can be expressed in this language. We also present
a sound and weakly complete axiomatization of TNL. In Sect.5, we give formulas
for bot behavior. Section 6 is devoted to a discussion of the complexity and efficiency
of model checking for bot detection in TNL. In Sect.7, we extend TNL to TNL,, to
be able to evaluate formulas at agents as well as time points. Here, we also introduce
a model checking algorithm for TNL,. Section8 proposes a way to build temporal
network models from social network data. We end with a conclusion and prospects
for future work in Sect. 9.

This paper is an extended version of a paper by Pedersen et al. (2021), first published
in the proceedings of the Eight International Workshop on Logic, Rationality and
Interaction (LORI 2021). The extension includes the following additions: a review of
related work; a sound and weakly complete axiomatization of TNL; a model checking
algorithm for TNL; and, the introduction of the logic TNL, as well as a model checking
algorithm for TNL,,.

@ Springer

79 Page4of39 Synthese (2023) 202:79

2 Social bots

To develop a method for bot detection, it is crucial to first analyze how a bot behaves.
We do this by considering existing bot detectors and empirical research on social bot
behavior.

Misinformation. Misinformation is, according to common dictionaries, known as
incorrect or misleading information. Disinformation is often regarded as a subset of
misinformation that is deliberately spread to influence public opinion or distort the
truth. There is a general agreement in the literature on bots on social media platforms
that their malicious behaviors are inherently related to the spread of misinformation
such as hoaxes, rumors, conspiracy theories, or fabricated reports (Shao et al., 2018).

Empirical studies conducted by Vosoughi et al. (2018) on Twitter found that false
information, and in particular political news, was diffused significantly faster and
farther than true information. Two reasons for this tendency are presumed to be the
novelty and shock effect of false information (O’Connor & Weatherall, 2019). People
are more likely to share novel or surprising information, and since false information
is more likely to be novel and surprising than true information, fake news tend to
propagate faster through a social network. Although misinformation is linked to bot
behavior, Vosoughi et al. (2018) also found that human behavior contributes more
to the spread of false news than bots. As was mentioned by one of the reviewers,
identifying bots as well as false information in the network can help us understand
which agents spread this type of information.

Bursty nature. Analyses of bot behavior on Twitter have revealed specific activity
patterns, both posting- and following-activity. In a well-known study, Chu et al. (2012)
analyzed more than 40 million tweets from over 500,000 users and found that bots
tend to act in a “bursty” nature, posting a lot in a short period of time and have longer
periods of inactivity.

One reason for this bursty posting behavior is speculated in Shao et al. (2018) to
be that early and aggressive engagement with information, shortly after it has first
been published by a low-credibility source, exposes many users to the content and
increases the chances that the article might go *“viral”: spread to large groups of users
in a short time. In a similar study, Lee and Kim (2014) confirmed that bot account
creation is bursty too: that accounts are created in bulk within a short period of time,
just before the accounts start spamming. A likely reason for bursty account creation
before spamming is that it allows the bots to create vast amounts of content before
being removed.

Hashtag, subgroup and user targeting. Bots often strive to gain visibility in their
social networks. One specific method is to target hashtags by posting irrelevant infor-
mation to divert a discussion (Chang & Iyer, 2012). An example of bots’ misuse of
Twitter hashtags was seen under the 2017 natural disasters Hurricane Harvey, Irma
and Maria, as well as an earthquake that occurred in Mexico. By gathering data from
over 1.2 million tweets by more than 770,000 accounts, Khaund et al. (2018) found
bots using disaster-related hashtags to promote unrelated political content on topics
such as North Korean leader Kim Jong-un and the Black Lives Matter movement.
Social bots also posted hoaxes such as “shark swimming on freeway” under the same
hashtags.

@ Springer

Synthese (2023) 202:79 Page50f39 79

Another tactic to gain visibility in social networks is to target subgroups. Leading
up to the United States presidential election in 2016, certain Twitter accounts posed as
being queer-friendly, dog-loving pages, and only after reaching a number of followers
started to publish political content (O’Connor & Weatherall, 2019). Although these
accounts were not confirmed to be social bots, this is a potential tactic that could
be used for manipulation online. Misusing followers’ trust by agreeing on particular
topics potentially put these pages in a position to convince their audience on political
matters.

Aggressive following and unfollowing. One feature social bots have shown to have
on social media platforms is aggressive following and unfollowing (Lee et al., 2011).
A reason for this behavior is, as in the case of targeting, to gain visibility; most online
social media platforms give an alert to their users when they have a new follower, or
contact request. In this way, a bot can enhance the probability that users will engage
with their posts.

3 Related work

The work in this paper lies in the intersection of several scientific fields. We can find
related literature in research on social bot detectors, in work on logical frameworks to
model social network dynamics, and in the formal verification community, in particular
work on model checking properties in social networks. In this section, we give a review
of related work across these three fields.

3.1 Bot detectors

Some of the social bot detectors and their mechanisms to detect bots have been
reviewed in the previous Sect.2. Most bot detecting frameworks technically differ
a lot from ours, and few papers combine work on social bot detectors and formal
logic. Bernardeschi et al. (2019) propose model checking to identify mobile botnets
in the operating system Android. A mobile botnet is a group of compromised smart-
phones controlled by an owner using software called Command and Control (C&C).
The method in the paper uses a branching temporal logic to characterize botnet behav-
ior which is checked against a set of finite state automata representing the run-time
behavior of an app on a smartphone. Although a mobile botnet in its nature is quite
different from a social bot, we include the paper as related work because the method
proposed is similar to ours, and because both social bots and botnets can be used for
malicious purposes.

3.2 Logics for social network dynamics

Our work uses a modal logic framework to reason about the dynamics of a social
network. In recent years, the field of social network logics, and particularly dynamic
social network logics, has seen many influential papers. By a social network, we mean
a graph structure in which the nodes represent agents, and the relation between them

@ Springer

79 Page6 of 39 Synthese (2023) 202:79

represents some kind of friendship relation or communication channel. We take social
network logics to be logical frameworks that model this network graph explicitly. !
Some work in the field is reviewed in a paper by Liu and Li (2022), which focuses on
work on social network logics in China.

As one of the first on the topic, Pacuit and Parikh (2005) introduce a logic of
communication graphs where edges between agents depict possibilities of direct com-
munication. This logic uses a neighborhood semantics®> which language includes a
knowledge modality and a dynamic diamond. A formula ¢ K;¢ is to be read as “after
some communications, agent i knows ¢ according to i’s current information”.

The frameworks (Seligman et al., 2013; Liu et al., 2014) built upon the work first
presented by Seligman et al. (2011) have been deeply influential in the field of social
network logics. The underlying logical models have a set of agents, a set of epis-
temic states and two binary relations: one family of friendship relations on the set of
agents and one family of epistemic relations on the set of epistemic states. The logical
language includes nominals and hybrid operators, which makes it possible to have
statements such as “Bella knows that she is not a spy, but doesn’t know if a friend
of hers is a spy” @, (K—s A =K (F)s) (Seligman et al., 2013). The frameworks are
used to model phenomena such as peer pressure, belief change and epistemic updates.
Work by other authors that has continued the technical results of these frameworks
include (Christoff et al., 2016; Sano, 2017; Fernandez Gonzailez, 2021; Balbiani &
Fernandez Gonzalez, 2020; Zhen, 2020).

Our logic tracks the dynamics of the social network through a temporal logic.
Other work in social network logic that uses temporal operators include (Pedersen &
Slavkovik, 2017; Machado & Benevides, 2022; Van der Hoek et al., 2020). Of the
papers in this section, we have found the frameworks in these papers to be the most
similar to ours as they combine social networks and temporal logics. We therefore
include a longer description of their logical models. Pedersen and Slavkovik (2017)
introduce a logic with next-time as its only temporal operator to model social influence
in a network of agents. The logical model is constructed such that each state is a social
network G = (N, U, pro, E) where N is a set of agents, [is a set of relevant issues,
pro is a function deciding for each issue in [J which agents support them, and E
is a set of edges between agents. A successor of G is defined to be a new social
network (N, O, pro, E/A) where only the set of edges has possibly been reduced.
The motivation behind reducing edges in E is that agents cut links to their neighbors to
avoid conflict, which might appear when the agents’ neighbors disagree on the same
issue.

Machado and Benevides (2022) present a logic called LTL-SN, based on linear-time
temporal logic with the operators next-time and until. With until a future operator can
also be defined. LTL-SN tracks the changes of a social network similar to the models
of diffusion first defined by Baltag et al. (2019), in which agents adopt a behavior
in the next time point if a number of their neighbors have the behavior, relative to a
given threshold. The changes in the network are therefore decided by the initial model
M = (A, N, 0, I)where A is a set of agents, N a set of relations between agents, 0

! We thank Rasmus K. Rendsvig for proposing this definition.
2 See Pacuit (2017) for further information on neighborhood semantics for modal logic.

@ Springer

Synthese (2023) 202:79 Page70f39 79

a given threshold and I C A a set of agents that initially exhibit the behavior. LTL-
SN can be reduced to propositional logic, due to the fact that the changes through the
temporal operators are decided based on M. The paper also includes a model checking
algorithm, and it is shown how their models can be used to represent a known model
for epidemics called the Susceptible-Infectious-Recovered (SIR) model.

The work by Van der Hoek et al. (2020) is based on a framework originally presented
by van der Hoek et al. (2019); Van der Hoek et al. (2022), where balance games are
introduced. Balance games are game theoretical renditions of social situations where
relations between groups of three agents are judged to be balanced or not. Given a
set of agents A, a relation on A is defined such that each relation is either a friend
relation “+” or an enemy relation “—", but not both. For each triad of three agents,
the triad is balanced if on the form + + + or ——+ and unbalanced otherwise. When
all triads between all agents are balanced, the whole network is said to be balanced.
In balance games, a random agent is chosen in each turn to decide whether to change
one of its relations for a cost. The agents receive a higher utility when they are in
balanced triads. A network is defined to be stable when all agents have more reason
for their relationships to stay the same than to change. Van der Hoek et al. (2020)
analyze balance games through a temporal logic called Logic of Allies and Enemies
(LAE). The language of LAE includes operators AX ¢, A[¢pU¢], and E[¢pU ¢] from
Computation Tree Logic (CTL). Itis shown that some formulas are valid in the network
if and only if, for instance, the network eventually becomes stable. Other works by
Xiong (2017), Xiong and Agotnes (2020), Pedersen et al. (2019) and Pedersen (2019)
also use logic to model balance, although neither with a temporal logic nor a game
theoretic framework.

The body of literature on logic to model dynamics in social networks also include
work by Ruan and Thielscher (2011), Lorini and Sartor (2016), Christoff and Grossi
(2017), Grandi et al. (2017), Smets and Veldzquez-Quesada (2017a, 2017b, 2020a,
2020b), Xiong et al. (2017), Pardo et al. (2018), Viana et al. (2014), Ferndndez
Gonzalez (2022), Pedersen et al. (2020, 2021), Baltagetal. (2019), Belardinelli (2019),
Perrotin et al. (2019), Yang et al. (2019), Christoff and Hansen (2015), Cristani et al.
(2020), Santos (2020), Occhipinti Liberman and Rendsvig (2022) and Galimullin et
al. (2022). Although these frameworks have less in common with our work, con-
ceptually they deal with social networks in which relations are formed and lost, and
attitudes are adopted. This is akin to our notions of following and posting. Several
of the mentioned papers, by Baltag et al. (2019), Pedersen et al. (2019), Smets and
Veldzquez-Quesada (2017a, 2017b, 2020a, 2020b), Machado and Benevides (2022)
and Ruan and Thielscher (2011), use threshold models to model limits to when agents
adopt an opinion or behavior, or to when relationships are changed. Threshold mod-
els use a threshold representing a given number that measures quantities such as the
amount of social connections that need to have an opinion before an agent adopts it,
or how much two agents should have in common to be connected.

@ Springer

79 Page8of39 Synthese (2023) 202:79

3.3 Model checking social networks

We also include here some related work which combines model checking and social
networks. As mentioned earlier, Machado and Benevides (2022) give a model check-
ing algorithm for the logic LTL-SN which models diffusion in a social network. The
work by Belardinelli and Grossi (2015), Dennis and Slavkovik (2020) and Dennis et
al. (2022) also explores model checking diffusion properties in social networks. Belar-
dinelli and Grossi (2015) introduce logical models for multi-agent systems called open
dynamic agent networks, in which agents can join and leave the network. The logic
used is a type of first-order CTL, and it is shown that its model checking problem is
decidable. Dennis and Slavkovik (2020) use Markov chains to model information dif-
fusion in social networks, where the internal information state of an agent is explicitly
modeled. It is shown that the PRISM probabilistic model checker cannot be used to
check even simple models. The work by Dennis and Slavkovik (2020) is extended by
Dennis et al. (2022). By supplementing the use of PRISM with Monte Carlo simula-
tion, larger networks can be checked.

Pardo and Schneider (2017) present a formal system to model knowledge of agents
in social networks. The social network is not presented as a Kripke model, which has
been standard in many works in the social network logic literature. Rather, the models
by Pardo and Schneider (2017), called SNMs, are social graphs with a knowledge
base for each user in the system. The motivation is to formalize privacy policies
for agents in the network, such as “only my friends can know my location”. Model
checking is proposed to check whether a user knows a given statement. It is shown that
model checking formulas over SNMs is decidable. The work by Dennis et al. (2017)
is also motivated by formal verification of privacy policies in social networks. More
concretely, the proposal is to use model checking to analyze information leakage,
which is when information is accessed by other agents who are not authorized to share
it. The framework by Dennis et al. (2017) is probabilistic and uses details from BDI,
Belief-Desire-Intention, models. As for Dennis and Slavkovik (2020) and Dennis et
al. (2022), the probabilistic model checker PRISM is used by Dennis et al. (2017) to
check properties in the network.

4 Temporal Network Logic (TNL)

We are now ready to introduce Temporal Network Logic (TNL). TNL is a temporal
logic in which each time point hosts a social network. In addition to the standard
temporal logic operators past P¢, future F ¢ and next-time X ¢, the language includes
predicates (follow)(a, b) and (posted)(a, w) that let us reason about agents’ activ-
ities in the social network, as well as the network structure, at a specific time on the
timeline.

4.1 Language

We begin by presenting the syntax of TNL.

@ Springer

Synthese (2023) 202:79 Page9of39 79

Definition 1 (Syntax) Let At be a finite set of atomic posts and Ag be a finite set of
agents. We define the well-formed formulas of the language L7 1, to be generated by
the following grammar with the separation property:

¢==p | (follow)(a,b) | (posted)(a,w) | ~p | p N | PP | Fp| X
wi=p|l-w|loAow

where p € At and a, b € Ag. We define propositional connectives like v, — and the
formulas T, L as usual. Further, we define the duals H := —=P—and G := —F— as
standard.

All formulas of L7 have the separation property, which means that each formula
can be rewritten as a Boolean combination of formulas, each of which depends only
on the past, present, or future.> We use Q to denote the set of all possible posts w,
which is the propositional fragment of L7 7. Since the set At is finite, the set Q2 is
finite up to equivalent formulas.

Intuitively, weread (follow)(a, b) as “agenta follows agent b and (posted)(a, w)
as “agent a posted w” or “w appears on agent a’s profile”. w is a logical formula made
up of atomic posts and standard logical connectives. In L1y, we therefore have
formulas such as (posted)(a, p) and (posted)(a, p — ¢q). Wecall p,q,r,... € At
atomic posts. P¢, F¢ and X ¢ are temporal operators. We read P¢ as “¢ was the case
at some past time”, F¢ as “¢ will be the case at some future time” and X¢ as “¢ is
the case next step, or next time”.

4.2 Models and semantics

Before presenting the semantics, we give definitions of temporal network frames and
models.

Definition 2 (Temporal Network Frame and Model) We define the following:

A C Ag s a set of agents;

T is a countably infinite set of time points;

< is a strict linear order with no end on 7', obtaining an infinite chain;

N : (A xT) - P(A) is a follower function specifying for each agent their

followers at a specific time;

e V : At — P(T) is a valuation function deciding the truth value of atomic posts at
each time point;

e Posts : (A x T) — Qis a function outputting for each agent the posts they have

on their profile at a specific time.

The tuple § = (A, T, <) is a temporal network frame, whereas the tuple 9t =
(A, T, <,N,V, Posts)isatemporal network model. We define a pointed temporal
network model to be (907, t) where 91 is a temporal network model and ¢ € T its
distinguished point, at which the evaluation takes place.

3 For more information on the separation property, we advice the reader to turn to Hodkinson and Reynolds
(2005).

@ Springer

79 Page 10 of 39 Synthese (2023) 202:79

Fig.1 A temporal network model 9t

For a temporal network frame § and a formula ¢ € Lryp, we write § I- ¢
when ¢ is valid in §: if ¢ is true at every time ¢ in every temporal network model
(8, N, V, Posts) for any follower function N, any valuation V and any post function
Posts on §.

A temporal network model represents the evolution of a social network over time:
a timeline in which each time point hosts a social network, defined by the follower
function N. Agents’ posts at each time is modeled by the post function Posts. The
intention of N and Posts is that followers continue to follow until they actively
unfollow, and that posts stay on an agents’ profile until they are actively removed by
the posting agent. If a post w € Posts(a, t) for agent a at ¢, we say that “a posted w
at ¢ or that “w appears on agent a’s profile at ¢”. This is not intended to mean that w
is first posted at #, w could have been posted earlier, but still appears on the agent’s
profile. To avoid confusion, we say “a actively posts w at t” when w € Posts(a,t)
and w ¢ Posts(a,t — 1) for t — 1 being the immediate predecessor of ¢.

See Fig.1 for a simple example of a temporal network model. This network has
only five agents A = {a, b, c, d, e} and although the timeline has no end, we choose
to concentrate on its first time step to the next: 7 = {#1, f2,...}. Also note that
t1,tr € V(p) and 11,1, € V(r), whereas t1,t> ¢ V(q). Further, Posts(d,t;) =
{p — q}, Posts(a,t2) = {p} and Posts(b,t2) = {r}. The edges within the time
points correspond to the information captured in the follower function: for instance
“c follows e” is represented by an edge from c to e.

We now define the semantics of TNL.

Definition 3 (Semantics) Let M = (A, T, <, N, V, Posts) be a temporal network
model, + € T be a time point, a,b € A be agents, and w € Q2 be a post. Truth
conditions for TNL are defined as follows:

M, t I piffr e V(p)
M, t I (follow)(a, b) iffa € N(b, t)
M, t I (posted)(a, w) iff v € Posts(a,t)
M, t IF—g iff M, t ¥ ¢
M, tl-dp Ayt M, ¢ IF¢and N, ¢ -
M, t - PpiffIs € T suchthats < rand M, s IF ¢
M, t - Feiff Jv € T suchthatr < vand M, v I ¢
M, t - XPiff M, ¢t +11F ¢,
where ¢ + 1 is the immediate successor of ¢

@ Springer

Synthese (2023) 202:79 Page110f39 79

4.3 Expressing agent properties

An important motivation in the still emerging field of social network logics is to explore
what network properties we can formalize with a limited logical syntax. In this section,
we present some properties that can be expressed in L7z .

1. Agent a actively posts w in the next step: = (posted)(a, w) A X (posted)(a,)

2. Agent a removes post in the next step: (posted)(a, w) A X—(posted)(a,)

3. Agent b starts to follow agent a back: P(follow)(a,b) A =P{follow)(b, a) N
(follow)(b, a)

4. Agent a posted an original post w, i.e. they are the first in the network to post w:
(posted)(a, w) A J\pecp —P(posted) (D, w)

5. At the current time, agent a is a [urker, an agent in the network that only observes
(follows at least one other agent), but has not yet posted: \/,. 4 P{follow)(a, b) A
(Npeq —P(posted)(a, w) A —(posted)(a,))

We return to the example in Fig. 1 and see the following:

1. M, 1o IF P{follow)(c,e) A =P {(follow)(e, c) A (follow)(e, c)
In #,, agent e starts to follow agent ¢ back.
2. M, 11 IF (posted)(d, p — q) AN—(p = q) A X—(posted)(d, p — q)
Agent d posted false information in ¢, but deleted it in the next step (#>).
3.M 6 IF (Vpes Vpeq ~P(follow)(a, b)V(follow) (b, a)V(posted)(a, w)))A
(follow)(a, d)
Agent a’s account was created in #,.
4. M, 11 I+ (follow)(b,d) A X—={follow)(b, d)
In 7, agent b unfollows agent d.
5.9, 1 Ik (posted)(b,r) A \,ecq —P(posted)(a,r)
Agent b posted an original post 7 in #,.

Note that we here define “account creation” as the first action, in other words posting
or following, of the agent in the network. The intuition is that an agent must follow
other agents to view the other agents’ content. One could alternatively allow for a
different setting in which we expand or shrink the set A of agents itself, which would
require an extension of the logical framework.

4.4 Soundness and completeness

TNL is a logic with both future, past and next-time operators, interpreted over a strict
linear order with no end. A strict linear order is a binary relation that is transitive,
irreflexive and trichotomous, the latter being the property such that for all s, € T :
exactly one of s < #,t < s or t = s is true. Irreflexivity entails that we read the P¢
and F¢ modalities as strict future and past which does not include the current time
point. The formulas (follow)(a, b) and (posted)(a, w) are original in TNL.

The language of TNL is the basic tense logic language with an additional next-time
operator and follow- and posted-formulas. Tense logic, originating from Prior (1957),
classically includes a past and future operator, but not next-time. There are known

@ Springer

79 Page 12 of 39 Synthese (2023) 202:79

Table 1 Axiomatization of TNL

1.(CT) All classical tautologies
2.(Kg) FG@— ¥) > (Gp - GY)
3.(Kp) FH(@¢—> V)~ (Hp—> HY)
4.(GP) ¢ —> GP¢

5.(HF) ¢ —> HF

6. (Kx) FX($— ¥) = (Xo— Xy)
7.(FUNC) F X=¢ < —X¢

8.(FPE) FGp— (Xp AXG)
9.(IND%) F G — X¢) > (X¢p — Go)
10. (MP) If-¢and - ¢ — then - ¥
11. (US) If - ¢ then - ¢, for o a substitution
12. (TGg) If - ¢ then - G¢

13. (TGg) If - ¢ then - Ho

axiomatic systems for tense logic which are complete with respect to the class of strict
linear orders with no end (Blackburn et al., 2001; Venema, 2001).

L7nr can also be seen as an the language of linear-time temporal logic (LTL)
without the until operator and with the additional past operator and follow- and posted-
formulas. Additionally, models of LTL are reflexive with respect to the future operator.
In one of the seminal works that first introduce LTL, Gabbay et al. (1980) present an
axiomatic system called DX which is weakly complete with respect to logical models
representing the natural numbers and their natural, and irreflexive, ordering. These
models are essentially TNL models as the natural numbers and their ordering are
strict linear orders with no end. The axiomatization for TNL is the axioms of DX
in addition to axioms representing the relationship between past and future, as well
as axioms for the past operators from axiomatizations of tense logic. The axiomatic
system for TNL is given in Table 1.

Like DX, the axiomatic system for TNL is weakly complete. TNL is not compact
and can therefore not be strongly axiomatized. Consider the set of sentences:

' :={X"p|neN}U({=Gp}

I" is the set consisting of =Gp, Xp, X Xp, X X Xp and so on. Every finite subset of I" is
satisfiable, because we can always construct a model in which the necessary point on
the timeline does not satisfy p. However I itself is not satisfiable: if X" p is satisfied
for all n € N, then Gp is true and consequently —~Gp is false.

Theorem 1 TNL is sound and weakly complete with respect to temporal network mod-
els.

Proof The proof closely follows the proof of completeness for DX by Gabbay et al.
(1980) with details from standard proofs of completeness for various tense logics
(Blackburn et al., 2001; Venema, 2001). The full proof is included in Appendix A. O

@ Springer

Synthese (2023) 202:79 Page130f39 79

5 Detection formulas

Our approach to bot detecting is to define a set of formulas corresponding to particular
behaviors of a social bot. Checking satisfiability of these formulas in a temporal
network model gives us information on whether we should expect bots in the social
network.

As was seen in the empirical research overview in Sect. 2, a recurring feature of bot
behavior is to act aggressively, or bursty. To model these traits, we need to define what
it means to do something a lot and in a short or long period of time. We decide to rely
on an external source of our system: a program or person that in each network and at
each time gives us a specific value for a lot, depending on the individual situation in
each network, and for each agent. This is implemented in our language as the constant
alot. The same approach goes for a long period of time denoted with the constant
long. The constants alot and long can be seen as thresholds. That is, for any specific
number x in place of, say, alot, it means that alot is at least x. Anything that happens
more than x times, also happens x times. For a short period of time, we argue that in
any case, a single time point is a short period of time. We now present the formulas
corresponding to bot behaviors.

5.1 Posting false information

Recall that our models include a valuation function V : At — P(T') with an objective
truth value for each atomic post in the network, at each time point. This enables us to
capture the existence of misinformation in the network with this simple formula FL.*

\/ \/ (posted)(a, w) AN —w (FD)

acA weQ

We cannot claim that there are bots in the network based solely on whether the FI
formula is forced at a time point in the model, as human behavior has been shown to
contribute as much to misinformation spread as bots (Vosoughi et al., 2018). The FI
formula should therefore be checked together with other bot detecting formulas to see
whether it is likely that there are social bots, and false information, in the network.

5.2 Bursty nature

To characterize the bursty nature of a social bot, we want to define a formula that
describes agents that post a lot in a short period of time and have longer periods
of inactivity. We remind the reader that the intended interpretation of the formula
(posted)(a, w) is that the post @ appears on agent a’s profile, and therefore, if
(posted)(a,) holds in consecutive time points, it is intended to mean that the post
stays on the agent’s profile. We first define a formula representing agent a being

4 Since the set At of atomic posts is finite, the set € of all posts is finite up to equivalent formulas. As
mentioned by one of the reviewers, technically this does not make disjunction or conjunction over €2 finite.
For the formula to be finite one needs to define a finite subset of formulas that contain one element of each
equivalence class of equivalent formulas, and do disjunction and conjunction over this subset. For brevity,
we keep the current notation, but note that the aforementioned method is the correct way.

@ Springer

79 Page 14 of 39 Synthese (2023) 202:79

inactive for a long time in inactive_long(a) :=

/\ /\((X(posted)(a, w) < (posted)(a, w)) A (X{follow)
weR beA

(a,b) < (follow)(a, b)) A -+ A (X" (posted)(a, w) <

(posted)(a, w) A X'"8(follow)(a, b) <> (follow)(a, b)))

X'on8 ig the standard notation X" := XXX ... X,,, in this case for n = long. We
read inactive_long(a) as “for all posts and all agents, in the next steps for a long
time, agent a posted something, or followed someone, if and only if they have already
done this in the current step”. We also abbreviate the formula active_post(a, w) :=
—(posted)(a, w) A X(posted)(a, w) to be read as “agent a actively posts w in the
next time point”. We now define the formula BN.

\/(\/ (active_post(a, wi) A --- A
ac€A wi,...,wn ER

Vn#£k:wp Ewi (BN)

active_post(a, wy)) A Xinactive_long(a))

alot

The notation Vn # k : w, # wy means that for any n # k: w, and wy are not logically
equivalent formulas. The BN formula states that “there exists an agent, called a for
reference, and there exists m (a lot of) inequivalent posts such that the agents posts
all these posts at the next time point, and then they are inactive for a long time in the
future”.

Recall that we formalized account creation as the first action of an agent in the
network in Sect.4.3. This definition allows us to formalize bursty account creation:
that a lot of accounts are created in a short period of time. For simplification, we refer
to the creation-formula for an agent a as created(a) :=

(\/ \ =P follow)(a.b) v {follow)(b, a)

beA we

V(posted)(a,)) A (\/ \/ (follow)(a,b) v (follow)(b, a)
beA we
V(posted)(a, w))

We define bursty account creation with the use of the external classifier for alot in the
formula BAC.

\/ created(ay) N --- A created(any)

Al yeeny am €A
Vn#£k:a, #ay

(BAC)

alot

@ Springer

Synthese (2023) 202:79 Page150f39 79

5.3 Targeting

We did not extend the syntax to express and directly identify a hashtag within a post in
L7y - But, we can detect the posting of a lot of posts that relates to a particular atomic
post p. If we rely on a person or an external natural language processing algorithm
that can recognize a hashtag in a post, we can denote p for a given hashtag. We use
the abbreviation (posted)(a, p + alot) :=

\/ (posted)(a, p AN w1) A --- A (posted)(a, p N\ wy)

1,...,0n €R
Vn#k:w, Fok

alot

for “agent a posted a lot of formulas on the form p A for a given p” and present the
formula HT.

\/ (posted)(a, p + alot) (HT)

acA

An observation made by one of the reviewers is that hashtags on social media platforms
are usually not true or false. One way to tackle this is to set the truth values of hashtags
to always be true. Alternatively, we could add a separate set of atomic posts that are
hashtags, which cannot be true or false.

Another property we did not explicitly specify in the language L7y, is whether a
post is relevant or irrelevant to a specific hashtag. An important feature of hashtag tar-
geting is that irrelevant information is posted under a particular hashtag. It is therefore
arguable whether HT captures hashtag targeting.

Subgroup targeting is characterized by a user posting a lot on one topic related
to a subgroup, to then start posting about another irrelevant topic, often political.
Although we cannot express relevance, we can formalize an agent posting a lot on
one topic p before posting a lot on another topic ¢. This action is described in the
formula ST.

\/ P((posted)(a, p + alot)) N (posted)(a, g + alot) (ST)

acA

5.4 Aggressive following and unfollowing
We define aggressive following or unfollowing as an action that happens a lot,

repeatedly, in a short time span. In this context, that is a combination of the
proposition alot in a short period of time. For simplification, we abbreviate

@ Springer

79 Page 16 of 39 Synthese (2023) 202:79

startfollow(a, b) ;= —=(follow)(a, b) A X{follow)(a, b) and define the formula
AggU.

\/ \/ startfollow(a, by) A F—(follow)(a, by)
a€A by,..., b €A

Vn#k:b, #by (AggU)
A--- Astartfollow(a, by) N F=(follow)(a, by,)

alot

We read the formula as “there exists an agent a, and a lot of other agents by, ..., by,
who all start being followed by a in the next step and are unfollowed by a in the
future”.’

6 Bot detecting: model checking

We define the problem of bot detecting in a social network as a model checking problem
in TNL. Model checking is an automated decision procedure for establishing whether a
finite model of a system satisfies a formal specification expressed as a logical formula.
Let ¢ € L7y be a given formula specifying a property of a bot and let (9, ¢) be
a given finite pointed temporal network model. The model checking problem is the
problem to determine whether ¢ is satisfied in (901, 7).

In this section, we discuss complexity results and the computational efficiency
of model checking for bot detecting. We propose two alternative options for model
checking. First, we give a model checking algorithm for finite fragments of TNL and
show that it runs in polynomial time. Then, we show that the model checking problem
for TNL can be translated to the model checking problem for linear-time temporal
logic with past (PLTL). The reason for including this translation when we already
present a model checking algorithm for TNL is to reason about whether we can use
these results to leverage existing model checkers such as SPIN and NuSMV which
has native support for linear-time temporal logic.

6.1 Finite fragments

The main proposal in this paper is to use model checking to detect social bots in a
network of agents. We envision this to be done for a real-life network by using data
from a social network to form a corresponding temporal network model. Further details
on how we propose to build TNL models from social network data can be found in
Sect. 8.

Recall that TNL models are strict linear orders with no end. When taking existing
information about a social network, it is clear that this will always be data represented
on a finite timeline. Translating this information to a strict linear order with no end
is therefore not entirely straightforward. To bypass this problem, we introduce finite
fragments of temporal network models.

5 This formula can also be expanded such that the agent follows a lot of other agents in some boundedly
many steps and then eventually unfollows them.

@ Springer

Synthese (2023) 202:79 Page170f39 79

Definition 4 (Finite Fragments of Temporal Network Models) A finite fragment of
a temporal network model My = (A, T, ~y, N, V, Posts) is a tuple where all ele-
ments except ~ ¢ are defined as in a temporal network model. ~ ¢ is a binary relation
on T which is a finite linear order in which all points are irreflexive except the last
reflexive point.

A finite fragment of a temporal network model is essentially a finite strict linear
order with a final deadlock state: a last state that loops to itself to end the timeline.
This construction is needed to obtain a well-defined semantics for the X operator for
all formulas of L7y on finite fragments. The semantics for M ¢ is defined as the
semantics for TNL on classical temporal network models.

6.2 A model checking algorithm for TNL

The model checking algorithm for finite fragments of TNL is based on the model
checking algorithm for Computation Tree Logic (CTL), a known result which can be
found in logic textbooks (Huth & Ryan, 2004), and originates from influential work
on model checking by Clarke and Emerson (1981). We provide pseudocode for the
algorithm below.

Algorithm 1 Function SAT (¢) determining the set of time points that satisfy ¢

Input: Finite fragment imf =(A,T, ~f N, V, Posts),aformula¢ € L7y
Output: The set sat of all time points in M ¢ where ¢ is satisfied
1: sat :==0

2: case

3: ¢islisatr=90

¢isp:sat ={teT |t e V(p)}

¢ is (follow)(a,b): sat ={t € T |a € N(b, 1)}

¢ is (posted)(a, w): sat ={t € T | w € Posts(a, 1)}

¢is ~y:sat =T \ SAT (¢)

¢isy A x:sat = SAT(Y) N SAT (x)

9: ¢is Py:sat = SATp(Y)

10: ¢ is Fy:sat = SATE(Y)

11: ¢is Xy sat = SATx (¢)

12: end case

13: return sat

A

Algorithm 1 shows a labeling algorithm that labels the time points of iy in a
case analysis. The function goes through the subformulas of ¢ from the shortest,
working upwards in increasing order of length. It is recursive on the structure of ¢
(lines 7,8,9,10 and 11), referring to the function SAT (¢) itself in the cases of negation
and conjunction. The algorithm relies on three subroutines SATp, SATF and SATx
(lines 8-10) found in Algorithms 8, 9 and 10 in Appendix B. For a formula ¢, |¢|
denotes the size of ¢, i.e. the number of distinct subformulas in ¢.

Proposition 2 The complexity of the model checking algorithm for finite fragments of
TNL, Algorithm 1, is O(|¢| x |A| x |T|).

@ Springer

79 Page 18 of 39 Synthese (2023) 202:79

Proof To construct sat, each visit of line 4 checks |V| times, each visit of line 5
checks | N| times and each visit of line 6 checks | Posts| times. Since V depends on
T, and N and Posts depend on A x T, the complexity of checking lines 4, 5, 6 is
O(]A| x |T|). We imagine a worst case scenario where one would need to check every
distinct node in the parse tree of ¢ exactly once. The search through the parse tree
is depth-first and has complexity O(|¢[). The complexity of the whole algorithm is
therefore O(|¢p| x |A| x |T]). O

We should note that our function is in fact a global model checking algorithm: the
output gives us all time points in which the formula is satisfied. Model checking for a
single given state only entails to check whether the state is a member of the output set
SAT (¢).

6.3 From TNL to PLTL

We discuss how we can reduce Temporal Network Logic to a fragment of linear-time
temporal logic with past (PLTL) (Schnoebelen, 2002) with respect to model checking.
That is, we show that for a pointed TNL model (9, ¢) and a formula ¢ in the language
of TNL, there exists a pointed PLTL model (M, 7) and a formula ¢ in the language of
PLTL, such that instead of checking whether (), 7) |- ¢, we can rather check whether
(M, 1) IF . The reason we include a reduction of the model checking problem is to
open for the possibility of utilizing existing model checkers for LTL, such as NuSMV
(Cimatti et al., 2002), as an alternative to the model checking algorithm for TNL
presented in the previous section.

PLTL is classical linear-time temporal logic with a past P and a previous step, or
yesterday, X ~! operator in addition to the standard future F and next-time X operator.
In PLTL, the semantics of X ¢ is analogous to X¢ in which X —1¢ is forced at the
current time point if and only if ¢ holds at the previous time point.

Models of PLTL are tuples M = (T, R, V), where T and V are as defined in
Definition 2 of temporal network models. R is usually not a strict linear order in PLTL,
and is defined as having no beginning in addition to having no end. The translation
from models of TNL to models of PLTL strips down the TNL model to a 3-tuple. We
also include a reflexive deadlock state at the beginning of the timeline, so that X !
will be well-defined.

The reduction from any well-formed formula of TNL to a formula of PLTL is shown
in the following translation.

The translation 7 : Lryr — Lprrr is defined as follows.

t(p)=p (=) = —t($)
HAY) =t(B) At() t(P¢) = X' Pt(¢)
t(F¢) = XFt(¢) 1(X¢) = Xt(¢)

t((follow)(a, b)) = follow_ab € At t({posted)(a,w)) = post_aw € At

The semantics of the P and F operators in TNL are defined as strict past and future,
without including the present. Thus, the translation into PLTL, where the standard

@ Springer

Synthese (2023) 202:79 Page190f39 79

semantics of past and future includes the present, requires an additional X~ and X
operator in the translation of P¢ and F ¢, respectively. The set of agents A is finite
and the set of posts €2 is finite up to equivalent formulas. Therefore, the set of formulas
on the form (follow)(a, b) and (posted)(a, w) for any a, b, w is finite too and can
be translated into atomic posts in the set At.

It is well known that the model checking problem for LTL is in PSPACE (Sistla
& Clarke, 1985) and that adding the past operators to LTL does not increase the
expressivity of LTL®. Namely the model checking problem for LTL with past is also
in PSPACE (Markey, 2004).

Despite being in PSPACE, model checking LTL formulas can be done computation-
ally efficiently in practice (Schnoebelen, 2002) and numerous efficient model checking
tools have been developed. It has to be noted that current model checking algorithms
are exponential in size of the formula (describing the property). In many of our for-
mulas, the size (number of atoms) depends on the number of agents and number of
posts we would like to consider. These are numbers we can control and in most cases
we would be looking at a specific small number of posts and a part of the social net-
work. We might also be able to use results on model checking LTL on finite traces
(Fionda & Greco, 2016). Experiments are needed to establish true practical efficacy of
model checking with PLTL in our examples. It has been shown that for PLTL formulas
that satisfy the separation property, the SPIN model checker can be used efficiently
(Pradella et al., 2003). The NuSMV model checker (Cimatti et al., 2002) has a native
support for PLTL formulas.

7 Extending TNL: from an agent’s perspective

We look at an extension of Temporal Network Logic in which we switch our perspective
from the global view of a time point to the local view of a singular agent in the social
network, within the time point. The advantage of this extended version of TNL is that
it increases our expressive power and allows us to express specific properties from
each agent’s point of view such as “this agent is likely a bot” or “this agent is likely
following a bot”. The model checking algorithm for TNL given in Sect. 6.2 labels
time points ¢ in the model where a given formula is forced. Given a specific agent,
it is possible to check at what time points, if at all, this agent exhibited a particular
behavior. In this section, we give a model checking algorithm for the extended TNL.
This model checker labels pairs (a, ¢) of agents and time points. Therefore, checking
a formula representing a property such as “this agent is likely a bot” outputs not only
the time points, but also the agents for which this property is true. Model checking
these types of formulas might help identify bots in the network.

6 By the Gabbay theorem, any PLTL formula can be written as an LTL formula (Gabbay, 1989; Schnoebelen,
2002) however some properties can be more succinctly expressed in PLTL.

@ Springer

79 Page 20 of 39 Synthese (2023) 202:79

7.1 Syntax and semantics

This version of TNL where we evaluate formulas at agents in addition to time points,
we name Temporal Network Agent Logic, TNL,. The language of TNL, includes
elements from hybrid logic (Areces & ten Cate, 2007) such as a separate set Nom
of atomic propositions called nominals. In contrast to the set of posts At, an element
of Nom can only be true at one agent in a time point, and can therefore be taken to
represent the agent’s unique name. We also include a set of nominal variables Var.

Definition 5 (Syntax of TNL,) Let At, Nom and Var be sets of propositional atoms,
all finite and pairwise disjoint. We define the well-formed formulas of the language
L1, to be generated by the following grammar:

¢==pls|(follow)i,i) | (posted)(s,®) |~ |$p A | 0P| O "¢
Py | Fo|X¢|@p || x.¢b

wi=p|l-w|owAo

where p € At,s € NomUVar andi € Nom. We define propositional connectives like
Vv, — and the formulas T, L as usual.

The syntax of TNL, is the syntax of TNL with nominals, the hybrid operators @ and
J, and the diamonds ¢ and oL Intuitively, we read @ ¢ as “¢ is true at the agent who
is called s”. The other hybrid operator | x names the current agent x, such that we can
speak generally about this agent without knowing the actual nominal that is satisfied
there. We can read | x.¢ intuitively as “the current agent is called some specific
nominal such as 7, but we refer to it as the unique generic x, and ¢ is true at x”. We
read (¢ as “the current agent is being followed by an agent where ¢ holds” and ¢ ~!¢
as “the current agent follows someone where ¢ is true”. Additionally, the operators
(follow) and (posted) are now defined with nominals and nominal variables. The
reason behind this change is to be able to characterize the necessary axioms for the
relationship between the global (follow)-operator and the new local ¢ and 1. We
intuitively read (follow)(i, j) as “the agent called i follows the agent called j” and
(posted)(s, w) as “the agent called s posted @” or “w appears on the agent called s’
profile”.

The models of Temporal Network Logic already include two distinct binary rela-
tions on separate sets: the temporal relation < on the set of time points 7 and the
follower function N on the set of agents A. Yet, so far we have restricted our seman-
tics to evaluate formulas only at time points and not at agents. Taking advantage of this
existing model structure, we need to make minimal changes to the temporal network
model to be able to evaluate formulas also at agents. The only component that differs
is that the valuation function V,, now needs to be accommodated to nominals.

@ Springer

Synthese (2023) 202:79 Page210f39 79

Definition 6 (Temporal Network Agent Model) A temporal network agent model is
atuple M, = (A, T, <, N, V,, Posts) where all items except V, are defined as in
the case of a standard temporal network model. V, is defined as follows:

V, : AtUNom — P(A x T) where Va € A,Vt € T : 3i € Nom such that (a, t) € V,(i)
and Vi € Nom,Vt € T,Va,b € A : if (a,t) € V,(i) and (b, t) € V,(i), thena = b.

We call the tuple §, = (A, T, <, N) a temporal network agent frame.

V, is a valuation function that takes both atomic propositions and nominals as input.
The temporal network agent model is named, that is, for any agent in a time point, there
is a nominal satisfied there. Furthermore, this nominal is unique: the same nominal
cannot be true at two distinct agents in the same time point.

Before presenting the semantics of TNL,, we introduce the function
g : Var — A which assigns agents to nominal variables. We define an x-variant
of gas g;(x) =aand g} = g(y) forall y # x. Also, fors € Nom U Var, let [s]Pa-8
denote the agent whose name is s. For i € Nom, [i]mﬂ’g is the unique a in ¢ such
that (a,t) € V,(i). For x € Var, [x]immg = g(x). We continue to call elements in
At={p,q,...},aswellasNom = {i, j,...} and Var = {x, y,...}.

Definition 7 (Semantics of TNL,) Let M, = (A, T, <, N, V,, Posts) be a temporal
network agent model, a € A an agent, t € T a time point and g : Var — A an
assignment function. Truth conditions for TNL, are defined as follows:

Ma, g,a,t - piff (a,t) € V(p)
My, g a,t s iffa = [s]”¢ for s € Nom U Var
M, g, a,t - (follow)(i, j) iff [(]7¢ € N([j1™4, 1)
My, g,a,t - {posted)(s, w) iff w € Posts([s]m
My, g,a,tIF—giff M,, g, a,t ¥ ¢
Ma, g, a,tlFp Ay iff My, g,a,tlFdpand My, g, a,t -y
My, g,a,t - Q@ iff Ib € A suchthatb € N(a,t) and M, g, b, t I+ ¢
My, g, a, 1k O ' iff 3¢ € A such thata € N(c,t) and My, g, ¢, t IF ¢
My, g,a,t - Ppiff 3s € T suchthats < ¢t and M,, g,a,s I+ ¢
My, g,a,t - Feiff v € T suchthatt < vand M,, g,a,v k¢
My, g,a,tlFXpift My, g,a,t+11F¢

where ¢ + 1 is the immediate successor of ¢
My, g a,tl- @ iff My, g, [s17 8, 1+ ¢
My, g, a,t1-| x.¢iff My, g, a,11F ¢

«8 1) fors € Nom U Var

@ Springer

79 Page22o0f39 Synthese (2023) 202:79

7.2 Relations between the global and the local view

The extended logic TNL, naturally has to come with some principles establishing
the relationship between the old global and the new local formulas. We discuss a
selection of these principles characterized with axioms that must be valid on temporal
network agent frames to narrow down our class of frames to the ones we are interested
in.

Posting. Animmediate concern is to make sure that we cannot have a formula stating
that the current agent posted w, while the agent with the unique name of the current
agent did not. That is, we do not allow | x.(posted)(x,) and —(posted) (i, w) both
to be true when x and i refer to the same agent. Therefore this axiom must be valid
forall w € Q@ and all i € Nom.”.

@; | x.(posted)(x, w) <> (posted)(i, w)

Following. Another concern occurs in the context of the (follow) operator and the
¢ and ¢! operators: we exclude formulas such that an agent called i follows an agent
called j, when {i is false at the agent called j. We have a similar concern for the other
diamond. These axioms for all i, j € Nom characterize the properties that we want.

(follow)(i, j) < @;Qi
(follow)(j,i) <> @; 0 i

Global truth. The aim of extending our framework is to preserve the original time-
line in TNL, and to be able to evaluate formulas at agents. Therefore, we need to
ensure that atomic posts in At either hold at none or at all agents in the same time
point. Since our original interpretation of the atomic posts in Ly are true facts at
each time point, we do not want it to be the case in our new model that a fact is true for
some agent, but not for another. This property can be characterized with the following
axiom for all p € Atand alli € Nom.

p—> @ip

Names. Another important feature we want to preserve from the original timeline is
to characterize an agent unfollowing another with a formula such as (follow) (i, j) A
X—=(follow)(i, j). The X operator switches the evaluation of —(follow)(i, j) to the
next time step, and so it must be crucial to us that the names i and j refer to the same
agents for all time steps. If not, we cannot guarantee that it is the same agent called i
who unfollows the same agent called j as in (follow) (i, j) in the previous time point.
The property that all agents have the same name in all time points can be characterized
with this simple axiom for all i € Nom.

i — Gi

7 Although we will not include a complete axiomatic system for TNL, in this paper, it is likely that an
axiomatization would include standard hybrid axioms for the hybrid logic K7/ (@, ;) (Blackburn & ten Cate,
2006) The axiom presented here also follows from the (D A)-axiom in this known axiomatic system.

@ Springer

Synthese (2023) 202:79 Page230f39 79

We conjecture that TNL, is complete, but leave a complete axiomatic system for
TNL, to future work. More specifically, we conjecture completeness both with respect
to temporal network agent frames, and also the subclass of frames that have the desir-
able relationships between global and local, with the use of the previously mentioned
axioms. The reason for this assumption is, mainly, the observation that our frames
are indexed (Balbiani & Ferniandez Gonzalez, 2020). Indexed frames are relational
structures (W', W2, R!, R?) with two sets of worlds and two binary relations such
that R! is a family of relations {RLIU :w € Wi} on W and R? is a family of rela-
tions {jo :w € Wh} on Wy. The frames of TNL,, are essentially such structures: the
following-relation N is a family of relations on the set of agents A, indexed for each
time point in 7. The temporal relation < is a relation on the time points, and could be
formalized as being a family of relations indexed by each agent in A, although for all
agents a, <, would refer to the same set. Completeness results for logics on indexed
frames, also for hybrid logics, have been extensively researched by Balbiani and Fer-
nindez Gonzdlez (2020, 2021) and Ferndndez Gonzdlez (2021), and will provide
valuable input for our work on TNL,,.

7.3 Formulasin TNL,

In this section we present some of the formulas in TNL,, related to the existence of
social bots in a network and the powerful positions they may hold. With the use of the
local diamond modalities and the hybrid operators, we can begin to analyze properties
that, by zooming in on a specific agent, holds either of me, or the agents / am following
or being followed by.

1. I posted p for the first time now:
y x.(posted)(x, p) A —=P{(posted)(x, p)

2. Someone who follows me now, has posted false information in the past:

QP \/ I x(posted)(x, w) N —w

we2

3. I am following someone now who will have a bursty nature in the future (and
therefore likely is a bot):

O7'F L x.(\/ (posted)(x.w1) A A (posted)(x, o))

W1,y wp €N
Vn#k:wp Fwk

alot

Ainactive_long(x))

It is interesting to note that the hybrid language lets us analyze particular properties
of the network structure, and likely powerful positions that agents inhabit. One such

position is called a local gatekeeper (Easley & Kleinberg, 2010). In our context, an
agent a is a local gatekeeper if and only if there are two other agents, called b and

@ Springer

79 Page 24 of 39 Synthese (2023) 202:79

¢, who both follow and are being followed by a, but does not have any follower-
relationship with each other. The reason a is called a local gatekeeper between b and ¢
is that it is likely that information from b to ¢, or vice versa, would go through a. It is
therefore reasonable that we would be interested in whether or not a is a trustworthy
agent. With the language of TNL, we can formalize properties such as the following.

4. T am following someone now who posted false information in the past, and is a
local gatekeeper between me and another agent:

J x.07! Jy.(mx A (P \/ (posted)(y, w) A —~w)

we

AOTIXAOT L z.(mx A=y AOTI Y A =0x A @,—02))

Another property we can define with formulas in L7y, is a least number of
followers for the current agent or any of their relations. When analyzing the network,
knowing the number of followers is crucial to be able to discuss a particular agent’s
power to be heard.

5. Tam being followed by someone who has at least three followers:
Ol x0ly(—xA@0 | z.(0cx Ay A @ O(—x A=y A —Z2)))

The list of sentences we have included is only a minor selection of possible proper-
ties we could have mentioned. The aim is rather to show some examples of properties
we can express in TNL, which we could use a model checker to check for in the
network.

7.4 Model checking TNL,

We introduce a model checking algorithm for TNL,. As in the case of TNL, we start
by assuming that we have gathered data from a real-life social network and can use
this to develop, in this case, a finite fragment of a TNL, model. The TNL, model is, as
the TNL model, an infinite timeline whereas gathered social network data will always
be finite. To depict this finite information as a TNL, model, we therefore define an
equivalent to the finite fragments of TNL.

Definition 8 (Finite Fragments of Temporal Network Agent Models) A finite fragment
of a temporal network agent model M, = (A, T, ~¢, N, V,, Posts) is atuple where
all elements except ~ ¢ are defined as in a temporal network agent model. ~ ¢ is a
binary relation on 7 which is a finite linear order in which all points are irreflexive
except the last reflexive point.

Finite fragments of temporal network agent models are finite timelines with social
network information, in which the last irreflexive point is a reflexive deadlock point.
The reason for this final deadlock point is to keep the semantics of the X operator
well-defined. The semantics for formulas in L7y, on finite fragments are defined as
in the case of temporal network agent models.

@ Springer

Synthese (2023) 202:79 Page250f39 79

The model checking algorithm for TNL, builds on the model checking algorithm
MCFULL for hybrid logic given by Franceschet and de Rijke (2006), with some substan-
tive differences accommodated for our setting. Classical hybrid logic models only have
one relational structure, as opposed to the two relations ~ y and N in finite fragments
of temporal network agent models. This difference is also reflected in L7, which is
richer than the tense hybrid logic language given by Franceschet and de Rijke (2006)
and includes both X¢, O, O~'¢ as well as the (follow)- and (posted)-formulas.

For the standard hybrid language without the binder |, Franceschet and de Rijke
(2006) introduce a model checker MCLITE that takes a finite hybrid model M =
(M, R, V), an assignment function g and a formula ¢ as input. After termination
of the procedure, each state in the model is labeled with all the subformulas of ¢
forced at that state. Its algorithm updates a table whose elements are bits. We also
begin by defining a model checker for the language of TNL, without |, from here
on called L7y ,e- Our procedure is based on a similar method, but the table of bits
needs to be three-dimensional as opposed to the two-dimensional table of MCLITE.
The subroutines introduced in the following also all include details that are uniquely
defined for TNL,.

The model checker MCe receives a finite fragment My, = (A, T,~7, N, V,,
Posts), an assignment function g and a formula ¢ in L7y7,,. It outputs the finite
fragment where all states are labeled by the subformulas of ¢ which hold at the
respective states. Like the model checking algorithm MCLITE, MCe goes through
the subformulas of ¢ starting with the shortest and working upwards in increasing
order of length. Boolean connectives are handled in a standard way.

MCe updates a table L of bits of size |¢| x |A| x |T|. Note that the size of L is
finite, as both A and T are defined as finite in M1 7. We denote sub(¢) = {a, B, ...}
for the set of subformulas of ¢. Initially, for each element in the table L(o, a,t) = 1
if and only if:

« is an atomic post in sub(¢) such that (a, t) € V,(x);

o is a nominal in sub(¢) such thata = [i]mfa-g;

o is a formula (follow) (i, j) in sub(¢) such that [/17Va-8 € N([j]1¥a-8, 1); or,
o is a formula (posted)(s, w) in sub(¢) such that w € Posts([s]7a-8, 1).

When MCe terminates, L(«, a,t) = lifand only if M, , g,a,t I o foralla € A,
t €T and @ € sub(¢).

For formulas on the form O«, O~ ', Pa, Fo, X and @ ;a, MC relies on subrou-
tines mcy, mcg-1, MCp, MCF, MCX and mce, respectively. We give the subroutines
mcg, mcr and mce, and explain how the other routines can be defined. For subrou-
tine mc¢ in Algorithm 2, define the set N —1 guch that for anya,be Aandt €T :
be N(a,t) iffa € N~ (b, 1). Also define L(«) as the set of pairs (a, t) in the table
L where L(a,a,t) = 1.

The procedure mce-1 can be defined similarly as in the case of mc¢, where
N~Ya, 1) is exchanged with N(a, t) and line 3 states L(OYa, b, 1) < 1 instead.
For subroutine mcr in Algorithm 3 define the set < (1) = {s € T | s < t}.

The procedures mcp and mcyx can be defined similarly as mcr. In mcp, < (¢)
should be exchanged with the set > (1) = {v € T | t < v} and line 3 should rather
state L(Pa, a, s) < 1. In the case of mcy, instead of < (¢), define the set <! (¢) to be

@ Springer

79 Page 26 of 39 Synthese (2023) 202:79

Algorithm 2 Procedure mc¢, (My,, g, @)

1: for (a,t) € L(x) do
2: forbe N l(a, 1) do

3: L(Qa,b,t) <1
4: end for
5: end for

Algorithm 3 Procedure mcp (My,, g, @)

1: for (a,t) € L(x) do
2: fors e< (tr)do

3: L(Fa,a,s) <1
4: end for
5: end for

the set of states reachable one step in the past, in other words the set of the immediate
predecessors of 7. Recall that this set would be defined as pre({t}) using the notation
from the model checking algorithm of TNL in Sect.6. In mcy, line 3 should state
L(Xa,a,s) < linstead of L(Fa, a,s) < 1.

Algorithm 4 Procedure mce (My,, g, s,)

1: fort € T do
2 let {a) = [s]7Var8

3: if L(«,a,t) =1 then
4: for b € Ado

5: L(@ga,b,t) < 1
6: end for

7: endif

8: end for

Proposition3 Let My = (A, T,~r, N, V,, Posts) be a finite fragment of TNL,, g
an assignment function and ¢ a formula in LT N1, the language of TNL, without the
binder |,. The model checker MCe (M y,, g, ¢) terminates in time O(AP? x |T|? x

| ~f I x19D.

Proof The proof follows the similar proof of the complexity of MCLITE, Theorem 4.3
(Franceschet & de Rijke, 2006). MC @ checks all subformulas of ¢, in total |sub(¢)| =
|¢| formulas. To determine the initial state of the table, one needs to check |V, | times
if & is an atomic post or a nominal, |N| times if « is on the form (follow)(i, j) and
| Posts| times if « is on the form (posted)(s,). Since V,, N and Posts depend on
A x T, the complexity of determining the initial state is O(|A| x |T|). The complexity
of checking each subformula o depends on the main operator in . Recall that ~ 7 is the
binary relation in 91 s, which is a finite linear order in which all points are irreflexive
except the last reflexive point. The cardinality | ~ ¢ | is the number of elements in ~ ¢,
i.e. the number of transitions from a time point to another in 9 ¢, plus 1 for the last
reflexive point. Subroutine mc¢, is the routine with the highest complexity to check,
and is checked in time O(|A| x |T'| x| ~ ¢ |). Therefore, MC@ (My,, g, ¢) terminates
intime O(|A|? x |T)? x | ~¢ | x |$]). |

@ Springer

Synthese (2023) 202:79 Page270f39 79

We introduce the model checker MC, for the full language of TNL,. MC, uses the
same combination of bottom-up and top-down strategy as the model checker MCFULL
(Franceschet & de Rijke, 2006). It is a recursive model checker, which, as MCe,
updates a three-dimensional table L of bits. For each formula ¢, all subformulas
where the main operator is not the hybrid binder | is checked using the subroutines
from MCe. If the main operator is the hybrid binder |, the formula is on the form
J x.a. First, for each time point ¢ and for each agent a, we assign a to x. Then, we
check « at ¢ and a, using the subroutines from MC@, with the new assignment for x.
MC, uses the same procedures check, for x € {0, Ol P, F, X, @} asin MCFULL,
shown in Algorithm 5.

Algorithm 5 Procedure check. (My,, g, o)

1: MCi(imfu, g,)
2: mex(My,,, g, &)

The procedure check is shown in Algorithm 6. check| uses a new subroutine
clear (L, x, t) which resets all values of L(«), where x is free in v, in . As in MCeq,
Boolean operators are treated as usual.

Algorithm 6 Procedure check (My,, g, x, &)

1: fort € T do

2: forae Ado

3 g(x) «<—a

4 MC My, , g,)

5: if (a,) € L(«) then
6: L x.a,a,t) <1
7

8

9

end if
clear(L,x,t)
end for
10: end for

Proposition4 Let My = (A, T,~r, N, V,, Posts) be a finite fragment of TNL,, g
an assignment function and ¢ a formula in L1 y1,. Let r| be the nesting degree of |.
The model checker MC (M, , g, ¢) terminates in time O(|A|**" x |T [>T x | ~
| X |@|) and uses polynomial space.

Proof The proof follows closely the proof of the complexity of MCFULL, Theorem
4.5 (Franceschet & de Rijke, 2006). The procedure check, runs in time C, + Ci
where C,, is the cost of checking o and C, is the cost of the subroutine mc, for each
x € {0, 0!, P, F, X, @). The procedure check runs in time |A| x |T| x Cq. Let
Cuc, denote the complexity of MC @ . The worst case time complexity is O(Cprcq X
(Al < [TH™) = O] x| ~f | x (JA] x [T])2t71). As in the case of MCFULL, the
height of the recursion stack for MC is at most the length of the formula ¢, thus MC
uses polynomial space. O

@ Springer

79 Page 28 of 39 Synthese (2023) 202:79

8 From real-life networks to TNL models

In this section, we propose a method to build temporal network logic specifications
of social networks. The motivation is to take a set of snapshots of an existing social
network, and translate this into a TNL model. With this model, we can check our
bot detecting formulas to see if it is likely that there are bots in the network. The
method relies on some initial assumptions about the network which we discuss before
introducing an algorithm that renders snapshots of a network into a temporal network
model.

8.1 Assumptions

Information about social networks can either be gathered directly or acquired as a
dataset with already existing social network data. To be able to build a temporal network
model from social network data, we make some assumptions about the network which
we want to gather the data from.

1. The social network is a set of agents that can post and have a relation to each other.
We do not put restrictions on how posting is implemented, or whether the relation
is an asymmetric follower-relation or a symmetric friend-relation. A symmetric
friendship in the real-life network can be translated into mutual followership in the
TNL model.

2. Time transition is based on a given interval. We define transition of the net-
work from one time state to another based on a set time interval, such as one
second or twenty-four hours. Input of the algorithm is therefore a set of ordered
snapshots of the social network. We define a snapshot to be a dataset contain-
ing information about the agents, their posts and relations at given moments in
time.

3. External natural language processing algorithm. To represent natural language
posts as logical w-formulas, we need to rely on human analysis, or an external
program which can translate natural language into logical formulas with Boolean
operators.

4. External fact-checking algorithm. The set of true propositions at every time
step, determined by the valuation function V in a temporal network model,
needs to be established by an external fact-checking algorithm. Work towards
this end has been explored in the literature, as for instance shown by Thorne
and Vlachos (2018). In this context, such an algorithm would have to work
in collaboration with the natural language processing algorithm mentioned
above.

8.2 Building a TNL model
The translation algorithm, shown in Algorithm 7, takes as input ordered snapshots of
a social network, as well as the valuation function V from an external fact-checking

program, and outputs a finite fragment of a temporal network model M s = (A, T', ~¢

@ Springer

Synthese (2023) 202:79 Page290f39 79

, N, V, Posts). Note that the output here is a finite fragment of TNL, and not a finite
fragment of TNL,. To build a finite fragment of TNL,, the algorithm would take a
nominal valuation V,, instead of V as part of the input. The rest of the algorithm would
remain the same.

T is a set of natural numbers of the same size as the set of snapshots. Recall
that a snapshot is a dataset that contains information about agents in the net-
work, their posts and relations at given moments in time. For each element ¢
in T, the ordered pair of (¢, + 1) is added to ~, to construct a strict lin-
ear order (line 3). From each snapshot, every agent that is a node in the social
network snapshot is added to A (line 5), relations are added to N (line 7) and
posts are added to Posts (line 10). Then the reflexive deadlock state is added
(line 16) and the program returns the model (line 17). The algorithm runs in
linear time on the number of agents, connections and posts in the social net-
work.

Algorithm 7 Building a finite fragment of a temporal network model from snapshots
of a social network

Input: Ordered snapshots of a social network, enumerated from 1 to n, V

Parameter: Set of natural numbers 7 = {1, ..., n} of size n with its standard ordering, each element
referring to a snapshot

Output: Dﬁf =(A,T, ~f N, V, Posts)

=1

2: fort € T do

3: if r # n then

4: add r,t+ Do~y

5 end if

6: if a is a node in snapshot of network then
7 addato A

8 if a follows node b then

9: adda to N(b, t)

10: end if

11: if post w is on a’s profile then
12: add w to Posts(a,t)

13: end if

14: endif

15: end for

16: Addn +1toT andadd (n + 1,n + 1) to ~ .
17: return (A, T, ~f N,V, Posts)

9 Conclusion and future directions

In this paper, we explored social bot detection as a model checking problem. We
represented social networks as logical models and characterized bot behavior as for-
mulas; thus, checking whether the formula is satisfied in the model detects whether
to expect bots in the network. We first presented examples of bot behavior based on
empirical literature and existing bot detectors. Then, we reviewed related work before
we introduced Temporal Network Logic and showed some of the network and agent

@ Springer

79 Page 30 of 39 Synthese (2023) 202:79

properties we can formalize in the language. We also showed that TNL is sound and
weakly complete. Then, we presented bot behavior formulas corresponding to the
earlier assessed properties of social bots. We gave a model checking algorithm for
finite fragments of TNL models, and showed that it runs in polynomial time. We also
showed the reduction of the model checking problem for TNL to the model checking
problem for past linear-time temporal logic and discussed the complexity of model
checking for bot detecting through this translation. We then presented an extension
of TNL, named TNL,, where we explored the expressive power of adding hybrid
elements to the language and evaluating formulas not only at time points, but also
at agents in the network. We introduced a model checking algorithm for finite frag-
ments of TNL, and showed that its complexity is in PSPACE. The paper ended by a
proposal for a way to build finite fragments of TNL models from real social network
data.

Completeness for TNL,, is still an open problem. In future work, we want to use
the axiomatic system for TNL as well as literature on indexed frames (Balbiani &
Fernandez Gonzilez, 2020, 2021; Ferndandez Gonzalez, 2021) to provide a complete
axiomatization of TNL,.

Temporal network models keep the whole social network through the entire
timeline. As was mentioned by one of the reviewers, an alternative to TNL mod-
els is to rather have a framework that defines an initial model and only track
the necessary changes. We believe this could be done in a Dynamic Epistemic
Logic-style setting by using event models to track changes from a given outset.
It will be interesting to study the model checking problem for the language of
TNL on this type of models. A proper exploration of this idea is left to future
work.

We also hope to be able to empirically evaluate our detection method, and check its
efficiency vis-a-vis standard machine learning methods. The verification can be done
in at least one of two ways: either by implementing the model checking algorithms
for finite fragments of TNL and TNL, models, or by using an LTL model checker
such as SPIN (Holzmann, 1997), LTSmin (Kant et al., 2015) or NuSMV (Cimatti et
al., 2002). One of the challenges is to substitute human input for the natural language
and fact checking tasks.

@ Springer

Synthese (2023) 202:79 Page310f39 79

Acknowledgements We would like to thank the anonymous reviewers for insightful comments and useful
suggestions for improvements. This also includes the reviewers of the conference proceedings paper which
this paper is an extension of. A big thank you to Rustam Galimullin, Valentin Goranko and Thomas Agotnes
for discussion and expertise.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).
Funding was provided by L. Meltzers Hgyskolefond.

Declarations

Conflict of interest There is no conflict of interest to declare.
Research invloving human and animal rights The research did not involve human and animal participants.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Proof of Theorem 1

See Table 2.

Table 2 Axiomatization of TNL

1.(CT) All classical tautologies
2.(Kg) G — ¥) = (G — GY)
3.(Kg) FH(p—>v)—> (Hp— HY)
4.(GP) F¢—> GP¢

5.(HF) F¢—> HF¢

6. (Kx) EX(@—¥) —> (X¢ > Xy)
7.(FUNC) F X—¢ < —X¢

8.(FP}) FGo — (Xp A XGo)
9.(IND™T) FG@— X¢p) = (X — Go)
10. (MP) If ¢and - ¢ — then -
11. (US) If = ¢ then - ¢, for o a substitution
12.(TGg) If - ¢ then - G¢

13. (TG) If ¢ then - H¢

@ Springer

http://creativecommons.org/licenses/by/4.0/

79 Page 32o0f39 Synthese (2023) 202:79

Theorem 1 TNL is sound and weakly complete with respect to temporal network mod-
els.

Proof The proof closely follows the proof of completeness for DX by Gabbay et al.
(1980) with details from standard proofs of completeness for various tense logics
(Blackburn et al., 2001; Venema, 2001). Soundness is established by showing valid-
ity of the axioms, and that the rules preserve validity. We omit details on proof of
soundness.

A classic proposition in modal logic states that a logic L is weakly complete with
respect to a class of frames § if and only if every L-consistent formula is satisfiable
on a frame F € § (Blackburn et al., 2001). Let ¢ be an arbitrary consistent formula.
We want to show that ¢ is satisfiable on some TNL frame. We define the canonical
model MTNE = (WINE RENL RINL RINL yTNL) where:

o WTNL s the set of all maximal consistent sets of formulas in TNL;

e RINL is a binary relation on W7V such that (A, ©) € RENE iff for all :
G{ € A implies ¥ € ©;

° R[ENL is a binary relation on W7V such that (A, ®) e RZ,NL iff for all ¢ :

Hvyr € ® implies Y € A;

RINE is a function from WTNL to the power set of L7y, defined such that

RN (M) ={y | Xy € A);

VTNL is the valuation defined by

- VINE(p) ={A e WINE | p e A},
- VINL((follow)(a, b)) = {A € WINL | (follow)(a, b) € A},
- VINL((posted)(a, w)) = {A € WINL | (posted)(a, w) € A}.

For simplicity, we write A < @if (A, ®) € REN and A > ©if (A, ©) € RLNE.
9TNL s identical to the canonical model S by Gabbay et al. (1980), except for
the added relation RLN L and that the valuation function in S only takes standard
atoms as input. Using the axioms (G P) and (H F) we can prove that for any A, ® €
WINL . A < @ iff ® > A. This is a standard proof in tense logic (Blackburn
et al., 2001). The result implies that RgN L and RIT_IN L is the same relation, and we
only need to define R(T;N L and R,T(N L in the canonical model. Therefore, the frame
structure of M7 VL is now the same as S. From now on, the proof follows Gabbay
et al. (1980). It is shown that for every A € WTNL - RgNL(A) e WINL and that
forall A,®, T € WINL . ifA < ©®,A < T and ® #I,then® <Tor"' < O.
It is also shown that if Fiy € A, then for some ® : A < ® and ¥ € ©. The
canonical relation R{;N L on the set WT'NL is therefore a linear order consistent with
F, but it is not irreflexive. We will use the closure of a formula to build a finitely
representable model that represents the natural numbers and their ordering. Proving
completeness by constructing a model based on the closure of a formula is also used
in weak completeness proofs for other non-compact logics such as S5 with common
knowledge (van Ditmarsch et al., 2008) and propositional dynamic logic (Blackburn
et al., 2001).

We define the closure cl(¢) of ¢ to be the smallest set such that for any ¥:

o ¢ ccl(¢);

@ Springer

Synthese (2023) 202:79 Page330f39 79

if ¥ € cl(¢), then Sub(yr) C ¢, where Sub(1)) is the set of subformulas of yr;
cl(¢) is closed under Boolean operators;

if Fyr € cl(¢), then Xy, XFr € cl(¢);

if Xy € cl(¢), then X € cl(¢).

Now, define the set WI'NL = {A Ncl(¢) | A € WI'NL} and the binary relations
ox, pc on WINL gych that:

e (t,5) € px iff for some A € WINE .t = Ancl(¢) and s = RYVE(A) Nel(9);
e (1,5) € pg iff for some A,® € WINL : A < ®@andtr = AN cl(¢p) and
s =0 Ncl(p).

Gabbay et al. (1980) show that pg is the transitive closure of px using the axiom
(IND™).

Then, we define our final model. Let 5o be an element of WTNL such that ¢ € so.
Let S, be a sequence of states from WTNL guch that for any t € WINL if t = ;
for infinitely many i, then every u such that (¢, u) € px is also equal to infinitely
many s;. That is, if a state appears infinitely many times in the sequence, then so
does each of its successors. Our final model is the sequence S, with the valuation
function VTNL which is defined as V7L but with respect to elements in W7NL
instead of W/ VL. S, is a strict linear order with no end. A truth lemma is proved by
induction by Gabbay et al. (1980): that in the language of DX, for any ¥ € cl(¢) :
(Sp, VINL) s, IF 4 iff ¢ € s,. For the language of TNL, we must make sure the
proof also holds for the past operator and the (follow)- and (posted) formulas. For
formulas on the form (follow)(a, b) and (posted)(a, w), the induction proof can be
extended to handle two additional separate base cases. We prove the case for i is
Py.

Induction hypothesis: for any x € cl(¢) : (S, VINL) 5, IF x iff x € s,,.

Y is Px: (=) Suppose that (S,, VINL) s, I Px for Py € cl(¢). Then
3s,, € WTNL guch that (s,,, 5,) € pg and (S,, VINL) s, I+ x. Thus, for some
A,®eWINL A < ®ands, = ANcl(p) and s, = O N cl(¢). By the induction
hypothesis, x € s,,.Hence, x € A.Then, Px € ©.Since Py € cl(¢) by assumption,
it follows that Px € s,,.

(<) Suppose that Py € s,. s, = A Ncl(p) for some A € WINL and
therefore Px € A. As mentioned earlier in the proof, Gabbay et al. (1980) show
that for any v, any I € WINL. if Fy € T, then for some ® : I' < ® and
Y € ©. We assume that by the same reasoning, we have that for any v, any
I' € WINL.if Py € T, then for some ® : ® < I' and ¢ € O. This step
is common in standard completeness proofs for tense logics, see for instance (de
Jongh et al., 2004). It follows that for some ® : ® < A and x € ©. Since c/(¢)
is closed under subformulas and Py € cl(¢), we have that x € cl(¢). Thus,
X € © Ncl(¢). By the induction hypothesis (S,, VINL), © N cl(¢) I x. Hence,
(Sp, VINLY s, IF Px.

We have now proved that the truth lemma holds also for formulas in L7y, Since
¢ € so, it follows that ¢ is satisfied in (S,, VTNL). We can build a TNL model from

@ Springer

79 Page 34 of39 Synthese (2023) 202:79

(S,, VINL) by letting A = Ag and by splitting the valuation function into three with
respect to atoms, (follow)- and (posted) formulas. Proof of completeness follows.
O

Appendix B: Details on the model checking algorithm for TNL

In this section of the appendix, we give the subroutines SATp, SATr and SATy which
Algorithm 1 calls in lines 8—10. The functions require the following definition.

Definition 9 (Pre and Post-time) Let My = (A, T,~¢, N, V, Posts) be a finite
fragment of a temporal network model and § € T. We define the pre and post sets
of time points:

pre($)={teT |3 :t'=t+1andt € S}
post(S) ={teT |3 :{'=t—1and?t €S}

Intuitively, pre(S) is the set of time points that immediately precede each member
of § and post(S) the set of time points that immediately follow S. For example, if 901 ¢
models natural numbers from 1 to 6 in increasing order and we let § = {3, 4}, then
pre(S) = {2, 3} and post(S) = {4, 5}. The subroutines of Algorithm 1 are defined
in Algorithms 8, 9 and 10.

Algorithm 8 Function SATp(¢) determining the set of time points that satisfy P¢
Input: Finite fragment sz =(A,T,~¢,N,V, Posts), formula ¢ € LTNL

Output: The set satp of time points in M where P¢ is satisfied

1: satp :=0

2: Y := post(SAT (¢));

3: repeat until Z = sarp

4: Z = satp;

5: satp :=Y U post(satp);

6: end

7: return satp

In Algorithm 8, we define function SATp (¢) which produces a set of time points
satp inthe given model 901 where P ¢ is satisfied for a given formula ¢p. The algorithm
relies on two local variables Y and Z. We call SAT (¢) from Algorithm 1 to define
the post set of SAT (¢) (line 2). Then, we introduce the iterated steps of the function
(lines 3-6). The function takes the post set of SAT (¢), all the time points strictly
after each time point where ¢ is satisfied (line 4). In each iterative step, the variable
includes the post set of that previous post set, until there is no change (line 5). The
output returns the set sazp of all post sets of post sets of ... of SAT (¢) (line 7). The
next Algorithm 9 is similar, but uses the pre sets instead of post sets.

Algorithm 10 defines function SATx(¢) which determines the set saryx of time
points in 91y where X ¢ is satisfied. Like the previous algorithms, this algorithm also
calls SAT (¢) from Algorithm 1 (line 1). Then, it simply defines the pre set of SAT (¢)
(line 2) and outputs this set (line 3).

@ Springer

Synthese (2023) 202:79 Page350f39 79

Algorithm 9 Function SATr(¢) determining the set of time points that satisfy F¢

Input: Finite fragment sz =(A,T,~¢,N,V, Posts), formula ¢ € LTNL
Output: The set satp of time points in 9 where F¢ is satisfied

s satp =0
1Y = pre(SAT (¢));
: repeat until Z = satp
Z = satp;
satp =Y U pre(satp);
end
: return satp

Algorithm 10 Function SATx (¢) determining the set of time points that satisfy X¢
Input: Finite fragment EITIf =(A,T, ~f N,V, Posts), formula ¢ € Loy

Output: The set saty of time points in 901 ¢ where X¢ is satisfied

1: X := SAT (¢);

2: saty := pre(X);

3: return saty

References

Areces, C., & ten Cate, B. (2007). Hybrid logics. Studies in logic and practical reasoning. InJ. van Benthem,
P. Blackburn, & F. Wolter (Eds.), Handbook of modal logic (Vol. 3, pp. 821-868). Elsevier.

Balbiani, P., & Fernandez Gonzdlez, S. (2020). Indexed frames and hybrid logics. In International Con-
ference on Advances in Modal Logic (AiML 2020), Aug 2020 (pp. 56-72). Finland: University of
Helsinki.

Balbiani, P., & Ferndndez Gonzilez, S. (2021). Orthogonal frames and indexed relations. In A. Silva, R.
Wassermann, & R. de Queiroz (Eds.), Logic, Language, Information, and Computation. WoLLIC 2021.
Lecture Notes in Computer Science (Vol. 13038, pp. 219-234). Springer. https://doi.org/10.1007/978-
3-030-88853-4_14

Baltag, A., Christoff, Z., Rendsvig, R. K., & Smets, S. (2019). Dynamic epistemic logics of diffusion and
prediction in social networks. Studia Logica, 107(3), 489-531.

Belardinelli, F.,, & Grossi, D. (2015). On the formal verification of diffusion phenomena in open dynamic
agent networks. In Proc. of the 14th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), May 2015 (pp. 237-245). Istanbul, Turkey.

Belardinelli, G. (2019). Gatekeepers in social networks: Logics for communicative actions. Master of Logic
Thesis Series, MoL-2019-20, ILLC, University of Amsterdam.

Bernardeschi, C., Mercaldo, F., Nardone, V., & Santone, A. (2019). Exploiting model checking for mobile
botnet detection. Procedia Computer Science, 159, 963-972.

Blackburn, P, de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge University Press.

Blackburn, P., & ten Cate, B. (2006). Pure extensions, proof rules, and hybrid axiomatics. Studia Logica,
84(2), 277-322.

Cao, Q., Sirivianos, M., Yang, X., & Pregueiro, T. (2012). Aiding the detection of fake accounts in large
scale social online services. In Proc. of the 9th USENIX symposium on Networked Systems Design
and Implementation (NSDI 12) (pp. 197-210).

Chang, H.-C., & Iyer, H. (2012). Trends in twitter hashtag applications: Design features for value-added
dimensions to future library catalogues. Library Trends, 61(1), 248-258.

Christoff, Z., & Grossi, D. (2017). Stability in binary opinion diffusion. In A. Baltag, J. Seligman, & T.
Yamada (Eds.), Logic, rationality, and interaction. LORI 2017. Lecture Notes in Computer Science
(Vol. 10455, pp. 166-180). Springer. https://doi.org/10.1007/978-3-662-55665-8_12

Christoff, Z., & Hansen, J. U. (2015). A logic for diffusion in social networks. Journal of Applied Logic,
13(1), 48-717.

Christoff, Z., Hansen, J. U., & Proietti, C. (2016). Reflecting on social influence in networks. Journal of
Logic, Language and Information, 25(3), 299-333.

@ Springer

https://doi.org/10.1007/978-3-030-88853-4_14
https://doi.org/10.1007/978-3-030-88853-4_14
https://doi.org/10.1007/978-3-662-55665-8_12

79 Page 36 of 39 Synthese (2023) 202:79

Chu, Z., Gianvecchio, S., Wang, H., & Jajodia, S. (2012). Detecting automation of twitter accounts: Are you
a human, bot, or cyborg? IEEE Transactions on Dependable and Secure Computing, 9(6), 811-824.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., & Tacchella,
A.(2002). NuSMYV 2: an opensource tool for symbolic model checking. In E. Brinksma & K. G. Larsen
(Eds.), Computer aided verification. CAV 2002. Lecture Notes in Computer Science (Vol. 2404, pp.
359-364). Springer. https://doi.org/10.1007/3-540-45657-0_29

Clarke, E. M., & Emerson, E. A. (1981). Design and synthesis of synchronization skeletons using branching
time temporal logic. In Logics of Programs. Logic of Programs 1981. Lecture Notes in Computer
Science (Vol. 131, pp. 52-71). Springer. https://doi.org/10.1007/BFb0025774

Cresci, S. (2020). A decade of social bot detection. Communications of the ACM, 63(10), 72-83.

Cristani, M., Olivieri, F., & Santaca, K. (2020). Social networks as communication channels: a logical
approach. In M. Brambilla, C. Cappiello, & S. H. Ow (Eds.), Current trends in Web Engineering.
ICWE 2019. Lecture Notes in Computer Science (Vol. 11609, pp. 61-73). Springer. https://doi.org/
10.1007/978-3-030-51253-8_8

Dennis, L. A., Fu, Y., & Slavkovik, M. (2022). Markov chain model representation of information diffusion
in social networks. Journal of Logic and Computation, 32(6), 1195-1211.

Dennis, L. A., & Slavkovik, M. (2020). Model-checking information diffusion in social networks with
prism. In N. Bassiliades, G. Chalkiadakis, & D. de Jonge (Eds.), Multi-agent Systems and Agreement
Technologies. EUMAS 2020. Lecture Notes in Computer Science (Vol. 12520, pp. 475-492). Springer.
https://doi.org/10.1007/978-3-030-66412-1_30

Dennis, L. A., Slavkovik, M., & Fisher, M. (2017). “How did they know?”—Model-checking for analysis
of information leakage in social networks. In S. Cranefield, S. Mahmoud, J. Padget, & A. P. Rocha
(Eds.), Coordination, Organizations, Institutions, and Norms in Agent Systems XII. COIN COIN 2016
2016. Lecture Notes in Computer Science (Vol. 10315, pp. 42-59). Springer. https://doi.org/10.1007/
978-3-319-66595-5_3

van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2008). Dynamic epistemic logic. Springer.

Easley, D., & Kleinberg, J. (2010). Networks, crowds and markets. Cambridge University Press.

Fernandez Gonzalez, S. (2021). Logics for social networks: Asynchronous announcements in orthogonal
structures. PhD thesis, Université de Toulouse.

Fernandez Gonzilez, S. (2022). Change in social networks: Some dynamic extensions of social epistemic
logic. Journal of Logic and Computation, 32(6), 1212—-1233.

Fionda, V., & Greco, G. (2016). The complexity of LTL on finite traces: Hard and easy fragments. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 30, No. 1). https://doi.org/10.
1609/aaai.v30i1.10104

Franceschet, M., & de Rijke, M. (2006). Model checking hybrid logics (with an application to semistructured
data). Journal of Applied Logic, 4(3), 279-304.

Gabbay, D. (1989). The declarative past and imperative future. In B. Baniegbal, H. Barringer, & A. Pnueli
(Eds.), Temporal Logic in Specification. Lecture Notes in Computer Science (Vol. 398, pp. 409-448).
Springer. https://doi.org/10.1007/3-540-51803-7_36

Gabbay, D., Pnueli, A., Shelah, S., & Stavi, J. (1980). On the temporal analysis of fairness. In Proceedings
of the 7th ACM SIGPLAN-SIGACT symposium on principles of programming languages. POPL ’80
(pp. 163-173). Association for Computing Machinery.

Galimullin, R., Pedersen, M. Y., & Slavkovik, M. (2022). Logic of visibility in social networks. In A. Cia-
battoni, E. Pimentel, & R. J. G. B. de Queiroz (Eds.), Logic, Language, Information, and Computation.
WoLLIC 2022. Lecture Notes in Computer Science (Vol. 13468, pp. 190-206). Springer. https://doi.
org/10.1007/978-3-031-15298-6_12

Gilani, Z., Kochmar, E., & Crowcroft, J. (2017). Classification of twitter accounts into automated agents
and human users. In Proc. of the 2017 IEEE/ACM international conference on advances in social
networks analysis and mining (pp. 489—496).

Gorodnichenko, Y., Pham, T., & Talavera, O. (2018). Social media, sentiment and public opinions: Evidence
from #brexit and #uselection. National Bureau of Economic Research: Technical report.

Grandi, U., Lorini, E., Novaro, A., & Perrussel, L. (2017). Strategic disclosure of opinions on a social
network. In Proceedings of the 16th conference on autonomous agents and multiagent systems. AAMAS
"17 (pp. 1196-1204). International Foundation for Autonomous Agents and Multiagent Systems.

Hodkinson, I., & Reynolds, M. (2005). Separation—past, present and future. In S. Artemov, H. Barringer,
A. S. d’Avila Garcez, L. C. Lamb, & J. Woods (Eds.), We will show them: Essays in Honour of Dov
Gabbay (Vol. 2, pp. 117-142). College Publications.

@ Springer

https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-030-51253-8_8
https://doi.org/10.1007/978-3-030-51253-8_8
https://doi.org/10.1007/978-3-030-66412-1_30
https://doi.org/10.1007/978-3-319-66595-5_3
https://doi.org/10.1007/978-3-319-66595-5_3
https://doi.org/10.1609/aaai.v30i1.10104
https://doi.org/10.1609/aaai.v30i1.10104
https://doi.org/10.1007/3-540-51803-7_36
https://doi.org/10.1007/978-3-031-15298-6_12
https://doi.org/10.1007/978-3-031-15298-6_12

Synthese (2023) 202:79 Page370f39 79

van der Hoek, W., Kuijer, L. B., & Wang, Y. N. (2019). Who should be my friends? In P. Blackburn, E.
Lorini, & M. Guo (Eds.), Logic, Rationality, and Interaction. LORI 2019. Lecture Notes in Computer
Science (Vol. 11813, pp. 370-384). Springer. https://doi.org/10.1007/978-3-662-60292-8_27

van der Hoek, W., Kuijer, L. B., & Wang, Y. N. (2020). Logics of allies and enemies: a formal approach
to the dynamics of social balance theory. In C. Bessiere (Eds.), Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IICAI 2020 (pp. 210-216).

van der Hoek, W., Kuijer, L. B., & Wang, Y. (2022). Who should be my friends? Social balance from the
perspective of game theory. Journal of Logic, Language and Information, 31(2), 189-211.

Holzmann, G. J. (1997). The model checker spin. /[EEE Transactions on Software Engineering, 23(5),
279-295.

Huth, M., & Ryan, M. (2004). Logic in Computer Science: Modelling and reasoning about systems. Cam-
bridge University Press.

de Jongh, D., Veltman, F., & Verbrugge, R. (2004). Completeness by construction for tense logics of linear
time. Liber Amicorum for Dick de Jongh. Institute of Logic, Language and Computation.

Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., & van Dijk, T. (2015). Ltsmin: High-performance
language-independent model checking. In C. Baier & C. Tinelli (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems. TACAS 2015. Lecture Notes in Computer Science (Vol. 9035,
pp. 692-707). Springer. https://doi.org/10.1007/978-3-662-46681-0_61

Khaund, T., Al-Khateeb, S., Tokdemir, S., & Agarwal, N. (2018). Analyzing social bots and their coordina-
tion during natural disasters. In R. Thomson, C. Dancy, A. Hyder, & H. Bisgin (Eds.), Social, Cultural,
and Behavioral Modeling. SBP-BRiMS 2018. Lecture Notes in Computer Science (Vol. 10899, pp.
207-212). Springer. https://doi.org/10.1007/978-3-319-93372-6_23

Kudugunta, S., & Ferrara, E. (2018). Deep neural networks for bot detection. Information Sciences, 467,
312-322.

Lee, K., Eoff, B. D., & Caverlee, J. (2011). Seven months with the devils: A long-term study of content
polluters on twitter. In /ICWSM (pp. 185-192).

Lee, S., & Kim, J. (2014). Early filtering of ephemeral malicious accounts on twitter. Computer Communi-
cations, 54, 48-57.

Liu, F, & Li, D. (2022). Ten-year history of social network logics in China. Asian Studies, 10(2), 121-146.

Liu, F, Seligman, J., & Girard, P. (2014). Logical dynamics of belief change in the community. Synthese,
191(11), 2403-2431.

Lorini, E., & Sartor, G. (2016). A STIT logic for reasoning about social influence. Studia Logica, 104(4),
773-812.

Machado, V., & Benevides, M. (2022). Temporal logic for social networks. Journal of Logic and Compu-
tation, 32(6), 1088-1108.

Markey, N. (2004). Past is for free: On the complexity of verifying linear temporal properties with past.
Acta Informatica, 40(6), 431-458.

Occhipinti Liberman, A., & Rendsvig, R. K. (2022). Reasoning about epistemic social network dynamics
using dynamic term-modal logic. Journal of Logic and Computation, 32(6), 1067-1087.

O’Connor, C., & Weatherall, J. O. (2019). The misinformation age: How false beliefs spread. Yale University
Press.

Pacuit, E. (2017). Neighborhood semantics for modal logic. Springer.

Pacuit, E., & Parikh, R. (2005). The logic of communication graphs. In J. Leite, A. Omicini, P. Torroni
& P. Yolum (Eds.), Declarative Agent Languages and Technologies II. DALT 2004. Lecture Notes in
Computer Science (Vol. 3476, pp. 256-269). Springer. https://doi.org/10.1007/11493402_15

Pardo, R., Sanchez, C., & Schneider, G. (2018). Timed epistemic knowledge bases for social networks. In
K. Havelund, J. Peleska, B. Roscoe, & E. de Vink (Eds.), Formal Methods. FM 2018. Lecture Notes
in Computer Science (Vol. 10951, pp. 185-202). Springer. https://doi.org/10.1007/978-3-319-95582-
7_11

Pardo, R., & Schneider, G. (2017). Model checking social network models. In Proc. of eighth international
symposium on Games, Automata, Logics and Formal Verification (GandALF). EPTCS (Vol. 256, pp.
238-252).

Pedersen, M. Y. (2019). Polarization and echo chambers: A logical analysis of balance and triadic closure
in social networks. Master of Logic Thesis Series, MoL-2019-10, ILLC, University of Amsterdam.

Pedersen, M. Y., Slavkovik, M., & Smets, S. (2021). Social bot detection as a temporal logic model checking
problem. In S. Ghosh & T. Icard (Eds.), Logic, Rationality, and Interaction. LORI 2021. Lecture Notes

@ Springer

https://doi.org/10.1007/978-3-662-60292-8_27
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-319-93372-6_23
https://doi.org/10.1007/11493402_15
https://doi.org/10.1007/978-3-319-95582-7_11
https://doi.org/10.1007/978-3-319-95582-7_11

79 Page 38 of 39 Synthese (2023) 202:79

in Computer Science (Vol. 13039, pp. 158—-173). Springer. https://doi.org/10.1007/978-3-030-88708-
7_13

Pedersen, M. Y., Smets, S., & Agomes, T. (2019). Analyzing echo chambers: A logic of strong and weak
ties. In P. Blackburn, E. Lorini, & M. Guo (Eds.), Logic, Rationality, and Interaction. LORI 2019.
Lecture Notes in Computer Science (Vol. 11813, pp. 183—198). Springer. https://doi.org/10.1007/978-
3-662-60292-8_14

Pedersen, M. Y., Smets, S., & Agotnes, T. (2020). Further steps towards a logic of polarization in social
networks. In M. Dastani, H. Dong, & L. van der Torre (Eds.), Logic and Argumentation. CLAR 2020.
Lecture Notes in Computer Science (Vol. 12061, pp. 324-345). Springer. https://doi.org/10.1007/978-
3-030-44638-3_20

Pedersen, M. Y., Smets, S., & Agotnes, T. (2021). Modal logics and group polarization. Journal of Logic
and Computation, 31(8), 2240-2269.

Pedersen, T., & Slavkovik, M. (2017). Formal models of conflicting social influence. In B. An, A. Bazzan,
J. Leite, S. Villata, & L. van der Torre (Eds.), PRIMA 2017: Principles and Practice of Multi-agent
Systems. PRIMA 2017. Lecture Notes in Computer Science (Vol. 10621, pp. 349-365). Springer.
https://doi.org/10.1007/978-3-319-69131-2_21

Perrotin, E., Galimullin, R., Canu, Q., & Alechina, N. (2019). Public group announcements and trust in
doxastic logic. In P. Blackburn, E. Lorini, & M. Guo (Eds.), Logic, Rationality, and Interaction. LORI
2019. Lecture Notes in Computer Science (Vol. 11813, pp. 199-213). Springer. https://doi.org/10.

1007/978-3-662-60292-8_15

Pradella, M., Pietro, P. S., Spoletini, P., & Morzenti, A. (2003). Practical model checking of LTL with past.
In st International Workshop on Automated Technology for Verification and Analysis (ATVAO3).

Prior, A. N. (1957). Time and modality. Oxford University Press.

Ruan, J., & Thielscher, M. (2011). A logic for knowledge flow in social networks. In D. Wang, & M.
Reynolds (Eds.), AI 2011: Advances in Artificial Intelligence—24th Australasian Joint Conference.
Al 2011. Lecture Notes in Computer Science (Vol. 7106, pp. 511-520). Springer. https://doi.org/10.
1007/978-3-642-25832-9_52

Sano, K. (2017). Axiomatizing epistemic logic of friendship via tree sequent calculus. In A. Baltag, J.
Seligman, & T. Yamada (Eds.), Logic, Rationality, and Interaction. LORI 2017. Lecture Notes in
Computer Science (Vol. 10455, pp. 224-239). Springer. https://doi.org/10.1007/978-3-662-55665-
8_16

Santos, Y. D. (2020). Social consolidations: rational belief in a many-valued logic of evidence and peerhood.
Lecture Notes in Computer Scienceln A. Herzig & J. Kontinen (Eds.), Foundations of Information
and Knowledge Systems. FoIKS 2020. Lecture Notes in Computer Science (Vol. 12012, pp. 58-78).
Springer. https://doi.org/10.1007/978-3-030-39951-1_4

Schnoebelen, P. (2002). The complexity of temporal logic model checking. Advances in Modal Logic, 4(35),
393-436.

Seligman, J., Liu, F., & Girard, P. (2011). Logic in the community. In M. Banerjee & A. Seth (Eds.),
Logic and Its Applications. ICLA 2011. Lecture Notes in Computer Science (Vol. 6521, pp. 178-188).
Springer. https://doi.org/10.1007/978-3-642-18026-2_15

Seligman, J., Liu, F., & Girard, P. (2013). Facebook and the epistemic logic of friendship. In Proceedings
of the 14th TARK conference.

Shao, C., Ciampaglia, G. L., Varol, O., Yang, K.-C., Flammini, A., & Menczer, F. (2018). The spread of
low-credibility content by social bots. Nature Communications, 9(1), 4787.

Sistla, A. P., & Clarke, E. M. (1985). The complexity of propositional linear temporal logics. Journal of the
ACM, 32(3), 733-749.

Smets, S., & Veldzquez-Quesada, F. R. (2017a). How to make friends: A logical approach to social group
creation. Lecture Notes in Computer Science. In A. Baltag, J. Seligman, & T. Yamada (Eds.), Logic,
Rationality, and Interaction. LORI 2017. Lecture Notes in Computer Science (Vol. 10455, pp. 377—
390). Springer. https://doi.org/10.1007/978-3-662-55665-8_26

Smets, S., & Veldzquez-Quesada, F. R. (2017b). The creation and change of social networks: A logical
study based on group size. In A. Madeira, & M.R.F. Benevides (Eds.) Dynamic logic. New trends
and applications—first international workshop, DALI 2017, Brasilia, Brazil, September 23-24, 2017,
Proceedings. Lecture Notes in Computer Science, (Vol. 10669, pp. 171-184). Springer.

Smets, S., & Veldzquez-Quesada, F. R. (2020a). A closeness- and priority-based logical study of social
network creation. Journal of Logic, Language and Information, 29(1), 21-51.

@ Springer

https://doi.org/10.1007/978-3-030-88708-7_13
https://doi.org/10.1007/978-3-030-88708-7_13
https://doi.org/10.1007/978-3-662-60292-8_14
https://doi.org/10.1007/978-3-662-60292-8_14
https://doi.org/10.1007/978-3-030-44638-3_20
https://doi.org/10.1007/978-3-030-44638-3_20
https://doi.org/10.1007/978-3-319-69131-2_21
https://doi.org/10.1007/978-3-662-60292-8_15
https://doi.org/10.1007/978-3-662-60292-8_15
https://doi.org/10.1007/978-3-642-25832-9_52
https://doi.org/10.1007/978-3-642-25832-9_52
https://doi.org/10.1007/978-3-662-55665-8_16
https://doi.org/10.1007/978-3-662-55665-8_16
https://doi.org/10.1007/978-3-030-39951-1_4
https://doi.org/10.1007/978-3-642-18026-2_15
https://doi.org/10.1007/978-3-662-55665-8_26

Synthese (2023) 202:79 Page390f39 79

Smets, S., & Veldzquez-Quesada, F. R. (2020b). A logical analysis of the interplay between social influ-
ence and friendship selection. In L. S. Barbosa, & A. Baltag (Eds.), Dynamic Logic. New Trends
and Applications—Second International Workshop, DalL.i 2019, Porto, Portugal, October 7-11, 2019,
Proceedings. Lecture Notes in Computer Science (Vol. 12005, pp. 71-87).

Thorne, J., & Vlachos, A. (2018) Automated fact checking: task formulations, methods and future directions.
In Proc. of the 27th international conference on computational linguistics (pp. 3346-3359).

Venema, Y. (2001). Temporal logic. In L. Goble (Ed.), The Blackwell guide to philosophical logic (pp.
203-223). Blackwell Publishers.

Viana, H., Aragjo, A., Leite, L., & Alcantara, J. (2014). Private dynamic epistemic friendship logic. In 2014
Brazilian conference on intelligent systems (pp. 378-383).

Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380),
1146-1151.

Xiong, Z. (2017). On the logic of multicast messaging and balance in social networks. PhD thesis, Doctoral
dissertation, University of Bergen.

Xiong, Z., & Agotnes, T. (2020). On the logic of balance in social networks. Journal of Logic, Language
and Information, 29(1), 53-75.

Xiong, Z., Agotnes, T., Seligman, J., & Zhu, R. (2017). Towards a logic of tweeting. In A. Baltag, J.
Seligman, & T. Yamada (Eds.), Logic, Rationality, and Interaction. LORI 2017. Lecture Notes in
Computer Science (Vol. 10455, pp. 49—-64). Springer. https://doi.org/10.1007/978-3-662-55665-8_4

Yang, S., Taniguchi, M., & Tojo, S. (2019). 4-valued logic for agent communication with private/public
information passing. In Proceedings of the 11th international conference on agents and artificial
intelligence (ICAART 2019) (pp. 54-61).

Zhen, L. (2020). Towards axiomatisation of social epistemic logic. PhD thesis, University of Auckland.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1007/978-3-662-55665-8_4

	Detecting bots with temporal logic
	Abstract
	1 Introduction
	2 Social bots
	3 Related work
	3.1 Bot detectors
	3.2 Logics for social network dynamics
	3.3 Model checking social networks

	4 Temporal Network Logic (TNL)
	4.1 Language
	4.2 Models and semantics
	4.3 Expressing agent properties
	4.4 Soundness and completeness

	5 Detection formulas
	5.1 Posting false information
	5.2 Bursty nature
	5.3 Targeting
	5.4 Aggressive following and unfollowing

	6 Bot detecting: model checking
	6.1 Finite fragments
	6.2 A model checking algorithm for TNL
	6.3 From TNL to PLTL

	7 Extending TNL: from an agent's perspective
	7.1 Syntax and semantics
	7.2 Relations between the global and the local view
	7.3 Formulas in TNLa
	7.4 Model checking TNLa

	8 From real-life networks to TNL models
	8.1 Assumptions
	8.2 Building a TNL model

	9 Conclusion and future directions
	Acknowledgements
	Appendix A: Proof of Theorem 1
	Appendix B: Details on the model checking algorithm for TNL
	References

