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Abstract

Bayesian Optimization is a powerful tool for optimizing expensive blackbox functions,

with applications ranging from tuning hyperparameters in machine learning to optimiz-

ing portfolios in finance. In many real-life scenarios, such as the case of tuning hyper-

paramters in machine learning, the evaluation cost varies across the input space. However,

few methods have been developed to work specifically with this type of function, and these

just change already exisiting acquisition functions in a naive way.

This thesis presents a novel method for learning Acquisition Functions in Bayesian

Optimization through the use of Reinforcement Learning. Using Reinforcement Learning

allows the learned Acquisition Function to directly use information about evaluation cost

to guide its decisions. Several experiments were conducted in order to test the perfor-

mance of the proposed method, both when it comes to learning specific functions and

when it comes to generalizing. The proposed approach demonstrated promising results,

outperforming a wide variety of benchmarks in several different experiments. However,

these results also highlight the need for further research in terms of the training process

of the Acquisition Function, as well as the need for creating a more robust collection

of experiments in order to test the proposed method on a wider range of optimization

problems.
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Chapter 1

Introduction

In this chapter, I will first present the motivation behind the method that I aim to

develop in this thesis. I then talk about the objective of the thesis, as well as the research

questions I am attempting to answer. Lastly, I will present an outline for the rest of the

thesis.

1.1 Motivation

Function optimization is a process of finding the inputs to a function that minimize or

maximize the output. It is a set of problem-solving algorithms with very many use cases

in all sorts of fields, such as optimizing portfolios in finance (Brochu et al. (2010)), mini-

mizing downtime in logistics (Chhatre et al. (2022)), finding the best hyperparameters for

a machine learning model, and so forth. These different function optimization methods

have different advantages and disadvantages. Some can only be used if the function is

differentiable and the gradients are known. Some methods are easier to parallelize than

others, and others are more sample efficient.

Often, the problems that we face have inner workings we don’t have access to, or

we can’t easily describe with a known set of equations. In these cases we refer to them

as blackbox functions. Blackbox functions are functions whose internal structures are

either unknown or inaccessible. Therefore, they are treated as simplified entities which

simply accept inputs and generate outputs. The term is derived from the concept of

a ’blackbox’, which represents an object where the internal workings are hidden. Such
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situations commonly arise when data is sourced from simulations, physical experiments,

or hyperparameter tuning. This inherent characteristic limits the number of function

optimization algorithms that can be used, particularly excluding those that require access

to the function’s gradient.

Another common property of these functions is that they are costly to evaluate. This

can either be costly in terms of financial resources, such as seismic surveys when drilling

for oil, or costly in terms of time, such as hyperparameter tuning of a neural network

where the performance of the network is only obtained after training for a significant

amount of time. Working with expensive-to-evaluate functions means we have a multi-

objective optimization scenario, where the goal is to both approach the optimum as

closely as possible and to minimize the number of evaluations. Typically, there is a

predetermined budget when dealing with this type of function, which restricts the total

resources available for optimization. By predetermining this budget, we again turn this

into a single-objective optimization scenario, where the goal is the find the optimum of

the function by using the entire budget.

When we deal with functions that are both costly to evaluate and blackbox in nature,

a technique called Bayesian Optimization is commonly used (Garnett (2023)). In short,

Bayesian Optimization is a method that builds a probabilistic model of the function we

want to optimize. Using this model, we can choose the next point we want to query by

using an Aquisition Function, which is a function that guides our search using information

from the probabilistic model. Based on the new information from the point we queried,

we can update our probabilistic model, and iteratively get better and better guesses.

Due to this, Bayesian Optimization is a sample-efficient method, meaning that it uses

few function evaluations compared to other methods in order to approach an optimum.

Since the biggest constraint when optimizing these expensive functions is cost, Bayesian

Optimization is a common choice for this type of function.

In many cases, there might be a real-world cost constraint that limits how many

resources we can spend on finding the maxima/minima of the function. A researcher

might not have time to wait weeks to find the optimal hyperparameters for a neural

network for an experiment. This means that how many times we can evaluate the function

we are trying to optimize, depends on how long each evaluation takes. If we have 3 days,

and each evaluation takes 6 hours, we can do a maximum of 12 function evaluations. Thus

it is evident that the time each evaluation takes is important, as doing more function

evaluations increases the odds of finding a good solution.
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Input-dependent evaluation cost functions are functions where the cost of evaluation

is not constant but rather depends on the input to the function. That is, the cost of

evaluation is itself a function of the input to the function. If we can approximate or make

an educated guess about the underlying cost function, we can use the relationship between

the input and cost to increase the likelihood of approaching the function’s optimum within

our budget. This means that we can increase the number of samples we get within our

budget by strategically sampling in parts of the input space associated with lower costs.

These three properties, namely being blackbox, expensive-to-evaluate, and having

input-dependent evaluation cost, are the properties that define the functions that this

thesis is concerned with. To illustrate these properties, consider a blackbox function

representing the taste quality of bread given factors such as baking temperature, duration

of baking, and rising time for the dough. Assume we have a budget of only 3 days to find

the perfect recipe. The exact internal interactions affecting taste are not entirely known,

making this a blackbox function.

Every combination of these parameters means baking a new loaf of bread and having

it taste-tested by a panel, which is very time-consuming and thus makes this function

expensive to evaluate. Additionally, the total time invested in each baking trial, which

adds to the evaluation cost, depends on variables like baking duration and the dough’s

rising time, thus introducing an input-dependent evaluation cost.

In this thesis, I am going to propose a method for utilizing this cost dependency infor-

mation in order to do more efficient function optimization. This will be done by making

an Aquisition Function that takes cost information into account and is learned using Re-

inforcement Learning. I will compare this new Aquisition Function to a wide variety of

benchmarks in order to assess its performance on the type of functions I am considering

in this thesis. I also make a contribution in the form of developing a Reinforcement

Learning environment that runs fully on GPU, providing a quick way of training the

proposed method.

1.2 Objective

In this thesis, I will aim to investigate the implications of factoring in the cost aspect

of the function evaluations on the performance of Bayesian Optimization by using Re-

inforcement Learning to learn an Aquisition Function. I seek to determine if exploiting
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evaluation cost information leads to increased performance of the Aquisition Function,

both on specific function types, as well as in the general case.

More formally, I will attempt to answer the following research questions:

• Does the learned Aquisition Function utilize the evaluation cost aspect of the func-

tion evaluation in order to increase its performance compared to a learned Aquisition

Function without access to temporal information?

• How does the performance of the learned Aquisition Function compare with other

Aquisition Functions specifically developed for this type of problem?

• Is the learned Aquisition Function capable of generalizing beyond the function types

it has been trained on?

1.3 Thesis Outline

The thesis is outlined in the following order. In Chapter 2, I will introduce the background

theory needed in order to understand the method I have developed. Chapter 3 puts my

work in context by talking about previous research in this field. In Chapter 4, I will

go into detail on the method I have developed. The experiments I have designed, as

well as the experimental setup, will be introduced in Chapter 5, along side the proposed

Reinforcement Learning environment I have developed. I then present the results of these

experiments in Chapter 6. Finally, I discuss the implications of the results and conclude

my thesis in Chapter 7.
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Chapter 2

Background

In this chapter, I will introduce the concepts and techniques that are needed in order

to understand the research presented in this thesis. The chapter is divided into three

sections: Function Optimization, Bayesian Optimization, and Reinforcement Learning.

The section on function optimization gives an overview of the aspects of optimizing

functions, which is the process of finding the input to a function that returns the optimal

value. I then introduce Bayesian Optimization (BO), the algorithm of choice in this thesis

when it comes to function optimization. It is a method that is based on constructing

a model of the underlying function we are attempting to optimize and using this model

to make informed choices. It works especially well on the type of functions considered

in this thesis, as introduced in Section 1.1. Lastly, I introduce Reinforcement Learning

(RL), an area of machine learning that is especially well equipped to handle sequential

decision-making problems, which function optimization often is.

2.1 Function Optimization

Function optimization is an important concept in many fields, including mathematics,

statistics, and computer science. In function optimization, the goal is to find the input x

to a function f that minimizes or maximizes the function output, depending on whether

we are dealing with a minimization problem or a maximization problem. This section

explores different types of function optimization algorithms and relevant constraints.

An optimization problem, as defined by Boyd and Vandenberghe (2004), is as follows:
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minimize f0(x)

subject to fi(x) ≤ bi for i = 1, . . . , n.

In this representation:

• n is the number of dimensions in the objective function.

• x = (x1, . . . , xn) is the variable we want to optimize.

• f0 : Rn → R is the function we want to minimize.

• fi : Rn → R are constraints we want x to satisfy, where i = 1, . . . , n.

• bi are the upper limits for the constraints.

An optimal solution x∗ is a vector that satisfies all constraints and for which f0(x
∗) is

the largest possible value.1 The different types of constraints will be discussed in the next

subsection. The function we want to optimize, f0, is often referred to as the objective

function, which is the notation that will be used throughout this thesis.

There are two categories of optimization problems, depending on whether the in-

put variable x is discrete or continuous. In this thesis, the focus will be on the latter,

specifically the optimization problems with continuous input variables.

2.1.1 Constraints in Function Optimization

In an optimization problem, the objective function often has constraints on the input val-

ues. These constraints define a region in which the solution to the optimization problem

is valid and thus limit the search space for our solution. There are generally two types of

constraints we are concerned with in function optimization: equality constraints and in-

equality constraints (Boyd and Vandenberghe (2004)). Equality constraints demand that

the input variables have an exact relationship. On the other hand, inequality constraints

limit a variable, or a relationship between variables, to values within a specific range.

To illustrate these constraints, consider a company that has enough capital to produce

up to 500 laptops or phones, assuming each cost the same to produce. The company wants

1Or smallest value, in the case of minimization problems
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to determine how many of each product to manufacture in order to maximize profits.

This problem can be represented as a function optimization problem with the function

we want to optimize being f(x, y), where f(x, y) represents the total profit from selling

x laptops and y phones. Because we want to produce exactly 500 phones or laptops, to

maximize profits, and it’s not physically possible to produce a negative number of either,

the constraints, in this case, are x+ y = 500, which is an equality constraint, and x ≥ 0,

y ≥ 0, which are inequality constraints. These constraints are essential in representing

real-world problems and deciding the strategy for optimization.

In this thesis, all the functions considered will have inequality constraints on the form

ai ≤ xi ≤ bi where xi is the ith input variable, and ai and bi are the corresponding bounds

for the variable. However, the proposed method extends to functions with various types

of constraints.

2.1.2 Algorithms for Continuous Optimization Problems

A myriad of techniques exist in the field of function optimization. The choice of a specific

method should be based on the available information about the objective function, such

as gradients, as well as the properties of the function itself, such as how noisy it is.

Gradient-based methods are advantageous when the gradient of the function can be

evaluated at any point. Under such methods, at each timestep, the gradient of the func-

tion is calculated for a given input thus iteratively approaching a local extremum, usually

a minimum. This is typically how the weights of a neural network are updated during

training. Due to the deterministic nature of gradient-based methods, these algorithms are

generally more sample-efficient than their stochastic counterparts. They are also scalable

to thousands of dimensions or more, as seen with neural networks that have image data

as input. However, as with all optimization techniques, they can potentially stagnate at

local minima.

In cases where the function is non-differentiable or the internal structure of the func-

tion is unknown, such as in simulations of the physical world, alternative optimization

strategies come into play. Techniques like Particle Swarm Optimization (Kennedy and

Eberhart (1995)) or Genetic Algorithms (Holland (1975)) are often utilized. These are

stochastic methods that investigate the function’s landscape through a stochastic pro-

cess. However, for functions that are expensive to evaluate, these methods are likely too
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sample-inefficient due to their stochasticity creating a high demand for function evalua-

tions.

Surrogate models, mathematical approximations of the original function, become piv-

otal in dealing with such functions. They are probabilistic models that allow for efficient

estimation of function values across the search space, using sparse amounts of data, and

help identify promising areas for further exploration. This thesis particularly explores

BO, a surrogate-based method, in subsequent section.

2.2 Bayesian Optimization

BO is a commonly used method when dealing with expensive-to-evaluate blackbox func-

tions. It aims to find the optimal input x∗ for a given blackbox function f(x) with a

limited number of evaluations and no knowledge of the inner workings of the system,

making it suitable for the type of functions I will consider in this thesis. As it doesn’t

rely on randomness for sampling, it is an efficient method for exploring the input space.

This efficiency makes it well-suited for optimizing expensive-to-evaluate blackbox func-

tions, where it is a powerful, widely applicable tool (Shahriari et al. (2016)). In BO, our

explicit goal is usually formulated as wanting to minimize the simple regret, which is the

distance from the best-found solution to the global optimum of the function.

BO utilizes two critical components: a surrogate model and an Aquisition Function

(AF), both of which will be explored in depth later in this section. The surrogate model

is a mathematical approximation of the objective function. It’s employed because it’s less

costly and easier to evaluate than the actual function, which is particularly valuable when

optimizing expensive-to-evaluate blackbox functions. The AF uses information about the

underlying function at a given point xi, typically the predicted value in this point made

by the surrogate model, and outputs the expected utility of sampling at that point. This

utility measure assists in balancing the exploration of new regions and exploitation of

known promising regions in the input space, leading to efficient optimization and reduced

risk of getting stuck in local optima.

The foundation of BO is Bayes’ Theorem, which underlies the process of iteratively

updating our belief about the objective function. The process begins with a prior belief,

embodied in our choice of surrogate model. As new data is collected, this belief is updated

to a posterior via Bayes’ Theorem. This posterior is then used to select a new point to

sample from, progressively refining our approximation of the function.
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BO, as depicted in Algorithm 1, uses a surrogate model to approximate the behavior

of the objective function across the input space. An AF is then utilized in order to select a

new point to sample. The AF ideally balances between regions promising optimal function

values, i.e. exploiting current knowledge, and regions providing maximum information

about the function, i.e. exploration of regions with high uncertainty in the estimates.

With each iteration, a new data point is added, improving the accuracy of the surrogate

model’s predictions and, consequently, the quality of our function estimates.

Algorithm 1 Cost-aware BO (Based on Shahriari et al. (2016))

1: Input: resource budget b, initial data points D
2: Construct a surrogate model m based on existing data D
3: while b > 0 do
4: Identify the next query point xn+1 by maximizing the AF under m
5: Estimate the expected cost e for querying the objective function at xn+1

6: if e ≤ b then
7: Query the objective function at xn+1 to retrieve new observation yn+1 and

actual cost c
8: Deduct the cost c from remaining budget b
9: Append the new observation (xn+1, yn+1) to dataset D
10: Update surrogate model m using the enhanced dataset D
11: else
12: break
13: end if
14: end while

The central premise of BO is this iterative process shown in 1. The chosen AF decides

the trade-off between exploration and exploitation. This allows the algorithm to efficiently

seek out the function’s optima while minimizing the number of function evaluations.

As mentioned in the introduction, the functions we are looking to optimize have three

key components. BO already works well with two of them, which is expensive to evaluate

blackbox functions. However, BO also allows us to take advantage of the third property,

the input-dependent evaluation cost. This is possible by creating an AF, the part that

guides our search, that directly utilizes the expected cost when guiding the search. For

this reason, BO is the optimization algorithm of choice.

2.2.1 Surrogate Models

A surrogate model is a mathematical approximation of the objective function, created

using sparse data from the objective function. Since the objective function is too expen-

sive to directly optimize the objective function, we instead make an approximate model
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that is easily optimized. This gives us an idea of what the underlying function looks like,

and thus it provides information that we use in order to sample the next data point. By

carefully selecting a surrogate model that is easy to optimize in terms of computational

cost, ideally by being differentiable, we effectively transform our optimization problem

into an easier one by optimizing the approximate model instead of the objective function.

We can then find the optima of this function by using more computationally efficient2

optimization methods such as gradient descent or Particle Swarm Optimization.

Formally, a surrogate model the way that it is used in this thesis, can be defined as

follows:

Let f : Rn → R be the objective function that we want to model. A surrogate model

g : Rn → R is then an attempt to approximate f such that g(x) ≈ f(x) for all x in the

input space. The degree to which g matches f may vary depending on the data available

and the method used to construct the model. The goal is to choose a g such that it is a

good approximation of f as well as quick to evaluate.

The choice of surrogate model is how we encode our prior belief of the underlying

function in BO. Therefore, the selection of a suitable surrogate model is crucial. Many

methods exist to estimate this function, each with its strengths and weaknesses. Some of

these methods, such as random forests or neural networks, natively only provide us with

an estimate of the function value at a given point. Other methods, such as Gaussian

Processes (GPs) or Parzen-Tree Estimators, give both an estimate of the function value

at a given point as well as the uncertainty in that estimate. This uncertainty aids BO by

balancing exploration and exploitation.

In this thesis, GPs are the surrogate models of choice, primarily due to their inherent

properties, which makes them well-suited for BO. GPs allows for the easy computation

of gradients with respect to the input variable, thus enabling the application of gradient-

based optimization techniques to find the optima of the GP. Another major advantage is

the high expressiveness of GPs, which can be harnessed by selecting an appropriate kernel

function. This permits the modeling of a wide variety of behaviors, including periodic

patterns, which enables the incorporation of any prior knowledge about the objective

function directly into the model. Lastly, the robustness of GPs in handling noisy inputs

makes them suitable for many real-life problems, although in this thesis we are only

concerned with functions that have no noise in their evaluations.

2BO is fairly computationally inefficient due to the need to fit an expensive surrogate model to the
available data
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Gaussian Processes

A GP is a stochastic process used to model functions and associated uncertainties, es-

sentially extending the Gaussian probability distribution to infinite-dimensional spaces

(Rasmussen and Williams (2006)). This representation captures distributions over func-

tions, rather than random variables. A GP consists of a collection of random variables,

any finite number of which have a joint Gaussian distribution. A GP is defined by a

mean function m(x) and a covariance function k(x, x′), or kernel. It typically assumes a

constant mean function, with the kernel being the part that captures the properties of

the function space.

Formally, a GP is denoted as:

f(x) ∼ GP(m(x), k(x, x′)).

Here, f(x) represents our guess for what the underlying function is. For each input

value x it outputs a random variable. That is, it provides not a single number, but

rather a distribution. As the name Gaussian Process implies, the output is the normal

distribution. Thus the output of f(x) for a single input value x is the mean µ and the

standard deviation σ of this distribution, with the mean representing our best guess and

the standard deviation representing the uncertainty in that guess.

In order to utilize a GP, we initially choose an appropriate kernel function. We then

tune the parameters of the kernel by minimizing their log-likelihood, thereby tuning the

kernel to capture some inherent properties of the underlying function. Predictions for

new inputs are made by evaluating the kernel function between these inputs and existing

data, and conditioning on the observed data. This provides the posterior predictive

distribution, yielding both the expected mean and its associated uncertainty at the new

location.

Despite the widespread use of GPs in BO, they are not without limitations.

One prominent drawback is their performance deterioration when dealing with high-

dimensional functions. This degradation is primarily due to the curse of dimensionality

(Eriksson and Jankowiak (2021)). Another significant limitation is their computational

scalability. Specifically, GPs have a cubic time complexity for fitting, represented as

O(n3), where n is the number of data points, which makes them computationally inten-

sive for large datasets (Belyaev et al. (2014)).
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Kernels

Kernels are a critical component of GPs, serving as a crucial function that determines the

correlation or similarity between two points in the input space, based on solely on their

coordinates. This correlation is typically dependent on distance, with closer points typ-

ically having a higher correlation. Kernels can be combined (typically through addition

or multiplication) to create more complex kernels to suit specific needs, such as creating

a quadratic kernel by multiplying two linear kernels (Duvenaud (2014)).

Many kernels have been developed throughout the years, with distinct properties for

different applications. These kernels have their own parameters, typically between two to

three, and are usually learned from the data by minimizing the marginal log-likelihood.

Domain knowledge plays a pivotal role in kernel selection, allowing for educated guesses

about the underlying function and aiding in the choice of suitable kernels for the type of

function to be optimized.

The Radial Basis Function (RBF) kernel, also known as the Squared Exponential

Kernel, is a commonly used kernel. It is commonly considered the default kernel for GPs

(Duvenaud (2014)). The RBF kernel is defined as follows:

k(x, x′) = σ2 exp

(
−(x− x′)2

2ℓ2

)
. (2.1)

Here, ℓ is the length scale parameter that determines the function’s smoothness, and

σ represents the noise variance of the kernel. The RBF kernel is characterized by these

two hyperparameters. Usually, the length scale parameter is learned from the data, while

the noise scale can be set directly if the noise level in the observations is known.

In general, the length scale ℓ controls the extrapolation distance from data points.

That is, it describes how far away from any data point we can move before that data

point no longer has any influence on the predicted value. Meanwhile, σ represents the

data’s noise level.

Another interesting kernel is the spectral mixture kernel (Wilson and Adams (2013)).

It allows us to capture a wider range of patterns in the data, especially when modeling

mixtures of different functions, and is very powerful if you know the underlying function

is suitable for such a kernel.

The spectral mixture kernel is defined as:
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k(x, x′) =

Q∑
q=1

wq exp
(
−2π2(x− x′)2v2q

)
cos (2π(x− x′)µq) (2.2)

In this definition, wq, vq, and µq denote the weight, variance, and mean of the qth

mixture component. The total number of mixture components is denoted byQ. Typically,

Q is chosen by the domain expert, whereas wq, vq, and µq are learned from the data.

2.2.2 Aquisition Functions

An AF, denoted α(si), where si represents information about a candidate point xi in the

input space, measures the utility or desirability of sampling at point xi. The purpose

of an AF is to guide the sampling process in the optimization by assigning interesting

points a higher score. Interesting is in the sense that they either lead to information gain

or a better solution.

A good AF should possess three main qualities. First, it should be easy to optimize

as we are primarily interested in the optima of the AF. Second, it should exhibit a strong

correlation between its output and the promise of a point, where a ’promising’ point

strikes a good balance between high expected improvement and appropriate exploration-

exploitation trade-off. Lastly, a good AF should facilitate a robust balance between

exploration and exploitation, avoiding confinement in local optima.

As mentioned earlier, AFs typically consider both the mean (µ) and standard devia-

tion (σ) that the surrogate model outputs for that point. They are commonly statistical

in nature, making them relatively straightforward to interpret. One very commonly used

AF is Expected Improvement (EI).

EI is defined as follows:

EI(x) = (µ(x)− f(x+)− ε)Φ(Z) + σ(x)ϕ(Z),

where Z = (µ(x) − f(x) − ε)/σ(x)3, x+ is the current best input point, Φ and ϕ

denote the CDF and PDF of the standard normal distribution, respectively. The output

of the EI function is easily interpretable, that is, for a given point xi, it simply measures

how much we expected to improve over the current best-found solution, by sampling xi.

3Z represents the standardized improvement over the current best point x+, and thus controls the
trade-off between exploitation and exploration. The ε parameter adjusts the balance between exploration
and exploitation.
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2.2.3 Visualization of Bayesian Optimization

The upper plot in Figure 2.1 shows an example of a GP at optimization step t. By using

the observed data, the GP predicts the underlying function f(x). The lower plot shows

that the EI for the above GP has its maxima at x = 8.89.

Figure 2.1: Top: Predicted function by Gaussian Process at timestep t. Bottom:
Corresponding Expected Improvement, with its maximum at x = 8.89.

By sampling the underlying function f(x) where the EI has its maxima, we obtain a

new data point. We then append this data point to our existing observations and use the

expanded dataset to fit the new GP seen in the upper plot of Figure 2.2.

As seen in Figure 2.2, the maxima of the EI has shifted to x = 7.35. This is closer

to the actual maxima of f(x), and by sampling this point, we obtain a new best-found

solution. This process continues until we have exhausted our evaluation budget.
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Figure 2.2: Top: Predicted function by Gaussian Process at timestep t + 1, after
updating with new observation. Bottom: Corresponding Expected Improvement, now
maximized at x = 7.35.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is one of three main types of machine learning, alongside

supervised and unsupervised learning (Sutton and Barto (2018)). In RL, we train an

agent to learn how to act in an environment by taking actions. A RL setup involves

an agent interacting with an environment in a sequence of discrete timesteps. At each

timestep t, the agent receives a state st from the environment and, based on this state,

chooses an action at. The environment processes this action and gives the agent a new

state st+1 as well as a reward rt. The goal of the agent is then to maximize the expected

return E[G], which is the sum of the cumulative rewards.

2.3.1 State

While the term ’state’ can be used to refer to the environment state, which is all the

information describing the environment at a specific point in time, it usually refers to

the state representation in the context of RL. The state representation is what the agent

actually observes from the environment and is what will be referred to as a state from

here on. While these two can be the same in the case of a fully observable state, the state

is often not fully observable. For instance, in a game of poker, the environment state
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includes the hands of all players and the communal cards. However, an individual player

does not have access to this complete state. Each player can only observe their own

cards and the communal cards. This means that the agent’s state representation is only

a partial view of the environment state. Other players’ cards retain hidden information,

and the state is thus not fully observable.

Another key concept in a state representation, which is crucial for many theoretical

guarantees in RL, is the notion of a Markov state. A Markov state st is a state where

the history of previous actions is irrelevant to the future evolution of the environment.

In other words, the sequence of actions a0, a1, ...at−1 taken to arrive at st doesn’t impact

the system. A state that satisfies this property is said to satisfy the Markov property.

To explain a Markov state through an example, consider a chess game where the state

representation is the position of all the pieces on the board. An important rule in chess

is that if the same game state is reached 3 times, the game can be ended as a draw.
4 If we only know the current position of the pieces, we do not have a Markov state

representation. This is because the current probability of the game ending in a draw

given an action is not only dependent on the current state representation but also on the

history of actions. A state representation that satisfies the Markov property would also

include information about previous board configurations. 5. Note that we often use the

term state space to refer to the collection of all possible states.

2.3.2 Action

An action in RL is what the agent uses to interact with the environment. An action is

either continuous, where an action takes on some value in a range, such as the angle of a

joint in a robot, or it is taken from a discrete set of possible actions, such as in the case

of chess.

An action can also consist of multiple components, and each component can be discrete

or continuous. To expand on the example earlier, there are usually multiple joints to

consider when controlling a robot, and an angle needs to be set for each one. In such a

case, one action is represented by more than one component.

4Per the rules of Fide (FIDE (2021)), if the same game state has been reached 3 times, the player
whose turn it currently is can force a draw.

5There are numerous other things in Chess that need to be included in order to truly satisfy the
Markov property, namely castling rights and en passant.
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In the context of BO, an action, or a sample location, is given by coordinates for a

point. Since an n-dimensional point is given by n components, each one being a continuous

value, we have a multi-action continuous action space.

2.3.3 Environment

An environment in the context of RL is the system that the agent interacts with. It

is typically modeled as a Markov Decision Process (MDP). An MDP is a mathematical

framework for modeling sequential decision-making processes (Sutton and Barto (2018)).

It is defined as a 4-tuple (S,A, P,R), where

• S is the state space, as defined in 2.3.1

• A is the action space, that is, the collection of all possible actions. Commonly the

set of available actions is independent of the current state. Still, it doesn’t have to

be.

• P is the function Pa(s, s
′
) defining the probability of transitioning from state s to

state s
′
due to action a. Formally, it is defined as such: Pr(st+1 = s

′ |st = s, at = a).

P defines the dynamics of the environment.

• R is the reward function. The reward function Ra(s, s
′) defines the reward given

for transitioning from state s to state s
′
due to action a.

This 4-tuple contains everything we need to fully define the environment. Note that an

environment can either be episodic or continuous, with episodic meaning that a terminal

state T is reached in finite time, whereas continuous means that the environment will

never reach a terminal state.

2.3.4 Policy

In RL, a policy is a strategy that the agent uses in order to choose the next action based

on the current state. It is thus a mapping from a state st to the corresponding action

at. Formally, it is a function π : S → A, where S is the state space and A is the action

space. A policy can either be deterministic, where π(s) maps directly to an action, or

probabilistic, where π(a|s) maps to a probability distribution over actions. In reality,

probabilistic policies are more commonly used during training to allow for exploration of

the state space in the environment.
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Policy Types

There are two main types of policies, value-based, such as Q-learning, and policy-based,

such as Proximal Policy Optimization (PPO) 6, which we will go more in-depth on later.

These methods have their advantages and disadvantages, such as Q-learning not inher-

ently supporting continuous actions or probabilistic policies.

Value-based methods learn an action-value function, a function Q(s, a) 7 that maps

from state s and action a to expected return G. A policy is then derived from this

function, commonly by taking the action that maximizes the expected return through

π(s) = argmaxaQ(s, a). Exploration is then added by randomly sampling an action

instead of following the policy. How often the action is sampled rather than derived from

the action-value function is dependent on a hyperparameter ϵ.

Policy-based methods learn a parameterized policy πθ(a|s), a function that maps from

state s to a probability distribution over actions a. This policy is parameterized by θ

and assigns to each action a a probability πθ(a|s) of being taken when in state s. During

training, an action is sampled from this probability distribution: a ∼ πθ(·|s). Thus,

exploration is inherently built into the policy, and it can be state-dependent.

Representing the Policy

Both value-based methods and policy-based methods provide a mapping from a state

to an output - a scalar for the action-value function in value-based methods, or a vector

representing an action distribution in policy-based methods. This can either be done with

a tabular approach or with function approximation. Both of these methods are viable in

this thesis, each with its strength and weaknesses.

A tabular approach uses a table that directly maps from any state to a scalar or vec-

tor. During training it allows us to independently update the value associated with any

given state, without affecting the value for other states. This allows them to potentially

have guarantees of converging to the optimal policy. They also tend to require signifi-

cantly less compute compared to function approximation. However, tabular methods are

6Note that PPO is actually a mixture between value-based and policy-based, as the critic part of the
method is value-based. However, as the policy is directly learned, I choose to refer to it as policy-based
in this thesis.

7If the dynamics of the system is known, that is, the transition probability P, a function V (s) can be
learned instead.
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only viable when the state space is small enough to allow sufficient visits to each state

for value estimation. Due to their simplicity, tabular methods typically involve fewer

hyperparameters.

For large or continuous state spaces, function approximation methods are more suit-

able. Under the assumption that similar states should have similar optimal actions, these

methods can generalize across states and extrapolate to unseen states. This method

allows us to extrapolate, making reasonable predictions about unseen states based on

learned patterns. Because updating one state’s value influences other states’ predictions,

function approximation methods may require fewer updates to reach an acceptable policy,

depending on the problem at hand. However, these methods can suffer from instability

and lack of convergence guarantees, which is a trade-off for their ability to handle larger

state spaces and their potential for faster learning. Many methods have been developed

to stabilize these methods, but they are often complex or computationally expensive.

Another important difference between tabular methods and function approximation

methods, specifically if using neural networks, is that only the latter can be optimized

with gradient-based methods. Since this thesis is concerned with making a policy that

acts as an AF, ease of optimization of the final policy is of great importance. Since

gradient-based methods are commonly used for the purpose of finding the optima of the

AF, having access to these is an advantage for the function approximation methods. Note

that while gradients are not available for tabular methods, it is still possible to optimize

them using other optimization algorithms, such as Particle Swarm Optimization.

2.3.5 Reward

The reward function, Ra(s, s
′
), determines the reward given for transitioning from one

state s to another state s′ due to a particular action a. The design of an effective reward

function is critical in RL, as it is used to steer the learning process. A well-crafted reward

function rewards the agent for actions that align with the intended goal and penalizes

actions that deviate from it. If the reward function is too sparse, meaning that rewards

are infrequent, the learning signal can become too weak and be drowned out by noise,

leading to minimal learning.

Take the game of chess as an example. The ultimate goal is to capture the opponent’s

king before they capture ours. If we assign a positive reward for capturing the enemy king,

a negative reward for losing our king, and zero otherwise, the reward function aligns with
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our goal perfectly. However, since only one move per game will yield a reward, learning

can become slow and unstable.

One way to address this is to reward the agent for capturing the opponent’s pieces

and penalize it for losing its own pieces. This not only makes the reward function denser

but also aligns with the general chess strategy of maintaining more pieces than your

opponent to increase the odds of winning. However, this solution poses another problem.

If the reward for capturing enemy pieces is set too high relative to capturing the enemy

king, we could inadvertently create a policy that prioritizes capturing all other pieces

before attempting to capture the king, as doing so would end the game and eliminate

the potential for further reward. Therefore, carefully crafting a reward function that

encourages the desired behavior is key to learning a useful policy in RL.

2.3.6 Proximal Policy Optimization

PPO (Schulman et al. (2017)) is an Actor-Critic learning algorithm for RL that was

developed by OpenAI. It has been used to solve numerous high-complexity problems,

including natural language processing in its use in ChatGPT (Ouyang et al. (2022))

and achieving human-level performance in complex cooperative games such as Dota 2

(OpenAI (2018)). Due to its popularity, it is widely tested, and numerous readily used

implementations exist online.

As with all Actor-Critic methods, PPO consists of a policy and a critic. Broadly

speaking, the policy is tasked with choosing an action depending on the state, and the

critic is tasked with assessing how good this action was. The main difference between

PPO and other Actor-Critic methods, however, is how the PPO updates its policy. It

tries to be conservative in how quickly it changes the policy during training, in order to

increase stability of learning. PPO also works great with both continuous and discreet

action spaces, as well as multi-action action spaces, as touched upon earlier.

Reasons for why we chose PPO specifically is outlined in section 4.5.4.
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Chapter 3

Related works

Since its first appearance in 1962, BO has been extensively researched (Garnett (2023)).

In more recent times, interest in cost-aware BO has garnered more interest. Swersky

et al. (2013) introduced a cost-aware variant of the entropy AF, which paved the way for

modifying EI into EI per unit cost (EIpu):

EIpu =
EI(x)

c(x)
(3.1)

where EI is Expected Improvement and c(x) is the underlying cost function. EIpu

is an AF designed to balance the tradeoff between evaluation cost and expected utility

of the evaluation. Snoek et al. (2012) showed that this can increase the performance of

BO on a variety of problems. This result was called into question by Lee et al. (2020),

which found that EI performed better than EIpu on nine of their twenty test cases. They

reason that this is because EIpu takes cost too much into consideration during the later

parts of the optimization run, where you want to act greedy, and they argue that EIpu

is only better when the optimum is located in a cheap area of the input space.

To mitigate this, Lee et al. (2020) developed a method called Cost Apportioned BO

(CArBO), that deals with this issue by reducing the impact of the evaluation cost as the

budget depletes. They do this by introducing a new AF, named EI-cool, which is defined

as follows:

EI-cool(x) =
EI(x)

c(x)α
, α = (τ − τk)/τ
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where EI is Expected Improvement, c(x) is the underlying cost function, τ is the

optimization budget, and τk is how much of the optimization budget has been currently

used. They conclude that EI-cool outperforms EI and EIpu on an extensive set of real-

world benchmarks and that it can be easily extended to work with other AFs, not just

EI.

There has also been research done on attempting to learn AFs from data, which in

this case are source tasks. A source task is an optimization problem similar to the one

we are currently trying to solve. Wistuba et al. (2018) proposed a method they name

transfer acquisition function (TAF), which improves performance by making the AF a

superposition between the GP’s prediction on source tasks, and the target task, i.e. our

current optimization problem.

Volpp et al. (2020) then expanded upon this idea by learning a AF from a set of

objective functions that are similar to the true objective function we want to optimize

later. The difference is that instead of explicitly weighting between the source and target

tasks, they instead directly learned this weighting using RL. They introduced the method

MetaBO, a method this thesis is heavily based on. MetaBO is a method for learning

acquisition functions using RL in order to exploit prior knowledge. They show that their

method consistently outperforms current methods, and is broadly applicable to a wide

range of different problems.

MetaBO does not take cost awareness into account, and so this thesis is concerned

with extending the research done by MetaBO into cost-aware BO. To the best of my

knowledge, there are currently no other scientific works that combine the use of RL in

order to learn an AF in a cost-aware scenario.
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Chapter 4

Method

In this chapter, I introduce a method I have namedCost-AwareReinforcement Learning

based Bayesian Optimization (CARLBO), which is aimed at learning an AF that takes

advantage of knowing the cost of evaluating the function at a given input xi in order to

increase performance. This distinctive feature allows the AF to manage the optimization

budget more effectively, leading to improved data efficiency. By only learning the AF,

rather than reformulating the entire BO framework, I attempt to make improvements

upon established Bayesian Optimization techniques. In essence, this new method is a

combination of previously developed methods introduced in chapter 3. That is, learning

an AF like done by MetaBO, and taking the cost-aspect into account like done by Lee

et al. (2020).

As the AF we want to learn is simply a mapping from some input information to a

single measure of utility, there are multiple ways we can model this. In this thesis, we use

a neural network to represent the function. The reasoning will be laid out in subsection

4.5.1. This AF is learned using the PPO algorithm for reasons stated in subsection 4.5.4.

In this chapter, I will first talk about the advantages of using RL in order to learn

an AF, and how we can model the BO as an RL problem. Then, I will introduce my

method and give an algorithm for how it works, as well as talk about what information

my AF utilizes. At last, I will talk about the specifics of some implementation details of

the method in how it is trained.
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4.1 Advantages of Learning an Acquisition Function

Through Reinforcement Learning

Using RL to learn an AF offers various advantages. For one, an RL-based AF can use any

additional information that may be underutilized by traditional, handcrafted AFs. While

the latter are sculpted based on theoretical guarantees and are often simplistic in their

nature, an RL-based AF has the potential to incorporate any relevant data provided,

increasing its performance.

Traditionally, handcrafted AFs have used additional information in relatively simple

ways, in comparison to more sophisticated methods. As an example, a common method

to incorporate cost awareness is EIpu, as detailed in chapter 3, which is a method that

scales EI by the inverse cost. The advantage of using RL to learn an AF is that it can

directly utilize such additional information when making a decision. Unlike traditional,

handcrafted methods, RL-based methods can potentially leverage this information in a

more nuanced way, hopefully leading to increased performance.

One of the biggest advantages of using RL is its capacity for class-specific learning.

Unlike traditional AFs, which are created to perform well across a broad spectrum of

function classes, RL-based AFs can be trained on specific types of functions, extracting

useful information about the underlying structure. While this can hurt the generalization

of the AF, it can possibly gain a significant boost when used on problems of the same

type as it was trained on. This can then be exploited if we have domain knowledge about

the underlying objective function by training on similar function types.

4.2 Modeling Bayesian Optimization as a Reinforce-

ment Learning Problem

One might consider designing an RL agent that directly outputs new coordinates based

on the points evaluated so far, along with their corresponding function values. However,

by framing the problem within the BO framework, we significantly simplify this process.

BO is a tried and tested method that has demonstrated effectiveness for the type of

functions considered in this thesis. By leveraging this framework, we retain the beneficial

properties inherent in BO, with the hope of enhancing the performance of an already

well-performing optimization strategy.
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Reinforcement Learning Bayesian Optimization
Policy π Aquisition Function
Episode Optimization run on f ∈ F0

Episode length T Optimization budget T
State st Information available to the learned AF
Action at Query point xt

Reward rt Negative simple regret −Rt

Transition p(st+1|st, at) Evaluation of objective function f , update of information

Table 4.1: Concepts in Reinforcement Learning and their counterparts in Bayesian
Optimization. Adapted from Table 1 in Volpp et al. (2020).

The modeling of the BO problem as an RL problem is helped by the numerous sim-

ilarities shared by the two frameworks, the most significant being that they are both

sequential decision-making problems. As can be seen in Table 4.1, the various concepts

in RL have direct counterparts in the BO framework. We can thus train the AF as an

RL agent by conducting optimization runs on randomly sampled functions.

4.3 CARLBO Algorithm

In order to learn an AF, we need a set of objective functions, denoted F , that we can

train the RL agent on. These objective functions need to be cheap to evaluate and

should ideally share structural similarities with the true objective function we wish to

later utilize this learned AF on. Doing this allows the learned AF to take advantage of

the inductive bias introduced through the choice of F . However, as shown by MetaBO,

the performance on unseen function types should fall back to that of more common AFs

even if used on function types not present in F .

As shown in table 4.1, an episode in the RL setting is just an optimization run on a

function. Every timestep t, the agent receives state st, which is information about a set

of points in the input space as detailed in section 4.4. The agent then chooses an action

at, which is then treated as the next query point by the RL environment. The cost of

evaluating the function at at is then subtracted from the remaining budget, and the GP

is updated with the new data. The environment then returns st+1 and rt, and the whole

process is repeated until the evaluation budget is depleted.

CARLBO, an algorithm for learning a cost-aware AF using RL is presented in Al-

gorithm 2. Note that after training, the learned AF is fully described by the neural
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network, which means that we can discard the entire RL framework. Only the weights

and architecture of the trained network is needed in order to use the learned AF. By

using differentiable activation functions in the neural network, we allow for the of use

gradient-based methods to maximize AF, which is an important step in the BO loop.

Algorithm 2 CARLBO

1: Choose a set of objective functions F
2: Initialize the agent and environment E
3: Train the agent using PPO by doing optimization runs on f ∈ F .
4: Discard entire RL framework except for learned policy/AF
5: Run an optimization procedure on the true objective function f ∗ using BO with the

learned AF

4.4 Input Variables For the Learned Aquisition Func-

tion

Giving the learned AF enough information to make informed decisions is important to

maximize its performance. In this section, I will go over the different input variables

passed into the AF and what their importance is. The first three inputs are local in-

formation, meaning that they say something about a specific point xi. The last three

concern global information, meaning that they say something about the state of the entire

system, and thus are the same for any point xi.

• Mean value of the Gaussian Process for point xi The mean value of the GP

for point xi is expected value of that point according to the GP. It informs the

AF about the predicted value for this point, which in turn plays a large role in

determining how good this point is.

• Standard deviation of the Gaussian Process for point xi The standard

deviation of the GP for point xi is a measure of uncertainty for this point according

to the GP. In general, the further away from a previously sampled point xi is

the higher the standard deviation. The standard deviation is useful for guiding

exploration (points with very low standard deviation are often less interesting to

explore, as we are quite certain about their value).

• Evaluation cost for point xi The evaluation cost for points xi is important

information to consider when deciding if xi is useful to sample. The cheaper the

evaluation cost, the more interesting sampling this point should be, as it will allow
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for more samplings over the course of an optimization run. Adding this information

to the learned AF is the main contribution in this thesis.

• Remaining evaluation budget The remaining evaluation budget denotes how

far in the search process we currently are. This information can be useful to guide

the exploration vs. exploration trade-off, as it is natural to think that this should

be dependent on how many potential evaluations we have remaining.

• Best found solution so far The best-found solution so far is another global

variable. It denotes the goodness of the best solution found so far, which is very

useful when compared to the mean value and standard deviation of the GP. If

the mean value for xi is above the best found solution so far, it is potentially a

very interesting point to sample. This information allows potentially allows us to

generalize to functions of different scales, as we can always compare the mean and

standard deviation at a point xi to the best found solution so far.

• Most expensive evaluation cost This global number denotes how much the most

expensive evaluation costs. This is included in order to give the AF a baseline to

compare the cost in each single point against.

4.4.1 Dimension dependent information

Unlike MetaBO, I do not include information about the coordinates of the point xi.

Whereas their main focus is on using transfer learning to learn an AF to use on a specific

objective function, my aim in this thesis is to make a general AF that works on a variety

of problems. The addition of the coordinates for xi means that the AF is no longer

dimension-agonistic. That is, the size of the input is dependent on the dimension of the

objective function. That means that an AF trained on two-dimensional functions will

not work for any other dimensions. By omitting this information, our learned AF can

be trained on one size and used on others. While not in their main method, MetaBO

showed that omitting this information still allows for a good AF to be learned.

4.5 Details of training

Due to the nature of this problem, it is not entirely straightforward to apply common

RL algorithms out of the box. In this section, I will go into some of the details of the

training process. I will first talk about how specifically we model the action space, as

this is where the problem lies. I will then justify my choice of using PPO use to train the

agent.
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4.5.1 Representing the Learned Aquisition Function

How we choose to represent the learned AF is of great importance, both when it comes to

the training process as well as using it after training. The two main approaches introduced

in subsection 2.3.4, tabular methods and function approximation, each has their benefits.

Tabular methods provide theoretical convergence guarantees, which are advantageous.

However, to apply them in our context of continuous state space, that is the values

denoted in section 4.4, we must discretize them. This discretization, particularly when

dealing with large input spaces, results in information loss due to the necessary coarseness,

compromising the detail and precision of the learned AF.

A function approximation approach avoids the need for discretization. This provides a

more flexible and potentially more accurate representation of the learned AF. For neural

networks specifically, given their known capacity to approximate complex continuous

functions, we can approximate the desired AF with high accuracy, given a sufficiently

large network. While they lose guarantees of converging to the optimal policy in the

context of RL, they have proven performance in RL settings across many different types

of problems.

Additionally, using a neural network allows for the use of gradient-based optimization

methods to maximize the AF when it is in use. The prevalence of neural networks in

machine learning has resulted in robust, user-friendly tools and libraries, making imple-

mentation fast and easy. Therefore, despite tabular methods being a potentially viable

option, function approximation using neural networks was selected for this thesis due to

its expected ability to provide a more precise and flexible representation of the learned

AF.

4.5.2 State

In terms of BO, our system is fully described by the GP, the cost function, and the

global information, as mentioned in section 4.4. When it comes to RL, however, we need

to evaluate a discreet amount of points, in order to make it manageable for the PPO

algorithm.

We do this by choosing a set X of points in the input space, and getting the values

from the GP and cost function in these points. Formally, the state in time t is then

st = [µt(X ), σt(X ), Tt(X ), bt, f(x
+
t )]
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where µ(x) is the mean function of the GP, σ(x) is the standard deviation function

of the GP, T (x) is the cost function, bt is the remaining evaluation budget, and f(xt) is

the best found solution so far. Note that if we for example choose X to be of size 100,

that is we have 100 points in the input space, the state will be of size [100, 6]. We thus

have information about 100 different points in the input space.

We are free to choose how we create this set of input points X . The freedom to choose

how the input space is discretized means that it can be adapted to the problem at hand.

It can be a uniform grid, it can be randomly sampled coordinates from the input space

of the objective function, or any other suitable approach.

An optimal strategy for choosing the set X might follow a procedure similar to the

MetaBO method, where a Sobol sequence is used to generate a grid of points. These

points are then evaluated using the AF we are currently learning, and a second, more

refined grid is constructed close to where the AF predicts maximum utility. This allows

the creation of a set X that is focused on more promising regions of the input space, while

still keeping it sparse enough for efficient computation. However, this technique was not

adopted in this thesis due to the complexity of implementation. Specifics of how X was

chosen in this thesis will be specified in chapter 5.

4.5.3 Modeling the Policy

In a conventional RL setting, the action space is usually formulated as either a continuous

or discrete space, and the agent’s decision is directly related to the entire state. However,

in CARLBO, I adopt a different approach that more closely mirrors the behavior of a

conventional AF.

Typically, we feed the entire state into our function approximator and receive the

action, or coordinate in our case, as an output. In order to mirror the behavior of a

conventional AF, we instead input each individual point xi in the state into our model

and get one value as a prediction. Then, if the set of input points X is of size 100, we

predict 100 distinct values, one for each point. By turning the collection of these points

into a categorical distribution, we make sure that the value predicted by the AF for any

point xi represents the desirability to sample at this point. By sampling a point from

this categorical distribution, we end up with our action.

The formal definition of the policy is then as follows:
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πθ(·|st) ≡ Cat [αθ(x1), . . . , αθ(xN)] (4.1)

where π denotes the policy, st is the state at time t, Cat is the categorical distribution,

αθ is the parameterized AF we are learning, and xi denotes a point in the input space.

4.5.4 Selection of the Reinforcement Learning Algorithm

Creating a good AF using RL is possible with a myriad of different RL algorithms, both

model-based and policy-based. Despite the numerous options available, I have opted to

use the PPO algorithm in this thesis.

The primary goal in our context is to correlate the output of the learned AF with the

value of sampling a particular point in the input space. Both value-based methods and

policy-based methods can do this. Policy-based through predicting a probability for each

point, and value-based methods through predicting the value of being in the state. Both

these should very well correlate with our primary goal. One of the inherent problems

with value methods is they don’t inherently have exploration built in. However, with the

way we model our action space, this issue is circumvented as we still sample from the

categorical distribution.

Despite both methods being suitable for this task, I have selected PPO for a concrete

reason. It has already been demonstrated by MetaBO to be highly effective for this

specific task. Therefore, I chose to build on this proven success, making it the primary

motivation behind using PPO in this study.

Reward

For the reward function, I have chosen to use the negative logarithm of simple regret as

the reward. This is calculated as the difference between the true maximum value of the

function and the best value that the agent has found so far. By taking the logarithm, we

ensure that the closer we are to a maximum, the more significant a small improvement

is1. Furthermore, using the negative sign aligns with the agent’s goal to minimize regret.

1The improvement from 80% of the maximum value of the function to 80.5% is not very significant,
but an improvement from 99% to 99.5% is very significant
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The reward function is crucial in RL as it shapes the agent’s learning process, and

defines its goal. In our case, we can either assign rewards at the end of each episode or

after every timestep. However, considering the variable length of episodes in our setup,

providing rewards after every timestep may encourage the agent to extend the episode

length unnecessarily, instead of focusing on finding the maxima.

Thus, to drive the agent toward efficient exploration and exploitation, we choose to

only reward the agent at the end of each episode. This approach makes sure that the

only goal of the agent is to have come as close as possible to the maximum of the function

within the optimization budget, which is perfectly aligned with our goal.
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Chapter 5

Experiments

To assess the effectiveness of CARLBO, I have set up a set of experiments designed to test

its capabilities in different scenarios. In these experiments, I trained two distinct agents,

and I test these on various objective functions in order to understand the method’s per-

formance under different scenarios. Alongside these agents, I have also tested several

benchmark methods to ensure a robust comparison. This chapter will outline the exper-

imental process, starting with the standard settings and configurations shared across all

experiments, and subsequently moving to introduce each individual experiment.

5.1 Experimental Setup

These experiments were executed on Python 3.10.8, using an RTX 4090 GPU. As the

environment I have developed heavily utilizes the GPU in order to run many episodes

in parallel, a high-performance GPU with a large amount of video memory is crucial

in order to achieve fast training times. In the rest of this section, I will introduce the

elements that are consistent across all experiments.

5.1.1 Environment

In this subsection, I will first outline one of my contributions: developing an environment1

for accelerating learning AFs using parallel computations on a GPU. I will then go through

1The environment is available at https://github.com/ALjone/Master-Thesis
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some experiment-specific choices made in the environment, namely choices related to the

surrogate model, the action space, and the reward function.

A key contribution of this thesis is the development of an advanced RL environment

using Python for training an AF. This environment is highly extensible, allowing the

integration of any objective function through the extension of a base class.

The environment utilizes GPyTorch, a GPU-accelerated library for Gaussian Pro-

cesses (GP) training, as introduced by Gardner et al. (2018). Due to GPyTorch’s batch-

training capabilities, we can run thousands of objective functions in parallel. A crucial

feature of this environment is that all operations are GPU-accelerated, and all Pytoch

tensors are hosted on the GPU, removing the need for moving tensors back and forth

between CPU and GPU during training, leading to significant speed improvements. In

essence, this GPU-based environment makes training RL based AFs much faster com-

pared to traditional CPU-based environments.

As seen in table 5.1, doing 2048 optimization runs in parallel on the GPU significantly

outperforms all other variants. We observe an approximate 5x speedup compared to the

parallel CPU version. This allows for much faster training, allowing for either longer

training, or more experimentation. One factor not shown here is that when training the

agent, we need to have the tensors on the GPU. Having the tensors already on the GPU

removes the overhead of moving them, which can be costly.

Number of Objective Functions Environment Steps per Second
2048 GPU 1700
2048 CPU 330
1 GPU 45
1 CPU 65

Table 5.1: Comparison of speed performance of the environment. Note that CPU beats
GPU when only running one objective function. This is likely due to overhead in moving
tensors from CPU to GPU.

Initial Design

When fitting a GP, there need to be some initial points that have already been sampled.

Lee et al. (2020) proposed a method to do a cost-effective initial design. While this can

be very useful when using the AF, I chose to instead randomly sample points from the

input space. This was done due to the simplicity of implementation, as well as the fact
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that the cost-effective initial design can be too computationally costly for a training loop

where speed is crucial.

Another important choice was that I don’t subtract the cost of the inial points from

the initial budget. This is done because the initial design is out of the control of the

agent, and subtracting the cost of sampling the initial design is in practice the same as

starting with a randomized budget, which I already do.

In all experiments, 3 points are randomly sampled from the input space before the

optimization run is started.

State Grid

As mentioned in subsection 4.5.2, I discretize the input domain into a set X of points.

In our case, this is constructed as a uniform grid. This implies that at each timestep,

the agent can select any point xi ∈ x to sample next. This is a straightforward and

easy-to-implement method of choosing X , which is also computationally fairly cheap.

Theoretically, the agent could benefit from a more refined step X . One that is denser

close to the maxima of the function, such as the one proposed by MetaBO and detailed

in subsection 4.5.2, is a good candidate. However, the implementation of such a re-

fined action space might introduce additional computational complexity or require more

advanced techniques, which is outside the scope of this thesis. Therefore, despite its

downside, I opted for a uniform grid-based set X for its ease of implementation.

One of the main disadvantages of this is that we need a high resolution, i.e. the number

of points in each dimension, in order to have enough density close to maxima. If we have

a resolution of for example 60, this is equal to 602 = 3600 in 2D, and 603 = 216000 in

3D. One must therefore need to be careful when choosing the resolution.

5.1.2 Training

The training loop in these experiments was conducted using a modified version of cleanRL,

a framework developed by Huang et al. (2022), which has single-file implementations of

many different reinforcement learning algorithms.2

2The specific file my training loop was based on can be found at cleanRL’s Github repo [link]
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Note that opposite to MetaBO, I fit a GP to the data in every timestep, whereas

MetaBO used a fixed length scale and variance for their kernels, circumventing the need

for learning these parameters from the data.

The hyperparameters used for PPO are consistent across all experiments. They are

displayed in table 5.2.

Hyperparameter Value
Total Timesteps 5,000,000

Anneal Learning Rate True
GAE Lambda 0.98

Number of Minibatches 4
Update Epochs 4

Normalize Advantage True
Clip Coefficient 0.2

Value Function Coefficient 1
Max Gradient Norm 0.5
Target KL Divergence 0.3
Entropy Coefficient 0.01
Number of Steps 32
Learning Rate 1.0× 10−4

Discount Factor (γ) 1

Table 5.2: Hyperparameters used for the Proximal Policy Optimization (PPO) algo-
rithm.

These hyperparameters are consistent with the ones used by MetaBO, with some small

differences. As I only reward the agent at the end of the episode, I set the discount factor

γ to 1, as all steps of the optimization process are equally important. I also have a lower

number of steps (i.e. rollout length) compared to conventional PPO implementations such

as the one suggested by Huang et al. (2022), which is due to our environment having short

episodic lengths, with the length generally being around 20 steps.

5.1.3 Policy and Network Architecture

The function approximation I use to represent our AF is a simple feed-forward neural

network with 7 hidden layers, each consisting of 32 neurons. The input layer has 6

neurons, while the output layer consists of a single neuron. This structure results in a

network composed of 15 107 parameters, significantly smaller than the network used by

MetaBO (approximately 161 000 parameters. My choice of using a smaller network was

motivated by the desire to reduce computational costs. During testing, smaller networks
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appeared to perform as well as larger networks, thus leading me to choose a smaller

network without any notable drawbacks. The activation function of choice was Leaky

ReLU, and I use the softmax function in order to transform the outputs of the network

into probabilities.

In addition to this, the agent has one parameter that controls the temperature of the

softmax function when creating the categorical distribution. This is done in order to aid

exploration early on. While the network of the agent in a normal RL scenario predicts all

the logits individually, our agent predicts one logit at a time, making it harder to increase

exploration without simply lowering the size of the output of the network across the line.
3. In order to aid the agent with doing this, I give it a temperature parameter it can

control. The logits predicted by the network, i.e. the utility of sampling at each point, is

divided by this temperature before being sent to the softmax function. The temperature

starts at a value of 3, in order to facilitate early exploration.

5.1.4 Evaluation Cost in Experiments

In our experiments, each objective function is associated with an evaluation cost function,

which assigns a cost to sampling a point xi in the input space. Each objective function

is also associated with a total evaluation budget, which limits the number of times the

objective function can be sampled from. For each optimization run in the training loop,

I sample both an underlying evaluation cost function as well as an evaluation budget.

The evaluation budget is sampled from a uniform distribution T ∼ U(a, b), where a and

b are the lower and upper bounds of the evaluation budget.

The cost functions chosen in our experiments are polynomial in nature, characterized

by a polynomial term for each dimension in the function space. This results in a non-linear

function that can be formally defined as:

c(x) =
n∑

i=1

mi(xi + 1)pi + b

Here, x = (x1, x2, . . . , xn) represents the input vector, m = (m1,m2, . . . ,mn) are the

coefficients for each dimension, p = (p1, p2, . . . , pn) are the exponents for each dimension,

and b is a constant term. This function is evaluated on xi ∈ [−1, 1] for the ith dimension.

3This is due to how the Softmax function works. The logits [3, 3, 4] would result in a distribution
with the mass fairly evenly distributed, whereas the logits [30, 30, 40] will put nearly all the mass in the
logit with value 40, despite the ratio between the logits being the same
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To generate a variety of polynomial cost functions, a sample is generated for each

coefficient mi, each exponent pi, and the constant term b from uniform distributions.

The specific distributions depend on the experiment and are given in their respective

sections.

I chose the polynomial cost function outlined above, as it represents a lot of real-world

scenarios. Polynomial scaling depending on some variables is not uncommon for a lot of

algorithms when doing hyperparameter optimization, such as the number of parameters

in a layer scaling quadratically with the hidden layer size.4 This also allows us to have

close to linear functions when the exponents sampled are close to 1. By sampling the

coefficients, exponents, and constant terms, I train the agent on a diverse set of evaluation

cost functions, hopefully improving robustness.

Across all experiments, unless otherwise specified, the values used to sample every

cost-related parameter were shown in table 5.3

Parameter Lower Bound Upper Bound
Evaluation Budget 500 800
Constant Range (b) 5 10
Linear Range (mi) 10 20

Polynomial Range (pi) 0.5 1.5

Table 5.3: Evaluation cost parameter ranges for all experiments unless otherwise spec-
ified.

These parameters were chosen to give a wide range of possible evaluation cost functions

in order to create a robust and general AF. With these parameters, if sampling at random,

the average optimization run samples approximately 18 times.

5.1.5 Benchmarks

In my experiments, I utilize several benchmark methods as benchmarks for comparison:

• Random: The simplest benchmark involves randomly sampling a point in the

input space at each timestep. While naive, this method is an essential benchmark

that provides a lower bound on performance.

4Assuming that the input and output of the layer has the same size
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• Expected Improvement (EI): Given its wide usage and straightforward imple-

mentation, EI, a commonly employed AF, serves as a valuable standard benchmark.

Its consistent performance and prevalent use in the field make it an important ref-

erence.

• EIpu EIpu takes evaluation cost into account in a very naive way, by scaling EI

with the evaluation cost in point xi. This is a commonly used method in these cases

and provides a naive benchmark that still considers evaluation cost.

• MetaBO I train an agent from scratch using the method proposed in Volpp et al.

(2020) 5, on the exact same setup as my AF is trained. This is essentially using

CARLBO, but omitting any information about the cost of sampling.

• EI-cool EI-cool builds upon EIpu, and introduced a cooling factor on the scaling.

The longer the optimization process goes, the closer it resembles EI. This method

is designed to be a more robust version of EIpu, and was shown to achieve good

results by Lee et al. (2020)

These benchmarks should provide a robust collection of benchmarks I can compare

CARLBO to, in order to get a fair assessment of its performance.

5.2 Experiments

In conducting these experiments, I train two different AFs according to algorithm 2. The

first AF I train will be denoted αCARLBO MM and is trained by choosing F to be a set

of 2-dimensional multimodal functions with randomly drawn parameters. The second

AF, denoted αCARLBO GP
6, is trained by choosing F to be a set of modified 2-dimensional

Goldstein-Price functions. These functions will be introduced in the following subsection.

In addition, I trained αMetaBO MM and αMetaBO GP, which is trained the exact same way,

but without evaluation cost information. Note that both AFs were trained with the

resolution of the set X of input points set to 60 in each dimension.

I test the agents both when sampling from the policy, i.e. by turning the outputs into

a categorical distribution and sampling from this distribution, as well as when greedily

taking the best action. This is done due to the fact that the policy learns to condition its

5I omit any positional info as input, as done in some of their experiments, for the same reasons as
outlined in section 4.4.

6GP here is Goldstein-Price, not to be confused by GP
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output on the state assuming that we follow the policy for the rest of the episode. Since

the policy was trained with sampling, this is what it is conditioned on.

These two models are then tested in different settings in order to assess the perfor-

mance of the model both on seen and unseen function types, in order to test both its

capability of learning specific function types, as well as its generalization capabilities. As

the idea behind αCARLBO GP is to test CARLBO’s function-specific learning capabilities

on functions with a very specific structure, most of the experiments will only be run using

αCARLBO MM, as the performance of αCARLBO GP is expected to be poor.

In this section, I will first introduce the different objective functions that are used in

the experiments. I will then introduce all the experiments that were done.

Note that in all experiments, all evaluations of the functions have no noise. I also frame

all experiments as maximization problems, although the method should work equally well

for minimization problems. All functions, when drawn, are scaled to have their maxima

be a random number drawn from U(1
3
, 2) in order to help generalization.

5.2.1 Objective Functions

All experiments conducted in this thesis are conducted on variants of multimodal func-

tions, noisy convex functions, or the Goldenstein-Price function, all of which will be

introduced in the sections following. The multimodal function type should in theory

be easy to optimize and has multiple easily identified local maxima. The noisy convex

functions are strongly convex but with added Gaussian noise. Goldstein-Price represents

a type of function with very strong properties, that are generally harder to optimize. It

is also a commonly used benchmark for testing optimization methods and was used by

MetaBO.

Multimodal Functions

In order to test that this method works, I construct a scenario where one would assume

that the inclusion of evaluation cost is highly relevant. As seen in figure 5.1, this is a

function with 4 peaks, each in its own quadrant.

These multimodal functions are constructed as Gaussian Mixture Models, and in this

case, there are two Gaussians in each dimension. They are given by the function:
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Figure 5.1: A visualization of a multimodal function with 4 local maxima and one
global.

f(x) =
n∑

i=1

[A1i · e−λ1i·(xi−µ1i)
2

+ A2i · e−λ2i·(xi−µ2i)
2

]

where:

• n is the number of dimensions in the function

• x = (x1, x2, . . . , xn) is the input vector.

• A1i, A2i are the amplitudes of the Gaussians in the ith dimension.

• λ1i, λ2i are the decay rates of the Gaussians in the ith dimension.

• µ1i, µ2i are the means of the Gaussians in the ith dimension.

Here, for each dimension i, two Gaussian functions are defined with different param-

eters (amplitude, decay rate, and mean), and the sum of these Gaussians is the value in

that dimension. The overall value of the entire function in a point xi is the sum of the
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values in all dimensions. The specific ranges for how these values are sampled are given

in table 5.4. Note that as the amplitudes are also randomly sampled, there is potentially

only one global maximum, but on average the local maxima are close to the global max-

imum in terms of peak. These functions are evaluated evaluated on xi ∈ [−1, 1] in the

ith dimension.

Parameter Range
Amplitude (A) [0.8, 1.2]
Mean (µ1) [-0.85, -0.15]
Mean (µ2) [0.15, 0.85]

Standard Deviation (σ) [0.15, 0.5]

Table 5.4: Parameter ranges for the multimodal functions

These functions, in the example of the 2D case, have one peak in each quadrant.

By using the evaluation cost information, the learned AF will hopefully learn to first

explore the cheaper of the quadrants, before moving on to the more expensive ones.

Thus I construct a scenario where our model should work well, which is done in order to

highlight the strengths of the method.

When optimizing the multimodal functions, I use the spectral mixture kernel. This

is due to the fact that the amount of mixtures in each dimension is known (two in each

dimension), and the spectral mixture kernel is better equipped to model these functions

than the RBF kernel, especially when dealing with small numbers of data.

Noisy Convex Functions

Convex functions represent a distinct class of optimization problems. They are generally

easy to optimize due to the fact that local maxima are also global maxima. To make this

more challenging, I add correlated Gaussian noise to the functions, which in turn makes

them slightly harder to optimize. This noise can be seen in figure 5.27. The function

is thus similar to the multimodal one in some ways. They are both easy to optimize,

and the multimodal functions are, in the 2D case, convex in each quadrant. However,

they have different challenges when it comes to optimization. Multimodal functions

have the challenge of finding the correct mode, whereas the noisy convex functions have

considerably more local maxima, and the surface must be navigated in a different way.

7Note that the evaluations themselves are still deterministic, the function is just a sum of a convex
function and some precomputed Gaussian noise
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The inclusion of noisy convex functions is thus motivated by these slight differences.

It provides a good way to test if the performance of the learned models translates to a

similar, yet different type of function.

Figure 5.2: A visualization of a noisy convex function.

F (x) =

(
n∏

i=1

ai(xi − pi)
2e−bi(xi−pi)

)
·N

where:

• n is the number of dimensions

• x = (x1, x2, ..., xn) is the input vector.

• ai, bi, and pi are random parameters associated with the ith dimension.

• N is a noise term generated by a Gaussian function.

The term N is generated by a Gaussian Filter with µ = 1, σ = 1.5, and correlation =

3.5.8 These values were chosen through visual inspection of the functions. These functions

8This was implemented using the gaussian filter method in SciPy.
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are evaluated evaluated on xi ∈ [−1, 1] in the ith dimension. The specific ranges for the

sampled values are given in table 5.5

Parameter Range
ai [-0.5, -0.01]
bi [0.01, 0.5]
pi [-1.1, 1.1]

Table 5.5: Parameter ranges for the noisy convex functions

When optimizing the noisy convex functions, I use the RBF kernel. The RBF kernel

is well suited to a convex problem like this and is commonly the go-to kernel.

Goldstein-Price

The Goldstein-Price function (Surjanovic and Bingham) is a well-established optimiza-

tion benchmark characterized by a pronounced structure, as depicted in Figure 5.3. It is

significantly different from the multimodal functions and thereby tests the model’s gen-

eralization capabilities. For the purposes of this thesis, I use the standard form of the

Goldstein-Price function but invert it in order to turn it into a maximization problem. I

also introduce a random rotation between 0 and 2π radians to generate distinct functions

that share the same underlying structure. This is done in order to prevent the AF from

overfitting.

The Goldstein-Price function is a two-dimensional function, given by

f(x1, x2) =(1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))

· (30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)),

and is usually evaluated on the square x1 ∈ [−2, 2], x2 ∈ [−2, 2]. As shown in Figure

5.3, in this domain, it has two very distinct lines, with a global maximum forming where

they cross at (0,−1). This global maximum is also the only maximum of the function.

When optimizing Goldstein-Price functions, I use the RBF kernel. This kernel was

chosen as it is the same kernel that MetaBO used in their setup when optimizing their

Goldstein-Price functions.
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Figure 5.3: A visualization of the inverted Goldstein-Price function with no rotation.

5.2.2 Function Specific Learning

One of the advantages of using RL in order to learn an AF is the capacity to learn patterns

in specific functions. In order to test this capability, I designed an experiment where the

performance of αCARLBO MM and αCARLBO GP are tested on the specific functions they

were trained on. Doing this allows me to assess the function-specific learning capabilities

of CARLBO, which is an important quality when using the AF for transfer learning.

In these experiments, the resolution was 60 in each dimension, totaling 602 = 3600

points. This offers a fine enough grid of points to reasonably optimize these functions,

i.e. there is a fine enough grid of points close to the maxima of the function to reasonably

find a good solution.

αCARLBO MM Tested on 2-dimensional Multimodal Functions

In this experiment, I tested the performance of αCARLBO MM on the exact type of function

it was trained on, which is 2-dimensional multimodal functions. This was done in order
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to test the capabilities of CARLBO to learn an easy-to-optimize function.

αCARLBO GP Tested on Goldstein-Price Functions

Similarly to the previous experiment, I tested the performance of αCARLBO GP on the

rotated Goldstein-Price functions. I did this to test how well CARLBO performs when

tasked with optimizing harder-to-optimize functions with a very clear structure.

5.2.3 Generalization Across Different Dimensions

An important feature for any generalizing AF is its ability to do well on problems with

different dimensionality. Due to their inherent design, most AFs are agnostic to the

dimensionality of the function being optimized. In order to see if CARLBO has this

ability, despite only being trained on 2-dimensional functions, I tested the performance of

αCARLBO MM functions of higher dimensions, namely 3-Dimensional multimodal functions.

In these experiments, the resolution was 20 in each dimension, totaling 203 = 8000

points for the AF to assess. While this is a fairly coarse grid, this is the highest I can go

for computational reasons, and should still provide a reasonably sized grid for optimizing

3-dimensional functions.

I conducted two experiments on higher dimensional functions. In the first of the two,

the 3rd dimension has an additional evaluation cost associated with it. That is, the cost

of evaluating the function for a point xi is now the sum of the cost in all 3 dimensions.

This naturally leads to higher costs in general and higher costs than αCARLBO MM observed

during training. In the second experiment on higher dimensional functions, we omit the

cost of sampling in the newly added 3rd dimension. This ensures that the cost of any

one point xi in the input space is consistent with what was observed during training.

αCARLBO MM Tested on 3-dimensional Multimodal Functions With Two Cost

Dimensions

In the first experiment for the higher dimensional functions, the additional function

doesn’t have any extra cost associated with it. That is, the cost of the evaluation is

only dependent on the values of xi in the first and second dimensions. The idea is that

this should more closely resemble the training conditions of αCARLBO MM.
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αCARLBO MM Tested on 3-dimensional Multimodal Functions With Three Cost

Dimensions

In the second experiment, I tested the performance of αCARLBO MM on 3-dimensional

functions where evaluation cost is consistent across all three dimensions. This is designed

to test the capabilities of the learned AF to higher dimensional functions with different

underlying cost functions.

5.2.4 Generalization to Different Function Types

Another important quality of a generalizing AF is the ability to function well on a wide

variety of function types. In order to test if this is the case with the AFs learned using

CARLBO, I tested the αCARLBO MM and αCARLBO GP on cost functions different from the

ones they were trained on. As these AFs were only trained on one type of functions, the

hope is that they excel on the type they were trained on, and worst case fall back to the

performance of methods such as EI, as shown by MetaBO.

αCARLBO MM Tested on 2-dimensional Noisy Convex Functions

As I mentioned earlier, the noisy convex functions exhibit some similar properties to the

multimodal functions. We therefore test the performance of αCARLBO MM on these types

of functions. Note that due to the ease of optimizing these functions, the resolution of

the set of X input points was set to 100 in each dimension. This is due to the ease of

optimizing the noisy convex functions, which calls for a finer grid close to the maxima of

the function.

αCARLBO MM Tested on Goldstein-Price Functions

The Goldstein-Price functions exhibit very strong properties and are significantly different

from the multimodal functions. I therefore test αCARLBO MM on these functions, to test

performance across different function types.
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αCARLBO GP Tested on 2-dimensional Multimodal Functions

As the Goldstein-Price functions used in this thesis only vary based on one parameter, the

rotation angle, we expect that an AF trained on only this function overfits significantly.

Nonetheless, we test αCARLBO GP on 2-dimensional multimodal functions to see if it still

manages to generalize to the level of a simple benchmark such as EI nonetheless.

5.2.5 Generalization to Different Cost Functions

Having an AF that performs well across a wide variety of underlying evaluation cost func-

tions is desirable. To test if this is the case with our learned AF, I tested αCARLBO MM on

2-dimensional multimodal functions with a different underlying evaluation cost function.

This was achieved by transforming the ranges of the sampled parameters for the

polynomial-cost function I use in other experiments. The changes made can be seen

in table 5.6. The linear part is now significantly smaller, the constant range is higher,

and the polynomial range is wider. These values were chosen simply to be significantly

different from the ones the AFs were trained on. Note that the evaluation budget remains

unchanged.

Parameter Original Range Updated Range
Constant Range (b) [5, 10] [15, 20]
Linear Range (mi) [10, 20] [0, 10]

Polynomial Range (pi) [0.5, 1.5] [0.2, 1.8]

Table 5.6: Comparison of original and updated evaluation cost parameter ranges for
the generalization across cost functions experiment
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Chapter 6

Results

In this chapter, I will go through the specific experiments in the order outlined in section

5.2. I will present the results and comment on what we observe.

In each experiment, length is defined as the number of times the objective function

was sampled after the initial design. Part of max is defined as how close the method got

to the maxima of the function, and is defined as follows:

Part of max =
f(x+)

f(x∗)

where f(x) is the objective function, x+ is the best-found solution during the opti-

mization run, and x∗ is the optimal solution. All results in this thesis are presented with

their respective error. The results presented are the average of 5000 optimization runs

for each method in each experiment.

6.1 Function Specific Learning

In this section, I will present the results of the tests designed to test the function-specific

learning capabilities of the method.
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6.1.1 αCARLBO MM Tested on Multimodal Functions

Table 6.1 shows that the version of αCARLBO MM (Sampling) is the best performing

method, averaging around 96% of the max. αMetaBO MM (Sampling) and EIpu performs

slightly worse, at around 94%. We also observe that the argmax versions of the learned

AFs underperform compared to their sampling counterparts, although αCARLBO MM

(Argmax) performs at around the level of EI-cool. We also see that αCARLBO MM (Argmax)

has a significantly longer length compared to the other methods.

Method Part of max Length
Random 0.8374± 0.0016 17.81± 0.05

EI 0.9338± 0.0013 17.67± 0.06
EIpu 0.9437± 0.0011 21.26± 0.07
EI-cool 0.9363± 0.0012 20.21± 0.06

αCARLBO MM (Argmax) 0.9368± 0.0013 26.21± 0.08
αMetaBO MM (Argmax) 0.8904± 0.0017 19.13± 0.10

αCARLBO MM (Sampling) 0.9593± 0.0010 21.16± 0.05
αMetaBO MM (Sampling) 0.9429± 0.0011 17.94± 0.05

Table 6.1: Results of αCARLBO MM tested on 2-dimensional multimodal functions. Part of
max is how close the method got to the maxima of the function. All values are presented
with error and is the average across 5000 optimization runs.

6.1.2 αCARLBO GP Tested on Goldstein-Price Functions

By looking at table 6.2, we can observe that αCARLBO GP (Sampling) performs the best,

beating every benchmark other than αMetaBO GP (Sampling) by over 11%. αCARLBO GP

(Argmax) performs closer to the level of the benchmarks and significantly worse than the

sampling version. We also observe a large spread in the length of the average episodes,

ranging from 17.99 in the case of the random agent, to 32.48 in the case of EI-cool. It

is interesting to note that while there is a large difference in lengths between these two

methods, their performance is very similar.
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Method Part of max Length
Random 0.7652± 0.0013 17.99± 0.05

EI 0.7977± 0.0014 19.27± 0.08
EIpu 0.7827± 0.0014 30.91± 0.25
EI-cool 0.7788± 0.0014 32.48± 0.27

αCARLBO GP (Argmax) 0.7923± 0.0020 28.62± 0.15
αMetaBO GP (Argmax) 0.7834± 0.0020 19.22± 0.09

αCARLBO GP (Sampling) 0.9153± 0.0010 21.90± 0.05
αMetaBO GP (Sampling) 0.8965± 0.0013 20.72± 0.07

Table 6.2: Results of αCARLBO GP tested on Goldstein-Price functions. Part of max is
how close the method got to the maxima of the function. All values are presented with
error and is the average across 5000 optimization runs.

6.2 Generalization Across Different Dimensions

In this section, I present the results of the experiments designed to test how well CARLBO

generalizes to functions with a different amount of dimensions than it was trained on.

6.2.1 αCARLBO MM Tested on 3-dimensional Multimodal Func-

tions With Two Cost Dimensions

When only considering the cost of sampling for two of the dimensions in the case of

optimizing 3-dimensional multimodal functions, table 6.3 can see that αMM (Sampling)

performs the best, albeit only barely beating EI, with EI-cool not far behind. αMM

(Argmax) is the method with the highest average length, sampling about 50% more

times than its sampling counterpart.

6.2.2 αCARLBO MM Tested on 3-dimensional Multimodal Func-

tions With Three Cost Dimensions

When moving to 3-dimensional multimodal functions where all three dimensions have a

cost associated with them, table 6.4 shows that EI is the best-performing model. αMM

(Sampling), the best of the two learned AFs using CARLBO, is beaten by all the non-RL

based benchmarks except for random. It is also worth noting that once again, αMM

(Argmax) has the highest average length, sampling about 36% more times than the

method with the second highest average length.
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Method Part of max Length
Random 0.6514± 0.0023 18.01± 0.05

EI 0.8043± 0.0022 19.02± 0.09
EIpu 0.7553± 0.0030 32.52± 0.13
EI-cool 0.7902± 0.0025 29.50± 0.12

αCARLBO MM (Argmax) 0.7787± 0.0028 35.16± 0.11
αMetaBO MM (Argmax) 0.7367± 0.0024 21.59± 0.13

αCARLBO MM (Sampling) 0.8092± 0.0021 23.34± 0.06
αMetaBO MM (Sampling) 0.7840± 0.0021 18.25± 0.05

Table 6.3: Results of αCARLBO MM tested on 3-dimensional multimodal functions with
evaluation cost in two dimensions. Part of max is how close the method got to the
maxima of the function. All values are presented with error and is the average across
5000 optimization runs.

Method Part of max Length
Random 0.6167± 0.0024 12.95± 0.03

EI 0.7820± 0.0024 13.84± 0.05
EIpu 0.7600± 0.0028 22.62± 0.08
EI-cool 0.7793± 0.0026 20.73± 0.08

αCARLBO MM (Argmax) 0.6983± 0.0036 30.36± 0.11
αMetaBO MM (Argmax) 0.7365± 0.0023 14.73± 0.07
αCARLBO MM (Sampling) 0.7566± 0.0024 16.85± 0.04
αMetaBO MM (Sampling) 0.7432± 0.0023 13.22± 0.04

Table 6.4: Results of αCARLBO MM tested on 3-dimensional multimodal functions with
evaluation cost in three dimensions. Part of max is how close the method got to the
maxima of the function. All values are presented with error and is the average across
5000 optimization runs.

6.3 Generalization to Different Function Types

In this section, I will present the results from the experiment that looks to assess the per-

formance of the proposed model when used on function types that are different compared

to the one it was trained on.

6.3.1 αCARLBO MM Tested on 2-dimensional Noisy Convex Func-

tions

When testing αMM on 2-dimensional noisy convex functions, which exhibit similar prop-

erties, 6.5 shows us that EI-cool and EI perform equally well, both being only slightly
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ahead of EIpu. Both the sampling version and the argmax version of αMM fall behind,

with αMM (Sampling) being the closest at about 0.5% behind. Like earlier, we observe

that αMM (Argmax) samples about 50% more times than the method with the second

highest average length.

Method Part of max Length
Random 0.9209± 0.0008 17.43± 0.04

EI 0.9709± 0.0004 19.74± 0.13
EIpu 0.9698± 0.0004 19.79± 0.13

EI-cool 0.9709± 0.0004 20.01± 0.12
αCARLBO MM (Argmax) 0.9438± 0.0007 33.63± 0.17
αMetaBO MM (Argmax) 0.9633± 0.0005 20.84± 0.16
αCARLBO MM (Sampling) 0.9669± 0.0004 21.62± 0.07
αMetaBO MM (Sampling) 0.9622± 0.0005 18.47± 0.06

Table 6.5: Results of αCARLBO MM tested on 2-dimensional noisy convex functions. Part
of max is how close the method got to the maxima of the function. All values are
presented with error and is the average across 5000 optimization runs.

6.3.2 αCARLBO MM Tested on Goldstein-Price Functions

When we test αMM on Goldstein-Price functions, which should be significantly different,

we see that the best performing method is αMM (Sampling). It is almost 4% better

than the second best method, which is αMetaBOMM (Sampling). As earlier, we observe

that αMM (Argmax) samples approximately 60% more per optimization run compared

to the method with the second highest average length. It is also worth noting that αMM

(Argmax) performs worse than random.

Method Part of max Length
Random 0.7635± 0.0013 17.50± 0.05

EI 0.7970± 0.0014 18.53± 0.07
EIpu 0.7811± 0.0014 27.46± 0.23
EI-cool 0.7797± 0.0014 26.32± 0.21

αCARLBO MM (Argmax) 0.6957± 0.0018 44.27± 0.16
αMetaBO MM (Argmax) 0.8037± 0.0016 19.08± 0.07

αCARLBO MM (Sampling) 0.8418± 0.0011 20.72± 0.05
αMetaBO MM (Sampling) 0.8075± 0.0012 17.72± 0.05

Table 6.6: Results of αCARLBO MM tested on Goldstein-Price functions. Part of max is
how close the method got to the maxima of the function. All values are presented with
error and is the average across 5000 optimization runs.
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6.3.3 αCARLBO GP Tested on 2-dimensional Multimodal Func-

tions

As the Goldstein-Price functions don’t have much variation, due to the only difference

between the functions being that we vary the rotation, I expected the AFs learned on this

function to overfit. As table 6.7 shows, EIpu is the best performing model, with EI almost

exactly as well. All non-RL benchmarks, with the exception of random, perform better

than all the RL-based ones, with αCARLBO GP being the best performing Reinforcement

Learning (RL)-based method.

Method Part of max Length
Random 0.8425± 0.0016 18.85± 0.06

EI 0.9362± 0.0013 17.52± 0.05
EIpu 0.9363± 0.0012 22.18± 0.10
EI-cool 0.9264± 0.0014 19.83± 0.07

αCARLBO GP (Argmax) 0.7423± 0.0031 23.47± 0.14
αMetaBO GP (Argmax) 0.7128± 0.0030 20.88± 0.13
αCARLBO GP (Sampling) 0.9024± 0.0016 22.85± 0.11
αMetaBO GP (Sampling) 0.8930± 0.0017 20.40± 0.10

Table 6.7: Results of αCARLBO GP tested on 2-dimensional multimodal functions. Part of
max is how close the method got to the maxima of the function. All values are presented
with error and is the average across 5000 optimization runs.

6.4 Generalization to Different Cost Functions

In this section, we will observe the results of the experiments designed to test how

CARLBO handles optimization problems with a different underlying cost function than

it was trained on. Table 6.8 shows us that the best performing model is αMM (Sampling),

with αMetaBOMM (Sampling) and αMM (Argmax) not far behind.
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Method Part of max Length
Random 0.8592± 0.0015 23.53± 0.07

EI 0.9508± 0.0011 22.78± 0.07
EIpu 0.9483± 0.0011 25.22± 0.07
EI-cool 0.9499± 0.0011 23.24± 0.07

αCARLBO MM (Argmax) 0.9523± 0.0011 26.74± 0.08
αMetaBO MM (Argmax) 0.8900± 0.0017 25.11± 0.08

αCARLBO MM (Sampling) 0.9658± 0.0009 24.40± 0.07
αMetaBO MM (Sampling) 0.9538± 0.0010 23.20± 0.07

Table 6.8: Results of αCARLBO MM tested on multimodal functions with a different
underlying cost function than there were trained on. Part of max is how close the method
got to the maxima of the function. All values are presented with error and is the average
across 5000 optimization runs.



Chapter 7

Discussion

In this chapter, I will first discuss the meaning of the results observed in chapter 6, and

attempt to offer insights into the significance of these results. I will then discuss some of

the limitations of this study as well as some interesting potential areas for future research.

Lastly, I conclude the thesis.

7.1 Main findings

In this section, I will first address the three research questions outlined in Section 1.2.

Following this, I will explore the significant performance differences observed between the

sampling and argmax versions of CARLBO, providing an analysis of their implications.

7.1.1 Assessing if Evaluation Cost Information Increases Per-

formance

My first research question is concerned with determining if allowing an AF learned using

RL to have information about evaluation cost increases its performance. One of the main

findings of this thesis is that the sampling version of CARLBO consistently outperforms

the MetaBO method across all experiments, suggesting that information about the eval-

uation cost indeed leads to enhanced performance. As anticipated, CARLBO, having

access to the same information as MetaBO plus the added benefit of evaluation cost, fa-

cilitates learning more sophisticated search strategies. By being guided by the evaluation
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cost in certain instances, the algorithm can prioritize more promising options, thereby

optimizing the balance between exploration and exploitation, and ultimately resulting in

more efficient and effective optimization. This point is further reinforced by the finding

that, on average across 7 out of 8 experiments, the sampling version of my method fit in

more samples. The sole exception was the experiment with a different underlying cost

function. This indicates that CARLBO has learned to more frequently sample from less

costly regions of the input space.

7.1.2 Comparing My Method to Cost-Aware Benchmarks

In the second research question, I seek to compare the performance of CARLBO to other

acquisition functions made with the same types of functions in mind. In my case, that

is EIpu and EI-cool. My experiments show that the method proposed in this thesis

outperforms EIpu and EI-cooling in five of eight experiments.

The first instance in which CARLBO was outperformed occurred during the testing of

αCARLBOGP on 2-dimensional multimodal functions. This outcome was anticipated since

αCARLBOGP was hypothesized to overfit the Goldstein-Price functions due to their spe-

cific characteristics. Hence, this overfitting likely contributed to the model’s underperfor-

mance. However, this may not necessarily be viewed as an issue. The primary reasoning

for training an acquisition function on similar nature functions to the Goldstein-Price one

lies in the expectation that the objective functions the learned AF will later be applied on

possess similar characteristics. In such cases, overfitting is less of a concern, and perhaps

even an advantage.

The second one was αCARLBOMM tested on noisy convex functions. In this case,

CARLBO was beaten by both EIpu and EL-cool, albeit not by a large margin. Why

this happens isn’t entirely clear, but one likely reason is that αCARLBOMM was trained

on functions where normally at least one local maxima, with a value close to the value of

the global maxima, exists in a part of the input space where evaluations are cheap. This

is not the case for the noisy convex functions, where a significant amount of the time, all

points with a value close to the global maxima will be expensive to evaluate.

The third and last experiment where CARLBO was beaten by the cost-aware bench-

marks was αCARLBOMM tested on 3-dimensional multimodal functions with three cost

dimensions. An interesting note here is that the best performing model was EI, which

doesn’t consider cost at all. This perhaps suggests that due to the potentially high
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evaluation costs for a lot of the points xi in the input space, most cost-aware methods

considered in this thesis, my own included, take cost too much into account. Doing a lot

of evaluations isn’t helpful if you never start exploiting the knowledge. This hypothesis

explaining αCARLBOMM ’s underperformance is further supported by the observation that

EI-cool, which significantly outperformed my method and was almost on par with EI,

possesses a cooling component. This component gradually reduces the significance of

evaluation cost as the optimization process progresses.

When benchmarked against the other cost-aware methods, CARLBO comes out on

top in five out of eight instances. This implies that it is highly competitive, especially

on functions similar to those it was trained on. However, it should be noted that these

findings are based on a limited set of tests. To reach a more definitive conclusion, a

broader and more diverse range of tests would be beneficial. This could potentially

include a wider variety of functions and cost structures, which would help validate the

robustness and adaptability of CARLBO.

7.1.3 Testing if the Learned Aquisition Function (AF) Gener-

alizes Well

CARLBO has the highest performance in 3 of 6 experiments designed to test the method’s

capabilities for generalization. In the previous section, I speculated on the reasons why

it might have underperformed in certain scenarios. Based on that, the data suggest

that the AFs learned using CARLBO is capable of generalizing to different scenarios,

outperforming the benchmarks when tasked to optimize 3 scenarios it had never seen

before.

Generalization in machine learning typically relies on training with a diverse set of

data. In my case, each learned AF was only trained on a specific type of function. I

speculate that if CARLBO was used to train on multiple types of objective functions

at once, such as both multimodal functions and noisy convex functions, we could have

observed even better generalization capabilities.

7.1.4 Sampling versus Argmax

The results unambiguously demonstrate that the sampling versions of the learned AFs,

for both CARLBO and MetaBO, consistently outperformed their argmax counterparts in
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almost every experiment. This suggests that the learned AFs considerably benefit from

guided random exploration within the input space.

In RL, a policy’s current decisions are guided by the assumption that the same policy

will be used to decide future actions for the remainder of the episode. As a consequence,

if a policy relies heavily on random exploration during training, its performance may well

depend on the continuation of such exploration. This implies that the performance of

the learned AF could hinge on a significant degree of random exploration.

Such dependence is far from ideal in an AF, as it can lead to considerable issues,

particularly given the observed underperformance of the argmax versions. However, there

may be potential strategies to address this issue, which will be outlined in Section ??.

A distinctive pattern we observe is that the argmax version of CARLBO makes signif-

icantly more evaluations compared to any other method. This could suggest a situation

where, due to its deterministic nature, it repeatedly samples the same query point x. If

the evaluation cost for this point is low, the state doesn’t change considerably as no new

information is gained and the learned AF continues to query this identical point until

the optimization run concludes. This can be perceived as a potential shortcoming of a

deterministic approach.

However, one possible solution to this issue could be to employ a more refined mecha-

nism for choosing the set of input points §. This could help avoid excessive repetition and

could be achieved by opting for a non-static set, such as the one suggested by MetaBO.

This solution is further backed up by the fact that MetaBO reported no such issues.

7.2 Limitations and Future Work

While this thesis delivers some valuable insights, it is not without its limitations that need

to be taken into account when interpreting the results. In this section, I will discuss the

most pressing amongst these limitations, all of which are areas that should be explored

as future work.
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7.2.1 Model Diversity

Firstly, I only trained two models. The limited number of models restricts the breadth

of the results and doesn’t allow for a firm conclusion about the overall capabilities of

CARLBO to be made. With more models, I could better analyze how the training

method performs across different kinds of scenarios, both in terms of objective functions

and underlying cost functions. This limitation suggests the need for more comprehensive

experimentation in future work.

7.2.2 Function Type

The second limitation is related to the diversity of the function types on which the models

were trained. Each model was only trained on one particular function type, a choice that

can significantly impact the model’s ability to generalize to unseen scenarios. While this

study demonstrated some promising results in terms of generalization, the training on a

more diverse range of function types could potentially yield even better results.

7.2.3 Training of Models

Thirdly, the training of the models may have been insufficient. The reliance of CARLBO

on random sampling to perform well might indicate that the models have not fully con-

verged in a satisfying way, thus leaving some potential performance on the table. Either

longer training times, or decreasing the entropy coefficient that hinders the policy from

learning sharp distributions throughout training, could potentially reduce this reliance

and improve the overall performance of the method, especially for the argmax version of

the learned AFs. This is especially crucial as the argmax version is the version that is

interesting for real life use.

7.2.4 Input Points Creation

The fourth limitation concerns to the creation of the set of input points X . The method

used in this study to generate X is not optimal and could have influenced the final results.

In scenarios where the models sampled the same point excessively, a more dynamic or

sophisticated method for choosing the set of input points might improve performance.
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7.2.5 Lack of Testing on Real-World Problems

Another key limitation of this study is that the experiments were conducted using syn-

thetic functions rather than real-world problems. Although synthetic functions are widely

used when assessing performance in BO research, they might not adequately capture the

complexities and nuances of real-world problems. This is especially apparent in my case,

where all the functions considered had no noise in the evaluation, something that is very

uncommon for real-world problems.

7.2.6 Cost Function Approximation

The underlying cost functions I have used in this thesis in order to train and test my

models have been completely known, and I have provided the learned AFs with complete

knowledge of the exact cost of sampling a given point. However, in practice, this is an

unreasonable assumption, as we rarely know exactly the cost of sampling any given point

in the input space. Swersky et al. (2013) suggested that the underlying cost functions

can also be modeled using a GP. This would in turn add uncertainty to the estimates,

which would need to be reflected in the information provided to the learned AF.

While these limitations are important to acknowledge, they do not undermine the

significance of the findings made in this thesis but rather suggest areas to improve upon

in future work, in order to make a more robust evaluation of the method’s potential

performance.

7.3 Conclusion

In this thesis, I proposed a novel method for training acquisition functions for Bayesian

optimization using RL. This approach showed promising results, outperforming a wide

range of benchmarks in several experimental scenarios. However, the results also high-

lighted a need for further investigation and refinement of the method, with the potential

for significant improvements.

I found that CARLBO displayed a high capability to generalize, performing well on

several different types of objective functions, across functions with different dimensional-

ity and with different underlying cost functions. However, the experiments also revealed
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areas for improvement, particularly in relation to the model’s reliance on random sam-

pling.

I also pointed out several limitations that can be approved upon in future work, high-

lighting possible areas of improvement, including diversifying the training data, improving

the training loop in order to be less reliant on random sampling, and creating a better

input point set X .

Overall, the work presented in this thesis offers a contribution to the domain of cost-

aware Bayesian Optimization. While the results presented show promise, they underline

the need for future research, which is further facilitated through the development of a

framework for training cost-aware Aquisition Function that was presented in this thesis.
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