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Sjur Didrik Flåm

University of Bergen, Informatics Department, Bergen, Norway

ABSTRACT
This paper considers a chief interface between mathemati-
cal programming and economics, namely: money-based trade
of perfectly divisible and transferable goods. Three impor-
tant and related features are singled out here: first, convexity
enters via acceptable payments, second, convolution of mon-
etary criteria secures Pareto efficiency, and third, competitive
equilibrium obtains when agents’ subdifferentials intersect.
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1. Introduction

To start simple, first consider just one generic economic agent. Seen as proto-
type, he holdsmoney reserve – or liquid bank roll - r ∈ R alongside a bundle y of
perfectly divisible and transferable goods. Construe and record that bundle as a
vector in a real Euclidean spaceY. The pair (r, y) =: w denotes the agent’swealth
or his endowment. Write R× Y = : W for the endowment space.

While holding wealthw ∈W, if the agent contemplates to transact – that is, to
sell or buy – a real-good bundle �y ∈ Y for money, he uses a monetary criterion

�y ∈ Y �→ c(�y |w ) ∈ R∪ {+∞} (1)

- seen as cost – to calculate or express own economic interest. 1

Enters next a fixed finite ensemble I of such economic agents, not necessarily
many, but certainly more than one. Its members are consumers, producers or
traders of diverse sorts. Together they form an economy in which member i ∈ I
has ‘cost’ criterion ci (1) and wealth wi ∈W.

Typically, somebody owns, to his taste, too little of at least one good but com-
paratively too much of another. Therefore, using money as means of payment,
agents trade. That activitymay fit into the idealized form of an infimal convolution

cI(�y |w ) := inf

{∑
i∈I

ci(�yi |wi )

∣∣∣∣∣
∑
i∈I

�yi = �y

}
, (2)
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featuring �y = 0 and w := (wi). That is, given a wealth profile w = (wi)

for which overall cost cI(0|w) is finite, some real-good redistribution (�yi),∑
i∈I �yi = 0, should, if any, minimize that cost. Thereby, a best choice would

be Pareto efficient.
This optic onmarket interactionsmotivates the present paper to inquire:Might

the agents themselves solve problem (2)? 2 Can Pareto efficiency be characterized
by prices? For that, what role does convexity play? Because convolution (2) reflects
trade, how might market equilibrium be described? And, while the economy still
stays out of equilibrium, which mechanisms drive trade?

Addressing these questions, the paper is planned as follows. Following [1],
Section 2 elaborates on the monetary nature of the individual agent’s crite-
rion (1). Section 3 uses convolution (2) of such criteria to define price-taking
balance of markets. What comes up there is a novel and remarkably simple
description of competitive equilibrium (Thm. 3.1). Section 4 briefly considers
out-of-equilibrium trade.

The paper bridges between selected parts of mathematical optimization and
economics. Central in those fields are issues as to convexity, convolution and dif-
ferential calculus of the agents’ criteria. Reflecting on those issues – as they relate
to convolution (2) – this paper seeks to:

∗ emphasize where convexity enters most constructively,
∗ justify extremal convolution by way ofmonetary criteria, 3

∗ reinforce the importance of differential calculus – albeit generalized here,
∗ describe competitive equilibrium by the annulment of pure profits, and

finally, to
∗ indicate that agent-based, decentralized deals may bring about such equilib-

rium.

The paper’s motivation is composite. It’s practical because differences between
agents’ economic margins drive trade; it’s theoretical because trade continues
until agents’ subdifferentials intersect. Put differently: transactions proceed as long
as some bid-ask spreads prevail, each reflecting a gap between subdifferentials.
Novelties come by:

◦ characterizing competitive equilibriumas a steady statewhich annuls profits,
◦ the role that disjoint subdifferentials play as chief drivers of trade, and by
◦ a unifying view on agents themselves getting to equilibrium.

The paper addresses mathematically inclined optimizers and economists –
especially those concernedwith agent-driven dynamics, distributed optimization
or price emergence [2]. Yet, as invitation to consider interfaces between diverse
fields, it presumes almost no special knowledge.
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2. The agent’s preferences and criterion

This section steps back to derive the generic agent’s cost criterion (1) from
his underlying preferences. These are captured by a binary order � over the
endowment space W. Write w ∈ dom � iff the upper level, preferred set

{
ŵ ∈W

∣∣ŵ � w
}

(3)

contains w. Hence, � is reflexive on dom �. By hypothesis, it’s also transitive
there.

Of chief interest are eventual changes in the agent’s holding of transferable
goods – changes accepted and rationalized by pecuniary payments in the opposite
direction.

Specifically, if the agent holds (r, y) = w ∈ dom �, and contemplates an
improved position (r̂, ŷ) = ŵ � w (3) – by receiving revenue �r := r̂ − r for
supply �y := −(ŷ− y) – he asks no less money for the latter than

c(�y |w ) := inf
{
�r ∈ R

∣∣ŵ = (�r,−�y)+ w � w
} ∈ R∪ {+∞} . (4)

[The customary convention inf ∅ = +∞ applies.] By contrast, if he holds wealth
w ∈ dom �, but rather is a customerwho demands�y ∈ Y, hewould bid nomore
money for that bundle than

b(�y |w ) := sup
{
�r ∈ R

∣∣ŵ = (−�r,�y)+ w � w
} ∈ R∪ {−∞} . (5)

Since expense is negative revenue, and demand is negative supply – and formally,
because b(�y|w) = −c(−�y|w) – henceforth let c (1) be a unifying criterion,
derived by (4) and construed as cost. Henceforth assuming c > −∞, it follows
forthwith:

Proposition 2.1 (on monetary criteria): For each w ∈ dom � it holds that
c(0|w) ≤ 0 - to the effect that c(·|w) is proper, meaning finite somewhere.

Provided the preferred set (3) be closed ( convex), the cost criterion �y ∈ Y �→
c(�y|w) (1) also becomes closed 4 (resp. convex).

As function, c(·|w) extends additively in the money variable from Y to W by

�ŵ := (�r̂,�ŷ)⇒ c(�ŵ |w ) := inf
{
�r

∣∣(�r, 0)−�ŵ+ w � w
}

= �r̂ + c(�ŷ |w ). � (6)

(6) tells that cost c(·|w) is linear in money on its domain. So, benefit b (5), seen
as utility u(·) = −c(−·), becomes quasilinear there – a property long and widely
presumed in analysis of benefits versus costs [1].

Let y∗ ∈ Y∗ be shorthand for a linear price regime y ∈ Y �→ y∗y := y∗(y) ∈ R.
If the agent faces a fixed price y∗ ∈ Y∗, he may aim at non-negative, price-taking
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profit

c∗(y∗ |w ) := sup
{
y∗�y− c(�y |w )

∣∣�y ∈ Y
} ∈ R+∪ {+∞} . (7)

Fenchel conjugate (7) speaks in plain economic terms. Further, its attainment
links directly to calculus and optimality conditions. To clarify this, call y∗ ∈ Y∗
a subgradient of c(·|w) at �y, written y∗ ∈ ∂c(�y|w), iff

�y ∈ argmax
{
y∗ − c(· |w )

}
with finite maximal value.

Equivalently,

y∗ ∈ ∂c(�y |w )⇐⇒ y∗�y = c∗(y∗ |w )+ c(�y |w ) ∈ R. (8)

That is, price-taking revenue y∗�y should equal profit c∗(y∗|w) atop full cover of
cost c(�y|w).

Proposition 2.2 (on profit and expenditure): In terms of any price regime
(r∗, y∗) = w∗ ∈W∗ := R∗×Y∗ on W, infimal expenditure

E(w∗ |w ) := inf
{
w∗ŵ

∣∣ŵ � w
}

and supremal profit

c∗(w∗ |w ) := sup
{
w∗ŵ− c(ŵ |w )

∣∣ŵ ∈W
}
,

satisfy

c∗(w∗ |w ) = w∗w− E(w∗ |w ) if r∗ = 1,+∞ otherwise. (9)

Thus, if money commands fixed unit price r∗ = 1 – that is, when w∗ = (1, y∗):

c∗(w∗ |w ) = c∗(y∗ |w ). (10)

Proof: Recall (6) to see that (r∗, y∗) = w∗ yields (9) by

c∗(w∗ |w ) = sup
{
w∗�w−�r

∣∣ŵ := (�r, 0)−�w+ w � w,�w ∈W,�r ∈ R
}

= sup
{
w∗(w− ŵ)+ (r∗ − 1)�r

∣∣ŵ � w,�r ∈ R
}

= sup
{
w∗(w− ŵ)

∣∣ŵ � w
}
if r∗ = 1, and+∞ otherwise

= w∗w− E(w∗ |w ) if r∗ = 1, and+∞ otherwise.

Now (10) follows from (6) and (9 ). �

Remarks: Propositions 2.1 and 2.2 indicate two lines of subsequent arguments.
First, for analysis, it would be convenient to have the agent’s cost criterion c (4)
subdifferentiable, meaning ∂c(�y|w) �= ∅ (8) for each feasible pair (�y,w) ∈
Y×W of interest. Second, for intuition, one might expect that his pure profit
c∗(y∗|w) (7) will dwindle by way of repeated trades.
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It seems, however, more realistic to hope that these features be satisfied in
the large - that is, by the convoluted items cI ,c∗I (2), (13), but not necessarily in
the small, at the level of each pair ci, c∗i (7 ). Also, because convolution tends to
regularize data, the said features appear easier to justify in the aggregate.

Anyway, (2) leads directly to a novel definition of price-taking behavior and
steady states in markets – as considered next.

3. Competitive equilibrium

This section aims at a simple and speaking concept of competitive equilibrium.
As data, presume that agent i ∈ I has a reflexive and transitive preference order

�i over a non-empty subset dom �i of the endowment space W. Given any
wi ∈ dom �i, he derives his cost criterion�yi ∈ Y �→ ci(�yi|wi) ∈ R∪{+∞} as
explained in Section 2. For interpretation, it’s convenient to regard him here as a
producer.

At the outset, the economy features a wealth profile i ∈ I �→ w0
i ∈ dom �i. Let

W :=
{
w =(wi) ∈WI

∣∣∣∣∣wi ∈ dom �i &
∑
i∈I

wi =
∑
i∈I

w0
i

}
(11)

be the set of feasible profiles. With w = (wi) ∈W fixed, the inf-convolution

cI(0 |w ) := inf

{∑
i∈I

ci(�yi |wi )

∣∣∣∣∣
∑
i∈I

�yi = 0

}

models best change in overall cost, obtained by reallocation (�yi),
∑

i∈I �yi = 0,
of goods. In particular, by (4), because ci(0|wi) ≤ 0, it follows that cI(0|w) ≤ 0.

Thus, the special instance cI(0|w) = 0 stands out. Then, potential reduction of
aggregate cost is already minimal and nil, with each ci(�yi|wi) = 0 realized by a
best choice�yi = 0. In short, no improvement is possible, be it in the large or the
small; Pareto efficiency prevails already.

If moreover, a common price y∗ ∈ Y∗ yields c∗I (y∗|w) = 0, no added sur-
plus can be had: aggregate profit is also minimal and nil. Together these simple
observations motivate the following:

Definition 3.1 (competitive equilibrium): A price-cum-allocation (y∗,w) ∈
Y∗ ×W (11) constitutes a competitive equilibrium iff c∗I (y∗|w) = 0.

Theorem 3.1 (on competitive equilibrium): For any competitive equilibrium
(y∗,w) it holds:

(1). Overall surplus c∗I (·|w) is globally minimal and null at the equilibrium price
y∗. Consequently, 0 ∈ ∂c∗I (y∗|w).
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(2). No agent can collect additional profit: c∗i (y∗|wi) = 0 and 0 ∈ ∂c∗i (y∗|wi)

∀i ∈ I.
(3). No more trade is undertaken: ci(�yi|wi) = 0 with a best choice �yi = 0

∀i ∈ I.
(4). If cI(·|w) (2) coincides with its closed convex envelope at�y = 0, equilibrium

pricing is common, meaning

y∗ ∈ ∂cI(0 |w ) ⊆ ∩i∈I∂ci(0 |wi ). (12)

Conversely, if a price be common in that y∗ ∈ ∩i∈I∂ci(0|wi), then ∂cI(0|w) ⊇
∩i∈I∂ci(0|wi), and (y∗,w) is a competitive equilibrium.

Proof: Since wi ∈ dom �i implies ci(0|wi) ≤ 0, it follows from (7) and
c∗i (y∗|wi) ≥ y∗0− ci(0|wi) ≥ 0 that c∗i (y∗|wi) ≥ 0 for each y∗ ∈ Y∗. Therefore,
given any wealth profile (wi) = w ∈W (11), because

c∗I (· |w ) =
∑
i∈I

c∗i (· |wi ) ≥ 0, (13)

c∗I (y∗|w) = 0 is indeedminimal in equilibrium – to the effect that 0 ∈ ∂c∗I (y∗|w),
with each c∗i (y∗|wi) = 0, and thereby 0 ∈ ∂c∗i (y∗|wi). This takes care of assertions
1&2). For 3) let c∗∗I (·|w) be the Fenchel conjugate of c∗I (·|w). Then c∗∗I (0|w) ≤
cI(0|w) ≤ 0 and

y∗0 = c∗I (y
∗ |w )+ c∗∗I (0 |w ) = 0 =⇒

c∗∗I (0 |w ) = 0 =⇒ cI(0 |w ) = 0 =⇒ each ci(0 |wi ) = 0.

For 4) invoke an auxiliary result – one which presumes no convexity: �

Lemma 3.1 (on subdifferentials of inf-convolutions): Given a real vector space
Y and finite family of proper functions fi : Y �→ R∪{+∞}, i ∈ I, for any profile
(yi) that solves

fI(yI) := inf

{∑
i∈I

fi(yi)

∣∣∣∣∣
∑
i∈I

yi = yI

}
, (14)

it follows that ∂fI(yI) = ∩i∈I∂fi(yi).

Proof: from [3] is included for convenience. If (yi) solves (14) and
∑

i∈I ŷi =:
ŷI ∈ Y, then y∗ ∈ ∂fI(yI) implies∑

i∈I
fi(ŷi) ≥ fI(ŷI) ≥ fI(yI)+ y∗(ŷI − yI) =

∑
i∈I

[
fi(yi)+ y∗(ŷi − yi)

]
. (15)

In this string, posit ŷj = yj for each j ∈ I�i to get

fi(ŷi) ≥ fi(yi)+ y∗(ŷi − yi). (16)

Since i ∈ I and ŷi ∈ Ywere arbitrary, it follows that y∗ ∈ ∂fi(yi) for all i ∈ I, hence
∂fI(yI) ⊆ ∩i∈I∂fi(yi).
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For the turned-around inclusion, given any y∗ ∈ ∩i∈I∂fi(yi) with
∑

i∈I yi =
yI , summation of (16) across I, subject to

∑
i∈I ŷi = yI , proves the optimality of

allocation (yi). Further, the same summation of (16), but now with
∑

i∈I ŷi = ŷI ,
gives the two inequalities in (15) – and thereby y∗ ∈ ∂fI(yI), hence ∩i∈I∂fi(yi) ⊆
∂fI(yI). �

Returning to claim 4), first let čI(·|w) denote the closed convex envelope of
cI(·|w). The conjugate of the said envelope equals that of cI(·|w). Consequently,
0 ∈ ∂c∗I (y∗|w) =⇒ y∗ ∈ ∂ čI(0|w) ⊆ ∂cI(0|w). As upshot, ∂cI(0|w) is non-empty.
Now, use Lemma 3.1 with

fi = ci(· |wi ), yi = 0, and fI(0) = cI(0 |w ) =
∑
i∈I

ci(0 |wi ) =
∑
i∈I

fi(0)

to see that existence of any y∗ ∈ ∂cI(0|w) implies y∗ ∈ ∂cI(0|w) = ∩i∈I∂ci(0|wi).
This proves the theorem.

Corollary 3.1 (on improvement and equilibrium): Given any equilibrium
allocation w, aggregate cost can not be reduced: cI(0|w) = 0. Conversely, given
cI(0|w) = 0, then (y∗,w) is a competitive equilibrium for any y∗ ∈ ∂cI(0|w) =
∩i∈I∂ci(0|wi).

Proof: The first assertion was already proven. For the second, cI(0|w) = 0
implies that cI(0|w) =∑

i∈I ci(0|wi) = 0. Thus by Lemma 3.1, ∂cI(0|w) =
∩i∈I∂ci(0|wi). Further, for any y∗ ∈ ∂cI(0|w) it holds 0 = y∗0 = c∗I (y∗|w)+
cI(0|w). Consequently, cI(0|w) = 0 implies c∗I (y∗|w) = 0. �

Remarks (On closure and convexity): Closure (alias lower semicontinuity) of
cI(·|w) at 0 obtains when ∂cI(0|w) is non-empty. Convolution cI(·|w) (2) would
be convex if each term ci(·|wi)were so. But convexity entered here just for cI(·|w)

and just at 0.
(On Debreu versus Walras). Definition 3.1 reports the wealth profile ex post,

in equilibrium, as did Debreu [4]. Accordingly, Theorem 3.1 obviates trade or
dispenses with it. All transactions have already been undertaken – out of equi-
librium. By contrast, Walras fixed the wealth profile ex ante, out of equilibrium,
prior to trade, by liquidating the initial endowments at equilibrium prices. This
done, he allowed trade, but only in equilibrium at corresponding prices.

Thus, regarding competitive markets, two sorts of steady states have been con-
ceptualized as polar extremes. It appears fitting therefore to ask: If any, howmight
a competitive equilibrium emerge? That question have generated a large litera-
ture with no simple answers [3, 5–10]. The next section concludes by considering
these matters.
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4. Getting to equilibrium

Adam Smith (1776) alluded to an ‘invisible hand’, and Leon Walras (1874)
suggested ‘tâtonnement’ in prices. These metaphors remain largely fictional
because neither offers any clear or constructive guidance. Moreover, they make
no mention of market mechanisms or money.

Yet (12) tells that disequilibrium prevails iff subdifferentials do not insect; that
is, iff ∩i∈I∂ci(0|wi) = ∅. For this event, it suffices that just two agents disagree –
in fact, even when they value just one good. The next proposition, which spells
this out, can be skipped, but it motivates Theorem 4.1.

Proposition 4.1 (on strict improvements and direct deals): Omitting mention
of wealth, let the criteria ci = ci(·|wi) all be convex, finite near 0, with ci(0) ≤
0, and suppose ∩i∈I∂ci(0) = ∅. Then cI(0) < 0, and still ∩i∂ci∈I(�yi) = ∅ for
sufficiently small �yi.

In that case, with I = {i, j} and Y = R, a unit price y∗ - between ∂ci(�y) and
∂cj(−�y) - applied to some suitably small quantity �y, gives more revenue to the
seller and less expense to the buyer, hence strict improvement for either party.

Proof: Invoke Lemma 3.1 to see that infimal cost cI(0) (2) can not be attained by
choosing all �yi = 0. Small perturbations �yi maintain disjoint subdifferentials
because these are outer semicontinuous [11]. Finally – for a strictly improving,
single-good, bilateral and direct deal – let agent:

• i be a seller (4) who asks unit price y∗i = max ∂ci(�yi), or more, for quantity
�yi > 0, and let

• j be a buyer (5) who uses supdifferential ∂̂(·) := −∂(−·) and bids unit price
y∗j = min ∂̂bj(�yj), or less, for quantity �yj > 0. Then, given spread y∗j −
y∗i > 0, any unit price y∗ ∈ (y∗i , y∗j ) for the quantity �y := min{�yi,�yj},
gives

seller i revenue ri := y∗�y > ci(�y) and buer j expense rj := y∗�y < bj(�y).
(17)

Indeed, from y∗i < y∗, ci(0) ≤ 0 and ∂ci ≤ y∗i on [0,�y] it follows that

ri − ci(�y) > y∗i �y− ci(�y) ≥ y∗i �y− [ci(�y)− ci(0)]

=
∫ �y

0
[y∗i − ∂ci] ≥ 0.

The second inequality in (17) is proven likewise, using the concavity of−cj(·) =
bj(−·). �

An auxiliary result adds to Proposition 4.1 and prepares for Theorem 4.1.
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Lemma 4.1 (bid-ask spreads): Suppose the member i ∈ I uses a price set Y∗i ⊂
Y∗. Let �Yi ⊂ Y be a bounded symmetric neighborhood of 0. Then, if all these
sets are non-empty closed and convex, ensemble I features a non-negative bid-ask
spread

SI := inf
(y∗i )

sup
(�yi)

{∑
i∈I

y∗i (�yi)

∣∣∣∣∣y∗i ∈ Y∗i ,�yi ∈ �Yi&
∑
i∈I

�yi = 0

}
. (18)

That spread is nil if there is a common price y∗ ∈ ∩i∈IY∗i . Conversely, let at least
one set Y∗i be compact. Then, disagreement on prices,meaning∩i∈IY∗i = ∅, implies
that SI > 0. Thus, granted at least one compact price set Y∗i ,

∩i∈IY∗i = ∅⇐⇒ SI > 0.

Proof: For SI ≥ 0, just take each �yi = 0. Given any y∗ ∈ ∩i∈IY∗i , clearly,∑
i∈I �yi = 0 implies

∑
i∈I y∗(�yi) = 0.

For the converse, let C equal the product set �i∈IY∗i . So defined, C is a closed
convex and non-empty subset of Y∗I . If needed for compactness, intersect each
Y∗i with one among these which is compact. This done, C becomes compact.
Now, ∩i∈IY∗i = ∅ iff C is doesn’t intersect the diagonal D := {(y∗i ) | all y∗i ∈
Y∗ are equal}. Then,C andD are strictly separated by some non-zero (�yi) ∈ YI ,
meaning

sup

{∑
i∈I

y∗i (�yi)
∣∣y∗i ∈ Y∗i

}
< inf

{∑
i∈I

y∗(�yi)
∣∣y∗ ∈ Y∗

}
.

This inequality can not hold unless
∑

i∈I �yi = 0 – whence the right hand side
equals 0. By suitable scaling (if necessary), it entails no loss to presume that each
�yi ∈ �Yi. Now conclude because by (18):

−SI = sup
(y∗i )

inf
(�ŷi)

{∑
i∈I

y∗i (�ŷi)

∣∣∣∣∣y∗i ∈ Y∗i ,�ŷi ∈ �Yi&
∑
i∈I

�ŷi = 0

}

≤ sup
(y∗i )

{∑
i∈I

y∗i (�yi)
∣∣y∗i ∈ Y∗i

}
< 0.

�

Theorem4.1 (disequilibriumand trade): Given awealth profilew = (wi) ∈W,
suppose agent i ∈ I uses a closed convex price set Y∗i which contains ∂ci(0 |wi) �= ∅,
and he contemplates a transaction �yi within a bounded closed convex, sym-
metric neighborhood �Yi of 0. Then, provided at least one Y∗i be bounded, if
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∩i∈IY∗i = ∅, there exists a redistribution (�yi) �= 0,
∑

i∈I �yi = 0, such that

sup

{∑
i∈I

y∗i (�yi)
∣∣y∗i ∈ ∂ci(0 |wi )

}
≤ sup

{∑
i∈I

y∗i (�yi)y∗i ∈ Y∗i

}
< 0. (19)

In particular, if each ∂ci(0 |wi) = Y∗i is compact, then
∑

i∈I c′i(0;�yi|wi) < 0, and
for a possibly shortened profile (�yi)←− (s�yi), s > 0,

cI(0 |w ) ≤
∑
i∈I

ci(�yi |wi ) <
∑
i∈I

ci(0 |wi ) ≤ 0. (20)

So, modulo suitable, zero-sum money transfers (�ri) �= 0,
∑

i∈I �ri = 0, each
�ri > ci(�yi|wi). Clearly, such trade complies with agents’ incentives.

Proof: Invoke Lemma 4.1 and use c′i(0;�yi|wi) = sup{y∗i (�yi)|y∗i ∈ ∂ci(0|wi)}
in (19). Finally, for (20), provided s>0 and ε > 0 both be sufficiently small,

cI(0 |w ) ≤
∑
i∈I

ci(s�yi |wi ) ≤
∑
i∈I

[ci(0 |wi )+ sc′i(0;�yi |wi )+ sε]

<
∑
i∈I

ci(0 |wi ) ≤ 0. �

Remarks (On active or restrictive traders): In Lemma 4.1 and Theorem 4.1 a
strictly smaller ensemble I ⊂ I, #I ≥ 2, could come onto stage. Moreover, its
members might just trade goods recorded in a lower-dimensional commodity
space Y ⊂ Y. Also, instead of demanding that at least one price set Y∗i be non-
empty compact, it suffices that ∩i∈IY∗i be such for some subset I � I.

(On market mechanisms). Anyway, trade proceeds via various mechanisms –
say, via auctions, direct deals or order markets. Most likely, active traders vary,
maybe randomly, in their names, numbers or proximity – or in their focus on
selected goods.

(On incentive compatibility). Reasonably, no party ever accepts a set-back
compared to his pre-trade position. That is, each deal should be voluntary:

Assumption 4.1 (on acceptable deals and updates): If agent i ∈ I enters a deal
with endowment (ri, yi) =: wi ∈ dom �i, he exits with an ‘improved’ updated
version (r̂i, ŷi) =:

ŵi =: w+1i = (�ri,−�yi)+ wi �i wi, (21)

featuring a money transfer�ri := r̂i − ri for some bundle�yi := ŷi − yi such that

�ri ≥ ∂ci(�yi |wi ) and
∑
i∈I

(�ri,�yi) = (0, 0). (22)

As modelled, trade complies with incentives because �ri ≥ ∂ci(�yi|wi), and the
actions are purely redistributive in that

∑
i∈I(�ri,�yi) = (0, 0).Write ŵi �i wi if

�ri > ∂ci(�yi|wi). These features motivate the following:
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Assumption 4.2 (on trades): Agents’ transactions fit the algorithmic form

w ∈W ⇒ A(w) := {
w+1 = (w+1i ) ∈W

∣∣w+1i �i wi ∀ i ∈ I
}
. (23)

Any instance A has the solution set

E := {
w ∈W

∣∣(y∗,w) is a competitive equilibrium for some y∗ ∈ Y∗
}
.

Proposition4.2 (on existence of equilibrium): Suppose each upper level set {· �i
wi} (3) is convex. With W compact, also suppose the correspondence A(·) is outer
semicontinous. Then – by Kakutani’s theorem [11] - there exists an equilibrium.

Proposition 4.3 (on strictly improving trades): Suppose cI(0|w) is attained and
∂cI(0|w) be non-empty for each w ∈W with at least one ∂ci(0|wi) compact. Let
w ∈W qualify for update by A (23) iff SI(w) > 0 (18) or cI(0|w) < 0. Then
some w+1 ∈ A(w) satisfies w+1i �i wi for each i ∈ I. Otherwise, if SI(w) = 0 and
cI(0|w) = 0,then (y∗,w) is an equilibrium for any y∗ ∈ ∂cI(0|w).

Proof: From SI(w) > 0 and Theorem 3.1 it follows that ∩i∈I∂ci(0|wi) = ∅.
Hence by (20) in Theorem 4.1 it holds cI(0|w) < 0 and the system

w+1i = (�ri,−�yi)+ wi, �ri > c(�yi |wi ), ∀ i ∈ I,

is solvable. Then w+1 ∈ A(w) with each w+1i �i wi.
Otherwise, if SI(w) = 0, the intersection ∩i∈I∂ci(�yi|wi) is non-empty

for some allocation (�yi),
∑

i∈I �yi = 0. Then, by Lemma 3.1, ∂cI(0|w) =
∩i∈I∂ci(�yi|wi). Now, for any y∗ ∈ ∂cI(0|w) the conclusion follows from

0 = y∗0 = c∗I (y
∗ |w )+ cI(0 |w ) = c∗I (y

∗ |w ).

�

Suppose themarket features non-overlapping, sequential sessions, each closing
by clearance or clock. Also for argument, suppose that when a session closes, the
very last transactions (21) are rationalized ex post – at closure time – by the parties
themselves, and by Lemma 3.1, as follows:

Assumption 4.3 (on session closure): Each market session closes by some
last reallocation (�yi),

∑
i∈I �yi = 0, supported by a clearing price y∗ ∈

∩i∈I∂ci(�yi|wi) and revenues ri = y∗�yi (21). Immediately thereafter, agent i
updates his holding to ŵi = w+1i (21). With that update he enters the subsequent
session. If worthwhile, the latter begins with ∩i∈I∂ci(0|w+1i ) = ∅.

What stands sharply out is the special case where w+1i = wi and ∩i∈I∂ci
(0|wi) �= ∅.



12 S. D. FLÅM

Then, another session has no effect: a best option for every agent, given his endow-
ment, is to stay put. Can iterated sessions bring the agents towards such a state?
Recall that, given any y∗ ∈ Y∗ and w = (wi) ∈W, total profit equals

c∗I (y
∗ |w ) =

∑
i∈I

c∗i (y
∗ |wi ) with each c∗i (y

∗ |wi ) ≥ 0.

Specialize here to session closure with y∗ ∈ ∩i∈I∂ci(�yi|wi) and
∑

i∈I �yi = 0. So,
to focus the above question, I rather ask: will total profit c∗I (y∗|w) decrease from one
session to the subsequent? Indeed, it does, as is confirmed by the following:

Proposition 4.4 (monotone decreasing profit): Passing from the penultimate
price-cum-endowment profile (y∗,w), at the closure of one session, to its version
(y∗+1,w+1) when the subsequent session closes, it holds c∗I (y∗+1|w+1) ≤ c∗I (y∗|w).

Proof: from [3]. By (21)w+i �i wi for each i ∈ I. So, granted transitive preference
orders, expenditures ‘increase’: Ei(·|w+i ) ≥ Ei(·|wi) for all i ∈ I. The implication
y∗ ∈ ∂cI(0|w) =⇒ 0 ∈ ∂c∗I (y∗|w) tells that c∗(·|w) is minimal at y∗. Collecting
these facts, and letting y0 :=∑

i∈I y
0
i with initial endowments (r0i , y

0
i ) = w0

i , it
follows that from Lemma that:

c∗I (y
∗+ ∣∣w+ ) = inf

ŷ∗

{
ŷ∗y0 −

∑
i∈I

Ei(ŷ∗
∣∣w+i )

}

≤
{
y∗y0 −

∑
i∈I

Ei(y∗ |wi )

}
= c∗I (y

∗ |w ).

�

Theorem 4.2 (convergence to competitive equilibrium): For any w ∈ W and
y∗ ∈ ∂cI(0|w) with c∗I (y∗|w) > 0, suppose that Ei(·|w+i ) ≥ Ei(·|wi) ∀i ∈ I implies

inf
y∗

c∗I (y
∗ ∣∣w+ ) < c∗I (y

∗ |w ). (24)

Also suppose c∗I (y∗|w) is jointly closed, meaning lower semicontinuous in (y∗,w).
Then, by iterated sessions, total profit c∗I (y∗|w) converges to 0. That is, each cluster
point w of the generated sequence (wk) qualifies as competitive equilibrium (y∗,w)

for any y∗ ∈ ∂cI(0|w).

Proof: Consider the sequence (wk) emanating from w0 = (w0
i ) ∈W, where

wk = (wk
i ) is the penultimate endowment profile just prior to closure of session

k. During that session each agent i may have secured finitely many ‘improving’
updates (21). These can be seen as interim spacer steps; see [12] Theorem 7.3.4.
By Proposition 5.1, the sequence c∗I (yk∗|wk) decreases monotonically. Being
bounded below by 0, total surplus converges to some limit L ≥ 0.
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Consider any cluster point w of (wk). It suffices by Proposition 4.2 to show
that c∗I (y∗|w) = 0 for each y∗ ∈ ∂cI(0|w). But otherwise, (24) would yield the
contradiction lim c∗I (y∗k+1|wk+1) < L = lim c∗I (yk∗|wk). �

Notes

1. Throughout, the ‘difference operator’ � helps to emphasize change and dynamics.
2. At best, no auctioneer, invisible hand or system operator would be needed.
3. Two ‘mechanisms’ meet here – one rather modern, the other ancient – namely: the

mathematics of inf-convolution [11] versus the economics ofmoney [10].
4. That is, lower semicontinuous.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Luenberger DG. Microeconomic theory. New York: McGraw-Hill; 1995.
[2] Flåm SD. Emergence of price-taking behavior. Econ Theory. 2020;70:847–870. doi:

10.1007/s00199-019-01232-5
[3] Flåm SD. Towards competitive equilibrium by double auctions. Pure Appl Funct Anal.

2021;6(6):1211–1225.
[4] Debreu G. Valuation equilibrium and pareto optimum. Proc Nat Acad Sci. 1954;40:

588–592. doi: 10.1073/pnas.40.7.588
[5] FeldmanAM.Bilateral trading processes, pairwise optimality, and pareto optimality. Rev

Econ Stud. 1972;40(4):463–473. doi: 10.2307/2296581
[6] Flåm SD. Market equilibria and money. Fixed Point Theory Algo Sci Eng. 2021;2021:

Article Id 20. doi: 10.1186/s13663-021-00705-4
[7] Gintis H. Individuality and entanglement. Princeton, NJ: Princeton Univ Press; 2017.
[8] Keisler HJ. Getting to competitive equilibrium. Econometrica. 1996;64(1):29–49. doi:

10.2307/2171923
[9] Negishi T. Welfare economics and existence of equilibrium for a competitive economy.

Metroeconomica. 1960;12:92–97. doi: 10.1111/meca.1960.12.issue-2-3
[10] Shapley L, Shubik M. Trade using one commodity as means of payment. J Pol Econ.

1977;85:937–968. doi: 10.1086/260616
[11] Borwein JM, Lewis AS. Convex analysis and nonlinear optimization. Berlin: Springer;

2000.
[12] Bazaraa MS, Sherali HD, Shetty CM. Nonlinear programming: theory and algorithms.

3rd ed., New York: Wiley-Interscience; 2016.

https://doi.org/10.1007/s00199-019-01232-5
https://doi.org/10.1073/pnas.40.7.588
https://doi.org/10.2307/2296581
https://doi.org/10.1186/s13663-021-00705-4
https://doi.org/10.2307/2171923
https://doi.org/10.1111/meca.1960.12.issue-2-3
https://doi.org/10.1086/260616

	1. Introduction
	2. The agent's preferences and criterion
	3. Competitive equilibrium
	4. Getting to equilibrium
	Notes
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


