
Investigating and evaluating the
authentication and authorisation of

the JAliEn grid middleware
framework

Vilde Kristine Fossum

Master’s thesis in Software Engineering at

Department of Computer Science, Electrical
Engineering and Mathematical Sciences,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

July 2023

1

Abstract

Grid computing involves a distributed collection of resources worldwide, in-
volving many components. As a result, it presents numerous attack surfaces
for potential security threats. This thesis explores the security aspects of grid
middleware by examining the JAliEn middleware, a grid framework utilised
within the ALICE collaboration at CERN for data distribution throughout
the grid.

The primary focus lies in identifying potential vulnerabilities that may com-
promise data integrity and enable unauthorised access to the system. The
study involves discussions with developers, testing the system’s behaviour,
and analysing token certificates used for authentication and authorisation in
JAliEn.

The research identifies two vulnerabilities. Firstly, users can execute more
jobs than allowed, potentially leading to system overload, and secondly, job
tokens may be exploitable by how easy it is to obtain them. However, a
more structured approach and further testing are necessary to assess these
vulnerabilities’ full extent.

i

Acknowledgements

First and foremost, I’d like to thank the Grid research group at HVL and my
primary supervisor, Bjarte Kileng, for their invaluable technical knowledge
and support in understanding the intricacies of the JAliEn system. Bjarte
gave me a comprehensive technical introduction to the subject, which was
essential throughout this journey.

I thank my second supervisor, H̊avard Helstrup, whose guidance and men-
torship were invaluable in navigating the complexities of writing a master’s
thesis. Despite setbacks, H̊avard always remained optimistic, offering valu-
able insights and solutions. Having such support and encouragement made
the challenges of writing a thesis more manageable.

I want to offer special thanks to Maksim Storetvedt, whose assistance was
invaluable during his PhD work at CERN. Maksim’s extensive knowledge of
the system and ability to explain concepts in a way I could easily grasp was
instrumental in my research.

I thank Costin Grigoras for providing insights into the system, presenting the
security requirements, and offering guidance throughout the project. Thank
you for sharing your knowledge and helping me with my thesis work.

Finally, I would like to thank family and friends for their unwavering love,
support, and encouragement throughout this project and my entire educa-
tion. Mainly, I want to thank Emil, your unwavering support and belief in
my abilities have been a constant source of strength.

Vilde Kristine Fossum
July 28, 2023

ii

Contents

Abstract i

Acknowledgements ii

Figures v

Listings vi

Acronyms vii

1 Introduction 1
1.1 Grid Computing . 2

1.1.1 Grid middleware . 2
1.2 Software security . 2

1.2.1 Security in distributed systems 2
1.2.2 Grid Security . 3

1.3 CERN . 4
1.3.1 ALICE . 4

1.4 Problem Description . 5
1.5 Research methodology . 6
1.6 Research Questions . 6
1.7 Outline . 7

2 Background 9
2.1 JAliEn . 9

2.1.1 LDAP . 11
2.2 Security . 12

2.2.1 Public key cryptography 12
2.2.2 Certificate Authority 13

3 Related Work 15

iii

4 JAliEn 18
4.1 Connecting to alien.py . 19
4.2 Running a job . 19
4.3 Token Certificate . 22

5 Tests performed on JAliEn and their results 25
5.1 Token requests . 25
5.2 Overloading test . 26

5.2.1 Splitting and submitting a masterjob above limit . . . 26
5.2.2 Submitting individual jobs above limit 27

5.3 Exploitation of environment variables 28

6 Discussion 31

7 Conclusion 33

8 Further Work 35

A enviro-test.sh output 37

B enviro-get-test.sh output 40

iv

List of Figures

2.1 ALICE grid sites monitoring map [2] 10
2.2 JAliEn components . 11
2.3 PKI [34] . 12
2.4 CERN CA [7] . 14

4.1 Flow of JAliEn . 21
4.2 Flow of token in JAliEn . 24

v

Listings

4.1 alien.py connection . 19
4.2 Submitting a job . 20
5.1 requesting job token . 25
5.2 sleeper-masterjob.jdl . 26
5.3 sleeper-test.sh . 27
5.4 sleeper.jdl . 27
5.5 submit-file.sh . 27
5.6 enviro-test.sh . 28
5.7 enviro.jdl . 28
5.8 enviro-get-test.sh . 29
5.9 enviro-get.jdl . 29
5.10 Exploitation test illustration 1 30
5.11 Exploition test illustration 2 30

vi

Acronyms

ALICE A Large Ion Collider Experiment.

AliEn ALICE Environment.

CA Certificate Authority.

CE Computing Element.

CERN The European Council for Nuclear Research.

CLI command-line interface.

DN distinguished name.

JAliEn Java ALICE Environment.

JDL Job Description Language.

LDAP Lightweight Directory Access Protocol.

LHC Large Hadron Colliders.

NIST National Institute of Standards and Technology.

PKI Public Key Infrastructure.

VO Virtual Organization.

WLCG Worldwide LHC Computing Grid.

vii

Chapter 1

Introduction

Distributed computing has been an active research field for over 60 years and
has played a significant role in shaping many of the everyday technologies
we use, such as the Internet, the World Wide Web, and cloud computing, to
name a few [21]. Such systems appear unified and coherent but consist of a
collection of computing elements known as nodes. These nodes collaborate
and coordinate their efforts to accomplish a shared objective or solve complex
problems [33].

One revolutionary form of distributed computing is cloud computing. It has
transformed the field by providing access to hardware and software resources
over a network. It has given an efficient way to process, store and manage
large amounts of data over the Internet [3]. Users can utilise virtualised re-
sources delivered as a service over the Internet [27]. These are easily available
and scalable resources. Regarding security, the issues lie in infrastructure,
data and storage, and access control in cloud environments [3].

This thesis will explore the security in distributed computing in the context
of grid computing, considered the predecessor to modern cloud computing.
While grid and cloud computing share some similarities, they operate in dis-
tinct ways. Grid computing differs from the cloud regarding the architectural
models, approaches and user experiences. Grid typically shares its resources
with specific research communities and organisations, while cloud computing
is widely adopted across various industries and offers a more standardised
and scalable approach.

Grid computing is known for its heterogeneity regarding the underlying in-
frastructure and the organisations involved. Unlike cloud computing, which
typically operates within a single provider’s environment, grid computing

1

involves diverse resources and entities from different organisations. This in-
troduces additional security considerations due to multiple attack surfaces
and numerous administrators.

1.1 Grid Computing

Grid computing provides high computing capacity to a distributed system
using geographically distributed resources. In grid computing, a user gives a
large task, divided into smaller tasks, and then submitted to the grid appli-
cation for computation. Here, a resource broker finds a match for resource
and job in the grid and submits the subtasks. The processed job/task is
returned to the user when the job is complete. [30]

1.1.1 Grid middleware

Grid middleware is a software application to connect computing resources.
The primary objective is to enable users to access and utilise distributed
resources conveniently [34]. Grid middleware plays a role in software engi-
neering by providing an evolving infrastructure layer between the network
and applications. Basic Grid services encompass job execution, security, in-
formation, and file transfer services. [22]

A grid middleware comprising multiple components, services, and protocols
forms the grid’s core by interfacing with participating resources or clusters. It
provides users with a platform, manages job distribution among computing
nodes, and provides each component with necessary tools, including data
management, secure transfer, and relevant APIs. [31]

1.2 Software security

Software security is an important field in software engineering as it protects
software from malicious attacks and user errors. Neglecting to prioritise
security leaves a system vulnerable to attacks, increasing the risk of data
loss and compromise from corrupt malware.

1.2.1 Security in distributed systems

Regarding security in distributed systems, two critical aspects are commu-
nication and authorisation. Communication involves interactions between

2

users and processes, which can be located on separate machines. Authori-
sation should ensure that a process is granted access only to the necessary
resources within the distributed system. [33]

There are four security threats to consider; interception, interruption, mod-
ification, and fabrication [33]. Interception through unauthorised access to
a service or data. Interruption by making services or data unavailable or
unstable (denial of service attacks). Modifications involving unauthorised
changes to data or tampering with services. Lastly, fabrication entails gener-
ating additional data or activity. These security threats can be seen as forms
of data falsification.

To build a secure system, a well-defined security policy is essential. This
policy outlines the permitted and prohibited actions for various entities, such
as users, services, data, machines, etc. Once the security policy has been
developed and established, the focus shifts to selecting and implementing
the appropriate security mechanisms that align with the policy’s objectives.
There are four important security mechanisms; encryption, authentication,
authorisation and auditing [33].

Encryption is fundamental for computer security in the form of data confi-
dentiality and integrity, transforming information into an unreadable format.
Authentication is used to verify the claimed identity of users or entities be-
fore accessing services, often using passwords or alternative methods. After
authentication, it is necessary to check authorisation. Authorisation ensures
that the authenticated clients have permission to perform requested actions,
such as modifying specific fields in a database. Lastly, auditing tools are used
to trace and record client access, aiding in security breach analysis and de-
terring attackers from leaving traces. By logging access, the risks associated
with attacks are decreased. [33]

1.2.2 Grid Security

Due to the heterogeneous nature of the grid and the multitude of components
and resources involved, the entire infrastructure becomes vulnerable once the
module is compromised. This complexity makes grid security challenging,
requiring constant monitoring to maintain a secure environment. [16]

The point of grid computing is resource sharing, making authentication and
authorisation crucial for accessing grid resources. A common approach for
user usability is implementing a single-sign-on system, which often relies on
Public Key Infrastructure (PKI) based on X509 certificates, as described in
Section 2.2.1. [16]

3

Grid Security Infrastructure

The Grid Security Infrastructure (GSI), formerly known as the Globus Secu-
rity Infrastructure, has its roots in the deprecated Globus Toolkit middleware
[4, 14]. It includes tools, libraries, and protocols that establish the founda-
tional elements required to ensure a secure grid environment. This includes
authentication, authorisation, data integrity, and data confidentiality.

1.3 CERN

The European Council for Nuclear Research (CERN) was founded in 1954
as one of Europe’s first joint ventures. There are now 23 member states, and
it is situated on the French-Swiss border near Geneva, Switzerland. This is
where the LHC are, which is the world’s largest and most powerful particle
accelerator. It consists of a 27-kilometre ring of superconducting magnets
with two high-energy particle beams inside. These collide with the corre-
sponding particle detectors at four locations: ATLAS, CMS, ALICE and
LHCb. [5, 11]

1.3.1 ALICE

A Large Ion Collider Experiment (ALICE) is one of the four particle detectors
at CERN. It is one of the world’s largest experiments devoted to studying
the physics of strongly interacting matter at high energy densities. The
experiment aims to characterise the physical properties of the Quark-Gluon
Plasma (QGP). The particle detector is located in the Sergy community, in
France, 60 metres below ground. [6]

The raw data collected from LHC for Run 3 and 4 are estimated to be about
3.5 TB/s, but it is reduced to about 100 GB/s of data to store permanently,
which is still a lot of data coming through by the second [35]. To store, dis-
tribute, and analyse all this data, ALICE uses the Worldwide LHC Comput-
ing Grid (WLCG), which uses the storage and computing power contributed
by around 170 computing centres in more than 40 countries [12]. ALICE as
of today have 74 sites up and running provided by the WLCG.

Different middlewares enable access to the distributed computers within the
WLCG across the network, bridging the gap between operating systems and
physics-applications software for problem-solving purposes [1].

ALICE Environment (AliEn) was initially developed in 2003 as a prototype
middleware system written mainly in Perl, C, and C++ [15]. However, over

4

time, the system faced challenges in managing the increasing data storage
and scaling the infrastructure. As a result, there was a recognised need
for modernisation and improvements to address these issues. This resulted
in Java ALICE Environment (JAliEn), a grid framework that is used as
middleware, on top of WLCG within ALICE [23].

1.4 Problem Description

The security of grid middleware is an interesting topic; to further explore
it, an analysis of the JAliEn grid middleware will be done. The JAliEn
framework operates globally, interacting with numerous users and comput-
ers worldwide, similar to other grid systems. In the past, the primary focus of
JAliEn development was on performance, with security and safety consider-
ations, other than authentication and authorisation, sometimes overlooked.
However, due to the importance and unique nature of the data transmit-
ted through the system, there is now a focus towards further ensuring data
integrity.

While data confidentiality is important, the current emphasis lies on main-
taining data integrity, which means preventing unauthorised editing or dele-
tion of data. To address this, the system employs strict authorisation mech-
anisms facilitated by token certificates. It would be great if someone used
the data and discovered something the researcher has yet to find. However,
they must never be able to change or delete anything from the grid. There-
fore, the data are signed for authenticity rather than being encrypted for
confidentiality.

The JAliEn grid middleware is a recently deployed system that undergoes
continuous evolution to transition securely from the legacy middleware, AliEn.
In the course of Steffen Schreiner’s dissertation titled ”A Security Architec-
ture for e-Science Grid Computing”, a security analysis of the legacy system
was conducted to establish a new, enhanced security architecture [29]. This
architecture aimed to surpass the security measures of the previous system.
Additionally, due to the inefficiencies of the old system in processing much
larger datasets, the JAliEn system was developed.

Now that JAliEn is deployed and operational, it is crucial to assess the
effectiveness of its new architecture and security features in ensuring the
desired level of security. This assessment involves mapping out potential
security threats and determining the extent to which they are mitigated or
need improvement.

5

To conduct a thorough analysis, input from the ALICE developers at CERN
and the ALICE research group at HVL/UiB is important. Through collab-
oration with them, the key focus areas for the analysis are determined. One
of the main requirements for the system is ensuring data integrity, meaning
that unauthorised users or entities should not be able to modify the data.

This thesis will investigate the evolution of authentication and authorisation
mechanisms, starting from Schreiner’s dissertation and progressing to the
implementation of Token Certificates as elaborated in Section 4.3 of this
thesis. This research aims to highlight the improvements brought about by
the new system and evaluate the efficacy of the authorisation process.

1.5 Research methodology

The research methods employed in this thesis primarily focus on analysing
authentication and authorisation within the JAliEn system.

Firstly, a literature study was conducted to better understand the system
and the evolutionary aspects of security. This analysis will serve as the basis
for further examination and testing of the current implementation.

Subsequently, meetings with the developers at CERN have been arranged to
discuss specific security features they consider important or require. These
discussions will provide valuable insights into their ongoing work and security-
related needs. It is crucial to map out the requirements and identify the
necessary security features, which will be accomplished through interviews
and meetings with the developers.

Lastly, tests have been conducted to evaluate whether the system meets the
required security measures. These tests will consider the feedback the devel-
opers provided and the features already implemented during the transition
from the old system, considering its previous flaws.

1.6 Research Questions

Research questions are the basis of any research project. It helps to keep
the focus on the objective of the thesis and guide the research from start to
finish. This thesis aims to evaluate and potentially improve the security of
the JAliEn framework. Here are the research questions of this thesis:

Research Question 1: What security protocols are necessary in JAliEn?

6

Research Question 2: What are the greatest security threats to JAliEn?

Research Question 3: What vulnerabilities can be found within the
JAliEn middleware?

Research Question 4: How are token certificates authenticated/work in
JAliEn?

Research Question 5: Can a token certificate be misused or go astray?

1.7 Outline

The rest of the thesis is structured into eight chapters. This section will
introduce each chapter.

Chapter 2: Background
This chapter provides an overview of the background and objectives of the
thesis, focusing on the security analysis and enhancement of the JAliEn sys-
tem. It introduces JAliEn as a middleware framework within ALICE and
its core services and uses of Grid certificates for authentication. The chap-
ter also mentions the significance of Public Key Infrastructure (PKI) and
Certificate Authorities in ensuring a secure environment.

Chapter 3: Related Work
Chapter 3 presents an overview of previous work conducted in the context
of security within AliEn and JAliEn, as well as in the broader field of grid
security. The chapter emphasises grid security, focusing on authentication,
authorisation, and data integrity.

Chapter 4: JAliEn
This chapter provides a comprehensive overview of the JAliEn system, offer-
ing detailed insights into the process of running a job and the corresponding
system operations. Furthermore, it introduces the implementation of Token
Certificates.

Chapter 5: Tests performed on JAliEn and their results
This chapter presents the tests performed on JAliEn and the correlating
results. There was performed three types of tests.

Chapter 6: Discussion
This chapter presents the research results and the methodology employed to
obtain them.

Chapter 7: Conclusion

7

This chapter will summarise the findings and the research objectives and
discuss the results against the research questions. It provides a conclusion of
the research’s significance and impact.

Chapter 8: Further Work
The final chapter explores the next steps in this research and outlines po-
tential directions for future investigations. It discusses the path forward and
identifies areas that require further exploration.

8

Chapter 2

Background

This chapter provides the background on technologies and systems the thesis
discusses. The thesis aims to analyse and evaluate the security of JAliEn.
That requires some understanding of the system and the technologies in-
volved.

2.1 JAliEn

Java ALICE Environment (JAliEn) is a middleware framework used within
ALICE as mentioned earlier. It is derived from the earlier AliEn middleware.
The purpose of JAliEn is to coordinate the computing operations and data
management of the collaboration (ALICE) on the grid [23]. JAliEn consists
of many components with distinct functions. Some worth mentioning are
JCentral, Computing Element, VOBox, Job Agent, and JBox. Figure 2.2 is
an illustration of JCentral and its many grid sites. Grid sites are geographi-
cally dispersed data centres around the world. Figure 2.1 shows an excerpt
of the current sites in mostly Europe.

9

Figure 2.1: ALICE grid sites monitoring map [2]

JCentral, also known as central services, is vital in managing direct access
to the core databases [15]. It efficiently handles all incoming requests, per-
forming necessary lookups in the file catalogue, database, or task queue [31].
In Figure 2.2, you can observe components like Catalogue, task and transfer
queue, and LDAP. LDAP is further elaborated in Section 2.1.1. The Cata-
logue, or file catalogue, contains annotations for every file in the grid’s dis-
tributed storage, including pointers to the files’ physical locations [23]. The
task queue contains all jobs sent to JAliEn for processing, and the transfer
queue contains a list of transfer requests between storage elements.

The Computing Element (CE) is responsible for distributing jobs to worker
nodes on a grid site by communicating with JCentral. It resides in the
VOBox. The VOBox is a dedicated machine that serves as a cluster entry-
point for all the computing activities as a grid site. [31]

The Job Agent has several responsibilities in the middleware. It performs
Job Matching, which finds a job in the JCentral Task queue that matches
the capabilities of the current computing site. It also handles Environment
Preparation, examining the job’s JDL to determine the necessary packages

10

required and then launching a container with the correct environment. More-
over, the Job Agent monitors the job’s execution, providing trace information
and status updates. [31]

The job is executed on a worker node residing on the grid site.

Figure 2.2: JAliEn components

JBox is an end user or a job service that manages client-side authentication
and upstream connections [15].

To connect to JAliEn, the client must use their standard Grid certificate
[23]. Grid certificates are personal digital certificates, also known as Public
Key Infrastructure (PKI) or X.509 certificates. These are signed by CERN
or other acceptable certificate authorities so that clients can self-authorise to
gain access to the JAliEn grid [28].

Chapter 4 will present the necessary approach for connecting to the JAliEn
framework, running jobs, and the implemented security measures.

2.1.1 LDAP

JAliEn uses Lightweight Directory Access Protocol (LDAP), a mature, flex-
ible, and well-supported standards-based mechanism for interactions with

11

directory servers [19]. It can also be used to authenticate and store informa-
tion about users, groups, and applications [19]. JAliEn uses LDAP to give
permissions to users and sites, storing information on users and sites, as well
as site configurations for each VOBox [31]

2.2 Security

This section serves as an introduction to security concepts to better under-
stand the research.

2.2.1 Public key cryptography

A cryptographic algorithm is a set of mathematical functions and proce-
dures for encryption and decryption [20]. It aims to achieve three security
objectives: Confidentiality, Data Integrity and Authentication.

Public key cryptography, or asymmetric cryptography, utilises two different
keys to encrypt and decrypt. These are generated as a pair and are called a
public and a private key.

The public key is available to the public and can be freely distributed. The
private key is kept secret and is only known to the key pair’s owner. Any data
encrypted with the public key can only be decrypted using the corresponding
private key. Using a public key is a form of secure communication since only
the private key owner can decrypt and access the original message. An
example of how this is done is illustrated in Figure 2.3.

Figure 2.3: PKI [34]

12

On the other hand, the private key can encrypt data that can be decrypted
using the public key. This is often used for digital signatures and authenti-
cation, as the receiver can verify the authenticity and integrity of the data.

Public Key Infrastructure

A Public Key Infrastructure (PKI) combines policies, procedures, and tech-
nology required to manage digital certificates within a public key cryptog-
raphy scheme [26]. A digital certificate is a data structure that binds an
entity to its public key and ensures secure communication using public key
cryptography and digital signatures. A PKI aims to ensure a certificate is
trustworthy. [26]

The digital certificate used in JAliEn is X.509 certificates. It is a standard
format for public key certificates. Such certificate typically includes fields
containing issuer distinguished name (DN), typically the issuing CA, validity
period, subjects distinguished name (DN) and Subject public key information
among others.

2.2.2 Certificate Authority

According to National Institute of Standards and Technology (NIST), a Cer-
tificate Authority is defined as ”A trusted entity that issues and revokes
public key certificates” [13]. Further details remain found in ”NIST special
publication 1800-16” volume D, page 18, where it says, ”When a PKI has
been implemented in an organisation, a CA is used to validate the identity
of users and computers.”.

A Certificate Authority (CA) is a trusted third-party specialising in issuing
and administering digital signatures. A CA can distribute/issue certificates
in two ways. The use of a ”central CA” and issuing certificates directly to
a client or ”certification chain” where the CA authorises another entity to
do so. The latter is the most common, even though a central CA reduces
the number of third parties necessary and ensures that proper professional
procedures are followed. However, relying on one single point of failure can
have catastrophic consequences if it is compromised. [26]

CERN employs a certificate chain to accommodate the acceptance of different
types of CAs due to the various contributing countries and systems involved.
This approach allows for flexibility and interoperability in the complex grid
environment.

13

Figure 2.4: CERN CA [7]

At CERN, the digital certificate infrastructure consists of a root CA and
two intermediate authorities, CERN Grid Certification Authority and CERN
Certification Authority [7]. The CERN Grid CA issues different Grid Cer-
tificates such as user, host and robot certificates. The CERN CA issues
other certificates such as EduRoam Certificates, Code Signing Certificates
and CERN Host Certificates and cannot be used for Grid authentication.
This is illustrated in Figure 2.4.

The JAliEn CA works much the same but allows a broader range of CAs,
including different national CAs such as the Nordugrid CA [24].

14

Chapter 3

Related Work

The security of the ALICE grid middleware on CERN has undergone a thor-
ough examination in the past, specifically on the now legacy framework
known as AliEn. The most notable investigation was conducted by Stef-
fen Schreiner, a PhD student, in 2014. Schreiner authored a dissertation
titled ”A Security Architecture for e-Science Grid Computing” [29].

In his dissertation, Schreiner analyses the security threats associated with
the old AliEn grid framework and proposes a new security architecture that
effectively addresses these threats. The study employs established security
principles and frameworks to identify the primary security concerns in the
AliEn grid system. Based on the analysis, Schreiner proposes a new security
architecture, which forms the foundation of today’s JAliEn, offering a more
robust and comprehensive security framework for e-Science grid computing.
Schreiner’s dissertation provides valuable insights into the design and imple-
mentation of secure grid systems.

Schreiner’s analysis of AliEn focuses on various aspects of grid security, in-
cluding examining security characteristics, potential attacker motives and
identifying security objectives to be achieved. Because of this, several im-
portant security characteristics were recognised and of interest to this thesis
as JAliEn still is a grid with many of the same security characteristics. Ad-
dressing security characteristics and understanding the potential attacker’s
motives helps establish robust security protocols for the grid. [29, p. 35]

Firstly, the grid operates within a public and insecure environment, such
as the Internet, where data and communications are exposed to potential
threats from malicious actors. [29, p. 39]

15

Secondly, resource providers, also known as sites, maintain complete control
over their infrastructure, encompassing physical and administrative aspects.
This control over resources allows sites to regulate access and usage policies
and decide how resources are shared with other VOs or individual users.
Furthermore, sites play a significant role in facilitating the distribution of
resources across the grid, making them responsible for serving multiple con-
sumers or users. [29, p. 39]

Another important consideration is that grid users can introduce arbitrary
data and code into the grid and subsequently request its execution within grid
jobs. This introduces the possibility of malicious code being executed. The
grid lacks direct control over user environments, and users’ devices may not
always adhere to security standards. This introduces an additional challenge
for ensuring data integrity and protection. [29, p. 39-40]

Lastly, the grid involves collaborations between independent organisations
and institutions across international borders. Such widespread collaboration
requires a high level of trust and efficient security mechanisms to safeguard
sensitive data and ensure smooth operations. [29, p. 40]

The potential attacker motives and targets mentioned in Schreiner’s work
are VO as the primary target (data manipulation or service disruption),
the secondary target, such as attacks on individuals, sites or third parties
connected to the VO, and the system as a target. [29, p. 40-41]

Lastly, five security objectives were defined as follows [29, p. 41-44]:

• Data integrity, authenticity, and authorship: Ensuring the integrity,
authenticity, and provenance of all data within the grid.

• System integrity: Protecting the grid and its infrastructure from unau-
thorised access and alteration.

• Availability: Ensuring the grid’s availability and usability even with
affected sub-systems or Sites.

• Non-repudiation of grid jobs: Verifying the authenticity and origin of
grid jobs, even after a user’s access has been revoked.

• Confidentiality and data privacy: Protecting data and information from
unauthorised access, retrieval, or copying.

These security objectives serve as general assessment criteria to guide the
security efforts and measures within a grid infrastructure.

In the paper The Security model of the ALICE next generation Grid Network

16

from 2019, the most current security model of JAliEn is presented, based in
part on Schreiner’s research [25]. The paper introduces Token Certificates
as a significant aspect of this model as it aims to unify authentication and
authorisation mechanisms for Grid users, jobs, and payload isolation in a
way Schreiner’s work does not do.

In this context, a token certificate refers to an X.509 certificate combined with
an attribute indicating the entity’s role. This is done through the certificates
DN field is used to separate tokens into groups that correspond to grid roles
[31]. Token Certificates are used in the current system and will be explained
in detail in Chapter 4 JAliEn in Section 4.3.

Token certificates are time-limited and can represent three types of identity:
user, job, or job agent, each with specific permissions based on their roles and
responsibilities. These certificates are signed by the JAliEn CA and can only
be issued by JCentral. A user must possess a valid Grid Identity certificate
to obtain a token certificate.

By default, user tokens have the same rights as the grid user identity cer-
tificate and expire after 48 hours, but their validity can be extended. User
tokens can be shortened to one hour or extended to match the lifetime of
the grid user’s identity certificate. To extend the validity, the user needs
to authenticate again to limit the amount of time a stolen token could be
exploited.

Furthermore, JCentral will also close idle connections that have been inac-
tive for more than two hours. This is an additional security measure to
ensure that connections are monitored and controlled, reducing the window
of opportunity for any potential unauthorised access.

In another paper published in 2019, titled JAliEn: the new ALICE high-
performance and high-scalability Grid framework, the authentication and au-
thorisation model of JAliEn is described [23]. This paper also discusses To-
ken certificates and how they incorporate additional functions, such as the
role assigned in the system, by encoding them in the DN and extensions of
the X.509 certificate. While the paper provides more detailed information
in some aspects, it ultimately conveys the same information concerning the
authentication and authorisation mechanisms in JAliEn.

17

Chapter 4

JAliEn

This chapter will provide a more in-depth description of how the current
JAliEn implementation operates, how to run a job, and the performance in
place concerning security and Token Certificates. In JAliEn, there are two
options for submitting a job: alien.py and JShell, both of which serve as a
user interface and command-line interface (CLI).

JShell is a Java-based shell that is an integral part of the JAliEn framework.
It operates within the JAliEn environment and enables communication with
the central services by exchanging serialised objects. JShell is included within
the bundled jar files used in the framework, allowing users to interact with the
system and perform various operations through a command-line interface.

alien.py serves as a Python reimplementation of JShell within the JAliEn
framework. It offers an alternative to JShell by utilising WebSockets for
communication instead of Java and serialised objects. This Python-based
module, named ”xjalienfs”, with the program ”alienv” is a distinct package
or module separate from the main JAliEn components. alien.py provides
similar functionality to JShell but with the flexibility and advantages associ-
ated with using Python and WebSockets for communication within JAliEn.
It was designed to address potential issues arising from different Java and
JDK versions associated with JShell. Using alien.py, users can bypass com-
patibility concerns related to Java.

The one used in this paper is alien.py.

18

4.1 Connecting to alien.py

To use the alien.py, you can either install CVMFS and download the JAliEn
repository from GitLab and run with the command /cvmfs/alice.cern.ch/bin
/alienv enter xjalienfs or download the xjalienfs repository from GitLab and
run it locally [17, 18].

To access the service, you need a CERN account, a CERN certificate, and
to register with ALICE’s virtual organisation [9, 10].

The certificate provided when requesting a certificate is of the type p12.
This needs to be converted to PEM format Key pairs, one with the key,
userkey.pem, and one for the certificate, usercert.pem [8]. This can be done
with OpenSSL. Finally, the last step is to add your certificate and key to
the .globus folder in your home directory, typically found at /home/user-
name/.globus. Once this is done, when you enter alien.py, the expected
output should resemble Listing 4.1, shown below.

[v i l d e@v i l d e ˜] $ /cvmfs/ a l i c e . cern . ch/bin / a l i e nv ente r x j a l i e n f s
[x j a l i e n f s] ˜ > a l i e n . py
Welcome to the ALICE GRID
support mail : adr ian . sevcenco@cern . ch

AliEn [vfossum] : / a l i c e / cern . ch/ user /a/v/vfossum/ >

Listing 4.1: alien.py connection

4.2 Running a job

Two essential components are required to execute a job: a script and a .jdl
file. The .jdl file, which stands for Job Description Language, serves as a job
description, outlining various aspects of the job. It declares the input script,
potential arguments, output location, and splitting instructions, particularly
when initiating a masterjob. When interacting with JAliEn/alien.py, it is
the .jdl files that are submitted containing all the necessary information to
define and execute the desired job.

When the job is submitted, it progresses through various statuses. The most
common initial status is ’I’ for inserted, followed by ’ASG’ for assigned, ’R’
for running, ’SV’ for saving, and ’D’ for done. In the event of an error, the
status will begin with ’E’ to indicate an error occurrence. For instance, ’ESV’
signifies an error during the saving process. To monitor the status of jobs,
the alien.py script incorporates a ’ps’ command, which lists all jobs currently

19

running under your user. Additionally, you can utilise the ’jobInfo’ command
followed by the ’job id’ to obtain specific information about a particular job.”

You write the command submit ’.jdl file’ to submit a job. Listing 4.2 shows
an example of submission of the .jdl file ”sample” that declares testscript.sh
as input script and the ”ps” command done right after.

AliEn [vfossum] : / a l i c e / cern . ch/ user /a/v/vfossum/ >submit sample .
j d l

Submitting / a l i c e / cern . ch/ user /a/v/vfossum/sample . j d l
Your new job ID i s 2849439259
AliEn [vfossum] : / a l i c e / cern . ch/ user /a/v/vfossum/ >ps
vfossum 2849439259 ASG t e s t s c r i p t . sh

Listing 4.2: Submitting a job

Now what happens in the system when a job is submitted? Figure 4.1 shows
a simplified model of the process of running a job. A job is submitted, sent to
central services via Web Sockets, and added to the Task queue in JCentral.

Subsequently, sites worldwide have their CE check if there are any pending
jobs. If a site finds there is an available job, it generates a Job Agent startup
script and places it in the site’s batch queue. To do this, the CE needs to
request a Job Agent token to put in the startup script, among other things.

This is then sent to a free worker node that starts a Job Agent. At this stage,
the Job Agent matches and fetches the JDL and starts a container with the
job id, as mentioned in Section 2.1, where it begins execution. It is the Job
Wrapper that is in charge of the execution. During execution, the container
communicates with JCentral if it is necessary, as shown in the figure. This
is done through a component called TJAliEn, but this is not relevant to this
research.

As described, there are many components to the system and thereby have
several attack surfaces, as mentioned in Chapter 1.

20

Figure 4.1: Flow of JAliEn

21

4.3 Token Certificate

This thesis emphasises the utilisation of Token Certificates as a key security
feature, a new addition to the JAliEn framework compared to the previous
AliEn implementation. A Token Certificate, as used in JAliEn, comprises an
X.509 certificate and a specific role assigned within the system, as described
in Chapter 3. This differs from the legacy AliEn implementation, which
relied solely on the X.509 certificate without role assignment.

The system defines three primary roles: user, job, and job agent, each asso-
ciated with different permissions and access levels. Additionally, there is the
host token certificate. Though the host token certificate is not the only way
for a host to authenticate itself.

The list of Token Certificates is as follows:

• Host token certificate

• Job Agent token certificate

• Job token certificate

• User token certificate

A user token has the same permissions as the user grid identity, listed in
LDAP. A job token can only be requested by a Job Agent and only have the
permission to execute the payload, as in the job token gets all the permissions
of the user who submitted the job and work on the job as that user. A Job
Agent token can only be requested by VOBox services and does job matching,
updating job status, and uploading job trace, as described in 2.1.

Figure 4.2 illustrates the token flow during the execution of a job. The user
possesses a user token certificate, which is utilised when submitting a job to
the central services. Similarly, a VOBox can hold a host token certificate,
which it employs to check for jobs. Another way is for the host to use its
”normal” grid certificate/grid identity and authenticate with the permissions
kept in LDAP.

After the site finds available jobs, the Job Agent token is included in the
startup script, as mentioned in the previous section. The script is then moved
to the batch queue and handed to the worker node that starts the Job Agent.
When the Job Agent identifies a suitable match for the site, it fetches the job
and requests a Job token specific to that job. The Job token is required by
the container environment responsible for executing the job, as it needs the
necessary permissions to communicate with JCentral. Additionally, to ensure

22

that the container Client does not interfere with unauthorised operations,
it acquires the job-specific Job token. This way, the container Client can
safely perform its tasks with the required permissions, and the job execution
remains secure and isolated from other processes.

23

Figure 4.2: Flow of token in JAliEn

24

Chapter 5

Tests performed on JAliEn and
their results

In this chapter, the tests performed on the system to address the research
are described, as well as their results.

5.1 Token requests

The assessment involved the evaluation of token-related commands, aiming
to gain familiarity with the system and explore the range of function calls.
The main objective focused on comprehending the system and assessing the
capability to request tokens.

One of the commands in the alien.py script is ’token-init,’ which allows users
to request tokens of specific types. However, it should be noted that the user
’vfossum’ does not possess any roles associated with being a host, JobAgent,
or VOBox. Therefore, they should not have the capability to request such
tokens. Listing 5.1 shows an excerpt from one of the inquiries. In this
example, the command includes the options: -u (username), -t (tokentype),
-jobid (jobDN extension).

1 AliEn [vfossum] : / a l i c e / cern . ch/ user /a/v/vfossum/ >ps
2 vfossum 2849439259 D t e s t s c r i p t . sh
3 AliEn [vfossum] : / a l i c e / cern . ch/ user /a/v/vfossum/ >token− i n i t −u

vfossum −j ob id
4 2849439259
5 Remote I /O e r r o r : Server didn ’ t execute your request , reason

was : Only a JobAgent can ask f o r a Job token , [vfossum] i s
not one

25

6 The token could not be c rea ted ! check the l o g f i l e /home/ v i l d e /
a l i e n py . l og

7 Remote I /O e r r o r : Server didn ’ t execute your request , reason
was : Only a JobAgent can ask for a Job token , [vfossum] i s
not one

8 DN >>> C=ch/O=AliEn2/CN=Users /CN=vfossum/OU=vfossum
9 ISSUER >>> C=ch/O=AliEn2/CN=AliEn CA

10 BEGIN >>> 2023−05−12 14 : 15 : 23
11 EXPIRE >>> 2023−06−12 16 : 15 : 23

Listing 5.1: requesting job token

In each test, the request was denied, as expected.

5.2 Overloading test

One initial concern was the potential for a user to submit an excessive number
of jobs, which could overload the system. While it was mentioned that efforts
were made to address this issue, the current status of the resolution remains
to be discovered [32].

To mitigate the risk of system overload, there are restrictions in place regard-
ing the number of jobs a user can submit. Typically, users are not allowed to
submit more than approximately 2000 jobs; in most cases, the limit is set to
around 100 jobs. In this specific test case, the user had a limit of 100 jobs.

This limitation is crucial to prevent CPU resources from being wasted on po-
tentially incorrect or less critical jobs. The system can prioritize and allocate
resources efficiently by enforcing job submission limits.

5.2.1 Splitting and submitting a masterjob above limit

To begin to test this problem, the goal is to try submitting 2500 jobs using
what is called a masterjob. A masterjob splits a task and submits it an
explicit number of times. This is declared in the .jdl file shown in Listing
5.2.

1 Executable=”/ a l i c e / cern . ch/ user /a/v/vfossum/ s l e epe r−t e s t . sh” ;
2 Sp l i t=” product ion :1−2500” ; #submit job 2500 t imes
3 Output = {” stdout@disk=1” } ;

Listing 5.2: sleeper-masterjob.jdl

To have minimal effect on the system and to reduce the risk of compromising
the system, the actual job is a script that sleeps. Because it takes time to

26

submit all the jobs, the sleep time, as seen in Listing 5.3, is three days. The
goal is to test if every job starts to run, not if they run its entire course.

1 #!/ bin /bash
2 s l e e p 3d #waits 3 days to be sure a l l j obs s t a r t .

Listing 5.3: sleeper-test.sh

Surprisingly all jobs started, even when splitting the job into 5000 jobs.
However, when trying to submit the same masterjob again while the previ-
ous masterjob was running, the job failed. Upon sharing the results with
developers at CERN, it was revealed that one of them had started working
on a solution to the problem. It seemed that when a user submitted a job
while under the limit, every split worked, but when already over the limit,
the job was stopped. As a result, the user who submitted the job could run
more than the permitted limit of 100 jobs simultaneously if committing the
master job while under the limit.

5.2.2 Submitting individual jobs above limit

The second part of the overloading test was to do the same thing but by
submitting individual jobs and not using masterjob and split. This will
further check if the statement in the previous section stands. Will the job be
stopped when passing 100 this time?

This time the jdl did not include a split, as shown in Listing 5.4, but the
sleeper script was the same, shown in Listing 5.3.

1 Executable = ”/ a l i c e / cern . ch/ user /a/v/vfossum/ s l e epe r−t e s t . sh” ;
2 Output = { stdout@disk=1};

Listing 5.4: sleeper.jdl

To avoid having to submit each job manually, a submit script was created,
shown in Listing 5.5. This script was run from outside of alien.py.

1 #!/ bin /bash
2 for i in {1 . . 2500}
3 do
4 a l i e n . py submit s l e e p e r . j d l
5 done
6 echo ”Done , I ’m a submit t e s t ”

Listing 5.5: submit-file.sh

27

Initially, the test was conducted with 200 job submissions, and they all suc-
cessfully started running. Subsequently, a test with 2500 job submissions
was performed, and once again, every job started running. This outcome
was unexpected and raised concerns. While it is not a common practice to
submit such a large number of jobs without using a masterjob, it highlighted
a breach in the system’s rules and restrictions. Although the developers were
not overly alarmed, this vulnerability could potentially be exploited and pose
a risk to the system’s integrity.

5.3 Exploitation of environment variables

This test attempts to gain access to keys or tokens through the environment
variables of the machine that runs the job. To do this, the script enviro-
test.sh, Listing 5.6, was created with the corresponding jdl file, Listing 5.7.
The script prints all the environmental variables, and the .jdl file stores the
output in the output dir enviro folder in the submitting user’s home direc-
tory, in this case, vfossum.

1 #!/ bin /bash
2 pr intenv
3 echo ”Done , I ’m an environment t e s t ”

Listing 5.6: enviro-test.sh

1 Executable = ”/ a l i c e / cern . ch/ user /a/v/vfossum/ enviro−t e s t . sh” ;
2 Output = { stdout@disk=1};
3 OutputDir = ”/ a l i c e / cern . ch/ user /a/v/vfossum/ ou tpu t d i r env i r o /”

;

Listing 5.7: enviro.jdl

The results from the run resulted in the file shown in Appendix A. What was
interesting in the results was the variable JALIEN TOKEN KEY, holding
the location to the token key, /workdir/jobtoken7377736111310526252.pem,
and JALIEN TOKEN CERT variable pointing to the token certificate at
/workdir/jobtoken5712500697710563999.pem.

Now the next step is to try printing the content of the files to output and
check if a user has access to them through the job. A test to print the files is
performed to check if a user can access the key and certificate files. Listing
5.8 shows the source code of the test, and Listing 5.9

28

1 #!/ bin /bash
2 echo ”JALIEN TOKEN KEY: ”
3 cat $JALIEN TOKEN KEY
4

5 echo ”JALIEN TOKEN CERT: ”
6 cat $JALIEN TOKEN CERT
7

8 echo ”Done , I ’m an environment get t e s t ”

Listing 5.8: enviro-get-test.sh

1 Executable = ”/ a l i c e / cern . ch/ user /a/v/vfossum/ enviro−get−t e s t . sh
” ;

2 Output = { stdout@disk=1};
3 OutputDir = ”/ a l i c e / cern . ch/ user /a/v/vfossum/

ou tpu t d i r e nv i r o g e t /” ;

Listing 5.9: enviro-get.jdl

This resulted in both the key and certificate being printed to the job output
seen in Appendix B. Now the question is: What can be done with this
information? Can the job token be used to exploit the system?

To test if a token could be exploited, the key and certificate were added to
two PEM files, usercert.pem and userkey.pem. One potential exploit could be
using these credentials to authenticate when entering alien.py, as described
in Section 4.1, and run a test job.

The result of this test was successful, as it allowed the user to authenticate
and enter alien.py. This outcome might not be surprising, as the token
inherits the permissions of the user who provided the job. However, what
remains to be investigated is whether the token possesses more permissions
than it should, potentially enabling unauthorised actions, such as editing
or deleting files in other users’ repositories. This aspect warrants further
examination to assess the extent of the token’s privileges and any possible
security implications.

With permission from two other users, both an admin and a regular user, a
test on its repository was done. Testing editing on their files. Listing 5.10
shows an illustration of the outcome.

29

1 . . .
2 −rwxr−xr−x username2 username2 203 Mar 22 09 :31

t e s t 1 . j d l
3 . . .
4 AliEn [vfossum] : / a l i c e / cern . ch/ user /u/username2/ >mv t e s t 1 . j d l

t e s t1−exp l o i t ed . j d l
5 Input /output e r r o r : Fa i l ed to move t e s t 1 . j d l to / a l i c e / cern . ch/

user /u/username2/ tes t1−exp l o i t ed . j d l
6 AliEn [vfossum] : / a l i c e / cern . ch/ user /u/username2/ >nano h e l l o . sh
7 Sp e c i f i e d source / a l i c e / cern . ch/ user /u/username2/ h e l l o . sh not

found !
8 Error downloading / a l i c e / cern . ch/ user /u/username2/ h e l l o . sh ,

e d i t i n g could not be done .

Listing 5.10: Exploitation test illustration 1

In Listing 5.11, there is an attempt to change a file by adding a comment
saying ”Exploitation worked”, but when saving, the result showed an error
as expected if the permissions were correct.

1 AliEn [vfossum] : / a l i c e / cern . ch/ user /u/username2/ >nano t e s t 1 . j d l
2 Input /output e r r o r : Fa i l ed to move / a l i c e / cern . ch/ user /u/

username2/ t e s t 1 . j d l to / a l i c e / cern . ch/ user /u/username2/ t e s t 1 .
j d l ˜

3 Error uploading

Listing 5.11: Exploition test illustration 2

30

Chapter 6

Discussion

This chapter will discuss the results from the research and the method used
to get these results.

The results from testing revealed two significant findings: firstly, a user can
execute a higher number of jobs than they are authorised to, and secondly,
users can easily access the certificate and key associated with a job token.
While it is important to acknowledge the testing methodology’s limitations,
both statements remain valid. However, drawing definitive conclusions re-
garding the implications for the system is challenging. Although initial tests
were conducted to assess the potential impact of these vulnerabilities and
indicated that the risks were not severe, a more comprehensive testing ap-
proach would be necessary to fully evaluate the extent of the vulnerability
in the JAliEn system.

Regarding the result indicating that a user cannot request a job certificate, it
is important to note that drawing definitive conclusions based on a single test
is difficult. While the test result may indicate that the user could not request
a job certificate, it does not necessarily imply that the system is entirely
secure against exploitation. Alternative approaches to exploit the system
were not discovered during these tests. Therefore, further investigation and
additional tests are required to assess the overall vulnerability of the system
to unauthorised job certificate requests.

As described in Chapter 5, three different types of tests were conducted,
focusing on a broad range of system security aspects. However, to obtain
deeper insights, it would have been beneficial to have a more interconnected
approach that specifically targeted a particular breach or aspect of security.
This would have provided more detailed results that carry greater weight

31

when assessing the system’s overall security.

Unfortunately, the overloaded masterjob test results were unsurprising to the
developers, as a PhD student was already investigating the issue. However,
there needed to be more effective communication within the group regarding
this matter, though they newly started using a change log to inform of the
latest changes to the code and the system. On the other hand, the unexpected
results of the manual submission test provided valuable insights, even though
it did not pose a critical breach. The results obtained may be related to job
quotas, but they could also indicate other issues within the system that are
not functioning correctly. It is unclear which specific entity was affected
based solely on the test conducted.

Another point of improvement regarding understanding the system was the
difficulty of locating documentation, even though it did exist scattered across
various places and sites. However, frequent and accessible communication
with the developers benefited the research.

In hindsight, dedicating more time to information gathering would have
been beneficial, as the research encountered multiple halts due to insufficient
knowledge of the system and its inner workings. Consequently, a signifi-
cant portion of the work was devoted to understanding the system, which
ultimately consumed time that should have been dedicated to testing and
in-depth research on the JAliEn framework.

As grid computing is considered a predecessor to cloud computing, it becomes
challenging to find modern or recent documentation and research in the field,
especially since grids are primarily used for large computations, often related
to physics data.

32

Chapter 7

Conclusion

This chapter serves as the conclusion of the research, summarising the ef-
forts to investigate each research question and presenting the corresponding
answers.

Research Questions 1 and 2: What security protocols are necessary
for JAliEn? What are the greatest security threats to JAliEn?

Discussions with developers revealed that data integrity is one of the most
important security features for JAliEn, but not the only one needed. To
protect the data, good authentication and strict authorisation methods are
necessary.

The greatest threat would be someone with not necessarily but possibly ma-
licious intent attempting to delete or remove files from the system. This
emphasises the necessity of data integrity and proper authorisation to pre-
vent unauthorised access and tampering with data.

This statement would benefit from more support from research. While
it is not entirely false, additional documentation and proof could further
strengthen the validity of the research findings and eliminate any doubts
regarding their accuracy.

Research Question 3: What vulnerabilities can be found within the
JAliEn middleware?

The discussions with developers and research identified two possible vulnera-
bilities in the system, which had been breached before and could still present
a threat. The first vulnerability involves token exploitation or tokens with
unwarranted permissions, which could lead to unauthorised access to sen-

33

sitive resources. The second vulnerability is related to users being able to
submit more jobs than their allowed limit, potentially causing an overload
on the system. These vulnerabilities require careful attention and mitigation
to ensure the security and stability of the JAliEn framework.

The testing revealed that the job submission process posed a threat that was
not completely mitigated. Although efforts were underway to address the
issue, the testing uncovered a vulnerability the developers were unaware of.
This highlights the importance of testing and continuous improvement in the
security measures of the JAliEn framework to enhance its resilience against
potential threats and attacks.

Research Question 4: How are token certificates authenticated/
work in JAliEn?

As for research question three, a substantial amount of information has been
presented. With that, the conclusion would have to be that the question was
answered. This aspect has been a major portion of the research, providing
valuable insights into the inner workings of token certificates used in JAliEn
and the benefits they offer to the system.

Research Question 5: Can a token certificate be misused or go
astray?

This was a question brought up during a discussion with the developers.
Could a token be stolen and misused? To try to find out the test described
in Section 5.3, ”Exploitation of environment variables” was initiated. This
resulted in access to the job token certificate and key to the environment of
the job. Due to insufficient testing of the implication, this question can not
be categorised as answered completely. Though a user can gain access to a
job token and log in with it, it is still within the user’s permissions and not
really a completely different token than the user token.

As discussed in Chapter 6, the research could have benefited from a narrower
scope and dedicated more time and resources to each research question. By
doing so, a more comprehensive and detailed analysis could have been con-
ducted, leading to more precise and robust answers to the research questions.
Focusing on fewer or smaller questions would have allowed for deeper inves-
tigations and a more in-depth understanding of the security aspects of the
JAliEn framework. Future research endeavours could consider this approach
to enhance the quality and effectiveness of the research outcomes.

34

Chapter 8

Further Work

This chapter outlines the areas for further investigation and work, considering
the research’s limitations in addressing all the research questions and the need
for more comprehensive testing. The following aspects should be explored in
future work:

• The significance and potential risks of the environmental variable should
be thoroughly assessed, despite some initial testing being conducted.

• Investigate the implications of obtaining the token and key together.

• Verify if the token possesses more permissions than it should, as this
could be a potential vulnerability in the system.

• Explore alternative and more sophisticated methods of acquiring a job
token, analysing if there are potential loopholes or vulnerabilities in
the process. Ensure that a job token is restricted to only enabling file
upload and download operations within the context of the submitting
user’s permissions.

• Determine the scope and extent of actions that can be carried out with
a job token, including the specific permissions it grants.

• Investigate the relationship between the site, job agent, and job compo-
nents, understanding how they interact and impact security measures.

• Analyse if any tokens possess unauthorised permissions, identifying po-
tential security gaps that must be addressed.

• Research to which extent it is possible to take control of a machine or
a site, either through tokens and permissions or by submitting a job

35

containing malicious code.

In future work, as discussed in Chapter 6, adopting a more structured ap-
proach is necessary to ensure reliable and accurate scientific results. This
could involve focusing on smaller parts of the system and examining each
component individually. Exploring other security aspects and attack sur-
faces would also be beneficial.

Finally, based on the experience gained during this thesis, an interesting as-
pect to consider in future work is gathering all information and documenta-
tion about the system in one centralised location. This would facilitate easier
access and understanding of the system for future researchers and users and
less time used to get familiar with the system.

36

Appendix A

enviro-test.sh output

1 AliEn [vfossum] : / a l i c e / cern . ch/ user /a/v/vfossum/ > l e s s
ou tpu t d i r env i r o / stdout

2 JALIEN TOKEN KEY=/workdir / jobtoken7377736111310526252 . pem
3 JALIEN HOME=/a l i c e / cern . ch/ user /a/v/vfossum/
4 SSL CERT FILE=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/Python−

modules /1.0−371/ share /python−modules/ l i b /python/ s i t e −packages
/ c e r t i f i / c a c e r t . pem

5 ROOT INCLUDE PATH=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/
OpenSSL/v1 . 1 . 1m−13/ inc lude

6 APPTAINERCOMMAND=exec
7 TMPDIR=/workdir /tmp
8 ALICE TARGET=l inuxx8664gcc
9 X509 CERT DIR=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/AliEn−

Runtime/v2−19− l e −138/ g lobus / share / c e r t i f i c a t e s
10 LIBXML2 ROOT=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/ l ibxml2 /v2

.9.3−84
11 LD LIBRARY PATH=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/XRootD/

v5 .5.3−14/ l i b : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/
l ibxml2 /v2 .9.3−84/ l i b : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /
Packages/Python−modules /1.0−371/ share /python−modules/ l i b : /
cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/OpenSSL/v1 . 1 . 1m−13/
l i b : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/Python/v3
.9.12−31/ l i b : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/ l i b f f i /
v3 .2.1−59/ l i b 6 4 : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/
s q l i t e /v3 .15.0−69/ l i b : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /
Packages/ l ibpng /v1 .6.34−148/ l i b : / cvmfs/ a l i c e . cern . ch/ e l7−
x86 64 /Packages/ z l i b /v1 .2.8−112/ l i b : / cvmfs/ a l i c e . cern . ch/ e l7−
x86 64 /Packages/FreeType/v2 .10.1−107/ l i b : / cvmfs/ a l i c e . cern . ch
/ e l7−x86 64 /Packages/AliEn−Runtime/v2−19− l e −138/ l i b : / cvmfs/
a l i c e . cern . ch/ e l7−x86 64 /Packages/GCC−Toolchain /v7 .3.0− a l i c e 1
−9/ l i b 6 4 : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/GCC−
Toolchain /v7 .3.0− a l i c e 1 −9/ l i b : / . s i n g u l a r i t y . d/ l i b s

37

12 JALIEN USER=vfossum
13 GCCTOOLCHAIN ROOT=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/GCC−

Toolchain /v7 .3.0− a l i c e 1 −9
14 SINGULARITY NAME=centos7
15 SQLITE ROOT=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/ s q l i t e /v3

.15.0−69
16 ALIEN JOB TOKEN=ooˆ zt) Rf54ˆRmtgcsPVofPA3sI) uQrz{
17 ALICE TARGET EXT=l inuxx8664gcc
18 PATH=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/JAliEn /1.7.2−1/ bin

: / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/ x j a l i e n f s /1.4.5−22/
bin : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/XRootD/v5
.5.3−14/ bin : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/ l ibxml2 /
v2 .9.3−84/ bin : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/Python
−modules /1.0−371/ share /python−modules/ bin : / cvmfs/ a l i c e . cern .
ch/ e l7−x86 64 /Packages/OpenSSL/v1 . 1 . 1m−13/bin : / cvmfs/ a l i c e .
cern . ch/ e l7−x86 64 /Packages/Python/v3 .9.12−31/ bin : / cvmfs/
a l i c e . cern . ch/ e l7−x86 64 /Packages/ s q l i t e /v3 .15.0−69/ bin : /
cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/ l ibpng /v1 .6.34−148/
bin : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/AliEn−Runtime/v2
−19− l e −138/bin : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/GCC−
Toolchain /v7 .3.0− a l i c e 1 −9/bin : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64
/Packages/JDK/12.0.1−6/ bin : / usr / l o c a l / sb in : / usr / l o c a l / bin : /
usr / sb in : / usr / bin : / sb in : / bin : / cvmfs/ a l i c e . cern . ch/bin

19 APPTAINERAPPNAME=
20 APPTAINERENVIRONMENT=/. s i n g u l a r i t y . d/env/91−environment . sh
21 =/usr /bin / pr intenv
22 JALIEN HOST=127 .0 .0 .1
23 ALIEN PROC ID=2849464181
24 PWD=/workdir
25 LMFILES =/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/ modu l e f i l e s /

BASE/1 . 0 : / cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/ modu l e f i l e s /
JDK/12.0 .1 −6:/ cvmfs/ a l i c e . cern . ch/ e t c / t oo l cha in /modu l e f i l e s /
e l7−x86 64 /Toolchain /GCC−v7 . 3 . 0 : / cvmfs/ a l i c e . cern . ch/ e l7−
x86 64 /Modules/ modu l e f i l e s /GCC−Toolchain /v7 .3.0− a l i c e 2 −30:/
cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/ modu l e f i l e s /AliEn−
Runtime/v2−19− l e −138:/ cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/
modu l e f i l e s /FreeType/v2 .10 .1 −107:/ cvmfs/ a l i c e . cern . ch/ e l7−
x86 64 /Modules/ modu l e f i l e s / z l i b /v1 .2 .8 −112:/ cvmfs/ a l i c e . cern .
ch/ e l7−x86 64 /Modules/ modu l e f i l e s / l ibpng /v1 .6 .34 −148:/ cvmfs/
a l i c e . cern . ch/ e l7−x86 64 /Modules/ modu l e f i l e s / s q l i t e /v3
.15 .0 −69:/ cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/ modu l e f i l e s /
l i b f f i /v3 .2 .1 −59 :/ cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/
modu l e f i l e s /Python/v3 .9 .12 −31:/ cvmfs/ a l i c e . cern . ch/ e l7−x86 64
/Modules/ modu l e f i l e s /OpenSSL/v1 . 1 . 1m−13:/ cvmfs/ a l i c e . cern . ch/
e l7−x86 64 /Modules/ modu l e f i l e s /Python−modules /1.0−371:/ cvmfs/
a l i c e . cern . ch/ e l7−x86 64 /Modules/ modu l e f i l e s / l ibxml2 /v2
.9 .3 −84 :/ cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/ modu l e f i l e s /
XRootD/v5 .5 .3 −14 :/ cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Modules/
modu l e f i l e s / x j a l i e n f s /1 .4 .5 −22:/ cvmfs/ a l i c e . cern . ch/ e l7−

38

x86 64 /Modules/ modu l e f i l e s /JAliEn /1.7.2−1
26 JAVAHOME=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/JDK/12.0.1−6
27 APPTAINERNAME=centos7
28 LANG=C
29 JALIEN PID=133
30 LOADEDMODULES=BASE/1 . 0 :JDK/12.0 .1 −6: Toolchain /GCC−v7 . 3 . 0 :GCC−

Toolchain /v7 .3.0− a l i c e 2 −30:AliEn−Runtime/v2−19− l e −138:
FreeType/v2 .10 .1 −107: z l i b /v1 .2 .8 −112 : l ibpng /v1 .6 .34 −148:
s q l i t e /v3 .15 .0 −69 : l i b f f i /v3 .2 .1 −59 : Python/v3 .9 .12 −31 :OpenSSL/
v1 . 1 . 1m−13:Python−modules /1.0−371: l ibxml2 /v2 .9 .3 −84 :XRootD/v5
.5 .3 −14 : x j a l i e n f s /1 .4 .5 −22: JAliEn /1.7.2−1

31 SYSTEM LIBPATH=l i b 64
32 PYTHONHOME=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/Python/v3

.9.12−31
33 SINGULARITY ENVIRONMENT=/. s i n g u l a r i t y . d/env/91−environment . sh
34 APPTAINER CONTAINER=/cvmfs/ a l i c e . cern . ch/ con ta i n e r s / f s /

s i n g u l a r i t y / centos7
35 APMONCONFIG=a l i c ebox . farm . p a r t i c l e . cz
36 SINGULARITY BIND=/cvmfs , / workdir , / tmp
37 SHLVL=3
38 HOME=/workdir
39 ALIEN JDL CPUCORES=1
40 ALIEN USER=vfossum
41 JALIEN TOKEN CERT=/workdir / jobtoken5712500697710563999 . pem
42 PYTHONPATH=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/ x j a l i e n f s

/1.4.5−22/ l i b /python/ s i t e −packages : / cvmfs/ a l i c e . cern . ch/ e l7−
x86 64 /Packages/XRootD/v5 .5.3−14/ l i b /python/ s i t e −packages : /
cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/Python−modules
/1.0−371/ share /python−modules/ l i b /python/ s i t e −packages : / cvmfs
/ a l i c e . cern . ch/ e l7−x86 64 /Packages/Python/v3 .9.12−31/ l i b /
python/ s i t e −packages

43 TMP=/workdir /tmp
44 ALIEN MASTERJOB ID=2849464181
45 CLASSPATH=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages/JAliEn

/1.7.2−1/ l i b / a l i en−use r s . j a r
46 PROMPTCOMMAND=PS1=” S ingu l a r i t y> ” ; unset PROMPTCOMMAND
47 SINGULARITY CONTAINER=/cvmfs/ a l i c e . cern . ch/ con ta i n e r s / f s /

s i n g u l a r i t y / centos7
48 JALIEN WSPORT=42057
49 ALIEN SITE=Prague
50 APPTAINER BIND=/cvmfs , / workdir , / tmp
51 LIBXML2 VERSION=v2 .9.3−84
52 BASEDIR=/cvmfs/ a l i c e . cern . ch/ e l7−x86 64 /Packages
53 Done , I ’m an environment t e s t
54 payload −2849464181

39

Appendix B

enviro-get-test.sh output

1 JALIEN TOKEN KEY:
2 −−−−−BEGIN RSA PRIVATE KEY−−−−−
3 MIIEpAIBAAKCAQEAkqZpy7nSbs0SyFquA5eypp+enb1f00 /d4KFSXs6vtyHCI6+L
4 BTqJ8qQq9BrdY0WY0QgdGkue5J8Xi35anEppkwddikxngkS32ncxaHYY3biyUxVD
5 rl6RDXtxas8lKtRObZyZj7C/dL+eX+vMw9UJ83O5v8Pz2TLbVbQOYD6JPKXnj0NK
6 7RL6pSfhC3ASHewVMi86ZZATB+NqpKOoZmI4iiqOzWu658GDXTXwhPlanP5YBw2m
7 tsygvHf0dB3T6aNUMtnh9X2M6UumPoepGcL0Dj3Mutv90DoZXpCtjXb646GwleQr
8 s4YzVnQfCxufNelrfaf6a2CwQyS5yU42mMiGOwIDAQABAoIBADkgHAwhCYjh15Q2
9 RpzdpdjkSsxVbZOKA/sxvD10M9yZiN+PzQ6vW/cp3hWStXSrMrkSeQu6M14JXwmW

10 ocNJ9VAxyU1LL/L9w8SVM6jmgA82mDhnCyNMcSKYWHjr0iWZ6CconmTry9i1oALr
11 fqs2PJcaGFxL/5w3BFuhNQxmr9zwiHwr4Rn1R9Bp4Zvr2DLN51ifYr5gb76Rdmr/
12 RaJtb8xwj9czUQLiNaUUsQjGoO353xlknKMxQ0lKRBdT1VBIG1Jdmc/bVF9H4qoH
13 iyJ6Amo08xEUQxoay8IPxn/xoibhqVrlykSLk6VNcjvNUH//7dfu3v+pGN6NH619
14 m7VrxKkCgYEAvEy5DV+gNnQL7P+CLMPVAB05kHg5OAGPiVNzguFLy8EMXPnrn+f9
15 PonHIlN85JRBzuQLEZHpvlKEy6XhVuiHgTHS9cUJruahwmWUch8U1Wsn5u3Oo8DT
16 W/noqPTy5pBqH+qU95/CnQm1Lj/svxkngUNV3qpYZM19VFK0VXQrNDcCgYEAx2A3
17 +sTZH14lq4cGsYgd5lZDb5FP72az78rtxrMsuXrEXNkN4vYwGkZl+EPrsUhLc4jB
18 UkAiATQnthn/RajhOcY5h/yeD9zQ6zgAaOMu/Pi1mQw+fwyQgcyhHPnnmr4irMBg
19 WW1smpzq07NU25YuEQRLMy8GyQgHqTmefYGjRB0CgYEAg8dJ5rMao6E5S2ZRitSO
20 d6L8Sz/oA2sMMfYmK91SN0lmRpddMC6iC6dOppY5HJspJwpvOJ+eLuT/LKptdm4L
21 jv34fqmjqjSb1jlS1z8rTGTOqw2YhP+Iq6DNE5lBeNxueOGp2VaEU3ScyL5SCDcp
22 b4xZRxh9/iXVZTLwI7HGHqcCgYEAsTwcp2TkKplT3WZcEeeRxNf8fKptp8DhxhHc
23 S92trXiwJGWjjZYSbtkT/p3KYL+Gqz7vtAFk+TL29k+n+LHG/cf0DqoHjMxcQC15
24 V8RVWfZx4Irc564wq+JPeuXA+HN7eZxOSlEW0V8a9XSew9F+RAxQGUD9xCnKPaoF
25 9UYP8BUCgYBD5ApK4JsbzbSkDTvZQPMDhKTCvUtyvZS4rMFADQB1tJIaz9oedsXg
26 t7Ig4XOmRUX84Vbw6/LPWat3Bc/jAIZEFGGOnDwkVBqkGFzMFBM3QlDlYR89YwDn
27 Pe+bhLDjvQnczWKsyVONmMP8sb6D/kCfNyHb2k+y6cJt9Y/Ggd2wVw==
28 −−−−−END RSA PRIVATE KEY−−−−−
29

30 JALIEN TOKEN CERT:
31 −−−−−BEGIN CERTIFICATE−−−−−
32 MIID5TCCAs2gAwIBAgIQYVoelua+jZn6lprUgDF8wjANBgkqhkiG9w0BAQsFADAx

40

33 MQswCQYDVQQGEwJjaDEPMA0GA1UEChMGQWxpRW4yMREwDwYDVQQDEwhBbGlFbiBD
34 QTAeFw0yMzA1MjMxMjE2MTBaFw0yMzA1MjQxNDE2MTBaMH0xCzAJBgNVBAYTAmNo
35 MQ8wDQYDVQQKDAZBbGlFbjIxDTALBgNVBAMMBEpvYnMxEDAOBgNVBAMMB3Zmb3Nz
36 dW0xEDAOBgNVBAsMB3Zmb3NzdW0xKjAoBgNVBAsMIXF1ZXVlaWQ9Mjg1NjY3MzEy
37 OS9yZXN1Ym1pc3Npb249MDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB
38 AJKmacu50m7NEshargOXsqafnp29X9NP3eChUl7Or7chwiOviwU6ifKkKvQa3WNF
39 mNEIHRpLnuSfF4t+WpxKaZMHXYpMZ4JEt9p3MWh2GN24slMVQ65ekQ17cWrPJSrU
40 Tm2cmY+wv3S/ nl /rzMPVCfNzub/D89ky21W0DmA+iTyl549DSu0S+qUn4QtwEh3s
41 FTIvOmWQEwfjaqSjqGZiOIoqjs1ruufBg1018IT5Wpz+WAcNprbMoLx39HQd0+mj
42 VDLZ4fV9jOlLpj6HqRnC9A49zLrb/dA6GV6QrY12+uOhsJXkK7OGM1Z0HwsbnzXp
43 a32n+mtgsEMkuclONpjIhjsCAwEAAaOBrDCBqTAfBgNVHSMEGDAWgBQMYbqlSS9N
44 Z+9PhcYLOfqY+cEq4DAdBgNVHQ4EFgQUAcxRRg1mlZAKmPAbfPViL4cEzGEwHQYD
45 VR0lBBYwFAYIKwYBBQUHAwIGCCsGAQUFBwMBMAsGA1UdDwQEAwIF4DA7BgNVHREE
46 NDAygglsb2NhbGhvc3SCFWxvY2FsaG9zdC5sb2NhbGRvbWFpboIJMTI3LjAuMC4x
47 ggM6OjEwDQYJKoZIhvcNAQELBQADggEBAHZvxKlNS+RQ8mSWcV79yDXWSss9Vj94
48 uD47sZZe1qntKZnVCpqXy8reNiZl3Wj+cAuoUm1ity5mBVSeMb+2Y70vUik1rUoM
49 +LFLuK6nbWnz9HAJPFIXzWop/5Ok7z31YrBPglqHEzQOnNYJHoT9wAt/zBkmiLQX
50 ZZtko4695lHnbn8QcMZ9s9NiMxQuY0YjpWXcpEy04F4Fd8xNqZkdwFwdyXUi05Uy
51 cNOXSEi2L4gQ9diAT1dlnaQ12x6pxypTJ7Wsf6Naz8xxKLzZ7HG5Xmamforoax4W
52 0nGac7zQ7OrFHOH56xIjWPBlo8rkxFgKqVXmo3Lte8MDf5Q8K0N1RBI=
53 −−−−−END CERTIFICATE−−−−−
54 Done , I ’m a environment get t e s t
55 payload −2856673129

41

Bibliography

[1] en. June 2023. url: https://home.cern/science/computing/grid-
software-middleware-hardware.

[2] ALICE Grid sites monitoring map. en. url: http://alimonitor.
cern.ch/map.jsp.

[3] Lokesh B. Bhajantri and Tabassum Mujawar. “A Survey of Cloud
Computing Security Challenges, Issues and their Countermeasures.”
In: 2019 Third International conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC). Dec. 2019, pp. 376–380. doi:
10.1109/I-SMAC47947.2019.9032545.

[4] Randy Butler et al. “National-scale authentication infrastructure.” In:
Computer 33 (Jan. 2001), pp. 60–66. doi: 10.1109/2.889094.

[5] CERN. About — CERN. en. url: https://home.web.cern.ch/about
(visited on Sept. 7, 2022).

[6] CERN. ALICE Experiment — CERN ALICE. en. url: https : / /
alice.cern/ (visited on Sept. 7, 2022).

[7] CERN. CERN Certification Authority. url: https://ca.cern.ch/
ca/Help/?kbid=020000.

[8] CERN. CERN Certification Authority - How to install a Grid Host
certificate. url: https://ca.cern.ch/ca/Help/?kbid=024100.

[9] CERN. CERN Certification Authority - Request a new Grid User cer-
tificate. url: https : / / ca . cern . ch / ca / user / Request . aspx ?

template=EE2User.
[10] CERN. Register with the ALICE Virtual Organization — JAliEn - AL-

ICE Environment Grid Framework. url: https://alien.web.cern.
ch/content/register-alice-virtual-organization.

[11] CERN. The Large Hadron Collider. en. url: https://home.web.
cern.ch/science/accelerators/large-hadron-collider (visited
on Sept. 7, 2022).

[12] CERN.WLCG. url: https://wlcg.web.cern.ch/ (visited on Mar. 3,
2022).

42

https://home.cern/science/computing/grid-software-middleware-hardware
https://home.cern/science/computing/grid-software-middleware-hardware
http://alimonitor.cern.ch/map.jsp
http://alimonitor.cern.ch/map.jsp
https://doi.org/10.1109/I-SMAC47947.2019.9032545
https://doi.org/10.1109/2.889094
https://home.web.cern.ch/about
https://alice.cern/
https://alice.cern/
https://ca.cern.ch/ca/Help/?kbid=020000
https://ca.cern.ch/ca/Help/?kbid=020000
https://ca.cern.ch/ca/Help/?kbid=024100
https://ca.cern.ch/ca/user/Request.aspx?template=EE2User
https://ca.cern.ch/ca/user/Request.aspx?template=EE2User
https://alien.web.cern.ch/content/register-alice-virtual-organization
https://alien.web.cern.ch/content/register-alice-virtual-organization
https://home.web.cern.ch/science/accelerators/large-hadron-collider
https://home.web.cern.ch/science/accelerators/large-hadron-collider
https://wlcg.web.cern.ch/

[13] CSRC Content Editor. Certificate Authority (CA) - Glossary — CSRC.
EN-US. url: https://csrc.nist.gov/glossary/term/certificate_
authority.

[14] Ian Foster et al. “A Security Architecture for Computational Grids.” In:
Proceedings of the ACM Conference on Computer and Communications
Security (Feb. 2000). doi: 10.1145/288090.288111.

[15] A G Grigoras et al. “JAliEn – A new interface between the AliEn
jobs and the central services.” en. In: Journal of Physics: Conference
Series 523 (June 2014), p. 012010. issn: 1742-6588, 1742-6596. doi:
10.1088/1742-6596/523/1/012010.

[16] Muhammad Asif Habib and Michael Thomas Krieger. “Security in Grid
Computing.” In: Seminar aus Netzwerke und Sicherheit: Communica-
tion Infrastructure. 2008.

[17] JAliEn / JAliEn. en. June 2023. url: https://gitlab.cern.ch/
jalien/jalien.

[18] JAliEn / xjalienfs. en. June 2023. url: https://gitlab.cern.ch/
jalien/xjalienfs.

[19] LDAP. LDAP.com. en-US. url: https://ldap.com/.
[20] Dwi Liestyowati. “Public Key Cryptography.” en. In: Journal of Physics:

Conference Series 1477.5 (Mar. 2020), p. 052062. issn: 1742-6596. doi:
10.1088/1742-6596/1477/5/052062.

[21] Dominic Lindsay et al. “The evolution of distributed computing sys-
tems: from fundamental to new frontiers.” en. In: Computing 103.8
(Aug. 2021), pp. 1859–1878. issn: 1436-5057. doi: 10.1007/s00607-
020-00900-y.

[22] Qusay H Mahmoud. Middleware for communications. Vol. 73. Wiley
Online Library, 2004, pp. 109–113.

[23] M Martinez Pedreira, C Grigoras, and V Yurchenko. “JAliEn: the
new ALICE high-performance and high-scalability Grid framework.”
In: EPJ Web Conf. 214 (2019), p. 03037. doi: 10.1051/epjconf/
201921403037. url: https://cds.cern.ch/record/2701497.

[24] NorduGrid Certification Authority. url: http://ca.nordugrid.org/.
[25] Miguel Pedreira et al. “The Security model of the ALICE next gener-

ation Grid framework.” In: EPJ Web of Conferences 214 (Jan. 2019),
p. 03042. doi: 10.1051/epjconf/201921403042.

[26] Public Key Infrastructure (PKI). en. url: https : / / www . enisa .

europa.eu/topics/incident-response/glossary/public-key-

infrastructure-pki.
[27] Aaqib Rashid and Amit Chaturvedi. “Cloud computing characteristics

and services: a brief review.” In: International Journal of Computer

43

https://csrc.nist.gov/glossary/term/certificate_authority
https://csrc.nist.gov/glossary/term/certificate_authority
https://doi.org/10.1145/288090.288111
https://doi.org/10.1088/1742-6596/523/1/012010
https://gitlab.cern.ch/jalien/jalien
https://gitlab.cern.ch/jalien/jalien
https://gitlab.cern.ch/jalien/xjalienfs
https://gitlab.cern.ch/jalien/xjalienfs
https://ldap.com/
https://doi.org/10.1088/1742-6596/1477/5/052062
https://doi.org/10.1007/s00607-020-00900-y
https://doi.org/10.1007/s00607-020-00900-y
https://doi.org/10.1051/epjconf/201921403037
https://doi.org/10.1051/epjconf/201921403037
https://cds.cern.ch/record/2701497
http://ca.nordugrid.org/
https://doi.org/10.1051/epjconf/201921403042
https://www.enisa.europa.eu/topics/incident-response/glossary/public-key-infrastructure-pki
https://www.enisa.europa.eu/topics/incident-response/glossary/public-key-infrastructure-pki
https://www.enisa.europa.eu/topics/incident-response/glossary/public-key-infrastructure-pki

Sciences and Engineering 7.2 (2019), pp. 421–426. doi: https://doi.
org/10.26438/ijcse/v7i2.421426.

[28] Even Berge Sandvik. “Site Sonar - A monitoring tool for ALICE’s Grid
Sites.” en. Dec. 2021, p. 92.

[29] Steffen Schreiner. “A Security Architecture for e-Science Grid Comput-
ing.” In: (2015).

[30] Manjeet Singh. “An Overview of Grid Computing.” In: 2019 Inter-
national Conference on Computing, Communication, and Intelligent
Systems (ICCCIS). 2019, pp. 194–198. doi: 10.1109/ICCCIS48478.
2019.8974490.

[31] Maksim Melnik Storetvedt. “A new grid workflow for data analysis
within the ALICE project using containers and modern cloud technolo-
gies.” eng. Accepted: 2023-04-04T08:40:01Z. Doctoral thesis. Høgskulen
p̊a Vestlandet, 2023. isbn: 9788284610429. url: https://hvlopen.
brage.unit.no/hvlopen-xmlui/handle/11250/3061978.

[32] Maxim Storetvedt. private conversation. 2023.
[33] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems.

en-US. 3rd edition. Maarten van Steen, 2017. isbn: 978-90-815406-2-9.
[34] Barry Wilkinson. Grid Computing: Techniques and Applications. en.

New York: Chapman and Hall/CRC press, 2009. isbn: 978-0-429-14558-
2. doi: 10.1201/9781420069549.

[35] Chiara Zampolli. ALICE data processing for Run 3 and Run 4 at the
LHC. 2020. doi: 10.48550/ARXIV.2012.04391. url: https://arxiv.
org/abs/2012.04391.

44

https://doi.org/https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/10.1109/ICCCIS48478.2019.8974490
https://doi.org/10.1109/ICCCIS48478.2019.8974490
https://hvlopen.brage.unit.no/hvlopen-xmlui/handle/11250/3061978
https://hvlopen.brage.unit.no/hvlopen-xmlui/handle/11250/3061978
https://doi.org/10.1201/9781420069549
https://doi.org/10.48550/ARXIV.2012.04391
https://arxiv.org/abs/2012.04391
https://arxiv.org/abs/2012.04391

	Abstract
	Acknowledgements
	Figures
	Listings
	Acronyms
	Introduction
	Grid Computing
	Grid middleware

	Software security
	Security in distributed systems
	Grid Security

	CERN
	ALICE

	Problem Description
	Research methodology
	Research Questions
	Outline

	Background
	JAliEn
	LDAP

	Security
	Public key cryptography
	Certificate Authority

	Related Work
	JAliEn
	Connecting to alien.py
	Running a job
	Token Certificate

	Tests performed on JAliEn and their results
	Token requests
	Overloading test
	Splitting and submitting a masterjob above limit
	Submitting individual jobs above limit

	Exploitation of environment variables

	Discussion
	Conclusion
	Further Work
	enviro-test.sh output
	enviro-get-test.sh output

