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Abstract 
Invasive species are an ongoing threat to nature and human interests. Species distribution models 

are used to predict the current and potential distribution of invasive species, but doing so has 

proved difficult. One possible cause of this difficulty are niche shifts, a change in the realised or 

fundamental niche between native and introduced ranges. Niche shifts have mostly been studied by 

approximating the realised niche, which often underestimates the true ecological constraints of a 

species as a result of biotic interactions and dispersal mechanisms. This study employs a new model 

that is more theoretically suitable to approximate the fundamental niche. The model features a 

spatial random effect that accounts for spatial processes in the data, distinguishing them from the 

environmental effects (fundamental niche). I find that in the datasets of previous niche shift studies 

the spatial effects dominate the environmental ones too such a degree that the fundamental niche 

cannot be reliably approximated. This is the case for both the native and introduced ranges for the 

invasive species, indicating that spatial effect domination is the norm for species in general, not just 

invasive species in their introduced ranges. Even if the fundamental niche could be estimated from 

some other method than species distribution modelling it would still have limited usefulness in 

predicting the species’ distribution. The fundamental niche could still be used to predict the 

distribution of potentially suitable habitat, which is useful for selecting areas to establish 

preventative measures. But due to the strong spatial effects it will not produce reliable predictions 

of the distribution of the invasive species for selecting where restorative measures 

(eradication/culling of the invasive or support for harmed native species).  
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1. Introduction 
 

The world is changing rapidly due to climate change and direct human activity which is leading to an 

increase in biological invasions (Bertelsmeier et al., 2013, Keller et al., 2011, Pyšek et al., 2010). 

Invasive species are generally considered to be species introduced to an area where they have no 

history of occurrence and that can sustain a population and expand beyond the point of introduction 

(Richardson et al., 2000). Some definitions additionally require invasive species to cause damage to 

the native ecosystem and/or human interests (Urban, 2020). An invasive species can harm the native 

ecosystem by directly harming other species (Medina et al., 2011), outcompeting them (Bøhn et al., 

2008) or altering the environment (Barrios-Garcia and Ballari, 2012). An invasive species can harm 

human interests in the form of economic damage (Paini et al., 2016), harm to human health (Gucker 

& Corey, 2009) or damage to cultural values (Massengil, 2011). The total global damage caused by 

invasive species from 1960 to 2022 is estimated around US$ 1130.6 billion (Cuthbert et al., 2022) 

 

Many measures are taken to detect invasive species, mitigate their damage and spread, and to 

eradicate them where possible, but these efforts are complicated by a lack of knowledge of their 

ecology, climatic preferences, and their potential for spreading. A core effort with prevention work is 

to predict what species could become invasive and where they could invade. One method of 

predicting where a species could thrive outside its native geographical area (further as native range), 

is the use of species distribution models (SDM) (Guisan and Zimmermann, 2000). An SDM is a 

statistical approach estimating the relationship between a species' occurrences and the conditions in 

which it lives, which can be used to predict the species occurrence in unmapped areas, or for 

invasives in new locations. 

For the purposes of prevention and mitigation, an SDM should be used as early in the invasion 

process as possible, but the earlier it is used the less data of occurrences are available for the 

invaded area. To bypass this issue, scientists may use the data from the species native range in the 

SDM and project the predictions onto new locations (further as introduced range) as seen in 

Peterson (2003) where the native (Southeast Asia) predictions were projected onto North America. 

Such projected predictions assume that species occurrences across the native and introduced ranges 

maintain the same relationships with the conditions they live in. 

The relationship between species occurrences and the environment can change across space or time 

which is called a niche shift (Bates and Bertelsmeier, 2021). A niche shift may occur because of 

changes in species interactions or geographic barriers (a realised niche shift) or evolutionary 

processes that via physiology change the species’ relationship with an environmental condition (a 

fundamental niche shift) (Bates and Bertelsmeier, 2021). While realised niche shifts are a widely 

accepted phenomenon in invasion biology, it is disputed how common they are (Petitpierre et al., 

2012, Liu et al., 2020, Atwater and Barney, 2021). There is more disagreement about the existence 

of fundamental niche shifts in invasive species. 

  



5 
 
 

To explore the possibility of fundamental niche shifts in invasive species I will be using an SDM with a 

spatial random effect. This model should be able to disentangle the effects of species interactions 

and geographic barriers from environmental effects.  

 

1.1 Niche theory 
All species live with inherent biological constraints: A plant species has a minimum temperature it 

can survive in before its tissue freezes and it gets killed (Pocheville, 2015). Some reptiles depend on 

certain temperatures to determine the sex of their embryos, too hot and it will only result in female 

offspring (Shine, 1999). Many other factors, such as precipitation, humidity, and length of the day, 

contribute to what lets a species not only survive but also thrive and reproduce. The collective 

structure of these relationships is a niche. 

In biogeography, we generally utilise the hutchinsonian niche theory (Evelyn Hutchinson, 1991). 

There, a niche is defined in environmental space, with each axis representing an environmental 

gradient e.g., annual precipitation or soil pH. There are 2 kinds of niches: the fundamental niche & 

the realised niche. A niche can be considered for an entire species or populations of the species.  

The fundamental niche describes the environmental conditions under which a species can sustain a 

population indefinitely (Pocheville, 2015). For each climatic variable the species has a response 

curve, indicating how suitable each point along that climatic gradient is for the species. These 

response curves are typically unimodal in shape and interdependent. A species suitability in relation 

to one climatic variable (e.g., soil pH) can be affected by another variable (e.g., precipitation).  

The realised niche is a version of the fundamental niche modified by biotic interactions (Peterson, 

2011). In invasion biology the realised niche includes the additional restrictions imposed by 

geographic barriers to dispersal e.g., bodies of water for land-dwelling species (Rödder and Engler, 

2011). The realised niche can be limited by exploitative interactions where one species exploits the 

other (such as parasitism or predator & prey) or by competitive interactions where both species are 

negatively affected by the competition over shared resources (Evelyn Hutchinson, 1991). The 

realised niche can also be expanded beyond the fundamental niche by positive interactions where 

one (commensalism) or both (mutualism) species benefit. These positive interactions can facilitate a 

species under otherwise less suitable conditions (Bruno et al., 2003). 

1.2 Niche Shifts 
The fundamental niche can only shift due to a change in internal conditions, that is evolution altering 

the climatic preferences/tolerances of the group (Bates and Bertelsmeier, 2021). The fundamental 

niche might be limited by a loss of alleles due to the founder effect when a species invades a new 

area, but the chance of the niche reverting to its original size increases with more introduction 

events improving genetic diversity. The fundamental niche can shift or expand due to several factors 

such as adaptation, polyploidisation or hybridisation with local species (Richardson and Pyšek, 2006, 

Sakai et al., 2001). A shift in the fundamental niche can also cause a shift in the realised niche as new 

pathways around dispersal barriers or the distributions of limiting species open through previously 

unsuitable climate or through alteration of biotic relationships. 

The realised niche can shift due to a change in external or internal conditions. Changes in external 

conditions can be a change in the distribution of other species that define the limits of the niche or 

the establishment/destruction of a dispersal barrier (Bates and Bertelsmeier, 2021). A change in 

internal conditions that lead to a realised niche shift can be an increase in abundance in populations 
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abundance/density caused by more introduction events or positive population growth rate. The 

higher abundance and/or density can overcome or alter negative biotic interaction, increase the 

likelihood of some individuals crossing a dispersal barrier by chance (Richardson and Pyšek, 2006). 

Some species undergo a change in behaviour/physiology at higher population densities that 

improves the invasives ability to overcome dispersal barriers and biotic interactions e.g., locusts 

entering their swarming phase at higher populations densities (Topaz et al., 2012). Internal change 

would be evolution that alters the species biotic interactions or dispersal ability e.g., the invasive 

cane toad in Australia evolving longer legs and skeletal structure that aid in dispersal (Hudson et al., 

2020). 

A shift in the realised niche between a native and invasive population of the same species is to be 

expected. After all, a new geographic area (with presumably a different biological community) would 

be unlikely to present the same dispersal barriers and biotic interactions as the native range. 

Previous niche shift literature has been limited to studying realised niche shifts (Petitpierre et al., 

2012, Atwater et al., 2017, Liu et al., 2020) and while mentioning the possibility of evolution they 

have not had the tools available to distinguish between the effects of biotic interactions and 

dispersal barriers from evolution. 

As stated earlier, the realised niche shift as a phenomenon is widely accepted and studied 

(Petitpierre et al., 2012, Liu et al., 2020, Atwater and Barney, 2021). But partly because of the lack of 

tools to study it, the existence of fundamental niche shifts is experiencing more scepticism. 

Proponents of fundamental niche shifts argue that introduction into a novel area can put the 

invasive under high selective pressure from the native environment and community (Novak, 2007). 

Genetic diversity (and possibly the breadth of suitable climate) will initially be reduced in the 

introduced range compared to the native range due to the founder effect, which in turn can lead to 

stronger selection pressure and local adaptation (Santos et al., 2012). However, over time as more 

introduction events occur genetic diversity will increase to match the diversity of the native range 

(Moran and Alexander, 2014). In fact, it may even become greater as alleles endemic to different 

locales of the native range are gathered in the introduced range and create novel genotypes (Novak, 

2007). Invasives may also gain genetic diversity due to gene duplication (only plants) or hybridisation 

with local species. This increased genetic diversity allows for rapid adaptation to the selection 

pressures of the introduced range (Prentis et al., 2008). In the case of Chinook salmon introduced to 

New Zealand, it took only 26 generations for it to become locally adapted (Kinnison et al., 2008). 

Those that are sceptical towards the prospect of fundamental niche shifts argue for niche 

conservatism. The time scale of fundamental niche shifts is a source of concern for sceptics. They 

find that niches are largely conserved for tens or hundreds of thousands of years (Peterson, 2011) 

while most invasive species have a history of invasion spanning from decades to centuries 

(McGrannachan et al., 2021). Sceptics also argue against fundamental niche shifts by stating that the 

case studies displaying niche shifts are unable to disentangle the effects of species interactions and 

geographic barriers (a shift limited to the realised niche) from an evolutionary event altering the 

species climatic tolerances/preferences in the introduced range (a fundamental niche shift) (Moran 

and Alexander, 2014). 
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1.3 Modelling species distributions 
Species Distribution Models are statistical models that aim to predict the distribution of a 

taxon/species/group. The models take occurrence data of the target group and spatially mapped 

environmental predictors (usually climate variables such as annual precipitation but could include 

other predictors such as land use) in a specified geographic area, hereafter referred to as the study 

area, as input. The model estimates the relationships between occurrences and predictors in the 

form of response curves. The response curves can be combined to map the suitability in 

multidimensional climate space, hereafter referred to as the suitability estimate. The suitability 

estimate can then be reapplied to the study area to produce a geographical map of the 

environmental suitability of each point within the study area, hereafter called the habitat estimate. 

The higher the suitability the higher the likelihood that the group could thrive there.  

The response curves calculated in an SDM can be used as an estimate of the group’s niche (at least 

along the environmental gradients used in the model). If two models use the same environmental 

gradients then the response curves can be used for estimation of niche shift, approximating the 

similarity of the niches between the modelled groups (Lauzeral et al., 2011). 

Commonly-applied SDMs rely on some key assumptions (Elith and Leathwick, 2009): 

1. SDM’s assume that the group being modelled is in equilibrium with its environment.  

2. The occurrence and environmental data must be representative of the true distribution of 

occurrences and environment within the study area.  

3. SDMs assume that the group retains the same niche across space. Let’s say that an SDM is 

using the entire planet as the study area and the modelled group is a species present in 

North America and Europe. Individuals in North America have a different niche than 

individuals in Europe e.g., higher tolerance to low temperatures. The SDM derives the 

suitability from all members of the species resulting in a broader suitability estimate than 

one based only on individuals from Europe. The broader suitability estimate overpredict 

suitability in the colder parts of Europe because it assumes European individuals have as 

temperature tolerance as American ones.  

4. The variables selected for the model needs to be the major factors limiting the group’s 

distribution. If the major limiting factors are not present in the model, then the model will 

only be able to explain a limited amount of the underlying mechanisms determining the 

distribution. 

SDMs on invasive species in their introduced ranges are particularly vulnerable to violations of 

assumption 1 (Gallien et al., 2012) and 2. 

An invasive species currently undergoing an invasion process, not occupying all suitable area they 

are capable of dispersing to, will not be in equilibrium with its environment. This issue leads to an 

underprediction of the suitability and habitat estimates. This is likely to be the case in cases such as 

Battini et al. (2019) where the modelled species (Pleurobranchaea maculata) was first detected in its 

introduced range in 2009 (Farias et al., 2015) and has been known to expand its’ range at a rate of 

ca. 330 km yr-1 (Farias et al., 2016).  
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Invasives in their introduced range are also prone to having fewer and biased occurrence records. To 

effectively manage and mitigate an invasion one would want the model as early as possible after an 

invasion has begun, but the earlier it is run the less time to collect occurrence data. Once again 

Battini et al. (2019) serves as a good example. As the species history in the introduced range is so 

short only 12 occurrences were recorded in the Battini et al. (2019) dataset. 

To bypass the issues with modelling invasive species in their introduced ranges, many have tried to 

model the species based on their native ranges and then transfer the estimated suitability onto their 

introduced ranges to generate the habitat estimate there (Peterson, 2003, Bates and Bertelsmeier, 

2021). But this method comes with its own potential issues.  

First, the introduced range may feature environmental conditions that are not present in the native 

range. The suitability estimate must then be extrapolated beyond its initial parameters, causing 

higher uncertainty in the habitat estimate in the introduced range.  

Second, there is the possibility of a large niche shift between the native and introduced ranges. A 

smaller niche shift may not impact on the estimated distribution, but a larger niche shift will cause 

any prediction projected from one range onto the other to be inaccurate, making the model non-

transferrable.  

Many have attempted to determine whether niche shifts are present in invasive species, but the 

methodology (in terms of modelling approach and consequent calculations) of these studies have 

made it difficult to reach a conclusion on the commonness and nature of niche shifts.  

First, most studies used the realised niche to assess niche shift (Petitpierre et al., 2012, Atwater et 

al., 2017, Liu et al., 2020), in which case it is impossible to determine whether the shift was caused 

by an evolutionary event for the species or simply a difference in geographic barriers and local 

community between native and introduced ranges. 

Second, the calculations of niche overlap is inconsistent across the literature (Manzoor et al., 2020, 

Rödder and Lötters, 2010, Morehouse and Tobler, 2013) making it hard to generalise a trend across 

studies. Generally niche overlap analysis is performed on 1 of 3 data types: spatial predictions from 

an SDM, response curves derived from an SDM or a principal component analysis of the 

environment and occurrences in both study ranges (Guisan et al., 2014). The niche overlap is then 

calculated using the niche overlap index Schoener’s D (Schoener, 1968) or its modified version 

Warren’s I (Warren et al., 2008). 

 

As of yet, most niche shift studies have been performed on the realised niche (Petitpierre et al., 

2012, Atwater et al., 2017, Liu et al., 2020), but I’d like to argue that on the issue of transferability 

fundamental niche predictions would stand a better chance than realised niche predictions. Given 

that realised niches are expected to shift due to differing dispersal barriers and biotic interactions 

between the native and introduced ranges, they are unsuitable for the goal of accurately mapping 

the potential habitat of an invasive species. Fundamental niche predictions would not be as capable 

of predicting the invasive’s current distribution, but an accurate map of suitable habitats would still 

be useful for management purposes. The only issue for SDMs that needs to be resolved is to 

distinguish between realised and fundamental niche, I.e., the spatial from the environmental effects 

on the occurrences. 

In this study I will use a new model that can approximate the fundamental niche to investigate the 

rate and degree of niche shifts in datasets where realised niche shifts have been claimed. 
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1.4 A spatial random effect model 
The model used in this study, hereafter referred to as the SRE (spatial random effect) model, was 

constructed with the intention of providing a toolset to separate the effect of the abiotic and biotic 

processes on determining a species' range. This, by extension, allows for the estimation both the 

actual distribution of the species (distribution estimate) and the extent of the species' suitable 

habitat (habitat estimate). In effect, this therefore allows for the separation of realised and 

fundamental niche processes governing the range of the species. 

The model used in this study is based on the framework of an Integrated Nested Laplace 

Approximation (INLA) model (Bates and Bertelsmeier, 2021). 

SREs have been used in SDMs before (Redding et al., 2017) but are not common. An SRE accounts for 

the spatial structure in the data and can be used to distinguish the effects of biotic interactions and 

dispersal barriers from the effects of the environment on the occurrences. As the SRE is estimated 

for the study area, the distribution estimate which is the combination of the suitability estimate and 

spatial effects, is not transferable outside the study area. 

The SRE model allows for comparison of the fundamental niches between native and invasive study 

areas, which has previously been unavailable through the use of SDMs. However, since the spatial 

and environmental effects are kept separate other than in the distribution estimate, it cannot be 

used univariate comparison of the realised niche. 

The model was developed as part of ECoMAP (https://betweenthefjords.w.uib.no/ecomap), a 

project that aims to inform the Norwegian state/public about the distribution and potential habitat 

for terrestrial species in Norway. ECoMAP intends to achieve this goal by creating a model that can 

be automatically run all species in national databases such as Artsdatabanken 

(https://artsdatabanken.no) and make the model results freely available for public use. The ECoMAP 

model is still under development and the model used in this study is based on the version from 

autumn 2022. Invasive species are particularly difficult to model and part of this study is to stress 

test the model, seeing what work and what limitations the model has.  

1.5 Research questions  
In this study I will use the SRE model to replicate previous case studies and compare niche overlaps 

with the previous studies.  

The research questions this study aims to address are as follows: 

1. Will the model with a spatial random effect, when using the same datasets as previous case 

studies, produce fundamental niche overlaps of similar magnitude to the realised niche 

shifts shown in previous case studies? 

2. Does the model produce reliable niche approximations? A set of quality assessments will be 

made regarding the quality of the model results and the datasets used.  

Should assessments for the model be poor then it will call into question the resulting overlap 

measures and the reliability for practical use (predicting actual species distributions and potential 

habitats in extrapolated conditions). 

Because the datasets used will be replicated from previous studies the quality of the datasets 

matters less when comparing with the overlap measures of the previous studies, but still puts into 

question the actual value of the niche overlaps. 

Should certain assessment criteria be poor across multiple datasets it may help identify limitations 

with the model and potential for improvement. 

https://betweenthefjords.w.uib.no/ecomap
https://artsdatabanken.no/
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My initial expectations are that biotic interactions and dispersal barriers varying between native and 

invasive study ranges will cause the realised niche overlaps of the previous case studies to be lower 

than the fundamental overlap using the SRE model. I expect the fundamental niche overlap to be 

high (>60%) because the niche shift is measured between groups of the same species. 

2. Methods 
 

2.1 Literature search 
First, I conducted a literature search for case studies where niche shifts are claimed and that could 

be replicated using the SRE model. I used the search engine Web of Science, with the keywords: 

“Invasive”, “Niche shift” and “Species distribution model”. 

From there 5 criteria were used to select papers: 

1. Only case studies using single species. 

2. The native or invasive populations being modelled could not cover more than one continent 

to reduce modelling workload. 

3. Occurrence and climate data had to be accessible through free online databases or included 

in the paper’s supplementary material. 

4. The studies had to only model 1 primary native and introduced study areas each. A study 

may have secondary, smaller study areas that are modelled separately, but only the primary 

study areas will be used for this study. 

5. The study ranges must appear to adhere to assumption 3 of SDMs (retaining niche across 

space). The native and invasive study ranges must look more likely to retain their niche 

within study ranges than between study ranges. Say a study has a native study area of 

Australia and an invasive study area of west-pacific islands spanning from New Zealand to 

Japan. The invasive study area does not appear at face value to be more likely to retain its 

fundamental niche across the entire study area than parts of it (New Zealand) matching with 

the native study area. 

From this literature search 9 studies were selected: Angetter et al. (2011), Battini et al. (2019), 

Bidinger et al. (2012), Manzoor et al. (2020), Morehouse and Tobler (2013), Rödder and Lötters 

(2009), Rödder and Lötters (2010), Zhang et al. (2022) & Ørsted and Ørsted (2019) 

2.2 Data importation & preparation 
All datasets, except Battini et al. (2019), imported climate data from Worldclim (Fick and Hijmans, 

2017). Battini, a marine dataset, used Bio-Oracle (Assis et al., 2018) through the r package 

“sdmpredictors” (Bosch S, Fernandez S, 2022). I imported the climate data from the same sources, 

selecting the same variables (See Table 1). 

The source for occurrence data varied between studies. Some studies provided the occurrence data 

directly in supplemental material (Bidinger et al., 2012, Battini et al., 2019) or archived their dataset 

using the datadryad (https://datadryad.org/stash) service (Ørsted and Ørsted, 2019). Angetter et al. 

(2011), Manzoor et al. (2020), Rödder and Lötters (2009), Rödder and Lötters (2010) and Zhang et al. 

(2022) used the Global Biodiversity Information Facility, GBIF (https://www.gbif.org), as their 

primary source of occurrence data. GBIF provides a reference code for any exported dataset to aid in 

reproducibility, but none of the studies provided the reference code. I attempted to replicate the 

GBIF datasets based on only including occurrences up to the year of the studies’ publication and 

approximated the geographic extent of the study areas by visual inspection of figures of occurrences 

https://datadryad.org/stash
https://www.gbif.org/
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in the previous studies. I have included the reference code for all replicated GBIF datasets in the 

supplementary material. 

The Angetter et al. (2011), Rödder and Lötters (2009), Rödder and Lötters (2010) studies also utilised 

the VertNet database (David Bloom, 2016, https://vertnet.org/resources/datatoolscode.html) as a 

supplement to Gbif. In addition, these studies supplemented their datasets with additional 

occurrence records from “published references”. These published references consisted mostly of 

reports from Herpetological review, featuring 1-5 sightings with addresses but no coordinates. Other 

references were mostly books that were unavailable. Since these additional sources provided for 

only a small portion of the occurrence records (hence called supplemental by the original authors), I 

decided to only use the GBIF and VertNet data for replicating these studies. 

Morehouse and Tobler (2009) used 2 databases: the U.S. Geological Survey (2023) and the Illinois 

Natural History Survey (2023). Unfortunately, since the publication the study species has undergone 

a taxonomic reclassification (Crandall and Grave, 2017) and been unified with another species. These 

databases have adopted this reclassification and it was not possible to discern what occurrences 

belonged to the old target species. I downloaded the datasets as is, accepting that the replicated 

dataset would contain additional records. 

All occurrences recorded after the year of publication for each dataset were removed. The 

geographic extent of the study areas was rarely defined, and never with coordinates, in the previous 

studies. As such, the coordinates of the study areas were estimated by visual inspection of figures of 

occurrences in the previous studies, defining the occurrences at the most extreme points by latitude 

and the most extreme points by longitude respectively as the border of the study area, then a 5% 

buffer was added to each side of the study areas. The border coordinates were rounded to 1 

decimal. All occurrences outside a study area for their respective study were excluded.  

The climate data are imported in a raster format which is rectangular by nature. The SRE model is 

computationally intensive and with the resources available for this study it was not possible to run 

all the datasets at their original resolutions. To make the model run successfully, the climate data 

had to be aggregated to a lower resolution. The level of aggregation was set to different levels from 

study area to study area, based on resolution and size, with the goal of finishing a single model run 

within 4 hours. Some datasets could run at higher resolutions for up to 6 hours, but due to memory 

limitation all model runs extending beyond this timeframe would crash before finishing. The buffer 

was not included in cases where the extended area did not include any usable data (such as a buffer 

of a land-dwelling species only including ocean). In some datasets, the native and invasive study 

areas would overlap. The 5% buffer would not be added to the relevant sides of the study areas if 

that prevented the overlap. In some cases, the square defined by the most extreme 

latitudinal/longitudinal occurrence records of one study area would include occurrence records of 

the other study area (such as the Morehouse and Tobler dataset where the native study area is 

contained within the invasive study area). In these cases, the parts of the study area containing the 

undesirable occurrence records were excluded. Exclusion zones were drawn prioritizing excluding a 

distinguishable landmass containing only undesirable occurrences or excluding a minimal amount of 

area containing all undesirable occurrence records. The coordinates of all excluded areas are 

specified in supplementary materials. 

The occurrence data was then mapped onto a grid of the same dimensions and resolution as the 

climate data. This grid only marked the presence of occurrences within cells, not the abundance of 

occurrences. 

https://vertnet.org/resources/datatoolscode.html
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Table 1: Study area extent and occurrence & environmental data for each case study. Brackets in the resolution column 
refer to the aggregation factor required for the native and invasive study areas respectively. The variables column refers to 
the environmental predictors by the naming scheme of their respective sources. 

 Extent of study 
area (W, E, S, N) 

Occurrence 
data 

Environmental data 

Studies Native Invasive Sources Sources Resolution 
(Native/Invasive 
aggregation) 

Variables 

Angetter et 
al. 2011 

-86, -
73.7, 
19.4, 
27.51 

-99.6, -
75.6, 
24.2, 
37.91 

GBIF & VertNet Worldclim 30 arcsec 
(4/8) 

bio1, bio2, bio5, bio8, 
bio9, bio10, bio12, bio13, 
bio14, bio18 

Battini 139.7, 
177.9, -
47.9, -
27.4 

-66.3, -
53, -45, -
34.1 

Supplementary 
material 

Bio-Oracle 5 arcmin 
(3/1) 

Mean depth, Current 
velocity maximum,  
Current velocity range, 
Dissolved oxygen 
minimum,  
Dissolved oxygen range, 
Temperature mean, 
Temperature range 

Bidinger 86.7, 
153.7, 
21.9, 
57.7 

-7.1, 
16.5, 
42.4, 
58.2 

Appendix Worldclim 5 arcmin 
(3/2) 

bio1, bio3, bio5, bio6, 
bio7, bio8, bio9, bio15, 
bio16, bio17 

Manzoor -9, -3.4, 
35.8, 41 

-7.6, 1.9, 
49.9, 
59.41 

GBIF Worldclim 30 arcsec 
(2/2) 

bio1, bio6, bio12, bio14 

Morehouse -87.3, -
81.1, 
36.6, 
41.91 

-122.5, -
66.7, 33, 
50.91 

U.S. Geological 
Survey and the 
Illinois Natural 
History Survey 

Worldclim 30 arcsec 
(3/13) 

bio3, bio5, bio7, bio9, 
bio10, bio15, bio16, 
bio17, bio18, bio19 

Rödder 
2009 

-11, 39.3, 
21, 46.7 

-120.2, -
75.9, 
15.3, 
37.8 

GBIF & VertNet Worldclim 5 arcmin 
(2/2) 

bio1, bio2, bio3, bio4, 
bio5, bio6, bio7, bio8, 
bio9, bio12, bio13, bio14, 
bio15, bio18, bio19 

Rödder 
2010 

-86, -
73.8, 19, 
27 

-93.8, -
79.4, 24, 
33.81 

GBIF & VertNet Worldclim 30 arcsec 
(3/4) 

bio1, bio2, bio5, bio8, 
bio9, bio10, bio12, bio13, 
bio14, bio18 

Zhang -112.4, -
37.8, -
34.1, 
31.31 

79, 
129.6, 
22.3, 
47.1 

Supplementary 
material 

Worldclim 2.5 arcmin 
(3/3) 
 

bio5, bio6, bio18 & 
elevation 

Ørsted 66.4, 
148.8, 
8.5, 49.8 

-17.4, 
44.2, 
31.3, 
60.92 

DataDryad Worldclim 30 arcsec 
(17/ 13) 

bio01, bio02, bio04, 
bio05, bio06, bio07, 
bio11, bio12, bio17 

 

  

 
1 Parts of this range was excluded, see supplementary material. 
2 The western buffer zone consisted only of ocean (irrelevant for the terrestrial study species) and was 
excluded to reduce computational strain. 
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2.3 The spatial random effect model  
To model distribution of invasive species in their native and invasive study areas, I used an 

implementation of species distribution model with a spatial random effect (Redding et al., 2017). 

This model consists of a generalised linear model with beta-binomial family (hierarchical model with 

beta distributed probability of success of the binomial distribution) with two random effects. The 

first random effect being the spatial effect, so called Matérn model, which assumes that the 

occurrences have spatial covariance following a Matérn correlation function (Genton, 2001). This 

random effect was used to estimate spatial processes which were not captured by climatic 

predictors such as dispersal limitation or species interactions. The second random effect was for 

climatic predictors and their quadratic transformations whose effects were assumed to be normally 

distributed. Estimating the effects of climate predictors using random effects instead of the typically 

used fixed effects effectively shrinks posterior distributions of their parameters towards zero, which 

is equivalent to ridge regression (Hilt et al., 1977, Dormann et al., 2013) and was implemented in 

INLA using the method described in Wang et. al. (2018). Ridge regression is regularization technique 

suited for estimation of parameters of multiple regression with correlated predictors as is often the 

case for climate variables (Dormann et al., 2013). Uninformative priors were used for each of the 

model parameters according to the INLAs default configurations (see INLA's user manual for more 

details: https://inla.r-inla-download.org/r-inla.org/doc/inla-manual/inla-manual.pdf (Rue et al., 

2009)). 

The model was implemented in R (R Core Team, 2022) using INLA package (Rue et al., 2009), which 

does integrated Laplace approximation for Bayesian inference (Gómez-Rubio, 2020).  

Outputs of used model implementation include posterior mean of species response curve and 95% 

credible interval for each climate variable. Applying these climate response curves to the spatial 

climate data of the input results in a spatial prediction of the fundamental niche based on the 

available climate data. 

By combining the fundamental niche prediction with spatial effect, the model implementation 

produces a spatial prediction of the realised niche. The realised niche prediction also has 95% 

credible interval (an uncertainty map). 

 

2.4 Niche overlap analysis 
To determine the potential presence and magnitude of any niche shifts I measured the niche overlap 

of the suitability estimates between the native and the invasive study areas for each case study. 

Guisan et al. (2014) classified 3 types of data niche overlap analysis can be performed on: 

Niche overlap measured on geographic predictions of suitability (habitat or distribution estimates), 

hereafter referred to as geographic comparison, is a favoured method because it utilises the 

primary output of an SDM. Geographic comparison requires that the habitat/distribution estimate of 

two models cover the same are using the same grid. For cases such as niche shift studies on invasive 

species, this would require that one or both habitat estimates are projected onto the other study 

range or another area (usually global). Most of the time the estimate of the native model is 

projected onto the invasive study area for comparison since we are more interested in the 

transferability of the native model than the invasive one. Then for each cell, the difference in 

predicted values is measured. 

While simple to perform, this method is inadequate because of what it measured isn’t strictly the 

niche (fundamental for a habitat estimate or realised for a distribution estimate). A Hutchinsonian 

https://inla.r-inla-download.org/r-inla.org/doc/inla-manual/inla-manual.pdf
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niche is only described in environmental space. A spatial prediction overlap measure can tell you 

how much the spatial predictions will vary within an area, but it does not inform you how or how 

much the species’ relationships with environmental factors vary between study areas. A geographic 

area is never evenly distributed in climate space and a measure of overlap using the same estimates 

in another area will yield different results. 

Niche overlap measured on a Principal Component Analysis (PCA) generated space, hereafter 

referred to as PCA comparison, is a popular method among niche shift studies (Liu et al., 2020). This 

method does not utilise an SDM (but usually used in conjunction with one), but a PCA. 

A PCA performs linear rotation of the axes in environmental space to maximise the amount of 

variation in the data accounted for in the higher dimensional axes (Jolliffe and Cadima, 2016). If the 

2 first axes account for enough of the variation (at least a majority) then it is common to reduce the 

number of dimensions down to those 2 axes. For PCA comparison, the PCA is constructed with 

environmental data from the native and invasive study ranges and the dimensions are usually 

reduced to 2. Then the occurrences of the native and invasive are plotted onto the PCA separately 

and the overlap is compared. This method is unsuitable for this study since I rely on the SRE model 

to get at the fundamental niche. In theory, one could utilise the response curves calculated by an 

SDM to construct a multidimensional environmental space with as many axes as there are 

environmental gradients used in the model, though I have not encountered this method in the 

literature.  

Niche overlap measured on the response curves calculated by an SDM, hereafter referred to as 

univariate comparison, is the method I have decided to use in this study. It utilises SDM outputs, 

which lets me get at the fundamental niche via the SRE model, and it measures in environmental 

space. A univariate comparison also displays what environmental preferences/tolerances have 

shifted e.g., a shift towards higher soil pH. To represent the total niche overlap, the mean overlap 

across environmental gradients will be used. While suitable for this study, this method is not suitable 

for models that calculate the interactions between environmental gradients. 

The previous case studies calculate niche overlap in different ways. 

First, is the overlap index Schoener’s D (Schoener, 1968). The original use was to measure the niche 

overlap along a single gradient, prey size, in lizards. In a biogeographical context, Schoener’s D 

calculates differences between suitability scores for each cell in a grid (spatial or multi-dimensional 

environmental space) for both niches (models), sums them and standardises them. In the case of 

measuring niche overlap of individual environmental gradients (response curves), the gradient must 

be divided into distinct bins, though there is no procedure to determine how many bins the gradient 

should be divided into. D can range from 0 (no overlap), to 1 (identical distribution), however D does 

not have a 1-1 relationship to niche overlap, a D of 0.3 does not equate to a 30% niche overlap. 

𝐷(𝑝𝑥, 𝑝𝑦) = 1 − 
1

2
∑ |𝑝𝑥,𝑖 − 𝑝𝑦,𝑖|

𝑖

 

Where p is the suitability in a given cell of the area or bin of the gradient i divided by the sum of the 

suitability of all cells. x represents the predictions generated from native study range, while y is 

generated from invasive study range. 

 



15 
 
 

Second, is Warrens’s I (Warren et al., 2008), a modified version of Schoener’s D meant to have a 

relationship to the niche overlap that is closer to 1-1. Warren et al. (2008) features a typographical 

error in the equation, but a corrected version can be found in Rödder and Engler (2011). 

𝐼(𝑝𝑥, 𝑝𝑦) = 1 −  
1

2
(√∑(√𝑝𝑥,𝑖 − √𝑝𝑦,𝑖  )

2

𝑖

)2 

(The symbols have the same meaning as in Schoener’s D) 

Bidinger et al. (2012) & Ørsted and Ørsted (2019) did not quantify their claims of niche shifts.  

Bidinger et al. (2012) looked at the distribution of native and invasive occurrences respectively along 

individual environmental gradients (as well as the distribution of those gradients in the native and 

introduced study areas). The authors noted that the native and invasive occurrences along most 

environmental gradients varied substantially, although the gradient with the highest contribution 

(40-50%) did not show such variation. 

Ørsted and Ørsted (2019) looked at how the contribution of each environmental variable varied 

between the models based on the native/invasive study areas. They also noted the poor 

performance when one model was projected onto the other study area to predict the occurrence 

records there. 

I decided to eschew these two overlap indexes for a more accurate calculation of the niche overlap 

that should still be closely comparable to Warren’s I. The SRE model calculates suitability along 

independent environmental gradients, and I will be using the univariate comparison method. 

Schoener’s D and Warren’s I are more suitable for measurement in distinct “batches” (or cells in a 

grid) and become more abstract when measured on gradients. In univariate comparison, measuring 

the overlap of the response curves approximates the niche more closely than Schoener’s D and 

Warren’s I. 

Signal strength of the response curves is influenced by the abundance of occurrences within the 

study range. To account for abundance, I standardized the response curves by dividing the 

probability by the area under each curve respectively. The native and the invasive curves are divided 

by their area under the curve in the available climate range they were fitted to. I did not have a 

functional form of the credible interval; therefore, I used only posterior mean estimate. To avoid 

extrapolation, the overlap is only measured in the climatic ranges shared by both native and invasive 

ranges (see figure 1).  
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Figure 1: Response curves for an individual climatic variable in both native and invasive ranges are standardised by their 
respective area under the curve. The overlap of the 2 standardised response curves is only measured in the climatic range 

shared by both the native and invasive ranges (between the dashed lines). 
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2.5 Dataset & model assessment 
To assess the reliability of the model results a series of quantitative and qualitative criteria assessing 

the datasets used and the model were collected. Each assessment has a quality measure of 

Satisfactory, Questionable & Unsatisfactory. 

Dataset assessments: 

Sample size is the amount of occurrence records in the dataset. A low number of occurrences casts 

suspicion on the results of this and the previous study, but it is important to note that the 

abundance of occurrence records alone is not that informative without considering the geographic 

extent of the model. 1000 occurrence records across France would be quite good for our models, 

but the same number of records across all of Europe would be considerably worse (see Prevalence 

below).  

Prevalence refers to what proportion of valid cells in the model have occurrences in them. Valid cells 

refer to all cells where the species could occur, a terrestrial dataset would not have any values in 

oceanic cells making them “invalid”. Prevalence is an assessment that combines the factors of 

“Sample size” and “Model aggregation” and reflects upon both the quality of the model and dataset.  

A low prevalence means there is relatively little information to estimate the response curves, leading 

to higher uncertainty. A low prevalence can also negatively affect several model performance 

metrics, although AUC is unaffected (McPherson et al., 2004). Rödder and Engler (2011) show that 

Schoener’s D is sensitive to low prevalence. Prevalence should not impact the overlap measure of 

this study, as it uses standardised climate response curves, but the overlaps of previous studies will 

be less reliable at a low prevalence. The quality assessment thresholds are: Satisfactory > 0.1, 

Questionable 0.1-0.01, Unsatisfactory < 0.01. 

Climate range overlap is a measurement of the proportion of climate that is shared by both native 

and invasive ranges compared to the total climatic range of both ranges combined. The coverage is 

measured for each climatic variable and the mean is computed. Should there be a high degree of 

shared climate and a low degree niche overlap it would be safe to assume the processes shaping the 

response curves are not limited by available climate (thus boosting the confidence in a niche shift). A 

low degree of shared climate would mean the 2 ranges are mostly non-analogous. The models 

would need to extrapolate climate relationships beyond their fitted parameters when projected 

onto the other range, casting uncertainty on the overlap. 

The quality assessment thresholds are: Satisfactory > 0.7, Questionable 0.4-0.7, Unsatisfactory < 0.4. 

Climate constraints is a qualitative assessment of how the recorded occurrences line up with the 

available climate range for each climatic variable. If many occurrences occur at the limit of the 

available climate range for a given variable, then it would lend credence to the argument that much 

of the species physiologically viable range may not be present, making the prediction of the niche 

uncertain. 
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Model assessments: 

Data aggregation refers to the factor the climate grid had to be aggregated by. The higher the 

aggregation the more likely it is that patterns in the climate data are lost. From exploration of the 

datasets (usually with a reduced amount of climate variables to allow the model to run at lower 

aggregation), aggregations of 2-3 show little to no deviance from an unaggregated dataset. At an 

aggregation factor of 4-8 the amount of change is generally low but is context dependent on range 

size the initial resolution of the dataset. At aggregation factors of 9+ the changes between each 

degree of aggregation are very noticeable and spatial effect and habitat predictions tend to become 

a single hotspot radiating uniformly outwards. Aggregation also affects the occurrence data used in 

the model. The model only considers species presence in cells and not the abundance of occurrences 

within cells. Larger cells are more likely to contain more nearby occurrences, reducing the effective 

number of occurrences and reducing the density of occurrences of the local region of cells. The 

quality assessment thresholds are: Satisfactory < 3, Questionable 3-7, Unsatisfactory > 7. 

Uncertainty is a measure of the uncertainty applies to the spatial predictions of the realised niche 

(the uncertainty of the spatial prediction of the fundamental niche was not available in the current 

version of the model). There was no single value of the uncertainty, such as the mean or maximum, 

that was truly representative of the patterns seen in the figures. A qualitative assessment was 

performed instead, looking at the patterns of uncertainty that had large enough aggregations of 

higher values to be visible in the figures. Sometimes small spots in the study area have much greater 

uncertainty than the rest of the model, obscuring any pattern of uncertainty in the rest of the area. 

These spots have been marked in grey and are described in each case study (See supplemental 

materials). 

Spatial-climate contribution the mean of the proportional magnitude of the predictions for each cell 

using only the spatial components of the model divided by the predictions for each cell using only 

the climatic components of the model. If the spatial-climate contribution is above 1 then spatial 

effects are more important than environmental effects in determining the distribution of 

occurrences. If this is the case, then transferring a habitat estimate (the projection of the 

fundamental niche) onto that study range from another would be less useful since the distribution 

will diverge more from the estimate. 

A high spatial-climate contribution also decreases the certainty that the fundamental niche can be 

accurately derived from this dataset. 

The explained variability is calculated via the function: 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
1

𝑛
∑

|𝑠𝑖|

|𝑒𝑖|
𝑖

 

Where si is the value of the prediction (on the linear scale) for cell i using only the spatial 

components of the model, ci is the value of the prediction (on the linear scale) for cell i using only 

the climatic components of the model and n is the number of cells. 

The quality assessment thresholds are: Satisfactory < 1, Questionable 1-2, Unsatisfactory > 2. 

AUC, the Area Under the ROC-Curve (Receiver Operating Characteristics), is a standard model 

performance metric for SDMs. The ROC-curve is a plot of true positive rate against false positive 

rate, each point in the plot is a different threshold for selecting the data as true or false. The area 

under the resulting curve is the AUC. AUC can have a value from 0 to 1 but in SDMs a value the 

relevant range is 0.5 (predictions are random) to 1 (prediction perfectly captures the testing data) 
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(Swets, 1988, Angetter et al., 2011). Due to low sample sizes in several datasets I decided to 

measure AUC on the training data (the data used in the model) instead of a separate set of testing 

data. This means that the AUC measures how well the model is fitted to the occurrence data rather 

than how well the model predicts know occurrences not used in the model.  

The quality assessment thresholds are: Satisfactory > 0.8, Questionable 0.7-0.8, Unsatisfactory < 0.7. 

Response curve shapes is a qualitative assessment of the shape of the climate response curves 

within their respective ranges. The model only calculates these curves as quadratic functions, but 

the quadratic term can be positive or negative. A positive quadratic term (a U-shaped curve) is 

theoretically unrealistic for most variables, a species will have physiological limits at both extreme 

ends of a gradient. It may not be a bad sign dependent on where it is cut off by the available climate. 

If a U-shaped curve is cut off somewhere in the middle so that it only has one rising tail, it may 

approximate one half of a n-shaped curve (with a negative quadratic term).  

For practical purposes, n-shaped curves cut off before their peaks and U-shaped curves in general 

are bad for projecting a model onto a new range, as it will be prone to overprediction beyond the 

available climate it was fitted to. Flat curves are not necessarily indicative of an improper statistical 

model (it simply means that variable had no effect), but many flat curves in a model is a sign of a low 

effect of climate in general. 

All code used for this study (function files, 1 file per dataset and 1 template file) are available at: 

https://github.com/IsakLerum/Masters_niche_shift. 

3. Results 

The overlap measures showed an inconsistent pattern when compared to the measures of previous 

studies (Table 2). The studies that used Warren’s I, which is one-to-one comparable with the new 

overlap, showed both lower and higher (Rödder and Lötters, 2009, Rödder and Lötters, 2010) 

overlaps in comparison to the new model. 

Overlaps measured using Schoener’s D are not one-to-one comparable with the new overlap, but 

generally indicate a similar range of values, as can be seen in the studies using both Schoener’s D 

and Warren’s I. Angetter et al. (2011) showed a higher overlap than the new model, Zhang et al. 

(2022) showed a lower overlap. Battini et al. (2019)’s overlap lied in a similar band to the new 

overlap. All new overlaps, except the one measured from the Zhang et al. (2022) dataset, were 

below the initial expectation. 

  

https://github.com/IsakLerum/Masters_niche_shift
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Table 2: Niche overlap plus standard deviation (sd) estimates for the Spatial Random Effects (SRE) model in this study and 
compared to overlap values from the original case studies. 

Study SRE 
model 
Overlap 
(sd) 

Original 
overlap 

Measurement method Niche 
measured 

Data type for 
niche overlap 

Angetter 0.43 
(0.26) 

0.683 Schoener’s D per climatic variable Unspecified Univariate comparison 

Battini 0.47 
(0.28) 

0.13 Schoener’s D Realised PCA comparison 

Bidinger 0.44 
(0.17) 

Not 
quantified 

Comparing environmental variable 
contribution, occurrence 
distributions along gradients. 

Unspecified Univariate comparison 

Manzoor 0.25 
(0.16) 

D = 0.005 
I = 0.004 

Schoener’s D & 
Warren’s I 

Unspecified PCA comparison 

Morehouse 0.14 
(0.11) 

0.304 Schoener’s D Unspecified Geographic 
comparison 

Rödder 
2009 

0.41 
(0.22) 

D = 0.59‡ 
I = 0.75‡ 

Schoener’s D & 
Warren’s I 

Unspecified Geographic/Univariate 
hybrid5 

Rödder 
2010 

0.44 
(0.22) 

D = 0.64‡ 
I = 0.77‡ 

Schoener’s D & 
Warren’s I 

Realised Geographic/Univariate 
hybrid** 

Zhang 0.70 
(0.14) 

0.33 Schoener’s D Realised PCA comparison 

Ørsted 0.55 
(0.18) 

Not 
quantified 

Comparing environmental variable 
contribution each model’s 
performance in predicting the 
occurrence records in the other 
range. 

Unspecified Geographic 
comparison 

 

The assessments on the quality of the datasets had mixed results (Table 3). 

Sample size assessment had an equal distribution of satisfactory, questionable & unsatisfactory 

results. Low sample size was just as likely to be a problem in the native as in the invasive study areas. 

But when looking at prevalence, all datasets were unsatisfactory except Rödder and Lötters (2009) 

which was questionable. 

Climate range overlap was questionable to unsatisfactory except in the case of Rödder and Lötters 

(2009) which was satisfactory. In most datasets constraints on occurrences caused by available 

climate were minimal to non-existent. Manzoor et al. (2020) & Rödder and Lötters (2010) were 

scored as questionable due to climate constraints affecting distributions across some environmental 

gradients. 

  

 
3 Total overlap was not measured in the study but overlap of individual climatic variables was. The mean of 
those overlaps is displayed here. 
4 A comparison of available climate between ranges showed that the lack of shared climate was the cause of 
the low overlap. The niche overlap was deemed not significant. 
5 See supplemental material for full description. 
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Table 3: Assessments of the datasets defined as satisfactory (blue), questionable (yellow) & unsatisfactory (red). Brackets in 
the Sample size column refer to how many cells of the study area had occurrences. 

Study Sample size: Native/Invasive 
(cells after aggregation) 

Prevalence 
(Native / Invasive) 

Mean climate 
range overlap (sd) 

Climate constraints 

Angetter 7594(122)/ 4221(273) 0.0148/ 
0.0063 

0.57 
(0.20) 

No climate constraints. 

Battini 190(42)/ 12(8) 0.0014/ 
0.0006 

0.52 
(0.28) 

No climate constraints. 

Bidinger 60(59)/ 171(162) 0.0005/ 
0.0049 

0.50 
(0.21) 

No climate constraints. 

Manzoor 237(76)/ 40853(8446). Suspect 
poor reporting in native range. 

0.0009/ 
0.2128 

0.36 
(0.24) 

Minor limitations on 
invasive occurrences 

Morehouse 152(121)/ 2465(891) 0.0024/ 
0.0123 

0.28 
(0.12) 

Native occurrences often 
meet the edge of 
available climate.  

Rödder 
2009 

1842(501)/ 1480(242) 0.0156/ 
0.0133 

0.71 
(0.17) 

No climate constraints. 

Rödder 
2010 

3862 (320)/ 3633 (437) 0.0015/ 
0.0039 

0.56  
(0.18) 

Few variables limited by 
available climate.  

Zhang 506(301)/ 393(232) 
 

0.0031/ 
0.0033 

0.66  
(0.27) 

No climate constraints. 

Ørsted 101(85)/ 306(185) 0.0009/ 
0.0022 

0.61 
(0.15) 

No climate constraints. 

 

The assessments on the quality of the model had a distinction of mostly satisfactory assessment 

categories and mostly unsatisfactory assessment categories (Table 4). 

Aggregation was kept within the satisfactory range for most datasets, but both Morehouse and 

Tobler (2013) & Ørsted and Ørsted (2019) utilised data with the highest resolution (30 arcseconds) 

of the entire USA or whole continents and were therefore highly aggregated in our analyses to 

achieve feasible computation times. AUC were almost all satisfactory, except the native model in 

Angetter et al. (2011) and the invasive model in Manzoor et al. (2020). Uncertainty was low to 

questionable in all case studies except (Battini et al., 2019) which had high uncertainty in the native 

model. Response curves on most models were unsatisfactory to questionable, with Rödder and 

Lötters (2009) and Zhang et al. (2022) assessed as satisfactory. 
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All case studies showed unsatisfactory results on the spatial-climate contribution assessment, except 

the Battini et al. (2019) dataset which had a questionable result (in the native study are there was no 

spatial effect). Many case studies had models where the spatial effect contributed over 3 times as 

much as environmental effects. 

Table 4: Assessments of the model defined as satisfactory (blue), questionable (yellow) & unsatisfactory (red). 

Study Model 
aggregation 
(Native / 
Invasive) 

Uncertainty 
 

Spatial/environmental 
contribution  
(Native / Invasive) 

AUC 
(Native/ 
Invasive) 

Response curve shapes 

Angetter 4/8 Middling in invasive 
model.  

34.995 / 
15.919 

0.731/ 
0.973 

Some curves are U-shaped 
in both models.  

Battini 3/1 High in native 
model. 

0 / 
1.369 

0.965/ 
0.942 

Invasive curves are all flat. 

Bidinger 3/2 Low in models 29.323 / 
16.808 

0.936/ 
0.803 

Curves in native model are 
quite flat. Invasive model 
has a few U-shapes. 

Manzoor 2/2 Low in models 3.308 / 
15.995 

0.915/ 
0.759 

Flat in native model. One 
U-shaped curve in invasive 
model. 

Morehouse 3/13 Middling in invasive 
model 

2.505 / 
7.836/ 

0.854/ 
0.942 

Some U-shapes in both 
models. 

Rödder 
2009 

2/2 Middling in native 
model. 

6.675 / 
3.220 

0.979/ 
0.868 

Some flat curves in 
invasive model. 

Rödder 
2010 

2/3 Low in models. 3.130 / 
40.975 

0.876/ 
0.931 

Several U-shaped curves 
in both models.  

Zhang 3/3 Low in models. 6.117 / 
6.612 

0.959/ 
0.921 

Bell shaped curves. 

Ørsted 17/ 13 Middling where 
there is strongest 
occurrence signal. 

3.797 / 
48.112 

0.816/ 
0.864 

Native curves are all flat. 

 

4. Discussion 
I expected that the niche overlap measures based on the spatial random effect model would be 

consistently higher than the measures from the original studies using models without a spatial 

effect. This expectation arises from the fact that the previous case studies all measured the overlap 

of the realised niche while this study theoretically measures the overlap of the fundamental niche. 

The realised niche would be expected to have a lesser overlap because it includes the spatial effect 

of dispersal barriers and biotic interactions. But the SRE model niche overlaps showed an 

inconsistent pattern of both greater and lesser values than the previous case studies. 

I also expected that the new overlap measures would be above 0.6, which Rödder and Engler (2011) 

consider to be a high degree of overlap, since the groups being compared are still of the same 

species. All datasets except Zhang et al. (2022) produced a lower fundamental niche overlap. Across 

all datasets the mean overlap was 0.42 ± 0.16, a value in-between other studies that have measured 

the native-invasive realised niche overlap of multiple species. Liu et al. (2020), which reviewed 

studies on 434 invasive species across different taxa, concluded that niche shifts were relatively rare 

with a mean niche overlap of 0.53. Atwater et al. (2017), a study that measured the niche overlap of 

815 plant species, concluded that niche shifts are common with a mean niche overlap of 

0.314 ± 0.185. The results of this study leans more towards Atwater et al. (2017)’s conclusion, that 

niche shifts (in their case realised and in this case fundamental) niche shifts are common. 
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The impact the fundamental niche overlap (the univariate comparison of this study) has on the 

difference in spatial predictions (the geographic comparison) is uncertain, but the correlation 

between niche overlap and spatial predictions is known for the realised niche. Atwater and Barney 

(2021), a follow-up study to Atwater et al. (2017), showed a correlation between niche overlap and 

an overlap of spatial predictions of 0.456, with spatial overlap generally being higher. I would expect 

that the correlation between overlap of suitability estimates and the overlap of habitat estimates to 

be roughly similar, although it is a topic to be confirmed in further research. 

As it stands, the low niche overlap suggests that spatial predictions would be non-transferable due 

to niche shifts, but the reliability of these overlaps is compromised by the results of the dataset and 

model assessments. 

4.1 Dataset assessments 
The quality of the sample sizes was evenly distributed, but all datasets had a very low prevalence. 

This low prevalence does put some uncertainty on the overlap measures of the previous studies. 

Low sample size was just as often in native as in invasive study areas.  

Climate range overlap was only about 50% on average, meaning only half of the total climatic space 

was usable for niche overlap calculations. Especially Manzoor et al. (2020) (comparing Iberian 

Peninsula to Great Britain) and Morehouse and Tobler (2013) (comparing Illinois & Indiana to the 

rest of USA & southern Canada) with 36% and 28% climate range overlap respectively. Large 

portions of each model’s response curve were outside the shared climatic space. This could lead to 

over- or underestimation of the niche overlap, but a cursory look on the response curves indicate 

that the overlap would be even lower should the niches be compared along the entire climatic 

space. The limits of available climate in the study ranges rarely seemed to impact the recorded 

occurrences, except in the Morehouse and Tobler (2013) dataset where the native occurrences 

often clustered at the edge of the available climate. 

Overall, the datasets had some clear issues that might have affected the niche overlap analysis of 

this study and the previous case studies, especially the Manzoor et al. (2020) and Morehouse and 

Tobler (2013) datasets. Issues of sample size/prevalence could be solved by more rigorous surveying 

and reporting schemes, but with rare species they will likely stay a problem nevertheless due to 

scarcity of actual occurrence (Lawson et al., 2014). Issues of non-analogous climate between study 

areas and occurrence distributions limited by the available climate (such as study ranges of islands) 

are inherent to each case and cannot be solved. Cases of severe degrees of non-analogous climate 

and lack of available climate are simply unsuitable for SDM transferability and fundamental niche 

overlap analysis (though a lack of available climate only impacts transferability from a climate 

limited study range, not to a climate limited study range) (Stroud, 2021, Liu et al., 2021). 

4.2 Model assessments 
While aggregation is undesirable for the purpose of replicating previous studies most of the case 

studies could be replicated at a low factor of aggregation. Exploration of the datasets at different 

aggregation factors showed that the difference between low aggregation factors rarely had a 

noticeable effect on the results. This indicates that the environmental processes that define the 

niche of the modelled species operate on a coarser scale than the resolution used for the previous 

studies, especially Angetter et al. (2011), Manzoor et al. (2020), Morehouse and Tobler (2013), 

Rödder and Lötters (2010) and Ørsted and Ørsted (2019) that use a resolution of 30 arcsec. A 

reduction in the initial resolution would reduce computational strain. 
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Assessing uncertainty in the models was more difficult than initially expected. Measuring uncertainty 

(the width of the 95% credible interval) in the spatial predictions only proved meaningful under a 

qualitative assessment.  

The spatial uncertainty showed a similar pattern across all models. Where predicted probability of 

occurrence was zero to low the uncertainty was zero to extremely low as well, with the exceptions 

of a few spots of extremely high uncertainty that are likely to be artefacts. Uncertainty tends to 

follow the distribution/habitat estimate in pattern and relative strength. 

Uncertainty was also measured in the form of credible intervals on the response curves (example in 

figure 2), though not featured in the assessment table. These intervals were generally larger than 

the value of the mean. However, a functional form of these credible intervals was not available with 

the standardisation used to account for the abundance of the species within the study area (which I 

prioritised due to the difference in abundance between native and invasive study areas). I don’t 

know the extent of uncertainty in the overlap scores since only the mean could be standardised for 

the niche overlap analysis. 

 

 

Figure 2: Example response curve (not standardised) with 95% credible interval from the Angetter et. al. (left) and Zhang et. 
al. (right) datasets. The solid line signifies the mean while the dashed lines signify the upper and lower credible intervals. 

Contribution of spatial effects relative to environmental effects was quite high with only 3 study 

areas having a spatial-climate contribution below 3. This indicates that spatial effects are the main 

factors in determining the occurrence distribution. There are 3 possible causes of a high spatial 

effect contribution:  

First, the species distribution in the study area is much more constrained by dispersal barriers and/or 

biotic interactions than environmental factors. This is to be expected in cases such as the Angetter et 

al. (2011) and Rödder and Lötters (2010) datasets where the native study areas are limited to Cuba 

and surrounding islands. Paquette and Hargreaves (2021) who discovered that biotic interactions 

tend to be the major limiting factor species’ warm versus cool range edges. Amundrud et al. (2018) 

found that in the case of helicopter damselfly (Mecistogaster modesta) the species distribution was 

more limited by dispersal barriers than climate. 

Second, the model is missing an environmental factor that is meaningful to the distribution of the 

species within the study area. The effects of the missing environmental factor will then be captured 

by the SRE. 

Third, is the possibility of ongoing expansion. This is more likely to be the case in the invasive study 

range due to an ongoing invasion process but may also occur in the native study area if changes in 

the native range (mitigation of dispersal barriers, alteration of the community composition or 

climate change) loosen the constraints on the species distribution. Ongoing expansion would mean 

the distribution is defined by spatial effects of spread rather than environmental factors.  
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I have no way to distinguish between these 3 possibilities but no matter the cause, a high spatial-

climate contribution of 3 puts a heavy suspicion on the model’s ability to capture the fundamental 

niche. 

AUC was generally high, showing that the model was generally well fitted to the data, but the high fit 

is more likely to be explained by the spatial effects (due to the high spatial-climate contribution) 

rather than environmental effects. The SRE model runs on the Battini et al. (2019) dataset are the 

exceptions, with lower spatial-climate contributions yet high AUC values. 

The response curves show a lot of issues. Some cases had flat response curves along all/most climate 

variables in the model. Some datasets have response curves with a positive quadratic term. If only 

one tail of the curve is contained in the available climate it can approximate part of an n-shaped 

curve (the biologically realistic result), but if the curve is u-shaped, it is clearly unrealistic. 

Measurements of overlap with u-shaped curves are thus less reliable. Since independent response 

curves are supposed to be roughly bell-shaped (ter Braak, 1988, Guisan and Thuiller, 2005), the 

model could potentially be improved by disallowing the model to form response curves with positive 

quadratic terms. This would be especially helpful when projecting the habitat estimate onto a new 

study area with a non-analogous environment. Some response curves deviated from the occurrence 

record distribution along their environmental gradient, e.g. the invasive response curve for annual 

precipitation in the Manzoor et al. (2020) dataset. These deviations may be caused by a high 

occupancy rate of a rare climate (in this case high precipitation areas). The model interprets the high 

occupancy rate as a high suitability and shifts the response curve accordingly. These shifted curves 

tend to have their highest values at the edges of the available climate (and have positive quadratic 

terms), which may lower the overlap values and drag down the mean fundamental niche overlap. 

 

The dominance of spatial effects in the model is by far the most interesting findings among the 

results. This dominance of spatial effects renders the SRE model unable to capture the fundamental 

niche and the measurement niche overlap becomes less insightful. Thus, based on these results we 

are unable to produce reliable niche approximations. Research question 1 (Does the SRE model 

replicate the pattern of niche shifts from previous studies) is therefore impossible to answer with 

confidence. Spatial effects were just as likely to be dominant in native ranges as in introduced 

ranges, indicating that spatial effects generally are more important for defining the geographic 

distribution of species than environmental effects. This is partially supported by previous niche shift 

studies (Petitpierre et al., 2012, Atwater et al., 2017, Atwater and Barney, 2021, Liu et al., 2020) 

which identify a majority of niche shifts to be caused by unfilling, the invasive niche not occupying 

niche space occupied by the native niche. They suggested that this unfilling is temporary as the niche 

will be filled out due to ongoing expansion in the introduced range. The importance of spatial 

processes for species distributions in general are further supported by Dormann et al. (2013) and 

Miller et al. (2007). 

If spatial effect dominance is the norm, then it has 2 important implications for biogeography and 

invasion ecology. First, while the fundamental niche might be helpful for mapping out potentially 

suitable habitats for species, it will not be useful for predicting the distribution of species, whether 

native or invasive. Second, SDMs are generally unable to capture the relationship between species 

distributions and the environment without the confounding influence of spatial effects, making 

SDMs in general non-transferrable. 
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4.3 Other considerations 
An issue I encountered during this study was selecting the geographic extent for each study area, 

since these parameters were not disclosed in the previous case studies. The geographic extent used 

in SDM should include all occurrence records of the modelled group, but also all the available 

climate within the population’s range as well as the climatic conditions unsuitable for the species (to 

show the climatic limits of the group). The entire population is almost never completely recorded so 

it is not unlikely that there are more suitable habitats (and presumably more real occurrences) 

beyond the maximum spatial extent predicted from recorded occurrences. The climatic limits 

(should the groups be geographically limited by climate and not just dispersal barriers and biotic 

interactions) are also beyond this initial extent. To meet these standards, the extent of each study 

area ought to be defined on a case-by case basis. For reproducibility the geographic extent of a study 

area should be explicitly stated (something which is not commonly done with most niche shift 

studies). 

I eschewed defining the extent on a case-by-case basis and opted for a standardised buffer of 5% 

from the most geographically extreme points (with exceptions for cases where a buffer intrudes on 

another population or contains entirely invalid data). This buffer is likely to be overly conservative, 

not containing enough of the surrounding climate, but necessary when weighing it against the 

impact of resolution and the computational strain of these 2 factors. 

I would like to challenge the prospects of national modelling projects, like ECoMAP, that define study 

areas by political border that the modelled species are unlikely to respect. This reduces the sample 

size of occurrences and artificially limits the available climate for the model. 

5. Conclusion 
In this study I found the dominance of spatial effects in both native and invasive study areas for 

many species suggesting that the fundamental niche could not be accurately captured in any of the 

datasets. As such, it is not possible to measure the fundamental niche shift and whether evolution 

(in the form of genetic loss from the founder effect or gain from adaptation, hybridisation or 

polyploidisation) that alters environmental preferences of a species has occurred. If spatial effects 

(dispersal barriers, biotic interactions and/or ongoing expansion) are generally the dominant factors 

in determining the distribution of species, then determining the fundamental niche using SDMs 

would be a futile effort, attempting to transfer a native prediction onto an introduced area is 

therefore challenging. This limits the usefulness of SDMs as predictive tools for managing/fighting 

invasive species as the inability to capture the fundamental niche inhibits their ability to predict 

suitable habitats and ruins the model transferability between native and introduced ranges. In the 

management of invasive species SDMs should be limited to predicting the distribution of the 

invasive using data from the invasive study area which, while difficult, is still tremendously useful for 

management. 

If the fundamental niche could be estimated from some other method than SDMs it would still have 

limited usefulness in predicting the species’ distribution. The fundamental niche could still be used 

to predict the distribution of potentially suitable habitat, which is useful for selecting areas to 

establish preventative measures. But due to the strong spatial effects it will not produce reliable 

predictions of the distribution of the invasive species for selecting where restorative measures 

(eradication/culling of the invasive or support for harmed native species). 

Further research should be conducted to determine to what degree spatial effects versus 

environmental effects determine the distribution of species across different taxa and in native 

species.  
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7. Supplemental material 

a) Angetter et al. (2011) 

Species: Anolis sagrei 

Common name: Brown anole 

Habitat: Terrestrial 

Native range: Cuba and the Bahamas 

Introduced range: The continental coast of the southern coast of the USA 

Occurrence data: Data recreated from 2 sources, including only records up until 20011: 

1. GBIF.org (29 March 2023) GBIF Occurrence Download: https://doi.org/10.15468/dl.jh2rpq 

2. David Bloom (2016). VertNet_Retilia_Sept2016. CyVerse Data Commons. DOI 

10.7946/P2Z59J 

Occurrence records (Occurrence cells after aggregation): Native = 7594 (122), Invasive = 4221(273) 

Climate data: Data retrieved from WORLDCLIM database, version 2.1. Resolution: 30 arcsec (Fick and 

Hijmans, 2017) 

Aggregation factor: Native = 4, Invasive = 8 

Native study area extent (W, E, S, N): -86, -73.7, 19.4, 27.5, Excluded: (-84, -79.5, 24, 27.5) & 

 (-81, -79, 19.4, 20) 

Invasive study area extent (W, E, S, N): -99.6, -75.6, 24.2, 37.9, Excluded: (-79.5, -72, 24.2, 28) 

Predictors:  

• bio1: Annual Mean Temperature (°C)  

• bio2: Mean Diurnal Range (Mean of monthly (max temp - min temp)) (°C) 

• bio5: Max Temperature of Warmest Month (°C) 

• bio8: Mean Temperature of Wettest Quarter (°C) 

• bio9: Mean Temperature of Driest Quarter (°C) 

• bio10: Mean Temperature of Warmest Quarter (°C) 

• bio12: Annual Precipitation (mm) 

• bio13: Precipitation of Wettest Month (mm) 

• bio14: Precipitation of Driest Month (mm) 

• bio18: Precipitation of Warmest Quarter (mm) 

The brown anole (Anolis sagrei) is a ground-dwelling lizard native to Cuba and surrounding island 

and invasive on the North American continent (Angetter et al., 2011) 

  

https://doi.org/10.15468/dl.jh2rpq
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Limitations: 

The original paper utilised GBIF database but did not record a reference code. A new GBIF query was 

constructed, taking occurrences up to 2011 from Cuba, the Cayman Islands, the Bahamas and the 

norther coast of the Gulf of Mexico. 

The original paper used occurrence data from HerpNet, which is now defunct, but VertNet 

(HerpNet’s parent “entity”) still keeps the records here: 

http://www.vertnet.org/resources/datatoolscode.html#t-tab1  

The original paper included additional occurrences from various sources such as Herpetological 

Review. These sources generally include few occurrences and with poor locality information. These 

additional sources were not included in this study. 

The original paper states: “For modelling, we used georeferenced records of A. sagrei representing 

established populations only.” While the VertNet data has a column labelled “establishmentmeans” 

with entries like “wild caught”, “native” and “field photo” that could conceivably be used to 

determine established populations, there is no such identifier for the gbif data. The paper does not 

provide any method for determining what datapoints come from established populations, so all 

datapoints have been included. 

 

 

Figure a1: Occurrence records of Anolis sagrei up to 2011, native occurrences in blue and invasive occurrences in red. 

 

http://www.vertnet.org/resources/datatoolscode.html#t-tab1
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 The distribution estimate shows 

the greatest signal in 3 clusters in 

Cuba: strongest in Baracoa, second 

in Turquino National Park (ca. 60% 

of max signal strength) and the 

weakest in Topes de Collantes (ca. 

25%). A signal about the strength of 

the weakest cluster can be found 

on Grand Bahama and Andros.  

The habitat estimate shows a 

similar pattern in Cuba compared to 

the realised niche, but with a 

somewhat more even distribution. 

The Bahamas has a low signal for 

the fundamental niche.  

The uncertainty has the same 

pattern as the distribution 

estimate, with uncertainty at 0.05-

0.1 around the clusters and 

reaching 0.6 in the centre of the 

clusters. The uncertainty on Grand 

Bahama is around 0.15. 

 

  

Figure a2: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from native model. 
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 The distribution estimate shows the 

greatest signal on the southern coast 

of Florida and a middling signal 

around Tampa (ca. 30% of the 

maximum signal).  

The habitat estimate shows the 

same signal in southern Florida, but 

without the signal around Tampa.  

The uncertainty roughly matches the 

pattern of the distribution estimate, 

except for an uncertainty cluster 

around 36°N and 84°W with values 

around 0.4. The southern coast of 

Florida has uncertainty values 

around 0.3 and around Tampa the 

uncertainty was around 0.1. 

 

 

 

 

 

 

 

 

 

Figure a3: Relative distribution estimate (a), relative habitat estimate (b) 
and uncertainty of distribution estimate (c) from invasive model. 
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Figure a4: The response curves of the native (blue) and invasive (red) models. The area between the dashed lines represents 

the climate shared between the native and invasive study areas. Below are the distributions of occurrence records along the 

climatic gradient. 
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Many response curves in both the native and invasive model feature positive quadratic terms (U-

shaped curves) that would lead to overpredictions if projected into non-analogue environments. The 

shared environmental space is mostly defined by the native study area as it tends to be smaller in 

the temperature gradients (this was somewhat expected due to its nature as a smaller island when 

compared to the invasive study area). 

 

b) Battini et al. (2019) 

Species: Pleurobranchaea maculata 

Common name: Grey side-gilled slug 

Habitat: Marine 

Native range: The coasts of New Zealand and West-Australia 

Introduced range: The Argentinian coast 

Occurrence data: Data retrieved directly from the original paper (see Supplementary material, Table 

1 in Battini et al. 2019) 

Climate data: Data retrieved from Bio-Oracle database (Assis et al., 2018) via R package 

“sdmpredictors”. Resolution at 5 arcmin. 

139.7, 177.9, -47.9, -27.4 

Native study area extent (W, E, S, N): 139.7, 177.9, -47.9, -27.4 

Invasive study area extent (W, E, S, N): -66.3, -53, -45, -34.1 

Aggregation factor: Native = 2, Invasive = 1 

Occurrence records (Occurrence cells after aggregation): Native = 190 (42), Invasive = 12 (8) 

The Grey side-gilled slug (Pleurobranchaea maculata) is a marine scavenger/predator native to New 

Zealand and the eastern coast of Australia. In 2009 the species was discovered along the coast of 

Argentina and has since spread with a speed 330 km yr-1. The species has been found down to a 

depth of 300m (Battini et al., 2019) 

Limitations: Some species occurrences were recorded very close to land, causing them to be 

assigned cells with no climate data (land) in the aggregation process. Even without the aggregation, 

many occurrences were recorded inland (presumably in lakes and waterways) where there is no 

available climate data from the source used for the original study. The invasive occurrences have 

only 12 records, 4 were recorded inland.  
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Figure b1: Occurrence records of Pleurobranchaea maculata, native occurrences (left) and invasive occurrences (right). 

The distribution estimate shows the 

strongest signal along the eastern 

coast of Australia. The Bass-strait 

and the south coast of Tasmania 

along with the eastern and northern 

coast of New Zealand only showing 

up to 10% the strength of the 

maximum signal. 

The habitat estimate is identical to 

the realised prediction (meaning 

there are no spatial effects). 

 

The uncertainty shows the same 

pattern as the distribution estimate 

with uncertainties of up to 0.6 

showing up on the Australian east 

coast, uncertainty around 0.2 on the 

southern coast and uncertainties at 

ca. 0.1 around New Zealand. 

  

Figure b2: Relative distribution estimate (a), relative habitat estimate (b) 
and uncertainty of distribution estimate (c) from native model. 
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 The distribution estimate has the 

strongest signal clustered around the 

Valdes peninsula with a weaker signal 

(ca. 0.25 relative to maximum signal) 

evenly distributed along the coast. 

 

The habitat estimate shows a relatively 

uniform signal across the entire study 

range (except Samborombón Bay which 

has a slightly weaker signal). This 

indicates a poor capture of the 

fundamental niche. 

 

Uncertainty shows the same pattern as 

the distribution estimate with a 

maximum uncertainty at around 0.1.  

  

Figure b3: Relative distribution estimate (a), relative habitat estimate 
(b) and uncertainty of distribution estimate (c) from invasive model. 
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Figure b4: The response curves of the native (blue) and 
invasive (red) models. The area between the dashed 
lines represents the climate shared between the native 
and invasive study areas. Below are the distributions of 
occurrence records along the climatic gradient. 

 

Many curves in the native model have positive quadratic terms, marking them as unsuitable for 

projection onto non-analogous environments. All response curves in the invasive range are flat, 

indicating a total failure to capture the fundamental niche. The occurrence distributions might be 

somewhat warped toward extremes by the aggregation (especially the mean depth since it has been 

noted that the species have not been found deeper than 300m). 
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c) Bidinger et al. (2012) 

Species: Harmonia axyridis 

Common name: Harlequin ladybird 

Habitat: Terrestrial 

Native range: Japan, South & North-Korea, eastern China, Mongolia, southern Siberia and northern 

Kazakhstan. 

Introduced range: Austria, Belgium, England, France, Germany, Ireland, Italy & Switzerland. 

Occurrence data: Data retrieved directly from the original paper (see Appendix 1 of Bidinger et al. 

2012) 

Occurrence records (Occurrence cells after aggregation): Native = 60 (52), Invasive = 171 (162) 

Climate data: Data retrieved from WORLDCLIM database, version 2.1. Resolution: 2.5 arcmin 

Aggregation factor: Native = 3, Invasive = 2 

Native study area extent (W, E, S, N): 86.7, 153.7, 21.9, 57.7 

Invasive study area extent (W, E, S, N): -7.1, 16.5, 42.4, 58.2 

Predictors:  

• bio1: Annual Mean Temperature (°C)  

• bio3: Isothermality (BIO2/BIO7) (×100) 

• bio5: Max Temperature of Warmest Month (°C) 

• bio6: Min Temperature of Coldest Month (°C) 

• bio7: Temperature Annual Range (BIO5-BIO6) (°C) 

• bio8: Mean Temperature of Wettest Quarter (°C) 

• bio9: Mean Temperature of Driest Quarter (°C) 

• bio15: Precipitation Seasonality (Coefficient of Variation) 

• bio16: Precipitation of Wettest Quarter (mm) 

• bio17: Precipitation of Driest Quarter (mm) 

 

The harlequin ladybird (Harmonia axyridis) is an insect native to east Asia and intentionally 

introduced to Europe in 1982 for pest control. The species has become invasive, harming native 

insects and grape production (Bidinger et al., 2012). 
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Figure c1: Occurrence records of Harmonia axyridis, native occurrences (left) and invasive occurrences (right). 

 The distribution estimate shows a 

pattern in accordance with the actual 

occurrences in Japan and Korea but fails 

to show any response in Mongolia. The 

strongest signal is in south Japan. The 

signal in South Korea is about 25% of the 

maximum signal strength. There is also a 

low (10%) signal in the Shandong 

province of China, where there are no 

recorded occurrences. 

The habitat estimate shows a higher 

suitability in southern China and 

Bangladesh, with lower signal (<50%) in 

locations of recorded occurrences. 

The uncertainty is minimal in continental 

Asia, but in Japan uncertainty reaches 

0.05. Korea and Shandong have 

uncertainties around 0.02. Around 

Bangladesh there is an area where the 

confidence interval is 1 (marked in grey 

in figure c2) meaning total uncertainty. 

  

Figure c2: Relative distribution estimate (a), relative habitat estimate 
(b) and uncertainty of distribution estimate (c) from native model. 
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 The distribution estimate shows 

a pattern in accordance with the 

actual occurrences with hotspots 

in Switzerland and northern 

Italy. The model shows weak 

predictions at the western and 

eastern edges of the invasive 

population. Signals in the 

southern UK are around 40% of 

maximum signal strength. 

The habitat estimate shows a 

similar pattern to the 

distribution, though somewhat 

less concentrated around the 

hotspots.  

The uncertainty in concentrated 

in the hotspots shown in the 

realised prediction and has a size 

of 0.1-0.05 around the hotspots. 

 

  

Figure c3: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from invasive model. 
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Figure c4: The response curves of the native (blue) and invasive (red) models. The area between the dashed lines represents 

the climate shared between the native and invasive study areas. Below are the distributions of occurrence records along the 

climatic gradient. 

The response curves of the native model are mostly flat indicating a poor capture of the 

fundamental niche.
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d) Manzoor et al. (2020) 

Species: Rhododendron ponticum 

Common name: Common rhododendron or Pontic rhododendron 

Habitat: Terrestrial 

Native range: Spain and Portugal  

Introduced range: Great Britain 

Occurrence data: Data recreated using Gbif, including only records up until 2020. GBIF.org (23 March 

2023) GBIF Occurrence Download https://doi.org/10.15468/dl.4yurdw  

Occurrence records (Occurrence cells after aggregation): Native = 237 (76), Invasive = 40853 (8446) 

Climate data: Data retrieved from WORLDCLIM database, version 2.1. Resolution: 30 arcsec (Fick and 

Hijmans, 2017) 

Aggregation factor: Native = 2, Invasive = 2 

Native study area extent (W, E, S, N): -9, -3.4, 35.8, 41 

Invasive study area extent (W, E, S, N): -7.6, 1.9, 49.9, 59.4, Excluded: (-7.6, -5.3, 51.7, 55.26),  

(1, 1.9, 49.9, 51) & (-7.6, -6.6, 55, 55.5) 

Predictors:  

• bio1: Annual Mean Temperature (°C)  

• bio6: Min Temperature of Coldest Month (°C) 

• bio12: Annual Precipitation (mm) 

• bio14: Precipitation of Driest Month (mm) 

 

Rhododendron ponticum (L.) is a perennial, evergreen shrub that generally invades woodlands. 

Introduced to the British Isles from mainland Europe in the eighteenth century, it has since become 

a widespread invasive species that impacts nearby flora by releasing chemicals into the soil that 

prevents germination. It’s success as an invasive have largely been attributed to large reproductive 

output and tolerance for shade and nutrient poor soil. Genetic markers have shown that the 

Rhododendron ponticum in Britain primarily originate from the Iberian Peninsula (Manzoor et al., 

2020). 

Limitations: 

Manzoor collected the data from GBIF but did not record a reference code. A new GBIF query was 

constructed, taking occurrences up to 2020 in the Iberian Peninsula and on Great Britain 

(https://doi.org/10.15468/dl.4yurdw ). 

The invasive study area was Great Britain. Any landmass other than Great Britain was not considered 

in the original study and all nearby landmasses contained occurrences. To minimise undesired data 

within the invasive study range no buffer zone was added and Parts of the polygon not including 

Great Britain was excluded (See code on GitHub). 

https://doi.org/10.15468/dl.4yurdw
https://doi.org/10.15468/dl.4yurdw
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Figure d1: Occurrence records of Rhododendron ponticum, native occurrences (left) and invasive occurrences (right). 

Occurrence records were scant in the native study area with most occurrences concentrated in 3 

locations leading to a small effective sample size (number of occupied cells) and prevalence for the 

native model. The Invasive record on the other hand is the richest among all the datasets and 

occurrences are distributed widely over the study area. 

  

The distribution and habitat estimates have the same 

pattern with a roughly uniform signal strength across the 

entire native study range with a slightly stronger signal in 

the northwest. 

Uncertainty is at negligible levels across the entire study 

range. 

  

Figure d2: Relative distribution estimate (a), 
relative habitat estimate (b) and uncertainty of 
distribution estimate (c) from native model. 
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 The distribution estimate shows a pattern 

like what can be observed in the 

occurrence records with a preference for 

lowlands.  

The habitat estimate has the strongest 

signal on the Hebrides and the nearby 

Scottish coast. Otherwise matches the 

distribution estimate with the western part 

of England & Wales at values around 0.2 

and eastern England around 0.1.  

Uncertainty has a hotspot in the 

southwestern tip of Great Britain, reaching 

uncertainties up to 0.3, other western 

parts of Wales and the Hebrides have an 

uncertainty round 0.5. The rest of the 

introduced range follows the niche 

predictions with uncertainties around 0.1. 

  

Figure d3: Relative distribution estimate (a), relative habitat 
estimate (b) and uncertainty of distribution estimate (c) from 
invasive model. 
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Figure d4: Standardised response curves of native (blue) and invasive (red) models. The area between the dashed lines is the 
climatic space shared in both native and invasive study areas. The violin plots below show the distribution of occurrence 

records along the climatic gradient. 

The native model shows flat response curves indicating a null signal. The model is barely capturing 

any climatic response. There is almost no shared climate along the “precipitation of driest month” 

gradient, the overlap measure is highly unreliable. Along the annual precipitation gradient, the 

invasive response curve shows the opposite pattern from occurrence records distribution, but this 

may be caused by a high occupancy rate of a rare climate (high precipitation) in the study area. 
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e) Morehouse and Tobler (2013) 
Species: Faxonius rusticus (formerly Orconectes rusticus) 

Common name: Rusty Crayfish 

Native range: The Ohio River and the lower Maumee River drainages. 

Introduced range: The USA and southern Canada 

Occurrence data: Data retrieved from 2 sources: 

1. U.S. Geological Survey, 2023, Specimen observation data for Faxonius rusticus (Girard, 

1852), Nonindigenous Aquatic Species Database, Gainesville, FL, 

https://nas.er.usgs.gov/queries/CollectionInfo.aspx?SpeciesID=21  

2. Illinois Natural History Survey - Crustacean Collection. Occurrence dataset (ID: 257ea482-

2d6f-4cf4-846d-8efeb58f6727) https://biocoll.inhs.illinois.edu/portal/content/dwca/INHS-

CRUSTACEAN_DwC-A.zip accessed via the INHS Collections Data Portal, 

biocoll.inhs.illinois.edu/portal, 2023-06-01). 

Climate data: Data retrieved from Data retrieved from WORLDCLIM database, version 2.1. 

Resolution: 30 arcsec (Fick and Hijmans, 2017) 

Aggregation factor: Native = 3, Invasive = 13 

Native study area extent (W, E, S, N): -87.3, -81.1, 36.6, 41.9, Excluded: (-82.6, -81.7, 38, 38.9) 

Invasive study area extent (W, E, S, N): -122.5, -66.7, 33, 50.9, Excluded: (-82.6, -80, 36, 38.9) 

Occurrence records (Occurrence cells after aggregation): Native = 152 (121), Invasive = 2465 (891) 

Predictors:  

• bio3: Isothermality (BIO2/BIO7) (×100) (°C) 

• bio5: Max Temperature of Warmest Month (°C) 

• bio7: Temperature Annual Range (BIO5-BIO6) (°C) 

• bio9: Mean Temperature of Driest Quarter (°C) 

• bio10: Mean Temperature of Warmest Quarter (°C) 

• bio15: Precipitation Seasonality (Coefficient of Variation) 

• bio16: Precipitation of Wettest Quarter (mm) 

• bio17: Precipitation of Driest Quarter (mm) 

• bio18: Precipitation of Warmest Quarter (mm) 

• bio19: Precipitation of Coldest Quarter (mm) 

The rusty crayfish (Faxonius rusticus, formerly Orconectes rusticus) is a crustacean native to the Ohio 

River and the lower Maumee River drainages, but has been intentionally and accidentally introduced 

in bodies of water across the United States and Canada (Morehouse and Tobler, 2013). 

Limitations: 

In 2017 the genus (Orconectes rusticus, the modelled species in Morehouse and Tobler (2013)) was 

re-evaluated and changed to Faxonius, this included unifying several species. The databases now 

contain the expanded definition of the species, making it impossible to distinguish which 

occurrences belong to the old Orconectes rusticus. Since the native and invasive populations were so 

https://nas.er.usgs.gov/queries/CollectionInfo.aspx?SpeciesID=21
https://biocoll.inhs.illinois.edu/portal/content/dwca/INHS-CRUSTACEAN_DwC-A.zip
https://biocoll.inhs.illinois.edu/portal/content/dwca/INHS-CRUSTACEAN_DwC-A.zip
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close it was not possible to create a 5% buffer at the edges of the native range, the border was made 

prioritizing excluding the introduced range. 

 
Figure e1: Occurrence records of Faxonius rusticus, native occurrences (left) and invasive occurrences (right). 

 The distribution estimate has a hotspot at ca. 

41.5°N and 83°W.  

The habitat estimate shares the same hotspot, 

but also has a relatively weaker hotspot in the 

north-western corner of the range at around 60% 

strength of the maximum signal. 

 

The uncertainty has the same hotspot as the 

realised niche with an uncertainty up to 0.2. 

 

 

 The distribution estimate has a hotspot at ca. 

41.5°N and 83°W.  

The habitat estimate shares the same hotspot, 

but also has a relatively weaker hotspot in the 

north-western corner of the range at around 60% 

strength of the maximum signal. 

 

The uncertainty has the same hotspot as the 

realised niche with an uncertainty up to 0.2. 

  

Figure e2: Relative distribution estimate (a), relative habitat 
estimate (b) and uncertainty of distribution estimate (c) 
from native model. The white square is the exclusion of an 
area with invasive occurrences. 

Figure e2: Relative distribution estimate (a), relative habitat 
estimate (b) and uncertainty of distribution estimate (c) 
from native model. The white square is the exclusion of an 
area with invasive occurrences. 
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 Most signals in the distribution estimate are concentrated around the Great Lakes, with the 

strongest hotspot west of Lake Michigan. Between and west of the Great Lakes the signal is 

at around 30% of maximum signal strength. 

The habitat estimate has its maximum signal in a hotspot around 33°N and 109°W (scale in 

figure was reduced to show patterns beyond this one hotspot). Otherwise, a weaker signal can be 

seen around the Great Lakes and the Sierra Nevada Mountain range with values up to 16% of 

maximum signal strength. 

Uncertainty kept to a similar pattern to the distribution estimate with the highest uncertainty 

reaching 0.36 in a spot on the east edge of Lake Huron. Otherwise, the uncertainty around the Great 

Lakes is around 0.1. 

Figure e3: Relative distribution estimate (a), relative habitat estimate (b) and uncertainty of 
distribution estimate (c) from invasive model. The blue polygon is the exclusion of an area 
containing the native study area. 
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Figure a4: The response curves of the native (blue) and invasive (red) models. The area between the dashed lines represents 

the climate shared between the native and invasive study areas. Below are the distributions of occurrence records along the 

climatic gradient. 

There is a small proportion of shared climate due to the size difference between native and invasive 

study areas. The distribution of occurrence records in the native study area is also limited by the lack 

of available climate. The native model features many curves with a positive quadratic term, marking 

it as unfit for projection.
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f) Rödder and Lötters (2009) 
Species: Hemidactylus turcicus 

Common name: Mediterranean house gecko 

Native range: The Mediterranean basin 

Introduced range: North & Central America 

Occurrence data: Data recreated from 2 sources, including only records up until 2009: 

1. GBIF.org (28 March 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.ek48jv  

2. David Bloom (2016). VertNet_Retilia_Sept2016. CyVerse Data Commons. DOI 

10.7946/P2Z59J 

Climate data: Data retrieved from WORLDCLIM database, version 2.1. Resolution: 5 arcminutes (Fick 

and Hijmans, 2017) 

Aggregation factor: Native = 2, Invasive = 2 

Native study area extent (W, E, S, N): -11, 39.3, 21, 46.7 

Invasive study area extent (W, E, S, N): -120.2, -75.9, 15.3, 37.8 

Occurrence records (Occurrence cells after aggregation): Native = 1842 (501), Invasive = 1480 (242) 

Predictors:  

• bio1: Annual Mean Temperature (°C)  

• bio2: Mean Diurnal Range (Mean of monthly (max temp - min temp)) (°C) 

• bio3: Isothermality (BIO2/BIO7) (×100) 

• bio4: Temperature Seasonality (standard deviation ×100) 

• bio5: Max Temperature of Warmest Month (°C) 

• bio6: Min Temperature of Coldest Month (°C) 

• bio7: Temperature Annual Range (BIO5-BIO6) (°C) 

• bio8: Mean Temperature of Wettest Quarter (°C) 

• bio9: Mean Temperature of Driest Quarter (°C) 

• bio12: Annual Precipitation (mm) 

• bio13: Precipitation of Wettest Month (mm) 

• bio14: Precipitation of Driest Month (mm) 

• bio15: Precipitation Seasonality (Coefficient of Variation) 

• bio18: Precipitation of Warmest Quarter (mm) 

• bio19: Precipitation of Coldest Quarter (mm) 

 

The Mediterranean house gecko (Hemidactylus turcicus) is a reptile native to the Mediterranean 

basin, but has been introduced to North America no later than 1910, when it was observed in 

Florida. Since then the invasive has spread across the southern half of the USA, Mexico and Panama 

(Rödder and Lötters, 2009). 

 

https://doi.org/10.15468/dl.ek48jv
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Niche overlap analysis:  

Rödder and Lötters (2009) and Rödder and Lötters (2010) used niche overlap analysis that can be 

described as a hybrid between the geographic and univariate comparison methods. They derived 

individual response curves from an SDM and them mapped each response curve onto the invasive 

study range individually. Then a geographic overlap comparison was performed per environmental 

variable. 

Limitations: 

The original paper utilised gbif but did not record a reference code. A new gbif query was 

constructed, taking occurrences up to 2008 around the Mediterranean and in Central & North 

America. 

The original paper used occurrence data from HerpNet, which is now defunct, but VertNet 

(HerpNet’s parent “entity”) still keeps the records here: 

http://www.vertnet.org/resources/datatoolscode.html#t-tab1  

The original paper included additional occurrences from various sources such as Herpetological 

Review. These sources generally include few occurrences and with poor locality information. These 

additional sources were not included in this study. 

The original paper made 9 datasets per range with different combinations of climate variables (We 

used dataset 1). 

 

 

Figure f1: Occurrence records of Hemidactylus turcicus, native occurrences (left) and invasive occurrences (right). 

http://www.vertnet.org/resources/datatoolscode.html#t-tab1
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 The distribution estimate has the 

strongest signal concentrated in 

the southwestern regions of the 

Iberian Peninsula, getting weaker 

as it goes along the 

Mediterranean coast up to 

France and a weaker signal on 

the eastern coast of the 

Mediterranean Sea (ca. 50% of 

maximum signal strength). 

The habitat estimate has its 

strongest signal concentrated on 

the southern edge of the study 

are in the Saharan desert, Algerie 

(greyed out in the figure). A 

weaker signal continues along 

the southern edge of the study 

area and on the southeastern 

coast of the Mediterranean at 

around 10% the strength of the 

maximum signal. 

Uncertainty maintains the same 

pattern as the distribution 

estimate (with uncertainty values 

around 0.2), except in the 

southwestern corner of the study 

area where values exceed 0.6. 

  Figure f2: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from native model. 
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 The distribution estimate 

shows the strongest signals 

around the continental 

coast of the Gulf of Mexico 

and a weaker signal north 

of the Gulf of California at 

around 15% of maximum 

signal strength. 

The habitat estimate has 

the maximum signal in the 

Gulf of Mexico has shifted 

eastwards, and the relative 

strength of the Californian 

hotspot has increased to 

around 30% of maximum 

signal strength. 

Uncertainty shows the 

same pattern as the 

distribution estimate, with 

uncertainty around the 

hotspots being around 

0.05. 

 

 

 

 

 

 

 

 

  

Figure f3: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from invasive model. 
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Figure f4: The response curves of the native (blue) and 
invasive (red) models. The area between the dashed lines 
represents the climate shared between the native and 
invasive study areas. Below are the distributions of 
occurrence records along the climatic gradient. 

The invasive model features some relatively 

flat curves, indicating that those 

environmental gradients may not be 

contributing much to explaining the 

distribution in the invasive study area. 
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g) Rödder and Lötters (2010) 
Species: Eleutherodactylus planirostris 

Common name: Greenhouse frog 

Native range: Cuba and the Bahamas 

Introduced range: Southern coast of USA 

Occurrence data: Occurrence data: Data recreated from 2 sources, including only records up until 

2009: 

1. GBIF.org (06 August 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.97przp  

2. David Bloom (2016). VertNet_Amphibia_Sept2016. CyVerse Data Commons. DOI 

10.7946/P2F59W, 10.7946/P2F59W  

3. U.S. Geological Survey, 2023, Specimen observation data for Eleutherodactylus planirostris 

(Cope, 1862), Nonindigenous Aquatic Species Database, Gainesville, FL, 

https://nas.er.usgs.gov/queries/collectioninfo.aspx?SpeciesID=61, Access Date: 3/24/2023. 

Climate data: Data retrieved from WORLDCLIM database, version 2.1. Resolution: 30 arcsec (Fick and 

Hijmans, 2017) 

Aggregation factor: Native = 3, Invasive = 4 

Native study area extent (W, E, S, N): -86, -73.8, 19, 27 

Invasive study area extent (W, E, S, N): -93.8, -79.4, 24, 33.8, Excluded: (-83, -79.5, 24.4, 27) 

Occurrence records (Occurrence cells after aggregation): Native = 3862 (320), Invasive = 3633 (437) 

Predictors:  

• bio1: Annual Mean Temperature (°C)  

• bio2: Mean Diurnal Range (Mean of monthly (max temp - min temp)) (°C) 

• bio5: Max Temperature of Warmest Month (°C) 

• bio8: Mean Temperature of Wettest Quarter (°C) 

• bio9: Mean Temperature of Driest Quarter (°C) 

• bio10: Mean Temperature of Warmest Quarter (°C) 

• bio12: Annual Precipitation (mm) 

• bio13: Precipitation of Wettest Month (mm) 

• bio14: Precipitation of Driest Month (mm) 

• bio18: Precipitation of Warmest Quarter (mm) 

The greenhouse frog (Eleutherodactylus planirostris) is a medium-sized, brown frog native to Cuba 

and the Bahamas found in broadleaf forest and gardens. The species has become invasive on several 

Caribbean islands, the southern coast of the USA and even on the islands of Hawaii. The species 

reached to continental USA over 140 year ago and has become well established there (Rödder and 

Lötters, 2010). 

 

Niche overlap analysis:  

Rödder and Lötters (2009) and Rödder and Lötters (2010) used niche overlap analysis that can be 

https://doi.org/10.15468/dl.97przp
https://nas.er.usgs.gov/queries/collectioninfo.aspx?SpeciesID=61
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described as a hybrid between the geographic and univariate comparison methods. They derived 

individual response curves from an SDM and them mapped each response curve onto the invasive 

study range individually. Then a geographic overlap comparison was performed per environmental 

variable. 

Limitations: 

The original paper utilised gbif but did not record a reference code. A new gbif query was 

constructed, taking occurrences up to 2009 from Cuba, the Cayman Islands, the Bahamas and the 

norther coast of the Gulf of Mexico (spanning a latitude from Florida to the southern border of 

North Carolina). 

The original paper used occurrence data from HerpNet, which is now defunct, but VertNet 

(HerpNet’s parent “entity”) still keeps the records here: 

http://www.vertnet.org/resources/datatoolscode.html#t-tab1  

The original paper included additional occurrences from 3 books. These sources generally include 

few occurrences and with poor locality information. These additional sources were not included in 

this study. 

The original paper did study an additional introduced range on the Hawaiian Islands which was not 

included in this study. 

 

 

 

Figure g1: Occurrence records of Eleutherodactylus planirostris, native occurrences (left) and invasive occurrences (right). 

http://www.vertnet.org/resources/datatoolscode.html#t-tab1
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 The distribution estimate has its 

strongest signal on Grand Cayman 

Island with the next strongest 

signals (20% of max signal strength) 

on Grand Bahama Island and 

around Baracoa. 

The habitat estimate only shows a 

signal around Baracoa, Cuba. 

Uncertainty is largest around 

Baracoa and 2 points in Turquino 

National Park (ca. 0.7). Grand 

Cayman Island has an uncertainty 

around 0.2, while Grand Bahama 

Island has an uncertainty around 

0.1. 

 

 

 

 

 

 

 

 

 

 

  Figure g2: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from native model. 
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 The distribution estimate has a 

hotspot in southern Florida and a 

weaker signal on the western coast 

of Florida. 

The strongest signal in the habitat 

estimate is in a few pixels at around 

33.5°N and 86°W. Otherwise the 

next strongest signals are clustered 

around the maximum signal and 

southern Florida at around 3% of 

maximum signal strength. 

Uncertainty at the maximum habitat 

estimate signal is around 0.7. 

Otherwise, the southern tip of 

Florida has uncertainties ranging 

from 0.06-0.15 in a similar pattern to 

the distribution estimate. 

 

 

  

Figure g3: Relative distribution estimate (a), relative habitat estimate (b) 
and uncertainty of distribution estimate (c) from invasive model. 
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Figure g4: The response curves of the native (blue) and invasive (red) models. The area between the dashed lines represents 

the climate shared between the native and invasive study areas. Below are the distributions of occurrence records along the 

climatic gradient. 

Both native and invasive models feature several response curves with positive quadratic terms which 

will lead to overprediction of projected onto non-analogous environments. 
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h) Zhang et al. (2022) 
Species: Galinsoga quadriradiata 

Common name: Shaggy soldier 

Native range: Central & South America 

Introduced range: China 

Occurrence data: Data retrieved directly from the original paper (see Supplementary material, Table 

2 in Zhang et al. 2022) 

Climate data: Data retrieved from WORLDCLIM database, version 2.1. Resolution: 2.5 arcminutes 

(Fick and Hijmans, 2017) 

Aggregation factor: Native = 3, Invasive = 3 

Native study area extent (W, E, S, N): -112.4, -37.8, -34.1, 31.3, Excluded: (-87, -79.5, 25, 33) 

Invasive study area extent (W, E, S, N): 79, 129.6, 22.3, 47.1 

Occurrence records (Occurrence cells after aggregation): Native = 506 (301), Invasive = 393 (232) 

Predictors:  

• bio5: Max Temperature of Warmest Month (°C) 

• bio6: Min Temperature of Coldest Month (°C) 

• bio18: Precipitation of Warmest Quarter (mm) 

• Elevation (m) 

The shaggy soldier (Galinsoga quadriradiata) is an annual herbaceous plant native to South and 

Central America. The species has become invasive in China where it has caused both ecological and 

agricultural damage (Zhang et al., 2022). 

Limitations: 

The original study randomly diluted data so that each occurrence had a minimum distance between 

each other so as to reduce the effect of spatial autocorrelation. The spatial random effect included 

in the model for this study accounts for spatial autocorrelation, so the data was not diluted here. 
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Figure h1: Occurrence records of Galinsoga quadriradiata, native occurrences (left) and invasive occurrences (right). 

The distribution estimate seems to highly 

correlate with elevation. The strongest signal 

covers most of Costa Rica. The weaker signals 

follow elevation north- and southwards at 

around 15% of maximum signal strength. 

The habitat estimate pattern matches with 

elevation, with the strongest signal along the 

Andes Mountain range. 

Uncertainty is highest in Costa Rica with 

values around 0.3 up to 0.4. Outside of Costa 

Rica the uncertainty follows elevation with 

the values up to 0.1. 

   

Figure h2: Relative distribution estimate (a), relative habitat estimate (b) 
and uncertainty of distribution estimate (c) from native model. 
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The distribution estimate has a 

strong signal in Taiwan and a 

weaker signal around Sichuan 

province, China (up to 55% of 

maximum signal strength). 

The habitat estimate pattern 

matches with elevation, except 

for the Tibetan plateau which 

has low to no signal and The 

Gobi Desert that has a lower 

signal. 

Uncertainty matches the pattern 

of the distribution estimate with 

uncertainty in Taiwan reaching 

0.2. The grey spot at around 

25°N and 90°E has an 

uncertainty of 0.95. Otherwise, 

the uncertainty follows 

elevation (without the Tibetan 

plateau and Gobi Desert) up to 

0.07 and some additional 

uncertainty at the western and 

northeastern borders of the 

study area around the same 

value. 

 

 

 

 

  

Figure h3: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from invasive model. 



67 
 
 

 

 

 

 

Figure h4: The response curves of the native (blue) and invasive (red) models. The area between the dashed lines represents 

the climate shared between the native and invasive study areas. Below are the distributions of occurrence records along the 

climatic gradient. 

The response curves all appear to be reasonable. However, considering the dominance of spatial 

effects in both the native and invasive models (spatial effects contribution 6 times more than 

environmental effects) these curves cannot be relied upon.  
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i) Ørsted and Ørsted (2019) 
Species: Drosophila suzukii 

Common name: Spotted wing drosophila 

Native range: Southeast Asia 

Introduced range: Europe 

Occurrence data: Data dryad: Ørsted, Iben V.; Ørsted, Michael (2018), Data from: Species 

distribution models of the Spotted Wing Drosophila (Drosophila suzukii, Diptera: Drosophilidae) in its 

native and invasive range reveal an ecological niche shift, Dryad, Dataset, 

https://doi.org/10.5061/dryad.mn0254p  

Climate data: Data retrieved from WORLDCLIM database, version 2.1. Resolution: 30 arcsec (Fick and 

Hijmans, 2017) 

Aggregation factor: Native = 17, Invasive = 13  

Native study area extent (W, E, S, N): 66.4, 148.8, 8.5, 49.8 

Invasive study area extent (W, E, S, N): -17.4, 44.2, 31.3, 60.9 (No western buffer) 

Occurrence records (Occurrence cells after aggregation): Native = 101 (85), Invasive = 306 (185) 

Predictors:  

• bio1: Annual Mean Temperature (°C)  

• bio2: Mean Diurnal Range (Mean of monthly (max temp - min temp)) (°C) 

• bio4: Temperature Seasonality (standard deviation ×100) 

• bio5: Max Temperature of Warmest Month (°C) 

• bio6: Min Temperature of Coldest Month (°C) 

• bio7: Temperature Annual Range (BIO5-BIO6) (°C) 

• bio11: Mean Temperature of Coldest Quarter (°C) 

• bio12: Annual Precipitation (mm) 

• bio17: Precipitation of Driest Quarter (mm) 

The spotted wing drosophila (Drosophila suzukii) is a species of fly native to Southeast Asia. In 2009 

it was discovered both in Europe and North America. Since then, it has also been found in South 

America. The species prefers to lay its eggs in ripe fruit, which has caused great economic damage to 

the fruit industry in it introduced ranges. 

 

https://doi.org/10.5061/dryad.mn0254p
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Figure i1: Occurrence records of Drosophila suzukii, native occurrences (left) and invasive occurrences (right). 

 The distribution estimate has a 

hotspot in southern Japan that 

radiates outward, reaching 

continental Asia. A weaker 

signal can be found in and 

north of India. These even 

gradients are probably caused 

by the excessive aggregation 

required for this dataset. 

The habitat estimate is almost 

entirely uniform indicating the 

fundamental niche was not 

properly captured. 

The highest uncertainty (ca. 

0.05) is on Mindanao, on the 

south border of the study area. 

the only other notable signals 

are in Japan and the Philippines 

at values around 0.02. 

  

Figure i2: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from native model. 
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 Due to the high aggregation 

factor, the results highly 

suspect. Patterns have been 

known to change when 

testing lower aggregation 

factors.  

The distribution estimate 

has a hotspot west & south 

of the Alps that radiates 

outwards. 

The habitat estimate has the 

strongest signal in eastern 

Europe and seems to have a 

negative relationship with 

elevation. 

Uncertainty was mostly 

negligible with a low signal 

west and south of the Alps 

with values around 0.02. the 

Norwegian coast has a 

hotspot the reaches 0.27. 

 

  

Figure i3: Relative distribution estimate (a), relative habitat estimate (b) and 
uncertainty of distribution estimate (c) from invasive model. 
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Figure i4: The response curves of the native (blue) and 
invasive (red) models. The area between the dashed lines 
represents the climate shared between the native and 
invasive study areas. Below are the distributions of 
occurrence records along the climatic gradient. 

The curves of the native model are all flat 

indicating a complete failure to capture the 

fundamental niche. Despite the high 

aggregation, the invasive model has 

reasonable response curves and a relatively 

low proportion of spatial-to-climate effects 

(3.8) amongst the datasets.
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