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Abstract

Recently, integrity inspections of grouted connections in offshore wind turbines have become

more important due to the increased signs of wear, with multiple reports of sliding damage

in the grouted connection [1, 2]. This study delves into an ultrasonic non-destructive testing

(NDT) approach for evaluating grout penetration and identifying defects within the grout

and grouted connection. A pulse with a frequency range of 60 to 140 kHz was applied to the

grout with and without defects, with the reflection and reverberation studied to determine

the detectability and penetration of the grout. The same frequency range is employed for

numerical simulations of grout, grout with a steel plate in front and grouted connections,

with and without defects.

The results reveal good penetration of the grout with a visible pulse from the back in-

terface of the grout both in the experiments and simulations. Changes in the frequency

spectrum for simulations of grout with defects over half a wavelength were detected, with

notable differences between the simulations where the grout had defects and those without

defects. However, the experimental results were inconclusive, with the differences between

the grout samples with the same defects or lack thereof being as large as those between the

samples with or without defects.

The simulations of the grout with a steel plate covering and grouted connection showed

minimal penetration of the grout with no discernible pulse from the back interface of the

structure. The grout with a steel plate covering showed minimal differences between the

simulations with or without defects. However, simulations of the grouted connection show

discernible differences for the largest defect, indicating some level of grout penetration.
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Chapter 1

Introduction

1.1 Background and motivation

Grouted connections have been extensively employed in diverse offshore structural appli-

cations, including the gas and oil industry, for the last decades [3]. More recently, their

applications have been extended to the offshore wind industry [3]. These connections in-

volve joining structural elements through a cementitious grout material, facilitating load

transfer and maintaining structural continuity. The plain-pipe grouted connection studied

in this report is a sandwich-like structure of steel–grout–steel, which supports the transition

piece, as shown in Fig.1.1. The presence of defects in the grout, such as voids, cracks and

debonding, can severely undermine the structural integrity and performance of the entire

system [4]. Therefore, addressing these potential issues is critical to achieving longevity and

reliability of structures utilising grouted connections [4, 1, 5].
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Figure 1.1: Depiction of grouted connection in a monopile wind turbine. [6]

The design of a plain-pipe grouted connection on an offshore jacket design before 2013 was

based only on transferring axial and torsional loads from the jacket to the pile, according

to standards such as NORSOK N004 [7] and DNV-OS-J101 [8]. As stated in Klose [9] and

Tziavos [1], since 2009, sliding damage has been reported at several offshore wind farms with

plain cylindrical grouted joints. As a result, existing guidelines, such as DNV-OS-J101 [8]

and NORSOK N004 [7], have been reviewed, and design approaches and calculation tools

have been modified.

The Norsok standard [7] requires grouted connections to be inspected yearly. The uncer-

tainties introduced by the new requirements, re-calculations and slippage in the existing

wind turbines increase the focus on the available methods for inspecting and monitoring the

condition of the grouted connection and their ability to detect defects and predict failure.

Visual inspection is the most common method for inspecting grouted connections, performed

by divers or remotely operated vehicles [4]. However, visual inspections are limited in that

the inspections can only be performed on the exposed grout at the top or bottom of the

grouted connection, as shown in Fig. 1.1. By the time the defects are visible, the grouted

connection is thoroughly degraded and requires extensive maintenance activities [1]. As

discussed by Tziavos [1], the lack of early warning results in operational solutions on a case-

by-case basis. Garcia [10] and Shafiee [11] explained that the accessibility to offshore wind

turbines is affected by weather conditions, and maintenance tasks require complete generator

shutdowns, leading to significant expenditures.
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In other research, Tziavos [1] and Martinez [2] stated that minimising unnecessary main-

tenance expenditure to reduce high costs and enhancing the reliability of offshore wind

turbine substructures are some major challenges for the offshore wind sector. To address

these challenges, a transition to condition- and predictive-based maintenance is necessary,

compared to corrective and preventive maintenance, which are commonly employed [1].

Condition-based maintenance is based on the detection, identification and monitoring of

damage evolution with time [2]. However, the lack of expert knowledge and experience on

the long-term behaviour of grouts makes effective monitoring tools for grouted connections

essential [1]. Furthermore, the integrity issues relevant for determining the condition of the

grouted connection make it desirable with an inspection method in which the grout can be

inspected outside and detect initial degradation [4].

In [4, 1, 10, 9], multiple non-destructive testing (NTD) inspection techniques in development

are discussed, but a reliable, widespread, comprehensive and practical inspection technique

is yet to be available. Tuset [4] suggested that the inspection method is instrumental in de-

termining the actual state of the grouted connection. Furthermore, Iliopoulos [12] explored

multiple NDT techniques where the attenuation of ultrasound matched the strength of the

grout very well. Similarly, Brett [13] found promising results using an ultrasonic-based in-

spection method.

TSC Subsea is working on a comprehensive NDT method for plain-pipe grouted connec-

tions [14]. Their approach is based on acoustics resonance technology (ART) deployed in

their ARTIMIS product line, developed for inspecting the internal condition of pipelines and

risers [14]. ART has shown great potential in detecting the state of the grouted connection

[14]. However, because of the frequency range from the mid 100s kHz, the attenuation is

profound in the grout, and insufficient penetration of the grout occurs [14]. As a result, the

grout’s front layer is inspected, but not the deeper layers [14]. TSC subsea’s ART method

is more effective than the visual inspection method, but it still requires improvement [14].
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1.2 Previous work

In 1941, working independently, Sproule [15] and Firestone [16] pioneered the technology to

detect flaws in metal for industrial purposes, but because of the second world war, their re-

sults were not published until 1946 [17]. The release of Sproule’s and Firestone’s findings did

not only advance the field of Ultrasonic NDT but also closely related fields such as medical

ultrasonic imaging. [17, 15].

The first commercial instrument for determining the thickness of metal was patented by

Rassweiler and Erwin of General Motors in 1947 [18]. The principles of operation for the

instrument called the Sonigage was published by Erwin in 1945 [19]. The Sonigage differed

itself from other ultrasonic instruments by not measuring the time intervals directly, but

rather the resonant frequency in the plates [19].

The first ultrasonic instruments that measured the thickness of metal with frequency re-

sponse often used single-frequency excitation, in the form of a tone burst [20]. This tech-

nique is relatively time consuming since, in order to define the resonant frequencies of the

test structure, it is necessary to vary the frequency across the frequency range of interest,

which, particularly if fine frequency resolution is required, can be a lengthy process [20].

By the 1980s the focus of industrial ultrasonic thickness measurements shifted to pulse

excitation followed by a high speed analog-to-digital conversion followed by a digital Fourier

analysis, which produced the complete spectrum [20]. This allowed the complete spectrum

to be obtained rapidly from the response of the system to a single pulse [20]. This technique

was used in the 1980s by de Billy [21] and Numrich [22], and is the foundation for the mea-

surement system used in this study.

Over the last few decades, ultrasonic pulse-echo has established itself as a common non-

destructive inspection method [4, 23]. As discussed in [23], the advancements in signal

processing and transducer technology made inspecting multilayered structures possible.
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1.3 Objective

This master’s thesis aims to investigate if acoustic signals in a lower frequency range can

provide information on deeper defects in the grout to lay the foundation for further develop-

ment of the ART inspection method utilised by TSC Subsea. To accomplish the objective,

this report investigates the frequency response of the reverberation and reflected signal from

the grout and grouted connection for an incident wave with a frequency range from the late

10s kHz to the early 100s kHz. This approach is anticipated to yield deeper penetration and

reduced attenuation within the grout.

This study conducts both simulated and experimental investigations of the acoustic response

within the frequency range. The results are subsequently compared with the aim of devel-

oping a simulation model that accurately corresponds to the experimental outcomes. The

successful alignment of the simulation and experimental results will provide greater confi-

dence in the accuracy of the simulation model. This, in turn, will enable effective further

study with modifications to the frequency range and other parameters.

1.4 Thesis outline

This thesis comprises six chapters and several appendices. The first chapter presents the

project’s motivation and objective. Chapter 2 is devoted to the theoretical foundations of

the thesis, with particular emphasis on the reflection coefficient, material characteristics and

transducer characteristics. The experimental setup and measurement methods employed are

described in Chapter 3, along with the frequency range, signal processing and specifications

of the transducer. Chapter 4 details the finite element simulation setup, including the simu-

lation tool, structures, meshing and time resolution. Finally, Chapter 5 offers the results with

a comprehensive discussion of the research findings, while Chapter 6 draws conclusions and

provides recommendations for further research. The appendices contain MATLAB scripts,

detailed calculations and various figures.

12



Chapter 2

Theory

This chapter presents the theoretical foundation required to conduct the experiments and

simulations of this study. Section 2.1 delves into the fundamental theory of acoustic wave

propagation, encompassing aspects like sound velocity and material density. In Section 2.2,

the reflection coefficients for fluid–fluid and fluid–solid interfaces are presented. Section

2.2.1 presents the reflection coefficient for fluid–fluid interfaces for multilayered structures,

and Subsection 2.2.2 explains the reflection coefficient for a fluid–solid interface, which mod-

ifies the solid–solid reflection coefficient discussed in [24].

Section 2.3, presents the definitions of the near and far fields, with the acoustic pressure

from a baffled circular plane piston is covered in Section 2.4. The characteristics of trans-

ducers, including source- and receiver sensitivity and electrical impedance, are addressed in

Section 2.5. Furthermore, Section 2.6 explains the finite element method, highlighting the

distinction between time-implicit and time-explicit approaches.

The conception of a defect is outlined in Section 2.7, while the theoretical resonant fre-

quencies and attenuation are discussed in Sections 2.8 and 2.9, respectively. Finally, Section

2.10 presents the theoretical framework for the various signal processing tools employed

throughout this study.

2.1 Acoustic wave propagation

Acoustic wave propagation refers to the transmission of mechanical energy through a medium

via elastic waves [25]. For fluids, mechanical energy is transmitted in the form of compres-
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sional waves, and for solids, the transmission is in compressional- and shear waves [25]. In

this study, acoustic waves are utilised to investigate the presence of defects in grout and

grouted connections. When an acoustic wave encounters a new material, in this case, a

defect, its propagation characteristics, such as amplitude, phase and wavelength, are altered

because of the change in material characteristics, such as density and sound velocity [26].

This change in material characteristics also causes a reflection within the medium, with a

different, complex amplitude [25]. By analysing the reflected signal, the existence of a defect

can be determined [27]. The time dependence e−ωt is used in this study, where ω and t are

the angular frequency and time, respectively.

2.1.1 Density

Density plays a crucial role in the field of acoustics, owing to its significant impact on the

propagation of sound waves [26]. Density ρ refers to a material’s mass m per unit volume

V :

ρ =
m

V
[28] (2.1)

Density is a fundamental property that affects the speed and behaviour of sound [26]. In

acoustics, the density of a medium influences its specific acoustic impedance. The specific

acoustic impedance is a measure of the ratio of acoustic pressure to the associated particle

speed in a medium [26]. For a plane wave the specific acoustic impedance is the product

of sound velocity and density and often has a greater acoustical significance than it’s com-

ponents, therefore it is often called characteristic acoustic impedance [26]. Higher densities

generally result in higher characteristic acoustic impedance, which can affect the reflection

and transmission of sound waves at interfaces of different materials [26]. Moreover, density

is a key factor in determining the speed of sound in a medium [26].

2.1.2 Sound velocity

Acoustic waves are a form of elastic waves that can traverse through various media, including

gases, fluids and solids [25]. As discussed in Kinsler [26] and Boonyatee [29], certain media

possess the property of dispersion, where waves with higher frequencies propagate faster than

those with lower frequencies, causing a sound wave to alter its original shape during trans-

mission. As a result, three distinctive sound velocities can be identified. First, the phase

velocity pertains to the velocity of a mono-frequency wave in which all points exhibit an
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equivalent phase [26, 29]. Second, the group velocity refers to the speed at which waves with

slightly different frequencies travel [26, 29]. Finally, the signal velocity can be determined by

evaluating the initial onset of the signal [29]. If the medium is frequency-independent, i.e.

nondispersive, the signal, phase and group velocities are equal [29]. In this study the effect

of dispersion is not studied and it is therefore assumed that the signals phase and group

velocities are equal.

The sound velocity in solids can be subdivided into two categories, compressional and shear

waves, as noted in Brekhovskikh [30]. Compressional waves display particle displacement

parallel to the wavefront, while particle displacement in shear waves is perpendicular to the

wavefront [31]. The relationship between compressional and shear waves in solid materials

is represented by Poisson’s ratio ν, which can be expressed as [32]

ν =
1

2
·
( cp
cs
)2 − 2

( cp
cs
)2 − 1

, (2.2)

where cp and cs are the compressional and shear sound velocities, respectively.

Sound velocity in water

As stated in Lurton [30], the sound velocity in water is influenced by temperature, hydrostatic

pressure and salinity. However, the experiments and simulations conducted in this master’s

thesis are performed using freshwater, which is non-saline. Hence, the sound velocity only

depends on the temperature Tc (°C) and gauge pressure PG (bar). This study will adopt

a simplified expression for calculating sound velocity in distilled water, cw as presented by

Kinsler [26],

cw = 1402.7+ 488
Tc

100
− 482

( Tc

100

)2

+135
( Tc

100

)3

+
(
15.9+ 2.8

Tc

100
+ 2.4

( Tc

100

)2)
· PG

100
, (2.3)

The gauge pressure can be calculated with

PG =
ρwgdw
1 · 105

, (2.4)

where ρw, g and dw are the density of water, gravitational acceleration and depth [26],

respectively. Equation (2.3) has an uncertainty of 0.05% for 0 < T < 100 °C and 0 < PG <

200 bar [23]. The confidence level is not provided, but 95% is assumed. Equation (2.3) is

subject to higher uncertainty because of particles in freshwater that may affect the speed of

sound.
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2.2 Reflection coefficient

When an acoustic wave propagating through a medium reaches the boundary of a second

medium, it generates reflected and transmitted waves [26]. The wave properties are deter-

mined by the angle of incidence and the characteristics of the media [26].

The critical angle θcp1j is defined:

θcp1j = sin−1

(
cp1
cj

)
j = p2, s1, s2 (2.5)

where θcp1p2 , θcp1s1 and θcp1s2 are the critical angles for the transmitted compressional wave

and the reflected and transmitted shear waves, respectively; cp1 and cp2 are the compressional

waves in media one and two, respectively; and cs1 and cs2 are the shear waves in media one

and two, respectively. If the incidence angle exceeds the critical angle, the corresponding

wave contains no energy and is evanescent, which results in total reflection [26]. The shear

and compressional waves have different critical angles because of the difference in sound

velocities [33].

A smaller reflection coefficient leads to more energy being transmitted into the next medium

[34]. As a result, the reflection coefficient can be studied to find a suitable frequency range

for the transducer. To determine the validity of the equivalent input impedance method,

introduced in Section 2.2.1, on a fluid–solid interface with a normal incidence angle (0°), the
method is compared to the fluid–solid equation presented in Section 2.2.2. The fluid–solid

interface is compared to the simulations in Section 4.2 to determine the simulation’s accuracy.

Fig. 2.1 illustrates an incident compressional wave on a solid–solid interface for an inci-

dence angle θI less than the critical angles θcp1p2 , θcp1s1 and θcp1s2 . The angle for the reflected

wave for the compressional wave is equal to the angle of incidence [26]. However, Snell’s law

determines the angles for the reflected shear wave and the transmitted shear and compres-

sional waves [26]. Snell’s law is given by the following formula [24]:

η =
ω

cp1
sin(θI) =

ω

cs1
sin(θRS

) =
ω

cp2
sin(θTP

) =
ω

cs2
sin(θTS

), (2.6)

where θRS
, θTS

, θRP
and θTP

are the angles for the reflected and transmitted shear waves

(Sv) and reflected and transmitted compressional waves (P), respectively, shown in Fig. 2.1.

16



Figure 2.1: Reflection and transmission on solid–solid interface with an incidence compressional wave (P)
between two semi-infinite layers. Sv is the shear wave

2.2.1 Reflection coefficient for a fluid–fluid interface

In the context of a fluid–fluid interface, only compressional waves need to be considered

[26]. The problem is simplified by assuming a vertical interface between the media and plane

waves. The reflection coefficient R12 for the compressional wave amplitude between two

semi-infinite layers at a fluid–fluid interface can be determined using the following formula

[30]:

R12 =

Z2

cos(θT )
− Z1

cos(θII )

Z2

cos(θT )
+ Z1

cos(θI)

. (2.7)

where θT is the transmitted angle, shown in Fig. 2.2. The characteristic acoustic impedance

for layer n, Zn, is defined [30]:

Zn = ρncpn n = 1, 2 (2.8)

where ρn and cpn are the layer’s density and compressional sound velocity, respectively, as

depicted in Fig. 2.2. The relationship between the transmission coefficient T12 and reflection

coefficient between two semi-infinite layers at a fluid–fluid interface is

T12 = R12 + 1. (2.9)
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Figure 2.2: Reflection and transmission on a fluid–fluid interface between two semi-infinite layers

The equivalent input impedance method, as outlined in Brekhovskikh [30], is a valuable

technique for incorporating additional fluid layers into an acoustic system. This method in-

volves the determination of the input impedance, which is the equivalent of the characteristic

acoustic impedance of layers n to one, denoted as Z
(n)
in [30]. The input impedance for each

layer interface can be calculated using the formula [30]

Z
(n)
in =

Z
(n−1)
in − iZntan(kncos(θn)dncos(θn)

Zn − iZ
(n−1)
in tan(kncos(θn)dncos(θn))

Zn (2.10)

where Zn is the characteristic acoustic impedance of the nth layer, kn is the wavenumber

in the nth layer kn = ω
cn

and dn is the thickness of the nth layer. Each subsequent layer

is dependent on the layer after it, with the first and last layers defined as Z
(1)
in = Z1 and

Zn+1, respectively. The resulting reflection coefficient for the compressional wave of the

multilayered structure, R(n+1)1, can be obtained using the formula

R(n+1)1 =
Z

(n)
in − Zn+1

Z
(n)
in + Zn+1

(2.11)

where n + 1 is the number of layers, as depicted in Fig. 2.3. Of note, the incidence wave

in the equivalent input impedance method is on the last layer of the multilayered structure,

n+ 1.
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Figure 2.3: Depiction of the equivalent input impedance method, where Zin is equivalent to the characteristic
acoustic impedance for layers n to one

2.2.2 Reflection coefficient of fluid–solid interfaces

As shown in Lunde [24], the reflection coefficient between two solids depends on the shear

and compressional waves. In this report, where there is a vertical fluid–solid interface along

the x-axis, the reflection coefficients for a solid–solid interface are given by the following

formulas [24]:

RPP
TZZ

=
A−

1

A+
1

RPS
TZZ

=
2ηkz1B

−
1

(2η2 − k2
1)A

+
1

RSP
TZZ

=
(2η2 − k2

1)A
−
1

2ηkz1B
+
1

RSS
TZZ

=
−B−

1

B+
1

(2.12)
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which have to be altered by removing the shear waves in the first medium, as shown in

Fig. 2.4, where RPP
TZZ

and RPS
TZZ

are the reflection coefficients for normal stress TZZ with an

incident compressional wave and reflected compressional and shear waves, respectively; RSP
TZZ

and RSS
TZZ

have an incident shear wave instead of a compressional wave; η is the horizontal

part of the wave numbers η = kx1 = hx1 = hx2 = kx2; h is the wavenumber for the shear

wave; kz is the vertical part of h; and A+ and A− are the complex amplitudes for the

displacement potential for compressional waves propagating in the positive and negative z-

directions, respectively, while B+ and B− are those for the shear waves. Subscripts 1 and 2

are for the first and second media, respectively.

Figure 2.4: Reflection and transmission on fluid–solid interface with an incidence plane pressure wave between
two semi-infinite layers

The boundary conditions for a solid–solid horizontal interface along the x-axis at the interface

at z = 0, [24]

ux,1 = ux,2 uz,1 = uz,2 Tzz,1 = Tzz,2 Txz,1 = Txz,2, (2.13)

where ux is the displacement in the x-direction. The boundary conditions are used to find

the following governing equations [24]:

η(A+
1 + A−

1 )− kz1(B
+
1 −B−

1 ) = ηA+
2 − kz2B

+
2 , (2.14)
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hz1(A
+
1 − A−

1 ) + η(B+
1 +B−

1 ) = hz2A
+
2 ηB

+
2 , (2.15)

µ1(2η
2 − k2

1)(A
+
1 + A−

1 )− µ12ηkz1(B
+
1 −B−

1 ) = µ2(2η
2 − k2

z)A
+
2 − µ22ηkz2B

+
2 (2.16)

µ12ηhz1(A
+
1 + A−

1 )− µ1(2η
2 − k2

1)(B
+
1 −B−

1 ) = µ22ηhz2A
+
2 + µ2(2η

2 − k2
z)B

+
2 , (2.17)

which describe the relations between the incident and reflected waves for a solid–solid inter-

face, where µ is the shear modulus, hz is the vertical component of h.

The reflection coefficient for a fluid–solid interface is derived from the reflection coefficient

for a solid–solid (2.12) by altering the left side of the governing Equations (2.14),(2.15)(2.16)

and (2.17) to correspond to a fluid material. The shear modulus for medium one is set to

zero, resulting in zero B+ and B− in the medium [24]. To avoid an overdetermined system,

the boundary condition ux,1 = ux,2 is omitted, which allows for slippage between the fluid

and solid in the x-direction [24]. As shown in Lunde [24], ρ1ω
2 is the result of applying

µ1 = 0 to µ1(2η
2 − k2

1). The resulting equations

hz1(A
+
1 − A−

1 ) = hz2A
+
2 ηB

+
2 , (2.18)

ρ1ω
2(A+

1 + A−
1 ) = µ2(2η

2 − k2
z)A

+
2 − µ22ηkz2B

+
2 (2.19)

µ22ηhz2A
+
2 + µ2(2η

2 − k2
z)B

+
2 = 0, (2.20)

describe the relationship between the incident and reflected waves for a fluid-solid interface,

where ρ1 is the material density for the first medium.

Since no shear waves exist in the fluid material, the reflection coefficients that include shear

waves RPS
TZZ

,RSP
TZZ

and RSS
TZZ

are of no interest. The compressional wave reflection coefficient

for a fluid–solid interface is

RPP
TZZ

=
A−

1

A+
1

. (2.21)

The solution for the complex amplitude A−
1 with an incident amplitude of A+

1 = 1 is derived
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from the governing Equations (2.18), (2.19) and (2.20),

A−
1 =

−hz1 + hz2G− 2η2hz2

H
G

−hz1 + hz2G+ 2η2hz2

H
G
, (2.22)

where the procedure is shown in Appendix A and G and H are given by the following

equations:

G =
ρ0,1ω

2

−µ2(2η2 − k2
2)−

4µ2η2kz2hz2

2η2−k22

(2.23)

H = η2 − k2
2. (2.24)

To test the formula’s validity, the shear modulus µ2 in the solid medium is gradually reduced,

and the result is compared to the fluid–fluid equation model (Equation (2.7)) described in

Section 2.2.1. The fluid–solid model converges towards the fluid–fluid model, as shown in

Appendix D.

2.3 Near and far fields

The concepts of near and far fields are fundamental in the field of acoustics, providing a

framework for understanding the propagation characteristics of acoustic waves emitted from

a source [26]. In the near-field, the contributions from different points on the source have

comparatively large differences in traveling distance, and as a results are strongly out of

phase and interact constructively and destructively [33, 35]. The resulting pressure field is

complex, oscillating with distance [33, 35]. However, its average intensity decreases by 1/r2

for spherical spreading [33], where r is the distance from the source. As the distance from

the source increases, the acoustic wave transitions into the far-field region. In this region,

the path difference between the signals coming from the different points of the transducer

is comparatively small, resulting in a minor variation in phase [33, 35], which means all

the interference between the signals is constructive [33]. As a result, the far-field pressure

decreases monotonously with distance and converges at large distances toward spherical

spreading [33]. An example of this is shown in Fig. 2.5, where the pressure from a baffled

circular piston in water with a radius a = 0.05, velocity amplitude U0 = 1 and a frequency

f = 100 kHz; the pressure amplitude on the axis converges towards spherical spreading.
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Figure 2.5: Near and Far field pressure amplitude pamp models for a baffled circular piston radiating into
water. Plotted against the distance from the piston r divided by the radius of the piston a = 0.05 m.
Properties of water: sound velocity cpw = 1481 m/s and density ρw = 1000 kg/m3. Equations from Kinsler
[26] for time t=0 and frequency f=100kHz.

The validity of the far-field model for a baffled piston model can be estimated with the

Rayleigh length [26]. The Rayleigh length ZR is a parameter that characterises the spatial

extent of the near field and depends on the radius of the transducer a and the wavelength λ

[26]:

ZR =
πa2

λ
(2.25)

2.4 Acoustic pressure, beam pattern and beam width

for a baffled circular plane piston

The baffled circular plane piston model consists of a rigid circular uniform piston, where the

hole piston moves with the same displacement, placed in a fluid with a rigid infinite wall

behind it, shown in Fig. 2.6. The result is the compressional wave able to radiate within

only 180 degrees in front of the piston. The models in this section are compared to the

simulations in Chapter 4 to determine the simulation’s accuracy.
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Figure 2.6: Circular plane piston mounted on a flat and rigid baffle of infinite extent

As discussed in Kinsler [26], the acoustic response in the far field and along the acoustic

axis, the z-axis, from a baffled circular plane piston radiating into a uniform medium can be

determined by the following formulas:

p(r, θ, t) =
j

2
ρcpU0

a

r
ka

2J1(kasin(θ)

kasin(θ))
ej(ωt−kr) (2.26)

p(r, 0, t) = ρcpU0

(
1− e−jk(

√
r2+a2−r)

)
ej(ωt−kr), (2.27)

respectively, where J1 is the first order Bessel function of the first kind and U0 and θ are

the velocity amplitude and angle from the sound axis (z − axis), respectively. The baffled

circular plane piston is depicted in Fig. 2.6. The far-field acoustic pressure can be expressed

as a product of axial pressure,

Pax(r, t) =
j

2
ρ0c0U0

a

r
kaej(ωt−kr), (2.28)

and a directional factor,

H(θ) =
2J1(kasin(θ)

kasin(θ)
, (2.29)
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p(r, θ, t) = Pax(r)H(θ) [26]. (2.30)

The directional factor can determine the beam pattern b(θ) [26]:

b(θ) = 20log10(H(θ)). (2.31)

The beam width is a measure of the angular extent over which the intensity of a signal

has decreased by a certain threshold value from the sound axis [26]. To define the effective

width of the major lobe, the values of 20log10
p(r,θ,t)
Pax(r,t)

are examined. No definition is universally

accepted for the specific value of 20log10
p(r,θ,t)
Pax(r,t)

that delineates the beam width [26]. However,

in this report, the beam width refers to the angle corresponding to half amplitude, specifically

−6 dB for the pressure amplitude 20log10
p(r,θ,t)
Pax(r,t)

unless otherwise specified. This corresponds

to the angle for −3 dB for the intensity I, given by formula 10log10
I(r,θ,t)
Iax(r,t)

. An illustration of

the beam width given by Equation (2.31) for a baffled circular uniform piston in water with

a radius of 0.05 m and a frequency of 100 kHz is depicted in Fig. 2.7.

Figure 2.7: Beam pattern for Equation (2.31) for a baffled circular uniform piston in water with a radius 0.05
m, a frequency of 100 kHz and a −6dB beam width marked in red. The water has a density of 1000kg/m3

and sound velocity of 1481 m/s

25



2.5 Transducer characteristics

Electro-acoustic transducers play a crucial role in the transmission and reception of under-

water acoustic signals [33]. These devices convert acoustic energy (mechanical energy) to

electrical energy, and vice versa [33]. The performance and suitability of electro-acoustic

transducers for particular applications depend on their electrical and acoustical character-

istics [33]. This section covers important transducer characteristics, including source and

receiver sensitivity, electrical impedance, Q-factor and bandwidth. Section 2.4 addresses the

definition of beam width and beam pattern.

2.5.1 Source and receiver sensitivity

In the field of transducers, the receiver- and source sensitivity play a crucial role in deter-

mining the performance and effectiveness of the transducer system [36]. Source sensitivity

relates to the transducer’s ability to convert electrical signals into pressure waves measured

at reference distance r = 1 m [36]. The sound pressure is measured in the far field and, if

necessary, extrapolated to the reference distance [36]. The source sensitivity can be defined

with the current I or the voltage V [36]:

SI =
p(r = 1 m), θ = 0

I
(2.32)

and

SV =
p(r = 1 m), θ = 0

V
, (2.33)

respectively. The receiver sensitivity refers to the ability of a transducer to convert incoming

acoustic signals into electrical signals [36]. It is defined as the relationship between the

voltage V from the receiver with an open circuit and the free field acoustic pressure p [36]

M =
V

p
. (2.34)

RV R and TV R represent the logarithmic source and receiver sensitivity values, respec-

tively, with FOM being the sum of RVR and TVR [37, 38]. RV R is determined using the

following formula [37]:

RV R = 20log10

(
M
1V

1µPa

)
, (2.35)
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while TVR is calculated using the following formula [37]:

TV R = 20log10

(
SV

1µPa
1V

)
. (2.36)

AIRMAR’s approach to measuring RVR and TVR is detailed in Appendix G.

2.5.2 Transducers electrical impedance and admittance

The electrical impedance and admittance of an acoustical transducer provide valuable infor-

mation about its electrical characteristics and behaviour [39]. They reflect the complex rela-

tionship between the voltage and current responses of the transducer when an electrical signal

is applied [39]. Analysing the electrical impedance and admittance can gain insights into

the transducer’s electrical performance, such as its efficiency [36]. The electrical impedance

and admittance can be measured as functions of frequency using an impedance analyser [39].

At a series resonance frequency fs, the transducer exhibits a maximum conductance, which

is the real part of admittance, indicating the most dissipated effect and highest sound in-

tensity [36]. The bandwidth in this study is defined as the frequency range over which the

electrical impedance is within −3 dB [39]. The bandwidth corresponds to the range where

the transducer’s response is considered acceptable and functional for the desired application.

The Q-factor of an acoustical transducer can be estimated by analysing its electrical con-

ductance or impedance [39]. It is a measure of the selectivity or sharpness of the resonance

of the transducer, providing information about its bandwidth and energy dissipation [39, 36].

The electrical impedance curve around the maximum frequency top (resonant frequency

fn) is examined to determine the Q-factor [39]. The Q-factor is related to the width of

the electrical impedance curve at its −3 dB points (half-amplitude points) on either side of

the resonance [39]. By measuring the distance between the −3 dB points on the electrical

impedance curve and dividing it by the resonant frequency, the Q-factor can be calculated.

Mathematically, the Q-factor can be expressed as [39]

Q = fn/∆f, (2.37)

where ∆f is the bandwidth of the electrical impedance curve at the −3 dB points.
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A higher Q-factor indicates a more narrow band response with a sharper resonance peak,

while a lower Q-factor signifies a broader bandwidth and a less pronounced resonance [36, 39].

The lower the Q-factor, the less ringing in the ceramic element and the better the perfor-

mance of AIRMAR transducers [38]. Ringing refers to the amount of time the ceramic

elements vibrate after the input signal [38].

2.6 Finite element method

The description of the laws of physics for space- and time-dependent problems are usually

expressed in terms of partial differential equations (PDEs) [40]. For most geometries and

problems, these PDEs cannot be solved with analytical methods [40]. Instead, the equation

can be approximated, typically based upon different types of discretisations [40]. These dis-

cretisation methods approximate the PDEs with numerical model equations, which can be

solved using numerical methods [40]. The solution to the numerical model equations is, in

turn, an approximation of the real solution to the PDEs [40]. The finite element method

(FEM) is used to compute such approximations [40].

In this master thesis, the finite element (FE) program COMSOL is chosen for the simu-

lations. The problems in this study have to be discretised in time and space. Space dis-

cretisation involves creating a mesh by dividing the area of interest into smaller pieces called

elements, which is comprised of nodes [40]. The nodes are where the calculations take place

[40]. Solutions for the points between these nodes are interpolated from neighbouring nodes,

providing a continuous solution [40, 41]. Time discretisation is the time increment between

each calculation [41].

2.6.1 Time-explicit and -implicit

This study explores the use of both time-implicit and -explicit solvers. The time-explicit and

-implicit solvers address dynamic problems by calculating a series of time increments [41].

The difference between these methods is in how they increment time [23].

The time-implicit solver calculates each increment by first establishing the model’s global

equilibrium, meaning that each increment has to converge [23]. After verifying the global
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equilibrium, the solver calculates the variables [23]. The variables for the time-implicit solver

are pressure for the Pressure Acoustics, Transient module (fluid physics) and displacement

for the Solid Mechanics module (solid physics) [42]. The equations for the time-implicit fluid

physics is [42]
1

ρc2p

∂2pt
∂t2

+∇ ·
(
−1

p
(∇pt − qd)

)
= Qm, (2.38)

where pt, qd, ∇·, ∇ andQm are the total acoustic pressure, fluid density, dipole domain source

(representing a domain volumetric force), divergence, gradient and a mono-pole domain

source (source with a uniform strength in all directions), respectively. The equation for the

time-implicit solid physics is [42]

ρ
∂u

∂t2
= ∇ · S + Fv, (2.39)

where Fv is the volume force vector for the undeformed volume and S is the strain.

The time-explicit solver assumes that the global equilibrium is verified and does not have to

converge each increment [23]. Therefore, the time-explicit solver only calculates the variables.

To assume that the global equilibrium exists, the time increments have to be extremely small

[23]. Otherwise, equilibrium cannot be maintained. The variables for the time-explicit solver

are pressure and displacement for the Pressure Acoustics, Time Explicit (fluid physics) and

structural velocity v for the Elastic Waves, Time Explicit (solid physics). The equations for

the time-explicit fluid physics is [42]

1

ρc2
∂pt
∂t

+∇ · ut = Qm, (2.40)

ρ
∂ut

∂t
+∇ · (ptIt)qd, (2.41)

where ut is the total acoustic velocity and It is the unit matrix. The equations for the

time-explicit solid physics is [42]

ρ
∂v

∂t
−∇ · S = Fv, (2.42)

∂ϵ

∂t
− 1

2
(∇v + (∇v)T ) = 0, (2.43)

where ϵ is the strain tensor.
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The time-explicit solver does not iterate for the global equilibrium and, thus, calculates

the time increments faster than the time-implicit solver [23]. However, the time-implicit

solver allows for larger time increments, resulting in fewer calculations. As a result, the

time-implicit solver is better in situations where high time resolution is unnecessary [23].

Conversely, the time-explicit solver is better when high time resolution is needed. Therefore,

in this study, where ultrasound is simulated, the time-explicit solver is expected to be more

efficient [23].

2.7 Defects

Several defects are of interest in offshore structures. The most common are debonding and

slippage between the grout and steel, as well as cracks and voids in the grout [3]. This study

focuses on voids in the grout, particularly the deeper layers of the grout; therefore, slippage

and debonding, which occur in the boundary of the steel and grout, are not considered.

Voids in the grout are of concern because they are larger and easier to spot than cracks,

and confirm the penetration of the grout if discovered. For the effective detection of defects

in grout, a general rule of thumb is that the size of the defect should be at least half the

wavelength [43].

2.8 Resonance frequencies

Acoustic resonance refers to the phenomenon that occurs when an object or cavity vibrates

at its natural frequency in response to an external sound stimulus [26, 44]. It is a fundamen-

tal principle in the acoustics field, significantly impacting the scattering cross-section, which

maximises during resonance [26]. When a sound wave aligns with the natural frequency of

an object or resonant cavity, the energy of the sound efficiently transfers to the vibrating

system, resulting in a substantial increase in vibration amplitude [26, 44]. This amplification

of vibrations can manifest as audible sounds or even structural oscillations [44]. The compre-

hensive understanding and effective control of acoustic resonance phenomena are crucial for

optimising the performance of acoustic measurements [44]. Therefore, the study of acoustic

resonance is vital in theoretical research and practical applications concerning sound and

vibration [44].
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In this study, the focus revolves around four significant resonance frequencies: a gas-filled

spherical cavity in a solid material, a gas-filled cylindrical cavity in a solid material, a cube-

shaped solid and a solid plate with infinite width. In this case, the gas-filled cylindrical

cavity and cube-shaped solid have multiple close resonances. When resonant frequencies are

closely situated, the vibrational modes associated with these frequencies can interact and

influence each other [45]. This interaction, known as modal coupling, leads to modifications

in the resonant frequency, making it challenging to determine [45]. To address this, FEM

is employed to determine the resonance frequency for the coupled modes. FEM analysis is

utilised to estimate the resonance frequency for the gas-filled cylindrical cavity by modelling

a gas-filled cylinder with rigid boundary conditions. Similarly, the resonance frequency for

the cube-shaped solid is estimated using FEM analysis on a cube-shaped solid placed in a

vacuum environment.

The resonance frequency f0 for the gas-filled spherical cavity in a solid is found with the

equation

f0 =
1

2πab

(
3γP0

Aρs
+

4G

ρs

) 1
2

, (2.44)

where ab, γ, P0, ρs and G are the bubble radius, ratio of specific heats of the gas, ambient hy-

drostatic pressure of the gas, density of the solid and shear modulus of the solid, respectively

[46], and A is the gas polytropic coefficient given by the following equation:

A = (1 +B2)

[
1 +

3(γ − 1)

X

(
sinh(X)− sin(X)

cosh(X)− cos(X)

)]
, (2.45)

where X and B are given by equations

B = 3(γ − 1)

(
X(sinh(X) + sin(X))− 2(cosh(X)− cos(X))

X2(cosh(X)− cos(X)) + 3(γ − 1)(sinh(X)− sin(X))

)
, (2.46)

X =
rωρgsp
Cp

(2.47)

respectively [44], where ρg, sp and Cp are the density of the gas, specific heat at a constant

pressure of the gas and thermal conductivity of the gas, respectively.

The resonant frequency for a solid plate width infinite width is the thickness resonance
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frequency, which can be determined with formula [47]:

f0 =
c0
2d

, (2.48)

where d is the thickness of the plate. This thickness resonance is calculated both for the

compressional- and shear waves.

2.8.1 Scattering cross section

The scattering cross section σs is a measure of how much energy is radiated away by scatters

[48]. The acoustical scattering cross section of gas spheres is significant because of the

compressible nature of the gases, which can result in a significantly larger scattering cross

section compared to the geometric cross section [48]. The scattering cross section of the

gas-filled spherical defect can be calculated with formula [49]:

σs =
4πa2b

((f0/f)2 − 1)2 + δ
, (2.49)

where δ is the dampening constant taken from [49]. Formula 2.49 is from Medwin [49], which

is for a fluid sphere within a fluid medium. In this study the scattering from a fluid sphere

within a solid medium is of interest, but this formula was not located [50].

2.9 Attenuation

Attenuation in acoustics refers to the decrease in the intensity or energy of sound waves

as they travel through a medium [26]. This reduction is due to various factors, including

absorption, scattering and reflection, leading to a decrease in the amplitude and energy of

the sound wave over distance or as it interacts with the medium and surrounding objects.

In the case of concrete, the primary contributors to energy loss are absorption within the

material and scattering from the aggregates and air bubbles present in the concrete [51].

Absorption is a common attenuation mechanism in acoustics, where the material absorbs

sound energy. The absorbed energy is then converted into other forms, such as heat, reduc-

ing the sound’s intensity [26]. Scattering, on the other hand, takes place when sound waves

encounter minor irregularities or objects in their path. As a result, the waves are scattered
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in various directions, leading to an overall decrease in the intensity of the sound field [26].

This study adopts the Rayleigh damping model because of its compatibility with the simula-

tion program COMSOL. Rayleigh damping has gained wide acceptance in dynamic analysis,

owing to its advantageous feature of being proportional to the stiffness and mass of the

structure, allowing for a convenient decoupling of dynamic equations [52]. Moreover, the

structural damping ratio derived from Rayleigh damping is frequency-dependent, making it

more suitable for accurately reflecting the dynamic properties of the structures [52]. The

Rayleigh damping coefficient, Rα, is related to mass and stiffness s through the equation

Rα = αm+ βs, (2.50)

where α and β are the mass and stiffness damping coefficients, respectively [52]. These

damping coefficients can also be employed to compute the damping in decibels per meter

(dB/m) using the equation

αdB =
α

2cp
+

β

2cp
ω [52] (2.51)

.

2.10 Signal processing

Signal processing plays a vital role in acoustics by analysing, manipulating and improving

sound signals [53]. Its primary objective is to enhance signal components in the presence

of noise or to transform measured datasets to reveal new features [53]. Acoustic signals are

inherently complex, containing valuable information about the surrounding environment [53].

Signal processing techniques enable us to extract and interpret this information effectively

[53]. In the field of acoustics, signal processing finds application in measurement systems

where tasks like noise reduction, equalisation, spatial imaging and reverberation control are

crucial [53]. Researchers and engineers can derive meaningful insights from sound signals

and conduct accurate measurements and analyses by employing signal processing in acoustics

[53].

2.10.1 Filters

Filters are crucial when modifying the frequency content of signals [53, 54]. Three commonly

used filters are low-, high-, and band-pass filters, each designed to pass or attenuate specific
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frequency ranges selectively.

A low-pass filter allows frequencies below a specific cutoff value to pass through while at-

tenuating higher frequencies [53, 54]. It effectively removes or reduces high-frequency com-

ponents, allowing for the retention of a signal’s lower-frequency components. Conversely, a

high-pass filter allows frequencies above a specified cutoff value to pass through while atten-

uating lower frequencies [53, 54]. As the name suggests, a band-pass filter allows a specific

range or ’band’ of frequencies to pass through while attenuating frequencies outside this

range [53, 54]. It effectively combines a low- and high-pass filter, isolating signals within a

desired frequency range.

These filter types can be implemented using various techniques, including analogue circuits,

digital filters and software algorithms [53, 54]. In this study, digital filters are implemented.

The choice of filter type depends on the application’s specific requirements, such as desired

frequency range, cutoff steepness and the attenuation needed for out-of-band frequencies

[53, 54]. By appropriately selecting and applying these filters, the signal’s shape and fre-

quency content can be manipulated to meet their desired objectives [53, 54].

2.10.2 Fast Fourier transform

The fast Fourier transform (FFT) is an efficient algorithm widely used in digital signal pro-

cessing and applied mathematics to compute the discrete Fourier transform (DFT) and its

inverse (IDFT) [55]. The DFT is a mathematical transformation that allows us to analyse

signals in the frequency domain. The DFT decomposes a time-domain signal or sequence

of data points into its frequency components, revealing the presence of various frequen-

cies and their corresponding magnitudes. By converting signals from the time domain to the

frequency domain, the DFT enables applications such as spectral analysis, filtering, compres-

sion and audio processing. The IDFT can be applied to reconstruct the original time-domain

signal from its frequency representation [55].
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The FFT revolutionised signal processing by significantly reducing the computational com-

plexity of Fourier analysis, making Fourier transforms practical to compute for large datasets

[55]. Its speed and versatility make it an indispensable tool in numerous disciplines, including

acoustics [55]. The FFT and inverse FFT (IFFT) uesed in this study are given by equations

[56]

Y =
n∑

j=1

X(j)W (j−1)
n , (2.52)

X =
1

n

n∑
j=1

Y (j)W−(j−1)
n , (2.53)

where Y and X are the frequency- and time-domain signals, respectively, and Wn is given

by [56]

Wn = e
−2πi

n . (2.54)

Zero padding is utilised to increase the frequency resolution by adding zeroes at the end of

the time-domain signal to increase the number of samples in the frequency spectrum [55].

The zeroes at the end of the time-domain signal can ensure that the signal length is in the

sequence of the power of two, increasing computational speed [55].

Windowing

Window functions, also known as tapering functions, play a crucial role in signal processing,

particularly in the context of the Fourier transform [57, 55]. These functions are applied to a

signal segment before performing analysis, such as the FFT, to reduce spectral leakage and

minimise the impact of signal truncation [57, 55]. The windows considered in this study are

the Hamming and Hanning functions, some of the most commonly used window functions,

which balance amplitude accuracy, spectral leakage and main lobe width well [57, 55].

The Hamming window tapers the signal smoothly towards the edges, reducing abrupt tran-

sitions and spectral artefacts [57]. The Hamming window provides a balance between good

beam width and moderate side lobe attenuation [57, 55]. The Hamming window is especially

effective on the first side lobe [57]. Hamming window is defined as [58]

wHann(n) = 0.54− 0.46cos

(
2π

n

N

)
0 ≤ n ≤ N, (2.55)
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which assigns weight values to each sample in the segment n for the length of the signal N ,

creating a smooth transition from the centre to the edges [57, 55]. The Hanning window is

similar to the Hamming window but with slightly different weight values given by [59]

wHamm(n) =
1

2

(
1− cos

(
2π

n

N

))
0 ≤ n ≤ N. (2.56)

The Hanning window provides improved side lobe suppression at the expense of slightly wider

main lobes [57, 55]. The rectangular window does not apply tapering and is equivalent to no

windowing. The rectangular window has the narrowest main lobe but suffers from significant

side lobe leakage [57, 55].

2.10.3 Averaging

In signal processing, averaging is a commonly used technique to reduce noise and enhance

the quality of signals [53, 54]. It involves taking multiple measurements or samples of a

signal and calculating the average value at each point [53, 54]. The purpose of averaging in

signal processing is to attenuate random variations or unwanted noise present in the signal

[53, 54]. However, averaging does not help remove systematic noise [53]. Averaging can be

particularly useful when dealing with noisy signals, such as sensor measurements [54]. By re-

ducing random fluctuations and emphasising the underlying signal, averaging helps improve

the accuracy and reliability of subsequent signal analysis [54].

Several conditions for the use of averaging are listed [53]:

• Signal and noise are uncorrelated.

• The timing of the signal is known.

• A consistent signal component exists when performing repeated measurements.

• The noise is truly random with zero mean.

In practice, all these assumptions are violated to some degree, but the averaging technique

has been proven remarkably robust for minor violations [53].

Different averaging techniques are used depending on the specific application [53]. The

method used in this study is called arithmetic averaging, where multiple samples of the

signal are added together and divided by the number of samples. This technique helps to

smooth out high-frequency noise and improve the signal-to-noise ratio [53].
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Chapter 3

Experimental setup and methods

This chapter encompasses the systematic design, implementation, and execution of the ex-

periments, employing appropriate methodologies, equipment, and measurement techniques.

The conducted experiments included both electric and acoustic measurements, in addition

to assessments of dimensions and mass. An overview of the employed equipment is provided

in Section 3.1. Section 3.2 explain the measurement setup, including details of the samples’

dimensions and the standoff distance.

The characteristics of the transducer are presented in Section 3.3, encompassing factors such

as the frequency range and electrical- and acoustical properties. The electronic components

within the measurement system are addressed in Section 3.4. Material characteristics rele-

vant to the grout and water are discussed in Section 3.5. The creation of defects is detailed

in Section 3.6, while the signal processing procedures applied to the signals are explained in

Section 3.7.
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3.1 Equipment

An overview of the equipment used is given in Table 3.1.

Table 3.1: List of equipment

Type of equipment Brand Serial number/article number

Physical measurements

Digital caliper Cocraft 40-8747
Digital scale Duxa 7090016047093,00
Digital scale Clas Ohlson 44-2591-1
Water tank Fig. 3.5

Electrical measurements

Impedance analyzer Bode 100 RK151K

Acoustical measurements – Instruments

Transducer AIRMAR B175M
Amplifier TSC subsea PA12
Receiver TSC subsea ADM 16.6761.14.10.16
Oscilloscope Tenma 72-31555 2170004070
Thermometer Termometerfabriken viking AB 36-1613
Signal generator Aim-TTi CPX400S 435690

Acoustical measurements – Positioning

Small levelling tool
Standard levelling tool
3-Axis Scanning System LG Motion Fig. 3.1
Ruler Kellen 7025180622883

Concrete

Ordinary Portland cement (OPC) (42,5R) Infra 7025180654921,00
Bucket 20L
Tub 90L
Mortar stirrers Biltema 17-391
Stand for grout Fig. 3.2
Concrete vibrator Meec Tolls 271001
Heavy-duty fishing thread Campelen
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Figure 3.1: Picture of measurement setup

Figure 3.2: Gout mould with cylindrical defect
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3.2 Measurement setup

The primary objective of this study is to investigate the penetration depth of the grout.

Therefore, the steel plates were removed from the grout, allowing for a more thorough

examination of the grout without any interference. However, because of mould limitations,

the dimensions of the grout were constrained to 30 cm wide, 30 cm long and 15 cm deep,

Fig. 3.3, with a 2D depiction of the model in Fig. 3.4.

Figure 3.3: Dimensions of grout
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Figure 3.4: Depiction of the measurement setup

In the experimental setup, a water tank was utilised with dimensions of 1×1.3×1.8 m, with

the grout sample placed in the middle of the tank 10 cm from the bottom, as illustrated in

Fig. 3.5. The maximum distance between the transducer and the grout sample, known as

the standoff distance, was limited to 60 cm.

Several factors must be considered when choosing the standoff distance, the distance between

the transducer and the grout sample. The dimension limitation of the grout made end-effects

a concern. Another limiting factor is the reflection from the transducer and the side of the

water tank. Fig. 3.6 shows a plot of the arrival time of the signal of interest, end-effects and

reflections from the transducer and water tank against the standoff distance.
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Figure 3.5: Water tank dimensions

Figure 3.6: Transit time for the signal of interest, end-effects and reflections from the transducer and water
tank

The signal of interest (Ti) is the time it takes for the reflected signal from the front and

back interfaces of the grout, including three reverberation periods, to reach the transducer,

calculated with the formula

Ti =
2Tx

cw
+ 4

(
2
Gx

cpg

)
+
SL

cw
, (3.1)

where Tx, Gx, cpg and SL are the standoff distance, grout width, compressional sound ve-
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locity in grout and signal length, respectively. End-effects are the pressure waves from the

material’s edges, as depicted in Fig. 3.4. The end-effect in focus results from the incident

wave with the critical angle because it has the least transit time, as shown in Appendix E.

The end-effect (Te) is determined using the formula

Te =

√
T 2
x +G2

y1

cw
+

√
T 2
x +G2

y

cw
+

Gy1

cpg ,
, (3.2)

where Gy1 is the distance from the incidence of the acoustic wave on the grout–water interface

and grout edge and Gy is half the width of the grout, shown in Fig. 3.4. Furthermore, the

reflection from the transducer and water tank is calculated by dividing the distance travelled

by the sound velocity in the water.

Fig. 3.6 illustrates that the end-effect arrives before the signal of interest, irrespective of the

standoff distance, implying that the end-effects influence the signal. To prevent reflections

from the transducer and water tank from affecting the measurements, a standoff distance of

0.4 m is selected.

3.3 Transducer

The transducer used in this study was an AIRMAR B175 with a 10 m long AIRMAR C335

cable. An overview of some of the important transducer specifications is given in Table 3.2,

with additional information in the datasheet in Appendix G

Table 3.2: Transducer specifications for AIRMAR B175

Transducer specifications Value
Beamwidth (105 kHz) 13°
RVR (105 kHz) −182 dB
TVR (105 kHz) 169 dB
FOM (105 kHz) -13 dB
Q-factor 2

3.3.1 Frequency range

The suitability of the transducer’s frequency range was assessed by examining the reflection

coefficient for the grout with and without steel plates, which was calculated using the equiv-

alent input impedance method discussed in Section 2.2.1. The analysis of the transducer’s
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suitability included steel plates to have a suitable transducer for further research. The analy-

sis involved a configuration with a 0.15 m thick grout sample sandwiched between two 0.03 m

thick steel plates, all immersed in an infinitely thick water layer, with each layer assumed to

be infinite in length and depth, as depicted in 2D in Fig. 3.7. Fig. 3.8 presents the reflection

coefficient for normal incidence (zero-degree incidence angle). The figure displays an even

distribution of nodes, and within the frequency spectrum of 85 to 135 kHz, multiple nodes

are evident. These nodes correspond to frequencies where the most energy is transferred

into the steel and grout layers [34].

Figure 3.7: Depiction of layers used to calculate the reflection coefficient with the equivalent input impedance
method
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Figure 3.8: Reflection coefficient of a 0.15 m thick grout sample sandwiched between two 0.03 m thick steel
plates, all immersed in an infinitely thick water layer, with each layer assumed to be infinite in length and
depth. The characteristics of the grout are found in Section 3.5, and the steel’s characteristics are density
of 7850kg/m3, cp=5856m/s and cs=3130m/s

Furthermore, the reflection coefficient was also examined for a 0.15 m thick grout sample in

an infinitely thick water layer, where each layer was considered infinite in length and depth,

as in Fig 3.7 without the steel plates. Fig. 3.9 illustrates the reflection coefficient for normal

incidence, and similarly to the steel-covered grout scenario, the frequency spectrum of 85 to

135 kHz shows several nodes.
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Figure 3.9: Reflection coefficient for a 0.15 m thick grout sample in an infinitely thick water layer, where
each layer was considered infinite in length and depth. The characteristics of the grout are found in Section
3.5

Based on these observations, the frequency range of 85 to 135 kHz provided an acceptable

bandwidth for the transducer’s operation, achieving energy transfer into both the steel and

grout layers.

3.3.2 Electrical impedance

The electrical impedance measurements were conducted using an OMICRON LAB Bode100

vector network analyser, as depicted in Fig. 3.10. Prior to the impedance measurements, the

Bode100 was calibrated using an open, shorted and loaded circuit, as detailed in [60]. The

impedance measurements were performed on the transducer with a 10 m cable attached while

the transducer was placed in the water tank. The frequency resolution on the impedance

measurements was 36.6 Hz.
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Figure 3.10: OMICRON LAB Bode100 vector network analyser [61]

3.3.3 Beam pattern

The beam pattern of a transducer is known to exhibit frequency dependence since it relies on

the wave number, which in turn is dependent on the frequency [26, 62]. The beam pattern

is also influenced by the transmitting radius [62]. The transducer’s dimensions are given in

Appendix G, where the radius of the vibrating surface of the transducer is 95 mm and a

total surface of 135 mm. The specific beam patterns for frequencies of 85, 105 and 135 kHz

are provided in the transducer’s datasheet, as referenced in Appendix G. The corresponding

beam widths, denoted as θAR, are reported as 16°, 13° and 11° for the respective frequencies.

To calculate the footprint of the transducer, Pythagoras was employed. The beam diameter

Db at a standoff distance z = 0.4 m is determined using

Db = z ∗ tan(θAR/2) ∗ 2. (3.3)

Substituting the given beam width values, the beam diameters for frequencies of 85, 105

and 135 kHz are calculated as 0.1124, 0.0911 and 0.0770 m, respectively. Consequently, the

corresponding beam areas are estimated to be 0.0993, 0.0065 and 0.0047 m2, respectively.
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3.4 Electronics

The electronics in the measurement setup consisted of a signal generator, amplifier, oscillo-

scope, transducer and receiver with cables connecting them, as shown in Fig. 3.11.

Figure 3.11: Diagram of the electronics in the measurements setup

3.4.1 Receiver and amplifier

The ADM16 receiver and PA12 amplifier were designed to handle higher frequencies than

those used in this study. The ADM16 has a bandwidth ranging from 300 kHz to 3 MHz, as

depicted in Fig. 3.12, showing its frequency response. The transducer’s bandwidth is 85 to

135 kHz, which falls outside of the receiver’s bandwidth, and no data were available in this

frequency range. Operating outside the receiver’s bandwidth could significantly impact the

signal’s frequency components, making it challenging to compare with simulated cases.

Figure 3.12: ADM16 receiver frequency response
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Similarly, the PA12 amplifier is intended for the same bandwidth as the receiver, but unfortu-

nately, no data were available regarding its frequency response. The amplifier was connected

to a signal generator generating a linear chirp ranging from 60 to 140 kHz, with the ampli-

fiers impact on the signal measured with an Oscilloscope. The effect of the amplifier on the

signal’s normalised amplitude is presented in Fig. 3.13 (right), while Fig. 3.13 (left) displays

the frequency response. The amplifier introduces high-frequency components and distorts

the signal.

Figure 3.13: Normalised amplitude before and after electronics (signal generator–amplifier–oscilloscope)
(left) and frequency response before and after electronics (signal generator–amplifier–oscilloscope) (right)

3.5 Material characteristics

The propagation of sound within a medium is greatly influenced by its material character-

istics. The speed of sound in the medium plays a critical role in determining the expected

travel time of a signal. Knowing the signal’s travel time allows for calculating the impact

of end-effects and reflections from the transducer and water tank, as demonstrated in Sec-

tion 3.2. The material’s density and sound velocity are vital parameters for the simulations

conducted in Chapter 4 of the thesis.

3.5.1 Grout

The grout used in this study was a mix of ordinary Portland cement (OPC) and water.

A pure cement and water mixture results in weak grout, which is very uncommon. In the

literature, the studies used grout and cement containing sand, chemicals or gravel [63, 64, 65].
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Density

The density of the grout was determined experimentally because of the unusual gout mixture,

2007 g/dm3 in this study, which is lower than reported in studies in which the grout contained

sand, gravel or chemicals. Weight and length measurements of the grout are presented in

Appendix F

Size

The dimensions of the grout sample were determined based on the materials at hand for

creating a mould, as well as the steel plates intended to cover the front and back of the grout

specimen. The mould utilised in this investigation was crafted from a wooden frame, covered

by steel panels at its front and rear, while its sides were covered by plexiglass, as illustrated

in Figure 3.2. Owing to the necessity of disassembling and reassembling the mould for each

sample, the sizes of the samples exhibited variations, as detailed in Appendix F.

Sound velocity

As discussed in [66, 67], the sound velocity in grout is affected by the water-to-cement ratio

and the curing time of the grout. The experiments in this master’s thesis were conducted

with a water-to-cement ratio of 0.28. The grout’s curing time significantly impacts the sound

velocity but stabilises around 40 hours [66, 67]. Therefore, the grout used in the experiments

had a curing time of at least two days. The pressure wave velocity used in this study was

estimated to be 3700 m/s based on sources [66, 67].

The shear wave speed was determined using Poisson’s ratio (2.2) [13] and was estimated

based on previous research [68]. The specific dataset under examination involved cement

mixtures possessing a cement–water ratio of 0.3, with varying quantities of aggregates. Of

note, Poisson’s ratio is influenced by the aggregate content within the mixture, where reduced

amounts of aggregates lead to higher Poisson’s ratios. Additionally, the hydration process

of concrete also contributes to an increase in Poisson’s ratio [68]. In the present study, the

concrete samples utilised were devoid of aggregates and were completely hydrated, resulting

in a comparatively high Poisson’s ratio, estimated at 0.26 [68]. This resulted in a shear wave

speed of 2331 m/s.
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3.5.2 Water

Density

The density of water is influenced by temperature. For the specific testing case, the water

temperature was recorded as 21°C. The density of water is determined to be 998 kg/m³ [69].

Minor deviations from this figure are anticipated, owing to the presence of slight quantities

of steel rust and grout within the water employed in the experiment.

Sound velocity

The speed of sound in water can be calculated using Equation (2.3). Equation (2.3) was

subject to higher uncertainty than if applied to distilled water because of the presence of

particles. The number of particles in the water was unknown, but to limit the amount of

uncertainty, the tank was cleaned, and the water was changed three days before testing. The

water was then left to warm to room temperature (21°C) and let the gas content reduce. The

hydrostatic pressure at a depth of 0.5 m can be determined utilising Equation (2.4), yielding

a hydrostatic pressure of 0.04889 Bar. The speed of sound in water at a temperature of 21°C
is established to be 1485.2 m/s.

3.6 Defect

This study introduced two distinct types of void defects, namely spherical and cylindrical,

with the center placed at a depth of 5 cm. The spherical defect had a radius of 2 cm, while

the cylindrical defect had a radius of 3.5 cm and a height of 2.4 cm. The wavelength in

the grout for 85 and 135 kHz were 0.0435 and 0.0274 m, respectively. The defects were

larger than half the wavelength and were, therefore, large enough to be detected with the

frequency bandwidth chosen. The voids were created using solid plastic objects filled with

air. Specifically, a ping pong ball was used to form the spherical void, while a snuff box

was used to create the cylindrical void. To achieve accurate positioning, the objects were

securely attached using a fishing string, as illustrated in Figure 3.14.
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Figure 3.14: How the cylindrical defect was made with a snuff box fastened inside the grout mould at a
depth of 5 cm

3.7 Signal processing

In the experimental part, the signal underwent a series of processing steps. Initially, it was

averaged over 20 samples to reduce random noise. Subsequently, a digital band-pass filter

was employed, with a low cutoff frequency set at 50 kHz and a high cutoff frequency at 150

kHz, which is slightly outside of the transducer bandwidth. After this filtering operation,

the reverberation portion of the signal was extracted. Then, a point close to zero was found

in the start and end of the signal, which were utilised as the start and the end of the signal

to avoid aliasing. After the start and end point of the reverberation was found a Hamming,

Hanning or rectangular window functions was applied. These window functions shaped the

signal segments before the FFT calculation, with each window providing a distinct trade-off

between main lobe width and side lobe attenuation. The use of these window functions

enables the frequency content of the reverberation signal to be analysed. Window functions

Hamming and Hanning are plotted in Fig. 3.15 (right) together with a general signal, the

effect from applying the filters are shown in Fig. 3.15 (left). After the window functions

were applied, an FFT of the signal was carried out. The MATLAB code used is presented

in Appendix H.
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Figure 3.15: Right:Hamming and Hanning windows plotted with a general signal
Left:Result of Hamming and Hamming window applied to the signal (rectangular window)



Chapter 4

Finite Element Simulations

In this chapter, the FE method is used to simulate the reflected signal from the multilayered

structure depicted in Fig. 4.1. In this chapter, the experimental setup is simulated in addition

to a setup that does not include end-effects and a deformed pulse. The chosen approach

involves gradually building the model and comparing the FE solution to analytical formulas

from Chapter 2 at each stage. This approach was chosen to check the right implementation

of the FE model as the model becomes increasingly more complex.
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Figure 4.1: Illustration of the complete multilayered structure consisting of a transducer radiating into water,
which contains steel, grout with a spherical defect and steel structure with water on the other side

The simulation tool COMSOL was chosen for the FE simulation based on the experience with

the tool in the acoustics group at the University of Bergen as a capable physical acoustics

simulation tool in the time domain. A baffled piston source is utilised instead of a transducer

for a simpler simulation and interpretation of the signal. In this study, the construction of

the multilayered structure involves several sequential steps. Firstly, a baffled piston model

is created in water, as described in Section 4.1. This step analyses the incident wave and

55



determines the optimal meshing element size. Subsequently, a solid material is introduced

into the model to examine the reflection coefficient. This was accomplished by incorporating

a semi-infinite solid steel plate into the simulation, as detailed in Section 4.2. The complete

multilayered model is simulated, as outlined in Section 4.3, with the experimental simulation

in Section 4.4. Lastly, the simulation to determine the resonance frequencies are covered in

Section 4.5

The FE models are set up utilising the 2D axisymmetric spatial dimension, where the model

is axisymmetric around the z-axis [70]. Section 2.6.1 explains two ways to simulate physics

in the time domain. In COMSOL, the time-implicit and -explicit physics modules are Pres-

sure Acoustics, Transient and Pressure Acoustics, Time Explicit modules, respectively [42].

In Section 4.1.2, the Pressure Acoustics, Time Explicit module and Pressure Acoustics,

Transient module with different meshing are utilised, and their solutions are compared to

analytical axial pressure from Section 2.4.

4.1 Piston radiating into infinite water medium

This section covers the initial model, which consists of a baffled circular plane piston that

transmits into an infinite water medium, as described in Section 2.4. The geometry of the

model consists of one-fourth of a circle with a two-wavelength–thick layer, as depicted in

Fig. 4.2. The parameters utilised in the model are presented in Table 4.1.

The piston is modelled using a normal velocity boundary condition for a line at z = 0

from r = 0 to r = a, where a is the radius of the piston. A Sound Hard Boundary condition

is applied to the boundary along the r-axis, except for the piston segment, to simulate the

presence of a baffle. Additionally, to minimise reflections at the outer boundary of the cir-

cular shape, an impedance condition is applied. No boundary is applied to the z-axis as the

model is axisymmetric around the z-axis. The material water is implemented into the model,

where the parameters of the water is changed to match with the material characteristics in

Section 3.5.
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Figure 4.2: Overall configuration of the baffled piston model. The market part in the lower left corner is the
piston. The outer layer is an Absorption Layer.

Table 4.1: Input parameters

U0 1 m/s Piston velocity amplitude
c0 1481 m/s Sound velocity in water
f0 50 kHz The piston’s frequency
λ0 0.02962 m Wavelength at f0
a 0.07 m Piston radius

4.1.1 Creating an infinite medium

To enable the simulation of an infinite medium, an Absorbing Layer or Perfectly Matched

Layer (PML) can be applied to the outer layer of the circular shape, as depicted in Figure

4.2 [42]. However, a PML is not implemented in the time-explicit solid model, while the

Absorbing Layer is not implemented in the time-implicit model.

The PML, a widely used technique for creating an infinite medium, sets up a perfectly
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absorbing domain [42]. To minimise reflections, the geometrical thickness of the layer must

be adequate. Since PML lacks a real stretching component in the time domain, the layer’s

thickness should have at least eight meshing elements for the lowest frequency component

[42].

The Absorbing Layer slows down the propagating wave in a highly attenuating layer, re-

sulting in a non-reflecting layer [42]. The thickness of the Absorbing Layer has to be equal

to or greater than three meshing elements or one wavelength for the lowest frequency com-

ponent to ensure a non-reflecting boundary [42].

The Absorbing Layer and PML have the same purpose of producing a simulated infinite

medium [42]. The time-implicit and -explicit models use the PML and Absorption Layer,

respectively [42].

4.1.2 Meshing

The element size and degree of the mesh substantially impact computational cost and the

accuracy of the simulation [71]. Therefore, determining the largest possible element size with

the lowest degree that does not significantly hinder simulation accuracy is essential. This

study evaluated linear, quadratic and quartic meshing elements for the Pressure Acoustics

Transient module. In addition, the Pressure Acoustics Time, Explicit module was assessed

with quartic meshing elements.

In the Pressure Acoustics, Time Explicit module, the triangular elements and for the Pressure

Acoustics Transient module are implemented, except in the PML, where mapping elements

are utilised [72]. Parameters other than element size are also considered when building a

mesh. However, in the baffled piston model, maximum element growth rate, curvature fac-

tor and resolution of narrow regions are irrelevant because the baffled piston has uniform

meshing in the model [72].

The magnitude of the acoustic pressure on the sound axis in the far field is analysed us-

ing Equation 2.28 and simulated to determine an adequate physics module, element meshing

size and the degree of the elements. The maximum percentage deviation between the an-

alytical and simulated acoustic pressure on the sound axis was determined by dividing the

deviation by the maximum magnitude obtained from the analytical Equation 2.28. The
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simulated sound pressure was interpolated within COMSOL with a resolution of 1/3 mm.

Table 4.2 provides the maximum percentage deviation. Linear elements have a high compu-

tational cost compared to the accuracy, so testing was limited to 20 elements per wavelength

before determining its inadequacy. The quadratic and quartic elements within the Pressure

Acoustics, Transient and Pressure Acoustics, Time Explicit modules are promising alterna-

tives. However, the Pressure Acoustics, Time Explicit module has the highest accuracy with

the lowest computational cost and is, therefore, utilised in all compatible simulations. The

far-field magnitude of the acoustic pressure for the analytical Equation 2.28 and Pressure

Acoustics Time, Explicit module is shown in Fig. 4.3

Table 4.2: Deviation between the analytical and simulated baffled piston model for different physics modules
and meshing element order

Physics module Meshing element order Elements per wavelength Deviation
Pressure Acoustics, Transient Linear 18 9.6%
Pressure Acoustics, Transient Linear 20 7.2%
Pressure Acoustics, Transient Quadratic 8 2%
Pressure Acoustics, Transient Quadratic 10 2%
Pressure Acoustics, Transient Quartic 2 2.3%
Pressure Acoustics, Transient Quartic 4 2.1%
Pressure Acoustics, Time Explicit Quartic 2 4.4%
Pressure Acoustics, Time Explicit Quartic 4 1.4%
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Figure 4.3: Compared simulated and analytical (Equation 2.28) acoustic pressure on the sound axis divided
by the maximum value of Equation 2.28. Pressure acoustics, time explicit module with a mesh of four quartic
elements per wavelength (λ/4) is simulated.

4.1.3 Time resolution

Another essential parameter determining the simulation’s accuracy is the time resolution.

One method for determining the time resolution uses the Courant number [73], a measure

of the propagation of information, in this case, a pressure wave, over a given time interval

[73]. The formula for the Courant number is given in the following formula [73]:

C = c
∆t

h
, (4.1)

where c is the sound velocity, ∆t is the time step, h is the element size of the mesh and C is

the Courant number. A Courant number below 0.7 indicates an acceptable time resolution
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for utilising all the meshing element nodes [73]. If the Courant number exceeds one, some

meshing elements will be unused, implying that the finer mesh results in higher computa-

tional costs but not higher accuracy [73]. The time step used is 3.03 · 10−7 s with an element

size of 0.0029 m, resulting in an acceptable Courant number for materials with a sound

velocity of less than 7000 m/s.

4.1.4 Input signal

The inward velocity [42], an input for the piston, should include a transient component

with a start amplitude of zero that gradually ramps up to a constant amplitude rather than

abruptly shifting from still to maximum amplitude. Otherwise, unintended changes to the

pulse occur, as discussed with COMSOL support in Appendix I.

A notable effect becomes apparent upon plotting the acoustic pressure at the centre of

the piston and comparing it to the inward velocity, as shown on the left in Fig. 4.4. The

transient part of the pulse appears to be extended. The effect on the pulse changes with the

piston’s radius and the pulse’s frequency. It also dissipates with distance to the piston, as

shown on the right in Fig. 4.4. Therefore, this is caused by the end-effects of the piston and

does not influence the results in this report, as the simulations are performed in the far field.

Figure 4.4: Normalised amplitude input piston inward velocity and acoustic pressure on-piston (left) and
far-field (right)
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4.1.5 Implementation check

To confirm the correct implementation of the simulated baffled piston model, it is compared

to the analytical models in Section 2.4. Equations 2.27 and 2.31 determine the axial pressure

and beam pattern in the far field, respectively.

The methodology for determining the far-field beam pattern involves an analysis of the

data obtained at various distances from the centre of the piston, with an angular resolution

of 0.0045°. The data is processed to find a 30 period–long stationary signal at each point.

Subsequently, a fast Fourier transform (FFT) is applied to convert the signals to the fre-

quency domain. The focus in the frequency domain is the magnitude of the input frequency

component for different angles, which is the relevant value when characterising the far-field

beam pattern. The results of the analysis are presented in a polar plot format, with the

magnitude plotted as a function of the angle, as depicted in Fig. 4.5. The MATLAB code

utilised for the signal processing and plotting is provided in Appendix B.

Figure 4.5: Beam pattern for different radii compared to analytical model

The simulated beam pattern converges towards the analytical beam pattern when the dis-

tance from the piston increases, as depicted in Fig. 4.5. In addition, Fig. 4.3 shows a high
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degree of correspondence between the simulated and analytical (Equation 2.28) axial pres-

sure. These factors confirm the correct implementation of the COMSOL model for a baffled

piston.

4.2 Implementing a semi-infinite solid material

From this point, cylindrical models are employed instead of spherical ones, as the investi-

gation into the beam pattern and sound pressure for higher angles relative to the sound

axis is complete. This alteration does not impact the simulation outcomes since the ab-

sorbing layer emulates an infinite medium. The only difference is that the simulated area

is reduced. To design a cylindrical model in a 2D axisymmetric model, rectangles are utilised.

The design of the baffled piston model featuring a semi-infinite steel plate consists of a

piston and two rectangles with layers two wavelengths wide on the outer edges, as depicted

in Fig. 4.6. The material for the first rectangle is water, while the second material is steel,

both surrounded by absorbing layers to simulate a semi-infinite medium. The simulated

model is compared to the analytical reflection coefficient explained in Section 2.2 to confirm

the model’s implementation.
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Figure 4.6: Overall configuration of the baffled piston model with a semi-infinite steel boundary.

4.2.1 Model setup

Building the baffled piston model featuring the semi-infinite steel plate is primarily covered

in Section 4.1, modified from a circular to a rectangular shape, with the size parameters

presented in table 4.3. This subsection discusses the corresponding differences and additions.

Table 4.3: Parameters for the size of baffled simple piston model with steel plate

Model length 3.2 m
Model width 0.2 m
Steel length 0.2 m
Water length 3 m
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The guidelines outlined in Section 4.1 are initially applied during the model’s creation, albeit

with a rectangular outline instead of circular. Upon completing the steps in Section 4.1, an

additional rectangle is implemented onto the initial structure, as illustrated in Fig. 4.6. Both

rectangles should feature an outer layer two wavelengths thick, corresponding to the material

with the longest wavelength, specifically for steel in this context. An Absorption layer is

applied to the outer layer of the rectangles. The recently incorporated rectangle’s material

should be steel and subject to the Elastic Waves Time Explicit physics module. The steel’s

characteristics should be a density of 7850 kg/m3, compressional sound velocity of 5856 m/s

and shear velocity of 3130 m/s. The steel and water domains are marked as different Unions,

with a Form Assembly with automatic creation of pairs between the unions. To couple the

physics, the Multiphysics, Pair Acoustics-Structure Boundary coupling is added to the au-

tomatically created pairs.

Regarding mesh creation, triangular elements, similar to those outlined in Section 4.1.2,

are adopted. The meshing for both the steel and water domains mirrors the procedure ex-

plained in Section 4.1.2. However, distinct element sizes are utilised, based on the respective

wavelengths. Triangular elements of varying proportions are assigned to the steel and water

regions, resulting in a discontinuous mesh configuration, producing optimal results [74], as

depicted in Fig. 4.7.

Figure 4.7: Transition between water mesh and steel mesh

4.2.2 Implementation check

To verify the correct implementation of the model, the simulated reflection coefficient is

compared to the equivalent input impedance method covered in Subsection 2.2.1. The inci-

dent and reflected pressure waves are measured at a distance from the water–steel interface,

depicted as point 2 (P2), in Fig. 4.6. The pulse length is 21 periods, corresponding to 0.32

m, to obtain a stationary part of the pulse. As a result, the measurements have to be taken

at a distance of at least 0.16 m from the source to avoid interference between the incident

and reflected waves. The pressure waves are corrected to correspond to the acoustic pressure
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at the interface using the formula:

p(P2) =
p(P1)

r · ei(−kr)
, (4.2)

which is only valid in the far field, and therefore, the steel plate has to be placed in the far

field of the piston.

To confirm the validity of the geometric correction of the incident and reflected signals,

the stationary part of the acoustic pressure waves is corrected to a point with measured am-

plitude. The incidence wave acoustic pressure in point one (P1) is corrected with geometric

spreading to P2. Fig. 4.8 show the magnitude of the pressure wave at P1 and the pressure

wave at P1 with geometric correction to P2 compared to the simulated pressure at P2. The

MATLAB code is showed in Appendix C.

Figure 4.8: Comparing the simulated pressure wave at P1 corrected with geometric spreading to P2 and the
simulated pressure wave at P2

The simulated reflection coefficient is found using an FFT on the stationary part of the

incident and reflected pulses and applying the input frequency component f0 from Table

4.1. The analytical (Equation 2.11) and simulated reflection coefficients are 0.9366 and

0.9430, respectively, which correspond well, with a difference of 0.0064, confirming the correct

implementation of the model.
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4.3 Building the full model

The complete model consists of a semi-infinite 15 cm wide grout sample with and without

defects placed between semi-infinite water. The model comprises of three rectangles, with

layers two wavelengths wide on the outer edges, as illustrated in Fig. 4.9. The first and last

rectangles represent water, while the middle rectangle is the grout. The grouts characteristics

are the same as in Section 3.5. The defect is added to the grout by creating a shape with

the defect subtracted from the grout rectangle, as shown in Fig. 4.10 (left). The defect is

then added as a separate geometry representing air, as shown in Fig. 4.10 (right). The air’s

characteristics is a density of 1.2 kg/m3 and a sound velocity of 343 m/s.

Figure 4.9: Complete model of semi-infinite grout without a defect placed in semi-infinite water.
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Figure 4.10: Grout with the cylindrical defect subtracted (left) and the complete model of semi-infinite grout
with a cylindrical defect placed in semi-infinite water (right)

To create the model, the steps detailed in Sections 4.1 and 4.2 are followed, albeit with

the replacement of steel with grout and the omission of the Absorption Layer on the top

of the second rectangle. The size parameters of the model is presented in Table 4.4. The

second rectangle can be with or without a defect, as depicted in Figures 4.10 and 4.9. Once

the preceding steps have been carried out, the final rectangle is integrated onto the initial

structure. This rectangle represents water and is implemented in a manner similar to that

in Section 4.1, except with an Absorption Layer not only on the side but also on the top.

Table 4.4: Size parameters for the full simulated model

Model length 3.2 m
Model width 0.2 m
Grout length 0.15 m
First water length 0.8 m
Second water length 0.1 m

The initial inward velocity input is replaced with a chirp spanning from 60kHz to 140kHz, as

illustrated in Figure 4.11. This adjustment aims to incorporate multiple frequency compo-

nents within the pulse, aligning with the approach applied to the pulse before the electronic

stage discussed in Section 3.4.

As previously, a Union operation is applied to the different materials. The only difference

from Section 4.2 is that the water is divided into two distinct Unions, positioned in front of
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Figure 4.11: Input inward velocity pulse for the simulations

and behind the grout. The process of coupling physics and meshing remains consistent with

the description in Section 4.2.

The time-explicit model employed so far need to be substituted with a time-implicit model.

The time-explicit model proved unstable and yielded unrealistic results upon the introduction

of damping. Instances of unstable simulations are more common in time-explicit modules

within COMSOL than in time-implicit models. The response from COMSOL support is

documented in Appendix I.

The time-implicit model closely resembles the time-explicit model, with the implementation

of Pressure Acoustics Transient and Solid Mechanics physics modules instead of Pressure

Acoustics Time, Explicit and Elastic Wave, Time Explicit, respectively. The absorbing layer

is replaced with a PML. The primary distinction between the time-implicit and explicit

modules lies in the meshing and the physics coupling.

The most efficient meshing is achieved with quadratic elements for the time-implicit mod-

ule. A size of nine elements per wavelength synchronises the meshing resolution, resulting in

equal distances between nodes. The Form Assembly is replaced with Form Union, which does

not have automatic pair creation. Therefore, the physics is coupled using the Multiphysics,

Acoustics-Structure Boundary, where the coupling is applied manually to the solid–fluid and

fluid–solid interfaces.

The time-implicit and -explicit models are compared for a compressed version of the exper-
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iment, as shown in Fig. 4.12 (left). Fig. 4.12 (right). The figure compares the time-explicit

and -implicit sound pressure at 0.05 m, demonstrating satisfactory agreement between the

two. As a result, the time-implicit module is employed for the remainder of the study.

Figure 4.12: Compressed simulation model (left) and a comparison of time implicit and time explicit physics
modules at 0.05 m (right)

4.3.1 Damping

In this study, we assume that the damping in the water and air has minimal impact on

the results, and thus, it is only applied to the grout. The Rayleigh damping model is

utilised for this purpose, as discussed in Section 2.9. To prevent the model’s damping from

inadvertently affecting the results, minimal damping is implemented and compared to the

undamped model. The dampening parameters α and β are set to 2.120 and 1.787 · 10−10,

respectively, equivalent to approximately 0.1 dB/m. The undamped and damped versions

are compared in Fig. 4.13.
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Figure 4.13: Simulation of the experiment without dampening and with minimal dampening of approximately
0.1 dB/m (α = 2.120 and β = 1.787 · 10−10)

The damping in cement products is influenced by the water-to-cement ratio and aggregates

[51, 52, 75]. The existing literature [51, 52, 75] indicates that the damping typically ranges

from 100 to 200 dB/m, leading to minimal reverberation, as demonstrated in Fig. 4.14, which

deviates from the experimental results. Notably, the damping in the literature corresponds to

cement products with added aggregates, which enhances the damping effect. Therefore, the

amount of damping is determined by comparing the reverberation observed in the experiment

with a simulation.
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Figure 4.14: Reverberation of the experiment and a simulation of the experiment with Rayleigh dampening
coefficients α = 2120 and β = 1.787 · 10−7, which corresponds to a dampening of around 100 dB/m

The Rayleigh damping coefficients α = 212.004 and β = 1.787e−8 yield a comparative rever-

beration between the experimental and simulated results, as shown in Fig. 4.15 (left). The

corresponding damping coefficient in dB/m is calculated using Equation (2.51), as illustrated

in Fig. 4.15 (right).

Figure 4.15: Experimental and simulated reverberation with Rayleigh dampening coefficients α = 212.004
and β = 1.787e−8 (left) and corresponding dB/m for Rayleigh dampening coefficient α=xx and β=xx (right)
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4.3.2 Building the full model with steel plates

The incorporation of steel plates into the model involves introducing a rectangle either in

front of or in front of and behind the second rectangle symbolising the grout. The material

assigned to these additional rectangles is steel, possessing the same characteristics as de-

tailed in Section 4.2. The process of meshing and coupling physics follows the methodology

established in previous sections.

4.4 Simulation of the experiment

Building the baffled piston model resembling the experiment is primarily covered in Section

4.3, albeit with a grout rectangle of final length and width. Since the 2D-asymmetric model

is utilised, the grout takes on a cylindrical form rather than a rectangular one as in the

actual experiment. The decision not to transition to a 3D simulation model for simulating

a rectangular grout was taken due to the significant increase in computational cost.

During the construction of the baffled piston model to match the experimental setup, the

steps outlined in Section 4.3 are followed. Once the tasks in Section 4.3 are completed, the

second rectangle symbolising the grout is shortened to a length of 0.15m in the r-direction,

and the Absorption Layer is removed, as illustrated in Figure 4.16. As before, the Multi-

physics, Acoustic-Structure Boundary feature is employed at the new solid-fluid interface.
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Figure 4.16: The complete baffled piston model resembling the experiment without defects in the grout.

Subsequent to the modifications to the second rectangle, a fourth rectangle is introduced

adjacent to the second one. This fourth rectangle occupies the vacant space left by the

shortened second rectangle. The Absorption Layer is reinstated along the right edge of the

fourth rectangle, with Ignore Edges being applied to the internal edges within the water.

4.5 Resonance frequencies

To determine the coupled resonances explained in Section 2.8, simulations of the rectangu-

lar grout, cylindrical grout, and cylindrical defect are carried out. The resonant frequency

simulations are performed in a 3D environment, allowing for the representation of various

geometries. The study of resonant frequencies takes place within the frequency domain,

with the fluid governed by Pressure Acoustics, Frequency domain, and the solids by Solid

Mechanics, Frequency domain, utilising the Eigenfrequency study.
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Resonant frequencies for the rectangular and cylindrical grout are investigated under vac-

uum conditions. The geometry of a cube or cylinder is chosen to represent the rectangular

or cylindrical grout, using concrete material with the same characteristics as described in

Section 3.5. The grout cube or cylinder is then enveloped by a larger cube, where the prop-

erties of a perfect vacuum are applied. Meshing is conducted following the same approach

as in previous sections.

The analysis of resonant frequencies for the cylindrical defect is carried out with rigid walls.

The cylinder geometry is equipped with a Sound Hard Boundary applied along its edges.

The material used for the cylinder is air, possessing the same characteristics as outlined in

Section 4.3. Meshing is performed following the same methodology as in preceding sections.

The Eigenfrequency study for the rectangular and cylindrical grout and cylindrical defect

resulted in resonant frequencies every 10-100 Hz, which is not useful unless the most im-

portant resonant frequencies can be determined. Determining the most important resonant

frequencies is not attempted in this study.
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Chapter 5

Results and discussion

In this chapter, the outcomes of the experiments and simulations are presented, analysed,

and compared. in Section 5.1 the electrical impedance results for the transducer are pre-

sented, with Section 5.2 covering the presentation and discussion of the experimental findings

of the grout samples. The results for grout samples without defects, cylindrical defects, and

spherical defects are presented in Section 5.2.1, Section 5.2.2, and Section 5.2.3 respectively.

A comparative analysis of the samples is presented in Section 5.2.4.

Section 5.3 presents, discusses, and compares the outcomes from the simulations. The sim-

ulations conducted without end-effects are outlined in Section 5.3.1, while the simulations

resembling the experimental setup are presented in Section 5.3.2. Finally, the simulations re-

sembling the experimental conditions are compared with the experimental results in Section

5.4.

5.1 Electrical impedance

The impedance measurement of the transducer is presented in Fig. 5.1, where the dashed

green and orange lines denote the upper and lower transducer bandwidth frequencies of 85

and 135 kHz, respectively.

Within the specified bandwidth of the transducer, the impedance remains within a 3 dB

range. The datasheet for the transducer can be found in Appendix G. However, beyond
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Figure 5.1: Impedance measurement of the AIRMAR B175M transducer with impedance magnitude (left)
and impedance phase (right)

this bandwidth, the impedance does not deviate substantially before 25 kHz outside the

bandwidth, indicating that operating the transducer outside of its bandwidth is possible to

an extent.

The electrical impedance of the transducer can be utilised to determine its Q-factor em-

ploying Equation (2.37). The resulting Q-factor is calculated as 1.9, which corresponds with

the estimated Q-factor of 2 as provided in the datasheet. While the datasheet does not state

how the electrical impedance is measured, the experimentally measured electrical impedance

can be influenced by the use of a long cable.

5.2 Experimental

In this section, the results from the experiments conducted in Chapter 3 are presented. The

experiments are conducted on a grout sample 30 cm wide, 30 cm long and 15 cm deep.

The grout samples are examined in two variations, with spherical or cylindrical defects and

without defects. The main objective is to compare these two sets of grout samples and

determine whether the presence of defects can be distinguished based on their reverberation,

indicating sound penetration of the grout. To avoid aliasing, the signals start and end as

close to zero as possible, leading to slight differences in time windows.

77



5.2.1 Grout without defects

Fig. 5.2 presents the full reflected signal, with the line denoting the start of reverberation.

In Fig. 5.2, the initial pulse corresponds to the reflection from the front of the grout, while

the subsequent pulse originates from the rear, which precede the reverberation. The signal

of interest is the reverberation of the grout. Since the grout is limited in size end-effects

from within the grout may still be present in the reverberation. There is also an concern of

internal reflections stemming from air bubbles in the grout. In order to mitigate the impact of

these end-effects and internal reflections, the utilisation of Hamming and Hanning windows

is explored. Moreover, within TSC Subsea, it is customary to investigate different segments

of the signal if the reverberation proves inconclusive or there are suspected end-effects. The

utilisation of a bandpass filter of 50 to 150 kHz, which is wider than the bandwidth of the

pulse, is implemented to not reduce the frequency components from the pulse, and still

reduce the frequency components from the electronics.

Figure 5.2: Experimental results of the grout without defect, with bandpass filter of 50 to 150 kHz and
rectangular window in the time domain.

Fig. 5.3 depicts the reverberation measurements of grout Samples one, two and three using

a rectangular window (left) and the corresponding FFTs of these measurements (right).
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Figure 5.3: Experimental results of the grout without a defect, with a bandpass filter of 50 to 150 kHz and
rectangular window in the time (left) and frequency (right) domains, where S1, S2 and S3 are Samples one,
two and three, respectively

Similarly, the reverberation measurements of the same grout samples, but using a Hamming

window, are presented in Fig. 5.4 (left), with their FFTs displayed on the right. Additionally,

the measurements obtained with a Hanning window are illustrated in Fig. 5.5 (left), and

their FFTs are showcased to the right.

Figure 5.4: Experimental results of the grout without defects with a bandpass filter of 50 to 150 kHz and
Hamming window in the time (left) and frequency (right) domains
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Figure 5.5: Experimental results of the grout without defects with a bandpass filter of 50 to 150 kHz and
Hanning window in the time (left) and frequency (right) domains.

Notably, Fig. 5.3 show that Sample three exhibits more pronounced low-frequency compo-

nents below 110 kHz compared to Samples one and two. However, this distinction is less

discernible when using the Hamming and Hanning windows, as demonstrated in Figs. 5.4

and 5.5, respectively. When utilising Hamming or Hanning window Sample two deviates

with less frequency components between 110 to 125 kHz.

The implementation of a Hamming or Hanning window reduces the difference among the

samples for frequencies under 100kHz, suggesting that certain differences exist at the begin-

ning, end or both of the signal. An initial portion of the signals is removed to investigate the

points of deviation in the signals. In Appendix J Fig. J.1, the first 500 samples have been

removed, corresponding to a start time of 0.79 ms. The FFT on the right side of the figure

reveals that Sample three sill has more frequency components below 110 kHz, with Sample

two having less frequency components between 110kHz and 125kHz.

This removal process is extended in Appendix J Fig. J.2, where 700 samples are removed,

corresponding to a start time of 0.82 ms. This reduces the difference in the low-frequency

components, suggesting that much of the deviation occurs between 0.794 and 0.82 ms, corre-

sponding to the signal arrival of the transition from the second to the third reflection within

the concrete. However, the differences in Sample two are increased.

Similarly, investigating the end portions of the signals, the last 500 and 700 samples are

removed, equivalent to an end time of 0.95 and 0.92 ms, respectively. These results are

displayed in Appendix J Fig. J.3, where the top images correspond to the removal of the
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last 500 samples and the bottom images to the removal of the last 700 samples.

In Fig. J.3 (top right), after removing the last 500 samples, the difference in low frequencies

is less apparent compared to the full reverberation (Fig. 5.3), although distinctions between

sample three and the others remain in frequencies under 110kHz. This difference decreases

further with the removal of the last 700 samples, as shown in Fig. J.3 (bottom right). The

difference for Sample two in frequencies above 110 kHz shows an improvement, but Sam-

ple three now deviates more from Sample one and two in frequencies from 110kHz to 125 kHz.

By removing either the initial or final samples of the reverberation, the differences in frequen-

cies under 110 kHz between the samples become less obvious, but differences in frequencies

over 110 kHz improve little. This trend persists in the top-right of Fig. 5.6, where removing

the first and last 500 samples show reduced differences in low frequencies compared to the

full reverberation, yet differences above 110 kHz remain. This pattern is further highlighted

in the bottom-right of Fig. 5.6, where the first and last 700 samples are removed.
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Figure 5.6: Experimental results of the grout without defects, with a bandpass filter of 50 to 150 kHz and
a rectangular window for the last and first 500 samples removed in the time (top left) and frequency (top
right) domains and last and first 700 samples removed in time (bottom left) and frequency (bottom right)
domains

The observed differences between the grout samples may stem from varying characteristics,

including size and density, as shown in Appendix F. The presence of bubbles within the

samples can also affect the results.
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5.2.2 Grout with cylindrical defect

Fig. 5.7 presents the full reflected signal, with the start of reverberation denoted by the

line. The signal of interest is the reverberation without end-effects, as the grout without

defects. For Cylindrical Sample 1 the secondary pulse from the back of the grout seems to

be extended, therefore it will be of particular interest to remove the first samples. Fig. 5.8

(left) show the reverberation measurements of grout Samples one and two with a cylindrical

defect, utilising a rectangular window. The corresponding FFTs are displayed on the right

side of the figure.

Figure 5.7: Experimental results of the grout with cylindrical defect, with bandpass filter of 50 to 150 kHz
and rectangular window in the time domain.
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Figure 5.8: Experimental results of the grout with a cylindrical defect, with a bandpass filter of 50 to 150
kHz and a rectangular window in the time (left) and frequency (right) domains, where S1 and S2 are Samples
one and two, respectively

In a similar manner, the reverberation measurements of the same grout samples, but employ-

ing a Hamming window, are showed in Fig. 5.9 (left), accompanied by their FFTs displayed

on the right. Additionally, the measurements obtained using a Hanning window are showed

in Fig. 5.10 (left), with their FFTs showcased on the right.

Figure 5.9: Experimental results of the grout with a cylindrical defect, with a bandpass filter of 50 to 150
kHz and Hamming window in the time (left) frequency (right) domains, where S1 and S2 are Samples one
and two, respectively
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Figure 5.10: Experimental results of the grout with a cylindrical defect, with a bandpass filter of 50 to 150
kHz and Hanning window in the time (left) and frequency (right) domains, where S1 and S2 are Samples
one and two, respectively.

Similar to the grout samples without defects, a significant difference exists between the sam-

ples in the lower frequencies under 100 kHz. This contrast persists even when the Hamming

and Hanning windows are applied. However, the differences in frequencies above 100 kHz

improve significantly when a Hamming or Hanning window is applied. The improvement of

frequencies above 100kHz indicates that some of the differences are in the start and end of

the signal. As previously conducted, certain samples are removed to investigate the points

where the signals differs. The results of removing 500 samples at the start (start time 0.79

ms) are presented in Fig. 5.11 (top), while the removal of 700 samples (start time 0.82 ms)

is presented in the lower part. With a start time of 0.79 and 0.82 ms the full extended

secondary pulse is outside the rectangular window.
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Figure 5.11: Experimental results of the grout with a cylindrical defect, with a bandpass filter of 50 to
150 kHz and a rectangular window for the first 500 samples removed in the time (top left) and frequency
(top right) domains and first 700 samples removed in the time (bottom left) and frequency (bottom right)
domains

Despite the removal of the initial samples of the signal with the extended secondary pulse,

the deviations in the low-frequency components remain evident, as shown in Fig. 5.11. The

differences in frequencies above 100 kHz improve substantially when removing the first 500

samples. However, removing 700 samples from the start leads to a noticeable difference in

the frequency components above 100 kHz, as displayed in Fig. 5.11 (bottom right).

Similarly, when examining the end portions of the signals, the last 500 and 700 samples

are removed (end times of 0.95 and 0.92 ms), as shown in Appendix J Fig. J.4 (left and

right, respectively).

In Fig. J.4 (top right), after discarding the last 500 samples, the difference in low frequen-
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cies remains as apparent as in the full reverberation in Fig. 5.3. This distinction diminishes

slightly with the elimination of the last 700 samples, as shown in Fig. J.4 (bottom right).

Regardless, the differences in the frequencies above 100 kHz are slightly worse.

By removing the initial samples of the reverberation, the differences in frequencies under

100 kHz do not appear to be significantly affected, but differences in frequencies over 100

kHz become less pronounced when the initial 500 samples are removed. However, when 700

samples are removed, the difference in frequencies above 100 kHz increase substantially and

the differences in frequencies under 100 kHz decrease slightly.

This trend persists in Fig. J.5 (top right), where eliminating both the first and last 500

samples results in reduced differences compared to the full reverberation. Yet, when remov-

ing the first and last 700 samples, the differences in frequencies above 100 kHz are substantial,

shown in Appendix J Fig. J.5 (bottom right).

To discern whether the differences lie in the middle part of the reverberation, the first

and last 500 samples of the reverberation are investigated. The first 500 samples correspond

to the time range from 0.735 to 0.79 ms, which contain most of the extended secondary

pulse. The first 500 samples are shown in Fig. 5.12 (top). Similarly, the last 500 samples

correspond to the time range from 0.95 to 1 ms, showed in Fig. 5.12 (bottom).
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Figure 5.12: Experimental results of the grout with a cylindrical defect, with a bandpass filter of 50 to 150
kHz and a rectangular window for the first 500 samples in the time (top left) and the frequency (top right)
domains and last 500 samples in the time (bottom left) and frequency (bottom right) domains

The first and last 500 samples of the reverberation exhibit closer correspondence than the

middle portion, resulting in a significant reduction in the differences in the frequency compo-

nents, especially for the last 500 samples. This suggests that the differences primarily arise

from the middle part of the reverberation. Nevertheless, the signals only consist of a few

wavelengths.

As with the grout samples without defects, the observed differences between the grout sam-

ples may stem from varying characteristics, including size and density, as shown in Appendix

F, and the presence of bubbles within the samples.
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5.2.3 Grout with spherical defect

The full reflected signal is presented in Fig. 5.13, with the start of the reverberation being

denoted by the line. As before the signal of interest is the reverberation without end-effects.

There is a notable third reflection, which indicates a reflection. The reflection might be a

result of the grout sample two with spherical defect being damaged, showed in Fig. 5.14, as

it is the only sample exhibiting this third pulse. As a result it is of interest to look at the

signal before, after and under this third pulse, to determine if it impacts the reverberation.

Figure 5.13: Samples one and two with spherical defect full reflection in the time domain

89



Figure 5.14: Grout Sample two with spherical defect

Fig. 5.15 (left) portrays the reverberation measurements of grout Samples one and two

with spherical defects, utilising a rectangular window. The corresponding FFTs of these

measurements are displayed on the right side.

Figure 5.15: Experimental results of the grout with a spherical defect, with a bandpass filter of 50 to 150
kHz and a rectangular window the time (left) and frequency (right) domains, where S1 and S2 are Samples
one and two, respectively.

In a similar manner, the reverberation measurements of the same grout samples, but em-

ploying a Hamming window, are showed in Appendix J Fig. J.6 (left), accompanied by their

FFTs displayed on the right. Additionally, the measurements obtained using a Hanning
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window are showed in Appendix J Fig. J.7 (left), with their FFTs on the right.

The reverberations of the grout samples with spherical defects have the largest deviations

around 90 to 125 kHz, which is only exacerbated with the Hamming and Hanning filters,

indicating that the differences are in the middle of the signal.

As previously conducted, certain samples are removed to investigate the points where the

signal deviates. In this part, the study is conducted by assessing the signal before (end time

of 0.85ms) and after (start time 0.92ms) the larger pulse, as the size and shape indicate that

it might be a reflection, which affects the reverberation. This signal also dominates the fre-

quency spectrum, as the amplitude is much greater than the rest of the reverberation. The

reverberation up to the larger pulse is presented in Fig. 5.16 (top left), and the reverberation

after the larger pulse is shown in the lower left of the figure, with their corresponding FFTs

on the right.
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Figure 5.16: Experimental results of the grout with a spherical defect, with a bandpass filter of 50 to 150
kHz and a rectangular window for reverberation before the larger pulse in the time (top left) and frequency
(top right) domains and reverberation after the larger pulse in the time (bottom left) and frequency (bottom
right) domains

The frequencies in the reverberations before the larger pulse shown in Fig. 5.16 (top right)

correspond well. The reverberations after the pulse differs, with the strongest frequency

components for Sample two being around 20 kHz lower than Sample one, as shown in Fig.

5.16. The larger pulse in the reverberation is plotted in Appendix J Fig. J.8 to determine if

the frequency components differs in this section.

The frequency components within the larger pulse from Sample two differs from those of

Sample one with one large lobe encompassing frequencies from 70 to 150 kHz, while Sample

one has multiple frequency lobes, as shown in Fig. J.8.

As with the other grout samples, the observed differences between the grout samples may
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stem from varying characteristics, including size and density, shown in Appendix F, and the

presence of bubbles within the samples. The results may also be affected by grout Sample

two with spherical defect being damaged, as shown in Fig. 5.14

5.2.4 Comparison

In this section, comparisons are drawn between different segments of the signal using rect-

angular filters. The application of Hamming and Hanning filters does not notably enhance

the correlation between samples compared to the removal of the initial and final samples.

In Fig. 5.17 (left), the FFT of the full reverberation of grout with cylindrical defects is

compared to that of the grout without defects, and the grout with spherical defects is com-

pared to the grout without defects on the right.

Figure 5.17: Experimental results of the grout with and without defects, with a bandpass filter of 50 to 150
kHz and a rectangular window for the full reverberation for cylindrical (left) and spherical (right) defects

However, the dissimilarities among samples with the same defects or lack thereof are so

substantial that meaningful distinctions between the two types are difficult to ascertain.

Notably, the grout samples without defects exhibit the highest correspondence in the central

portion of the reverberations after removing 700 samples from both the start and end. Fig.

J.9 shows the comparison with this specific sample adjustment. The left side of the figure

presents the comparison between grout samples with and without cylindrical defects, while

the right side shows the comparison between grout samples with and without spherical de-

fects.
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Similar to the complete signal, the difference between samples with identical defects or

lack thereof is so substantial that identifying a significant difference between samples with

and without defects is not feasible. The grout samples with defects have the largest degree

of correspondence at the start of the reverberation. Fig. J.10 (top) displays the initial 700

samples of the reverberation, while the final 700 samples are shown in the bottom of the

figure. As in the previous figures, cylindrical defects are shown on the left, and spherical

defects are presented on the right.

While the variation between samples with identical defects or lack thereof is somewhat re-

duced when examining the signal’s initial segment, no noticeable distinctions persist between

samples with and without defects, as illustrated in Fig. J.10 (top). In the final segment of

the reverberation, as depicted in Fig. J.10 (bottom), the difference between samples with

the same defects or absence thereof remains so significant that determining a substantial

difference between samples with and without defects is unattainable.

Given that the samples with spherical and cylindrical defects do not correlate at the same

points as samples without defects, conducting a comparison between samples with and with-

out defects is challenging. Additionally, resonance frequencies and scattering patterns have

not been examined, as samples with identical defects exhibit different frequency responses,

rendering it impossible to determine whether the frequency components originate from the

defects or the grout itself.

5.3 Simulation results and discussion

This section presents the simulation results obtained in Chapter 4, focusing on grout samples

with and without spherical or cylindrical defects. The chapter is divided into two subsections,

one covering simulations resembling the experiments conducted in Section 4.4 and the other

addressing simulations of semi-infinite grout with a width of 15 cm conducted in Section

4.3. In both cases, the simulations of the grout with defect or lack thereof are compared to

determine the acoustic penetration of the grout.

5.3.1 Semi-infinite

In Fig. 5.18, the complete reflected signal is showed, with the beginning of the reverberation

denoted by the line. Similar to the experimental findings, the primary focus is the rever-
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beration originating from the grout. Unlike the experimental setup, extracting the grout’s

reverberation devoid of end-effects or residual reflections is comparatively more straightfor-

ward in simulations. This is attributed to the infinitely wide grout sample with uniform

material characteristics, which removes the concern of end-effects and internal reflections.

Notably, at the initiation of the reverberation, the signal exhibits a higher amplitude than the

subsequent portions of the reverberation. Hence, the utilisation of Hamming and Hanning

windows becomes interesting to limit the influence from the beginning of the reverberation.

Figure 5.18: Simulations of grout without end-effects full reflection in time domain

The scattering cross-section of the spherical defect is depicted in Appendix K Fig. K.1. The

results from the scattering cross-section should be questioned as the formula is for a spherical

fluid inside a fluid medium, instead of a solid medium. The dampening coefficient is also

for water instead of grout as the damping coefficient for grout cannot be calculated with the

fluid medium formula. Nevertheless, the results from the scattering cross section indicates

that the size of the bubble has a higher impact on visibility than the resonance frequency.

This should be taken with a grain of salt as the dampening coefficient have a large impact

on the amplitude at resonance, shown in Appendix K Fig. K.2.

The smaller spherical defect with a diameter of 0.014m is just above half the wavelength

for 135kHz, and well below half the wavelength for lower frequencies. Defects with dimen-

sions smaller than half the wavelength are challenging to detect [43].
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The results of the simulations from Chapter 4, involving semi-infinite grout with a width

of 15 cm and employing a rectangular window, are depicted in Fig. 5.19 (left), with the

corresponding FFT presented on the right.

Figure 5.19: Simulated results of semi-infinite grout with and without defects and a rectangular window,
showing the reverberation in the time (left) and frequency (right) domains

The resonance frequencies for the thickness resonance in the grout is 12.3 KHz for the com-

pressional wave and 7.8 kHz for the shear wave. The frequency response in Fig. 5.19 is very

complex and it is hard to determine if the frequency tops coincide with the higher harmonics

of the thickness resonance frequencies of the grout.

The findings depicted in Fig. 5.19 reveal almost identical response from the simulation

of the grout without defect and the grout with a spherical defect with a radius of 0.007m.

There are slight differences between grout without defect and the simulations with larger

defects, with the simulation with cylindrical defect differing the most.

Fig. 5.20 (top and bottom, respectively) displays the result of the simulations carried out

using a Hamming window and a Hanning window in place of a rectangular window. The left

side shows the reverberation in the time domain, while the corresponding FFT is displayed

on the right.
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Figure 5.20: Comparing simulated results of semi-infinite grout with and without defects and a Hamming
window (top) and a Hanning window (bottom) in the time (left) and frequency domains (right)

Applying a Hamming or Hanning filter to the signal, as depicted in Fig. 5.20, results in

fewer prominent frequency peaks, which simplifies the process of discerning differences be-

tween the simulations and resonance frequencies from the grout. The frequency tops, except

the first one, for the simulated grout without defects have around 12.3 kHz between each

top, indicating that the frequency tops are higher harmonics of the resonance frequency.

The distance between the first and second frequency top is about 8.5 kHz, which does not

coincide with any of the thickness resonance frequencies. The spherical defect of 0.007m

seams to be to small to cause a discernible difference with very minor differences between

the simulation of grout without a defect and grout with the smaller spherical defect. The

differences between the simulated grout without defect and the grout with the larger defects

has increased. There is an especially large difference between the simulation with the larger

spherical defect, which is interesting considering that the cylindrical defect is larger in size.
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Fig. 5.21 show the complete signal from simulations without defects of steel–grout–steel,

steel–grout and grout. The secondary pulse, resulting from the reflection at the back of the

grout, almost completely dissipates in the steel–grout and steel–grout–steel simulations.

Figure 5.21: Full signal simulation results in time domain for steel–grout–steel, steel–grout and grout.

The simulations with a 0.03 m steel plate in front of the grout is showed in Fig. 5.22, with

the corresponding FFT presented on the right.

Figure 5.22: Simulated results of semi-infinite steel–grout with and without defects and a rectangular window,
showing the reverberation in the time (left) and frequency (right) domains

When a steel plate is positioned in front of the grout, there are only two large frequency
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tops around 80kHz and 100kHz. The thickness resonance frequencies for the steel are 98

kHz for the compressional wave and 52 kHz for the shear wave. The frequency top around

100 kHz correspond well with the compressional wave thickness resonance for the steel, but

the larger pulse around 80 kHz does not match the resonance frequency for the grout or the

steel. The resonance frequency for around 80 kHz might be modal coupling between a higher

order thickness resonance in the grout and steel [45], or the resonance for the multi layered

system [30]. However, this is outside the scope of this study and will not be discussed further.

With a steel plate positioned in front of the grout there are no observable differences between

the simulations with defects or lack thereof. This suggests that the reverberation originat-

ing from the steel plate predominantly shapes the signal or that the acoustic signal fails to

deeply penetrate the grout.

The results of the steel–grout simulations using a Hamming or Hanning window in place

of a rectangular one are displayed in Appendix J Fig. J.11 (top and bottom, respectively).

On the left side, the reverberation in the time domain is illustrated, and on the right side,

the corresponding FFT is presented. Despite the use of a Hamming or Hanning window,

there are only minor differences between the simulation of the grout with defects or lack

thereof.

Fig. 4.1 shows the results from the simulations with a 0.03 m wide steel plate positioned in

front of and behind the grout sample. These results are depicted in Fig. 5.23 using a rect-

angular window. The left side portrays the reverberation in the time domain, accompanied

by the corresponding FFT on the right.
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Figure 5.23: Simulated results of semi-infinite steel–grout–steel with and without defects and a rectangular
window, showing the reverberation in the time (left) and frequency (right) domains

When a steel plate is placed both in front and behind the grout, there are three large fre-

quency tops and one smaller one. There is one large frequency top from 90 to 100 KHz,

and a double frequency top around 80 to 90 kHz. As before, does the frequency top around

90-100 kHz coincide with the compressional wave thickness resonance frequency of the steel

plate in front and behind the grout. However, the frequency tops between 80 to 90 kHz does

not fit any thickness resonant frequency and the dip in frequency coincides with the seventh

order compressional wave thickness resonance frequency for the grout. However, this will

not be investigated further in this study.

The difference between the simulation results involving a spherical defect and without any

defect is minor. In the case of a cylindrical defect, a more noticeable difference is present,

albeit the discrepancy lies primarily in the magnitudes of the frequency peak around 100 kHz.

The outcomes of simulations utilising Hamming and Hanning windows instead of a rectangu-

lar window are illustrated in Fig. 5.24 (top and bottom, respectively), with the time-domain

reverberation to the left and the corresponding FFT on the right.
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Figure 5.24: Simulated results of semi-infinite steel–grout–steel with and without defects and Hamming (top)
or Hanning (bottom) window, showing the reverberation in the time (left) and frequency domains (right)

Interestingly, when a Hamming or Hanning filter is applied the frequency tops are more

evenly spaced and broader. The differences between simulations featuring a spherical defect

and without remains minimal. Nevertheless, the simulation involving a cylindrical defect

still has a noticeably higher magnitude for the frequency top right before 100 kHz.

In the simulation without any steel plates the larger spherical defect and cylindrical de-

fect differs from the one without defect. However, when a steel plate was added in front of

the grout there where only minor differences between the simulations with defects or lack

thereof. Interestingly, when a steel plate was added to the back of the grout the simulation

with cylindrical defect differed from the one without defect, which indicates some level of

penetration of the grout. Reducing the influence of the steel plate on the signal with signal

processing might make it possible to detect the spherical defect, but is outside the scope of

this study.
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5.3.2 Simulating of the experiment

Within this section, the simulation results concerning a grout cylinder having a radius of

15 cm and a width of 15 cm are showed. These simulations encompass scenarios with and

without defects, as detailed in Section 4.4. Fig. 5.25 (left) portrays the reverberation results

when employing a rectangular window, while the corresponding FFT results are depicted on

the right side.

Figure 5.25: Simulated results of a grout cylinder with a radius of 15 cm and width of 15 cm with and
without defects and a rectangular window, showing the reverberation in time (left) and frequency (right)
domains

The simulation involving the spherical defect differs noticeably from the simulation without

defect around 100 kHz, whereas the simulation featuring the cylindrical defect differs around

115 kHz. Apart from these frequencies, no significant difference are present between the

simulations.

Fig. 5.26 (top and bottom, respectively) show the outcomes of simulations using Ham-

ming and Hanning windows in place of a rectangular one. On the left side, the time-domain

reverberation is presented, while the corresponding FFT is shown on the right side.
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Figure 5.26: Simulated results of a grout cylinder with a radius of 15 cm and width of 15 cm with and
without defects and Hamming (top) and Hanning (bottom) windows, showing the reverberation in the time
(left) and frequency (right) domains

As with the simulations without end-effects the Hamming and Hanning window makes the

frequency spectrum less complex and easier to analyse. The frequency tops for the simulation

without defect is around 9-10 kHz which is lower than the thickness resonance frequency.

This might be because of modal coupling [45] or stronger resonances, however it will not be

investigated further in this study.

The contrast between the simulation without and with a spherical defect diminishes sig-

nificantly when a Hamming or Hanning window is applied. Meanwhile, the distinction

between the simulation without and with a cylindrical defect becomes more noticeable. This

observation suggests that the dissimilarity between the simulation with a spherical defect

and without a defect primarily emerges at the start and end of the reverberation, whereas

the dissimilarity between the simulation with a cylindrical defect and without a defect is
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more evident in the middle.

5.4 Comparison of experiment and simulation

This subsection centres on the comparison between the experimental results obtained in

Chapter 3 and the simulations of the conducted experiment outlined in Section 4.4. How-

ever, several challenges emerge when attempting this comparison. The simulations employ

a simple baffled piston model, which does not encompass the effects of electronics and the

transducer. Additionally, the electronics utilised in the simulations operate beyond their

intended bandwidth, causing distortion in the input pulse. The simulations take place in a

2D-axisymmetric model, as explained in Chapter 4, resulting in a cylindrical-shaped grout

rather than a rectangular one. These complexities necessitate careful consideration when

evaluating the concurrence between the simulated and experimental data.

Considering that the acoustic wave in the simulation travels 0.4 meters farther than in

the experiment, the simulated time axis is adjusted by subtracting 0.4m/cwater. Moreover,

the simulated signal is 0.11 ms longer compared to the experimental signal. Consequently,

the simulated signal is shortened by 0.11 ms.

The comparison of reverberations between the simulated and experimental grout without

defects is showed in Fig. 5.27 (top left), accompanied by the corresponding FFT to the

right. The portion of the experimental signal where the various samples exhibit the closest

correspondence lies in the middle, achieved by omitting the initial and final 700 samples.

This adjustment corresponds to the removal of the first and last 262 samples in the simula-

tion. In Fig. 5.27 (bottom left), the middle portion of the reverberation is displayed, while

the corresponding FFT is presented to the right.
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Figure 5.27: Full reverberation of the simulated experiment and experiment without defects with a rectan-
gular window and bandpass filter of 50 to 150 kHz for the experiment in the time (top left) and frequency
(top right) domains and the first and last 700 samples removed in the time (bottom left) and frequency
(bottom right) domains

For the complete reverberation, a strong correlation exists between the experimental grout

Sample three and the simulation within the frequency range of 80–105 kHz, while the cor-

relation diminishes outside of this range. The correlation between the simulation and the

other experimental grout samples is minimal. In relation to the middle segment of the re-

verberation, there is a notable difference between the samples and the simulation.

Turning to the comparison of reverberations involving the simulated and experimental grout

samples with cylindrical defects, Fig. 5.28 (top left) show the full reverberation, accompa-

nied by the corresponding FFT on the right. The difference between the experimental grout

samples is minimal towards the end of the signal. The final 500 samples of the experimental

reverberation, along with 188 samples of the simulation reverberation, are showed in Fig.
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5.28 (bottom left), while the corresponding FFT results are shown on the right. This segment

represents a relatively small sample size of slightly over six periods, yet it is the only part of

the reverberation where the experimental samples exhibit a high degree of correspondence.

Figure 5.28: Full reverberation of the simulated experiment and experiment with cylindrical defects with
a rectangular window and bandpass filter of 50 to 150 kHz for the experiment in the time (top right) and
frequency (top right) domains and the last 500 samples in the time (bottom left) and frequency (bottom
right) domains

There is an poor correlation between the simulated and experimental samples throughout

the entire reverberation. However, within the final 500 samples of the reverberation, a no-

table correlation emerges, albeit over a span of only six to seven wavelengths.

Fig. 5.29 (top left) show the comparison of reverberations between the simulated and exper-

imental grout samples with a spherical defect, accompanied by the corresponding FFT on

the upper right. The experimental grout samples with spherical defects exhibit their highest

correspondence before the larger pulse within the reverberation. The pre-pulse reverberation
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is displayed in Fig. 5.29 (bottom left), while the corresponding FFT results are shown on

the right.

Figure 5.29: Full reverberation of the simulated experiment and experiment with spherical defects with
a rectangular window and bandpass filter of 50 to 150 kHz for the experiment in the time (top left) and
frequency (top right) domains and the last 500 samples in the time (bottom left) frequency (bottom right)
domains

Much like in most other instances of comparing simulated and experimental data, the cor-

relation between the experimental grout samples and the simulated grout samples with a

spherical defect remains low. Given the numerous differences between the the measurement

setup and simulation, the limited agreement between the simulated and experimental results

is not unexpected.
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Chapter 6

Conclusion and Further work

Verification of grout penetration is carried out through both simulations and experiments.

The secondary pulse, originating from the rear of the grout sample, is distinctly evident in

both the experimental and simulated results indicating full penetration of the grout. How-

ever, when attempting to ascertain grout penetration by detecting defects, experimental

results do not provide definitive confirmation. The differences between samples with the

same defect or lack thereof hampers the determination of significant distinctions between

samples with defects or lack thereof. The samples with the same defect or lack thereof have

large differences in response because of the variation in size and material characteristics of

the grout samples.

The simulations of the spherical defect with a radius of 0.007 m have minimal differences

from the simulations without a defect. This indicates that even though the spherical defect

has a resonance of 102kHz it is to small compared to the wavelength to make a discernible

difference. Within the simulations, discernible differences in reverberation arise between

simulations with larger defects and without, indicating that under ideal conditions defects

can be detected through ultrasonic NDT. The difference between the simulations are easier

to ascertain with a Hamming or Hanning window as the frequency spectrum is less complex.

The larger spherical defect is the easiest to detect, even though the cylindrical defect is larger

in size. The Hamming or Hanning window also makes the frequency tops for the simulation

of the grout without defect coincide with the compressional wave thickness resonance for the

grout.
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Examining simulations where a steel plate covers the front of the grout reveals minimal

differences between simulations with defects or lack thereof. The use of a Hamming or Han-

ning window does increase the differences minimally, however the differences are still minor.

The limited difference among different simulations implies the steel plate dominates the re-

verberation. Additionally, there is a noticeable drop of grout penetration when a steel plate

covers it, as evidenced by the absence of discernible backside reflections.

Further investigations into simulations featuring steel plates positioned both in front of and

behind the grout unveil greater differences compared to simulations where only a steel plate

is positioned in front of the grout. This discrepancy suggests the presence of at least some

level of grout penetration. Nevertheless, the differences between the simulations containing

spherical defects and without defects are minimal. The simulation with cylindrical defect

and without defect have a noticeable difference around 95kHz. However the differences be-

tween the simulations are negligible compared to the samples with the same defects or lack

thereof in the experimental part.

There exist multiple discrepancies between the execution of the simulation and the exper-

iment. The simulation utilises a basic baffled piston model instead of a transducer with

electronics. Notably, the electronics operate beyond their intended bandwidth, resulting in

distortion of the input pulse to the transducer. Furthermore, the simulation is carried out

within the COMSOL 2D-axisymmetric model, leading to the representation of cylindrical

grout instead of rectangular grout. These differences contribute to significant deviations be-

tween the simulation and experimental results, making it extremely challenging to establish

the validity of the simulations.

6.1 Further work

Exploring whether there are variations in the reverberation of grout samples with identical

dimensions and density is a point of interest. This can be accomplished by crafting grout

samples using multiple rigid molds, all of which have the exact same dimensions.

Employing multiple identical molds enables the creation of uniform grout in a single batch,

thereby ensuring consistent grout characteristics and minimising differences among samples

with or without defects. Another aspect of investigation involves ascertaining the

detectability of evolving defects on a grout sample. This could involve a gradual and
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cautious introduction of defects to initially defect-free grout samples, followed by the

measurement of resulting differences. Additionally, the created samples should increase in

size to mitigate any potential end-effects stemming from the edges of the sample.

Moreover, there is a need for further exploration in terms of understanding and calculating

resonances and scattering phenomena within defects. Another interest is to dive deeper

into the reverberation characteristics and resonances of the multilayered steel-grout-steel

structure and quantifying the extent of grout penetration when a steel plate is positioned

at its front. It is also of interest to determine if the increase in detectability when a steel

plate is added to the back of the grout is due to standing waves between the steel plates.
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B.1 The code that runes the different functions and

plot the beampattern

1 [Tv1 ,Tv2 ,Tv3 ,Tv4]= hentdata_text (); % Reads the data from files in

↪→ function "hentdata_text"

2 c0 =1481; % Sound velocity in water

3 f0 =50000; % Innput frequency

4 lamda=c0/f0; % Wavelength

5 a=0.1; % Transducer radius

6 S=pi*a^2; % Transducer surface

7 Ray_length=S/lamda; % Rayleigh length

8

9

10 for iq=1:4 % Prosesses one file at the time

11 if iq==1

12 data=Tv1; % Prosseses file 1

13 [beam ,theta ,beam_anaf ,S,m,z]= Prove_fft_matlab(data); % Runs

↪→ function Prove_fft_matlab

14 Ray=z(1)/Ray_length; % Determine how many Rayleigh lengths the

↪→ radius corrisponds to

15 % figure

16 % Plotting of the results

17 polarplot(theta ,20* log10(beam_anaf),'m','Linewidth ' ,1.2)

18 hold on

19 polarplot(-theta ,20* log10(beam_anaf),'m')

20 polarplot(theta ,20* log10(beam./beam (1)),'r','Linewidth ' ,1.2)

21 polarplot(-theta ,20* log10(beam./beam (1)),'r','Linewidth ' ,1.2)

22

23 % Plot data for when file 1 is plotted alone

24 % polarplot(theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

25 % polarplot(-theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

26 % ax = gca()

27 % ax.ThetaZeroLocation= 'top ';

28 % ax.ThetaLim = [-90, 90]

29 % rlim ([ -60 ,5])

30 % rticks ( -60:10:2)

31 % legend('Analytisk ','','Simulert ')

32 % legend('Analytisk ','','1%','','10%','','100%','','1000%')

33 % legend('Analytisk ','','50Khz 1000%','','max frekvens

↪→ 1%','','max frekvens 1000%','','')
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34 % title('MATLAB FFT + egen kode '+string(z(1))+'m Ray lengder

↪→ '+string(Ray))

35 % hold off

36 % m=[];

37 c=[z(1)];

38 R=[Ray];

39 elseif iq==2 % Repeat for file 2

40 data=Tv2;

41 [beam ,theta ,beam_anaf ,S,m,z]= Prove_fft_matlab(data);

42 Ray=z(1)/Ray_length;

43 % figure

44 % polarplot(theta ,20* log10(beam_anaf),'m')

45 % hold on

46 % polarplot(-theta ,20* log10(beam_anaf),'m')

47 polarplot(theta ,20* log10(beam./beam (2)),'c','Linewidth ' ,1.2)

48 polarplot(-theta ,20* log10(beam./beam (2)),'c','Linewidth ' ,1.2)

49 % polarplot(theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

50 % polarplot(-theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

51 % ax = gca()

52 % ax.ThetaZeroLocation= 'top ';

53 % ax.ThetaLim = [-90, 90]

54 % rlim ([ -60 ,5])

55 % rticks ( -60:10:2)

56 % legend('Analytisk ','','Simulert ')

57 % % legend('Analytisk ','','1%','','10%','','100%','','1000%')

58 % % legend('Analytisk ','','50Khz 1000%','','max frekvens

↪→ 1%','','max frekvens 1000%','','')

59 % title('MATLAB FFT + egen kode '+string(z(1))+'m Ray lengder

↪→ '+string(Ray))

60 % hold off

61 % m=[];

62 c=[c,z(1)];

63 R=[R,Ray];

64 elseif iq==3 % Repeat for file 3

65 data=Tv3;

66 [beam ,theta ,beam_anaf ,S,m,z]= Prove_fft_matlab(data);

67 Ray=z(1)/Ray_length;

68 % figure

69 % polarplot(theta ,20* log10(beam_anaf),'m')

70 % hold on

71 % polarplot(-theta ,20* log10(beam_anaf),'m')
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72 polarplot(theta ,20* log10(beam./beam (1)),'b','Linewidth ' ,1.2)

73 polarplot(-theta ,20* log10(beam./beam (1)),'b','Linewidth ' ,1.2)

74 % polarplot(theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

75 % polarplot(-theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

76 % ax = gca()

77 % ax.ThetaZeroLocation= 'top ';

78 % ax.ThetaLim = [-90, 90]

79 % rlim ([ -60 ,5])

80 % rticks ( -60:10:2)

81 % legend('Analytisk ','','Simulert ')

82 % % legend('Analytisk ','','1%','','10%','','100%','','1000%')

83 % % legend('Analytisk ','','50Khz 1000%','','max frekvens

↪→ 1%','','max frekvens 1000%','','')

84 % title('MATLAB FFT + egen kode '+string(z(1))+'m Ray lengder

↪→ '+string(Ray))

85 % hold off

86 % m=[];

87 c=[c,z(1)];

88 R=[R,Ray];

89 elseif iq==4 % Repeat for file 4

90 data=Tv4;

91 [beam ,theta ,beam_anaf ,S,m,z]= Prove_fft_matlab(data);

92 Ray=z(1)/Ray_length;

93 % figure

94 % polarplot(theta ,20* log10(beam_anaf),'m')

95 % hold on

96 % polarplot(-theta ,20* log10(beam_anaf),'m')

97 polarplot(theta ,20* log10(beam./beam (1)),'g','Linewidth ' ,1.2)

98 polarplot(-theta ,20* log10(beam./beam (1)),'g','Linewidth ' ,1.2)

99 % polarplot(theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

100 % polarplot(-theta(1,m) ,20*log10(beam(1,m)./beam (1)) ,'*')

101 % ax = gca()

102 % ax.ThetaZeroLocation= 'top ';

103 % ax.ThetaLim = [-90, 90]

104 % rlim ([ -60 ,5])

105 % rticks ( -60:10:2)

106 % legend('Analytisk ','','Simulert ')

107 % % legend('Analytisk ','','1%','','10%','','100%','','1000%')

108 % % legend('Analytisk ','','50Khz 1000%','','max frekvens

↪→ 1%','','max frekvens 1000%','','')

129



109 % title('MATLAB FFT + egen kode '+string(z(1))+'m Ray lengder

↪→ '+string(Ray))

110 % hold off

111 % m=[];

112 c=[c,z(1)];

113 R=[R,Ray];

114 end

115 end

116 % Plot innputs for all files plottet toghether

117 ax = gca()

118 ax.ThetaZeroLocation= 'top';

119 ax.ThetaLim = [-90, 90]

120 rlim ([-60,5])

121 rticks ( -60:10:2)

122 legend('Analytisk ','','Simulert '+string(c(1))+'m','','Simulert

↪→ '+string(c(2))+'m','','Simulert '+string(c(3))+'m','','Simulert

↪→ '+string(c(4))+'m','FontSize ',10','location ','southeast ')

123 % legend('Analytisk ','','1%','','10%','','100%','','1000%')

124 % legend('Analytisk ','','50Khz 1000%','','max frekvens 1%','','max

↪→ frekvens 1000%','','')

125 title('Simulated and analytical beampattern ','FontSize ' ,14')
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B.2 Function that uses FFT on the stationary signal

1 function [beam ,theta ,beam_anaf ,S,m,z]= Prove_fft_matlab(Tv1)

2 f0 =50000; % input frequency

3 samples_T =200; % samples per period

4 Fs =1/(1/ f0/samples_T); % sampling frequency

5 startperiode =4; % Starting at period 4

6 k=0; % defines k for use later

7 beam =[]; % defines beam for use later

8 m=[]; % defines m for use later

9 samplelength =30; % Desired sample length

10 T=Tv1; % Renames input data

11 avvikamplitude =10; % Deviation of the maximum amplitude per period in

↪→ procent (10%)

12

13 for i=1: height(T)

14 I=samples_T*startperiode +3; %starter periode

15 S=[ find_stat(T(i,:),samples_T ,f0,I,avvikamplitude ,samplelength)]; %

↪→ Run find_stat to find a sample in the stationary part

16 Sa=[S,zeros (1,2^17- length(S))];

17 if width(S)<samplelength*samples_T %The sample length is shorter then

↪→ the desired sample (samplelength)

18 while width(S)<samplelength*samples_T % continnues as long as the

↪→ signal is longer then the desired sample

19 k=k+1;

20 I=I+k*samples_T; % Starting on the next period to get propper

↪→ length with right deviation

21 S=[ find_stat(T(i,:),samples_T ,f0,I,avvikamplitude ,samplelength)];

↪→ % Run find_stat again

22 if I>=width(T)-(startperiode +3)*samples_T

23 I=samples_T*startperiode +3;

24 k=0;

25 break

26 end

27 I=samples_T*startperiode +3; % Changing start period back to

↪→ original

28 end

29 I=samples_T*startperiode +3; % Changing start period back to

↪→ original

30 end
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31 if width(S)<samplelength*samples_T %If the sample length is long

↪→ enough it continues

32 m=[m,i];

33 end

34 %FFT of the sample

35 Ls = width(Sa);% Signal length

36 F = fft(Sa);% Calling fft() function for signal

37 PS2 = abs(F/Ls);% Double sampling plot

38 PS1 = PS2(:,1:Ls /2+1);% Single sampling plot

39 PS1(2:end -1) = 2*PS1(2:end -1);

40 f = Fs *(0:( Ls/2))/Ls;

41 fI=f-Fs;

42 [v,If]=(min(abs(fI)));

43 PS=PS1(If);

44 beam=[beam ,PS];

45 end

46 % Converting from r,z cordinates to angles

47 r=(T(:,1)) ';

48 z=(T(:,2)) ';

49 theta=atan(r./z);

50

51 % the analytical beam pattern

52 a=0.1;

53 c0 =1481;

54 q=2*pi*f0/c0;

55 omega =2*pi*f0;

56 v=q.*a.*sin(theta);

57 beam_anaf=abs(2* besselj(1,v)./v);

58 end
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B.3 Function that finds the stationary part of the sig-

nal

1 %Finding the stationary part of the signal

2

3 function signal=find_stat(data ,samples_T ,f0,I,

↪→ avvikamplitude ,samplelength)

4 sample =1/f0/samples_T; % Period devided by samples per period (how long 1

↪→ sample is)

5 sampleu=round(samples_T /4); % Start in the beggining of a period

6 sampleo=round (3* samples_T /4); % End in the end of a period

7 T0=1/f0; % Period

8 Tn=T0/sample; % Period devided by samples per period (how long 1 sample

↪→ is)

9 Ip=I; % Start period

10 [a,Ia]=max(data(1,round(Ip-samples_T /2):round(Ip+samples_T /2))); %find

↪→ the max value in the period

11 Ij=Ia+Ip; % End of period

12 Iz=Ij -Ip; % Start of period

13 start=(data(1,Ij)); % Start amplitude

14 S=(data(1,Ij-sampleu:Ij+sampleo)); % f r s t e periode

15

16 % Adding periods to the S as long as it amplitude is within the desired

↪→ deviation

17 for o=1: round(( length(data(1,Ij:end -3))-Iz)/Tn)

18 if width(S)>samples_T*samplelength

19 break

20 elseif (data(1,Ij+o*Tn)) < start -start*avvikamplitude

21 S=[S,data(1,Ij+Tn*o-sampleu:Ij+sampleo+o*Tn)];

22 elseif (data(1,Ij+o*Tn)) < start+start*avvikamplitude

23 S=[S,data(1,Ij+Tn*o-sampleu:Ij+sampleo+o*Tn)];

24 else

25 break

26 end

27 end

28 signal=S;

29 end
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B.4 Function that reads the data from the COMSOL

files

1 function [Tv1 ,Tv2 ,Tv3 ,Tv4]= hentdata_text () % Reads the data from the

↪→ input filenames

2

3 filname1=' f j r n f e l t _ 1 m .txt'; %filename

4 opts = detectImportOptions(filname1); % Determines what format the text

↪→ file has

5 T1=readtable(filname1 ,opts ,'ReadVariableNames ', false); % Reads the data

6 T1=table2array(T1); % Transforms data from a table to a array

7 Tv1=[T1]; % Changes name to Tv1

8

9 filname1=' f j r n f e l t _ 2 m .txt';

10 T1=readtable(filname1 ,opts ,'ReadVariableNames ', false);

11 T1=table2array(T1);

12 Tv2=[T1];

13

14

15 filname1=' f j r n f e l t _ 3 m .txt';

16 T1=readtable(filname1 ,opts ,'ReadVariableNames ', false);

17 T1=table2array(T1);

18 Tv3=[T1];

19

20

21 filname1=' f j r n f e l t _ 4 m .txt';

22 T1=readtable(filname1 ,opts ,'ReadVariableNames ', false);

23 T1=table2array(T1);

24 Tv4=[T1];

25

26 end
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Appendix C

MATLAB code for Section 4.2

1 %read data

2 close all

3 clear all

4 filname1='aksetrykk_vann_lengremodel1_120kHz.txt';

5 opts = detectImportOptions(filname1);

6 T1=readtable(filname1 ,opts ,'ReadVariableNames ', false);

7 Tv1=table2array(T1);

8 %%

9 f0=120e3;

10 c=1481;

11 k=(2*pi.*f0)./c;

12 lam=c/f0;

13

14 sampT =60; %time samples per period

15 T0=1/f0; %period

16

17 %%

18 Is1 =1800; %sample to get distance P1

19 p0=Tv1(Is1 ,round(Tv1(Is1 ,2)/(lam /60) +60*5):end);

20 % p0=Tv1(Is1 ,round ((Tv1(end ,2)+Tv1(end ,2)-Tv1(Is1 ,2))/(lam /60) +60*5):end);

21 %Gather the local maximum points

22 a=1: length(p0);

23 Im=islocalmax(p0);

24 Im=a(Im);

25 %Get complete waves

26 I=Im(1)-sampT /4:Im(1) +10* sampT+sampT /4;
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27

28 p0_I1=p0(I); %Pressure at P1

29

30 Is2 =1900; % Sample to get distance P2

31 p1=Tv1(Is2 ,round(Tv1(Is2 ,2)/(lam /60) +60*5):end); % Pressure at P2

32 % p1=Tv1(Is2 ,round ((Tv1(end ,2)+Tv1(end ,2)-Tv1(Is2 ,2))/(lam /60) +60*5):end);

33

34 d0=Tv1(Is1 ,2)/Tv1(Is2 ,2); %Distance correction

35 % d0=(2* Tv1(end ,2)-Tv1(Is1 ,2))/(2* Tv1(end ,2)-Tv1(Is2 ,2));

36 %Find the index of the maximum points

37 a=1: length(p1);

38 Im1=islocalmax(p1);

39 Im1=a(Im1);

40 %Get complete waves

41 I1=Im1 -sampT /4: Im1 +10* sampT+sampT /4;

42

43

44 %making the time vector

45 % t=Is2:1:Is2 +10* sampT;

46 t=(I+round(Tv1(Is2 ,2)/(lam /60) +60*5))*T0/60;

47 %Finding the pressure

48 p1_I1=p1(I1);

49 %Finding the corrected pressure

50 p1_I=p1_I1./d0.*exp(1i*(-k.*d0));

51

52 figure

53 plot(t,abs(p1_I1)./1e3 ,'g','linewidth ' ,2)

54 hold on

55 plot(t,abs(p0_I1)./1e3 ,'b','linewidth ' ,2)

56 plot(t,abs(p1_I)./1e3 ,'-.r','linewidth ' ,2)

57 legend('P2: p at '+string(Tv1(Is2 ,2))+'m','P1: p at

↪→ '+string(Tv1(Is1 ,2))+'m','P2 corrected to P1','Fontsize ',10,

↪→ 'location ','southeast ')

58 title('Geometric spreading correction of incident wave','FontSize ' ,12)

59 % title('Gemoetric spreading correction of reflected wave ', 'FontSize ',12)

60

61 xlabel('time','FontSize ' ,12)

62 ylabel('Magnitude [kPa]','FontSize ' ,12)

63 xlim ([1.92*1e-3 ,1.95*1e-3])

64 pbaspect ([1.6 ,1 ,1])

65 saveas(gcf ,'Geometric spreading correction after reflection.png')
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Appendix D

Fluid-solid Reflection coefficient test

Figure D.1: Comparing the fluid-solid and fluid-fluid reflection coefficient with gradually decreasing shear
viscosity in the solid medium.
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Appendix E

Transit time at different angles
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Figure E.1: Transit time at different angles



Appendix F

Material density
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141

Figure F.1: Measurements of size and weight of grout with Top: cylindrical defects sample 1 and 2 Bottom:
spherical defects sample 1 and 2



142

Figure F.2: Measurements of size and weight of grout Top: samples 1 and 2: sample 3 with total average



Appendix G

AIRMAR B175M datasheet
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146

Figure G.1: How TVR, RVR and FOM are determined



Appendix H

MATLAB code for processing the

signals

1 %% Data from experiment

2 Tv1 =0;

3 Tv2 =0;

4 Tv3 =0;

5 Tv4 =0;

6 Tv5 =0;

7

8 for i=1:20 % ShotViewer is a confedential TSC function to read the data

9

10

11 [delta_t ,T1]= ShotViewer_Single_Shot('1_10V_betong '+string(i)+'.adm16 ');

12 % T1=T1 (4040:7000) ';

13 % T1=T1 (6300: end) ';

14 T1=double(T1)';

15 Tv1=Tv1+T1;

16

17 [delta_t ,T2]= ShotViewer_Single_Shot('1_10V_betong '+string(i)+'.adm16 ');

18 % T2=T2 (4060:7000) ';

19 % T2=T2 (6300: end) ';

20 T2=double(T2)';

21 Tv2=Tv2+T2;

22

23
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24 %

↪→ [delta_t ,T3]= ShotViewer_Single_Shot ('1 _10V_pingpong_tredjedel '+ string(i)+'.adm16 ');

25 [delta_t ,T3]= ShotViewer_Single_Shot('1_10V_betong '+string(i)+'.adm16 ');

26 %

↪→ [delta_t ,T3]= ShotViewer_Single_Shot ('2 _10V_snus_tredjedel '+ string(i)+'.adm16 ');

27 % T3=T3 (4060:7000) ';

28 % T3=T3 (6300: end) ';

29 T3=double(T3)';

30 Tv3=Tv3+T3;

31

32 % [delta_t ,T4]= ShotViewer_Single_Shot ('2_10V_betong '+ string(i)+'.adm16 ');

33 [delta_t ,T4]= ShotViewer_Single_Shot('1_10V_snus_tredjedel '+string(i)+'.adm16 ');

34 % T4=T4(120: end);

35 T4=double(T4)';

36 Tv4=Tv4+T4;

37

38 % [delta_t ,T5]= ShotViewer_Single_Shot ('3_10V_betong '+ string(i)+'.adm16 ');

39 [delta_t ,T5]= ShotViewer_Single_Shot('2_10V_snus_tredjedel '+string(i)+'.adm16 ');

40 % T5=T5(120: end);

41 T5=double(T5)';

42 Tv5=Tv5+T5;

43

44 end

45

46 Tv1=Tv1 /20;

47 Tv2=Tv2 /20;

48 Tv3=Tv3 /20;

49 Tv4=Tv4 /20;

50 Tv5=Tv5 /20;

51

52 %% Data from Simulation

53 k=0;

54 filname1='implicit_10_riktig.txt'; % filename

55 opts = detectImportOptions(filname1); % detecting what format the file is

↪→ in

56 T1=readtable(filname1 ,opts ,'ReadVariableNames ', false); % reading the data

57 Tv1=sum(table2array(T1)); % converting the data from an table to an array

↪→ and suming

58 Tv1b=Tv1 (: ,3255+k:end -320-k); % extracting the reveberation of the signal

59

60 % repeat for the other filenames

148



61 filname2='spherical_implicit_10_riktig.txt';

62 opts = detectImportOptions(filname2);

63 T2=readtable(filname2 ,opts ,'ReadVariableNames ', false);

64 Tv2=sum(table2array(T2));

65 Tv2b=Tv2 (: ,3255+k:end -320);

66

67 filname3='cylinder_implicit_riktig.txt';

68 opts = detectImportOptions(filname3);

69 T3=readtable(filname3 ,opts ,'ReadVariableNames ', false);

70 Tv3=sum(table2array(T3));

71 Tv3b=Tv3 (: ,3255+k+653:end -320);

72

73

74 % filname4='implicit_uten_endeeffekt_demping_100dB_0 .4 _punkt.txt ';

75 % opts = detectImportOptions(filname4);

76 % T4=readtable(filname4 ,opts ,'ReadVariableNames ', false);

77 % Tv4=table2array(T4);

78 % Tv4=Tv4 (: ,70*30:130*30);

79 % Tv4=sum(Tv4);

80 %

81 % filname5='implicit_uten_endeeffekt_demping_100dB_0 .4 _punkt.txt ';

82 % opts = detectImportOptions(filname5);

83 % T5=readtable(filname5 ,opts ,'ReadVariableNames ', false);

84 % Tv5=table2array(T5);

85 % Tv5=Tv5 (: ,70*30:130*30);

86 % Tv5=sum(Tv5);

87

88

89 % Timevector

90 % Experiment

91 t=(1: length(Tv4)+1000)*delta_t;

92 t=t(1: length(Tv4));

93

94 f=100e3; % Avrerage frequency in chirp

95 T=1/f; % Average period in chirp

96

97 % Simulation

98 S_T =30; % samples per period

99 t1 =(1:1:150* S_T +3);

100 t1=t1*T/S_T;

101
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102 t2 =3255+k:1:150* S_T +3;

103 t2=t2*T/S_T;

104

105 % Bandpass filter for experiment

106

107 % Tv1b=bandpass ([t,Tv1],[50e3, 150e3],1/ delta_t);

108 % Tv1b=Tv1b(length(Tv1)+1:end);

109 % Tv2b=bandpass ([t,Tv2],[50e3, 150e3],1/ delta_t);

110 % Tv2b=Tv2b(length(Tv2)+1:end);

111 % Tv3b=bandpass ([t,Tv3],[50e3, 150e3],1/ delta_t);

112 % Tv3b=Tv3b(length(Tv3)+1:end);

113 Tv4b=bandpass ([t,Tv4],[50e3 , 150e3],1/ delta_t);

114 Tv4b=Tv4b(length(Tv4)+1: end);

115 Tv5b=bandpass ([t,Tv5],[50e3 , 150e3],1/ delta_t);

116 Tv5b=Tv5b(length(Tv5)+1: end);

117

118 % Extracting the reverberation for experiment

119 valstart =5850+1742;

120 a=0;

121 % Tv1b=Tv1b(valstart:end);

122 % Tv2b=Tv2b(valstart:end);

123 % Tv3b=Tv3b(valstart:end -a);

124 Tv4b=Tv4b(valstart:end -a);

125 Tv5b=Tv5b(valstart:end -a);

126

127

128 % Rectangular filter (finding start and end point at zero)

129 [val1 ,start1 ]=min(abs(Tv1b (1:100)));

130 [val2 ,start2 ]=min(abs(Tv2b (1:100)));

131 [val3 ,start3 ]=min(abs(Tv3b (1:100)));

132 [val4 ,start4 ]=min(abs(Tv4b (1:100)));

133 [val5 ,start5 ]=min(abs(Tv5b (1:100)));

134

135 [val1 ,end1]=min(abs(Tv1b(length(Tv1b) -100:end)));

136 [val2 ,end2]=min(abs(Tv2b(length(Tv2b) -100:end)));

137 [val3 ,end3]=min(abs(Tv3b(length(Tv3b) -100:end)));

138 [val4 ,end4]=min(abs(Tv4b(length(Tv4b) -100:end)));

139 [val5 ,end5]=min(abs(Tv5b(length(Tv5b) -100:end)));

140

141 Tv1b=Tv1b(start1:length(Tv1b)-end1);

142 Tv2b=Tv2b(start2:length(Tv2b)-end2);
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143 Tv3b=Tv3b(start3:length(Tv3b)-end3);

144 Tv4b=Tv4b(start4:length(Tv4b)-end4);

145 Tv5b=Tv5b(start5:length(Tv5b)-end5);

146

147 %% Hamming window

148

149 Tv1b=transpose(hamming(length(Tv1b))).*Tv1b;

150 Tv2b=transpose(hamming(length(Tv2b))).*Tv2b;

151 Tv3b=transpose(hamming(length(Tv3b))).*Tv3b;

152 Tv4b=transpose(hamming(length(Tv4b))).*Tv4b;

153 Tv5b=transpose(hamming(length(Tv5b))).*Tv5b;

154

155

156 %% Hanning window

157

158 Tv1b=transpose(hann(length(Tv1b))).*Tv1b;

159 Tv2b=transpose(hann(length(Tv2b))).*Tv2b;

160 Tv3b=transpose(hann(length(Tv3b))).*Tv3b;

161 Tv4b=transpose(hann(length(Tv4b))).*Tv4b;

162 Tv5b=transpose(hann(length(Tv5b))).*Tv5b;

163

164 %% FFT

165

166 Fs=1/(T/30); % sampling frequency for simulation

167 % Fs=1/ delta_t; % Sampling frequency for experiment

168 Sa=[Tv1b ,zeros (1,2^20- length(Tv1b))]; % Zero padding

169 Ls = width(Sa);% Signal length

170 F = fft(Sa);% Calling fft() function for signal dfa

171 PS2 = abs(F/length(Tv1b));% Double sampling plot

172 PS1 = PS2(:,1:Ls /2+1);%Single sampling plot

173 PS1 (2:end -1) = 2*PS1 (2:end -1); % Dobble amplitude (just positive values)

174 f = Fs*(0:( Ls/2))/Ls; % Frequency vector

175

176 % Repeat for other signals

177 Fs2 =1/(T/30);

178 % Fs2=1/ delta_t; % Sampling frequency

179 Sa2=[Tv2b ,zeros (1,2^20- length(Tv2b))]; % Zero padding

180 Ls2 = width(Sa2);% Signal length

181 F2 = fft(Sa2);% Calling fft() function for signal dfa

182 PS2_2 = abs(F2/length(Tv2b));% Double sampling plot

183 PS1_2 = PS2_2 (:,1:Ls2 /2+1);% Single sampling plot
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184 PS1_2 (2:end -1) = 2*PS1_2 (2:end -1);

185 f2 = Fs2 *(0:( Ls2 /2))/Ls2;

186

187 Fs3 =1/(T/30);

188 % Fs3=1/ delta_t;

189 Sa3=[Tv3b ,zeros (1,2^20- length(Tv3b))];

190 Ls3 = width(Sa3);% Signal length

191 F3 = fft(Sa3);% Calling fft() function for signal dfa

192 PS2_3 = abs(F3/length(Tv3b));% Double sampling plot

193 PS1_3 = PS2_3 (:,1:Ls3 /2+1);% Single sampling plot

194 PS1_3 (2:end -1) = 2*PS1_3 (2:end -1);

195 f3 = Fs3 *(0:( Ls3 /2))/Ls3;

196

197 % Fs4 =1/(T/30);

198 Fs4 =1/ delta_t;

199 Sa4=[Tv4b ,zeros (1,2^20- length(Tv4b))];

200 Ls4 = width(Sa4);% Signal length

201 F4 = fft(Sa4);% Calling fft() function for signal dfa

202 PS2_4 = abs(F4/length(Tv4b));% Double sampling plot

203 PS1_4 = PS2_4 (:,1:Ls4 /2+1);% Single sampling plot

204 PS1_4 (2:end -1) = 2*PS1_4 (2:end -1);

205 f4 = Fs4 *(0:( Ls4 /2))/Ls4;

206 %

207 % Fs5 =1/(T/30);

208 Fs5 =1/ delta_t;

209 Sa5=[Tv5b ,zeros (1,2^20- length(Tv5b))];

210 Ls5 = width(Sa5);% Signal length

211 F5 = fft(Sa5);% Calling fft() function for signal dfa

212 PS2_5 = abs(F5/length(Tv5b));% Double sampling plot

213 PS1_5 = PS2_5 (:,1:Ls5 /2+1);% Single sampling plot

214 PS1_5 (2:end -1) = 2*PS1_5 (2:end -1);

215 f5 = Fs5 *(0:( Ls5 /2))/Ls5;

216

217 %% Plotting frequency

218

219 hold on

220 % plot(f./1e3 ,20* log10(PS1./max(PS1 (1:27000))),'linewidth ' ,1.2)

221 % plot(f2./1e3 ,20* log10(PS1_2 ./max(PS1 (1:27000))),'linewidth ',1.2)

222 % plot(f3./1e3 ,20* log10(PS1_3 ./max(PS1 (1:27000))),'linewidth ',1.2)

223

224 % plot(f./1e3,PS1./max(PS1(1:end)),'m-','linewidth ' ,1.2)
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225 % plot(f2./1e3,PS1_2 ./max(PS1_2 (1:end)),'m-','linewidth ',1.2)

226 plot(f3./1e3 ,PS1_3./max(PS1_3 (1: end)),'m-','linewidth ' ,1.2)

227 plot(f4./1e3 ,PS1_4./max(PS1_4 (1:27000)),'b-','linewidth ' ,1.2)

228 plot(f5./1e3 ,PS1_5./max(PS1_5 (1:27000)),'r-','linewidth ' ,1.2)

229 xlim ([50 ,150])

230 ylim ([0 ,1.7])

231

232 % legend('Simulated without defect ','Simulated spherical

↪→ defect ','Simulated cylindrical

↪→ defect ','FontSize ',12,'location ','northwest ')

233 legend('Simulated Spherical defect ','Spherical defect S1','Spherical

↪→ defect S2','Grout S3','FontSize ',12,'location ','northwest ')

234 % legend('Without defect ','Spherical defect ','Cylindrical

↪→ defect ','FontSize ',12,'location ','northeast ')

235

236 xlabel('Frequency [kHz]','FontSize ' ,12)

237 ylabel('Normalised amplitude ','FontSize ' ,12)

238

239 pbaspect ([1.6 ,1 ,1])

240 saveas(gcf ,'Compare spherical simulated experiment rectangular before

↪→ pulse FFT.png')

241 % saveas(gcf ,'Sammenligne_ekspriment_betong_samples_reproduserbarhet.png ')

242

243

244 %% plotting time

245 % figure

246 hold on

247 % plot(t(1: length(Tv1))*1e3,Tv1(1,:)./max(Tv1(1,:)),'linewidth ',1.2)

248 % plot(t(1: length(Tv2))*1e3,Tv2(1,:)./max(Tv2(1,:)) ,'-.','linewidth ' ,1.2)

249 % plot(t(1: length(Tv3))*1e3,Tv3(1,:)./max(Tv3(1,:)),'linewidth ',1.2)

250 % plot(t(length(Tv4))*1e3,Tv4(1,:)./max(Tv4(1,:)),'linewidth ',1.2)

251

252 % t1=( valstart+start1 +1:1: valstart+start1+length(Tv1b)).* delta_t;

253 % t2=( valstart+start2 +1:1: valstart+start2+length(Tv2b)).* delta_t;

254 % t3=( valstart+start3 +1:1: valstart+start3+length(Tv3b)).* delta_t;

255 t4=( valstart+start4 +1:1: valstart+start4+length(Tv4b)).* delta_t;

256 t5=( valstart+start5 +1:1: valstart+start5+length(Tv5b)).* delta_t;

257

258 t2a=t2 -0.195/1481;

259

260
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261 % plot(t2a(1: length(Tv1b))*1e3,Tv1b./max(Tv1b),'m-','linewidth ',1.5)

262 % plot(t2a(1: length(Tv2b))*1e3,Tv2b./max(Tv2b),'m-','linewidth ',1.5)

263 plot(t2a (1: length(Tv3b))*1e3 ,Tv3b./max(Tv3b),'m-','linewidth ' ,1.5)

264

265 % plot(t1*1e3,Tv1b (1,:)./max(Tv1b (1,1:end)),'-','linewidth ',1.2)

266 % plot(t2*1e3,Tv2b (1,:)./max(Tv2b (1,1:end)),'-','linewidth ',1.2)

267 % plot(t3*1e3,Tv3b (1,:)./max(Tv3b (1,1:end)),'b-','linewidth ' ,1.2)

268 plot(t4*1e3 ,Tv4b (1,:)./max(Tv4b (1,1:end)),'b-','linewidth ' ,1.2)

269 plot(t5*1e3 ,Tv5b (1,:)./max(Tv5b (1,1:end)),'r-','linewidth ' ,1.2)

270

271

272 % plot(t1(1: length(Tv1))*1e3,Tv1./max(Tv1),'linewidth ',1.5)

273 % plot(t1(1: length(Tv2))*1e3,Tv2./max(Tv2),'-','linewidth ' ,1.5)

274 % plot(t1(1: length(Tv3))*1e3,Tv3./max(Tv3),'-','linewidth ' ,1.5)

275 % xlim ([0.89 ,1.5])

276

277 %

↪→ legend('Grout ','Steel -Grout ','Steel -Grout -Steel ','FontSize ',12,'location ','northeast ')

278 % legend('Simulated without defect ','Simulated spherical

↪→ defect ','Simulated cylindrical

↪→ defect ','FontSize ',12,'location ','northwest ')

279 % legend('Simulated spherical defect ','Spherical defect S1','Spherical

↪→ defect S2 ','FontSize ',12,'location ','northwest ')

280 legend('Simulated cylindrical defect ','Cylindrical defect

↪→ S1','Cylindrical defect S2','Spherical defect

↪→ S3','FontSize ',12,'location ','northwest ')

281

282

283 ylim ([-1.1 1.8])

284 xlabel('Time [ms]','FontSize ' ,12)

285 ylabel('Normalised amplitude ','FontSize ' ,12)

286 saveas(gcf ,'Compare cylindrical simulated experiment rectangular last 500

↪→ time.png')

287 % saveas(gcf ,'Full different steelplates.png ')
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Appendix I

COMSOL Support
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Figure I.1: COMSOL support on why the transient part of the signal is importaint
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Figure I.2: COMSOL support’s answer to why the model becomes unstable using damping



Appendix J

Results and Discussion

J.1 Experimental results of grout without defects

Figure J.1: Experimental results of the grout without defects with a bandpass filter of 50 to 150 kHz, the
first 500 samples removed and a rectangular window in the time (left) and frequency (right) domains
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Figure J.2: Experimental results of the grout without defects, with a bandpass filter of 50 to 150 kHz, the
first 700 samples removed and a rectangular window in the time (left) and frequency (right) domains.
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Figure J.3: Experimental results of the grout without defects, with a bandpass filter of 50 to 150 kHz and
a rectangular window for the last 500 samples removed in time domain (top left) and frequency (top right)
domains and last 700 samples removed in time (bottom left) and frequency (bottom right) domains

J.2 Experimental results of grout with cylindrical de-

fects
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Figure J.4: Experimental results of the grout with a cylindrical defect, with a bandpass filter of 50 to 150
kHz and a rectangular window for the last 500 samples removed in time (top left) and frequency (top right)
domains and last 700 samples removed in time (bottom left) and frequency (bottom right) domains
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Figure J.5: Experimental results of the grout with a cylindrical defect, with a bandpass filter of 50 to 150
kHz and a rectangular window for the last and first 500 samples removed in the time (top left) and frequency
(top right) domains and last and first 700 samples removed in the time (bottom left) and frequency (bottom
right) domains
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J.3 Experimental results of grout with spherical de-

fects

Figure J.6: Experimental results of the grout with a spherical defect, with a bandpass filter of 50 to 150 kHz
and Hamming window in the time (left) and frequency (right) domains, where S1 and S2 are Samples one
and two, respectively.

Figure J.7: Experimental results of the grout with a spherical defect, with a bandpass filter of 50 to 150 kHz
and Hanning window the time (left) and frequency (right) domains, where S1 and S2 are Samples one and
two, respectively.
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Figure J.8: Experimental results of the grout with a spherical defect, with a bandpass filter of 50 to 150 kHz
and a rectangular window for the larger pulse in the reverberation in the time (left) and frequency (right)
domains

J.4 Experimental part comparison

Figure J.9: Experimental results of the grout with and without defects, with a bandpass filter of 50 to 150
kHz and a rectangular window for the middle of the reverberation with cylindrical (left) and spherical (right)
defects
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Figure J.10: Comparing experimental results of the grout with defects and grout without defects, with a
bandpass filter of 50 to 150 kHz and a rectangular window for the start of reverberation (700 samples)
with cylindrical defect (top left), start of reverberation (700 samples) spherical defect (top right), end of
reverberation (700 samples) cylindrical defect (lower left) and end of reverberation (700 samples) spherical
defect (lower right)

J.5 Simulation results
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Figure J.11: Simulated results of semi-infinite steel–grout with and without defects and a Hamming (top)
and Hanning (bottom) windows, showing the reverberation in the time (left) and frequency (right) domains



Appendix K

Scattering cross section for a fluid
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Figure K.1: Scattering cross section for gas filled spheres with different radii. The dampening coefficients
are from Medwin [49]. The dampening coefficient is 0.6 for the spherical defect with 0.02m in radius, and
0.19 for the spherical defect with 0.007m in radius.
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Figure K.2: Scattering cross section for gas filled spheres different dampening coefficients
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