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Abstract

The indigenous populations of La Palma (Canary Islands), who arrived on the island

from Northwest Africa ca. 2000 years B.P., were predominantly pastoralists. Yet,

many aspects of their subsistence economy such as the procurement, management,

and use of wild plant resources remain largely unknown. To explore this, we studied

the 600–1100‐year‐old archaeological site of Belmaco Cave, which comprises a

stratified sedimentary deposit representative of a fumier. Here, we present a high‐

resolution, multiproxy geoarchaeological study combining soil micromorphology,

lipid biomarker analysis, X‐ray diffraction, μ‐X‐ray diffraction, μ‐X‐ray fluorescence,

Fourier transform infrared spectroscopy, and μ‐Fourier transform infrared spectros-

copy, to characterize formation processes and explore plant sources. Recurrent

goat/sheep habitation and maintenance activities are represented by interstratified

layers of unburned dung, charcoal‐rich sediment, and dung ash. Lipid biomarker data

show a herd diet mainly composed of herbaceous plants, which is key to

understanding the mobility of indigenous shepherds. Our results also revealed an
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unusual suite of authigenic minerals including hazenite, aragonite, and sylvite,

possibly formed through diagenetic processes involving interaction between ash,

dung, urine, volcanogenic components, and bacterial activity, coupled with arid and

alkaline conditions. Our study shows the potential of a multiproxy approach to a

fumier deposit in a volcanogenic sedimentary context.
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1 | INTRODUCTION

During the initial settlement of the Canarian archipelago,

populations arriving from the African continent encountered

numerous challenges across radically different landscapes. These

new landscapes included volcanic terrains, such as calderas and

ravines, where new populations encountered raw materials

including obsidian and basalt. There were a variety of new

ecosystems with unknown endemic flora and fauna, and the new

scenario implied the loss of important continental resources, such

as flint, metals, big game, and rivers. The accompanying sheep

and goat herds also had to adapt to the new environmental

conditions. As a result, the settlers and their herds dramatically

transformed the landscape, likely accelerating erosion and

ecological perturbation processes, including species extinctions

and extirpations (Fernández‐Palacios et al., 2016; de Nascimento

et al., 2009, 2016, 2020; Ravazzi et al., 2021).

La Palma, the north‐western‐most island of the Canarian

archipelago (Spain), constitutes an exceptional scenario to study

such adaptation processes. The indigenous inhabitants of La

Palma, known as the Auaritas, were genetically related to North‐

West African Amazigh populations (Fregel et al., 2009). The

earliest documented indigenous site in La Palma dates to

260–450 cal. C.E. (Morales et al., 2017) and archaeological

evidence indicates continuous presence of the Auarita population

until the arrival of European colonizers in the island at the end of

the 15th century A.D.

La Palma has a rugged orography with common escarpments

and gorges that are considered difficult for farming but suitable

for herding goats, and nowadays fodder sources are diverse and

abundant. Information concerning indigenous subsistence strate-

gies in La Palma has been gathered from archaeological and

ethnohistorical records. The latter, written by European explorers

in the 15th and 16th centuries, state that the Auaritas relied on

animal husbandry and plant gathering, which suggests an absence

of agriculture (Abreu, 1977; Cioranescu, 2004). Zooarchaeologi-

cal investigations have shown that the livestock consisted of

goats (Capra hircus), sheep (Ovis aries), and pigs (Sus domesticus);

domesticated animals introduced by the first inhabitants (Pais

Pais, 1996a). Scattered archaeological and ethnographic data

document numerous herding sites in the highlands, pointing to a

reliance on pastoralism (Martín Rodríguez, 1992; Pais

Pais, 1996a, 1996b, 2008). On the other hand, the localized

presence of barley (Hordeum vulgare), wheat (Triticum durum),

lentils (Lens culinaris), and fava beans (Vicia faba) in archaeological

deposits suggests that agriculture also played a role in indigenous

subsistence practices (Morales, 2003; Morales & Gil, 2014;

Morales et al., 2007, 2009, 2014). Nevertheless, this evidence

is isolated, as only a few cultivar seed remains have been found in

only two archaeological sites, and Morales et al. (2014) highlight

the prevalence of pastoral subsistence in La Palma. Further

investigation of indigenous archaeological contexts in La Palma is

necessary to gain insight into the Auarita subsistence economy.

Given the likely importance of animal husbandry, a focus on

indigenous herding practices is particularly called for to explore

traditions regarding livestock management, maintenance of the

herding sites, fodder sources, and their procurement strategies.

One way to approach these issues is through the geoarchaeo-

logical study of burnt stabling deposits or fumiers. Natural caves and

rockshelters have traditionally been used as seasonal pens for

livestock from the Neolithic until the Bronze Age in the Mediterra-

nean region, resulting in the formation of thick stratified deposits

representing recurrent anthropogenic stabling activity. Throughout

their formation, these stabling deposits were periodically burnt to

eliminate parasites, sanitize penning areas, and reduce accumulated

dung volume. The resulting burnt stratified sequence is commonly

referred to as fumier (Angelucci et al., 2009; Brochier et al., 1992;

Brochier, 1983a, 1983b, 1991, 1996, 2002). From a macrostrati-

graphic perspective, fumiers are characterized by an alternation of

successive, well‐bedded, thin layers of variable color and are usually

poor in archaeological materials (Angelucci et al., 2009; Fernández

Eraso & Polo Díaz, 2009).

Fumiers have often been approached through archaeological soil

micromorphology, which provides a set of indicators to assess

formation processes. From a micromorphological perspective, fumiers

display (1) a brown layer formed of mostly unaffected dung residues

(which can include other biogenic or geogenic materials), (2) a black

layer showing partially charred dung and other organic materials, and

(3) a white/gray layer of ashed dung or a combination of wood and

dung ashes. The brown layer (1) may include plant material

introduced as bedding to prepare the ground surface for animal

occupation and represents the stabling event, followed by the black

2 | FERNÁNDEZ‐PALACIOS ET AL.

 15206548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gea.21972 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and white/gray layers (2 and 3), or the effects of burning, which

penetrate down into the sediment beneath (Angelucci et al., 2009;

Égüez et al., 2016; Macphail et al., 1997; Polo‐Díaz et al., 2014, 2016;

Polo‐Díaz, 2010). Nevertheless, using soil micromorphology as a

stand‐alone technique in the study of fumiers also has disadvantages.

One of them is the difficulty in identifying the diagenetic processes

that are often associated with this kind of deposit (Polo Díaz &

Fernández Eraso, 2010). Complementary inorganic geochemistry

techniques such as Fourier transform infrared spectroscopy (FTIR),

X‐ray diffraction (XRD), and scanning electron microscopy (SEM)

have been valuable sources of information (Brochier et al., 1992;

Burguet‐Coca et al., 2020; Cabanes et al., 2009). However, diagenetic

pathways of fumier components in deposits associated with volcanic

settings remain unexplored.

Another disadvantage is the difficulty in identifying plant

sources, which are a key component of stabling deposits and may

include fodder remains, digested plants within the dung pellets,

bedding, and fuel. Multiproxy studies using phytoliths, pollen, calcium

oxalates, ash pseudomorphs, charcoal, and other plant macroremains

analyses have provided valuable information on plant sources and

possible livestock diets (Allué et al., 2009; Alonso‐Eguíluz, 2012;

Cabanes et al., 2009; Delhon et al., 2008; Expósito & Burjachs, 2016;

Rodríguez et al., 2016; see also Delhon et al., 2023 and references

therein), many of them following or combining these proxies with

micromorphological analysis (Alonso‐Eguíluz et al., 2016; Burguet‐

Coca et al., 2020; Euba et al., 2016; Lancelotti et al., 2014; Polo‐Díaz

et al., 2016). Alternatively, micromorphology could be combined with

lipid biomarker analysis, with certain types of lipids serving as proxies

for plant sources. Lipids are the most resistant biomolecules in the

archaeological record, making them extremely useful proxies in many

different contexts for paleoenvironmental and paleodietary research

(Peters et al., 2007). Among the numerous lipid compounds

preserved in organic‐rich dung deposits, n‐alkanes are the most

resistant to microbial degradation (Volkman et al., 1998). Alkanes are

hydrocarbon molecules that form linear chains of carbon atoms (n‐

alkanes) and derive from epicuticular waxes of vascular plants

(Eglinton & Hamilton, 1967). Different plant species produce a

characteristic, identifiable pattern and quantity of n‐alkanes. There-

fore, these molecular compounds, which persist in animal excrements

after plant consumption, can be used to reconstruct the animals' diet

(Dove & Mayes, 1996, 2005).

To our knowledge, studies reporting lipid biomarker data from

archaeological fumiers are still scarce and mostly focus on sterols and

bile acids (Gea et al., 2017; Vallejo, Gea, Gorostizu‐Orkaiztegi,

et al., 2022). n‐Alkane biomolecular data have been used to address

contemporary pastoral activity in eastern Mongolia (Égüez &

Makarewicz, 2018; Égüez et al., 2022), North Africa (Égüez

et al., 2018), and the Pyrenees (Pescini et al., 2023) providing a

valuable reference for herd diet and taphonomic processes associ-

ated with sheep and goat dung deposits, albeit not from archaeologi-

cal fumiers. Archaeo‐ and rock magnetic data from archaeological

fumiers have indicated maximum burning temperatures of

400–500°C in carbonaceous facies and 600–700°C in ash layers

(Burguet‐Coca et al., 2022; Carrancho et al., 2012, 2016). Controlled

laboratory heating sequences have shown that plant n‐alkanes are

well preserved up to 350°C (Jambrina‐Enríquez et al., 2018;

Wiesenberg et al., 2009) and there is potential for successful

application of n‐alkane biomarkers in archaeological fumier deposits.

A recent livestock diet study using excremental n‐alkanes in the

Neolithic—Bronze Age fumier sequence of El Mirador (Burgos, Spain)

showed good biomarker preservation in partially and completely

burnt layers (Vallejo, Gea, Massó, et al., 2022).

In this study, we used a multiproxy approach to formation

processes at the Belmaco Cave fumier, a key indigenous site in La

Palma dated to between the 9th and the 15th centuries A.D.

(Marrero Salas et al., 2016). We applied soil micromorphology and n‐

alkane biomarker analyses to characterize depositional sources and

the formation history of the sequence, approach herd diet composi-

tion and its changes over time, and explore combustion tempera-

tures. We complemented these data with XRD, μ‐XRD, μ‐XRF, FTIR,

and μ‐FTIR analyses of selected samples to elucidate diagenetic

processes in a volcanogenic sedimentary context.

2 | MATERIALS AND METHODS

2.1 | Site background

Belmaco Cave (Villa de Mazo) is located in south‐eastern La Palma,

at an altitude of 362m a.s.l., within Las Cuevas Ravine (28°34′40″

N, 17°46′36″ W) (Figure 1). Concerning the geological setting, it is

found in the eastern flank of the Cumbre Vieja volcanic Massif

(Carracedo et al., 2015). The ravine exposed a pre‐LGM Pleistocene

basalt bed in which the Belmaco Cave structure is found. The

landscape surrounding the ravine is made up of younger, post‐LGM

Pleistocene basalt beds, which extend from the Cumbre Vieja

summit along the eastern slope of the island and down to the coast.

Belmaco Cave is shallow, around 10m deep, and sunlit, which

makes it more of a rockshelter. Its formation is volcanogenic,

possibly a blister or pressure‐ridge cave, commonly associated with

massive basalt lava flows (Mentzer, 2016). The first excavations in

the northern part of the cave recovered a rich archaeological

assemblage including pottery, lithic tools on basalt, ornaments,

sheep/goat bone fragments, shells, wooden artifacts, post holes,

and fireplaces (Diego Cuscoy, 1962; Navarro Mederos et al., 2013;

Pais Pais, 2017). Subsequent excavation seasons (1974;

1979–1980; 2000) focused on the central area, and the latest were

geared at assessing the preservation of the stratigraphic profiles,

which had been affected by many tourist visits to the site, lizard and

rodent activity, and torrential floods (Hernández Pérez, 1999;

Morales et al., 2007). The presence of a fumier at the site was

proposed based on salvage archaeological fieldwork in 2013, which

yielded scarce archaeological remains (Marrero Salas et al., 2016).

This campaign focused on analyzing three stratigraphic profiles in

the central area of the cave. Profile A (Figure 1), which was already

exposed since the 70s, displays a 2.8 m long stratigraphic sequence,
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 15206548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gea.21972 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F IGURE 1 (a) Geographic location of La Palma and Belmaco Cave archaeological site. (b) Site map indicating the area of study. (c) General
view of the Belmaco Cave rockshelter and location of the sedimentary deposit under investigation (arrows); (d) Location of the two
perpendicular Profiles (A and B) in the central area of the cave. [Color figure can be viewed at wileyonlinelibrary.com]

4 | FERNÁNDEZ‐PALACIOS ET AL.
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and constitutes a central topic of this study. Profiles B and C

(Figure 1) were exposed by runoff and ravine flank collapses in

2012, which motivated the intervention in 2013. Profile B is also

included in this study (1.7 m), and represents the lower part of the

stratigraphic sequence. Stratigraphic units (SU) were described

during the 2013 campaign. Radiocarbon dating was performed on

bone remains from three units, ordered from lowest to highest, with

SU XXI ranging from 882 to 1015 cal. A.D. (Beta382867: 1110 ± 30

B.P.); SU XVI ranging from 1028 to 1172 cal. A.D. (Beta382866:

940 ± 30 B.P.); and SU III ranging from 1305 to 1419 cal. A.D.

(Beta382865: 580 ± 30 B.P.) (Marrero Salas et al., 2016).

2.2 | Micromorphology

Eight intact, oriented block samples for micromorphological analysis

were extracted: seven from Profile A (Figure 2) and one from Profile

B (Figure 3). Micromorphology blocks were processed by Thomas

Beckmann into 9 cm × 6 cm × 30 μm thin sections. A total of 25 thin

sections were observed and analyzed in plain polarized light (PPL) and

cross‐polarized light (XPL) using two petrographic microscopes

(Nikon E600‐POL and Nikon AZ100).

The microfacies approach to soil micromorphology (Courty, 2001)

is used in this study to facilitate the study of Belmaco's formation

processes. Individually defined microfacies units (MFU), are grouped

into microfacies types (MFT), based on specific combinations of

micromorphological components and microstructures. Identification

and description of micromorphological features follow standard

guidelines defined by Stoops (2021), Nicosia and Stoops (2017),

and Stoops et al. (2018).

2.3 | n‐Alkanes

For the study of lipid biomarkers, 48 bulk sediment samples (BM)

were collected with sterilized metal tools and nitrile gloves from

each macroscopically visible facies within the negatives of the

micromorphological block samples (43 on Profile A and 5 on

Profile B) (Figures 2 and 3; see Supporting Information for sample

ID and corresponding depth, Supporting Information: Table S2).

For each visible facies, we gathered around 20 g of sediment. A

control sample was also collected outside of the sequence (20 m

away) from the natural geological stratigraphy (1.5 m below the

beginning of the fumier sequence). These were packed in

aluminum foil and stored at −20°C to avoid bacterial degradation,

until processing at the Archaeological Micromorphology and

Biomarkers Laboratory (University of La Laguna) could com-

mence. As a reference for the n‐alkane study, four fresh plant

species from different vegetation belts were also collected

corresponding to the following taxa: Lotus hillebrandii (Fabaceae;

pine forest; 28°31′37″ N, 17°51′07″ W), Hyparrhenia hirta

(Poaceae; coastal scrub; 28°34′47″ N, 17°52′47″ W), Bitumi-

naria bituminosa (Fabaceae; thermophilous woodlands and pine

forest; 28°30′05″ N, 17°50′27″ W), and Echium brevirame

(Boraginaceae; transition coastal scrub–thermophilous wood-

lands; 28°33′07″ N, 17°47′21″ W). Due to the high degree of

disturbance of the original vegetation immediately surrounding

the site, specimens of these species were collected within a

radius of 10 km around Belmaco. The use of these particular taxa

as fodder has been documented ethnographically and archaeo-

logically (del Arco, 1993; Pais Pais, 1996a). This will help

determine the OM sources in the fumier sequence, assuming that

F IGURE 2 Photogrammetry model of Profile A showing
stratigraphic units I–XVIII, and micromorphology and lipid biomarker
sample provenience. The top of the sequence (SU 0; 0–15 cm; a
recent, anthropogenic stone bed) was not included in this model. Thin
sections corresponding to each micromorphological block are
numbered from top to bottom (e.g., M‐04/1 = upper thin section;
M‐04/2 =middle; M‐04/3 = lower). [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 View of Profile B showing the lower units of the
stratigraphic sequence (XVIII–XXIV), and micromorphology and lipid
biomarker sample provenience. [Color figure can be viewed at
wileyonlinelibrary.com]
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the n‐alkane distribution of the current vegetation is representa-

tive of past vegetation communities.

n‐Alkane extraction protocol followed that established

by Herrera‐Herrera and Mallol (2018), Leierer et al. (2019),

and Connolly et al. (2019). In summary, the total lipid was

extracted using a 9:1 v/v DCM:MeOH mixture. n‐Alkanes were

separated using SPE column chromatography, analyzed by gas

chromatography–mass spectrometry, and subsequently quantif-

ied using calibration curves. A detailed explanation of extraction

and analysis procedures can be found in Supporting Information:

Text S1. The n‐alkane concentration is expressed as µg per gram

of dry sample (µg/gds).

2.4 | Total, inorganic, and organic carbon analyses

The organic carbon content was determined for all 48 sediment samples

(BM), distinguishing between total carbon (TC), total inorganic carbon

(TIC), and total organic carbon (TOC) with a LECO SC 144DR furnace at

Instituto Pirenaico de Ecología (IPE‐CSIC), Spain.

2.5 | μ‐X‐ray fluorescence (μ‐XRF)

To explore the elemental composition of the MFTs and of certain

unidentified crystals, we carried out μ‐XRF on 11 chips or resin‐

impregnated slabs left over from thin section production (M‐11/3, M‐

11/2, M‐11/1, M‐07/2, M‐07/1, M‐05/1, M‐04/1, M‐03/1, M‐02/2,

M‐01/2, and M‐01/1). These are mirror images of the micro-

morphological thin sections. μ‐XRF scanning was carried out at the

Microanalytics Laboratory (Institute for Archaeological Sciences) at

the University of Tübingen, Germany. A Bruker M4 Tornado was

used for elemental map scanning. Elemental maps for the following

elements were produced: Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Si, Ti,

and Zn. The instrument settings used for mapping were a beam

power of 30W (50 kV tube voltage and 600 µA tube current), use of

both detectors, a spot size of ~20 µm, and a spot spacing of 8–60 µm

depending on the resolution desired. Dwell times per pixel of 10ms

up to 100ms were used, depending on the elements of interest. The

analyses were carried out under full vacuum. The elemental maps

were only analyzed qualitatively, that is, presence/absence and

spatial distribution of elements.

2.6 | X‐ray powder diffraction (XRD)

X‐ray diffraction was performed on sediment samples BM 7‐1,

BM 7‐4, BM 4‐2, and BM 2‐2 because the micromorphological

analysis indicated a high concentration of unidentified crystals in

the layers corresponding to these sediment samples. After

homogenization, power diffractograms were recorded between

2θ° = 5° and 80° (working conditions: 0.02°/step, 996.54 s/step,

40 mA) using a Bragg‐Brentano Panalytical X'Pert Pro

diffractometer (K line of a Cu anode, no incident beam

monochromator). The sample holder was in constant rotation

during the analysis. Mineralogical identification was carried out

using Highscore Plus software (version 4.9) and the PDF4+2021

database. A semiquantitative analysis was carried out based on

the normalized reference intensity ratio (RIR) values (or I/Ic

values) and the scale factors, which allow determining estimated

mass fractions of the identified mineralogical phases

(Chung, 1974). Amorphous phases are not considered. Some

phases have no available RIR values displaying no % data.

2.7 | μ‐XRD

μ‐X‐ray diffraction was performed on a single chip (M‐01/2), where

several clusters of potentially phosphatic minerals were targeted. A

Bruker D8 Discover Θ/Θ GADDS micro‐diffractometer was used.

This was equipped with a Co‐sealed tube running at 30 kV/30mA, a

HOPG‐primary monochromator, and a 50 µm monocapillary optic,

with rotation. Phase identification was conducted using the PDF‐2

database and Match! software.

2.8 | Fourier transform infrared
spectroscopy (FTIR)

FTIR was used as a supplemental analysis for select samples BM 7‐1 and

BM 4‐2 collected as bulk sediment in 2mL plastic vials. FTIR

measurements were carried out using a Cary 630 (Agilent Technologies)

portable FTIR with a diamond crystal attenuated total reflectance (ATR)

module. Spectra were measured using the MicroLab software, with

spectra generated from 32 coadded scans at 4 cm−1 resolution over a

spectral range of 400–4000 cm−1 with background measurements taken

before every sample. The resulting spectra were compared to references

from the RRUFF ATR spectral database (Lafuente et al., 2016), the

Kimmel Center KBr spectral database (https://centers.weizmann.ac.il/

kimmel-arch/infrared-spectra-library), and the INA (University of

Tübingen) ATR spectral database.

2.9 | μ‐FTIR

μ‐FTIR analyses were conducted using a Cary 610 (Agilent

Technologies) microscope attached to a Cary 670 laboratory

bench FTIR. The spectra were collected from the surfaces of the

resin‐indurated chips (M‐01/2 and M‐04/3) left over from thin‐

section production. Reflectance spectra were collected with 64 or

128 coadded scans at 2 cm−1 resolution over a spectral range of

400–4000 cm−1 and reported as %Reflectance, with a variable

analytical area determined by apertures. Measurements were also

conducted using a diamond crystal ATR objective with an

analytical area of approximately 100 µm. The absorbance spectra

were collected with 36 coadded scans at 4 cm−1 resolution and a
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spectral range of 400–4000 cm−1. The reflectance spectra and

ATR spectra were compared to the same reference databases

listed above, as well as peak positions reported in publications. A

Kramers–Krönig transformation was applied in some cases to

better compare reflectance peak positions to published transmis-

sion peak positions.

3 | RESULTS

3.1 | Micromorphology

3.1.1 | Components, microstructure, porosity,
postdepositional processes

The studied sedimentary sequence is composed of sand/gravel‐

sized detritic basalt, pumice, and volcanic glass. These

components are poorly sorted and are present throughout the

sequence. Numerous basalt fragments display dotted alteration

indicating mild weathering. The proportion of detritic material

increases in block sample M‐11 (Profile B). Anthropogenic and

biogenic components include wood charcoal, charred seeds,

calcified plant remains, bone, pottery, and both charred and

unburned coprolites (Table 1 and Figure 4). Opaline phytoliths,

calcium oxalate crystals, and fecal spherulites are abundantly

found throughout the sequence. Two types of (possible) authi-

genic secondary minerals stand out: one type forming clusters or

nodules in voids, and another forming laths within the sedimen-

tary matrix (Table 1 and Figure 5).

The general groundmass varies between fresh, unburned dung areas

composed of disintegrated dung pellets and large quantities of unaltered

fecal spherulites (see Figure 4) in an open to single space porphyric c/

f20µm‐related distribution and dung ash areas characterized by a variable

open porphyric to gefuric c/f20µm‐related distribution. The fine mass of

TABLE 1 Micromorphological descriptions of the main components identified throughout the sequence.

Component Description

Wood charcoal Common to dominant in black/carbonized layers; few in unburned and ashy layers; fine gravel to
medium sand‐sized; angular to rounded, mostly subrounded; most of the fragments are
dicotyledonous species (broad‐leaf trees), only little presence of conifer fragments; degradation
and loose of structure of many fragments

Charred seeds Very few, only in sample M‐07/2; burned; gravel‐sized; rounded

Pine needles Few embedded in dung ash and scattered in carbonized layers of M‐02/1, M‐03/2, M‐03/4, M‐06/
2, and M‐07/2; coarse sand‐sized; black‐hook shape in cross‐section; subrounded

Bones Very few in samples M‐02/1, M‐04/1, and M‐05/3; from reptile or fish; unburned; gravel‐sized;
angular to subrounded

Pottery Very few, only in sample M‐06/1; gravel‐sized; subrounded

Opaline phytoliths Common to frequent in unburned dung‐dominated areas; silt‐sized

Coprolite fragments Frequent in most samples; usually fragmented; fibrous and convoluted; sometimes burned and/or
deformed, especially in unburned dung layers and black layers; coarse/very coarse sand‐sized;
subrounded to rounded

Charred plant remains Common to very dominant in black/carbonized layers; degraded structure of plant tissue; medium
sand to gravel‐sized; subangular to subrounded

Authigenic (evaporitic) crystals forming
nodules/clusters

Dominant in unburned dung‐dominated areas, while in ashy and charred areas, it is few to common;
fine sand to fine gravel‐sized; angular; lenticular and tabular crystals, sometimes forming

rosettes; colorless in PPL and sky blue to dark blue interference colors in XPL

Lath‐shaped crystals Dominant in ash‐dominated areas; medium to coarse sand‐sized; lath/needle‐shaped, angular; dark
gray in PPL; high birefringence in XPL

Calcium oxalate crystals/druses Common in unburned dung layers; somewhat bigger in size compared to dung spherulites, still silt‐
sized

Fecal spherulites Very dominant throughout the sequence, except in certain ashy areas; present both unaltered
(unburned dung) and darkened spherulites (dung ash); silt‐sized (typically 5–20 µm); calcitic;
sometimes forming crusts or laminations

Avireptilian uric acid spheres Few to common in layers showing low‐temperature thermal alteration; similar structure to fecal

spherulites but with a higher refractive index; silt‐sized (typically 2–10 µm); usually forming
crusts or laminations

Calcium carbonate plant pseudomorphs Dominant in plant ash deposit in M‐07/1; calcitic; medium sand to gravel‐sized; angular to
subrounded

FERNÁNDEZ‐PALACIOS ET AL. | 7
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F IGURE 4 (See caption on next page).
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the ashy areas varies between an undifferentiated and compacted matrix,

appearing darker in XPL, with a calcitic–crystallitic and more open matrix

(Figures 6 and 7). The microstructure of the ashy areas is spongy (fibrous)

and crumbly with vughs. Unburned dung layers show a variably platy,

channel or massive microstructure with channels, vertical fissures, planes,

and vughs (Figures 6 and 7).

3.1.2 | MFUs and MFTs

According to their stratigraphic position and previously described

features (components, microstructure, and porosity) a total of 45

MFUs were identified. These are presented in Supporting

Information: Table S1 and Figure S6. The MFUs have been

F IGURE 5 Authigenic secondary minerals identified through micromorphology. (a) Authigenic evaporitic crystal cluster forming in the voids
of an unburned dung layer (PPL). Identified as hazenite in combination with techniques for mineralogical analysis. (b) Same as (a) in XPL. (c)
Lath‐shaped crystals within dung ash matrix (PPL). Identified as aragonite in combination with mineralogical techniques. (d) Same as (c) in XPL.
PPL, plain polarized light; XPL, cross‐polarized light. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Selected anthropogenic and biogenic microscopic components: (a) Bone fragment (PPL). (b) Conifer charcoal (PPL). (c) Broad‐leaf
tree charcoal (PPL). (d) Pine needle cross‐section marked by red arrow (PPL). Note black hook shape. (e) Pottery fragment (PPL). (f) Spherulitic
crusts made of fecal spherulites and avireptilian uric acid spheres (MFT 1) (XPL). (g) Detail of unaltered fecal spherulites marked by red arrows
(MFT 1) (XPL). (h) Darkened fecal spherulites marked by red arrows (MFT 3) (PPL). (i) Same as (h) in XPL. (j) Goat/sheep coprolite fragment (PPL).
Note its convoluted pattern. (k) Wood ash with visible tracheid (PPL). (l) Same as (k) in XPL. PPL, plain polarized light; XPL, cross‐polarized light.

FERNÁNDEZ‐PALACIOS ET AL. | 9
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F IGURE 6 (a) Distribution of microfacies types (MFTs) across Profile A. (b) Detail of micromorphology block M‐07 indicating MFTs;
(c) Thin‐section scans (8×6 cm) of M‐07/1 (upper), M‐07/2 (middle), and M‐07/3 (lower) (PPL) showing corresponding MFTs;
(d) Photomicrographs illustrating the main features of each MFT (PPL, left; XPL, right). 1: massive, unburned dung with few planes and vughs in
MFT 1; 2: charred plant fragments in MFT 2, at the contact between unburned dung and dung ash. Evaporitic crystals visible in XPL; 3: Dung ash
in MFT 3. Note the spongy microstructure and darkened fecal spherulites. Evaporitic crystals visible in XLP; 4: plant ash in MFT 4, exhibiting an
alternating vughy and crumbly microstructure. Note the high birefringence and calcitic–crystallitic b‐fabric in XPL (see Supporting Information:
Figure S16 for a field view of this ashy facies). PPL, plain polarized light; XPL, cross‐polarized light.

10 | FERNÁNDEZ‐PALACIOS ET AL.
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F IGURE 7 Microfacies types (MFTs)
identified in the micromorphological samples. (a)
MFT 1: Unburned dung matrix with abundant
unaltered calcareous dung spherulites. The
microstructure is compact, microlaminated, and
undulating, dominated by vertical fissures and
planar voids (PPL). (b) Same as (a) in XPL. The
difference between the high birefringence
laminations and darker laminations is related to
the amount of fecal spherulites and the
distribution of organic matter. (c) MFT 2: Crumb/
vughy microstructure. Made of partially
combusted charred plant remains, including
charcoal, charred stems, burned coprolites, and
other undetermined plant tissue. Sometimes
mixed with fresh dung and ash dung patches
(PPL). (d) Same as (c) in XPL. (e) MFT 3: Dung ash
matrix with fibrous texture that varies from
spongy to crumb/vughy microstructure.
Abundant darkened spherulites (PPL). (f) Same as
(e) in XPL. (g) MFT 4: Plant ash matrix. Common
presence of calcified plant material with well‐
preserved morphology (CaCO3 pseudomorphs)
(PPL). (h) Same as (g) in XPL. PPL, plain polarized
light; XPL, cross‐polarized light. [Color figure can
be viewed at wileyonlinelibrary.com]
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classified into four MFTs according to their micromorphological

features, bringing to light a sequence of recurrent depositional

events throughout the stratigraphy. Figure 6 shows the distribu-

tion of MFTs across Profile A (for Profile B see Supporting

Information: Figure S7). Figures 6 and 7 show the main features in

each MFT.

3.2 | n‐Alkanes

The modern plant samples show an odd‐over‐even n‐alkane

predominance, with peak maxima at C31 and C33 for H. hirta; at C31

for B. bituminosa; at C27 and C29 for E. brevirame; and at C27 and C29

for L. hillebrandii.

MFT 1 (unburned dung) samples show an n‐alkane odd‐over‐

even predominance ranging from C18 to C38 (Cmax at C29, C31, and

C33) with a total n‐alkane concentration of 0.10–9.08 µg/gds.

Statistical tests, carried out in R version 4.1.1. (R Core Team, 2021),

show that the n‐alkane concentration is significantly higher (analysis

of variance [ANOVA], F2,44 = 5.91, p = 0.0053, Fcrit = 3.21) in MFT 1

compared to MFT 2 (carbonized layers) and MFT 3 (dung ash layers)

(Supporting Information: Figure S12). MFT 2 samples display total

concentration values between 0.00 (detected) and 0.99 µg/gds,

ranging from C18 to C35. C29, C31, and C33 n‐alkanes are predominant

in an odd‐over‐even distribution. BM 2‐2 displays higher concentra-

tions in the middle chain n‐alkane (C23, C25, and C27). The total

concentration of MFT 3 samples varies between 0.08 and 5.02 µg/

gds and their distribution ranges from C18 to C35. C29, C31, and C33

dominate again, displaying an odd‐over‐even predominance in all

samples, except for BM 4‐2, which shows C23, C25, and C27

dominating. BM 7‐2, classified as MFT 4 (wood ash), shows a total

concentration of 0.00–0.40 µg/gds and a shorter distribution from

C21 to C35; again, in an odd‐over‐even predominance. The control

sample shows an odd‐over‐even predominance ranging from C24 to

C31 (Figure 8), with C31 and C29 as dominating n‐alkanes.

Carbon preference index (CPI), average chain length (ACL), and long‐

chain alkane ratios have been calculated for each biomarker sample based

on concentration (Table 2). CPI values range from 1.31 to 10.93. No

statistical differences have been detected between the MTFs (ANOVA,

F2,44 = 0.222, p=0.802, Fcrit = 3.21). ACL mean value is 29.91, showing a

prevalence of long‐chain alkanes. Normalized long‐chain n‐alkane ratios

display a dominance of C31 and C33 over C27 and C29 across the

sequence, except for samples BM 2‐2 and BM 4‐2 with values >0.5

(Figure 9). Calculated values and distribution barplots are presented in

Supporting Information: Table S2 and Figures S8–S11).

3.3 | TC, TIC, and TOC

TIC and TOC results are shown in Figure 9. TIC varies from

1.87‐4.52% (mean value 3.39%); and TOC ranges from 1.90‐14.25%

(mean value 4.60%). Statistical analysis shows that MFT 2

(carbonized particles) has significantly higher (ANOVA, F2,44 = 12.27,

p = 5.82 × 10−5, Fcrit = 3.21) TOC values compared to the rest of the

MFTs (Supporting Information: Figure S13).

3.4 | μ‐XRF, μ‐XRD, and μ‐FTIR

Three types of microanalyses were conducted on the chips that

were left over from thin‐section production. μ‐XRF elemental

mapping first targeted areas containing what appeared to be

authigenic minerals. A calcium (Ca) μ‐XRF elemental map verifies

the calcareous matrix of unburned dung layers (filled with calcitic

fecal spherulites), dung ash layers, and the plant ash deposit

(Figure 10). Ca is also the dominant element present in blades of

carbonate formed in the matrix of samples from dung ash layers

(Blocks M‐01 and M‐04). In addition, the distribution of K, P, Mg,

and Na closely matches areas of small, numerous crystals, which

have previously been defined using optical petrography as

authigenic evaporitic crystals (Table 1). An example can be seen

in M‐01/2, cluster 1 (Figure 11; see also Figure 10 for

P distribution). This specific mineral was next analyzed with

μ‐XRD, also targeting cluster 1, and the resulting pattern showed

a match to the mineral hazenite (based on eight reflections)

(Figure 12). Finally, μ‐FTIR reflectance spectra and diamond ATR

spectra were collected from the same cluster (Supporting

Information: Figure S14). The resulting spectra showed similarity

to reference samples of the mineral struvite, and the reflectance

spectrum produced peaks at 1035, 996, and 740 cm−1 consistent

with those reported for hazenite (1040, 990, 750 cm−1) by Yang

and Sun (2004). Calcium phosphates such as dahllite (1088, 1026,

960, 872, 602, 561 cm−1) were also detected through μ‐FTIR

(Supporting Information: Figure S15, upper). Calcareous needles

were also targeted showing both aragonite (874, 853 cm−1) and

calcite (Supporting Information: Figure S15, lower). Table 3 lists

all of the minerals that were identified at the site using a

combination of different methods.
F IGURE 8 Control sample histogram showing alkane carbon
chain length (x‐axis) and their concentrations (µg/gds) (y‐axis).
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3.5 | Powder XRD and FTIR of loose samples

XRD powder analysis was performed on all the MFTs. Calcite (~34%)

appeared as the dominant mineral in samples corresponding to

unburned dung facies (BM 7‐1 and BM 7‐4), followed by orthoclase

(~18%) sylvite (~9%), hydroxyapatite (no RIR value), and augite (no

RIR value). Ash layer BM 4‐2 shows a predominance of aragonite

(~25%), instead of calcite (~8%), with sylvite also present (~10%)

(Figure 13). Black layer BM 2‐2 displays hazenite (~24%), anorthite

(~23%), calcite (~14%), sylvite (~13%), microcline (~13%), and

hydroxylapatite (~13%).

FTIR analysis of sample BM 4‐2 (dung ash) also confirmed the

presence of both calcite (1787, 1411, 873, 843, and 712 cm−1) and

aragonite (1787, 1454, 873, 854, 712 cm−1), as well as dahllite (1004,

602, and 565 cm−1). BM 7‐1 (unburned dung) also shows calcite (1793,

1409, 874, 849, and 712 cm−1).

TABLE 2 n‐Alkane ratios.

Index Formula References

Carbon preference index (CPI)
(C25–C33)

0.5 × ((C25 + C27 + C29 + C31 + C33)/(C24 + C26 + C28 + C30 + C32) +
(C25 + C27 + C29 + C31 + C33)/(C26 + C28 + C30 + C32 + C34))

Bray and Evans (1961)

Average chain length (ACL)
(C25–C33)

∑(Ci × [Ci])/∑[Ci]; 25 ≤ i ≤ 33
[Ci] = concentration of n‐alkane with i carbon atoms

Cranwell (1973); Poynter et al. (1989)

Normalized long‐chain
n‐alkane ratio 1

C27/(C27 + C31) Bai et al. (2009); Schwark et al. (2002)

Normalized long‐chain
n‐alkane ratio 2

C29/(C29 + C31) Bai et al. (2009); Schwark et al. (2002)

Normalized long‐chain
n‐alkane ratio 3

C27/(C27 + C29) Bai et al. (2009); Schwark et al. (2002)

F IGURE 9 Sedimentary log showing lipid biomarker data across Profiles A and B, from BM 7‐1 (uppermost sample) to BM 11‐5 (lowermost
sample). Colors indicate MFT: brown =MFT 1; black =MFT 2; gray =MFT 3; yellow =MFT 4. Data shown: TOC, TIC, total n‐alkane
concentration, mid‐chain n‐alkane proportions, long‐chain n‐alkane proportions, C27/(C27 + C31), C29/(C29 + C31), C27/(C27 + C29) ratios, ACL, and
CPI. ACL, average chain length; CPI, carbon preference index; TIC, total inorganic carbon; TOC, total organic carbon. [Color figure can be viewed
at wileyonlinelibrary.com]
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4 | DISCUSSION

Micromorphological, elemental, and lipid biomarker data have allowed us

to characterize the main formation processes of the Belmaco Cave

sedimentary deposit at its central part. The micromorphological data from

Profiles A and B show a succession of in situ burnt and unburned goat/

sheep dung layers, corroborating the presence of a fumier deposit. The

elemental data shows the presence of authigenic salts, carbonates, and

phosphates, indicating that this fumier deposit is mostly well‐preserved,

with some secondary mineral formation. n‐Alkane distribution also points

to good preservation of the entire sequence while indicating a

predominantly herbaceous plant presence. Thus, the goat/sheep repre-

sented by the dung layers possibly had a herb/grass‐based diet. Below,

we summarize and discuss our main interpretations regarding: (1) the

fumier's formation history, (2) diagenesis and other postdepositional

processes, and (3) possible plant sources and their preservation.

The pattern revealed by our data allows us to formulate a preliminary

hypothesis regarding indigenous herding practices in La Palma, which is

discussed at the end of this section.

4.1 | Formation processes of the fumier sequence

The base of the stratigraphic sequence, which corresponds to Profile

B (SU XX, XIX, and XVIII), is dominated by an unburned dung matrix

(MFT 1) indicative of in situ livestock stabling. No stratified ash layers

or spherulitic laminations were observed, except a few thermally

altered patches in the uppermost layers (SU XVIII). This basal part is

stony and coarse‐grained. Illuvial clay coatings of unknown origin are

only found in these layers. Therefore, Profile B possibly formed

during a period involving stabling events that were not followed by

F IGURE 10 Elemental distribution map of Al, P, Ca, and Fe for
sample M‐07/2. The map indicates a dominating calcitic matrix. The
orange areas correspond to the distribution of hazenite. The image
shows the abundance of the mineral in this particular sample. [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 μ‐XRF map of crystal cluster identified as hazenite. (a) Chip M‐01/2 indicating Cluster 1. (b) Reflected light photograph of
hazenite needles in Cluster 1. (c) Elemental composition of Cluster 1, indicating presence of P, K, Mg, and Na. μ‐XRF, μ‐X‐ray fluorescence.
[Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 12 μ‐XRD on hazenite. Referential pattern (green) is compared to Belmaco pattern (red) from the same sample used in Figure 8
(M‐01/2). μ‐XRD, μ‐X‐ray diffraction. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Minerals identified in the Belmaco fumier deposit.

Mineral Formula Analytical method Context

Aragonite CaCO3 Micromorphology, µ‐XRF, FTIR,
µ‐FTIR, powder XRD

Needles in some dung ash layers (MFT 3)

Calcite CaCO3 Micromorphology, µ‐XRF, FTIR,
µ‐FTIR

Matrix in unburned dung layers (MFT 1), dung
ash layers (MFT 3) and wood ash layer
(MFT 4)

Dahllite/carbonate

hydroxyapatite

Ca5(PO4, CO3)3(OH) Micromorphology, powder XRD,

µ‐XRF, FTIR, µ‐FTIR
Nodules in unburned dung layers (MFT 1) and

dung ash layers (MFT 3); also present in
fragments of bone

Anorthite CaAl2Si2O8 Powder XRD Geogenic fraction; everywhere in the sequence

Microcline KAlSi3O8 Powder XRD Geogenic fraction; everywhere in the sequence

Orthoclase KAlSi3O8 Powder XRD Geogenic fraction; everywhere in the sequence

Sylvite KCl Powder XRD, µ‐XRF Everywhere in the sequence; possibly
concentrated in charcoal (mainly found in
MFT 2)

Hazenite KNaMg2(PO4)2·14 H2O Micromorphology, µ‐XRF, powder
XRD, micro‐XRD, µ‐FTIR

Clusters of crystals everywhere in the sequence

Augite (Ca, Na) (Mg, Fe, Al, Ti)
(Si, Al)2O6

Micromorphology, powder XRD,
µ‐FTIR

Geogenic fraction; everywhere in the sequence

Note: Does not include amorphous phases, such as the opal present in phytoliths, or volcanic glass.

Abbreviations: FTIR, Fourier‐transform infrared spectroscopy; µ‐XRD, µ‐X‐ray diffraction; µ‐XRF, µ‐X‐ray fluorescence.
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intentional burning interspersed with natural geogenic sedimentation

comprising a mixed input of gravitational clasts and clayey runoff.

In contrast, Profile A (SU XVII‐I), which represents a younger

deposit than Profile B, displays a well‐bedded, distinctly laminated

fumier sequence, comprising several stratified MFT sets, which are

recurrent throughout the stratified deposit: (1) MFT 1 or mineralized

unburned dung layers, which display abundant fecal spherulites and

convolute morphologies in the coprolite fragments indicating goat/

sheep excrement. These successive stabling events in the cave show

compaction, recurrent vertical fissures, and planar voids, possibly as a

consequence of animal trampling (Angelucci et al., 2009; Polo‐Díaz

et al., 2014, 2016); overlain by (2) MFT 2, frequent charcoal, charred

plant, and coprolite fragments, possibly representing organic debris

lying on the surface of the pen at the time of burning (Égüez

et al., 2016; Mallol et al., 2013; Polo‐Díaz et al., 2016); and overlain

by (3) MFT 3 or dung ashes, which possibly represent dung

combustion events related to pastoralist sanitizing practices (Brochier

et al., 1992; Macphail et al., 1997; Polo‐Díaz, 2010; Vergès

et al., 2016) (see Figures 6 and 7). These layers, however, are not

laterally continuous across the entire Profile A section, but rather

appear to be lenticular, with dimensions varying from half to one

meter.

Compared with the unburned dung layers (MFT 1), the ashed

dung microfacies (MFT 3) are less compact and contain more

frequent plant pseudomorphic voids. This ashed dung layer

represents in situ dung burning. Piling up of waste material to form

heaps has been documented as a way of burning dung in south‐

western European cave contexts (Polo‐Díaz et al., 2016). According

to experimental studies, heaps would be distributed across the

shelter, functioning as ignition points that help the fire spread across

the entire stabling area (Vergès et al., 2016). Sometimes, plant

material is laid on top of the piled dung, as a way of adding additional

fuel and facilitating the ignition process (Polo‐Díaz et al., 2016).

Experimental research has also shown that dung does not easily burn

on its own and might need plant fuel to achieve ignition depending on

the dung moisture content, morphology, and degradation stage

(Vergès et al., 2011, 2016). Nevertheless, Shahack‐Gross (2011)

mentions field observation of spontaneous dung smoldering.

This leads us to MFT 4, which consists of a single wood ash

microlayer and entails an exceptional facies compared to the rest of

the sampled fumier sequence. It is not laterally continuous and

overlies a layer of mixed dung and charred plant residues (see

Figures 6 and 7). Marrero Salas et al. (2016) documented the

presence of possible combustion features across the right section of

Profile A (SU III, V, VI, VII, VIII, IX, and XIII), including this wood ash

layer in M‐07 (Supporting Information: Figure S16). These features

could represent the remains of small burning heaps similar to those

mentioned earlier. However, macroscopically, they show a smaller

size (both in terms of their diameter and stratigraphic depth) than

those documented at San Cristóbal rockshelter (Polo‐Díaz et al., 2016),

F IGURE 13 XRD on sylvite and aragonite. Referential patterns of sylvite (blue) and aragonite (green) are compared to the Belmaco pattern
(red) from sediment sample BM 4‐2 (MFT 3).
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and possibly also than the experimental heaps from Mas del Pepet

fumier (Vergès et al., 2016). Alternatively, they could represent

hearths. Although no micromorphological evidence of domestic

activity was observed in the sampled sequence, a few artifacts were

recovered from the upper units of Profile A (SU I–IX) in possible

stratigraphic association with combustion features (Marrero Salas

et al., 2016; Navarro Mederos et al., 2013). Furthermore, archaeo-

logical excavations in the northern area, about 8m away from the

fumier sequence, brought to light numerous archaeological artifacts

and hearths (Diego Cuscoy, 1962). As we move towards the center of

the cave (i.e., area covered in this study), the density of archaeological

remains decreases. In total, the most recent excavations at the site

yielded 160 pottery fragments and 74 lithic artifacts throughout the

entire sequence (Marrero Salas et al., 2016; Morales et al., 2007). We

only identified one microscopic pottery fragment in sample M‐06/1.

In light of the current data, Belmaco Cave possibly comprised a

domestic space in its northern area and a goat/sheep pen in its south‐

western area. Similar human–animal cohabitation contexts in rock

shelters and caves have been previously reported (Égüez et al., 2016;

Karkanas, 2006; Macphail et al., 1997; Polo‐Díaz, 2010).

On a few occasions, thin black layers of variable thickness

between 0.5 and 3 cm, composed exclusively of charred plants and

charcoal (MFT 2) were found between the ashed dung and the

unburned compacted dung layers with variably gradational and sharp

contacts. Black layers have been documented in other fumier

contexts, sometimes with similar microstructures and composition

to the unburned dung layers, and showing gradational contacts

(Angelucci et al., 2009; Bergadà & Oms, 2021; Égüez et al., 2016;

Polo‐Díaz et al., 2014, 2016). Their reported thickness is around

2–3 cm (Bergadà & Oms, 2021; Égüez et al., 2016). In previous work,

they have been interpreted as charred penning surfaces (Égüez

et al., 2016; Polo‐Díaz et al., 2016), representing the substrate and

not the fuel (Mallol et al., 2013). This could also be the case at

Belmaco, where black layers show similar thicknesses and structures

and directly underlie dung ash, not wood ash. Alternatively, they

could represent plant input of unknown origin accumulating on the

penning surface during periods of penning inactivity. Fumier

abandonment periods have been interpreted based on bioturbated

facies at Los Husos II (Upper Ebro basin, Spain) (Polo‐Díaz, 2010;

Polo Díaz & Fernández Eraso, 2010) and San Cristóbal rock‐shelter

(Polo‐Díaz et al., 2016). In the Belmaco fumier, only Block M‐06

appears highly bioturbated. Small burrows (~1.5 cm) and occasionally

fine coatings surrounding them, with an internal crumb micro-

structure, seem to indicate termite or ant activity (Mallol &

Goldberg, 2017; Marcelino et al., 2010). M‐06/2 and M‐06/3 middle

disturbance seems to have been produced by something bigger than

an insect (Supporting Infomation: Figure S17).

The existing bioturbation at Belmaco is not linked with any

particular MFT, in contrast to what Polo‐Díaz et al. (2016) report.

Due to the marked seasonal contrasts of the region, typical of a dry

Mediterranean climate, bioturbation would not be expected for most

of the year. In fact, the top layers of the deposit (M‐07), affected by

subrecent weathering, do not show any signs of soil mesofauna

activity. Our mineralogy data, discussed below, indicate aridity

throughout the formation of the deposit, suggesting that environ-

mental conditions have not changed substantially in the last

centuries. Instead, slow‐degrading surface organic residues at the

cave entrance are likely to remain in situ for a relatively long time,

which would support the hypothesis that the black layers at Belmaco

Cave (MTF 2) could represent periods of penning inactivity.

However, although we did not observe any ash heaps or discrete

charcoal‐rich combustion structures, our intact black layers are

overlain by dung ash layers incorporating scattered combustion

residues, which could represent postdepositionally reworked com-

bustion heaps. Moreover, some of the charcoal fragments in the black

and dung ash layers are from pinecones and pine needles (see

Figure 4d and Supporting Information: Figure S22) These most likely

represent Pinus canariensis, endemic to the Canarian archipelago and

often used as firewood by the indigenous inhabitants (Vidal‐

Matutano et al., 2021; see their Figure 1 and references therein). In

agreement with this evidence, whole charred pinecone scales and

pine needles were frequently found in the fumier zone during the

1974 and 1979–1980 excavations. Thus, the charred pine residues

may represent tinder to facilitate dung burning, with syndepositional

and postdepositional disturbance eliminating the ash component and

the original combustion structure microstratigraphy. Local shepherds

interviewed by JFNM in the 1980s mentioned a tradition of burning a

fine layer of pine needles spread across the floors of rockshelter

dwellings to eliminate parasites. This tradition persisted in La Palma

up to the early 20th century. Altogether, the evidence at hand does

not allow us to establish a clear formation process for the black layers

at Belmaco Cave, but the most parsimonious interpretation seems to

be that they represent residues from anthropogenic plant input

including pine, either as fuel or for a different purpose related to the

activities carried out in the rockshelter. In any case, a natural source

such as wind or gravity is unlikely, as the pine forest is not found in

the vicinity of the site.

Interruptions of the penning activity involving deposition of

surface organics but not subsequently burned by overlying combus-

tion events would be more difficult to identify, except in hyperaridity

or waterlogged conditions, as the preservation potential of organic

matter (OM) is lower if it is not burnt (Mallol et al., 2013). From this

perspective, unburned dung layers (MFT 1), also characterized as

brown layers in other contexts, represent a palimpsest of successive

penning episodes and their possible abandonment periods, resulting

in a homogeneous, brown facies, which has been previously reported

in archaeological fumier deposits (Bergadà & Oms, 2021;

Boschian, 2017; Polo‐Díaz et al., 2016).

4.2 | Diagenetic processes and secondary
mineral formation

Information regarding diagenetic processes at Belmaco Cave has

been obtained by combining XRD, μ‐XRF, FTIR, μ‐FTIR, and

micromorphological data. Mineral phases such as orthoclase,
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microcline, and augite are expected in an igneous bedrock context.

Calcite and dahllite (carbonated hydroxyapatite) have also been

detected through FTIR analyses in fumier contexts (Burguet‐Coca

et al., 2020; Cabanes et al., 2009), and both minerals are common in

herbivore dung deposits more generally (Shahack‐Gross et al., 2003).

Micromorphology shows calcite to be a component of all the MFT,

whether it is as fecal spherulites, or component of ash, or

recrystallized and authigenic calcite. Three additional minerals were

also identified: sylvite, hazenite, and aragonite.

Sylvite (KCl) is present in every sample analyzed using powder

XRD. No distinctive corresponding crystalline particles were

observed in micromorphological samples, although soluble salts often

do not survive the thin‐section preparation process, particularly if

water is used during sawing. Sylvite has been documented in many

cave settings, including several basaltic lava tube caves (Hill &

Forti, 1997). In one case, its components are sourced from the basalt

itself, with the mineral forming—along with other soluble salts—soon

after the formation of the cave while the lava flow cooled in contact

with meteoric water (Forti, 2005; Forti et al., 1994). Therefore, one

possible internal source of potassium is the dissolution products of

the basalt bedrock, as basalt grains visible in thin section show signs

of weathering. Another possible internal source is fecal materials and

urine. Many examples of sylvite formed in caves are associated with

degraded bat guano and urine (Hill & Forti, 1997). A related source

that is specific to this type of archaeological site is ruminant urine, as

soluble salts have been documented in other archaeological urine‐

rich deposits (Abell et al., 2019). Sylvite in particular has been

previously documented in cave pens in Sicily (Brochier et al., 1992).

Finally, ashes from some types of plants are known to be rich in

soluble forms of potassium (Canti, 2003), and sylvite has been

reported as an initial component of wood ashes in experimental

replication of campfires by Karkanas (2021). Possible external non‐

anthropogenic sources of KCl are aerosols and rainfall. Deposition

through sea spray is unlikely, as the cave is located at 1.65 km from

the coast and reaches an altitude of 362m a.s.l., which is outside of

the range of standard marine aerosol reach (Santos Guerra, 1983).

Salt concentration in rainfall is lower than in sea spray (Junge &

Werby, 1958), but it could be a potential source of potassium and

chlorine. Discriminating which factors are most significant is complex,

and a combined contribution of geogenic and biogenic/anthropo-

genic sources is likely to be the case. To differentiate between the

ruminant and geogenic inputs, future sampling should be reoriented

outside the fumier area within the cave to determine if the presence

of sylvite is laterally restricted to areas where animals were kept.

Conversely, mineralogical studies of ruminant stabling sedimentary

deposits in nonvolcanic settings are key to explore to what extent

the parent material plays a role in the formation of evaporites. For

example, according to Forti (2005), both volcanic and nonvolcanic

caves contain minerals associated with the degradation of guano,

but volcanic caves tend to have a wider variety of available ions and

therefore a wider range of secondary minerals form. Regarding its

preservation at the site, even though sylvite is highly soluble,

Belmaco Cave is located in a dry climatic region with long dry

seasons (total rainfall of ca. 544.2 mm/a) (Irl et al., 2015), which may

have enhanced the preservation of sylvite. Rain does not usually

penetrate into the rockshelter through cracks or joints, and the

dripline flow currently falls outward down a slope towards the

ravine. Due to its location right below the ceiling line, rain mostly

affects Profiles B and C, while Profile A is the least exposed

(where sylvite was detected). Alternatively, its presence could be

explained as a consequence of lateral migration and precipitation on

the Belmaco exposed profiles due to moisture differential

(Weiner, 2010).

Authigenic hazenite (KNaMg2(PO4)2·14H2O) was identified

through XRD, μ‐XRD, and μ‐XRF, and is very abundant in some of

the Belmaco sediment samples, with numerous radial clusters of

elongated crystals identified in all micromorphological samples (see

Figures 5 and 10 for hazenite distribution in M‐07/2; Supporting

Information: Figure S18 for reflected light photographs; compare to

Yang et al., 2011; Figure 1). In thin section, hazenite has angular

shapes forming lenticular and tabular euhedral crystals, is colorless in

PPL, and displays sky blue to dark blue second‐order interference

colors in XPL with a parallel extinction.

This is an extremely rare struvite‐type phosphate biomineral that

has only been documented in a natural setting in Mono Lake

(California), which is also located in a volcanic basin (Kelleher &

Cameron, 1990). At Mono Lake, the formation of hazenite is related

to cyanobacterial Lyngbya sp. colonies, and it forms under alkaline

conditions in the presence of carbonates (Yang & Sun, 2004; Yang

et al., 2011). The identification of hazenite here in Belmaco Cave

makes this the second known occurrence of this mineral outside of a

laboratory or waste management facility setting. Hazenite has been

identified along with other rare members of the struvite group in by‐

products of fish aquaculture wastewater (Yogev et al., 2020), and in

an experimental study of treated human urine exposed to magnesium

(Krishnamoorthy et al., 2020). In general, struvite‐group minerals are

common in human and animal waste, and their formation is a

desirable outcome of waste processing, as these minerals are useful

for the production of fertilizers.

In archaeological settings, phosphate‐containing minerals, in

general, are highly representative of decomposing dung deposits

and animal husbandry (Holliday & Gartner, 2007; Macphail

et al., 2004; Polo‐Díaz, 2010; Shahack‐Gross, 2011). Struvite‐type

phosphate minerals, which form in alkaline conditions, have been

associated with human urinary stones, decaying OM, urea‐rich

environments such as stabling floors, and avian or bat guano

accumulations in caves (Beck, 1966; Del Moral et al., 1993; Grover

et al., 1997; Hill & Forti, 1997). The formation of struvite in the

Skipton Lava Cave (Victoria, Australia), for example, is attributed to

both the decomposition of bat guano and the weathering of the

basalt, which provided a source of magnesium (Bridge, 1971). We

speculate that hazenite formed in a similar manner in the Belmaco

deposits, with goat/sheep urine and feces probably constituting the

main sources for K, P, Na, and some of the Mg (the majority provided

by the bedrock), although some contribution from bird guano cannot

be excluded. Nowadays, there are bird colonies (Columba livia, Apus

18 | FERNÁNDEZ‐PALACIOS ET AL.

 15206548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gea.21972 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



spp.) inhabiting the cave and accumulating small heaps of guano on

the surface (Supporting Information: Figure S19). The presence of

avian uric acid in MFT 1 further supports the idea of bird and/or

reptile activity around the cave in the past (Supporting Information:

Figure S20) (Canti, 1998). Given the strong association of struvite‐

group minerals, and hazenite in particular, with bacterial activity, we

also speculate that bacteria played a role in its formation here. Finally,

the presence of both calcite and aragonite in the sediments and

presumably alkaline environment aligns with the known formation

conditions for hazenite at Mono Lake (Yang et al., 2011). We also

note that struvite is unstable in cave settings, and has been observed

to alter over time to newberyite and dittmarite (Bridge, 1971; Frost

et al., 2011; Snow et al., 2014), so it is possible that the hazenite that

we observed may not be the initial or only phosphatic mineral phase

present in the cave.

Aragonite, a CaCO3 polymorph that commonly crystallizes as

needles (Haldar & Tisljar, 2014; Hill & Forti, 1997), was identified

through XRD and observed micromorphologically in the SU XI and SU

XV dung ash deposits (see Figure 5). In thin section, the aragonite

appears as needles/blades with approximate dimensions of

500 μm× 50 μm, varying in length from 100 to 1000 μm. It displays

dark gray absorption colors in PPL, and a high birefringence and high‐

order green, purple, and white interference colors in XPL. The μ‐XRF

data corroborate a calcitic composition (Supporting Information:

Figure S21), while FTIR analysis of loose samples shows the presence

of both aragonite and calcite. Biogenic aragonite is usually found in

marine organisms (e.g., molluscs and corals). However, Belmaco Cave

is not at or near the coast and the sediment does not contain shells

from marine organisms or terrestrial land snails. Geogenic formation

of aragonite is common in a diversity of cave systems, particularly in

evaporitic conditions in the presence of magnesium‐rich solutions

(Hill & Forti, 1997). Aragonite formation in volcanic settings has been

reported as a secondary mineral derived from the dissolution of

calcium‐rich basalt under high pressure/temperature (Hurai

et al., 2013; Yatabe et al., 2000). Another possible source of

aragonite is anthropogenic combustion (Toffolo, 2021; Toffolo &

Boaretto, 2014; Toffolo et al., 2017). Pyrogenic aragonite has been

identified as a small fraction of the calcium carbonate (CaCO3) that

constitutes wood ash (Toffolo & Boaretto, 2014), and is sometimes

also documented in burned dung (Dunseth et al., 2019; Gur‐Arieh

et al., 2014; Weiner, 2010).

Pyrogenic formation could explain the presence of aragonite in

our case study. Fecal spherulites and calcium oxalates in plant

fragments probably provide the parent material to produce CaO,

which is obtained by burning CaCO3 above 600°C (Toffolo &

Boaretto, 2014). Considering that aragonite was only documented in

the dung ash layers where darkened fecal spherulites have been

observed, reaching this temperature seems viable, although we know

that temperatures did not exceed 700°C or no more spherulites

would be left (Canti & Nicosia, 2018). Upon recarbonation, the CaO

partially turned into aragonite. Since pyrogenic aragonite first forms

as needles with lengths of a few hundred nm (Toffolo, 2021), the

mm‐sized needles observed in the Belmaco samples (see Figure 5c,d)

probably recrystallized over time until reaching that length. Pyrogenic

aragonite is very susceptible to dissolution and recrystallization to

calcite (Toffolo, 2021), but it is possible that in this setting, the

presence of magnesium and the arid climate enhanced the preserva-

tion of some of the original mineralogy during the recrystallization

process. µ‐FTIR analysis of the needles indicates that many of them

contain a mixture of the two minerals.

The presence of evaporitic minerals in the Belmaco sedimentary

sequence is a proxy not only for aridity (pointing to dry conditions

throughout its formation) but also for alkalinity. Both aragonite

and calcite (e.g., fecal spherulites or ash) are better preserved

in alkaline conditions (pH ~8) (Gur‐Arieh & Shahack‐Gross, 2020;

Karkanas, 2016; Toffolo, 2021), aragonite being the least stable of

the two carbonate minerals. Given the presence of both CaCO3

polymorphs, together with hazenite, we can assume that slight

alkaline conditions and available magnesium have dominated at the

site until today. On the other hand, the presence of phytoliths in

some of the unburned layers suggests that either the pH has not

been >8 (Cabanes et al., 2011; Karkanas et al., 2000), or that the

moisture levels were low. The most parsimonious explanation for the

presence of both alkaline evaporite minerals and phytoliths is that

arid conditions were present for most of the time since deposition.

This evidence also highlights the potential for good preservation of

bone and ash at Belmaco Cave.

In sum, the mineralogy of the archaeosedimentary sequence at

Belmaco is consistent with what is expected for a partially burnt dung

deposit, as indicated by the presence of CaCO3 (calcite and

aragonite), and phosphates (dahllite). However, the site also offers

what is probably an unusual combination of primary volcanic minerals

(e.g., augite, orthoclase, anorthite, and microcline) with halides (e.g.,

sylvite) and rare phosphates (e.g., hazenite), whose formation

might be unique to fumiers in arid volcanic settings such as the

one presented in this study. The abundance of hazenite, a rare

struvite‐type phosphate, stands out.

4.3 | Organic matter preservation and sources

Our lipid biomarker data address two main aspects of the organic

archaeological record: its preservation and its possible sources. The

n‐alkanes generally show good preservation. Their mean concentra-

tions are above 2 µg/gds (see Figure 9) and their distribution displays

a strong odd‐over‐even predominance (Jambrina‐Enríquez

et al., 2018; Knicker et al., 2013). Black (MFT 2) and dung ash layers

(MFT 3) have significantly lower n‐alkane concentrations compared

to the unburned dung layers (MFT 1) (Supporting Information: -

Figure S12). Black layers show significantly higher TOC values than

unburned dung layers and dung ash layers (Supporting Information: -

Figure S13), suggesting higher concentrations and better preserva-

tion of other organic compounds (besides n‐alkanes). This is

consistent with experimental studies that have shown that charring

and subsequent incomplete combustion around 300–350°C, under

reduced oxygen conditions, protect OM from microbial degradation

FERNÁNDEZ‐PALACIOS ET AL. | 19

 15206548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gea.21972 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(Braadbaart & Poole, 2008; de la Rosa & Knicker, 2011), while

retaining lipid biomarker signatures (Jambrina‐Enríquez

et al., 2018, 2022; Mallol et al., 2013).

For the dung ash layers (MFT 3), the presence of darkened

microscopic dung spherulites suggests burning temperatures of

500–700°C based on published experimental work (Canti &

Nicosia, 2018). Rock magnetic studies in fumiers also suggest

temperatures reaching 600–700°C in ash layers (Burguet‐Coca

et al., 2022; Carrancho et al., 2012, 2016). However, the n‐alkane

profiles show a strong odd‐over‐even predominance indicating good

preservation (Supporting Information: Figures S10 and S11). This

could be related to the existence of patches of charred matter within

the ashy facies (see Figure 6, thin sections M‐07/2 and M‐07/3:

charcoal fragments in MFT 3) (Jambrina‐Enríquez et al., 2022) or

accidental inclusion of sediment from the underlying black layer

during the ash layer sampling process.

At Belmaco Cave, CPI values vary throughout the sequence

but are consistently higher than 1, meaning an n‐alkane source

of primarily plant origin and a general good preservation of

the OM (Bush & McInerney, 2013). The mean CPI value of the

fumier sequence (CPImean = 4.5) is higher than the control sample

(CPIcontrol = 2.5), because either the fumier OM is slightly better

preserved or the OM amount is simply greater due to the dung‐rich

deposit. The range of CPI variability across the fumier sequence, from

1.31 to 10.93, does not seem to be linked to the microfacies

characteristics themselves (i.e., degradation by thermal alteration). No

statistical differences were found (see Section 3) on comparing

unburned, carbonized, and ash layers; within each of these, the CPI

values differ considerably (see Figure 9). These results require further

systematic research and experimental work to identify other factors

that might be affecting the degradation indicated by the CPI.

The n‐alkanes shed some light on possible sources of OM in the

Belmaco fumier deposit. Our micromorphological observations

suggest that the n‐alkane input is mainly from ruminant excrement,

which represents the fodder consumed by sheep/goats. Goat/sheep

diet is usually based on dicotyledonous plants and/or grasses

(Alonso‐Eguíluz et al., 2016; Burguet‐Coca et al., 2020; Dunseth

et al., 2019; Portillo et al., 2020). The predominance of long‐chain

n‐alkanes (C29, C31, and C33) across all facies and a mean ACL value of

29.91 are indicative of terrestrial higher plants (herbaceous and

woody taxa). All facies are dominated by C31, which is usually

indicative of herbaceous taxa (Cranwell, 1973; Cranwell et al., 1987;

Holtvoeth et al., 2016; Meyers, 2003; Zech et al., 2010) or

gymnosperms (Diefendorf et al., 2011; Schwark et al., 2002). The

control sample (Cmax = C31) indicates similar n‐alkane composition in

the natural sediment surrounding the site, suggesting the existence of

herbaceous vegetation in the natural surroundings.

Given the main composition of the sediments, ruminant dung,

the source is more likely to be herbaceous plants than gymnosperms.

Peak maxima at C31 have been previously identified in stabling

deposits comprising ruminant excrements composed of unburned

herbs and grasses (Égüez & Makarewicz, 2018; Égüez et al., 2018). At

El Mirador fumier, a grass vegetation input in unburned and mixed

burned/unburned layers has been proposed based on the dominance

of C31 over C25 and C27 (Vallejo, Gea, Massó, et al., 2022).

Furthermore, our preliminary data on La Palma fresh plant material

support a dominant herbaceous contribution instead of a woody

input. As expected for grasses, Cmax at C31 and C33 dominate in H.

hirta (native Poaceae). Also, B. bituminosa (native Fabaceae) has

been characterized as herbaceous (García‐Verdugo et al., 2021;

Schönfelder & Schönfelder, 2012), which is why Cmax at C31 is

compelling. On the other hand, E. brevirame (endemic woody shrub;

García‐Verdugo et al., 2021; Schönfelder & Schönfelder, 2012) was

found to have a dominance of C27 and C29 as recorded for woody

angiosperms in other regions (Holtvoeth et al., 2016; Meyers, 2003;

Zech et al., 2010). The genus Lotus in the Canaries represent an

insular woodiness adaptation (Jaén‐Molina et al., 2021), which

probably explains why the n‐alkane signal in L. hillebrandii (endemic

Fabaceae) is dominated by C27 and C29. An input of OM coming from

gymnosperms, however, needs to be considered too, given the

evidence of pinecones and pine needles in our thin sections (black

layer microfacies).

Samples BM 2‐2 and BM 4‐2 show a different pattern, with

dominant mid‐chain n‐alkanes maximizing at C23. Hygrophilous

plants, such as mosses, or aquatic plants, such as emergent or

submerged macrophytes, are characterized by n‐alkane carbon length

maxima at C23 and C25 (Ficken et al., 2000; Huang et al., 2010). On

the other hand, similar dominant n‐alkanes have been documented in

Quercus nigra, Pinus nigra, and Celtis australis tree wood (Jambrina‐

Enríquez et al., 2018; Knicker et al., 2013; O'Malley et al., 1997). BM

2‐2 is a thick black layer and contains abundant charcoal fragments.

Therefore, the n‐alkane distribution is more likely related to the

presence of charcoal as representative of tree branches. Regarding

BM 4‐2, it is a thick, porous ash layer containing numerous aragonite

crystals. Its spongy uncompacted microstructure and primary

calcareous composition suggest good preservation and thus dry

conditions (Karkanas, 2021), which are further supported by the

presence of the relatively soluble mineral aragonite (Toffolo, 2021;

Toffolo & Boaretto, 2014). Thus, we discard an n‐alkane contribution

from the presence of hydrophilous vegetation. Instead, the observed

predominance of mid‐chain alkanes in this sample could also have

resulted from the presence of dispersed charcoal in the ash layer,

despite being less numerous than BM 2‐2. The low representation of

microscopically visible charcoal in BM 4‐2 highlights the importance

of analyses at the molecular scale to identify depositional compo-

nents that could otherwise go undetected.

4.4 | Indigenous herding practices in La Palma

Pastoralist transhumance in island contexts usually involves seasonal

mobility, from summer pastures in the highlands to winter pastures in

the lowlands (Elie, 2014; Forgia et al., 2021; MacSween, 1959;

Mientjes, 2004). In the Canary Islands, such a pattern exists among

contemporary pastoralist communities (Diego Cuscoy, 1968; Navarro

Mederos, 1992; Navarro Mederos & Clavijo Redondo, 2001; Pais
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Pais, 1996a; Suárez Moreno & Suárez Pérez, 2005). In the eastern

islands of Lanzarote and Fuerteventura, which are relatively low and

lack vegetation belts, there is also seasonal (summer/winter)

horizontal transhumance, which aims to access water supplies and

higher‐quality pastures (Cabrera Pérez, 1996). In La Palma, contem-

porary shepherds from the north of the island occupy the lowlands

for most of the year and move to the highland pastures of the

Taburiente Caldera (~2500m a.s.l.) in the summer, while in the south,

where Belmaco Cave is situated, which has a slightly lower and less

rugged terrain, shepherds move back and forth daily, year‐round,

from the lowlands to the highlands of Cumbre Vieja (~2000 m a.s.l.)

(Pais Pais, 1996b). In this study, we have been able to identify a

minimum of 10 burnt goat/sheep pen deposits formed in a time

interval of 150–400 years represented in Profile A, which could

reflect either snapshots of a seasonal mobility pattern (with a few

random abandonment periods preserved by combustion and the rest

concealed by the palimpsest effect) or several centuries of year‐

round goat/sheep penning at the cave with daily pasturing in the

highlands,—similar to contemporary southern shepherds in La Palma,

interrupted by a minimum of 10 abandonment periods involving

burning of the pen surface. If we consider that the mean retention

time of food in goat/sheep digestive tract is around 48 h (Tsiplakou

et al., 2011), and consider a scenario in which indigenous shepherds

practiced similar daily mobilities as modern ones, transiting from the

lowlands to the highlands of Cumbre Vieja and back within the same

day, the fecal matter that is being deposited at Belmaco should retain

vegetation markers from the summit, midlands, and coastal areas.

Our n‐alkane data, dominated by a herbaceous signal, still cannot

discriminate between herbs and grasses from the highlands versus

those from the lowlands. Thus, the C31 dominance could potentially

come from human‐introduced ruderal nitrophilous flora, abundantly

found along contemporary pastoral routes (e.g., Chenopodium spp.,

Amaranthus spp., Malva spp., Fumaria spp., Solanum nigrum, Trifolium

sp., Plantago spp., Conyza spp.) (del Arco Aguilar et al., 2010; Morales

et al., 2007), or from nonruderal endemic or nonendemic native herb

and grass species found in the ecosystems transited by modern

shepherds and documented as commonly‐used fodder: coastal

shrubland (Cenchrus ciliaris, Wahlenbergia lobelioides, Forsskaolea

angustifolia, Aristida adscensionis), thermophile woodlands (H. hirta,

Asphodelus spp., Urginea spp.), Erica‐Morella woody heath (Brachypo-

dium sylvaticum, Gallium scabrum, Origanum vulgare, Drusa glandulosa),

and Canarian pine forest (L. hillebrandii, Cicer canariensis, Ornithopus

compressus, Tuberaria guttata) (del Arco Aguilar, 2006; Pais

Pais, 1996a; Pérez de Paz et al., 1994; Santos Guerra, 1983).

Significantly, the presence of pine elements, such as pine

needles, discovered at Belmaco, adds to the growing body of

evidence documenting the use of external fuel sources at indigenous

sites in the Canary Islands (Machado Yanes & Ourcival, 1998;

Machado Yanes, 1999; Tomé et al., 2022; Vidal‐Matutano

et al., 2019). Currently, pine formations can be found approximately

3 km away from Belmaco Cave, at an altitude difference of 600m.

According to del Arco Aguilar (2006), the potential distribution of the

pine forest, uninfluenced by human activities, is not significantly

different from its present distribution. While there is a lack of

paleoecological and paleoclimatic data regarding vegetation distribu-

tion before human arrival and during prehistoric times in La Palma, it

is plausible to consider a scenario in which indigenous herders

residing in Belmaco Cave would journey to higher elevations, where

the pine forest exists today at over 1000m a.s.l., to gather specific

types of fuel and possibly exploit the rich understory as fodder. This

is in agreement with ecological research suggesting that the

understory of the present‐day La Palma pine forest has been

depleted due to centuries of anthropogenic overgrazing (Garzón‐

Machado et al., 2010; Irl et al., 2014).

Further investigations are necessary to test the different

hypotheses: (1) archaeological work in fumier contexts from the

north of the island will allow us to explore pastoralist mobility

strategies in a different orographic setting; (2) analysis of compound‐

specific carbon stable isotopes on n‐alkanes to assess differences in

summit versus coast vegetation; (3) extension of our preliminary

reference leaf wax n‐alkane data from native and endemic plants of

La Palma to corroborate the plant sources of the Belmaco Cave

fumier deposit; (4) phytolith analysis to complement the biomolecular

data and further assess herd dietary patterns and preservation.

5 | CONCLUDING REMARKS

Microcontextual data gathered at the central area of Belmaco Cave

have brought to light the existence of a late indigenous fumier

deposit. The use of the cave as a pen for livestock dates from 9th to

the 15th century A.D. Similar to other animal enclosures in cave

contexts, the pen was periodically burned to sanitize the space and

ensure its reutilization over the centuries, a practice that had not

been reported in the Canarian indigenous literature from a high‐

resolution geoarchaeological perspective. A minimum of ten burning

episodes were identified across the 600–1100‐year‐old sequence.

The OM present in the sedimentary deposit, primarily derived from

goat/sheep excrements, is well preserved, under generally dry and

charred conditions, as shown by the geochemical and mineralogical

data, and its lipid molecular residues represent higher plants, possibly

herbaceous taxa. This study provides a new multiproxy, geoarchaeo-

logical framework for the investigation of fumier sedimentary

deposits aimed at reconstructing formation processes and plant

fodder sources to approach pastoralist herding practices.
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