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Abstract

Sport timetabling problems are Combinatorial Optimization problems which involve the

creation of schedules that determine when and where teams compete against each other.

One specific type of sports scheduling, the double round-robin (2RR) tournament, man-

dates that each team faces every other team twice, once at their home venue and once at

the opponent’s. Despite the relatively small number of teams involved, the sheer volume

of potential scheduling combinations has spurred researchers to employ various techniques

to find efficient solutions for sports scheduling problems.

In this thesis, we present a comparative analysis of single and adaptive heuristics

designed to efficiently solve sports scheduling problems. Specifically, our focus is on

constructing time-constrained double round-robin tournaments involving 16 to 20 teams,

while adhering to hard constraints and minimizing penalties for soft constraints violations.

The computational results demonstrate that our adaptive heuristic approach not only

successfully finds feasible solutions for the majority of instances but also outperforms the

single heuristics examined in this study.
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Chapter 1

Introduction

Scheduling sports events is a complex task that has caught the attention of a diverse

group of researchers from different fields such as operations research, scheduling the-

ory, constraint programming, graph theory, combinatorial optimization, and applied

mathematics[5]. These challenges involve creating schedules that specify when, where,

and which teams will compete.

In the context of sports scheduling, various constraints and problem types exist, often

depending on the specific sport and league. These constraints can encompass venue

availability, team preferences, travel constraints, and fairness considerations. The diverse

nature of sports timetabling problems makes it difficult to pinpoint the specific papers

relevant to a particular problem in this field. Additionally, the absence of a standard data

format means that problem examples and their solutions are seldom shared. As a result,

it is challenging to evaluate how well algorithms perform because they are typically tested

on only a few specific examples. To address these challenges, Van Bulck et al. collected

and categorized various problems from the past five decades presented in the literature

in the RobinX project [2]. The instances used in this study originate from the problems

gathered in the RobinX project.

One might question why it is challenging to schedule a competition with a small

number of teams and whether it is possible to list all potential schedules. To illustrate

the enormity of the solution space, we can turn to the research of Van Bulck [17]. He

demonstrates that when we disregard whether a game is played at home or away and

also the order of weekly schedules, scheduling a competition for a group of four teams

results in just one possible combination. However, this number skyrockets to 6,240 for six
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teams and reaches a staggering 252,282,619,805,368,320 for 12 teams, which can indicate

the complexity of solving the problem and the necessity of efficient and effective solution

methods.

As a result, researchers have delved into these problems, often deploying a variety

of optimization techniques to find effective solutions. These techniques encompass ex-

act methods such as integer programming (IP) and constraint programming, as well as

heuristic approaches including metaheuristics, matheuristics, and hybrid methodologies.

Integer programming provides exact solutions but can be computationally demanding,

while heuristic methods offer quicker but approximate solutions. Because sports schedul-

ing is inherently complicated, it requires a range of strategies to meet the rules and goals

set by sports leagues and organizations effectively. The choice of optimization method

depends on the problem’s complexity and the desired quality of the solution. Researchers

continually explore new techniques and adapt existing ones to tackle evolving challenges

in sports scheduling.

This thesis focuses on automating the schedule generation process for specific instances

from the RobinX project, which involves both hard and soft constraints categorized into

capacity, game, break, fairness, and separation constraints. Hard constraints must not

be violated, while soft constraints result in penalties if violated. The goal is to create

schedules that strictly adhere to hard constraints while minimizing the penalty for soft

constraint violations. To achieve this, a matheuristic approach is employed, consisting

of a mathematical model and a two-phase strategy. The first phase aims to find a fea-

sible initial solution using various methods, while the second phase involves a detailed

comparison of different heuristics, including an adaptive heuristic developed in this study.

This thesis has the following structured format. Section 2 lays the foundation by pro-

viding essential background information, including problem context, solution methods,

key terminology, and relevant research. In Section 3, we delve into a comprehensive ex-

planation of the problem’s constraints and offer an overview of the instances considered.

Section 4 is dedicated to the mathematical model and provides a detailed overview of

our problem and constraints. In section 5, we present our solution approach, which en-

compasses single heuristics and our adaptive heuristic method. Our experimental results

are presented in Section 6, and the thesis concludes and gives further research avenues in

Section 7.
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Chapter 2

Background

2.1 Combinatorial Optimization

Combinatorial optimization is a field of study within mathematics, computer science, and

operations research that deals with finding the best possible solution from a finite set of

possible options.[13] The main characteristic of combinatorial optimization problems is

that they involve discrete decision variables and often have a large number of possible

solutions. These problems are encountered in various real-world scenarios where choices

or resource allocations need to be made to optimize a certain objective.

In combinatorial optimization, the goal is to find the optimal combination of elements

from a given set in order to maximize or minimize a certain objective function. The

combinatorial aspect arises because the solutions are formed by combining discrete ele-

ments in various ways, and the challenge lies in exploring the vast solution space to find

the best configuration. Therefore, researchers have developed various algorithms that

can find good solutions quickly, or approximate the optimal solution within some error

bound. More details regarding solution methods are provided in section 2.3.

2.2 Sport Scheduling

A sports scheduling problem is a type of optimization problem that involves finding the

best way to organize and plan a sports competition, such as a tournament or a league. In

other words, sports scheduling problems can be regarded as combinatorial optimization
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challenges, involving the creation of a schedule that specifies the opponents, venues,

and timing of all teams’ matches. The primary aim is to meet a range of constraints

and goals, including minimizing travel distances, ensuring a fair distribution of home

and away games, avoiding scheduling conflicts with venues or television broadcasts, and

ensuring an appealing and balanced competition.

The complexity and difficulty of a sports scheduling problem can vary significantly

based on factors such as the number of participants, competition format, specific regu-

lations, and the preferences of those involved. In addition to its practical significance,

this problem is typically categorized as NP-Hard in the majority of instances, making it

infeasible to manually construct high-quality sports schedules [12, 1]. Therefore, mathe-

matical and computational techniques are often used to model and solve sports scheduling

problems.

There exists a wide array of sports scheduling problems, depending on the character-

istics of the sport and the competition. Some common examples are:

• Round-robin tournaments: A round-robin tournament is a type of tournament in

which each participant plays every other participant the same number of times,

usually once or twice. The winner of the tournament is the one who has the best

performance, measured by the number of wins, points, or other criteria. Examples

of this type of competition are the FIFA World Cup group stage and the NBA

regular season.

• Elimination tournaments: Elimination tournaments are a type of tournament where

participants are paired up and play against each other in a single game or a series

of games. The winner advances to the next round, while the loser is eliminated.

The process is repeated until there is only one champion. Elimination tournaments

are also known as knockout tournaments. Examples of this type of competition are

the FIFA World Cup knockout stage and NBA playoffs.

• Hybrid tournaments: A combination of round-robin and elimination formats, where

participants first play in groups or pools and then advance to a knockout phase

based on their performance. Examples of this type of competition are the UEFA

Champions League and the Olympic Games.

Many researchers tend to create scheduling algorithms tailored to the specific needs of

individual sports leagues. However, this has led to a shortage of studies that compare

how well these algorithms perform in practice. To address this gap, Van Bulck et al.

introduced a standardized data format for round-robin sports timetabling in the RobinX
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project [2]. This format makes it easier to evaluate and compare different scheduling

algorithms, providing valuable insights for sports organizers and stakeholders.

2.3 Solution Methods

Combinatorial Optimization Problems (COPs) are diverse and can vary greatly in terms

of their nature and complexity. Consequently, a range of methods and techniques have

been developed to tackle these challenges effectively. These methods are chosen based

on the specific problem at hand and the desired trade-off between solution quality and

computational efficiency [9, 16].

2.3.1 Exact algorithms

Exact algorithms, also known as deterministic algorithms, are a category of optimization

techniques designed to discover the optimal solution within a finite amount of time. In

sports scheduling, exact methods are based on mathematical models and algorithms and

guarantee to find the optimal solution or prove its nonexistence. Exact methods include

integer programming, constraint programming, and branch-and-bound algorithms. These

methods are usually very efficient for small and medium-sized instances of simple COPs,

but they may become impractical for large and complex problems due to the exponential

growth of the search space.

2.3.2 Heuristic algorithms

Heuristic algorithms serve as problem-solving techniques for addressing combinatorial op-

timization problems. These methods prioritize finding a good solution within a reason-

able time frame rather than guaranteeing an optimal solution. They become particularly

valuable when dealing with exceedingly complex or large problems where obtaining exact

solutions is either impractical or unnecessary. Diverse categories of heuristic algorithms

exist, differentiated by their approaches to navigating the search space and assessing

solution quality. Some of the most common types are:
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Constructive heuristics

These algorithms generate a solution step by step, starting from scratch and gradually

building a complete solution. The greedy algorithm is an example, which consistently

selects the best available element at each stage based on a specific criterion. Constructive

heuristics often exhibit speed but may occasionally become trapped in local optima.

Improvement heuristics

These algorithms start with an initial solution and try to make it better by making small

changes like swapping, adding, or removing elements. In combinatorial optimization,

a neighborhood refers to a set of solutions that are closely related to a given solution.

These related solutions are typically obtained by making a small, well-defined change

to the original solution. For example, the local search algorithm is an improvement

heuristic that keeps moving towards a better nearby solution until it cannot find any

more improvements. While improvement heuristics can improve solution quality, they

can also get stuck in local optima.

2.3.3 Metaheuristics

These algorithms combine or adapt other heuristics to escape local optima and more effi-

ciently explore the search space. An example is the simulated annealing algorithm, which

emulates the physical annealing process by permitting occasional sub-optimal moves with

a decreasing probability over time. While metaheuristics can often identify nearly opti-

mal solutions for various problems, they might demand greater computational resources

and parameter fine-tuning than heuristic methods.

2.3.4 Matheuristic

Matheuristics[7] represent optimization algorithms that combine mathematical program-

ming techniques with heuristic methods, including metaheuristics, to solve complex

and large-scale combinatorial problems. These methods aim to blend the precision of

mathematical programming with the speed and adaptability of heuristics. One type of

matheuriscs is Improvment Matheuristics. These matheuristics initiate from an initial
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feasible solution and employ mathematical programming to enhance it by adjusting spe-

cific elements of the solution. For instance, an improvement heuristic for the traveling

salesman problem might utilize a mixed-integer program to optimize a subset of nodes

within the existing tour while keeping the remainder fixed. Improvement heuristics can

elevate solution quality but are often reliant on the quality of the initial solution.

2.4 Terminalogy

To enhance the clarity of the thesis, we provide fundamental terminology used in sports

timetabling. The RobinX paper[2] offers a comprehensive overview of the common termi-

nology employed in sports scheduling problems. In the following sections, we will delve

into the specific concepts essential for comprehending the characteristics of the problem

instances used in this thesis.

In a round-robin tournament, each team competes against every other team a set

number of times. Typically, many sports leagues use a double round-robin (2RR) format,

where teams face each other twice. However, it is worth noting that single, triple, and

even quadruple round-robin tournaments are also found in some instances available in

the literature.

When organizing a tournament, it is essential to assign the games to a certain number

of time slots (referred to as slots). The aim is to ensure that each team participates in

no more than one game during each slot. The number of slots needed for scheduling a

single round-robin tournament depends on the total number of teams, denoted as n.

1. When the number of teams is even, a minimum of (n − 1) slots are required to

schedule the tournament effectively.

2. When the number of teams is odd, at least n slots are required to accommodate a

single round-robin tournament.

Additionally, we distinguish between two scheduling scenarios:

The tournament is compact when the number of available slots matches the lower

bound required to schedule the tournament. In other words, all the games are planned

to take place in exactly the minimum number of slots required for the given number of
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teams. The tournament is called relaxed when there are more slots available than the

minimum required for scheduling the tournament. In this case, having extra slots beyond

what is strictly necessary for the tournament’s completion is possible.

In sports scheduling literature, teams are usually associated with specific venues.

When a team plays at its designated venue, those games are called home games. On the

contrary, when they play at any other venue, those games are considered away games.

In time slots where there are no scheduled games for a team, it is referred to as a bye.

It is assumed that whenever two teams face each other, one of them plays at their home

venue, and the other plays away.

In the case of single round-robin schedules, it is often a requirement that the difference

between the number of home games and away games played by each team is no greater

than 1. When this condition is met, the schedule is referred to as balanced. For double

round-robin schedules, it is typically mandated that the two games between any pair

of opponents take place at opposite venues. This requirement automatically ensures a

balanced schedule because each team plays an equal number of home and away games

against the same opponent.

A team is said to have a break when they play two games consecutively either at home

or away. In other words, a break happens when a team plays two back-to-back games

with the same home-away status. In this competition, we note the occurrence of a break

in the time slot of the second consecutive game. For example, if Team 1 plays a home

game in slot 1 and another home game in slot 2, a break is recorded in slot 2 because

they have played two consecutive home games.

In a phased tournament, the schedule is divided into two halves. Each half forms

its single round-robin tournament, ensuring that every team plays against every other

team once within that half. This process is repeated separately for the first and second

halves of the schedule. In contrast, an unphased tournament does not require matches

to follow specific constraints where there are no strict requirements for forming complete

round-robin tournaments within each half of the slots, offering more scheduling flexibility.

2.5 Related works

The instances that were used in this thesis were part of the International Timetabling

Competition on Sports Timetabling [19]. Participants in this competition have used
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various approaches to solve each instance. One of the frequently employed strategies,

commonly known as the fix-and-optimize approach, falls under the category of matheuris-

tics. This strategy involves iteratively utilizing a mathematical programming solver to

optimize a specific subset of variables while the remainder of the variables remain fixed

[20].

The approach introduced by Phillips et al.[8], employs an Adaptive Large Neighbor-

hood Search (ALNS) matheuristic. This approach can be similar to a fix-and-optimize

method, enhanced by an adaptive control strategy inspired by reinforcement learning.

In the initial phase, the algorithm attempts to solve a comprehensive integer program-

ming problem. If it fails to do so within a predetermined time frame, it switches to a

canonical factorization method proposed by de Werra[3]. Subsequently, the algorithm

dedicates the remaining time to the ALNS technique, which involves modifying only a

portion of the solution in each iteration. Within each sub-problem of the neighborhood,

an integer program is solved to minimize the number of violations of both hard and soft

constraints. What makes this algorithm stand out is its adaptive approach to defining

the neighborhood. This adaptability is treated as a multi-armed bandit problem, utiliz-

ing the upper confidence bound method [15]. In essence, it dynamically selects from a

range of different neighborhood types and sizes based on past performance. It keeps a

balance between exploring different neighborhoods and exploiting those that have demon-

strated effectiveness. Notably, the study found that searching through a greater number

of smaller neighborhoods proved to be the most efficient strategy.

Fonseca and Toffolo [4] employed a comparable approach using the fix-and-optimize

method. In this algorithm, which utilizes an initial solution generated through the Poly-

gan Method [10], the process unfolds in two distinct phases. Initially, the algorithm runs

to secure a feasible solution, focusing exclusively on hard constraints. Once a feasible

solution is obtained in the first phase, the algorithm proceeds to its second phase. Dur-

ing this second phase, all slack variables related to hard constraints are eliminated, and

the soft constraints are introduced into the model, facilitating further refinement and

improvement of the solution.

The metaheuristic proposed by Rosati et al.[11] employs six local search neighbor-

hoods, including five previously established ones (SwapHomes, SwapTeams, SwapRounds,

PartialSwapTeams, and PartialSwapRounds) and an innovative one called Partial-

SwapTeamsPhased, designed to perform partial swaps among opponents of two teams

while maintaining phase constraints. These neighborhoods are integrated using simu-

lated annealing, incorporating a cut-off mechanism for faster early-phase search. The
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algorithm conducts three sequential simulated annealing runs, aiming to find feasible

solutions without violating the hard constraints, explore both feasible and infeasible re-

gions, and finally, locate improved local minima within the feasible region. The first stage

starts from a greedily-constructed solution, and subsequent stages build upon the best

solution from the previous one. Importantly, the algorithm operates based on the num-

ber of local search evaluations rather than fixed time limits, resulting in varying running

times depending on instance size and constraint complexity.

The FBHS (first-break-heuristically-schedule) algorithm, as proposed by Van Bulck

and Goossens [18], takes a different approach to schedule by sequentially solving two key

sub-problems: determining the home and away schedules for each team in every time slot,

i.e. Home and Away Pattern (HAP), and subsequently, establishing the opponents for

each team in each time slot (opponent schedule). Ensuring compatibility between these

two steps is crucial, as teams can only compete against each other when their home and

away schedules align. To create the HAP set, the algorithm employs Benders’ decom-

position, enforcing necessary feasibility conditions while considering the LP relaxation

of the optimal opponent schedule. Once a promising HAP set is obtained, a compatible

opponent schedule is constructed using a fix-and-optimize matheuristic.
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Chapter 3

Problem Description

Let us denote the set of participating teams in the 2RR as T and the set of time slots

(rounds) as S. In the instances used in this thesis, n (the number of teams) is even

and the set of time slots is compact, hence we can determine that the cardinality of S,

denoted as |S|, is equal to 2n − 2. In all problem instances considered, n takes values

of either 16, 18, or 20. This choice aligns with real-life scenarios and represents problem

sizes that typically challenge state-of-the-art optimization techniques.

In addition to the structural constraints mandating the scheduling of all games within

the 2RR and ensuring that no team plays more than one game per time slot, the problem

instances incorporate nine constraint types in which Van Bulck et al. [2] believe that

this selection of constraint types covers the majority of real-life scheduling constraints.

Constraints can be categorized as either hard or soft, where hard constraints represent

non-negotiable properties of the timetable that must always be upheld, and soft con-

straints express preferences that should be satisfied whenever possible.

The primary objective in the problem instances is to minimize the total (weighted)

sum of deviations resulting from violated soft constraints while respecting all hard con-

straints.

3.1 Constraints

There are a total of nine constraint types, which can be grouped into the following five

constraint classes:
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3.1.1 Capacity constraints

Capacity constraints serve to determine whether a team plays at home or away and

control the total number of games a team or a group of teams can play during a specified

time period. There are four distinct types of capacity constraints (CA1, CA2, CA3,

CA4), each of which can be either considered as hard or soft constraints.

• CA1 Constraints: These constraints set an upper limit on the number of home

games or away games a particular team can play during a given set of time slots.

They are used to model situations where teams cannot play at home during specific

time slots, such as when stadiums are unavailable. CA1 constraints also help in

achieving a balance between home and away games for teams throughout the season.

• CA2 Constraints: CA2 constraints are a extension of CA1 constraints. They

establish an upper limit on the number of home games or away games for a given

team against a specific set of other teams during a specified time slot. For example,

they can limit the number of away games a lower-ranked team plays against stronger

teams during the later part of the season.

• CA3 Constraints: CA3 constraints place restrictions on the maximum sequence

of consecutive home or away games against specific teams. In selected instances, a

hard CA3 constraint ensures that no team plays more than two consecutive home

games or away games. When they are considered as soft constraints, they indicate

that a team should not have more than two home games, away games, or games

(home or away) against a specific set of teams, typically based on their strength

group, within every four consecutive rounds.

• CA4 Constraints: CA4 constraints set an upper limit on the number of home

games, away games, or games (home or away) between teams from one set against

teams from another set during a specified time slot. These constraints can be used

to restrict the number of games between teams from the same strength group or

limit the total number of home games for a set of teams during a particular time

slot, perhaps because teams share a stadium or are geographically close.

3.1.2 Game constraints

A GA1 constraint, whether categorized as hard or soft, has the purpose of either mandat-

ing or prohibiting the scheduling of a particular game or a set of games during specific time
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slots. These constraints are versatile and can be employed to address various schedul-

ing scenarios. For instance, they can enforce rules such as avoiding scheduling high-risk

games during time slots when other major events are planned. Additionally, they can

dictate that certain games must take place during designated derby time slots. It is im-

portant to note that within the RobinX framework, the GA1 constraint is the sole type

of game constraint that is taken into consideration for the scheduling instances.

3.1.3 Break constraints

Constraints BR1 can be designated as either hard or soft constraints, and their purpose is

to set an upper limit on the total number of breaks that a specific team can have during a

designated set of time slots. These constraints are versatile and can be applied to ensure,

for example, that there are no breaks near the beginning or end of the season.

A BR2 constraint is used to restrict the overall number of breaks within the timetable.

Therefore, there is a maximum of one BR2 constraint per instance, which can be either

hard or soft.

When CA3 constraints are expressed as hard constraints, they implicitly prevent any

team from having two consecutive breaks. This contributes to the overall structure and

fairness of the scheduling.

3.1.4 Fairness constraints

This set of constraints is designed to promote fairness in the tournament schedule. It

emphasizes the concept of 2-ranking balance, which implies that at any given point in

time, no two teams should have a difference of more than two home games played. In other

words, it ensures that the distribution of home games among teams remains relatively

equitable throughout the schedule. This constraint is valuable in preventing situations

where certain teams consistently have more or fewer home games, which could affect the

fairness of the competition.
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3.1.5 Separation constraints

SE1 constraints address the need for temporal spacing between games involving the same

teams. They promote the idea that games between the same teams should be sufficiently

spaced apart. In the context of the RobinX problem instances, these constraints suggest

that there should be a minimum of 10 time slots between successive games involving

identical teams. This spacing ensures that teams have adequate time to prepare for their

next encounter and adds an element of anticipation and excitement for fans, making the

tournament more engaging.

3.2 Instances

There are 45 instances that we attempted to solve in this study. The number of teams

can be either 16, 18, or 20. The number of constraints varies from 93 in instance 3 15

to 1486 in instance 2 2, but this number does not necessarily reflect the difficulty of

the instance. Table 3.1 offers a comprehensive overview, detailing the number of teams,

phased status, constraint types, and the number of constraints available for each of the

instances utilized in this study. These instances were generated in three phases, which is

reflected in their naming conventions.

Table 3.1: Instances overview

Inst. #Teams Phased Constraint Types #Constr.

1 1 16 Yes BR1, BR2, CA1, CA2, CA4, FA2, GA1, SE1 206

1 2 16 Yes BR1, BR2, CA1, CA3, FA2, GA1 168

1 3 16 Yes BR1, BR2, CA1, CA2, CA3, FA2, GA1 335

1 4 18 Yes BR1, BR2, CA1, CA2, CA4, GA1, SE1 441

1 5 18 Yes BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 803

1 6 18 Yes BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 999

1 7 18 No BR1, BR2, CA1, CA2, CA4, GA1, SE1 1343

1 8 18 No BR1, CA1, CA2, CA3, CA4, FA2, GA1 653

1 9 18 No BR1, BR2, CA1, CA2, CA3, FA2, GA1 193

1 10 20 Yes BR1, BR2, CA1, CA2, CA3, CA4, SE1 1270

1 11 20 No BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 1363

1 12 20 Yes BR1, BR2, CA1, CA2, CA3, CA4, GA1 214
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1 13 20 No BR1, BR2, CA1, CA2, CA3, GA1 532

1 14 20 No BR1, BR2, CA1, FA2, GA1 113

1 15 20 No BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1 1412

2 1 16 Yes BR1, BR2, CA1, CA2, CA4, SE1 1146

2 2 16 Yes BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 1486

2 3 16 No BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 1459

2 4 18 Yes BR1, CA1, CA2, CA3, CA4, GA1 265

2 5 18 Yes BR1, BR2, CA1, CA2, CA3, FA2, GA1 349

2 6 18 Yes BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 325

2 7 18 No BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 626

2 8 18 No BR1, CA1, CA2, CA3, CA4, GA1 286

2 9 18 No BR1, BR2, CA1, CA2, CA3, CA4, GA1, FA2, GA1 296

2 10 20 Yes BR1, BR2, CA1, CA2, CA4, GA1 912

2 11 20 Yes BR1, CA1, CA2, CA4, GA1 1225

2 12 20 Yes BR1, BR2, CA1, CA2, CA3, FA2, GA1, SE1 314

2 13 20 No BR1, CA1, CA2, CA3, FA2, GA1, SE1 578

2 14 20 No BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 881

2 15 20 No BR1, BR2, CA1, CA2, CA3, FA2, GA1, SE1 237

3 1 16 No BR1, CA1, CA2, CA3, CA4, FA2 GA1 778

3 2 16 No BR1, BR2, CA1, CA2, CA3, CA4, GA1 1323

3 3 16 No BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 576

3 4 18 Yes BR1, CA1, CA4, GA1, SE1 139

3 5 18 Yes BR2, CA1, CA2, CA3, CA4, FA2, GA1 924

3 6 18 Yes BR1, BR2, CA1, CA2, CA4, FA2, GA1, SE1 331

3 7 18 No BR1, BR2, CA1, CA2, CA3, GA1, SE1 873

3 8 18 Yes BR1, BR2, CA1, CA2, CA3, GA1, SE1 314

3 9 18 No BR1, BR2, CA1, CA2, CA3, FA2, GA1 505

3 10 20 Yes BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 936

3 11 20 Yes BR1, BR2, CA1, CA2, CA3, FA2, GA1 419

3 12 20 No BR1, BR2, CA1, CA2, CA3, CA4, SE1 1262

3 13 20 No BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 313

3 14 20 No BR1, CA1, CA2, CA3, CA4, FA2, GA1 1110

3 15 20 No BR1, BR2, CA1, CA3, FA2, GA1 93
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Chapter 4

Model Formulation

4.1 Mathematical model

Here we give a mathematical form of the problem. Table 4.1 serves as a comprehensive

reference for all the notation utilized within the mathematical model. Constraints can

be tailored to apply exclusively to home games (H), away games (A), or both (HA),

denoted by the use of superscripts. For instance, if a capacity constraint of type one

is designed specifically for home games, it is represented in the model as CA1H . This

notation reflects the constraint’s targeted scope. Constraints are categorized into six

categories and described below.

4.1.1 Structural Constraints

The foundational elements of our model are the structural constraints, which form the

backbone of the entire framework. Among the set of constraints considered, constraints

4.1 through 4.8 are consistently present in all 45 instances investigated in this study.

However, it is important to note that constraints 4.9 and 4.10 are exclusively applicable

to the phased instances, setting them apart from the rest in terms of their constraint

configuration.

Constraint 4.1 is incorporated for the purpose of simplifying notation and facilitating

code implementation and it prevents any game between a team and itself from happening.

Constraint 4.2 guarantees that each team participates in precisely one game during each
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Sets
T Set of teams
T 1
c First indexed subset of teams for every constraint

T 2
c Second indexed subset of teams for every constraint

S Set of all slots
Sc Indexed Subset rounds for every constraint
Gc Indexed multiset of ordered pairs (i, j) for every constraint
C Set of all Constraints

Parameters
tc The maximum value that some linear combination of the variables

can take without incurring a penalty for the non-structural con-
straint c.

dc an integer deviation variable for non-structural constraint c. dc = 0
if a constraint c is hard. These variables are referred to by slack
variables.

Variables
xijs Binary; 1 if the match (i, j) is played in slot s; 0 otherwise. ∀i, j ∈

T,∀s ∈ S
his Binary; 1 if i has a home break in slot s; 0 otherwise. ∀i ∈ T,∀s ∈

S \ {1}
ais Binary; 1 if i has an away break in slot s; 0 otherwise. ∀i ∈ T,∀s ∈

S \ {1}
yij Binary; 1 if the match (i, j) occurs before match (j, i);0 otherwise.

∀i, j ∈ T

Table 4.1: notation used in model

time slot. Constraint 4.3 ensures that every ordered pair of teams encounters each other

exactly once throughout the entire season. Essentially, this constraint guarantees the

allocation of all games in a season to specific time slots.∑
s∈S

xiis = 0 ∀i ∈ T (4.1)

∑
j∈T\{i}

(xijs + xjis) = 1 ∀i ∈ T,∀s ∈ S (4.2)

∑
s∈S

xijs = 1 ∀i, j ∈ T, i ̸= j (4.3)

xijs, his, ais, yij ∈ {0, 1} ∀i, j ∈ T, s ∈ S (4.4)
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As certain constraints rely on the break status and the number of breaks for teams,

represented by the variables his and ais, Constraints 4.5 and 4.6 have been introduced

to establish a connection between these variables and the xijs variables. This linkage

ensures that his and ais attain the correct values as required by the model.∑
j∈T

(xijs + xi,j,s−1) ≤ his + 1 ∀i ∈ T,∀s ∈ S \ {1} (4.5)

∑
j∈T

(xjis + xj,i,s−1) ≤ ais + 1 ∀i ∈ T,∀s ∈ S \ {1} (4.6)

The implementation of Separation constraints in section 4.1.6 becomes more straightfor-

ward when we can ascertain that the match (i, j) took place before or after the match

(j, i). To this end, the variables yij are introduced into the model. Constraints 4.7 and

4.8 establish the relationship between yij and the xijs variables.∑
s∈S

s(xjis − xijs) ≤ Myij ∀i, j ∈ T (4.7)

∑
s∈S

s(xijs − xjis) ≤ M(1− yij) ∀i, j ∈ T (4.8)

where M is a constant that satisfies the condition M ≥ |S| − 1.

A subset of the instances is characterized as phased, indicating that the league’s

overall structure is composed of two consecutive 1RRs (round robins). Constraints 4.9

and 4.10 are employed to ensure that each pair of teams engages in one match during the

first half of the season and another during the second half of the season.

|S|/2∑
s=1

(xijs + xjis) = 1 ∀i, j ∈ T, i ̸= j (4.9)

|S|∑
k=|S|/2+1

(xijs + xjis) = 1 ∀i, j ∈ T, i ̸= j (4.10)

4.1.2 Capacity Constraints

The set of CA1 constraints places restrictions on the maximum number of games in

which a specified subset of teams can participate within a designated subset of slots. For

instance, a team from T 1
c is limited to playing a maximum of tc games within the specified
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subset of slots known as Sc. Constraints 4.11 and 4.12 govern the count of home (H) or

away (A) games for each team i in T 1
c during the subset of slots defined in Sc. These

constraints apply to all hard constraints, and dc keeps track of the number of times each

soft constraint is violated.∑
j∈T\i

∑
s∈Sc

xijs ≤ tc + dic ∀c ∈ CA1H , i ∈ T 1
c (4.11)

∑
j∈T\i

∑
s∈Sc

xjis ≤ tc + dic ∀c ∈ CA1A, i ∈ T 1
c (4.12)

The set of CA2 constraints can be viewed as an extension of CA1, with the additional

specification of the opponent team. For instance, Team i from T 1
c is constrained to play

a maximum of tc games within the designated subset of slots Sc, against teams j in T 2
c .

CA2 constraints also introduce an additional mode, HA, which accounts for the total

number of games played, encompassing both home and away matches.∑
j∈T 2

c

∑
s∈Sc

(xijs + xjis) ≤ tc + dic ∀c ∈ CA2HA, i ∈ T 1
c (4.13)

∑
j∈T\i

∑
s∈Sc

xijs ≤ tc + dic ∀c ∈ CA2H , i ∈ T 1
c (4.14)

∑
j∈T\i

∑
s∈Sc

xjis ≤ tc + dic ∀c ∈ CA2A, i ∈ T 1
c (4.15)

CA3 constraints (4.16, 4.17, 4.18) specify that each team i in T 1
c is limited to playing

a maximum of tc home games, away games, or games (home or away) against teams j

in T 2
c within each sequence of intpc consecutive time slots. For example, Team 0 (from

T 1
c ) can engage in at most two consecutive matches against Team 1, 2, and 3 (from T 2

c )

within each sequence of 3 (intpc) time slots. To illustrate, if a match x011 (where Team 0

plays at home against Team 1 in slot 1) occurs, then Team 0 is restricted to playing only

one more game against Team 2 or 3 in the subsequent two slots (forming a sequence of

3).

∑
j∈T 2

c

k+intpc−1∑
l=k

(xijs + xjis) ≤ tc + dikc ∀c ∈ CA3HA, i ∈ T 1
c , k ∈ S : k ≤ |S| − intpc + 1

(4.16)
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∑
j∈T\i

k+intpc−1∑
l=k

xijs ≤ tc + dikc ∀c ∈ CA3H , i ∈ T 1
c , k ∈ S : k ≤ |S| − intpc + 1 (4.17)

∑
j∈T\i

k+intpc−1∑
l=k

xjis ≤ tc + dikc ∀c ∈ CA3A, i ∈ T 1
c , k ∈ S : k ≤ |S| − intpc + 1 (4.18)

The CA4 constraints encompass two distinct modes, known as global and every. These

modes are applied to specific subsets of teams, denoted as i in T 1
c and k in T 2

c . The

global mode, represented by constraints 4.19 through 4.21, is utilized to restrict the

overall number of games played in the tournament, while every mode, encompassed by

constraints 4.22 through 4.24, imposes limitations on the total number of games played

during each slot within a specified subset Sc. To illustrate, if we consider a subset of

rounds as {1, 2, 3}, global mode restricts the total number of games played throughout

the entire tournament, whereas every mode limits the number of games played in each

of the slots 1, 2, and 3 individually.∑
i∈T 1

c

∑
j∈T 2

c

∑
s∈Sc

(xijs + xjis) ≤ tc + dc ∀c ∈ CA4gHA (4.19)

∑
i∈T 1

c

∑
j∈T 2

c

∑
s∈Sc

xijs ≤ tc + dc ∀c ∈ CA4gH (4.20)

∑
i∈T 1

c

∑
j∈T 2

c

∑
s∈Sc

xjis ≤ tc + dc ∀c ∈ CA4gA (4.21)

∑
i∈T 1

c

∑
j∈T 2

c

(xijs + xjis) ≤ tc + dsc ∀c ∈ CA4eHA,∀s ∈ Sc (4.22)

∑
i∈T 1

c

∑
j∈T 2

c

xijs ≤ tc + dsc ∀c ∈ CA4eH ,∀s ∈ Sc (4.23)

∑
i∈T 1

c

∑
j∈T 2

c

xjis ≤ tc + dsc ∀c ∈ CA4eA,∀s ∈ Sc (4.24)

4.1.3 Game Constraints

The set of game constraints is denoted as GA. GA1 specifies that during time slots s in

Sc, there must be at least t′c and at most tc games from the multiset Gc. The multiset Gc
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comprises ordered pairs (i, j), where i represents the home team hosting the game, and

j represents the away team.∑
(i,j)∈Gc

∑
s∈Sc

xijs ≤ tc + dc ∀c ∈ GA (4.25)

∑
(i,j)∈Gc

∑
s∈Sc

xijs ≥ t′c − dc ∀c ∈ GA (4.26)

For each constraint c within GA, both lower and upper bound constraints are established.

Notably, if one of these constraints has a positive dc value, it implies that the other

constraint is satisfied as a strict inequality.

4.1.4 Break Constraints

BR1 serves the purpose of preventing breaks at the start or end of the season while also

constraining the total number of breaks for each team. Constraints 4.27-4.29 monitor

deviations, which arise when a team in T 1
c experiences more than intpc breaks (HA, H,

or A) during the specified round(s) in Sc. If c represents a soft constraint, these deviations

are counted; otherwise, they enforce that teams have no more breaks than the specified

limit.∑
s∈Sc

(his + ais) ≤ intpc + dic ∀c ∈ BR1HA, i ∈ T 1
c (4.27)

∑
s∈Sc

his ≤ intpc + dic ∀c ∈ BR1H , i ∈ T 1
c (4.28)

∑
s∈Sc

ais ≤ intpc + dic ∀c ∈ BR1A, i ∈ T 1
c (4.29)

BR2 calculates the total number of breaks (considering HA mode exclusively) for all

teams in T , ensuring that this count remains less than or equal to intpc for time slots

s ∈ S. Constraint 4.30 imposes limitations on the overall number of breaks in the season,

or it tracks instances where the total number of breaks surpasses intpc.∑
i∈T 1

c

∑
s∈S

(his + ais) ≤ intpc + dc ∀c ∈ BR2HA (4.30)
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4.1.5 Fairness Constraints

FA2 specifies that the difference in the number of home games (only mode available in

selected instances) played by any two teams up to a given slot should not surpass a

predefined maximum. This constraint aims to maintain a balance in the distribution of

home games across slots for all pairs of teams.

Constraints 4.31 and 4.32 serve the purpose of monitoring the count of deviations,

provided that c represents a soft constraint, and they ensure that the difference does not

exceed the specified maximum limit in the case of c being a hard constraint.

s∑
l=0

∑
h∈T 1

c

(xihs − xjhs) ≤ intpc + dijc ∀c ∈ FA2, s ∈ Sc, i, j ∈ T 1
c : i < j (4.31)

s∑
l=0

∑
h∈T 1

c

(xjhs − xihs) ≤ intpc + dijc ∀c ∈ FA2, s ∈ Sc, i, j ∈ T 1
c : i < j (4.32)

4.1.6 Separation Constraints

A collection of separation constraints, denoted by SE, is designed to prevent matches

between a pair of teams from occurring too closely in time. Each constraint c within SE

defines a set T 1
c from which pairs of teams are chosen. Constraint 4.33 specifies that for

each pair (i, j) of teams in T 1
c , there should be a minimum of tc time slots between two

matches involving the same opponents.∑
s∈S

s(xijs − xjis) ≥ tc + 1− dc −Myij ∀c ∈ SE,∀i, j ∈ Tc, i ̸= j (4.33)

where M is a constant that satisfies the condition M ≥ |S| − 1.

4.1.7 Objective Function

Let C = CA1 ∪ CA2 ∪ CA3 ∪ CA4 ∪GA1 ∪BR1 ∪BR2 ∪ FA2 ∪ SE, which represents

the set of all constraints in the problem, excluding the structural constraints outlined

in Section 4.1.1 . We can further divide C into two subsets: C̃, comprising the soft

constraints, and C̄, consisting of the hard constraints. Each constraint c ∈ C̃ has a given
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unit penalty denoted as wc. Consequently, the objective function can be expressed as

follows:

Minimize
∑

c∈C̃ wcdc

It is important to note that we set dc = 0 for all c ∈ C̄ to ensure feasibility.
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Chapter 5

Solution Approach

5.1 Implementation

The data provided by the RobinX project is already structured in a human-readable

XML format. However, it is essential to reorganize this data into a format that aligns

with the requirements of the solver. To achieve this, we have developed a method that

parses the XML file for each instance, categorizing and storing each constraint type sep-

arately. Given that each constraint targets different variables, it is crucial to distinguish

constraints based on their modes (H, A, HA, every, global). Once this categorization

is complete, the model is generated. It begins with incorporating structural constraints

and is followed by including the previously categorized constraints. This process results

in the creation of a ready-to-use Integer Linear Programming (ILP) model for the solver.

Recognizing that solving the primary model could potentially entail weeks of compu-

tation without guaranteeing an optimal solution, this thesis adopts a two-step approach.

Initially, the focus lies on finding an initial solution for each instance. Subsequently, the

research leverages a range of heuristic methods in the second step to enhance these initial

solutions.

5.2 Obtaining an initial solution

In addressing the diverse complexities of the instances, we have pursued various ap-

proaches to attain feasible initial solutions. The first attempt involved tackling the entire
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Integer Linear Programming (ILP) model without permitting any hard constraint vio-

lations. To prioritize the attainment of any feasible solution over improving it, we have

configured the solver accordingly. Due to the extensive solution space, none of the in-

stances yielded a feasible solution within the twenty-four-hour run-time allocated.

The second approach centered on solving the primary model while disregarding the

soft constraints, effectively setting the objective function to zero. Here, the primary aim

was to secure a feasible solution, and the search would halt upon achieving this goal.

In the third attempt, we treated the hard constraints as soft constraints, excluding the

soft constraints from the objective function. Consequently, the objective function in this

scenario became a weighted sum of hard constraints, with the objective of reaching a

value of zero. The final approach resembled the previous attempt, but it incorporated

the adaptive heuristic to explore sub-problems. Further details on this adaptive heuristic

and its role in improving initial solutions are provided in the subsequent section.

5.3 Improving Solutions

In this phase, the primary approach involved conducting neighborhood searches, allowing

for the modification of a portion of the solution while keeping the remainder unchanged.

5.3.1 Heuristics

Two broad types of heuristics, or neighborhoods, were defined. In the first type, a

selection of time slots (slots) was chosen, and all variables associated with those slots

became the decision variables in the sub-problem. Variables linked to other slots were held

constant at their current values within the solution. In the second type of neighborhood,

a subset of teams was selected, and all variables related to those teams were considered

as decision variables, while the rest remained fixed.

5.3.2 Neighborhood Selection

Three distinct selection methods were employed. The first method, emphasizing diversifi-

cation, involved random selection of neighborhoods. This approach facilitated exploration

in various regions of the solution space.
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The second method assessed the impact of each decision variable (those with a value

of 1) on slack variables used to measure the violation of soft constraints. Each decision

variable was associated with two teams and one time slot. The frequency with which each

team and time slot appeared in this analysis was used as a measure of their contribution

to the total penalty of the solution, thus determining their weight in the selection of

decision variables. This method prioritized teams/slots with significant contributions to

the overall penalty, focusing on intensification. In the rest of this thesis, we refer to this

method as costliest ones.

The third method resembled the second one, but it considered all decision variables

on the left-hand side of violated soft constraints, not just those with a value of 1. This

approach offered greater flexibility than the second method and less flexibility than ran-

dom selection, aiming to balance both intensification and diversification. If the number of

visible teams/slots exceeded the requirement, a random subset was selected. Conversely,

in cases where additional teams or slots were needed, they were chosen randomly. In the

rest of this thesis, we refer to this method as costliest all.

5.3.3 Neighborhood Size

This thesis explored two distinct ways to determine neighborhood sizes: fixed and dy-

namic. In the fixed-size approach, a predetermined number of teams/slots were desig-

nated as decision variables, while the remaining variables were held constant at their

existing values. This fixed size remained unchanged until the time limit was reached.

Specifically, the size constituted 1/3 of the total number of teams for team neighbor-

hoods and 1/4 of the total number of slots for slot neighborhoods.

The dynamic size approach commenced with the same size as the fixed size. However,

it introduced the possibility of adjusting the size based on the solver’s performance in the

sub-problems. In the final chosen configuration, it was established that if ten consecutive

subproblems were solved in less than 60 seconds, the neighborhood size would increase by

one. Conversely, if one sub-problem reached the time limit, the neighborhood size would

decrease by one. It is important to note that changes in neighborhood size were tracked

independently for team and slot neighborhoods.
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5.3.4 Heuristic combination

In this phase of the study, various combinations of the previously defined heuristics

were examined to determine their effectiveness in improving solutions. The goal was to

find the most efficient combination of heuristics to enhance the overall performance of

the algorithm. To ensure a fair comparison, all of these combinations shared the same

total time limit, and the final result represented the output of all iterations possible

within that time frame. Furthermore, within each iteration, the time limit allocated

to individual heuristics depended on whether they operated with smaller or larger sub-

problems. Specifically, if a heuristic involved smaller sub-problems, it was granted a time

limit of 300 seconds, whereas heuristics dealing with larger sub-problems (specifically

those defined in Double Heuristics) were allotted 600 seconds per iteration. The total

time limit for attempting to find an optimal solution for a given instance was capped at

4800 seconds.

During the improvement process, the initial solution obtained in the previous phase

served as the starting point for the first iteration. Subsequent iterations employed a warm

start strategy, where the output of the previous iteration became the initial solution for

the next.

Single heuristic

In this approach, the focus was on systematically evaluating the performance of individual

heuristics on each instance. A total of 12 unique combinations were tested, each involving

the application of a single heuristic. These combinations encompassed a range of strate-

gies, including fixing either teams or slots, selecting neighborhoods randomly, prioritizing

the selection of the variables in the costliest all, or costliest ones. Additionally, the size

of the neighborhood could be either fixed or dynamic, as explained in sections 5.3.2 and

5.3.3.

Double heuristics

In this approach, the study explored the impact of using both slot and team heuristics

consecutively within the same iteration. This meant that, in each iteration, one slot

heuristic and one team heuristic were applied sequentially to refine the solution. Notably,
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both the slot and team heuristics shared the same criteria for neighborhood selection and

size. For instance, one combination involved applying a slot heuristic followed by a team

heuristic, with both heuristics selecting one-fourth of the slots or teams for exploration

while keeping the rest fixed. This selection process was randomized for both heuristics.

Furthermore, this phase introduced two new heuristics into the mix. Unlike the

previous small sub-problem approach, these new heuristics operated with larger sub-

problems. They achieved this by fixing only one-fourth of the teams or slots, allowing the

remaining three-fourths to be explored and optimized. Overall, four distinct combinations

were tested in this phase: random selection of neighborhoods, prioritizing the selection

of the variables in the costliest all, or costliest ones, and the configuration mentioned

earlier, but with random selection for both slot and team heuristics.

Adaptive heuristic

In this approach, a more dynamic and adaptive strategy was implemented. All the

heuristics introduced in sections 5.3.1-5.3.3 were made available for selection in each

iteration, with the choice of heuristic being made randomly based on specific probabilities.

Initially, all heuristics had equal probabilities of being selected in the first iteration,

promoting a balanced exploration of the solution space.

The probabilities for heuristic selection depend on their performance in previous iter-

ations [14]. To facilitate this, we segment the iterations into groups of 10, and after each

segment, we update these probabilities using the formula:

Wh,(i+1) = (1− r)Wh,i + r
πh,i

θh,i

Here, r represents the reaction factor, which determines how much the recent per-

formance change of a heuristic in a segment affects its weight in the next segment. πh,i

indicates the score that heuristic h earned during segment i, and θh,i represents the num-

ber of times heuristic h was used during segment i. In our scoring system, a heuristic

receives a score of 1 if it improves the current solution, and 0 otherwise.

Additionally, our configuration ensures that no heuristic is entirely excluded from

consideration, and we set the minimum probability for any heuristic to be selected at

0.05. We achieve this by normalizing the probabilities so that the minimum value is 0.05.
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The adaptive heuristic approach was tested under two distinct neighborhood size con-

figurations: fixed and dynamic. In the dynamic size configuration, aside from the common

300-second time limit (Large) for each iteration, an additional scenario with a 120-second

time limit (Small) was explored. This variation aimed to influence the algorithm to favor

smaller neighborhoods, potentially improving efficiency. In the following Chapters, we re-

fer to these approaches as the Adaptive heuristic with Fixed Neighborhood Size (AFNS)

and the Adaptive heuristic with Dynamic Neighborhood Size (ADNS) small and large.
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Chapter 6

Experimental Results

6.1 Experimental Setup

The proposed approach was implemented in Python. Gurobi 10.0.2 was employed to

solve sub-problem formulations [6]. The computational experiments in this thesis were

run on a 64-bit Windows 10 operating system with 64GB RAM, AMD Ryzen 9 5950X

16-Core Processor (3.40 GHz).

6.2 Results

In the upcoming sections, we will delve into the results of our research. First, in Section

6.2.1, we will showcase the initial solutions derived from the diverse attempts outlined

in Section 5.2. Subsequently, in Section 6.2.2, we will present the outcomes of diverse

approaches employed to enhance these solutions. Additionally, we will conduct a com-

parative analysis of different configurations within each approach and highlight the best

results achieved in each of these approaches.

In the following sections, whenever we refer to Improvement, we are referring to im-

proving with respect to the objective value of the initial solution in percentage that is

calculated with the formula 6.1. Similarly, by Gap we are referring to the gap from the

objective value of the best-found solution in the method to the objective value of the

best-known solution in the literature which is calculated by the formula 6.2, where f is

the objective function.
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Improvement =
f( initial)− f( best found)

f( initial)
∗ 100 (6.1)

Gap =
f(best found)− f(best known)

f(best found)
∗ 100 (6.2)

6.2.1 Initial solutions

Among the 45 instances, we were able to find initial solutions for 38 of them. We at-

tempted to solve these instances using the main model with a 24-hour run time, but

unfortunately, we could not find feasible solutions for any of them. However, we did

manage to obtain initial solutions for 32 instances by not setting an objective function

for the model and configuring Gurobi to prioritize finding a feasible solution over a better

solution.

When we treated the hard constraints as soft constraints in the objective function, we

still could not find feasible solutions for the remaining instances with 24-hour run time.

Finally, for the last 6 instances where we obtained initial feasible solutions, we applied

our adaptive heuristic algorithm to the model from the previous attempt (the one with

hard constraints as soft constraints in the objective function). A complete set of initial

objective values obtained for each instance can be found in Table 6.1.

Table 6.1: Complete set of initial objective values obtained

Instance Initial solution Instance Initial solution Instance Initial solution

1 1 1762 2 3 18848 3 1 3253
1 2 501 2 4 908 3 2 6419
1 3 10603 2 5 11801 3 3 16214
1 6 16061 2 6 11690 3 4 1084
1 7 11213 2 7 15790 3 6 10973
1 8 7123 2 8 1447 3 7 8441
1 9 14448 2 9 12615 3 8 11885
1 11 11375 2 10 2569 3 9 11614
1 12 13950 2 11 4403 3 11 1141
1 13 1614 2 12 15692 3 12 10240
1 14 15988 2 13 6842 3 13 21622
1 15 20641 2 14 3441 3 14 4597

2 15 18055 3 15 16575
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6.2.2 Improving solutions

In this section, we evaluate the performance of each heuristic combination, as described

in Section 5.3.4, using two key metrics mentioned in Section 6.2: Improvement and Gap.

Comprehensive results for each instance can be found in Tables A.1 to A.8.

Single heuristic fixed-size

In our experimentation with various single heuristics employing fixed-size neighborhoods

for each instance, we observed that the heuristics focusing on slots tend to outperform

those focusing on teams. Notably, the heuristic Random Slots exhibited the best per-

formance, achieving an average Improvement of 67.88% and a median Improvement of

80.55%. Conversely, the Costliest Ones Teams heuristic achieved an average Improve-

ment of 49.81% and a median Improvement of 62.08%. For a more detailed breakdown

of each heuristic’s performance, refer to Figure 6.1.

Figure 6.1: Improvement across all instances for single heuristics with fixed-size neigh-
borhoods

When considering the Gap, as depicted in Figure 6.2, the Random Slots heuristic

stands out as the most effective. It achieves an average Gap of 48.04% and a median

Gap of 40.86%. In contrast, the Costliest Ones Teams heuristic demonstrates the poorest

performance, with an average Gap of 68.91% and a median Gap of 69.96%. This analysis

reaffirms the superiority of slot-based heuristics compared to team-based ones in our

problem context. It suggests that team-based heuristics may not provide the necessary

flexibility for exploring the solution space, leading to their inferior performance.
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Figure 6.2: Gap across all instances for single heuristics with fixed-size neighborhoods

Single heuristic dynamic-size

When we introduce flexibility regarding the neighborhood sizes, the performance of all

six heuristics improves significantly, as shown in Figure 6.3. In this configuration, the

Random Slots heuristic demonstrates the most remarkable Improvement, achieving an

average of 69.56% and a median of 81.62%, while the Costliest Ones Teams heuristic

exhibits the least Improvement, with an average of 62.14% and a median of 74.94%. A

Figure 6.3: Improvement across all instances for single heuristics with dynamic-size neigh-
borhoods

similar trend is observed in Figure 6.4 when considering the Gap. Here again, the Random
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Slots heuristic outperforms others, with the smallest Gap, averaging 46.41% and a median

of 43.66%. Conversely, the Costliest Ones Teams heuristic has the largest Gap, with an

average of 55.64% and a median of 50.71%. Moreover, it is evident that slot-based

heuristics consistently outperform their team-based counterparts. This highlights the

value of incorporating flexibility in neighborhood sizes to enhance heuristic performance.

Figure 6.4: Gap across all instances for single heuristics with fixed-size neighborhoods

Double Heuristics Fixed-Size

In this section, we aimed to investigate how combining heuristics of the same category

with respect to neighborhood selection influences the final solution. As explained in

section 5.3.4, we introduced a new configuration that explores fixed-size large neighbor-

hoods. Figures 6.5 and 6.6 illustrate that combining the random heuristics does not

outperform the Random Slots heuristic alone. However, the combined version of Costli-

est Ones and Costliest All heuristics perform better than each of their respective single

heuristics. Interestingly, the new heuristics do not yield promising results and exhibit the

worst performance among all the double heuristics. This underscores the importance of

selecting heuristics carefully, as not all combinations prove equally effective in improving

solutions.
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Figure 6.5: Improvement across all instances for double heuristics with dynamic-size
neighborhoods

Figure 6.6: Gap across all instances for double heuristics with fixed-size neighborhoods



Adaptive Heuristics

For the adaptive attempts, three different settings were tested, including fixed-size neigh-

borhoods (AFNS) and dynamic-size neighborhoods (ADNS) with shorter (Small) and

longer (Large) time limits. The difference in time limits affected the maximum size of

the neighborhood that each iteration of experiments could explore.

Figure 6.7: Improvement over all instances for adaptive heuristics

Figures 6.7 and 6.8 reveal that, on average, the ADNS-Small approach outperforms

both the AFNS and the ADNS-Large. The ADNS-Small consistently achieves higher

Improvements and also demonstrates better performance in achieving solutions closer

to the best-known solutions (smaller Gap). Specifically, the ADNS-Small achieves an

average Improvement of 70.62% with a median of 80.17% and an average Gap of 45.23%

with a median of 39.23%. These results highlight the effectiveness of the ADNS-Small

approach in solving the problem effectively.

Figure 6.9 presents a comparison of both Improvement and Gap among the best

combinations in each of the heuristic combinations. We can see that ADNS outperforms

all the other combinations and has the best performance based on both Improvement and

Gap and Random Slots Teams from double heuristics achieves the poorest results.

Table 6.2 provides the best objective found for each instance among all attempts.
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Figure 6.8: Gap across all instances for adaptive heuristics

Figure 6.9: Comparison of Gap and Improvement across the best approaches in each
combination
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Table 6.2: Complete set of best objective values obtained for each instance

Instance Best found Instance Best found Instance Best found

1 1 649 2 3 11485 3 1 2343
1 2 346 2 4 11 3 2 6099
1 3 1239 2 5 550 3 3 2952
1 6 4546 2 6 1905 3 4 0
1 7 6839 2 7 2775 3 6 1274
1 8 1496 2 8 234 3 7 2416
1 9 608 2 9 1195 3 8 1267
1 11 6106 2 10 1787 3 9 1313
1 12 1040 2 11 3068 3 11 481
1 13 274 2 12 1150 3 12 5248
1 14 143 2 13 832 3 13 2777
1 15 4737 2 14 1668 3 14 1587

2 15 1275 3 15 120



Chapter 7

Conclusion and Future Works

In this thesis, we have outlined the problem of generating a schedule for sports tourna-

ments and proposed our solution approach while testing it on the data instances provided

by the RobinX project [2]. As with most sports scheduling problems, the process of finding

good solutions has been difficult as we consider many conditions regarding competition

fairness and criteria requested by stakeholders (e.g., clubs, broadcasters, government),

resulting in many and perhaps conflicting constraints. We applied various approaches to

find initial solutions and managed this task for 38 out of 45 instances.

We have conducted a comparative analysis of different methods for solving complex

sports scheduling problems. In this approach, we employed a fix-and-optimize matheuris-

tic method by creating multiple sub-problems and attempting to solve them instead of the

whole problem altogether. We investigated how using an adaptive heuristic method could

outperform the single and double heuristic methods. In addition, we explored how having

the dynamic-size neighborhoods would affect the performance of our method. Our results

demonstrated that in a predefined fixed time limit, among all different configurations,

solving multiple small-sized sub-problems outperforms solving large-sized sub-problems.

Specifically, our ADNS-Small approach outperformed all the other heuristics examined

in this thesis, demonstrating its effectiveness.

Future research in this area could explore several paths to improve the proposed heuris-

tics. One path is to investigate alternative strategies for dynamically adjusting neigh-

borhood sizes, potentially enhancing the overall algorithm’s performance. Researchers

might also experiment with different scoring systems that influence how heuristics are se-

lected, and explore the use of diverse initial solutions, if possible. Additionally, exploring
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and combining other existing heuristics from the literature could be beneficial. Another

potential direction is to develop and employ an escape heuristic for situations where the

algorithm becomes trapped in local optima. This could involve keeping a record of ex-

plored neighborhoods to avoid revisiting them when no improvement is observed, thus

saving computational resources. Moreover, extending the time limit for experiments may

yield more comprehensive results. Lastly, leveraging advanced reinforcement learning

techniques could assist in optimizing solution quality and heuristic selection, especially

in scenarios with specific constraints for each problem instance.
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Appendix A

Results

Single heuristic
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Table A.1: Single fixed-size heuristics Improvement over Initial sols

Rand. W. Rand. T. costliest all W. costliest all T. costliest ones W. costliest ones T.

Instance Init. Sol. Obj Imp.% Obj Imp.% Obj Imp.% Obj Imp.% Obj Imp.% Obj Imp.%

1 1 1762 794 54.94% 1640 6.92% 1598 9.31% 1683 4.48% 1475 16.29% 1723 2.21%

1 2 501 467 6.79% 501 0.00% 467 6.79% 501 0.00% 501 0.00% 501 0.00%

1 3 10603 1328 87.48% 1938 81.72% 1593 84.98% 1424 86.57% 1563 85.26% 2364 77.70%

1 6 16061 4875 69.65% 5660 64.76% 5660 64.76% 5660 64.76% 5660 64.76% 5660 64.76%

1 7 11213 6839 39.01% 10833 3.39% 8004 28.62% 10803 3.66% 7180 35.97% 10803 3.66%

1 8 7123 1531 78.51% 2001 71.91% 1553 78.20% 5123 28.08% 1596 77.59% 2355 66.94%

1 9 14448 792 94.52% 1182 91.82% 783 94.58% 763 94.72% 848 94.13% 1587 89.02%

1 11 11375 7470 34.33% 10480 7.87% 7292 35.89% 10370 8.84% 6326 44.39% 10560 7.16%

1 12 13950 1975 85.84% 1940 86.09% 1650 88.17% 1820 86.95% 1365 90.22% 2075 85.13%

1 13 1614 274 83.02% 795 50.74% 336 79.18% 417 74.16% 342 78.81% 1032 36.06%

1 14 15988 429 97.32% 1040 93.50% 406 97.46% 568 96.45% 569 96.44% 1532 90.42%

1 15 20641 4737 77.05% 6359 69.19% 5703 72.37% 4832 76.59% 6629 67.88% 7077 65.71%

2 3 18848 11970 36.49% 11970 36.49% 11995 36.36% 11678 38.04% 11970 36.49% 11970 36.49%

2 4 908 25 97.25% 81 91.08% 33 96.37% 15 98.35% 64 92.95% 121 86.67%

2 5 11801 777 93.42% 1346 88.59% 889 92.47% 972 91.76% 886 92.49% 2396 79.70%

2 6 11690 2275 80.54% 3315 71.64% 2530 78.36% 2585 77.89% 2650 77.33% 3325 71.56%

2 7 15790 3068 80.57% 5688 63.98% 3706 76.53% 2960 81.25% 3876 75.45% 5725 63.74%

2 8 1447 255 82.38% 459 68.28% 341 76.43% 335 76.85% 315 78.23% 598 58.67%

2 9 12615 1265 89.97% 1915 84.82% 1420 88.74% 1665 86.80% 1365 89.18% 2370 81.21%

2 10 2569 2014 21.60% 2443 4.90% 2171 15.49% 2464 4.09% 1956 23.86% 2449 4.67%

2 11 4403 3068 30.32% 4023 8.63% 4108 6.70% 3737 15.13% 3853 12.49% 4218 4.20%

45



2 12 15692 1413 91.00% 2506 84.03% 1468 90.64% 1668 89.37% 2046 86.96% 4067 74.08%

2 13 6842 862 87.40% 2420 64.63% 833 87.83% 946 86.17% 952 86.09% 4476 34.58%

2 14 3441 1780 48.27% 3142 8.69% 2023 41.21% 3116 9.44% 1904 44.67% 3145 8.60%

2 15 18055 1434 92.06% 1975 89.06% 1406 92.21% 2799 84.50% 1299 92.81% 2147 88.11%

3 1 3253 2708 16.75% 3106 4.52% 3110 4.40% 2364 27.33% 3214 1.20% 3168 2.61%

3 2 6419 6404 0.23% 6404 0.23% 6404 0.23% 6404 0.23% 6404 0.23% 6419 0.00%

3 3 16214 2983 81.60% 4834 70.19% 3328 79.47% 3829 76.38% 3664 77.40% 6529 59.73%

3 4 1084 0 100.00% 0 100.00% 0 100.00% 0 100.00% 22 97.97% 144 86.72%

3 6 10973 1428 86.99% 1917 82.53% 1480 86.51% 1422 87.04% 1370 87.51% 1940 82.32%

3 7 8441 2416 71.38% 4975 41.06% 3207 62.01% 2981 64.68% 2551 69.78% 5585 33.83%

3 8 11885 1291 89.14% 1902 84.00% 1460 87.72% 1494 87.43% 1294 89.11% 1963 83.48%

3 9 11614 4810 58.58% 2324 79.99% 1704 85.33% 1560 86.57% 1604 86.19% 2599 77.62%

3 11 1141 620 45.66% 1056 7.45% 676 40.75% 1061 7.01% 481 57.84% 1081 5.26%

3 12 10240 5807 43.29% 8730 14.75% 6267 38.80% 6089 40.54% 6075 40.67% 9190 10.25%

3 13 21622 2777 87.16% 6319 70.78% 5048 76.65% 4227 80.45% 5550 74.33% 8560 60.41%

3 14 4597 1745 62.04% 2711 41.03% 1705 62.91% 1886 58.97% 1871 59.30% 3749 18.45%

3 15 16575 540 96.74% 1145 93.09% 560 96.62% 480 97.10% 540 96.74% 1485 91.04%

Average 67.88 54.80 64.24 59.96 65.24 49.81
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Table A.2: Single fixed-size heuristics Gap to Best knowns

Rand. W. Rand. T. costliest all W. costliest all T. costliest ones W. costliest ones T.

Instance BK Obj Gap.% Obj Gap.% Obj Gap.% Obj Gap.% Obj Gap.% Obj Gap.%

1 1 362 794 54.41 1640 77.93 1598 77.35 1683 78.49 1475 75.46 1723 78.99

1 2 145 467 68.95 501 71.06 467 68.95 501 71.06 501 71.06 501 71.06

1 3 992 1328 25.30 1938 48.81 1593 37.73 1424 30.34 1563 36.53 2364 58.04

1 6 3325 4875 31.79 5660 41.25 5660 41.25 5660 41.25 5660 41.25 5660 41.25

1 7 4763 6839 30.36 10833 56.03 8004 40.49 10803 55.91 7180 33.66 10803 55.91

1 8 1051 1531 31.35 2001 47.48 1553 32.32 5123 79.48 1596 34.15 2355 55.37

1 9 56 792 92.93 1182 95.26 783 92.85 763 92.66 848 93.40 1587 96.47

1 11 4426 7470 40.75 10480 57.77 7292 39.30 10370 57.32 6326 30.03 10560 58.09

1 12 315 1975 84.05 1940 83.76 1650 80.91 1820 82.69 1365 76.92 2075 84.82

1 13 121 274 55.84 795 84.78 336 63.99 417 70.98 342 64.62 1032 88.28

1 14 4 429 99.07 1040 99.62 406 99.01 568 99.30 569 99.30 1532 99.74

1 15 3362 4737 29.03 6359 47.13 5703 41.05 4832 30.42 6629 49.28 7077 52.49

2 3 9542 11970 20.28 11970 20.28 11995 20.45 11678 18.29 11970 20.28 11970 20.28

2 4 7 25 72.00 81 91.36 33 78.79 15 53.33 64 89.06 121 94.21

2 5 279 777 64.09 1346 79.27 889 68.62 972 71.30 886 68.51 2396 88.36

2 6 1120 2275 50.77 3315 66.21 2530 55.73 2585 56.67 2650 57.74 3325 66.32

2 7 1783 3068 41.88 5688 68.65 3706 51.89 2960 39.76 3876 54.00 5725 68.86

2 8 129 255 49.41 459 71.90 341 62.17 335 61.49 315 59.05 598 78.43

2 9 415 1265 67.19 1915 78.33 1420 70.77 1665 75.08 1365 69.60 2370 82.49

2 10 1250 2014 37.93 2443 48.83 2171 42.42 2464 49.27 1956 36.09 2449 48.96

2 11 2446 3068 20.27 4023 39.20 4108 40.46 3737 34.55 3853 36.52 4218 42.01

47



2 12 599 1413 57.61 2506 76.10 1468 59.20 1668 64.09 2046 70.72 4067 85.27

2 13 252 862 70.77 2420 89.59 833 69.75 946 73.36 952 73.53 4476 94.37

2 14 1140 1780 35.96 3142 63.72 2023 43.65 3116 63.41 1904 40.13 3145 63.75

2 15 485 1434 66.18 1975 75.44 1406 65.50 2799 82.67 1299 62.66 2147 77.41

3 1 1922 2708 29.03 3106 38.12 3110 38.20 2364 18.70 3214 40.20 3168 39.33

3 2 5400 6404 15.68 6404 15.68 6404 15.68 6404 15.68 6404 15.68 6419 15.87

3 3 2369 2983 20.58 4834 50.99 3328 28.82 3829 38.13 3664 35.34 6529 63.72

3 4 0 0 0.00 0 0.00 0 0.00 0 0.00 22 100.00 144 100.00

3 6 923 1428 35.36 1917 51.85 1480 37.64 1422 35.09 1370 32.63 1940 52.42

3 7 1558 2416 35.51 4975 68.68 3207 51.42 2981 47.74 2551 38.93 5585 72.10

3 8 934 1291 27.65 1902 50.89 1460 36.03 1494 37.48 1294 27.82 1963 52.42

3 9 498 4810 89.65 2324 78.57 1704 70.77 1560 68.08 1604 68.95 2599 80.84

3 11 202 620 67.42 1056 80.87 676 70.12 1061 80.96 481 58.00 1081 81.31

3 12 3428 5807 40.97 8730 60.73 6267 45.30 6089 43.70 6075 43.57 9190 62.70

3 13 1820 2777 34.46 6319 71.20 5048 63.95 4227 56.94 5550 67.21 8560 78.74

3 14 1202 1745 31.12 2711 55.66 1705 29.50 1886 36.27 1871 35.76 3749 67.94

3 15 0 540 100.00 1145 100.00 560 100.00 480 100.00 540 100.00 1485 100.00

Average 48.04 63.24 53.47 55.58 55.46 68.91
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Single Heuristic dynamic size

Table A.3: Single dynamic-size heuristics Improvement over Initial sols

Rand. W. Rand. T. costliest all W. costliest all T. costliest ones W. costliest ones T.

Instance Init. Sol. Obj Imp.% Obj Imp.% Obj Imp.% Obj Imp.% Obj Imp.% Obj Imp.%

1 1 1762 657 62.71 1447 17.88 806 54.26 1048 40.52 736 58.23 1600 9.19

1 2 501 390 22.16 479 4.39 379 24.35 486 2.99 397 20.76 501 0.00

1 3 10603 1439 86.43 1542 85.46 1239 88.31 1539 85.49 1539 85.49 1528 85.59

1 6 16061 4546 71.70 5599 65.14 5660 64.76 5660 64.76 5660 64.76 5383 66.48

1 7 11213 7278 35.09 8345 25.58 7925 29.32 8058 28.14 7543 32.73 8858 21.00

1 8 7123 1751 75.42 1526 78.58 1849 74.04 1534 78.46 1680 76.41 1510 78.80

1 9 14448 633 95.62 768 94.68 697 95.18 808 94.41 4811 66.70 913 93.68

1 11 11375 6929 39.09 7239 36.36 7529 33.81 7576 33.40 6106 46.32 7524 33.85

1 12 13950 1095 92.15 1721 87.66 1110 92.04 1690 87.89 1100 92.11 1630 88.32

1 13 1614 482 70.14 517 67.97 401 75.15 497 69.21 403 75.03 527 67.35

1 14 15988 164 98.97 166 98.96 247 98.46 143 99.11 389 97.57 165 98.97

1 15 20641 4927 76.13 5389 73.89 5485 73.43 5457 73.56 5695 72.41 5741 72.19

2 3 18848 11970 36.49 11970 36.49 11485 39.07 11676 38.05 11970 36.49 11819 37.29

2 4 908 17 98.13 36 96.04 23 97.47 35 96.15 11 98.79 42 95.37

2 5 11801 550 95.34 1067 90.96 642 94.56 1061 91.01 649 94.50 1128 90.44

2 6 11690 2150 81.61 2850 75.62 1930 83.49 3085 73.61 2080 82.21 2975 74.55

2 7 15790 2775 82.43 3688 76.64 3500 77.83 3453 78.13 3647 76.90 3173 79.91

2 8 1447 241 83.34 368 74.57 251 82.65 336 76.78 282 80.51 357 75.33

2 9 12615 1295 89.73 1435 88.62 1260 90.01 1560 87.63 1395 88.94 3668 70.92
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2 10 2569 1872 27.13 2300 10.47 1865 27.40 2333 9.19 2052 20.12 2341 8.88

2 11 4403 3308 24.87 3588 18.51 3698 16.01 3588 18.51 3833 12.95 3588 18.51

2 12 15692 1150 92.67 2100 86.62 1297 91.73 1974 87.42 1279 91.85 1379 91.21

2 13 6842 832 87.84 1422 79.22 862 87.40 1700 75.15 922 86.52 1652 75.86

2 14 3441 1914 44.38 2270 34.03 1995 42.02 2233 35.11 1876 45.48 2183 36.56

2 15 18055 1538 91.48 1782 90.13 1500 91.69 1800 90.03 1478 91.81 1652 90.85

3 1 3253 2344 27.94 2429 25.33 2662 18.17 2481 23.73 3059 5.96 2586 20.50

3 2 6419 6145 4.27 6404 0.23 6294 1.95 6364 0.86 6099 4.99 6404 0.23

3 3 16214 2978 81.63 3678 77.32 3359 79.28 3528 78.24 2952 81.79 3429 78.85

3 4 1084 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00

3 6 10973 1372 87.50 1397 87.27 1376 87.46 1337 87.82 1450 86.79 1435 86.92

3 7 8441 3029 64.12 3439 59.26 2592 69.29 3039 64.00 2736 67.59 3164 62.52

3 8 11885 1329 88.82 1646 86.15 1294 89.11 1647 86.14 1407 88.16 1739 85.37

3 9 11614 1313 88.69 1659 85.72 1440 87.60 1625 86.01 1560 86.57 1814 84.38

3 11 1141 531 53.46 961 15.78 696 39.00 1031 9.64 596 47.77 956 16.21

3 12 10240 5954 41.86 7064 31.02 5619 45.13 7705 24.76 6006 41.35 6948 32.15

3 13 21622 3464 83.98 4907 77.31 4988 76.93 5010 76.83 4786 77.87 5229 75.82

3 14 4597 1787 61.13 1982 56.88 1669 63.69 1959 57.39 1779 61.30 1916 58.32

3 15 16575 160 99.03 150 99.10 120 99.28 180 98.91 140 99.16 180 98.91

Average 69.56 63.05 67.93 63.40 66.97 62.14
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Table A.4: Single dynamic-size heuristics Gap to Best knowns

Rand. W. Rand. T. costliest all W. costliest all T. costliest ones W. costliest ones T.

Instance BK Obj Gap.% Obj Gap.% Obj Gap.% Obj Gap.% Obj Gap.% Obj Gap.%

1 1 362 657 44.90 1447 74.98 806 55.09 1048 65.46 736 50.82 1600 77.38

1 2 145 390 62.82 479 69.73 379 61.74 486 70.16 397 63.48 501 71.06

1 3 992 1439 31.06 1542 35.67 1239 19.94 1539 35.54 1539 35.54 1528 35.08

1 6 3325 4546 26.86 5599 40.61 5660 41.25 5660 41.25 5660 41.25 5383 38.23

1 7 4763 7278 34.56 8345 42.92 7925 39.90 8058 40.89 7543 36.86 8858 46.23

1 8 1051 1751 39.98 1526 31.13 1849 43.16 1534 31.49 1680 37.44 1510 30.40

1 9 56 633 91.15 768 92.71 697 91.97 808 93.07 4811 98.84 913 93.87

1 11 4426 6929 36.12 7239 38.86 7529 41.21 7576 41.58 6106 27.51 7524 41.17

1 12 315 1095 71.23 1721 81.70 1110 71.62 1690 81.36 1100 71.36 1630 80.67

1 13 121 482 74.90 517 76.60 401 69.83 497 75.65 403 69.98 527 77.04

1 14 4 164 97.56 166 97.59 247 98.38 143 97.20 389 98.97 165 97.58

1 15 3362 4927 31.76 5389 37.61 5485 38.71 5457 38.39 5695 40.97 5741 41.44

2 3 9542 11970 20.28 11970 20.28 11485 16.92 11676 18.28 11970 20.28 11819 19.27

2 4 7 17 58.82 36 80.56 23 69.57 35 80.00 11 36.36 42 83.33

2 5 279 550 49.27 1067 73.85 642 56.54 1061 73.70 649 57.01 1128 75.27

2 6 1120 2150 47.91 2850 60.70 1930 41.97 3085 63.70 2080 46.15 2975 62.35

2 7 1783 2775 35.75 3688 51.65 3500 49.06 3453 48.36 3647 51.11 3173 43.81

2 8 129 241 46.47 368 64.95 251 48.61 336 61.61 282 54.26 357 63.87

2 9 415 1295 67.95 1435 71.08 1260 67.06 1560 73.40 1395 70.25 3668 88.69

2 10 1250 1872 33.23 2300 45.65 1865 32.98 2333 46.42 2052 39.08 2341 46.60

2 11 2446 3308 26.06 3588 31.83 3698 33.86 3588 31.83 3833 36.19 3588 31.83
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2 12 599 1150 47.91 2100 71.48 1297 53.82 1974 69.66 1279 53.17 1379 56.56

2 13 252 832 69.71 1422 82.28 862 70.77 1700 85.18 922 72.67 1652 84.75

2 14 1140 1914 40.44 2270 49.78 1995 42.86 2233 48.95 1876 39.23 2183 47.78

2 15 485 1538 68.47 1782 72.78 1500 67.67 1800 73.06 1478 67.19 1652 70.64

3 1 1922 2344 18.00 2429 20.87 2662 27.80 2481 22.53 3059 37.17 2586 25.68

3 2 5400 6145 12.12 6404 15.68 6294 14.20 6364 15.15 6099 11.46 6404 15.68

3 3 2369 2978 20.45 3678 35.59 3359 29.47 3528 32.85 2952 19.75 3429 30.91

3 4 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

3 6 923 1372 32.73 1397 33.93 1376 32.92 1337 30.96 1450 36.34 1435 35.68

3 7 1558 3029 48.56 3439 54.70 2592 39.89 3039 48.73 2736 43.06 3164 50.76

3 8 934 1329 29.72 1646 43.26 1294 27.82 1647 43.29 1407 33.62 1739 46.29

3 9 498 1313 62.07 1659 69.98 1440 65.42 1625 69.35 1560 68.08 1814 72.55

3 11 202 531 61.96 961 78.98 696 70.98 1031 80.41 596 66.11 956 78.87

3 12 3428 5954 42.43 7064 51.47 5619 38.99 7705 55.51 6006 42.92 6948 50.66

3 13 1820 3464 47.46 4907 62.91 4988 63.51 5010 63.67 4786 61.97 5229 65.19

3 14 1202 1787 32.74 1982 39.35 1669 27.98 1959 38.64 1779 32.43 1916 37.27

3 15 0 160 100.00 150 100.00 120 100.00 180 100.00 140 100.00 180 100.00

Average 46.41 55.36 49.04 54.93 49.18 55.64
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Both

Table A.5: Double heuristics Improvement over Initial sols

Rand. W.T. costliest all W.T. costliest ones W.T. Rand. L.W.T

Instance Init. Sol. Obj Imp.% Obj Imp.% Obj Imp.% Obj Imp.%

1 1 1762 1033 41.37 1626 7.72 1055 40.12 1026 41.77

1 2 501 501 0.00 467 6.79 501 0.00 464 7.39

1 3 10603 1473 86.11 1606 84.85 1598 84.93 2155 79.68

1 6 16061 5165 67.84 5660 64.76 5660 64.76 5695 64.54

1 7 11213 7686 31.45 8370 25.35 7980 28.83 10508 6.29

1 8 7123 1539 78.39 1649 76.85 1526 78.58 3329 53.26

1 9 14448 698 95.17 733 94.93 858 94.06 1562 89.19

1 11 11375 6495 42.90 7901 30.54 7373 35.18 10735 5.63

1 12 13950 1085 92.22 1280 90.82 1290 90.75 2020 85.52

1 13 1614 417 74.16 401 75.15 390 75.84 884 45.23

1 14 15988 468 97.07 505 96.84 626 96.08 267 98.33

1 15 20641 4993 75.81 5482 73.44 6122 70.34 7406 64.12

2 3 18848 11970 36.49 11970 36.49 11970 36.49 11970 36.49

2 4 908 21 97.69 37 95.93 68 92.51 43 95.26

2 5 11801 848 92.81 903 92.35 961 91.86 1584 86.58

2 6 11690 2605 77.72 2550 78.19 2680 77.07 3325 71.56

2 7 15790 3450 78.15 3599 77.21 3214 79.65 5263 66.67

2 8 1447 270 81.34 252 82.58 285 80.30 767 46.99

2 9 12615 1195 90.53 1430 88.66 1610 87.24 2295 81.81

2 10 2569 1877 26.94 2035 20.79 2141 16.66 2349 8.56

2 11 4403 3308 24.87 3603 18.17 4053 7.95 4403 0.00

2 12 15692 1278 91.86 1717 89.06 1548 90.14 3899 75.15

2 13 6842 1022 85.06 1100 83.92 1269 81.45 2898 57.64

2 14 3441 2038 40.77 2057 40.22 1990 42.17 3084 10.37

2 15 18055 1412 92.18 1279 92.92 1465 91.89 3277 81.85

3 1 3253 2950 9.31 3047 6.33 3171 2.52 2914 10.42

3 2 6419 6404 0.23 6404 0.23 6404 0.23 6404 0.23

3 3 16214 3144 80.61 3103 80.86 3623 77.66 7294 55.01

3 4 1084 0 100.00 0 100.00 0 100.00 0 100.00

3 6 10973 1456 86.73 1365 87.56 1554 85.84 1617 85.26

3 7 8441 2591 69.30 2785 67.01 2455 70.92 4894 42.02
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3 8 11885 1372 88.46 1407 88.16 1412 88.12 2388 79.91

3 9 11614 1445 87.56 1430 87.69 1729 85.11 2428 79.09

3 11 1141 711 37.69 766 32.87 816 28.48 1131 0.88

3 12 10240 5808 43.28 6325 38.23 6635 35.21 8325 18.70

3 13 21622 3618 83.27 5902 72.70 6621 69.38 4804 77.78

3 14 4597 1587 65.48 1836 60.06 1848 59.80 3042 33.83

3 15 16575 540 96.74 565 96.59 600 96.38 305 98.16

Average 67.04 64.29 64.07 53.72

Table A.6: Double heuristics Gap to Best knowns

Rand. W.T. costliest all W.T. costliest ones W.T. Rand. L.W.T

Instance BK Obj Gap.% Obj Gap.% Obj Gap.% Obj Gap.%

1 1 362 1033 64.96 1626 77.74 1055 65.69 1026 64.72

1 2 145 501 71.06 467 68.95 501 71.06 464 68.75

1 3 992 1473 32.65 1606 38.23 1598 37.92 2155 53.97

1 6 3325 5165 35.62 5660 41.25 5660 41.25 5695 41.62

1 7 4763 7686 38.03 8370 43.09 7980 40.31 10508 54.67

1 8 1051 1539 31.71 1649 36.26 1526 31.13 3329 68.43

1 9 56 698 91.98 733 92.36 858 93.47 1562 96.41

1 11 4426 6495 31.86 7901 43.98 7373 39.97 10735 58.77

1 12 315 1085 70.97 1280 75.39 1290 75.58 2020 84.41

1 13 121 417 70.98 401 69.83 390 68.97 884 86.31

1 14 4 468 99.15 505 99.21 626 99.36 267 98.50

1 15 3362 4993 32.67 5482 38.67 6122 45.08 7406 54.60

2 3 9542 11970 20.28 11970 20.28 11970 20.28 11970 20.28

2 4 7 21 66.67 37 81.08 68 89.71 43 83.72

2 5 279 848 67.10 903 69.10 961 70.97 1584 82.39

2 6 1120 2605 57.01 2550 56.08 2680 58.21 3325 66.32

2 7 1783 3450 48.32 3599 50.46 3214 44.52 5263 66.12

2 8 129 270 52.22 252 48.81 285 54.74 767 83.18

2 9 415 1195 65.27 1430 70.98 1610 74.22 2295 81.92

2 10 1250 1877 33.40 2035 38.57 2141 41.62 2349 46.79

2 11 2446 3308 26.06 3603 32.11 4053 39.65 4403 44.45

2 12 599 1278 53.13 1717 65.11 1548 61.30 3899 84.64

2 13 252 1022 75.34 1100 77.09 1269 80.14 2898 91.30

2 14 1140 2038 44.06 2057 44.58 1990 42.71 3084 63.04
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2 15 485 1412 65.65 1279 62.08 1465 66.89 3277 85.20

3 1 1922 2950 34.85 3047 36.92 3171 39.39 2914 34.04

3 2 5400 6404 15.68 6404 15.68 6404 15.68 6404 15.68

3 3 2369 3144 24.65 3103 23.65 3623 34.61 7294 67.52

3 4 0 0 0.00 0 0.00 0 0.00 0 0.00

3 6 923 1456 36.61 1365 32.38 1554 40.60 1617 42.92

3 7 1558 2591 39.87 2785 44.06 2455 36.54 4894 68.17

3 8 934 1372 31.92 1407 33.62 1412 33.85 2388 60.89

3 9 498 1445 65.54 1430 65.17 1729 71.20 2428 79.49

3 11 202 711 71.59 766 73.63 816 75.25 1131 82.14

3 12 3428 5808 40.98 6325 45.80 6635 48.33 8325 58.82

3 13 1820 3618 49.70 5902 69.16 6621 72.51 4804 62.11

3 14 1202 1587 24.26 1836 34.53 1848 34.96 3042 60.49

3 15 0 540 100.00 565 100.00 600 100.00 305 100.00

Average 49.52 53.05 54.15 64.81

Adaptive
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Table A.7: Adaptive heuristics Improvement over Initial sols

AFNS ADNS-Large ADNS-Small
Inst. Init. Sol. Obj Imp.% Obj Imp.% Obj Imp%
1 1 1762 1335 24.23 653 62.94 649 63.17
1 2 501 501 0.00 440 12.18 346 30.94
1 3 10603 1593 84.98 1370 87.08 1284 87.89
1 6 16061 5660 64.76 4864 69.72 4681 70.85
1 7 11213 8044 28.26 7192 35.86 7042 37.20
1 8 7123 1664 76.64 1640 76.98 1496 79.00
1 9 14448 773 94.65 642 95.56 608 95.79
1 11 11375 7003 38.44 6831 39.95 6905 39.30
1 12 13950 1140 91.83 1050 92.47 1040 92.54
1 13 1614 376 76.70 415 74.29 415 74.29
1 14 15988 530 96.69 434 97.29 164 98.97
1 15 20641 5827 71.77 5210 74.76 5075 75.41
2 3 18848 11970 36.49 11970 36.49 11970 36.49
2 4 908 36 96.04 15 98.35 13 98.57
2 5 11801 1091 90.76 678 94.25 750 93.64
2 6 11690 2350 79.90 2400 79.47 1905 83.70
2 7 15790 3570 77.39 3327 78.93 2945 81.35
2 8 1447 235 83.76 289 80.03 234 83.83
2 9 12615 1505 88.07 1300 89.69 1260 90.01
2 10 2569 2008 21.84 1918 25.34 1787 30.44
2 11 4403 3558 19.19 3333 24.30 3103 29.53
2 12 15692 1587 89.89 1303 91.70 1220 92.23
2 13 6842 917 86.60 1208 82.34 1090 84.07
2 14 3441 1971 42.72 2107 38.77 1668 51.53
2 15 18055 1275 92.94 1468 91.87 1467 91.87
3 1 3253 3116 4.21 2718 16.45 2343 27.97
3 2 6419 6404 0.23 6404 0.23 6144 4.28
3 3 16214 3484 78.51 3224 80.12 3499 78.42
3 4 1084 0 100.00 0 100.00 0 100.00
3 6 10973 1362 87.59 1274 88.39 1374 87.48
3 7 8441 2779 67.08 2892 65.74 2554 69.74
3 8 11885 1267 89.34 1415 88.09 1356 88.59
3 9 11614 1639 85.89 1587 86.34 1333 88.52
3 11 1141 596 47.77 546 52.15 546 52.15
3 12 10240 6076 40.66 5498 46.31 5248 48.75
3 13 21622 4900 77.34 3459 84.00 3567 83.50
3 14 4597 1810 60.63 1843 59.91 1721 62.56
3 15 16575 580 96.50 200 98.79 140 99.16

Average 65.53 68.34 70.62
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Table A.8: Adaptive heuristics Gap to Best knowns

AFNS ADNS-Large ADNS-Small
Inst. BK Obj Gap% Obj Gap% Obj Gap%
1 1 362 1335 72.88 653 44.56 649 44.22
1 2 145 501 71.06 440 67.05 346 58.09
1 3 992 1593 37.73 1370 27.59 1284 22.74
1 6 3325 5660 41.25 4864 31.64 4681 28.97
1 7 4763 8044 40.79 7192 33.77 7042 32.36
1 8 1051 1664 36.84 1640 35.91 1496 29.75
1 9 56 773 92.76 642 91.28 608 90.79
1 11 4426 7003 36.80 6831 35.21 6905 35.90
1 12 315 1140 72.37 1050 70.00 1040 69.71
1 13 121 376 67.82 415 70.84 415 70.84
1 14 4 530 99.25 434 99.08 164 97.56
1 15 3362 5827 42.30 5210 35.47 5075 33.75
2 3 9542 11970 20.28 11970 20.28 11970 20.28
2 4 7 36 80.56 15 53.33 13 46.15
2 5 279 1091 74.43 678 58.85 750 62.80
2 6 1120 2350 52.34 2400 53.33 1905 41.21
2 7 1783 3570 50.06 3327 46.41 2945 39.46
2 8 129 235 45.11 289 55.36 234 44.87
2 9 415 1505 72.43 1300 68.08 1260 67.06
2 10 1250 2008 37.75 1918 34.83 1787 30.05
2 11 2446 3558 31.25 3333 26.61 3103 21.17
2 12 599 1587 62.26 1303 54.03 1220 50.90
2 13 252 917 72.52 1208 79.14 1090 76.88
2 14 1140 1971 42.16 2107 45.89 1668 31.65
2 15 485 1275 61.96 1468 66.96 1467 66.94
3 1 1922 3116 38.32 2718 29.29 2343 17.97
3 2 5400 6404 15.68 6404 15.68 6144 12.11
3 3 2369 3484 32.00 3224 26.52 3499 32.29
3 4 0 0 0.00 0 0.00 0 0.00
3 6 923 1362 32.23 1274 27.55 1374 32.82
3 7 1558 2779 43.94 2892 46.13 2554 39.00
3 8 934 1267 26.28 1415 33.99 1356 31.12
3 9 498 1639 69.62 1587 68.62 1333 62.64
3 11 202 596 66.11 546 63.00 546 63.00
3 12 3428 6076 43.58 5498 37.65 5248 34.68
3 13 1820 4900 62.86 3459 47.38 3567 48.98
3 14 1202 1810 33.59 1843 34.78 1721 30.16
3 15 0 580 100.00 200 100.00 140 100.00

Average 53.08 48.69 45.53
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