
University of Bergen
Department of Informatics

Colorizing Scanning Electron

Microscopy Images With Diffusion

Models

Author: Emiel Venema

Supervisors: Stefan Bruckner

September, 2023

Abstract

We present a user-guided method for colorizing scanning electron microscopy (SEM)

images using a conditional image-to-image diffusion model. Applying color to SEM im-

ages is an important part for researchers to communicate their findings and enhancing

the visual appeal of their published work. Seeking to automate this otherwise manual

and time-consuming process, we propose ”AB-diffuser”, a conditional image-to-image

diffusion model that can generate SEM colorization both automatically and user guided

with a few clicks. By limiting the diffusion process and data generation to color-data

only, we ensure that none of the structural information of the researchers’ valuable data

is altered. We evaluated AB-diffuser’s performance by testing its ability to replicate SEM

colorizations from various published works with minimal user input. The results indicate

that the model effectively captures the communicative intent and visual enhancements

researchers had with their original colorizations.

Acknowledgements

I would first and foremost like to express my deepest appreciation to my partner and

family, who in many regards have looked forward to this day more than I have. Their

love, support and patience despite my mental and physical absence during this period in

my life has been beyond invaluable. I am forever grateful.

I would also like to extend my gratitude to my supervisor, Stefan Bruckner who has

provided excellent guidance, feedback and insight throughout this project. His support

has been instrumental in maintaining my direction and focus on completing this project.

I appreciate the effort and time he dedicated to guiding me, especially given his transition

to the University of Rostock. His support has been invaluable in maintaining my direction

and focus on completing this project.

Emiel Venema

Friday 1st September, 2023

Contents

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Research Question . 3

1.3 Contributions . 4

1.4 Thesis Structure . 4

2 Theoretical Background 6

2.1 Neural Networks . 6

2.1.1 Feedforward Neural Networks . 7

2.1.2 Training Neural Networks . 8

2.1.3 Activation Functions . 10

2.1.4 Convolutional Neural Networks 10

2.1.5 U-Nets . 11

2.2 Denoising Diffusion Probabilistic Models 13

2.2.1 The Diffusion Processes . 13

2.2.2 Simplified Loss . 16

2.2.3 Backward Process and Sampling 17

3 Related Work 18

3.1 Image Colorization With Convolutional Neural Networks 18

3.1.1 Image Colorization Task . 18

3.1.2 Real-Time User-Guided Image Colorization With Learned Deep

Priors . 20

3.1.3 Image Colorization With Diffusion Models 21

3.2 SEM Image Colorization Solutions . 24

4 Methodology 25

4.1 Data . 26

4.2 Colorspace . 27

i

4.3 Hint Generation . 27

4.4 Model Architecture . 28

4.4.1 Training Pipeline . 29

4.4.2 Sampling Pipeline . 30

4.4.3 U-Net . 30

4.4.4 Noise Schedule . 31

4.5 GUI . 32

5 Implementation and Prototyping 34

5.1 Data acquisition . 34

5.2 Prototyping . 35

5.2.1 Training the First Prototype . 36

5.2.2 Support for User Inputs . 37

5.3 Training the Final Model . 41

6 Experiments and Results 43

6.1 SEM Image Colorization Performance . 43

6.2 Natural Image Colorization Performance 50

7 Discussion 52

7.1 SEM Image Colorization . 52

7.2 Limitations . 54

7.3 Future Improvements . 56

8 Conclusion 58

Bibliography 60

ii

List of Figures

1.1 Grayscale SEM vs Colored SEM . 2

2.1 Perceptron Diagram . 6

2.2 Feed Forward Neural Network . 7

2.3 Attention Head . 12

2.4 Training Algorithm for DDPM . 17

2.5 Sampling Algorithm for DDPM . 17

3.1 Colorization output From Palette . 21

3.2 Palette Task Examples . 22

4.1 AB diffuser Framework . 25

4.2 SEM Data Example . 26

4.3 Model Input During Training . 29

4.4 Noise Schedules Comparisons . 31

4.5 GUI For Testing User Inputs . 33

5.1 Colorization Outputs From the Initial Prototype 36

5.2 Colorization Outputs With User Hints 38

5.3 Training and Validation Loss for Model Candidates 39

5.4 GUI for Testing User Inputs . 41

6.1 Our Setup For Experiments . 44

6.2 Lajian Paper Fibers . 45

6.3 Maize Pollen Grains . 45

6.4 Close-Up on Pollen Apertures, Contrasted With Color 46

6.5 Red-Emitting Phosohor Superstructures 47

6.6 Comparisons With MountainsSEM . 48

6.7 Timed Comparison With MountainsSEM 49

6.8 Comparisons With Manually Colorized SEM Images 49

6.9 PSNR comparison against baseline models 51

iii

7.1 Misleading Colorizations . 54

iv

List of Tables

5.1 Validation Metrics for Model Candidates 40

6.1 Recorded Times and Attempts for Validation 50

v

Chapter 1

Introduction

SEM or scanning electron microscopy has been an important instrument for a wide range

of scientific research and industrial applications. For any scientific discipline or industry

that requires examination and analysis of nanoscopic structures or surfaces, SEM is a

powerful tool that provides much higher resolution imagery than any optical microscope

can provide. While human color perception relies on the interaction of photons with cone

cells in our eyes, SEM images are formed by detecting electrons, thereby producing highly

detailed but inherently grayscale images. In this thesis we will develop a conditional

image-to-image diffusion model for the task of SEM image colorization.

1.1 Motivation and Problem Statement

In SEM, an electron gun fires a focused beam of electrons, scanning the specimen surface

while interacting with its atoms. Images are formed by detecting the signals emitted

from the sample due to these interactions. Commonly used signals for image forma-

tion are secondary electrons (SE), emitted due to the excitation of the stricken atoms,

or backscattered electrons (BSE), which are electrons that undergo multiple scattering

events, usually from deeper within the sample. An SEM image is constructed by encoding

the signal intensity, which corresponds to the proportion of electrons emitted from the

sample surface at that specific location, to a pixel value.

Researchers have since the early days of electron microscopy, been developing methods

to produce color images. In 1940, Dr. Heinrich Herbst [12] patented a method for

1

visualizing the electron energy spectrum. By arranging bundles of cathode ray emitters

of different strength in a ring, aimed at a phosphor screen, that emitted different colors

depending on the energy of the exciting electrons, he successfully produced the first color

image from an electron microscope.

Color vision is an important feature of human perception, enhancing our ability to

discern and interpret objects and structures in our environment. The Gestalt principle

of similarity states that humans tend to group objects together based on their similarity

in color, shape or size, and one can see in the bottom row of Figure 1.1 how helpful color

is to discern the various captured structures.

Figure 1.1: Desulfovibrio alaskensis bacterium biofilm present on iron sulfide, grayscale
versus pseudocolored. Purple: Desulfovibrio alaskensis cells, Gold: iron sulfide minerals,
Blue: carbon, Green: extracellular filaments
Source: Krantz et al. [18], used with permission from Taylor & Francis.

One can use data captured to color code SEM images. Backscattered electrons interact

within the depth of the sample, losing energy as they are detected upon return. This loss

of energy is dependent on the atomic numbers of the stricken region, and results in an

image with atomic contrast. These gray tonal-levels can be assigned colors via a lookup

table. Other signals, if captured, such as characteristic X-rays and secondary electrons

can also be color encoded.

2

Manual colorization of SEM images via photo editing software is also a common

practice. Figure 1.1 is an example of this. With manual colorization, there are no

limiting factors on color assignment due to availability or composition of captured data,

and one will have full artistic freedom to convey desired information or enhance the visual

appeal of the image. This, however is laborious and time-consuming process. While there

exists commercial solutions for SEM colorization such as MountainsSEM, there exists no

viable alternatives that are either free or open source.

Bringing color to monochromatic images has been a well researched topic in the field

of computer vision. Deep learning-based image colorization has been applied to a wide

range of image domains and modalities such as natural images, infrared imagery, radar,

manga and other types of line art. Auto-encoders, U-nets and generative adversarial

networks have all been used to produce impressive results. Diffusion models have recently

showed great results in other computer vision tasks such as image synthesis [7, 14] and

image super-resolution [33, 36], however, research into their applicability to natural image

colorization [37, 26] is still in its early stages. This is particularly true for diffusion models

for user-guided colorization, where researchers have only unveiled significant findings in

the past few months [3, 23, 22].

1.2 Research Question

Considering the tedious process of colorizing SEM images, the limited availability of ded-

icated tools, and the emerging potential of diffusion models in image-to-image translation

tasks, we aim to address the following questions:

• Can diffusion models effectively colorize SEM images to enhance their visual inter-

pretability?

• Can it produce results comparable to manual colorization and solutions dedicated

to the task?

To answer these questions, we will develop and train a diffusion model for the task of

SEM image colorization with support for user guidance. We will colorize grayscale SEM

images from a series of publications, to asses the model’s ability to capture and enhance

the interperability of the features referenced in the original research. The model will also

be evaluated against a set of colorized SEM images to assess if our model can provide

3

comparable results to common approaches, in terms of communicative intent and visual

appeal.

As an addition to this thesis, we will also compare our model against other deep learn-

ing based image colorization methods on CUB-200-2010 [46] and Oxford 102 Flowers [28],

two common datasets used to evaluate natural image colorization models. We present

our attained peak signal to noise ratio (PSNR) against four similar baseline models.

1.3 Contributions

The main contributions of this thesis are: AB-diffuser, a conditional image-to-image

diffusion model for the task of SEM image colorization with support for user guidance.

The diffusion model only operates on the chromatic channels of images in cieLAB space,

using grayscale images as a conditioning signal, along with optional user inputs for user-

guided colorization. AB-diffuser was trained on our dataset consisting of 2000 colored

SEM images, and evaluated against modern methods for SEM image colorization.

1.4 Thesis Structure

This thesis is organized into the following chapters:

• Chapter 2: Theoretical Background

Introduction to neural networks, U-Nets, and denoising diffusion probabilistic mod-

els.

• Chapter 3: Related Work

Review of contributions and materials we base our work on and draw inspiration

from including: deep learning-based colorization models, diffusion models for image

colorization, and SEM image colorization solutions.

• Chapter 4: Methodology

Detailed explanation of the approach and architecture of AB-diffuser, our diffusion

model used for SEM image colorization.

• Chapter 5: Implementation and Prototyping

Description of the software tools used and the steps taken in the implementation

of the proposed model.

4

• Chapter 6: Results

Presentation and analysis of the model’s performance on SEM image colorization

tasks, and evaluating its performance against other deep learning-based image col-

orization solutions.

• Chapter 7: Discussion

Interpretation of results, comparison with existing methods, discussion of the

model’s strengths and limitations and suggestions for future research directions.

• Chapter 8: Conclusion

Summary of the research, key findings, and answers to research questions.

5

Chapter 2

Theoretical Background

This chapter outlines the basic principles Artificial Neural Networks and machine learn-

ing, as well as an introduction to Denoising Diffusion Probabilistic Models (DDPM).

2.1 Neural Networks

Figure 2.1: Diagram of a perceptron. A weighted sum of input data x and weights w
is added with a bias term b and passed through the activation step-function to produce
output f(x)

Artificial Neural Networks or ANN’s belong to a class of machine learning (ML) models.

ANN are functions that have the goal is to approximate some function f . One of the

reasons we see ANN’s everywhere today is their great ability to approximate functions,

6

and that they are able to perform a wide range of tasks, from classification and regression,

to facial recognition and natural language processing.

The strengthening of signals between the simultaneously firing neurons when con-

ducting repetitive motor or cognitive tasks plays a central role in behavioral learning

and formation of memories Citri et al. [5]. ANN’s are inspired by this neuron-to-neuron,

weighted input-output relationship. Input data enters a processing unit called an artifi-

cial neuron, whose output is multiplied with a connection weight before being received

by the next artificial neuron, analogous to the synaptic-connectivity strength between

neurons in the brain.

2.1.1 Feedforward Neural Networks

Figure 2.2: Diagram of a fully connected feed forward neural network. The input layer,
consisting of 4 artificial neurons receives the data, and each neuron computes its weighted
sum and activation. The activations are propagated through the hidden layers, to the
output layer consisting of one neuron which computes the final output.
Note the bottom arrow, representing the flow of error back through the network when
performing backpropagation during training.

FNNs are the simplest form of Artificial Neural Networks, where in contrast to Recurrent

Neural Networks (RNN), the flow of information goes only one way: through the input

layer, to the hidden layers if any, and finally throughout the output layer. They are built

up by layers of artificial neurons or perceptrons.

7

Perceptrons: The perceptron was developed in the 1950’s by Frank Rosenblatt. While

other kinds of artificial neurons are mostly used in today’s ANN’s, many of the principles

are the same. A perceptron is, in the strictest sense, a type of binary classifier that

maps a weighted vector of m binary inputs or features x = x1, x2, . . . , xm to a single

binary number f(x), as illustrated in Figure 2.1. An activation function, in this case the

Heaviside step function, consists of a bias term b added with the dot product of features

x and a vector of m real-valued weights w = (w1, w, wm) and can be expressed as

such:

f(x) =

1 if b+ x · w > 0

0 otherwise
(2.1)

where w · x is the weighted sum
∑m

i=1 wixi of the feature vector x and weights w, and b

is the bias term.

Perceptrons are a special case of the more general term artificial neuron. Artificial

neurons can have a wide range of input data types, and activation functions allowing

them more expressiveness and to handle more complex data and tasks. We can chain

these neurons together in layers so that the outputs of neurons in the first layer, also

called activations, become the inputs of the neurons in the next layers and so on. This

yields us the feed forward network.

Figure 2.2 illustrates a three layer deep feedforward neural network. By adjusting the

weights and biases of the network depending on the data we want to classify or perform

regression on, we can control the output. This can be done manually, or ideally, via a

learning rule that decides how the individual weights and biases should be manipulated,

and a training process that feeds the network data. When applying the learning rule

repeatedly no longer yields improvement in the network’s performance, the network is

said to have achieved convergence.

2.1.2 Training Neural Networks

Training a neural network is the process of adjusting the networks parameters, weights

and biases, so that it learns a mapping from the input to specific outputs. This is often

done in a supervised manner. In supervised learning, features of labeled training data

is fed into the network, and the distance between the networks output and the label is

measured. The networks parameters are then adjusted as to minimize this distance called

”loss”, with the goal of having the neural network producing outputs closer to this label

8

or ground truth the next time it encounter similar data, while also minimizing the overall

average loss over the whole training set, the ”cost”.

The choice of loss function is important and one must take into account what task

the network is trying to solve, and what minimization of the loss function yields. For

regression problems mean squared error (MSE) is often used:

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 (2.2)

where yi is the true value, and ŷi is the predicted value.

If we base our cost function on the MSE so that C(w⃗, c⃗) = 1
m

∑m
i=1 ∥yi − ŷi∥2, the

goal of training the network is to find the vector of weights w and biases b that minimizes

average squared error over the training set.

Gradient descent with backpropagation is the standard approach to achieve this. By

calculating the partial derivatives of the cost function with respect to the weights and

biases, the direction of the steepest ascent can be found. In order to move in the opposite

direction, the respective gradients are subtracted from the vectors of weights and biases

as such:

b⃗′ := b⃗− η


∂C
∂b1
∂C
∂b2
...

∂C
∂bn

 w⃗′ := w⃗ − η


∂C
∂w1

∂C
∂w2
...

∂C
∂wm

 (2.3)

with hyperparameter η being the learning rate, the size of the steps taken towards

the minimum. Higher learning rates increase the risk of overshooting the minimum and

oscillating around it, while lower may lead to slower convergence or getting ”stuck” in

local minima. Avoiding the very computationally expensive task of calculating the loss

over a large training set for every step, mini-batch gradient descent is used instead. The

steps are taken on the gradient of loss over a shuffled, smaller subset of training data.

Even tough it will not converge directly towards a minimum, it will still converge faster

due the higher amount of steps taken during a pass over the whole training set, an

”epoch”.

9

In practice, the gradients are calculated by propagating the loss backwards through

the network, a process called backpropgotation. Backpropagation aims to determine the

contribution of a given weight and bias to the cost by calculating the gradient of the cost

with respect to them. Going from the gradient on the output layer, and working back-

wards layer by layer, using the chain rule of calculus to compute the partial derivatives

in the former layers.

2.1.3 Activation Functions

The job of the activation function is to transform the weighted input of the artificial

neuron to an output. These functions are usually simple, but the choice of activation

function will greatly affect what kinds of data the network can be trained on effectively,

and what kinds of functions it can approximate. A network consisting of step-functions

tends to be sensitive; small adjustments to the weights and biases can be just enough to

push the activation from 0 to 1 and vice versa. This can have consequences for the layers

receiving this output. While the adjustment may produce a more accurate prediction for

the intended class, it might be to the detriment of another [9]. With a linear activation

function, the network’s decision boundaries separating the classes will also be linear,

making it less effective on complex non-linear data.

One such example is the Sigmoid activation function, a bounded S-shaped function

denoted σ(x) = 1
1+e−x with a continuous range of [0, 1]. The smoothness of the function

ensures that small changes in the weights and biases will only cause small changes in the

output. The non-linearity it introduces also allows the network to learn more complex

decision boundaries. In fact the Universal Approximation Theory ”arbitrary width” case

was proven using Sigmoid neurons in the hidden layers [6].

2.1.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of neural networks that specializes in

processing data in matrix structures, such as images. While conventional neural networks

with 1D feature vectors as input are able to process such data, they fail to capture

its spatial structures well. CNNs are able to process images in their native structure,

maintaining the spatial integrity of lines, curves and other features present. CNNs are

simply ANN’s with one or more convolutional layers.

10

In the convolutional layers, the input is convolved with a filter called the kernel. The

kernel has the same depth as the input, but a smaller height and width and consists of

weights that determines the output values of the convolution. The kernel slides a certain

distance for each convolution, the stride, over the whole height and width of the input

matrix. The dot product of the kernel and the covered input values of the input matrix

is computed at each step. These values are then stored in a new matrix called the feature

map, before being passed through an activation function.

The dimensions of the feature map are determined by the size of the kernel, the stride

and the padding. For instance, a 3x3 kernel with a stride of 1 convolved over a 6x6 input

matrix will produce a 4x4 feature map. To preserve the spatial dimensions of the input,

one can pad the same input matrix with 0’s along its height and width, resulting in a

6x6 activation map. Multiple kernels are used for each convolutional layer, producing

one feature map each.

So instead of having full connectivity for each input feature and activations, we have

sparse connectivity where each activation is determined by a smaller subset of the input

features, known as the kernels receptive field. This reduces the amount of parameters

needed, since the kernel weights are shared across the whole set of inputs. Even tough we

have this sparse connectivity, local features further down the network are still indirectly

affected by parameters further up the network.

We can reduce the number of parameters even further by using pooling layers. Pooling

layers are similar to convolutional layers, where a filter is slid over the activation map,

but instead, a pooling function determines the output of the values in the receptive field.

Common pooling functions are max-pooling and average-pooling. Like the name suggest,

for max pooling, the maximum value within the receptive field is selected, reducing the

spatial size of the resulting feature map, while maintaining dominant features.

The network is made up by several of these convolutional and down-sampling pooling

layers, where in the shallower layers the network extracts high-level features such as lines

and curves while the deeper layers learns more complex features as their outputs are the

”condensed” products of the previous layers.

2.1.5 U-Nets

The U-net is a CNN architecture, originally developed for biomedical image segmentation

by Ronneberger et al. [34], but has been utilized other computer vision tasks such as

11

image-colorization [21, 52], image generation [14] and various image-to-image translation

tasks [37]. U-nets are symmetric ”U-shaped” networks, consisting of one contracting or

down-sampling path called the encoder network, followed by an up-sampling or expanding

path called the decoder network.

The encoder network is made up of convolutional blocks that double the feature map

depth, followed by down-sampling max-pooling layers, who halve the feature map’s spatial

resolution. The decoder network replaces the max-pooling with up-convolutions where

the feature maps are bilinearly scaled up by a factor of 2 before convolution, restoring

the features spatial resolution, and halving their depth. In between the convolutional

blocks, there are skip connections that concatenate activations from the encoder network

to the decoder blocks. This allows the decoder network to recover spatial information of

the features present in the shallower layers otherwise lost in the down-sampling process.

Even though the earlier layers provide better spatial information, they lack quality

feature representation compared to the deeper layers. To compensate for this one may

utilize attention gates at the skip connections. [29] In Figure 2.3 we see how the atten-

tion heads are constructed. Each attention gate learns an importance map of attention

coefficients α from the skip connections g and the previous decoder layer x, which is

multiplied element-wise with the skip connection activations, scaling them according to

their importance.

Figure 2.3: Attention head at the skip connections of the U-net. g: previous decoder
layer, x: skip connection from encoder network, and can be seen multiplied attention
coefficients α
Source: https://youtu.be/KOF38xAvo8I?t=746 with permission.

12

2.2 Denoising Diffusion Probabilistic Models

Generative models in machine learning have the aim of capturing the underlying distri-

bution of a given data set. In other words, if we assume that the data, be it image-data,

text, audio, are samples from a probability distribution pdata(x). Generative models try

to learn the approximated probability distribution pθ(x). By drawing from this approxi-

mated distribution we are able to generate new samples.

DDPM’s or simply “diffusion models” are a class of generative models that in recent

years has emerged as a new state of the art of the deep generative model family. They have

achieved great success in the field of image synthesis, even out performing generative-

adversarial-networks [7] They have shown potential in the domain of computer vision

tasks, such as image segmentation [2] and image-to-image translation tasks like coloriza-

tion, JPEG restoration, inpainting and uncropping [37]. Text-to-image diffusion models

such as DALL-E2 [30] and Stable Diffusion [33] have gained enormous popularity over

the last year, being able to generate high quality and resolution images that are true to

their text prompts.

This section is mostly based on the work of Ho et al. [14], who presented such sub-

stantial improvements to the original formulation of diffusion models by Sohl-Dickstein

et al. [?], that much of the recent developments of diffusion models can be attributed to

them. Note that for the sake of brevity, we have omitted much of the derivations leading

the various terms and expressions. This section outlines the mathematical and practical

details of DDPMs, but at a higher level.

2.2.1 The Diffusion Processes

The diffusion process giving the name to diffusion models has two phases, the forward and

backwards diffusion process. The former is a Markov chain that transforms data to noise,

and the latter is a reverse Markov chain that transforms noise back to data. The forward

diffusion process begins with a given data distribution x0 ∼ q(x) and an analytically

tractable distribution π(y) as a target, usually the standard gaussian distribution.

Given a sample x0 from q(x), the forward diffusion process gradually adds a small

amount of gaussian noise to the sample using a Markov chain of T steps, with a variance

or beta schedule given by {βt ∈ (0, 1)}Tt=1, giving us a sequence of increasingly noisy

13

random variables x1, x2, .., xT with a density of q(xt | xt−1). Using the Markov property

of the transitions and the chain rule of probability, and the standard gaussian distribution

as the target, one can factorize the joint distribution of the random variables conditioned

on x0 and define the forward process as:

q(x1:T | x0) :=
T∏
t=1

q(xt | xt−1) (2.4)

with density

q(xt | xt−1) := N (xt;µt =
√

1− βtxt−1,Σt = βtI) (2.5)

where βtI denotes the covariance for all dimensions of xt

As Ho et al.[14] noted, to obtain a sample of xt without applying q to the whole

sequence x1, x2,, xt−1, one can reparameterize the forward process to obtain a closed

form:

Let ϵ0, . . . , ϵt−2, ϵt−1 ∼ N (0, I), αt := 1−βt and ᾱt :=
∏T

i=1 αi with reparameterization

N (µ, σ2) = µ+ σ · ϵ, xt can be written as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (2.6)

This enables us to precompute a variance schedule with βt as a hyperparameter where

1−ᾱt gives the variance of the noise at a given timestep, and to sample xt at any timestep.

The densisty becomes:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2.7)

Training: Going from isotropic gaussian noise to some sample of q(x0) is performed by

sampling xT ∼ N (0, I), then sampling the reverse steps q(xt−1 | xt) back to x0.

q(xt−1 | xt) := N (xt−1; µ̃t(xt, x0), β̃tI), 1 < t ≤ T (2.8)

The problem is the intractability of q(xt−1 | xt), so it is instead approximated by a Neural

Network pθ.

14

pθ(x0:T) := p(xT)
T∏
t=1

pθ(xt−1|xt) (2.9)

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), 1 < t ≤ T (2.10)

Note that in the work of Ho et al. [14] they decided to only have the neural network learn

the mean µθ(xt, t), and set the variance Σθ(xt, t) to a time depended constant σ2
t I, using

either σ2
t I = βt or σ

2
t I = β̃t =

1−ᾱt−1

1−ᾱt
βt, both producing similar results.

The network is trained by optimizing the minimum log-likelihoods variational lower

bound as such:

L := Eq

[Lvlb︷ ︸︸ ︷
DKL(q(xT |x0) ∥ p(xT))︸ ︷︷ ︸

LT

+
∑
t>1

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
(2.11)

LT is referred as the constant term and is ignored while training, since q(xT |x0) and

p(xT) are both isotropic Gaussians with zero mean when t → T , leading to a negligible

KL-divergence.

Lt−1 is the step-wise denoising term that compares pθ with the forward process pos-

terior q(xt−1|xt,x0) conditioned on x0.

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) (2.12)

where µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt (2.13)

L0 is the reconstruction term, which is also ignored since its already approximated in

Lt−1 by the neural network.

15

2.2.2 Simplified Loss

Another discovery by Ho et al. [14] was that Lt−1 can be further simplified. By rewriting

x0 in terms of the reparameterization of the forward process (see Equation 2.6)

x0 =
1√
ᾱt

(
xt +

√
1− ᾱtϵ

)
(2.14)

The mean of q(xt−1|xt,x0) can then be expressed as:

µ̃t(xt) =

√
ᾱt−1βt

1− ᾱt

(
1√
ᾱt

(xt +
√
1− ᾱtϵ)

)
+

√
αt(1− ᾱt−1)

1− ᾱt

xt =
1√
ᾱt

(
xt −

βt√
1− ᾱt

ϵ

)
(2.15)

The authors decided to have the neural network approximate µ̃t(xt), and now since

xt is also a input of the model, and all other quantities of µ̃t are known, µθ(xt, t) can

have the same form:

µθ(xt, t) =
1√
ᾱt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(2.16)

Now the neural network only predicts the noise of xt at timestep t, and the target and

approximated mean can be compared with a MSE loss function after reconstruction. The

loss is then:

Lt−1 = Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥ϵ− ϵθ(xt, t)∥2
]

(2.17)

Experimentaly, better results and easier implementation was achieved when ignoring

the scaling term in Equation 2.17, leading to a even more simplified loss function:

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(2.18)

In practical terms the process of training a DDPM is done as follows.

1. Define a variance or noise schedule βt. Ho et al. [14] uses a linear scedule from

β1 = 10−4 to βT = 0.02, with T = 1000. Precompute αt and ᾱt.

16

2. Select timestep t ∼ U({1, ..., T}) and add noise according to schedule βt to x0,

creating noisy variable xt following Equation 2.6

3. Input timestep embedding t and xt into neural network, an U-net, to predict the

noise.

4. Compare output with noise ϵ ∼ N (0, I), taking gradient descent step on the loss.

5. Repeat 2-4 until convergence.

Figure 2.4: Training algorithm for DDPM by Ho et al. [14]

2.2.3 Backward Process and Sampling

Now the final piece of the puzzle is how we go backwards from noisy data xT ∼ N (0, I) to

a clean generated sample x0. Reparameterizing pθ(xt−1 | xt) = N (xt−1;
1√
ᾱt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
, βt)

gives us:

xt−1 =
1√
ᾱt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+
√

βtϵ (2.19)

Now all thats left to do is to sample gaussian noise xT ∼ N (0, I), input it into the

neural network together with the timestep t = T iteratively for t = T, ..., 1 to produce

the final generated sample x0, as illustrated in Figure 2.5.

Figure 2.5: Sampling algorithm for DDPM by Ho et al. (2020)

17

Chapter 3

Related Work

Putting SEM image colorization using DDPM’s into context requires discussion of the

involving disciplines, their development and current state. We examine contributions to

Deep Learning Image Colorization, Diffusion Models and SEM Image Colorization that

we base our work on, and draw inspiration from.

3.1 Image Colorization With Convolutional Neural

Networks

The colorization task has traditionally received less attention in the field of computer

vision than prominent tasks like semantic segmentation, object detection and image gen-

eration. Still great strides have been made in the recent years with the rise of deep learning

and convolutional neural networks, and increasingly available large image datasets. We

will discuss the task itself, with some prominent approaches and their respective use-cases.

3.1.1 Image Colorization Task

In image colorization in a deep learning context, we leverage modern CNN architecture’s

ability to learn semantics about colors in the visual world from large image datasets to

assign plausible color values to pixels in grayscale images.

Deep learning colorization arose due to the combination of multiple factors: the po-

tential of CNNs as a tool to solve computer vision tasks, the lack of quality as well as need

18

for human intervention in the colorization methods at that time. The first deep learning

colorization method was ”Deep Colorization” by Cheng et al. [4] it is a fully automatic

colorization solution utilizing a CNN consisting of 3 hidden layers, and a two neuron

output layer corresponding to the UV chromatic channels in YUV color space. A dataset

consisting of 2668 images from the Sun dataset [48] with 47 object categories was used

for training. For each pixel in the luminance channel Y, a set of feature descriptors were

computed to be used as input for the model. This set includes a 7x7 patch of surrounding

pixel values, the DAISY [42] feature descriptor, and an annotation label indicating its

object category.

Problems with desaturation and diversity of colors in fully automatic methods were

addressed in the work of Zhang et al. [51]. They observed that, in natural image datasets,

the distribution of colors tends to be biased towards desaturated values. They also ar-

gued that using Euclidean MSE between ground truth and prediction, led to a grayish

and desaturated colorization, because the optimal solution is essentially the mean of a

set of plausible colors. Working in the CIELAB color space, they proposed a multimodal

classification approach where the model was trained to predict a quantized probability

distribution of the AB channels gamut. Using a cross-entropy loss function with a weight-

ing term to rebalance the loss for rare color-classes, they could account for the strong

bias towards desaturated colors.

Levels of Automation Fully automatic methods are able to produce good results

for natural image colorization, with the work by Zhang et al. [51] achieving 32% fool

rate on test subjects. Challenges arise in scenes that do not conform to higher level

semantics like grass is usually green, and a clear sky is blue. Man-made objects like

clothes, cars and buildings may have a wide variety of different colors, often totally

outside any semantic context derivable from the scene or present in the training set.

This also applies to SEM imagery, where specimen in many cases are far too small to

be perceived by optical microscopy, meaning that ground truth color, if any, would be

hard to obtain. Colorization is an ill-posed problem, and fully automatic methods can not

entirely account for all its uncertainty, and can be prone to producing results not meeting

specific requirements of the user, e.g., wanting to highlight a structure with green color

in a SEM image.

19

3.1.2 Real-Time User-Guided Image ColorizationWith Learned

Deep Priors

The problem of ambiguity was one of the driving factors for the work of Zhang et al. [52].

Proposing a semi-automatic colorization method, they leveraged the speed and quality

of recent automatic colorization solutions, but allowing the user to guide the colorization

by providing a set of inputs.

A U-net was used as the main colorization network which receives the L channel of

the image to be colorized. Two variants of the network were trained to accommodate

different user inputs. One ”global hints network” θ∗g where the user provides a reference

image of which its global histogram and average saturation is used as input in addition to

the L input of the main network. The other ”local hints network” θ∗l is provided with user

generated inputs Ul = {Xab, Bab} where Xab ∈ RHxWx2 is a sparse tensor consisting

of user provided AB values, at the locations specified in the binary mask Bab ∈ RHxWx1.

The local hints network also has a sub structure to the main U-net that is trained to

output a histogram of AB values for each pixel in the grayscale input image based on the

likelihood.

During training of the local hints network, simulated user inputs are generated. Au-

thors expected users to click on points closer to the center of images, thus point locations

for the binary mask Bab are sampled from a 2D-Gaussian where µ = 1
2
[H,W]T and

Σ =
([(

H
4

)2
,
(
W
4

)2])
. Average AB values are sampled from the ground truth image

from uniformly drawn 1x1 to 9x9 patches around the point location and stored in Xab.

The number of generated points are drawn from a geometric distribution with p = 1
8
,

meaning that 12.5% of training instances have no user input, to ensure that the network

still is able to perform fully automatic colorization.

20

3.1.3 Image Colorization With Diffusion Models

Figure 3.1: Colorization output from Palette, showing differently generated samples from
their respective conditioning input. Figure sourced from Saharia et al. [37]

Palette: Image-to-Image Diffusion Models The work done by Saharia et al. [37]

is a good example of the versatility of diffusion models in the field of computer vision.

It is a unified diffusion model framework for the tasks of colorization, JPEG restoration,

uncropping and inpainting as illustrated in Figure 3.2. The approach is able to outperform

regression and GAN correspondents when trained for individual tasks, as well as achieving

competitive results when trained on all tasks simultaneously.

Palette’s models are conditional diffusion models that are on the form p(y|x) where
y is the output image and x as an input signal, an image, that the models is conditioned

on. In contrast to the approximated backward process for DDPM’s in Equation (2.10),

Palette iteratively removes Gaussian noise from an image yT conditioned on an input

image x by sampling pθ(yt−1|yt, x) until a final color image y0 is produced.

21

Figure 3.2: Palette task examples. Figure sourced from Saharia et al. [37]

To achieve conditional generation, Palette is trained by concatenating x onto yt during

training per. Saharia et al. [36]. They use a U-net architecture following the work of Ho

et al. [14], but increasing the depth and adding self-attention blocks at 32x32, 16x16 and

8x8 resolutions, instead of only at 16x16.

To train Palette for the colorization task, grayscale images were used was used as

conditioning signal. The authors opted for the RGB color space, instead of the more

conventional CIELAB color space to maintain generality when training for the other tasks.

Palette performed well compared to other automatic colorization solutions, achieving

45.9% average human evaluation fool rate on the ImageNet test set with 5 second displays,

beating the scores of PixColor [11] and ColTran [19] of 26.0 % and 34.9%, respectively.

Figure 3.1 illustrates Palette’s ability to generate diverse colorizations.

Color Diffusion by Millon [26] is another diffusion model for the task of automatic

image colorization. In contrast to Palette, Color Diffusion is works in the cieLAB color

space, and the diffusion process is applied to the AB color channels only. The L channel

is used as a conditioning signal, and the model is trained to predict the AB channels of

the color image, resulting in a colorized image.

Concurrently with our work, a solution for semi-automatic colorization with diffusion

models has now been proposed by Liu et al. [23]. They leveraged a pretrained text-to-

22

image latent diffusion model, Stable Diffusion [33], which is trained on large scale text-

image datasets, and exploit its learned semantic information between text and natural

images as priors for colorization.

Latent diffusion models circumvent the computationally expensive problem of working

in the high dimensional space of images, by exploiting the fact that modern Variational-

Auto-Encoders(VAE) are able to reconstruct images from a low dimensional latent space.

Instead of having a de-noising network working on relatively high dimensional images,

the same noising and de-noising process can be applied to the latent vectors from the

encoder network of a VAE.

Their approach is to train a ”diffusion guider” Fθ(Ig, Ih) where Ig is the grayscale

images, and Ih are the user hint maps similar to the work of Zhang et al. [52]. F
guides the backward diffusion process of the pretrained latent diffusion model ϵθ(t, text)

to generate colorized images Ic. The diffusion guider is of a similar architecture to the

pretrained model, but having an encoded latent vectors of grayscale images and user hints

as input.

Artifacts and loss of textural and structural information may not be a huge concern

when encoding latent image-vector generated by a diffusion model, where there is no

original image to compare to. Colorization with generative models, on the other hand,

is a task where one would like to have textures and structures intact, and the generative

part only entail the color information of the image. Ih and Ig are encoded using a custom

grayscale encoder G that works with decoder E of the VAE used with the pretrained

diffusion model. By adding grayscale feature maps from the down-sampling layers of G,
into corresponding up-sampling layers of E , the authors ensured pixel-aligned colorization

of the grayscale images when decoding the de-noised latent vectors.

During training weights of ϵθ and D were frozen to reduce complexity and speed up

training. 50% of text captions of training images were removed or replaced with dummy

captions such as ”color photo” to ensure automatic colorization capabilities.

The result is a diffusion model that can colorize images based on both user pro-

vided hints, as well text prompts. Experiments showed superior performance compared

to other both semi-automatic and fully-automatic colorization solutions, including the

aforementioned Palette [37], and local-hints network by Zhang et al.[52].

23

3.2 SEM Image Colorization Solutions

Even tough SEM image colorization is mostly done as a post-processing step with general

image editing software like Photoshop and GIMP, there are some parametric and/or

commercial solutions that are tailored to the task.

Goytom et al. [10] proposed two parametric methods for colorizing SEM images.

One ”End-to-end CNN” using Encoder-Decoder architecture with a fusion layer where

outputs of a pretrained image classifier, InceptionV3 [41], are concatenated together

with the output of the decoder, based on the work of Iizuka et al. [16]. The network is

trained to predict the AB channels of grayscale SEM images, leveraging feature extraction

capabilities of the pretrained classifier. Since there were no large scale datasets of colorized

SEM images publicly available, the authors argued that features extracted with this

classifier trained on 1.2 million images from ImageNet [35] could compensate for the low

amount of available training data.

The other method dubbed ”Neural Style Transfer CNN”, uses colors from a second

input image as a reference for the colorization process. An encoder-decoder network is

trained to predict the AB values of a single reference image. After convergence the same

network is fed a grayscale SEM image. This AB output is then put through a post-

processing step where similar L channel values are assigned one AB color value from the

output, presumably some kind of averaging operation. The authors argued that it gave a

more uniform colorization of the background, though they did not provide much insight

into this process.

MountainsSEM is a commercial software solution for SEM image data analysis. Fea-

tures include 3D topography reconstruction, measurement tools and SEM image enhance-

ments by colorization. The colorization functionality is powered by a user adjustable seg-

mentation and object detection algorithm, details on the implementation are not publicly

available at this time. The user load SEM image data, and segmentation maps around

objects and structures are automatically generated. The user can click on a structure

in the image with their chosen color, and the object will be colorized as such. With

the help of the object recognition technology, the auto-colorization feature can infer the

colorization of the rest of the image, based on objects shape or size. With the highlight

option, the rest of the image will be colorized in a contrasting color to the selected object.

24

Chapter 4

Methodology

Figure 4.1: Diagram of the AB diffuser inference process. Conditional signal y consists of
the grayscale image’s ”L” channel, concatenated with optional user provided color hints.
Vector xT consisting of pure Gaussian noise is de-noised through the reverse diffusion
process until generated color data x0 is produced.

’AB Diffuser’ is a conditional probabilistic diffusion model for SEM image colorization. It

is capable of both fully automatic and semi-automatic colorization if provided with user

inputs. AB Diffuser colorizes SEM-images by generating AB color-channels in CIELAB

color space, conditioned on the grayscale images themselves with a set of optional user

provided color hints, granting them influence over the colorization process. We have also

included a simple GUI running in Jupyter Notebook, where users can load their grayscale

SEM-images, colorize them and export the results. AB-diffuser is trained to colorize SEM

images at resolution 256x256, but is capable of colorizing images of arbitrary aspect ratios

as well.

In this chapter, we will discuss our approach for colorizing SEM images with diffusion

models. We begin by describing the various components and concepts facilitating the

25

training and inference process, such as data, color space and user input generation. Then

we will take a closer look at the architecture of the training and inference pipelines, and

the U-net itself. Lastly we will present our GUI implementation, enabling user interaction

with the model.

4.1 Data

Figure 4.2: Colorized SEM images of pollen grains from our SEM dataset. The original
colorization (a) augmented with color jittering to increase the color diversity of the train-
ing data (b-d).
Source: LorDesposti, CC BY 4.0 ¡https://creativecommons.org/licenses/by/4.0¿, via
Wikimedia Commons

Multiple datasets were used to train AB diffuser. The final model was trained on Ima-

geNet ILSVRC 2012 [35], a common subset of ImageNet containing 1.2 million training

images spanned across 1000 classes. It also contains 50.000 and 100.000 images for val-

idation and testing respectively. AB diffuser is further fine-tuned on a colorized SEM

dataset we put together by combining 600 images from the colorized SEM dataset SEM-

COLORFUL1.0 by Goytom et. al [10] with 1400 images scraped from Bing and Google

using WFDownloader App [47]. Our dataset contains a total of 2000 images, where 1700

are used for training, 100 for validation and 200 for testing.

To facilitate training this model for the colorization task we use a dataloader that

converts the images from RGB to CIELAB color space, and splits the LAB channels

into grayscale L and color AB channels. During the fine-tuning process on the limited

colorized SEM data, the dataloader is configured to do data augmentation operations,

such as random cropping and flipping. Given that colorized SEM images does not have to

adhere to the relatively stricter set of semantics and priors that natural image colorization

have to follow, color jittering has proved to be a particular useful augmentation. The

user should be able to apply any color to an object or structure in the image, and color

26

jittering will aid the model in learning that by providing it a more diverse set of color

representations as seen in fig. 4.2.

All channels are also normalized to the range of [−1, 1] to ensure that the reverse

process pθ(x0:T |y) operates on consistently scaled inputs, starting from xT ∼ N (0, I). [14]

4.2 Colorspace

In contrast to Palette by Saharia et al. [37], AB diffuser operates strictly on color data.

Operating in RGB color space was a conscious design choice for Palette, it needed con-

sistency across the multiple tasks it performs. The problem with working with RGB

in colorization tasks is that it requires the model to effectively generate all the data in

the image. This poses a problem when the model is tasked with colorizing SEM images

in particular, as we would not want to risk distorting their inherent structural details.

SEM images are often utilized for precise measurements, material characterization, and

understanding micro-to-nano scale phenomena. It is therefore crucial that we preserve

the structural integrity of the underlying SEM data, and only enhance the visualization

through colorization.

AB-diffuser does this by limiting diffusion process and U-Net output to only the AB

channels like Color Diffusion [26]. To colorize a SEM image, we concatenate the generated

color data to the SEM image, whose structure is preserved within the L channel. This

is a common approach in image-to-image translation tasks, especially for colorization. [4,

15, 52].

4.3 Hint Generation

Just like using the grayscale image itself as a conditioning signal, we also use a set of user

inputs to condition the model.

Inspired by the work on point-click colorization by Zhang et al. [52], we decided to

use their approach for hint generation when training our diffusion model. For each image

in batch of data during training, the Hint Generator outputs a batch of hint masks

Bab ∈ RHxWx2, where H and W are the height and width of the image respectively. Each

hint is a uniformly drawn 1x1 to 9x9 pixel patch. The average A and B color values of

27

the ground truth image at the hint location is sampled and stored in the mask, while

maintaining the rest of the values at 0. Each mask contains n amount of hints drawn

from a geometric distribution with probability p = 1
8
, meaning that 12.5% of training

instances have no user input, to encourage the model to perform well on images without

user guidance. To reinforce that the model should replicate the colors from the user

inputs to the output, the whole AB channel of the ground truth image is copied over to

the hint mask in 1% of training instances.

Expecting that users will be more inclined to select objects and structures in the

center of the image, the hint locations in Bab are sampled from a 2D-Gaussian where

µ = 1
2
[H,W]T and Σ =

([(
H
4

)2
,
(
W
4

)2])
.

4.4 Model Architecture

The goal of this AB-diffuser is to colorize SEM images with and without user guidance,

necessitating a conditional design or a way to guide the data generation process. Since

colorization is an image-to-image translation task, the model must be able to generate

color data that comply to the underlying structure and content of the grayscale images.

While other diffusion models usually generates data that can independently be interpreted

and understood, be it image or audio-synthesis, the data generated by this model would

only become meaningful given the context of a grayscale image.

There are many ways to guide the data generation process of diffusion models towards

a desired distribution. We chose a proven approach used by the authors of Palette:

image-to-image diffusion models[37] to great effect for not only colorization, but also

other image-to-image translation tasks. By simply providing the conditioning signal as

an additional input to the U-Net, we can let the attention mechanisms and convolutional

layers learn the relationship between the grayscale images, and the input noised color

data. Achieving success with this approach for automatic colorization, we extended the

conditional signal to also include user inputs.

In this section we will present the model architecture, training and sampling pipelines

of AB-diffuser. We will also touch on our chosen noise schedule, and the reasoning behind

it.

28

4.4.1 Training Pipeline

Figure 4.3: Model input during training. y denotes the conditioning signal consisting of
the grayscale image’s ”L” channel, and simulated user hints with colors sampled from the
ground truth. xt denotes the AB color channels of the image at forward diffusion step t.
ᾱt denotes the noise schedule. ϵ denoted the noise

AB-diffuser follows the general training procedure for diffusion models as described in

Section 2.2.1, with a few differences due to the colorization task and training objective.

For every batch of colorized images, the grayscale images are converted to cieLAB color

space, and split into their lightness and color channels, L and AB respectively. Binary

hint maps are generated for each image, and the average AB color values of x0 are sampled

at the hint locations. We will refer to the AB channels as x0−T from now on. A uniformly

sampled batch of integers t ∼ U(0, T) is used to sample noise schedule ᾱt from wich we

compute the forward diffusion step to generate the noised input xt. The hint maps are

concatenated to grayscale images forming the conditioning signal y as seen in Figure 4.3.

Inputs t,xt and y is received by the U-Net vθ(xt, t, y), which outputs a tensor of shape

[b, 2, H,W] .

Recalling the simplified loss Lsimple in Equation. 2.18, where the training objec-

tive is the noise term ϵ ∼ N (0, I), training the model by minimizing Lsimple =

Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, y)∥2

]
. We use an alternative training objective v =

√
ᾱtϵ−

√
1− ᾱtx0

as described in the work of Salimans and Ho [38], minimizing ∥vt − vθ(xt, t, y)∥2. We find

29

that, experimentally, using this objective results in faster convergence and more stable

training. We discuss this further in Section 5.2.2.

To overcome the problem of having such a limited amount of colorized SEM data to

work with, training is done in two stages, a large-scale training session on 1.2 million

natural images from ImageNet, followed by a fine-tuning session on our smaller colorized

SEM dataset. The first stage ensures that we have a robust model that learns the

relationship between the generated color hints and color data, and how to apply them to

a large and diverse set of shapes, objects and structures. This would not be feasible with

our much smaller dataset of colorized SEM images alone. Details on training, fine-tuning

and hyperparameters can be found in the Implementation chapter, Section 5.2.2.

4.4.2 Sampling Pipeline

During inference, a batch of conditioning signal y consisting of the grayscale SEM images

to be colorized, and optional user provided color hints is prepared. xT is sampled from

an isotropic Gaussian distribution N (0, I).

The prepared inputs are taken through the reverse denoising diffusion process

pθ(xt−1|xt, y), by iteratively computing x̂t−1 until t = 0 giving our generated AB chan-

nels x̂0. These are concatenated to the L channel of the grayscale image to form the final

batch of colorized SEM image.

4.4.3 U-Net

At the heart of our diffusion model is our U-Net. During training, U-Net ϵθ(xt, t, y), is

tasked with predicting the noise term ϵ added to the input x0. As illustrated in Figure

4.3, the U-Net receives the conditioning signal y, and a noised input xt. The U-Net

architecture is based on the U-Net used in the original DDPM paper by Ho et al. [14],

Each down-and up sampling layers consisting of two convolution ResNet blocks, with

linear self attention at each resolution. The timestep t provides the U-Net with context

on where in the Markov chain of the diffusion process the input xt is, and is transformed

through a sinusoidal positioning embedding before being concatenated to the input of

each ResNet block.

30

4.4.4 Noise Schedule

Figure 4.4: Comparisons of noise schedules ᾱt and their effect on the forward diffusion
process.
a: The amount of noise ϵ present in xt over the forward diffusion process with linear,
cosine and sigmoid schedules
b: The amount of clean data x0 present in xt over the forward diffusion process with
linear, cosine and sigmoid schedules.
c, d, e: Forward diffusion process on an image, linear, cosine and sigmoid schedules
respectively.

Our model uses a sigmoid noise schedule as proposed by Jabri et al. [17]. A sigmoid

noise schedule was found to increase sampling quality on larger image sizes, and in our

experiments increase stability of training and validation loss during training.

Recalling from Section 2.2 that the forward diffusion process is computed as such:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ denotes the Gaussian noise term and x0 denotes clean

image data.

31

The given amount of noise applied to the AB color channels during the forward

diffusion process q(xt | x0), see Equation 2.7, is determined by a fixed variance or noise-

schedule ᾱt. As noted by Nichol et al. [27], the linear noise schedule used in the original

DDPM paper by Ho et al. [14] has a sharp drop off in the middle of the forward diffusion

process, destroying the information relatively quickly. This is illustrated in Figure 4.4 a

and c where one can see that there is no significant increase in noise applied to the image

after time step 600, and may cause difficulties for the model to learn the difference of

noise levels at those later time steps. The third alternative is the cosine schedule proposed

by Nichol et al. [27], tough similar in shape to the sigmoid schedule, we find the training

and validation loss to be more unstable than with the sigmoid schedule.

4.5 GUI

A simple GUI was deviced for users to interact with the model with the point-click

interaction. The GUI runs within Jupyter notebook, and allows users to load their

greyscale SEM image to be colorized. After selecting a color from the palette, the user

can click on the image and provide color hints to guide the colorization. The GUI has

support for multiple colorization outputs, and an export button.

32

Figure 4.5: GUI for colorizing SEM images with AB-diffuser, running within a Jupyter
notebook.
Left: Visualization of the models input, with user provided hints.
Middle: Currently selected colorization for export.
Right: Additional colorization outputs, that one can select by clicking. Image size:
312x256

When clicking the greyscale image with a selected color, they are converted to cieLAB

color space, and applied to the hint mask to create the conditioning signal y. y is then

duplicated into a batch, whose size is determited by the ”Output Count” slider, and put

trough the reverse diffusion process to generate the colorized images. By clicking on the

additional colorization outputs, the user can select which one to export.

Figure 4.5 shows a run of the model and GUI with 6 colorized outputs. One blue, one

brown, and multiple grey hints around the sphere were provided as input along with the

grayscale image.

33

Chapter 5

Implementation and Prototyping

In this section we discuss how we arrived to our solution for a diffusion based SEM

colorization model and how we implemented it. First we go into technical detail about or

data acquisition. Afterwards we go through the iterative improvements we made trough

prototyping and testing, and finally we discuss the technical details of the training process

of our final model and GUI implementation.

Note that the considerations and decisions in this chapter were taken before a recent

notable contribution to the field of diffusion-based colorization models by Liu et al. [23].

In this work, the authors detail approaches to overcome the challenges of incorporating

user inputs, and maintaining structural integrity of the colorized images in latent-space

diffusion models.

5.1 Data acquisition

Due to the limited amount of research done on the topic of colorizing SEM images, there

exist only one publicly available dataset of colorized SEM images, SEMCOLORFUL1.0 by

Goytom et. al [10]. This dataset consist of 800 images, with a 90/10 train and test split.

This set contained many duplicate images, and many of the training images were present

in the validation set. To clean up this dataset we used Imagededup [1], a python package

containing tools for finding and removing duplicate images in a dataset. By moving all

the train and test images into one folder, and running Imagededup’s perceptual hashing

algorithm, we were able to remove 200 duplicate images, leaving us with only 600 unique

images.

34

To give our model more data to learn from, we decided to utilize an image web-scraping

tool. There are a lot of tools available for this, with varying degrees of functionality and

ease of use. We decided to use WFDownloader App [47], a standalone image scraper,

which features a GUI and support for multiple search engines. Using search terms such

as ”SEM image insect colorful” and ”SEM image pollen colorized” we scraped over 3000

images from Bing and Google. Any grayscale images and files that were not in an im-

age format were removed with a python script, and the remaining images were manually

inspected to remove any non-SEM images. The last step was to combine the SEM-

COLORFUL1.0 dataset with the scraped images, and use Imagededup to remove the

remaining duplicates.

This left us with a final dataset of 2000 images, of which 1700 were used for training,

100 for validation and 200 for testing.

5.2 Prototyping

Literature on diffusion-based colorization models is limited. This was especially true for

semi-automatic colorization with diffusion models. Using our only point of reference,

Palette [37], we decided to start prototyping an automatic colorization model using their

conditional approach. Considering that we wanted our model to only operate on color

data, with a classical scheme of inputting L component, output AB components and

concatenate them, we still needed to test if this was feasible with diffusion models.

Our objectives with these prototypes where to test the feasibility of our approach of

limiting the diffusion process to the color channels in cieLAB color space, and if we could

achieve user guidance by conditioning the model on generated color hits.

We modified an implementation of DDPMs by Wang [44]. The repository contained

a Pytorch implementation of DDPMs, with support for multiple types of noise schedules,

training objectives and various other diffusion models. It also contained infrastructure

for large scale training, so modifications to appropriate the model to our conditional

architecture was relatively simple.

First we wrote a custom Pytorch dataset class that would convert images to cieLAB

color space, and separate the ”L” channel from the ”AB” channels. To ensure that

the reverse process pθ(x0:T) operates on consistently scaled inputs, starting from p(xT) ∼
N (0, I) all channels were normalized to [−1, 1] [14]. The functions related to the backward

35

and forward diffusion process q(x1:T | x0) were modified to only operate on the ”AB”

channels, until the Unet received them as input. The U-net was configured to output 2

channels, corresponding to the ”AB” channels of the color data.

5.2.1 Training the First Prototype

For the training data used the relatively lightweight ”Tiny-ImageNet” dataset, a subset

of the original ImageNet [35] consisting of 100k 64x64 natural images of 200 classes (500

images per class). The dataset was also supplemented with 1000 colorized SEM images

down scaled to 64x64, from the dataset described in Section 1.1.

At this early stage, we were interested in testing the colorization capabilities of the

model, and not how to best utilize the SEM dataset, relying on the class imbalance

introduced by the additional 1000 colorized SEM images for now. We used a dataset

for monitoring the model’s colorization outputs during training, consisting of 10k images

from Tiny-ImageNet’s validation set, and 200 images from our SEM validation set. For

logging and visualization of colorized images during training process we used Weights

and Biases [45]. Training was done on a single Nvidia RTX 3080 10gb GPU, with a batch

size of 128, Adam optimizer, and a learning rate of 1e-4 50k steps.

For this proof of concept we set the parameters and objectives to standard values

from the literature. Timesteps T was set to 1000 and training objective was the noise

term ϵt, and a cosine noise schedule.

Results

Figure 5.1: Colorization outputs from the initial prototype.
Ground truth: a-h, model outputs: i-p, image size: 64x64

36

The resulting colorization outputs looked very promising, with the model able to generate

plausible color Data for natural images, albeit with some failure cases which were espe-

cially prominent with human subjects. The Colorized SEM images were also satisfactory.

5.2.2 Support for User Inputs

After the initial prototype proved to produce satisfactory automatic colorizations, we

moved on to the second objective, adding support for user inputs. Simulation of user

inputs was done in the same manner as in the work on point-click colorization by Zhang

et al. [52]

For each image in batch of data, a binary hint mask Bab ∈ RHxWx1 is generated.

Details on the hint generation is discussed in the Methodology chapter 4.3.

The model was trained on the same dataset, learning rate, hyperparameters and

training objective as the first prototype. It was trained for 50k, with a smaller batch

size of 40 due to the extra memory requirements of the hint masks. Gradients were

accumulated for 2 steps before updating the model parameters to account for the smaller

batch size. This took approxamently 25 hours on a single Nvidia RTX 3080 10gb GPU.

37

Results

Figure 5.2: Colorization outputs during training with user hints. Ground truth: a-e,
generated hints: f-j, model outputs: k-o image size: 64x64

The resulting colorization outputs were also in line with our hopes for this prototype,

generating plausible color data for both natural and SEM images.

Evaluating the Prototype

Time constraints limited the amount of testing we could do, two noise schedules, co-

sine and sigmoid, and two training objectives, v and epsilon were considered. Three

model candidates were trained for 100k steps on the Tiny-ImageNet training set at 64x64

resolution, and evaluated on its validation set.

38

Figure 5.3: Blue: cosine noise schedule, ϵ objective. Purple: Cosine noise schedule, v
objective. Gray: Sigmoid noise schedule, v objective.

Figure 5.3 shows the loss curves for the candidates, with the sigmoid noise schedule

with v objective achieving the lowest validation and training loss.

Each model was evaluated on the validation set of Tiny-ImageNet. The models col-

orized each batch twice, with and without generated color hints, so we could evaluate

both automatic and semi-automatic performance.

Peak signal to noise ratio (PSNR) and structural similarity metric (SSIM) are two

common evaluation metrics for image colorization. They are both full-reference methods,

meaning that the colorized images are evaluated against their ground truth. SSIM eval-

uates the perceptual difference between the ground truth and colorized images based on

their differences in luminance, contrast and structural content. Higher SSIM indicates

higher perceptual similarity between the ground truth and the output, and is given by:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, − 1 ≤ SSIM ≤ 1 (5.1)

Where:

- µx and µy are the mean values of the pixel intensities in the ground truth image

and the colorized image, respectively. These terms represent the average brightness of

the two images.

- σxy is the covariance of the pixel intensities between the ground truth and colorized

images. This term quantifies how changes in pixel intensities are related across the images

and relates to the structural similarity of image pairs.

39

-σ2
x and σ2

y are the variances of the pixel intensities in the ground truth and colorized

images, analogous to contrast. C1 and C2 are constants added for numerical stability.

PSNR is closely related to MSE. It can be interpreted as the ratio between peak possi-

ble signal strength (typically 255 for an 8-bit image), and the amount of noise introduced,

in this case, by colorizing the image.

PSNR = 10log10(
MAX2

MSE
) (5.2)

The noise is measured in MSE, hence, higher values of PSNR equates to higher similarity

between the image pairs.

As these metrics are measurements of pixel-level differences between ground truth

and generated images, they will serve as an indicator on how well the model conditions

on the user hints

Metric Cosine v Sigmoid v Cosine ϵ
Automatic Colorization

MSE ↓ 0.016 0.012 0.014
PSNR ↑ 20.58 21.28 23.30
SSIM ↑ 0.90 0.89 0.87

Colorization w. User Hints
MSE ↓ 6.7e-3 6.0e-3 8.0e-3
PSNR ↑ 24.03 24.85 24.58
SSIM ↑ 0.929 0.929 0.928

Table 5.1: Evaluation metrics for model candidates.

Table 5.1 shows the resulting metrics for the candidates. Each candidate performed

similarly, with sigmoid schedule and v objective achieving marginally better results .

For colorizations with generated hints, we observed better results across all evaluation

metrics, suggesting that the hints played a role in guiding the colorizations.

To test if the prototype was utilizing the provided hints as intended we implemented

a GUI to interact with the model. The GUI was written in Python using IPyWigdet for

Jupyter notebook. The GUI allows for a user to load a grayscale image, and then click

on the image with a selected color to provide hints for the model. The hints are then

passed to the model together with the grayscale image.

40

Figure 5.4: GUI for colorizing SEM images with AB-diffuser, running within a Jupyter
notebook.
Left: Visualization of the models input, with user provided hints.
Middle: currently selected colorization for export.’
Right: additional colorization outputs, controlled by a slider. Image size: 64x64

There were no significant differences between the models when tested with the GUI,

all propagating color from the hints to the regions and structures well.

5.3 Training the Final Model

Moving over to full scale training, we decided to use an implementation of DDPMs by

Wang [44]. The repository contained a Pytorch implementation of DDPMs, with sup-

port for multiple types of noise schedules, training objectives and various other diffusion

models. It also contained infrastructure for large scale training, so modifications to ap-

propriate the model to our conditional architecture was relatively simple.

As mentioned in Section 1.1, we performed the training of AB-diffuser in two stages.

During the first stage we trained the model on the full ImageNet training set on 256x256

resolution, and an effective batch size of 64 with gradient accumulation, for 100k steps.

41

We used a learning rate of 1e-4, with ADAM optimizer. Training took approximately 60

hours.

The fine-tuning stage was done on the SEM dataset, with a batch size of 32 for 20k

steps, which took 6 hours. The data was augmented with random cropping, rotations,

flips and color-jittering. We kept the weights as they were, while reducing the learning

rate to 7e-5 to avoid over fitting on the much smaller dataset.

42

Chapter 6

Experiments and Results

In this chapter we discuss our conducted experiments, and presentqualitative results of

the performance of AB-diffuser on SEM image colorization.

Although the primary focus of this thesis i SEM image colorization, we also evalu-

ate AB-diffusers performance on natural image colorization, by comparing quantitative

results against a set of user-guided colorization models.

All experiments are conducted on a NVIDIA A100 80 GPU, and images are sampled

from 1000 diffusion steps.

6.1 SEM Image Colorization Performance

AB-diffuser was trained to colorize SEM images, with one of the aims being to enhance the

interpretability of the data presented in them. Authors will often discuss their subject’s

morphology, using symbols and/or descriptive text to communicate their findings.

In this section, we present the performance of our approach on published SEM image

results, where authors did not use color to present their findings. Since this is one of

the main reasons one would colorize SEM images, we want to assess if we can capture

the referenced features by providing AB-diffuser with color hints, or trough automatic

colorization without hints.

Afterwards, we validate our model against well established methods, by replicating

SEM images that have been colorized with tools such as MountainsSEM and Photoshop.

43

For each colorization attempt we produce 9 outputs, this lets us better review our

hint placements effect on the output, and infer how we can adjust their position and color

value to iterate towards an desirable result. For further consistency, all hints provided

are of size 9x9. Figure 6.1 depicts our setup.

Figure 6.1: Example of our GUI setup for when conducting experiments. Note the lack
of color hints, this is an automatic colorization.

A desirable result is achieved when the regions discussed in the text and image cap-

tions, or highlighted via markers and symbols are colorized in a visually appealing manner

with the intended colors we provide with hints. In addition, we perform automatic col-

orizations, where a desirable result is achieved if we deem colorization to have visually

enhanced the image, or if the colorization captures any prominent or important features.

We also measure the time it takes to complete each colorization, while counting the

attempts.

Note that during the initial experiments, the expected behaviour of the model was

to assign contrasting colors to the regions not provided with color hints. We found that

populating these areas with ”gray” hints helped the model restrict its colorization to the

desired areas. ”Gray” refers to AB values close to zero, indicating minimal color for the

model. This approach became a consistent strategy during the following experiments.

44

Figure 6.2: Rod-Like particles (orange) on Chinese handmade Lajian paper-fibers, colored
green in the automatic colorization result.
Source: Figure colorized using AB-diffuser and adapted from Luo et al. [24] (licensed
under CC BY).

Figure 6.2 from Luo et al [24] depicts rod-like particles surrounding fibers from the

Lajian fibers. Through energy-dispersive spectroscopy, authors determined that these

particles mainly contain carbon and oxygen, suggesting that they might be organic dyes.

The paper itself is described by the authors to have an ”orange-red” color, we reflect that

by coloring them orange.

Figure 6.3: SEM images depicting morphology of maize athers. Red grains have laterally
facing apertures, purple grains have their towards the central cavity. Central, immature
grains are colored green.
A and B: Longitudinal and transverse cross-section respectively, of maize athers contain-
ing pollen grains. Source: Figure is adapted from Tsou et al. [43] (licensed under CC
BY).

In Figure 6.3 from Tsou et al [43], two SEM cross-sections of maize-anthers, con-

taining pollen are presented. Here the authors have opted for symbols to point out the

45

relevant features of the image. Some mature, peripheral grains have their aperture facing

laterally, or towards the central cavity marked ”*” and ”**” respectively. The apertures

are minuscule, and may be challenging to discern for those unfamiliar with maize-pollen

anatomy, see Figure 6.4.

Central immature grains, marked with ”C”, are smaller and spherical, with a specular

appearance due to their lower content of light-scattering starch-granules. For each type

of marking we assign one color, this maintains consistency between the longitudinal and

transverse cross-sections.

Figure 6.4: Close-up on pollen apertures in Figure 6.3 B.
From left to right: Hint placements, semi-automatic colorization with hints, orignal
grayscale image, automatic colorization. Notice the red hint placed directly on an aper-
ture, the model is still able to isolate it. Source: Figure is adapted from Tsou et al. [43]
(licensed under CC BY).

Sushma et al. [40] presents an approach of tuning surface morphology of europium-

doped strontium zirconate to attain red-emitting luminescent properties by applying con-

centrated aloe vera gel to the particles. Figure 6.5 illustrates the structural changes on

the particle surface from increasing amounts of gel. In the text, the surfaces are described

growing ”hexagonal disc-like assemblies” and ”pyramidal assembly units” for Figure 6.5

A and B respectively, and we color these structures red.

46

Figure 6.5: SEM micrograph depicting changes surface morphology of europium-doped
strontium zirconate, as a result of adding increasing amounts of aloe vera gel
A 10ml AV gel, B 15ml AV gel.

Source: Figure is adapted from Sushma et al. [40], used with permission from Elsevier.

Validation In order to validate our results and compare AB-diffuser agains a base-

line, we replicate colored SEM micrographs from various published works that have been

colorized with well established tools. To confirm that none of these colorized SEM images

are present in our SEM dataset, we apply imagededup’s [1] CNN trained to detect image

duplications, followed by manual inspection of our dataset.

Figure 6.6 depicts our results against SEM images colorized with MountainsSEM, the

state of the art tool for SEM micrograph analysis and colorization. MountainsSEM has

many features lacking in AB-diffuser, who can only rely on provided hints to generate

desired results.

47

Figure 6.6: Qualitative comparison against colorization made with MountainsSEM
Source: A and B are adapted from Fernández-Colino et al. [8](licensed under CC BY);
C and D are adapted from Relucenti et al. [31, 32](licensed under CC BY);

Due to time constraints we are not able to conduct our own timed testing with Moun-

tainsSEM to properly compare the two methods. We have one, timed example of a

SEM image colorized with MountainsSEM, from their own demonstration video. Figure

6.7 displays the results. According to the video, the initial segmentation borders took

1 minute to set up, 12 minutes were spent on manually editing them, and 3 minutes

was spent on the actual colorization. The process took 15 minutes in total. We spent

one attempt each on the automatic, and semi-automatic colorization with color hints,

taking 2:58 and 3:20 minutes respectively. The model used 2:30 minutes to process the

colorizations each time.

48

Figure 6.7: Timed Comparison with MountainsSEM
Source: Figure adapted from https://youtu.be/ROZlaOkHmoo?t=81

In Figure 6.8, our results are displayed against SEM images colored with Photoshop,

a common tool for manual SEM image colorization.

Figure 6.8: Comparisons between our results and Manual colorization with Photoshop.
Source: A and B are adapted from Krantz et al. [18], used with permission from Taylor
& Francis.

Table 6.1 provides an overview of the recorded times and attempts for each colorization

method. For the semi-automatic method, which involves user guidance, the recorded time

starts when the first hint is applied, and ends when the export button is clicked. For

automatic colorization without user guidance, the timer begins upon the first click of the

”colorize” button in the GUI (See Figure 6.1). On average, the semi-automatic method

took 9:41 minutes and approximately 3 attempts for each completed colorization. With

each attempt averaging 3:31 minutes, the model required 2:30 minutes to process a batch

of 9 images. This indicates that roughly 1 minute per attempt was dedicated to user

interactions, such as selecting colors from the palette, applying hints, and reviewing the

batch of 9 colorizations.

49

Figure Semi-Automatic Automatic
Attempts Time (min:sec) Attempts Time (min:sec)

6.2 2 7:22 1 2:57
6.3 A 3 10:25 1 3:09
6.3 B 3 11:01 2 6:09
6.5 A 4 14:07 4 11:55
6.5 B 2 7:09 1 3:04
6.6 A 2 6:48 1 3:08
6.6 B 5 17:33 2 5:48
6.6 C 1 3:16 1 2:59
6.6 D 3 10:24 3 9:21
6.8 A 3 10:09 4 12:21
6.8 B 4 14:43 2 6:00
6.7 1 3:20 1 2:58
Average 2.7 9:41 1.9 5:49
Avg/Attempt - 3:31 - 3:02
Fastest: 6.6 C Slowest: 6.6 B -

Table 6.1: Time taken and number of attempts for colorization of each figure. We output
a batch of 9 images for each attempt, taking on average 2:30 minutes to process, on a
NVIDIA A100 GPU.

6.2 Natural Image Colorization Performance

To evaluate our diffusion models performance on natural image colorization, we follow

the IColoriT-protocol by Yun et al. [50], for point interactive colorization benchmarking.

We test AB-diffuser on two datasets: CUB-200-2010 [46] and Oxford 102 Flowers [28],

containing 3033 images of birds and 1020 colorful flowers respectively. Note that these

are only two out of three datasets included in the iColoriT-protocol, where the third is

ImageNet ctest10k [20].

Following this approach, hint locations are sampled uniformly, and their size are fixed

at 2x2 pixels. Hint densities are set to specific values in the range: 1, 2, 5, 10, 20, 50,

100, and 200 hints per image. PSNR is then computed for each of these hint densities to

assess the performance of the model at different amounts of provided hints.

We use the weights from the first training stage for this experiment. The model was

trained on ImageNet [35] for 100k steps with an batch size of 64.

We compare AB-diffuser’s achieved PSNR against the four-point interactive coloriza-

tion methods:

50

1. Side Window Filtering (Optimization model) by Yin et al. [49].

2. Real Time User guided Colorization by Zhang et al. [52].

3. Instance-aware Image Colorization by Su et al. [39].

4. iColoriT by Yun et al. [50].

The three deep learning based models are trained on ImageNet [35], with the same

style of interactivity for user guidance. And while they are are suitable baselines to

compare AB-diffuser against, they have been trained significantly more than we have been

able to, due to time constraints. This is reflected in the results displayed in Figure 6.9,

where AB-diffuser achieves lower PSNR than the learning-based models. As PSNR is a

measure of distance between image pairs, this lower score indicates that our generated

images are not responding to the conditioning of the hints as well as the others.

Figure 6.9: Our attained PSNR scores on CUB-200-2010 [46] and Oxford 102 Flowers [28]
datasets against base-line models.

51

Chapter 7

Discussion

In this chapter we discuss our findings in Chapter 6 and their significance. We also

address the current limitations of AB-diffusers as an tool for SEM image colorization,

followed by a discussion on possible solutions to these limitations.

7.1 SEM Image Colorization

Based on the experiments in Section 6.1 we demonstrate that AB-diffuser is able to

colorize SEM images with high precision and good visual clarity. Figures 6.2 and 6.5

shows that the user guidance system with hints allows for enough expressiveness that we

are able to the isolate morphological features, to accentuate and highlight them with our

intended color. This is a significant leap in interpretability when compared to the original

publications, where these features are described solely in the text and figure captions.

The original greyscale SEM images in Figure 6.3 are typical examples on how authors

often mark the relevant regions with gray symbols or arrows in order to point out, and

refer to their findings in the text. We are able to further accentuate these marked pollen

grains for clearer visualization, while keeping the assignment of color consistent between

different viewing angles in Figure 6.3 A and B. This consistency lets reader quickly locate

the relevant regions between figures when examining them. In Figure 6.4 we show that

the model is able to identify and isolate minuscule features, even when a color hint is

placed directly on top of it, demonstrating its ability to discern subtle features. It is

important that critical, small details like these apertures are not lost in the colorization,

as it would undermine the primary objective of aiding intepretability.

52

We also notice that the model is able to pick up on strong features and assign uni-

form colors to them automatically without providing any guidance. In Figure 6.2, the

automatic colorization distinctly highlights the fiber in green, setting it apart from the

surrounding gray particles. For the automatic colorization in Figure 6.3 A and B, we

demonstrate the models ability to identify and assign consistent colors the main regions

of the image, the pollen grains and the surrounding wall, without any user guidance.

In this experiment, the majority of automatic outputs had the grains colored red. We

suspect this may be due to the relatively high number of red-colored blood cells in our

SEM image dataset, which may be an indication of the model overfiting on the data

In Figure 6.6, we demonstrate that AB-diffuser can closely replicate colorizations

made with MountainsSEM, a frequently used tool for this task, although there are some

noticeable discrepancies. These are even more prominent in our attempt at replicating

the relatively complex SEM images in Figure 6.8, were color bleeding is apparent, and

our model struggles with isolating the various features.

As we discuss in Section 1.1, the reason why one would highlight features with color

in SEM, is that humans tend to group objects of similar colors together, this is a double

edged sword when presenting colored SEM data with imperfections. Errors such as the

ones displayed in Figure 7.1, can lead to misinterpretation of what authors intended to

convey.

53

Figure 7.1: Examples of misleading colorizations.
A1: Red highlighting of hexagonal disks bleeds over to unrelated structure, and yellow
highlighting of particles are present on unrelated cracks in the fiber.
A2: Yellow color assigned to iron sulfide, bleeding onto bacterium.
B1: Blue color assigned to cell structure covers part of the elastin material.
B2: Blue carbon is covered by yellow, and purple color bleeding over the iron sulfide.

7.2 Limitations

Impact of Inference Speed While errors such that as the ones we display in 7.1 are

to be expected with parametric methods, our GUI does not allow for any further photo

editing than applying color hints. This limits our options for error correction to repeated

running of the model, until an acceptable result is achieved, and is a limitation that is

further exacerbated by the slow inference speeds.

Table 6.6 shows that we spend on average ∼3 attempts on our semi-automatic col-

orization results, with each attempt taking 3:31 minutes. On average it takes 2:30 minutes

for the model to output 9 images with a NVIDA A100 GPU, which accounts for ∼ 70%

of the time for each attempt. Given the long waiting times for each batch to finish, we

54

are much more inclined to consider an colorization output as a ”desirable result”, even

with such errors depicted in 7.1, that can be remedied by a few additional hints. De-

spite this, in a direct comparison, we demonstrate that AB-diffuser was able to colorize

the SEM image showed in Figure 6.7 four times faster. Their software relies on manual

editing of segmentation-lines to aid the colorization process, and they reported that 12

out of 15 minutes was spent doing so. With faster inference speed, significantly more

time can be dedicated to adjust the colorizations, and as Figure 6.9 suggests, the perfor-

mance increases as more hits are given to the model. The consistency of the colorizations

between the two viewing angles in Figure 6.3 demonstrates that AB-diffuser allows for

highly specific colorizations given enough well placed hints.

Natural Image Colorization As for natural image colorization, our model’s perfor-

mance lags behind the baseline when evaluated on PSNR. A higher PSNR value indicates

that generated colorization’s have less distortion or noise compared with their ground

truth. Our lower scores suggest that our model introduce more noise or artifacts to the

colorizations, compared to the baseline models. This outcome is anticipated, given that

our training on natural images has not been nearly as extensive as the others.

For example, Instance-aware Image Colorization [39] has been trained for 9 epochs,

or ∼ 180k steps with batch size 62 on ImageNet, while also being assisted by pretrained

weights from the work of [52]. The best performer, iColorIt [50], has been trained for

2.5M steps with a batch size of 512.

Comparing a single evaluation metric is also not sufficient for a comprehensive study

on its performance on natural image colorization. There are other relevant metrics that

would be interesting to compare against a baseline such as FID [13], SSIM, and LPIPS [53]

that provide a stronger indicator on perceptual quality than PSNR. We also lack quali-

tative comparisons between the models, because evaluation metrics that aim to quantify

perceptual quality, can only indicate how good a model is performing. Time constraints

have been the largest factor for this, both in terms of the amount of training we were

able to do, and the amount of studies we were able to undertake.

Evaluating SEM colorization performance Ideally, to give have a more compre-

hensive assessment of AB-diffusers performance on SEM image colorization, conducting

an expert interview would have been beneficial, not only for this study, but also during

the development process. Lacking expertise in the field, we are only able to evaluate its

performance based on what we have learned during this thesis, and feedback from an

55

expert would give us valuable insight on specific needs and standards for SEM image

colorization, outside of our own research.

7.3 Future Improvements

In this section we discuss possible improvements to be made, and their possible implica-

tions.

Remedy For Inference Speed The slow inference speeds are typical for pixel-space

diffusion models, and is one of the main reasons the literature is moving in the direction

of latent-space diffusion models such as DALL-E2 [30] and Stable Diffusion [33]. There

are, however, methods that accelerate inference speed of pixel-space diffusion models.

Progressive distillation by Salimans et al. [38], is a method that has been shown to

drastically reduce the amount of reverse diffusion steps needed to attain visual quality.

In this approach, the output of a fully-trained teacher model, is applied as the training

target for a student model with half the diffusion steps. The process is iterative; after

convergence, the student model, becomes the teacher for the next student with even fewer

diffusion steps. This chain continues, progressively reducing the steps while retaining

most of the generative ability of the original teacher model. Using this approach, Salimans

et al. [38] were able to reduce the sampling steps in a diffusion model from 8,192 to 4,

without significant loss in perceptual quality. In the work of Meng et al. [25], a variant

of Stable Diffusion [33] was distilled from 2048 steps down to 8 steps, while retaining its

original performance.

Implementing the training infrastructure to support progressive distillation would

yield immediate positive result for our model. To strike a balance between quality and

speed, we have settled on a moderate 1000 sampling steps. With progressive distillation

we can train at a significantly higher amount of steps, and subsequently distill it down,

while retaining better generative performance than AB-diffuser has in its current state.

This would have an positive feedback loop on its usability as a tool for SEM colorization.

Faster processing times would enable users to quickly iterate and refine their color

hints based on the model’s outputs. As users see results more rapidly, they are more likely

to fine-tune their inputs, leading to better and more precise colorizations. This iterative

cycle, with immediate feedback influencing subsequent user input, would enhance the

quality, while improving the user experience and confidence in the tool.

56

Exploiting the Utility Of ”Gray” Hints As we briefly discussed in 6.1, we realized

that we could attain highlighting-effect seen in Figures 6.5 and 6.3, by thoroughly sat-

urating surrounding areas with ”gray hints”. This meant that we no longer had to rely

on applying contrasting color hints to make certain features stand out. It also remedied

problems with color bleeding, as we could simply apply more ”gray” hints to problematic

areas. As the current default value of the mask is 0, the model does not know when

hints are sampled from gray areas during training, because 0 corresponds to ”no color”

in CIELAB space.

By applying an offset to the default value by a small amount, or a number outside

the data-range, the model would be able to learn from hints sampled from these gray

areas in the training data. This could reinforce the described behaviour, streamlining the

colorization process for SEM images where only specific morphological features need to

be accentuated.

57

Chapter 8

Conclusion

In this thesis we have built and trained AB-diffusion, a conditional diffusion model for

SEM image colorization from the ground up. We have applied bleeding edge technology to

a very specific and niche task. While we have uncovered many limitation in our approach,

we have also achieved success. In this final chapter we will provide answers to our stated

research questions, by discussing our findings, results, and problems we have encountered

along the way.

Our stated aim with this thesis was to determine if we could leverage the emerging

potential of diffusion models for image colorization to aid researchers in the process of

colorizing SEM micrographs, posing the following questions:

• Can diffusion models be applied to the task of colorizing SEM images to enhance

their visual interpretability?

In our results we present multiple colorized SEM images where features that otherwise

only were referenced to or pointed out with text or symbols. We were able to isolate the

the relevant areas with color, making them stand out from the rest of the images. The

user guidance system allowed for enough expression that we were able to create consistent

color representations across viewing angles of a specimen. The automatic colorization

could for multiple instances, in as few as one attempt, isolate relevant features in color.

While these findings indicate that we are able aid interpretability of the data with our

approach, there are still certain limitations to address.

Color bleeding onto unintended structures was typical, and is a problem that we have

argued to hurt interpretability of data. This is further exacerbated by one of the main

58

limitations of our diffusion model, inference speed. As it stands, our model takes on

average 2:30 minutes to process each attempt. This had the consequence of us being

willing to accept imperfections in the colorization, to avoid having to wait another 2:30

minutes, hoping that our adjustment had the intended effect.

• Can it produce results comparable to manual colorization and solutions dedicated

to the task?

While we were able to accurately recreate many of the SEM images that were colorized

by either MountainsSem or Photoshop, utilizing the user guidance system. There were

some instances where the model struggled to accurately colorize the more complex scenes,

with major color bleeding being apparent.

There was also a lack of direct comparison between the methods, both in terms of the

colorization process itself, and time needed to colorize. It is difficult to say how much

our approach can bring to the table compared to established methods, without such an

study.

59

Bibliography

[1] Image Deduplicator (imagededup).

URL: https://github.com/idealo/imagededup.

[2] Tomer Amit, Tal Shaharbany, Eliya Nachmani, and Lior Wolf. SegDiff: Image

segmentation with diffusion probabilistic models, 2022.

[3] Hernan Carrillo, Michaël Clément, Aurélie Bugeau, and Edgar Simo-Serra. Diffusart:

Enhancing line art colorization with conditional diffusion models. In Proc. CVPRW,

pages 3485–3489, June 2023.

[4] Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep colorization. In Proc. ICCV,

pages 415–423, 2015.

[5] Ami Citri and Robert C. Malenka. Synaptic plasticity: Multiple forms, func-

tions, and mechanisms. Neuropsychopharmacology, 33(1):18–41, 2008. doi: 10.1038/

sj.npp.1301559.

[6] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 2(4):303–314, 1989. doi: 10.1007/

BF02551274.

[7] Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis.

In Proc. NeurIPS, 2021. doi: 10.48550/arXiv.2105.05233.

[8] Alicia Fernández-Colino, Frederic Wolf, Stephan Rütten, Thomas Schmitz-Rode,

José Rodŕıguez-Cabello, Stefan Jockenhoevel, and Petra Mela. Small caliber com-

pliant vascular grafts based on elastin-like recombinamers for in situ tissue en-

gineering. Frontiers in Bioengineering and Biotechnology, 7:340, 11 2019. doi:

10.3389/fbioe.2019.00340.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

60

https://github.com/idealo/imagededup

[10] Israel Goytom, Qin Wang, Tianxiang Yu, Kunjie Dai, Kris Sankaran, Xinfei Zhou,

and Dongdong Lin. Nanoscale microscopy images colorization using neural networks.

arXiv preprint arXiv:1912.07964, 2019.

[11] Sergio Guadarrama, Ryan Dahl, David Bieber, Mohammad Norouzi, Jonathon

Shlens, and Kevin Murphy. Pixcolor: Pixel recursive colorization, 2017.

[12] Heinrich Dr Herbst. Electron microscope with dark field illumination.

URL: https://patents.google.com/patent/DE764812C/en.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium, 2018.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

In Proc. NeurIPS, pages 6840–6851, 2020.

[15] Shanshan Huang, Xin Jin, Qian Jiang, and Li Liu. Deep learning for image coloriza-

tion: Current and future prospects. Engineering Applications of Artificial Intelli-

gence, 114:Article 105006, 2022. doi: 10.1016/j.engappai.2022.105006.

[16] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be color!: Joint

end-to-end learning of global and local image priors for automatic image colorization

with simultaneous classification. ACM Transactions on Graphics, 35(4):1–11, 2016.

doi: 10.1145/2897824.2925974.

[17] Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative

generation. arXiv preprint, arXiv:2212.11972, 2022. doi: 10.48550/arXiv.2212.11972.

[18] Gregory P. Krantz, Kilean Lucas, Erica L.-Wunderlich, Linh T. Hoang, Recep

Avci, Gary Siuzdak, and Matthew W. Fields. Bulk phase resource ratio alters car-

bon steel corrosion rates and endogenously produced extracellular electron trans-

fer mediators in a sulfate-reducing biofilm. Biofouling, 35(6):669–683, 2019. doi:

10.1080/08927014.2019.1646731.

[19] Manoj Kumar, Dirk Weissenborn, and Nal Kalchbrenner. Colorization transformer.

arXiv preprint arXiv:2102.04432, 2021.

[20] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representa-

tions for automatic colorization, 2017.

61

https://patents.google.com/patent/DE764812C/en

[21] Yeongseop Lee and Seongjin Lee. Automatic colorization of anime style illustrations

using a two-stage generator. Applied Sciences, 10(23):8699, 2020. doi: 10.3390/

app10238699.

[22] Hanyuan Liu, Minshan Xie, Jinbo Xing, Chengze Li, and Tien-Tsin Wong. Video

colorization with pre-trained text-to-image diffusion models, 2023.

[23] Hanyuan Liu, Jinbo Xing, Minshan Xie, Chengze Li, and Tien-Tsin Wong. Improved

diffusion-based image colorization via piggybacked models, 2023.

[24] Yanbing Luo, Jiali Chen, Cheng Yang, and Yifan Huang. Analyzing ancient chinese

handmade lajian paper exhibiting an orange-red color. Heritage Science, 7, 2019.

doi: 10.1186/s40494-019-0306-6.

[25] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon,

Jonathan Ho, and Tim Salimans. On distillation of guided diffusion models, 2023.

[26] Erwann Millon. Color-diffusion. https://github.com/ErwannMillon/Color-

diffusion, 2023. GitHub repository.

[27] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion

probabilistic models. In Proc. ICML, pages 8162–8171, 2021. doi: 10.48550/

arXiv.2102.09672.

[28] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over

a large number of classes. In Proc. icvgip, pages 722–729, 2008. doi: 10.1109/

ICVGIP.2008.47.

[29] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazu-

nari Misawa, Kensaku Mori, Steven McDonagh, Nils Y. Hammerla, Bernhard Kainz,

Ben Glocker, and Daniel Rueckert. Attention u-net: Learning where to look for the

pancreas, 2018.

[30] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hier-

archical text-conditional image generation with clip latents, 2022.

[31] Michela Relucenti, Selenia Miglietta, Gabriele Bove, Orlando Donfrancesco, Ezio

Battaglione, Pietro Familiari, Claudio Barbaranelli, Edoardo Covelli, Maurizio Bar-

bara, and Giuseppe Familiari. Sem bse 3d image analysis of human incus bone

affected by cholesteatoma ascribes to osteoclasts the bone erosion and vpsem dedx

analysis reveals new bone formation. Scanning, 2020:1–9, 2020.

URL: https://doi.org/10.1155/2020/9371516.

62

https://github.com/ErwannMillon/Color-diffusion
https://github.com/ErwannMillon/Color-diffusion
https://doi.org/10.1155/2020/9371516

[32] Michela Relucenti, Giuseppe Familiari, Orlando Donfrancesco, Maurizio Taurino,

Xiaobo Li, Rui Chen, Marco Artini, Rosanna Papa, and Laura Selan. Microscopy

methods for biofilm imaging: Focus on sem and vp-sem pros and cons. Biology, 10

(1), 2021. ISSN 2079-7737. doi: 10.3390/biology10010051.

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models. In Proc.

CVPR, pages 10684–10695, 2022. doi: 10.48550/arXiv.2112.10752.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In Proc. MICCAI, pages 234–241, 2015.

doi: 10.1007/978-3-319-24574-4 28.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

doi: 10.1007/s11263-015-0816-y.

[36] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and

Mohammad Norouzi. Image super-resolution via iterative refinement, 2021.

URL: http://arxiv.org/abs/2104.07636.

[37] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim

Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image diffu-

sion models. In Proc. SIGGRAPH, Vancouver, BC, Canada, August 2022. doi:

https://doi.org/10.1145/3528233.3530757.

[38] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion

models, 2022.

[39] Jheng-Wei Su, Hung-Kuo Chu, and Jia-Bin Huang. Instance-aware image coloriza-

tion. In Proc. CVPR, June 2020.

[40] K.C. Sushma, R.B. Basavaraj, D.P. Aarti, M.B. Madhusudana Reddy, G. Na-

garaju, M.S. Rudresha, H.M. Suresh Kumar, and K.N. Venkatachalaiah. Effi-

cient red-emitting srzro3:eu3+ phosphor superstructures for display device appli-

cations. Journal of Molecular Structure, 1283:135192, 2023. ISSN 0022-2860. doi:

https://doi.org/10.1016/j.molstruc.2023.135192.

63

http://arxiv.org/abs/2104.07636

[41] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proc. CVPR,

pages 2818–2826, 2016. doi: 10.48550/arXiv.1512.00567.

[42] Engin Tola, Vincent Lepetit, and Pascal Fua. A fast local descriptor for dense

matching. In Proc. CVPR, pages 1–8, 2008. doi: 10.1109/CVPR.2008.4587673.

[43] Chih-Hua Tsou, Ping Chin Cheng, Chiung-Maan Tseng, Hsiao-Jung Yen, Yu lan

Fu, Tien-Rong You, and David B. Walden. Anther development of maize (zea mays)

and longstamen rice (oryzalongistaminata) revealed by cryo-sem, with foci on locular

dehydration and pollen arrangement. Plant Reproduction, 28:47 – 60, 2015. doi:

10.1007/s00497-015-0257-3.

[44] Phil Wang. Denoising-diffusion-pytorch, 2020.

URL: https://github.com/lucidrains/denoising-diffusion-pytorch.

[45] Weights & Biases. Weights & biases – developer tools for ml, 2023.

URL: https://wandb.ai/site.

[46] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona.

Caltech-ucsd birds 200, 2010.

[47] WFDownloader. Wfdownloader app - free bulk image downloader and multi-purpose

bulk downloader, 2023.

URL: https://www.wfdownloader.xyz/. Accessed: 2023-08-03.

[48] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba.

Sun database: Large-scale scene recognition from abbey to zoo. In Proc. CVPR,

pages 3485–3492, 2010. doi: 10.1109/CVPR.2010.5539970.

[49] Hui Yin, Yuanhao Gong, and Guoping Qiu. Side window filtering. In Proc. CVPR,

June 2019.

[50] Jooyeol Yun, Sanghyeon Lee, Minho Park, and Jaegul Choo. icolorit: Towards

propagating local hint to the right region in interactive colorization by leveraging

vision transformer, 2022.

[51] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In

Proc. ECCV, pages 649–666, 2016. doi: 10.1007/978-3-319-46487-9 40.

[52] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe

Yu, and Alexei A. Efros. Real-time user-guided image colorization with learned

64

https://github.com/lucidrains/denoising-diffusion-pytorch
https://wandb.ai/site
https://www.wfdownloader.xyz/

deep priors. ACM Transactions on Graphics, 36(4):1–11, 2017. doi: 10.1145/

3072959.3073703.

[53] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The

unreasonable effectiveness of deep features as a perceptual metric, 2018.

65

	Introduction
	Motivation and Problem Statement
	Research Question
	Contributions
	Thesis Structure

	Theoretical Background
	Neural Networks
	Feedforward Neural Networks
	Training Neural Networks
	Activation Functions
	Convolutional Neural Networks
	U-Nets

	Denoising Diffusion Probabilistic Models
	The Diffusion Processes
	Simplified Loss
	Backward Process and Sampling

	Related Work
	Image Colorization With Convolutional Neural Networks
	Image Colorization Task
	Real-Time User-Guided Image Colorization With Learned Deep Priors
	Image Colorization With Diffusion Models

	SEM Image Colorization Solutions

	Methodology
	Data
	Colorspace
	Hint Generation
	Model Architecture
	Training Pipeline
	Sampling Pipeline
	U-Net
	Noise Schedule

	GUI

	Implementation and Prototyping
	Data acquisition
	Prototyping
	Training the First Prototype
	Support for User Inputs

	Training the Final Model

	Experiments and Results
	SEM Image Colorization Performance
	Natural Image Colorization Performance

	Discussion
	SEM Image Colorization
	Limitations
	Future Improvements

	Conclusion
	Bibliography

