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“The Pythagorean doctrine”, said Junior. “Do you think it’s a disease?”, said 

Twigson. «It sounds so scary». «No, it’s a kind of homework», said Junior. 

From Junior and Twigson by Anne-Cath. Vestly, Gyldendal Norsk Forlag, 2009. 
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Abstract 

Background: Primary sclerosing cholangitis (PSC) is an immune-associated liver 

disease of unknown aetiology characterized by cholestasis, inflammation, and 

stricturing of the biliary tree, which typically progresses to general liver fibrosis, 

cirrhosis, and end-stage liver disease. Despite its status as a rare disease, it has been 

the leading cause of liver transplantation in Norway for decades. The disease course 

is highly variable and notoriously unpredictable. The lack of established biomarkers 

to stratify risk and assess disease activity is a major hurdle to developing effective 

therapy. Hence, new biomarkers are highly warranted to improve patient selection 

and effect assessment in clinical trials. 

Aims: The objective of the present study was to further characterize biomarkers of 

prognosis in PSC and explore novel potential biomarkers. Thus, we aimed to evaluate 

the within- and between-patient variability over time in PSC for the two currently 

most promising predictive markers, the enhanced liver fibrosis test (ELF) and liver 

stiffness measurement (LSM) (Paper I). Moreover, we aimed to identify a panel of 

multiple biomarkers with improved predictive abilities in people with PSC compared 

to current clinical risk scores or single biomarkers (Paper II). Lastly, we aimed to 

study markers of mitochondrial function in PSC (Paper III). 

Methods: In Paper I, we applied a longitudinal mixed model to analyse ELF and 

LSM by point shear wave elastography in repeated measurements from a prospective 

patient panel of 113 patients from Bergen and Oslo. In Paper II, we used elastic net- 

and multivariate regression to identify a prognostic multimarker panel for PSC based 

on cross-sectional, retrospective data from a panel of 138 PSC patients from the 

NoPSC biobank. In Paper III, we performed comprehensive lipidomic analyses and 

applied spatial regression. Here we explored markers of mitochondrial function cross-

sectionally in plasma from 191 patients and 100 healthy controls and in liver tissue 

from people with PSC and non-cholestatic liver disease controls from the NoPSC 

biobank. 
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Main findings: In Paper I, we found a significant increase in ELF and LSM over 

time, which was restricted to the high-ALP group (>1.5 x upper limit of normal) in 

subgroup analysis. Five years from baseline, about 30 to 40% of patients had reduced 

LSM and ELF values. A subgroup of 10% of patients showed a concomitant decrease 

in ELF, LSM, and ALP, underscoring the need to understand and define a clinically 

significant reduction. Between-patient effects explained 78% of ELF variation and 

56% of LSM variation, suggesting that ELF may have superior reliability for risk 

stratification compared to LSM. In Paper II, we illustrated how prognostic 

biomarkers proposed in PSC seemed to form three groups of tightly intercorrelated 

variables. We demonstrated the best predictive ability in a panel consisting of 

biomarkers reflecting different aspects of PSC pathogenesis, i.e., fibrosis (ELF), 

inflammation (kynurenine-tryptophan ratio; KT-ratio), and a microbiota metabolite 

(pyridoxal 5’-phosphate; PLP). In Paper III, we demonstrated extensive differences 

in fatty acid profile in plasma from PSC patients compared to healthy controls, 

including increased mono-unsaturated fatty acids (MUFA), decreased long-chain 

saturated fatty acids (SFA), total n-3 and n-6 polyunsaturated fatty acids (PUFA). 

Moreover, our findings clearly indicated mitochondrial dysfunction as a prominent 

feature in PSC, which was more pronounced with increasing cholestasis and disease 

stage. 

 

Conclusion: Our findings underscore the need to understand the variation in 

biomarkers in PSC and establish a definition of clinically significant change. 

Furthermore, we have demonstrated the potential to improve the predictive abilities in 

PSC by combining biomarkers reflecting several pathogenic processes, warranting 

further studies in large and independent patient panels. Finally, we demonstrated 

lipidomic changes and mitochondrial dysfunction, which need further exploration to 

identify biomarkers or putative therapeutic targets. 
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Sammendrag 

Bakgrunn: Primær skleroserende kolangitt (PSC) er en immunrelatert leversykdom 

av ukjent årsak som karakteriseres av kolestase, inflammasjon og strikturer i 

galletreet og vanligvis utvikler seg til generell leverfibrose, cirrhose og endestadium 

leversykdom. Til tross for at tilstanden er sjelden, har den i flere tiår vært den 

vanligste årsaken til levertransplantasjoner i Norge. Sykdomsforløpet er høyst 

varierende og uforutsigbart. Mangelen på etablerte biomarkører til stratifisering av 

risiko og sykdomsaktivitet er det største hinderet for å utvikle effektiv behandling. 

Følgelig er nye biomarkører sterkt etterspurt for å bedre pasientseleksjon og 

effektmåling i kliniske studier. 

Mål: Målsetningen for studien var å karakterisere prognostiske biomarkører ved PSC 

og identifisere potensielle nye biomarkører. Vi har derfor vurdert variasjon over tid 

innen og mellom personer med PSC for dagens to mest lovende prediktive markører, 

«enhanced liver fibrosis test» (ELF) og leverstivhetsmålinger (LSM) (Artikkel I). I 

tillegg ønsket vi å undersøke om et panel med flere biomarkører ga bedret prediktiv 

verdi ved PSC sammenlignet med nåværende kliniske risikoscorer og enkeltmarkører 

(Artikkel II). Til slutt har vi studert markører for mitokondriefunksjon ved PSC 

(Artikkel III). 

Metoder: I Artikkel I ble det brukt en longitudinell blandet modell for å analysere 

ELF og LSM ved skjærebølge-elastografi i repeterte målinger fra et prospektivt 

pasientpanel med 113 pasienter fra Bergen og Oslo. I Artikkel II brukte vi elastisk 

nettverk og multivariat regresjon for å identifisere et prognostisk multimarkørpanel 

for PSC, basert på tverrsnittsdata fra et retrospektivt panel med 138 personer med 

PSC fra NoPSC biobank. I Artikkel III utførte vi omfattende analyser av 

lipidomsetning og anvendte romlig regresjonsanalyse. Her gjorde vi 

tverrsnittsanalyser av markører på mitokondriefunksjon i plasma fra 191 pasienter og 

100 friske kontroller, samt levervev fra personer med PSC og ikke-kolestatiske 

leversykdommer som kontrollgruppe fra NoPSC biobank. 
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Resultater: I Artikkel I fant vi en signifikant økning av ELF og LSM over tid, men 

subgruppeanalyse viste at økningen kun forekom i gruppen med høy ALP. Fem år fra 

baseline hadde ca. 30 til 40% av pasientene reduksjon i LSM og ELF. En 

undergruppe på 10% av pasientene viste samvariasjon med reduksjon i ELF, LSM og 

ALP, og understrekker behovet for bedre forståelse og definisjon av hva som utgjør 

klinisk signifikant reduksjon. Effekter mellom pasienter forklarte 78% av variasjonen 

i ELF og 56% av variasjonen i LSM, og foreslår at ELF muligens har bedre evne for 

risikostratifisering sammenlignet med LSM. I Artikkel II illustrerte vi hvordan 

prognostiske biomarkører i PSC dannet tre grupper med tett korrelerte variabler. Vi 

demonstrerte at et panel bestående av biomarkører fra ulike deler av patogenesen i 

PSC hadde den den beste prediktive evnen, det vil si fibrose (ELF), inflammasjon 

(kynurenin-tryptofan ratio; KT-ratio) og en mikrobiell metabolitt (pyridoxal 5’-fosfat; 

PLP). I Artikkel III viste vi at det er uttalte forskjeller i fettsyreprofilen i plasma ved 

PSC sammenlignet med friske kontroller, inkludert økning av enumettede fettsyrer 

(MUFA), reduksjon av langkjedete mettede fettsyrer (SFA), total n-3 og n-6 

flerumettede fettsyrer (PUFA). Funnene våre indikerte at mitokondriell dysfunksjon 

er fremtredende ved PSC og mer uttalt med økende kolestase og sykdomsstadium. 

 

Konklusjon: Våre funn understreker behovet for å forstå variasjonen i biomarkører 

ved PSC og å etablere klare definisjoner av hva som er klinisk signifikante endringer. 

Videre har vi vist at det er mulig å bedre prediksjonen ved å kombinere biomarkører 

fra ulike sykdomsprosesser ved PSC. Dette fordrer videre studier i større og 

uavhengige pasientpaneler. Til slutt har vi vist endringer i lipidomsetning og 

mitokondriefunksjon, som gir et behov for videre studier for utforsking av 

biomarkører og mulige behandlingsmål. 
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1. Introduction 

1.1 Preface 

Primary sclerosing cholangitis (PSC) is a severe, cholestatic liver disease of unknown 

aetiology, characterized by inflammatory and fibrotic strictures of the biliary tree, 

progressing to fibrotic deposits in the liver parenchyma and development of cirrhosis. 

Moreover, PSC carries a substantial risk of intra- and extrahepatic malignancies. The 

disease course is heterogeneous but generally progresses toward end-stage liver 

disease. Curative medical treatment is unavailable, rendering the transplant-free 

survival time unchanged at 13-20 years1. Since most patients are diagnosed in their 

30-40’ies, PSC significantly affects life quality, mental health, physical health, and 

life expectancy2, 3. 

Biomarkers of disease activity and prognosis are sorely needed in PSC since liver 

biochemistries like ALP and bilirubin do not reflect the disease course well, 

especially in the early progression of PSC4, 5. There is also a need to establish cut-off 

values for clinical decision-making. Promisingly, new biomarkers have been 

suggested, including blood-borne molecules and imaging biomarkers such as 

elastography. 

For patients, new biomarkers may provide better individual information about their 

prognosis. For the clinician, new biomarkers will enable tailored follow-up care and 

focus on high-risk patients. Moreover, circulatory biomarkers will provide further 

insight into the various pathogenic pathways in PSC. The slow disease progression 

seen in many PSC patients calls for replacing solid endpoints with surrogate markers. 

For the scientist, surrogate markers could facilitate clinical trials and the development 

of effective therapy6, 7. Notably, ELF and transient elastography (TE) are included in 

the current EASL (The European Association for the Study of the Liver) guidelines 

for evaluation and follow-up in PSC8. 
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1.2 Liver anatomy and physiology 

1.2.1 Anatomy of the liver and biliary tree 

The liver is organized as hepatocytes radiating from a central vein, forming portal 

triads containing venules, bile canaliculi, and arterioles. Endothelial cells cover the 

hepatocytes and the hepatic sinusoids, receiving fluid and solubles from the portal 

venous blood. The perisinusoidal space between the hepatocytes and sinusoids 

contains blood plasma and represents the site of hepatic lymph formation. Here the 

Kupffer cells and hepatic stellate cells represent an essential part of the endogenous 

immune system of the liver and the formation of connective tissue in liver fibrosis. 

The cholangiocytes extend throughout the biliary tree, creating a tight barrier through 

their connections with transmembrane proteins yet allowing the transport of solutes 

into the bile ducts. Of relevance for PSC, the biliary epithelium also lines the 

gallbladder wall9-11. 

In addition to the cellular compartment, the liver parenchyma consists of an 

extracellular matrix (ECM) consisting of the basement layer and interstitial matrix, 

providing structural support and orientation for the surrounding cells. Under normal 

conditions, collagen formation balances degradation. Collagen molecules are also 

involved in signalling processes through their affinity for growth factors12,  and 

byproducts of collagen are likely to possess paracrine effects13. The liver matrix is 

mainly formed by network-forming collagen like collagen IV and XVIII, and 

laminin. In contrast, the interstitial part is constituted by larger fibrils of collagen type 

I, III, V, and VI13. Collagen types III and V are first and foremost found around the 

portal tracts and perisinusoidal spaces14, 15.  
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Figure 1. Overview of the extracellular matrix (ECM). The ECM is situated between the 

cholangiocyte layer and the cellular stroma with hepatic cells. The ECM contains the basement layer 

and interstitial matrix. The main components of the basement membrane are network-forming 

collagens like collagen IV and glycoproteins like laminin. The fibril-forming collagens collagen III and 

V are typical for the interstitial matrix. Pro-C3 and Pro-C5 represent collagen formation related to 

collagen type III and V, while C3M and C4M arise from the degradation of type III and IV collagen. 

These byproducts are elevated from augmented fibrogenic and fibrinolytic processes, denoting 

increased collagen turnover. Created by G. Fossdal using Paint 3D (© Microsoft 2022). 

 

1.2.2 Formation of bile 

The liver and biliary system secrete around 1000 ml of bile per day, contributing to 

the degradation of ingested nutrients10. The bile consists of 95% water, with the 

remaining part balanced between organic substances and electrolytes. Degradation of 

haemoglobin yields bilirubin, accounting for approximately 0.3% of the bile’s 

constituents16.  

Bile acids represent the main disposal route for cholesterol. Through modification, 

oxidation, and conjugation, cholesterol is prepared for excretion, mainly as CDCA 

and CA (chenodeoxycholic and chenocholic acid). Bile acids undergo primary 

conjugation in the liver with the amino acids taurine and glycine, while a minor 

amount remains unconjugated. The combination of conjugated and unconjugated bile 

acids achieves different chemical properties. While conjugation is pivotal to avoid 
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precipitation of bile salts, unconjugated bile acids act as detergents and contribute to 

the antibacterial function with aid from IgA-secreting B-cells residing in the portal 

area17, 18. In addition, the cholangiocyte Cl-/HCO3- pump forms a protective layer of 

bicarbonate-rich glycocalyx on the apical cholangiocyte membrane, often called the 

bicarbonate umbrella19, 20. Findings also point towards immunological cross-talk 

between the biliary tree and gut, where bile acids stimulate regulatory T-cells in the 

large intestine, but also a direct effect of the gut microflora on the bile acid 

composition21-23. 

Several molecules are involved in bile acid transport, where TGR5 (the Takeda G 

protein-coupled receptor-5) and FXR (the farnesoid X receptor), function as 

important regulators of bile acid transport across the cell's outer membrane and 

nucleus, respectively17, 24, 25. The bile acid synthesis is also coupled to the nuclear 

receptor FXR through negative feedback mechanisms26, 27. A family of nuclear 

hormone receptors, the peroxisome proliferator-activated receptors (PPARs), is 

central to the orchestration of bile homeostasis. PPARs enhance the enzymatic 

detoxification of bile acids and protection from toxic bile acids through 

phosphatidylcholine secretion28-33. Furthermore, PPARs are involved in lipid 

metabolism and anti-inflammatory effects through the downregulation of NF-kB and 

prevent liver fibrosis from their effect on hepatic stellate cells34-36. 
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1.3 Primary sclerosing cholangitis 

1.3.1 Epidemiology and demographics 

PSC primarily affects younger adults around a median age of 35-40 years, with a 

tendency for peaking at the ages of 15 and 3537-41. There is a significant global 

variation in the occurrence of PSC, with an increasing gradient towards the Nordic 

countries41. The incidence rate is 0.4-1 in different regions of England, 1.2:100 000 in 

Sweden, to the highest reported 1.6:100 000 in Finland40, 42, 43. The prevalence ranges 

from 5.6 per 100 000 in the UK to 16.2:100 000 and 31.7:100 000 in Sweden and 

Finland, respectively41, 44. For the Norwegian population, a study from the mid-1990s 

observed an incidence rate of 1.3 per 100 000 and prevalence rates of 8.5 per 100 000 

inhabitants45. Several studies point towards an increasing incidence rate1, 42, 46, 47, but 

whether this is a de facto increase or due to improved diagnostics is unclear. 

Population-based studies have traditionally demonstrated a sex difference with 60-

65% male preponderance37-39, 48, 49. However, a few population studies, including a 

Norwegian study screening IBD patients with MRCP, revealed a substantial number 

of asymptomatic PSC patients and a relatively equal gender distribution47, 50, 51. 

At diagnosis, most patients demonstrate both intra- and extrahepatic biliary affection 

(about 65%), intrahepatic only (25-30%), or extrahepatic only (about 5%)37, 42. 

Around 10% of the patients are diagnosed with features of autoimmune hepatitis 

(AIH). The cholangiogram appears normal in about 3-10% of the patients, and the 

diagnosis is assessed histologically as small duct PSC42, 48, 52. PSC occurs 

concomitantly with IBD in around 60-80%, predominantly ulcerative colitis as seen 

in 2/3 of the patients. However, ulcerative colitis is more common among male PSC 

patients49, 53. Notably, IBD and PSC can precede each other in either sequence39, 42, 48. 

General mortality is increased by four times compared to the normal population1. 

PSC can be regarded as a precancerous condition, as approximately 20% of PSC 

patients are diagnosed with cholangiocarcinoma during their lifetime. Population-

based studies also show a 150-400 times increased lifetime risk of 
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cholangiocarcinoma (CCA) compared to the normal population1, 51 39, 54, and about 

1/3 is diagnosed within the first year after diagnosis of PSC1, 37, 49. Hepatocellular 

carcinoma occurs in 2-4% of persons with PSC54, 55. The risk of developing colorectal 

cancer (CRC) is nine times higher than the general population. Colorectal cancer also 

seems to develop two decades earlier than in patients with ulcerative colitis without 

PSC1. Whether pancreatic malignancies are increased has yet to be clarified56. 

Another frequent finding and concern are gall bladder polyps in approximately 5-

11% of the patients. Clinical studies have found that 55-60% of the gall bladder 

polyps in PSC develop into adenocarcinoma, irrespective of polyp size57-60. Up to 

3.5% of PSC patients experience gall bladder carcinomas during their lifetime58. 

Consequently, PSC surveillance recommends ultrasonographic gall bladder 

monitoring and swift referral for cholecystectomy at the presentation of a mass 

lesion, irrespective of size. 

Hepatobiliary malignancies occur more frequently with increasing age at the time of 

diagnosis. Otherwise, hepatobiliary malignancies do not seem associated with disease 

stage in PSC, as 1/3 of malignancies are recognized within the first year after primary 

diagnosis of PSC1, 49. Regarding IBD, patients with PSC and ulcerative colitis are at 

risk of a worsened outcome53. On the other hand, epidemiological data have shown 

less association with liver transplantation, death, or malignancies in small duct PSC 

and females with PSC1, 49 .  

 

1.3.2 Pathogenesis and pathophysiology 

The disease process in PSC is highly elusive but likely evolving from a combination 

of genetic susceptibility and environmental factors. The pathogenesis involves an 

intricate interaction between liver and biliary cells, endogenous immune cells of the 

liver, and extrahepatic immune cells resident in the gut and vascular system. PSC is 

believed to run from inflammation to tissue scarring, causing fibrosis of the biliary 

tree and liver parenchyma, eventually leading to end-stage liver disease or 



 22 

malignancy (Figure 1). From a broader perspective, one could ask whether these 

pathways play out linearly or in parallel mechanisms. 

In PSC, genes related to the adaptive immune response represent the majority of 

genetic alterations, such as the HLA complex involved in antigen presentation toward 

T-cells and IL-2 expression52, 61, 62. Mutations in regulators of bile acid homeostasis, 

like the plasma membrane receptor TGR563, 64  and the FUT2 gene, are also of 

interest, with potential implications for dysbiosis, gut permeability, and adhesion of 

bacteria to the biliary epithelium64, 65. Notably, one epidemiological study found 

significantly different geographical distribution among the two cholestatic diseases, 

primary biliary sclerosis (PBC) and PSC, indicating a possible interaction between 

environmental factors and genetics in susceptible individuals66. 

The composition of bile acids and gut microbiota is altered in PSC compared to 

healthy controls, regarding reduced biodiversity and increased bacterial species like 

Veillonella, Enterococcus, and Fusobacteria67. Although these bacteria might be 

elevated in other liver diseases and not disease specific for PSC, they might influence 

the pathogenesis in PSC and alter the composition of unabsorbed bile acids like the 

potentially toxic bile acid taurocholic acid68. Bile acids are strong detergents and may 

disrupt protein compounds and cell membranes69, possibly disturbing the 

mitochondrial respiratory chain, and resulting in the accumulation of reactive oxygen 

species (ROS), causing cell damage and apoptosis70. Bile acids may also be 

considered potent signalling molecules through their effect on the FXR and TGR5 

receptors, potentially initiating inflammation, as reviewed67. 

Inflammation involves intracellular proteins collectively termed the inflammasome, a 

term for molecules involved in the inflammatory response. In PSC, inflammation 

leads to activation of the Kupffer cells71-73. Secondly, cross-talk between the Kupffer 

cells and HSC stimulates the latter to transform into activated myofibroblasts, a main 

driver of fibrogenesis. The myofibroblasts gain contractile features and secrete 

excessive collagen and signalling molecules to neighbouring cells. This process 
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results in thickening of the basement membrane from deposits of type IV collagen 

and fibril-forming type I and III collagen13, 74. 

The collaboration of T-cells, neutrophils, and activated macrophages75, stimulates the 

cholangiocytes into a proinflammatory state and stimulates biliary tree stem cell 

recruitment into their microenvironment. Subsequently, this inflammatory process is 

followed by metaplasia and fibrosis, resulting in what is often described as an onion-

skin appearance and cholestasis76, 52. The bicarbonate-rich secretions from 

cholangiocytes also turn more mucinous and less protective towards bile acids76, 

potentiating further damage to the bile ducts. 

The role of inflammatory bowel disease in PSC has yet to be fully understood. 

However, one likely part of the pathogenesis involves altered expression of adherence 

molecules normally confined to the gut, alleviating hepatic recruitment of 

intraepithelial lymphocytes, and activating resident T-cells of the biliary tree75, 77. 

Dysbiosis, referring to a disadvantageous composition of gut microflora, might play a 

role in T-cell recruitment78-83. However, a recent study of adhesion molecules in 

explanted livers found gut-liver homing of T-cells as a general feature of chronic 

liver disease84. Therefore, changes in the microbial composition may not necessarily 

be disease-specific for PSC but a modifier of disease development77. 
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Figure 2. Overview of the pathogenic processes in PSC. Several genetic traits have been connected 

to susceptibility for PSC, especially variants of the human leukocyte antigen (HLA) on chromosome 

6. There is also a possible connection to environmental factors (panel 1). Activated T-cells migrate 

from the gut to the biliary tree and liver parenchyma, initiating cellular cross-talk between 

cholangiocytes, hepatic stellate cells, and immune cells, rendering their phenotypes in a 

proinflammatory and profibrotic state (panels 2 and 4). These changes disturb the bile composition 

and the protective bicarbonate layer, increasing collagen deposition (panels 3 and 5). Fibrotic 

strictures appear in the biliary tree and eventually the liver parenchyma, causing end-stage liver 

disease from cirrhosis or malignancies like cholangiocarcinoma 6). Figure by Karlsen et al. J Hepatol 

2017, reprinted with permission52. 
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1.3.3 Clinical presentation and symptoms 

The clinical course in PSC is heterogeneous, and symptoms can fluctuate throughout 

the disease course without any apparent association with disease progression in PSC. 

About 50% of the patients at diagnosis, among whom 20% develop symptoms during 

the first 6-7 years37, 42. At the time of diagnosis, the most common findings are upper 

right abdominal pain in about 25-35%37, 42 and fatigue in 35%48. Less common is 

jaundice in 20-30%, pruritus in 20-30%, fever and bacterial cholangitis in about 10-

15%, while acute or chronic cholecystitis occurs in 25%42, 48, 58. PSC patients are also 

prone to intercurrent events of flares in liver enzymes, pruritus, jaundice, and 

bacterial cholangitis caused by gallstones or biliary strictures. With advancing 

disease, PSC patients may experience decompensating events from liver cirrhosis, 

i.e., episodes of ascites, liver encephalopathy, or variceal bleeding. 

 

1.3.4 Diagnosis and liver biochemistries 

Traditionally, elevated ALP and typical findings on biliary tree imaging have formed 

the basis for diagnosing PSC. Notably, the radiologic manifestations indicating PSC 

are not pathognomonic, and other aetiologies should be excluded85. Magnetic 

resonance cholangiopancreatography (MRCP) is the modality of choice, but 

endoscopic retrograde cholangiopancreatography (ERCP) is preferred when 

endoscopic intervention is indicated. The latter poses a risk for post-ERCP 

pancreatitis in around 3,5% and biliary perforation upon cannulation in up to 0,5% of 

the patients86. The diagnosis of PSC relies on at least one of three criteria, i.e., 

elevated ALP or GGT as cholestasis markers, diagnosis of IBD, or a liver biopsy 

supportive of PSC85. However, the International PSC Study Group has recently 

proposed revised diagnostic criteria with increasing emphasis on imaging and IBD. 

Consequently, elevated ALP is no longer required for the diagnosis of PSC. Typical 

findings on the cholangiogram are strictures with or without focal dilatations of the 

biliary tree85, 87. An inconclusive MRCP with sustained clinical suspicion of PSC 

might favour ERCP for detecting stenoses. By using distal balloon occlusion and 
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contrast injection, ERCP results in higher intraluminal pressure and enhances 

visualization of stenoses8.  

The scattered distribution of PSC causes substantial sampling variability on repeated 

biopsies88-90. Thus, current guidelines recommend against liver biopsies for diagnostic 

purposes unless AIH is suspected from elevated transaminases (>5 x ULN), elevated 

IgG (>2 x ULN), or verification of small duct PSC85. Although image guidance is 

recommended for liver biopsies, there is a non-negligible risk of adverse events 

causing perforation injuries resulting in haemorrhage, haemothorax, or death. Studies 

report major bleeding episodes accompanied by blood transfusion or other clinical 

intervention among 0.3-4.6% of patients undergoing liver biopsy and death in 0.02-

0.04%91-93. 

Clinical studies report ALP elevation in 54-76% of PSC patients at the time of 

diagnosis4, 5. Still, as bilirubin, ALP tends to fluctuate over time and independently 

from the disease course. Bilirubin and albumin are often normal in blood samples 

until decompensated liver function in advanced cirrhosis. Despite the alleged 

relationship to autoimmunity, PSC has no distinctive pattern among autoantibodies. 

Elevated ANA, SMA, and pANCA are seen at varying frequencies85, 94, possibly 

related to binding distinct cellular moieties in the disease process. However, they are 

not disease-specific for PSC nor autoimmune liver disease, and their prognostic value 

is unestablished94. About 10-25% of PSC patients demonstrate serum IgG4 levels 

above normal95-97, but studies have not verified a clear association between IgG4 in 

blood and periductular deposits with disease progression96, 97. The most recent 

consensus statement recommends a threshold of 4xULN for distinguishing between 

PSC with IgG4 elevation and IgG4 cholangitis85. 

Features of autoimmune hepatitis, previously called “AIH overlap” in PSC, should be 

suspected in case of elevated aminotransferases or serum IgG1, 48, 98. AIH and PSC 

should be diagnosed independently per their respective diagnostic criteria. A liver 

biopsy with findings of at least moderate interface hepatitis is mandatory to confirm 

AIH in addition to cholangiopathy supportive of PSC85. 
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1.4 Biomarkers in PSC 

The Biomarkers, EndpointS, and other Tools (BEST) glossary define a biomarker as 

an objectively measurable characteristic related to normal biological or pathogenic 

processes, anatomic measurements, or response to therapeutic intervention99. 

Although biomarkers are commonly measured in the blood (plasma or serum), they 

might also include other measurements of molecular, histologic, radiographic, or 

physiological characteristics. Regulatory authorities such as the U.S. Food & Drug 

Administration (FDA) adhere to the BEST glossary, defining seven categories of 

biomarkers according to their purpose: susceptibility, diagnostic, monitoring, 

prognostic, prediction, pharmacodynamics, and safety.  

The lack of established biomarkers in PSC is a major unmet need for clinical follow-

up and trial design. This issue obstructs the development of effective therapy and 

adds to the disease burden among PSC patients. Hence, there is a significant focus on 

research aiming to identify and establish biomarkers for three purposes: (1) 

monitoring disease progression for individual patients to ensure personalised 

information and a possibility for ease of disease burden, (2) tailored clinical trials 

with stratified patient selection into designated prognostic risk groups, and (3) as 

surrogate endpoints in clinical trials; i.e., biomarkers associated with solid endpoints 

such as death or liver transplant or other clinical events. In this way, a measure of 

change in surrogate markers represents a substitute for the occurrence of a clinical 

event and a measure of the therapeutic effect of an intervention. However, several 

factors challenge the establishment of such biomarkers in PSC: 

(1) A protracted disease course yielding few solid endpoints in observational studies 

(2) The disease course varies largely between patients, hampering the reproducibility 

of findings across studies 

(3) Natural fluctuations in ALP, bilirubin, and symptoms, which are sometimes 

associated with intercurrent events (i.e., bacterial cholangitis, gallstones) and which 

are, at least in part, dissociated from the severity of the underlying liver disease. 
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Various histological and ERCP-based scores may predict clinical outcomes in PSC100-

102. However, given that PSC patients need long-time monitoring for years, even 

decades, repeated measurements are necessary and call for noninvasive biomarkers. 

Various noninvasive biomarkers have been identified in PSC, including imaging 

modalities and circulatory biomarkers. Regarding noninvasive imaging, various MRI- 

and MRCP-based scores and spleen length have been proposed to predict clinical 

outcomes. Presently, liver stiffness measurement assessing liver fibrosis using 

ultrasound or magnetic resonance-based elastography techniques offer promising 

results but are not validated standardization between scanner systems or towards 

surrogate biomarkers103-108. LSM from MRI is also prone to varying results in fibrosis 

depending on the size of ROI determined and general processing of algorithms and 

data generation109, 110. Biomarkers of interest in PSC are listed in Table 1. 

Before establishing a biomarker in clinical practice or trials, identifying the 

biomarker represents the first of several steps (Figure 3). The biomarker's stability, 

reliability, and accuracy need assessment to decide its analytical performance. 

Finally, validation in several independent patient panels is required to determine the 

association with clinical outcomes, preferably large and prospective panels, to avoid 

biases inherent to retrospective studies.  

 

Figure 3. Development of new biomarkers. New biomarkers are established after several steps 

starting from exploration and discovery in biological material via statistical analysis in an explorative 

and, secondly, a validation panel before implementation in practice. Created by G. Fossdal using 

Paint 3D (© Microsoft 2022). 
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1.4.1 Liver elastography in PSC 

Tissue elastography has gained a significant role in noninvasive evaluation of chronic 

liver diseases, enabling quantification of liver fibrosis with diagnostic accuracy 

comparable to histology111-113. Elastography encompasses a range of methods. Shear 

wave elastography (SWE) is preferred for liver fibrosis assessment, constituting 

transient elastography (TE), point shear wave elastography (pSWE), and 2D-SWE.  

The SWE methods differ in the way they induce and measure share waves. In TE, a 

short mechanical impulse is applied to the skin surface, inducing tiny tissue 

displacements that travel into the liver as a shear wave114. Liver stiffness is 

determined for a liver volume of 1x4 cm at a set depth without visualization of the 

parenchyma115. In pSWE and 2D-SWE, on the other hand, one or several acoustic 

impulses are deposited inside the liver region of interest (ROI) at a depth selected by 

the operator during B-mode visualization. Then, a shear wave is initiated within the 

liver, travelling perpendicularly to the acoustic beam. The generation of acoustic 

signals inside the liver makes pSWE and 2D-SWE less influenced by ascites or 

adipose tissue compared to TE114, 116. The propagation of shear waves depends on 

tissue elasticity: increasing velocities reflect increasing liver stiffness117. Results may 

be given as shear wave velocity in m/s; however, commonly, the result is expressed 

as liver stiffness in kPa, calculated from the measured velocity. 

In PSC, studies from 2006 and 2014 have demonstrated an association between TE, 

histological stage, and clinical outcome112, 118. These findings were later validated in 

independent studies, yielding international guidelines recommending TE for 

evaluating prognosis in PSC at baseline and during follow-up8. A cut-off level at 14.4 

kPa for TE was able to exclude all cases of cirrhosis with a 100% negative predictive 

value118. Furthermore, pSWE and 2D-SWE have also demonstrated good feasibility 

and low interoperator variability in PSC and a good correlation between TE, pSWE, 

and 2D-SWE platforms103, 119, 120. However, the interpretation of results should 

consider possible confounders. Cholestasis due to biliary obstruction or flares of 

acute autoimmune hepatitis is particularly relevant in PSC. In addition, alcohol-

related hepatitis, congestive cardiac hepatopathy, or recent meal intake are important 
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differential diagnoses121-123. In this regard, pSWE and 2D-SWE are advantageous 

compared to TE, as the B-mode visualization often indicates such confounders. 

However, the larger sample volume in TE could possibly favour its role considering 

the patchy disease distribution in PSC.  

 

1.4.2 Circulatory biomarkers 

Serological fibrosis markers 

Serum fibrosis markers and liver stiffness measurement are currently the most 

promising prognostic tools in PSC. Among these, the ELF test is the best validated 

and recommended for use during diagnosis and follow-up of PSC8. ELF is a patented, 

commercially available fibrosis panel based on an algorithm combining three 

important constituents of the ECM, all directly involved in fibrogenesis: hyaluronic 

acid (HA), propeptide of type III procollagen (PIIINP), and tissue inhibitor of 

metalloproteinases-1 (TIMP-1). The glycosaminoglycan HA is a significant 

component of the ECM, a potential activator of hepatic stellate cells, whereas PIIINP 

reflects an unfavourable deposition of fibril-forming collagen III. Secretion of TIMP-

1 from hepatic stellate cells inhibits the endogenous collagen-degradation from 

metalloproteinases124, 125, contributing to the unbalance towards collagen formation. 

Biochemically, ELF is therefore suited for detection of earlier stages of fibrosis124. 

ELF was developed from a cohort of approximately 1000 patients with various 

chronic liver diseases, followed by a 7-year follow-up study of over 450 of these 

patients to assess its prognostic strength.126, 127. ELF correlated well with fibrosis 

stages and was at least equal to the histological staging of fibrosis for prediction of 

liver-related outcomes127, 128, with an approximately linear relationship to the Ishak 

fibrosis stages128. Thresholds for mild, moderate, and advanced fibrosis were 

established in a mixed patient population with viral and autoimmune liver diseases at 

7.7-9.7, 9.8-11.2, >/=11.3, holding a minimum of 80% sensitivity vs. 97% specificity 

for cirrhosis for the highest threshold128. An observed increase within a threshold 
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might suggest at-risk individuals since an increment of 1 unit is found to double the 

risk of a liver-related outcome over seven years127. 

ELF is already demonstrated as a strong predictor in PSC, showing an independent 

association with transplant-free survival in two independent panels; ELF above 11.2 

demarcated a high-risk group129. The predictive ability of ELF was later validated in a 

large, international, multicentre study and in other studies 5, 95, 129-131. Repeated 

measurements of ELF have demonstrated association to clinical events both from 

baseline values and by change over time, with 9.8 as the optimal level for prediction 

of outcome and an increase of 0.19 at three months correlating to the development of 

fibrosis95. Compared to other parameters, ELF has shown less variation within 

individuals over time than ALP and a strong correlation to liver stiffness 

measurements5, 95, 129.  

However, despite the strong evidence in favour of ELF, it is conceivable that a 

biomarker may be tailored for PSC with superior predictive and monitoring 

properties. Markers of formation and degradation of collagen and other extracellular 

matrix constituents may reveal early changes in extracellular matrix turnover before 

the deposition of excessive connective tissue in the liver parenchyma. Consequently, 

several neo-epitopes from collagen formation (Pro-C3, Pro-C5) and degradation 

(C3M, C4M) have demonstrated prediction of transplant-free survival in PSC132, 133. 

In the initial stages of fibrosis, basement membrane remodelling is succeeded by 

changes in the interstitial matrix. While type III collagen represents a large proportion 

of liver collagen, collagen V accounts for the most significant increase in cirrhosis. 

Not unexpectedly, both Pro-C5 and C3M are strongly associated with clinical 

outcomes in PSC132, 134. 
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Markers of inflammation 

Inflammation is commonly found in liver biopsies in early PSC90, rendering 

inflammatory markers of high interest. In a study of an extensive array of antibodies 

in serum and bile, multivariate analyses demonstrated a list of predominantly 

inflammatory biomarkers associated with advanced PSC, most importantly 

calprotectin in bile and IL-8 in bile and serum135. 

IFN-g-driven pathways, including the kynurenine-tryptophan pathway and neopterin, 

appear ubiquitously in disease and have been linked to clinical outcomes in liver 

cirrhosis and PSC136. Analyses of bile in PSC have indeed revealed elevated IL-8 and 

calprotectin involved in neutrophil reaction and activation of monocytes and 

macrophages137, 138, in addition to the proliferation of cholangiocytes and fibrogenesis 

stimulated by IL-8. In line with these findings, livers from PSC patients contain 

increased numbers of macrophages, especially in the peribiliary areas139, 140. 

Correspondingly, monocyte- and macrophage activation markers like CD14, CD163, 

and CD206 are associated with clinical outcomes in PSC141, 142. Intriguingly, CD163 

is tied to the initiation of fibrosis143. 

Markers of metabolism and gut microbiota 

Published studies in PSC have drawn attention to the liver metabolization of 

substrates from gut microbiota80. Reduced PLP, the active form of vitamin B6, was 

reported to be associated with disease progression and transplant-free survival in 

PSC144. Not only does PLP function as a co-factor in the kynurenine-tryptophan 

pathway, but it also affects cell-mediated immunity, including the intestinal immune 

response. Another microbial metabolite processed by the liver, TMAO, has 

demonstrated association towards outcome and is proposed as a potential surrogate 

marker for advanced PSC127.  
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Markers of mitochondrial function 

A growing body of evidence has linked oxidative stress and mitochondrial 

dysfunction to liver diseases of various aetiologies, including primary biliary 

cholangitis (PBC)145. Published studies on bile-duct ligation in mice have linked 

cholestasis to mitochondrial dysfunction through direct inhibition of the 

mitochondrial electron transport chain70, 146-148. Various parameters related to 

mitochondrial function show different expressions in PSC, including upregulation of 

the methylation-controlled J-protein (MCJ) involved in the electron transport chain70, 

149. These findings suggest a putative role of mitochondrial dysfunction in PSC. We 

have assessed a wide range of metabolites, including free fatty acids, cholesterol, and 

triglycerides to main groups of fatty acids, enzymes relating to fatty acid conversion, 

and molecules aiding the fatty acid transport chain across the mitochondrial 

membrane. The free fatty acids range from short-chained, via medium and long-

chained to very long-chained fatty acids, the latter involving the peroxisomal 

function. We have also investigated adjacent nicotinamide (NAD) formation 

pathways from amino acid metabolism. The inverse association of the kynurenine-

tryptophan ratio to clinical outcome in PSC further supports this role since the 

kynurenine-tryptophan-nicotinamide pathway supplies the electron transport chain 

with NAD+136. However, up to date, no markers of mitochondrial function have been 

proposed as biomarkers of disease activity or prognosis in PSC.  

 

1.4.3 Ideal properties of a robust biomarker 

In general, the ideal biomarker needs to fulfill several considerations: 

(1) Reliability. The repeatability is crucial, i.e., fluctuation of a biomarker should 

reflect a shift in disease activity or stage. A low coefficient of variation (CV) 

indicates high reliability for biochemical biomarkers, i.e., a low total variation 

due to well-controlled preanalytical and analytical factors and low biological 

variation within subjects150.  
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(2) Validity. The biomarker should reflect the biological phenomenon studied 

(e.g., biliary inflammation or liver fibrosis) and correlate with the disease 

severity or stage, reflected in measurements of high predictive power. Hence, 

we want high sensitivity to detect true positive cases, high specificity to 

identify true negative cases, and high values of area under the receiver 

operator characteristics curve (AUROC).  

(3) Availability. A biomarker should be accessible, affordable, and independent of 

the examinator’s experience. 

(4) Safety. This point is crucial for repeated measurements in a surveillance 

setting, such as in the clinical follow-up of patients with PSC. 

The ideal predictive biomarker in PSC should be closely related to disease 

progression independent of flares. A biomarker also needs strong predictability 

toward clinical outcomes. Prognostication calls for high sensitivity towards early 

disease progression to enable personal adjustment of patient surveillance. The 

liver biochemistries currently used to monitor liver disease, i.e., bilirubin and 

albumin, reflect rather later stages of PSC-related liver disease. This also goes for 

the Mayo risk score, which largely relies on these parameters, in addition to AST, 

age, and episodes of variceal bleeding. Although ALP has demonstrated an 

association with clinical outcome, studies have failed to reproduce a distinct cut-

off value across different cohorts98, 151-153, and it’s a tendency to normalize 

spontaneously over time5, 153. Therefore, elevation of ALP is difficult to interpret 

for clinical decision-making in PSC and an unreliable endpoint in clinical 

intervention studies. In summary, the ideal biomarker in PSC should be 

noninvasive, reliable for detecting early disease progression, yet closely related to 

clinical outcomes. 

 

1.5 Aims of the thesis 

The overall aim of this project was to further investigate proposed biomarkers of 

prognosis in PSC concerning their variability over time and the potential benefit of 
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combining biomarkers into a prognostic panel, as well as to explore novel potential 

biomarkers related to mitochondrial function. 

1. To investigate the development over time for ELF and LSM compared to 

ALP. 

2. To explore whether a multi-marker panel reflecting several pathways involved 

in PSC pathogenesis could improve predictive value towards clinical outcome 

compared to single biomarkers or clinical risk scores. 

3. To characterize changes in the lipidomic profile and mitochondrial function in 

PSC. 

  



 37 

2. Methods 

2.1 Study design and patient selection 

2.1.1 Paper I 

A total of 113 patients with large-duct PSC, including eight subjects with features of 

AIH, were recruited prospectively from 2013-2018 from the two study centres in 

Bergen and Oslo. The patients were followed with annual study visits to collect liver 

biochemistries, ELF, and liver stiffness measurements.  

 

Figure 4. We recruited a total of 113 patients from study start, of which 65 were followed over five 

years. 

 

2.1.2 Paper II 

In this study, we cross-sectionally examined 138 patients included from 2008-2012 

and retrieved retrospectively from the NoPSC biobank at Oslo University Hospital 

Rikshospitalet.  
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2.1.3 Paper III 

In this retrospective cross-sectional study, we compared a population of 191 patients 

with large-duct PSC to 100 healthy controls, included in 2008-2015. Patients with 

PSC were retrieved from the NoPSC biobank at Oslo University Hospital, 

Rikshospitalet.  

 

2.2 Biomarkers 

ELF was analysed in studies I and II using the Siemens ELF®Test on an ADVIA 

Centaur XP analyser (Siemens Medical Solutions Inc., Tarrytown, NY, USA), 

according to a published algorithm = 2.278 + 0.851 ln(CHA) + 0.751 ln(CPIIINP) + 

0.394 ln(CTIMP-1). Liver stiffness measurements in paper I were measured in the 

fasting state using point shear wave elastography (pSWE); for the Bergen cohort 

using an ElastPQ® Philips iU22 (Philips Healthcare, Andover, MA, USA) scanner 

(software version 6.3.2.2, convex C5-1 probe) and for the Oslo cohort using Siemens 

Acuson S3000 (Siemens Medical Solutions USA, Inc., Malvern, PA). 

In paper II we collected data regarding serological biomarkers of inflammation, 

fibrosis, and gut metabolites from the data sets of several previously published 

studies. Validated competitive ELISA (Nordic Bioscience, Herlev, Denmark) was 

used for analyses of collagen formation, i.e., PRO-C3 and PRO-C5, for collagen type 

III and V 133, 154, collagen degradation, i.e., C3M and C4M for collagen III and IV 

(C3M, C4M), and proteoglycan biglycan (BGM)155-157. Anti-GP2 IgA was analysed 

by immunofluorescence (IIF) (Euroimmun, Germany). 

IL-8 and calprotectin were analysed by ELISA kits (R&D Systems Minneapolis, MN, 

US and Calprolab, Calpro, Lysaker, Norway). Soluble CD163 and CD206 were 

analysed by an in-house sandwich ELISA technique as described158, 159. 

Concentrations of neopterin, kynurenine, tryptophan, PLP160, 161, and TMAO were 

assessed by liquid-chromatography-tandem mass spectrometry (LC/MS/MS) with 

calibration curves prepared from isotope-labelled internal standards (Cambridge 



 39 

Isotope Laboratories Inc. ®, Andover, MA, USA). The KT-ratio was calculated from 

100*kynurenine: tryptophan (μmol: μmol). 

Lipidomic analyses in paper III was carried out by ultrafast gas chromatography 

(UFGC). Plasma and liver samples were analysed for fatty acids, including saturated 

fatty acids (SFA), mono-unsaturated fatty acids (MUFA), polyunsaturated fatty acids 

(PUFA), cholesterol, and triglycerides, as well as enzymes involved in fatty acid 

turnover. Furthermore, using a platform offered by Bevital A/S (Bergen, Norway), 

we examined the levels of carnitine metabolites, whereas markers of the kynurenine-

tryptophan-NAD pathway were analysed as part of a previous study. Clinical indices 

were calculated from established algorithms, i.e., the anti-inflammatory index162, 

atherogenic and thrombogenic indexes163. Liver biopsies were collected from 

explanted livers from the NoPSC biobank for a total of 49 patients diagnosed with 

autoimmune hepatitis (AIH; n=11), alcohol-related liver disease (ARLD; n=9), and 

primary sclerosing cholangitis (PSC; n=25). 

Liver biochemistries and clinical data were retrieved from the NoPSC retrospective 

database (papers II, III) or the prospective database of the National network for 

autoimmune liver diseases (III). For risk stratification according to advanced PSC, we 

used Mayo risk score in papers I-III and Amsterdam-Oxford prognostic model for 

PSC in papers I-II, calculated from their respective published algorithms164, 165. 

 

2.3 Statistics 

Statistical analyses were conducted in SPSS version 26 (SPSS Inc., 2016, Armonk, 

NY), STATA 16 (StataCorp. 2019, Stata Statistical Software: Release 16.1. College 

Station, Tx: StataCorp LP) for all analyses. Correlation networks and heatmap were 

generated in the qgraph package and “pheatmap” packages in R (R Core Team 

(2017). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria). Endpoints were defined as all-cause death or 

liver transplantation for primary endpoints. Secondary endpoints were either death or 
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liver transplantation due to end-stage liver disease or the development of 

cholangiocarcinoma. All variables were run through normality tests with the Shapiro-

Wilk test and Q-Q-plot. Mann-Whitney U test, Student’s t-test, Chi-squared test, 

Kruskal-Wallis, and ANOVA tests were applied as appropriate. Bivariate correlations 

were tested by Spearman or Pearson correlation. 

Cut-offs for high vs. low levels of selected variables were defined by tertiles or 

Youden’s index from receiver operating characteristics. High-risk patient groups 

were defined as previous studies in PSC with ELF ≥9.8 as cut-off for severe 

fibrosis128, 129, and ALP ≥1.5 x ULN5, 85, 95, 98. For liver stiffness with pSWE, we used 

1.28 m/s (4.9 kPa) for differentiation between mild and advanced liver fibrosis (F0-2 

vs. F3-4)103, 118. Odds ratios were analysed with logistic regression. We used a linear 

mixed model with an unstructured covariance structure for repeated measurements. 

All variables were established on the same scale from assessing the z-scores by 

standardizing the predictor and outcome variables to a mean of zero with a standard 

deviation of one. Intraclass correlation coefficients were estimated in the linear mixed 

model, and a decomposed mixed model analysis yielded associations between 

parameters over time. Liver transplantation-free survival was computed from Kaplan-

Meier plots and log-rank tests. Regression analyses were performed as univariate and 

multivariate Cox regression and Elastic net regression analysis. 

 

2.3.1 Statistical considerations 

Our studies aimed to estimate change and fluctuation in biomarkers over time as an 

expression of disease development and use for prognostication. We have also 

explored biomarkers and combinations of biomarkers as predictors of patient 

outcomes. We have therefore sought statistical methods capable of finding 

associations between different types of data, including possible unknown factors that 

could influence our findings, i.e., confounding effects. Overall, statistical methods 

handling such questions are termed regression analysis, and the methods applied here 

will be further presented in this chapter. 
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Approach to longitudinal analyses 

We used the longitudinal mixed model as our statistical model to estimate the 

magnitude of change over time since it offers analytical strength toward biological 

variation and upholds statistical power sufficient for the number of participants in our 

study. Since our model was comparing biochemical parameters with different units, 

such as elastography measured in velocity, the variables were standardized to the 

same scale to make the effect sizes comparable. This was done by standardizing to z-

scores, i.e., standardizing a variable to a mean of zero with a standard deviation of 

one: Mean = 0 and SD = 1. The resulting z-score represents the magnitude of change, 

with negative values representing a decrease and positive values an increase in effect 

size.  

The mixed model is calculated from predictors, representing the means of the 

observed effects, i.e., the fixed effects, and an estimation of the unobserved 

parameters, i.e., random effects166. The mixed model also accounts for fluctuation 

within individuals as residual variance167. Notably, the residuals are the only variables 

where a normal distribution is required. Biological variation is approached by 

assuming a random distribution among the variables at baseline, i.e., a random 

intercept, and analysing each individual’s parameters as a trajectory over time. In this 

way, each individual functions as their reference, which is a logical approach in 

biology where severe disease is more likely to continue as such than spontaneous 

recovery. 

The effect of time is assessed by handling time as a continuous variable among the 

predictor variables. This makes us able to study the effect of time on the data and 

adjust for any deviation in the time interval between our annual study visits. Variation 

is assessed from the perspective of  

A) between-person or interindividual variation representing variation at a single 

time point and, therefore, invariant of time 

B) within-person or interindividual variation as variation across several time 

points 
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Estimating variation over time demands a minimum number of time points in a study. 

With two time points, every case will give a perfect linear fit. In comparison, three 

time points or more will enable variation over time. The intraindividual and 

interindividual variation in our mixed model was estimated from the intraclass 

correlation (ICC)168. As a rule of thumb, high ICC represents a lower degree of 

variation between the variables, favouring risk stratification. A lower ICC may favour 

identifying individual changes over time, i.e., prognostication. 

We also ran a decomposed longitudinal mixed model to examine whether the 

variables fluctuated independently or showed concordant fluctuation between 

variables. This model can point towards common mechanisms behind a simultaneous 

rise and fall in parameters. 

 

Correlation, collinearity, and the correlation network 

The biomarker panels in studies I and II yielded many highly correlated variables. 

Consequently, we expanded our analyses with a graphical correlation plot to assess 

and visualize the correlation between pairs and groups of variables. This method is a 

common approach for correlation analysis in large datasets169, 170. We then selected 

the final predictors from multivariate regression analysis. In general, variables with 

high degree of correlation will cause collinearity in regression models as a biased 

effect and reduce the analytical power by increasing standard errors and potentially 

affecting the p-values171-173. A correlation coefficient above 0.5 suggests a hazard of 

collinearity. The term multicollinearity describes possible collinearity among three or 

more variables, but not necessarily high correlation coefficients173. 

Correlation represents the linear relationship between two parameters173, yielding a 

coefficient between -1 and 1, where values closer to the extremities reflect a strong 

relationship. In contrast to the term correlation assessing the relationship between two 

variables, regression addresses their association. In linear regression, this is 

accomplished by introducing an error (e) representing the unknown residuals (Figure 
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5) as a measurement for unknown factors causing deviation in a vertical distance for 

each data point from the perfect straight line. 

 

Figure 5. Principle of the linear regression analysis. A straight line is calculated from 

y = ax + b, (…), representing a relationship between two variables. The fitted black 

line (y) is calculated from the data points or observations (green dots). The residuals 

represent the deviation in a vertical distance for each data point from the perfect 

straight line173. Created by G. Fossdal using Paint (© Microsoft 2022). 

A high degree of correlation can be expected when implementing biomarkers 

covering the same pathologic processes, i.e., collagen III-formation reflected through 

Pro-C3 but also a part of ELF. Secondly, high correlation can occur in the case of 

closely connected pathways, for instance, inflammatory biomarkers and the IFN-g-

driven kynurenine-tryptophan pathway. Graphical correlation plots can suggest 

possibly related pathways as a hypothesis for further study. 

These analyses arrange the output in circles (vertices) and connecting lines (edges)174, 

175. The connecting lines are termed partial correlation coefficients and represent the 

linear relationships between two respective variables but also adjust for potential 

confounding effects among the variables. The confounder effect is estimated by 

removing one variable at a time and analysing the remaining variables through 

regression analyses. The thickness of the lines represents the strength of the 

relationships between two variables. Absent lines represent either very weak or no 

relationship detected170, 176. 
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Figure 6. The Gaussian graph model explained: GGM = (V, E), representing vertices 

(circles) and edges (lines). The vertices are represented by the circles 1, 2, 3, 4, and 

5, whereas the edges are represented by each line (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), 

(4, 5). The lines are calculated as a bivariate correlation adjusted for the contributing 

effect from the residuals of the remaining variables. Illustration by Guri Fossdal 

using Paint (© Microsoft 2022), adapted from Besteman 2017177. 

We have applied a variant of this network, the Gaussian Graph Model (GGM), which 

is widely accessible in statistical software packages and visually easy to interpret 

(Figure 6). The term Gauss refers to the assumption of normal distribution among the 

data173. There are few restrictions in the GGM analysis, which is suitable for studying 

large datasets and new combinations of variables and suiting well for our purposes170, 

175. Since large data sets can result in large networks, the GGM offers a technique to 

remove the connecting lines from the smallest partial correlation coefficients in the 

model. The GGM analysis, therefore, represents an approximation but benefits the 

visualization of patterns. This is done by the glasso algorithm; a variant of lasso 

regression for graphical network analyses, by forcing the smallest coefficients to 

zero178. The threshold for omitting an edge in the network can be adjusted in the 

statistic software. Lack of edges might also be an effect of low sample size and lack 

of power. Indeed, false negative relationships (lacking line) might occur, giving rise 

to a type II error by falsely rejecting a null hypothesis173. Therefore, the lack of edges 

does not necessarily exclude the possibility of a relationship between variables175. In 

addition, the network pattern gives us an impression of clustered variables with 

possible latent covariation and promotes a central arrangement of the strongest 

variable as reviewed175, which in Figure 6 would correspond to node number 3. 
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Machine learning and regression analysis 

In paper II, we estimated the strongest predictors among our biomarkers from 

multivariate regression analysis. The various multivariate analyses apply different 

techniques for handling collinearity and multicollinearity. Notably, no model is 

perfect for any dataset or situation173. We considered lasso and ridge regression and 

the elastic net model. In general, lasso regression selects variables, omitting the ones 

with the highest correlation, and might be the most robust model in case of fewer 

predictors in a dataset173, 179. However, the lasso regression might be unspecific when 

variables are rejected from the analysis180. Ridge regression handles all variables in 

the analysis and might perform better than lasso in the case of many predictors and 

high correlation179, 180. 

Elastic network regression combines lasso and ridge regression techniques to handle 

collinearity by variable selection and conservation of groups of variables that 

contribute to a meaningful data structure181, 182. The elastic network model is also 

more robust in handling collinearity than ridge regression but does not fully 

compensate for these effects and can generate false-positive predictors183. The elastic 

network performs better than lasso in large samples with many predictors180, 184 and 

has informally been compared to a “fishing net” that retains "all the big fish”, i.e., the 

strongest predictors180. After running a training analysis, we performed cross-

validation to assess which regression analysis achieved the smallest test error, i.e., the 

best fitting of the model to the dataset. In overfitting, the model will be too eager to 

follow minor errors or ”noise”, thereby reducing the model's accuracy173. 
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Figure 7. Fitting of a model on training data in machine learning. To the left, few data points are 

included in the model, resulting in less sensitivity for analysing validation data. The opposite, 

overfitting, also results in a less accurate model from a surplus of data points, causing “noise” in the 

model. The right panel demonstrates a balanced fit. Illustration by Guri Fossdal using Paint (© 

Microsoft 2022), adapted from James 2021173. 

 

Spatial regression analysis 

Paper III examined a wide range of parameters, covering single substances, ratios of 

substances between fatty acids and carnitines, and groups of fatty acids. We pursued 

to investigate the fatty acid composition in patients with elevated vs. normal bilirubin. 

We, therefore, sought to find clusters of variables according to phenotype PSC or HC 

and elevated vs. normal bilirubin in our dataset, i.e., natural groupings of 

observations from their spatial arrangement among our data. The underlying thought 

is that observations within proximity could be more associated with each other by 

shared confounding factors than distant observations. The Ward.D linkage method is 

a multivariate regression analysis commonly used to address observations' spatial 

arrangement and their dependent factors. The scattering of observations is estimated 

from their distance from the mean value, i.e., the sum of squares, yielding a hierarchy 

of clusters185. Since the fatty acids comprised single and groups of fatty acids, we first 

standardized the variables to the same scale by z-score.  
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2.4 Ethical considerations 

The patients were provided with oral and written information, and written consent 

was retrieved from all subjects ahead of inclusion. The study visits were conducted as 

annual follow-up visits as part of clinical follow-up; however, blood sampling 

included additional tubes for biobanking. This may have caused minimal discomfort. 

The studies were in accordance with the Declaration of Helsinki. The study of paper I 

was approved by the Regional committees for medical and health research ethics of 

Western and South-Eastern Norway (reference 2012/2214/REK VEST and 

2008/8670, respectively). Study II was approved by the regional committee for 

research ethics in South-Eastern Norway (reference 2011/13381). Study III was 

approved by the regional committees for research ethics in South-Eastern 

(13381/REK South-Eastern B) and Western Norway (2018/1425/REK Vest). 
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3. Summary of results 

3.1 Paper I 

The main objective was to explore the development and variation of ELF, 

elastography, and ALP in 113 people with PSC over time. Median (IQR) baseline 

values were ELF 9.3 (1.34), LSM 1.26 m/s (0.52), and ALP 151.5 U/l (197). We 

noted a percentage of 56, 37, and 50 patients belonging to high-risk groups defined as 

ALP ≥1.5 xULN, ELF ≥9.8, and LSM ≥1.28 m/s. The median observation time was 

4.5 years, and 78 patients (69%) had ≥3 study visits. 

We found a significant increase in both ELF and LSM over time, 0.06 SD per year, 

95% CI [0.03, 0.20], p=0.005 and 0.07 SD per year, 95% CI [0.02, 0.13], p=0.009, 

but only in the subgroup of patients with elevated ALP ≥1.5 xULN at baseline. We 

also found a significant increase for ALP with 0.04 SD per year (95% CI [0.01, 0.07], 

p=0.011, and bilirubin 0.07 SD per year (95% CI [0.02, 0.12], p=0.007). 

The intraclass correlation coefficient (ICC) was 0.86 for ALP, 95% CI [0.82, 0.89], 

p=0.011, 0.78 for ELF, 95% CI [0.72, 0.83], p=0.005, and 0.56 for LSM, 95% CI 

[0.47, 0.65], p=0.009. Hence, 78% of the variation for ELF was accounted for by the 

between-person variation, while between-person and within-person variation 

contributed fairly equally for LSM. 

When testing ELF and LSM against liver biochemistries and clinical risk scores 

(Paper I, Table 3), ELF demonstrated a stronger association than LSM towards liver 

biochemistries, except for bilirubin: sFE(ALP) 0.47ELF, 0.28LSM, sFE(albumin) -

0.39ELF, -0.35LSM, sFE(bilirubin) 0.20ELF, 0.29LSM. ELF was also more strongly 

associated with the clinical risk scores, i.e., Mayo risk score (sFE 0.48ELF vs. 0.37LSM) 

and FIB-4 (sFE 0.56ELF vs. 0.42LSM), p<0.001 for all parameters. Furthermore, we 

found concurrent fluctuations between ELF and ALP, with sFE 0.15, 95% CI [0.11, 

0.18], p<0.001 (Paper I, Table 4). 
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A subset of patients with elevated ELF, LSM, and ALP at baseline experienced 

spontaneous normalization over time. One year into the study, 44.7, 42.7, and 13% 

had normalized ELF, LSM, and ALP, respectively. The subgroup with baseline ALP 

≥1.5 xULN accounted for all cases with a ≥40% spontaneous reduction in ALP. 

About 10% of the patients experienced a concomitant reduction in ELF, LSM, and 

ALP at one or more follow-up visits. We registered UDCA treatment at any time 

among 35% of the patients. Notably, only 25% of the patients on treatment with 

UDCA experienced a reduction in all three parameters (Paper I, Supplementary 

Table 3). 

 

3.2 Paper II 

This study aimed at identifying a panel of multiple biomarkers with increased 

prognostic capacity toward clinical outcomes. From an exploratory panel of 138 

patients, we assessed a range of serological biomarkers already documented as 

predictors of outcome in PSC, comprising pathways ranging from fibrosis, 

inflammation, and metabolites from gut microbiota. With various statistical analyses, 

we wanted to 1) explore their prognostic capacity towards outcome as single markers 

and 2) identify a final panel of selected biomarkers with increased prognostic 

capacity. 

Correlation analysis examining bivariate and network associations revealed a high 

correlation between ELF, Pro-C3, Pro-C5, C4M, C3M, CD163, and Mayo risk score 

(Paper II, Figure 1-2). Importantly, KTR and neopterin formed a separate group in 

the network, implying a strong association between these parameters, albeit 

independent from the remaining markers. 

In addition, we conducted a univariate Cox regression analysis to establish the c-

indices for the various biomarkers. Secondly, machine learning in an elastic network 

analysis selected six biomarkers that all had achieved a c-score at or above 0.65 from 

the univariate analysis as the set of biomarkers that collectively captured risk best. 



 50 

Cross-validation in a multivariate regression analysis yielded a final panel consisting 

of ELF, KTR, and PLP, reflecting different pathways of fibrosis, inflammation, and 

metabolism. This combination increased the predictive capacity by 4%, as determined 

by Harrel’s C score, compared to a panel of ALP and Mayo risk scores (Paper II, 

Table 4-5). 

 

3.3 Paper III 

Multiple studies have shown an association between mitochondrial dysfunction and 

various liver diseases, including cholestatic liver diseases186-189. This prompted us to 

characterize markers of mitochondrial function in PSC. Our group has previously 

shown that an elevated kynurenine-tryptophan ratio was associated with clinical 

outcomes in PSC136, suggesting that mitochondrial dysfunction may contribute to the 

pathogenesis. Therefore, we wanted to investigate circulatory and liver-resident 

metabolites directly reflecting mitochondrial function using mass spectroscopy 

profiling of fatty acids, carnitine, and acylcarnitines. We also studied metabolites in 

the kynurenine-tryptophan-nicotinamide (Trp-Kyn-NAD) pathway as a separate 

pathway of mitochondrial NAD+ generation from amino acid metabolization. The 

study material consisted of plasma from 190 non-transplant patients with large-duct 

PSC and 100 healthy controls enrolled in the National Bone Marrow Donor Registry. 

Liver specimens from 46 patients were divided into 1) PSC (n=24) and 2) non-

cholestatic liver disease (n=18), i.e., AIH, ARLD.  

Hierarchical clustering showed altered fatty acid profiles in PSC patient plasma 

compared to healthy controls, especially increased levels of palmitate (C16:0), C18-

derived fatty acids, and higher levels of monounsaturated fatty acids (MUFAs) but 

reduced long-chain saturated fatty acids (SFAs) and polyunsaturated fatty acids 

(PUFAs). PSC patients with cholestasis had the most pronounced changes. Changes 

in liver tissue were less pronounced but in line with findings from plasma. 

Furthermore, PSC patient plasma demonstrated reduced NAD+ synthesis.  Overall, 
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our findings clearly indicated mitochondrial dysfunction in PSC, which was more 

pronounced in cholestasis. 
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4. Discussion 

4.1 Fibrosis markers in a longitudinal perspective 

4.1.1 Methodological considerations 

 

Patient panels 

We recruited patients fulfilling the criteria of large-duct PSC or PSC with features of 

autoimmune hepatitis (AIH) prospectively in our two study centres. Since one of the 

centres (Oslo University Hospital, Rikshospitalet) is a tertiary centre (the national 

liver transplant centre), and the other offers non-tertiary patient care, this might 

introduce selection bias among patients. However, we found no significant baseline 

differences in liver biochemistries, ELF, or LSM (Paper I, Table 1).  

 

Biochemical parameters including enhanced liver fibrosis test 

9.8, and 11.1 in a mixed panel of liver disease190. ELF functions as a combined 

marker reflecting increased collagen turnover, where we have used a cut-off value of 

9.8 for the subanalysis of high-risk patients. This threshold has demonstrated the best 

ability to discriminate between moderate and severe degrees of fibrosis, with a 

reported 76% sensitivity and 87% specificity in a mixed population of liver 

diseases128, corresponding well to our goal of detecting early disease progression. In 

our study on ELF in PSC129, Youden test from our derivation and validation panels 

yielded an optimal cut-off value of 11.1 and 11.2, with sensitivity/specificity 

67.0/82.7 and sensitivity/specificity 72.3/82.4, respectively. This cut-off determined 

the ability to discriminate between patients with or without the endpoints death or 

liver transplantation. 

In contrast, longitudinal data showed the optimal baseline threshold for ELF in 

detecting clinical events like disease progression was 9.8, yielding sensitivity and 
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specificity of 68% and 67%95. We therefore adhered to 9.8 as the desired cut-off 

value for ELF as a marker of early disease progression. Notably, ELF is reported to 

be significantly higher in males and increases with age, but demographic data were 

not evaluated further in our analyses190. 

 

Liver stiffness measurements 

We performed liver stiffness measurements using two different pSWE platforms for 

the respective cohorts, i.e., ElastPQ Philips iu22 in the Bergen cohort and Siemens 

Acuson S3000 for Oslo. Since we followed the respective cohorts by their designated 

platform during the study and non-parametric testing (Mann-Whitney) found no 

statistical difference (p=0.39) in the measurements between the two cohorts, we 

accepted pooling of the data. Also, there were no significant differences regarding 

liver biochemistries or clinical severity scores, such as the Mayo risk score. 

Our study protocol accounted for several factors of possible confounders for liver 

stiffness. Firstly, the patients were examined after at least three hours of fasting, as 

meal ingestion causes increased portal flow and liver stiffness191, 192. Cholestasis is 

another potential bias in liver stiffness measurements193, but we only found bilirubin 

>30 μmol/L in six of our 113 patients The patients underwent clinical examination 

and serological screening prior to inclusion to rule out differential diagnoses like viral 

hepatitis. 

We used pSWE in our studies as this was the only available platform at our center at 

the start of the study. Although Fibroscan (TE) is the best-validated elastography 

platform in PSC112, 118, pSWE has demonstrated an excellent intraclass correlation 

coefficient (ICC) compared to TE103 and correlates well with histopathology in 

PSC194. When comparing pSWE with TE using histology as the reference standard, 

pSWE shows comparable results toward TE in differentiating lower and higher 

degrees of fibrosis195-197, supporting the use of pSWE in our patient material. 
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Elastography measures the speed of propagation of share waves in the tissue. Results 

are given either as the measured shear wave velocity (SWV) in m/s or as stiffness in 

kPa, calculated from a mathematical algorithm. Fibroscan (TE) reports the results 

converted into kPa, whereas we adhered to m/s as the established unit for the 

platforms used in our studies. Since the conversion to kPa involves simplification 

with several assumptions regarding tissue properties, velocity expressed in m/s is 

considered a more direct measurement198. 

The patchy disease distribution in PSC necessitates a sufficient number of measure 

sites in the liver. A study of liver stiffness in patients with primary biliary cirrhosis 

(PBC), which has an uneven distribution in the liver, like PSC, revealed significant 

variation in portal inflammation. They also found a relationship between fibrosis and 

parenchymal heterogeneity199. 

For transient elastography, the variability measurement interquartile range/median 

(IQR/M) is recommended below 30% by the European Federation of Societies for 

Ultrasound in Medicine and Biology (EFSUMB)198. A variability criterion for the 

secondary elastography modalities still needs to be validated, but the EFSUMB 

guidelines have extended the IQR/M measurement to apply for secondary 

elastography. Other variability measures based on the mean-based measurements, 

like the standard deviation (SD) and CV (SD/mean), have been proposed in ARFI and 

2D-SWE, respectively194, 200, 201.  

 

4.1.2 Development of ELF and LSM over time 

Our longitudinal mixed model revealed a small but significant increase in both ELF 

and LSM over five years and a more significant increase in LSM than ELF (Paper I, 

Table 2). These findings are in line with previous longitudinal studies of liver 

stiffness and ELF in PSC5, 95, 118. We also detected increased bilirubin and ALP 

during the study, possibly reflecting disease progression in our cohort during this 

five-year period. The subgroup defined as high-risk patients with ALP ≥1.5 xULN 

had elevated ELF and LSM as of baseline. Interestingly, a post hoc analysis could 
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only identify an increase in ELF and LSM among the patients with baseline ALP 

≥1.5 xULN, supporting this cut-off value to identify at-risk patients. Regarding 

fluctuations between our fibrosis markers ELF and LSM vs. liver biochemistries, i.e., 

ALP and bilirubin, we found concomitant fluctuations between ELF and ALP 

(p<0.001**) (Paper I, Table 4). Hence, the fluctuations in ELF in our material seem 

associated with the ongoing changes in the biliary tree.  

The changes in LSM in the ALP ≥1.5 xULN subgroup point toward previous 

studies95, 118. The study by Corpechot also did a subanalysis of LSM changes over 

time according to fibrosis stage and found a significant increase in fibrosis stages F2-

F4 but not F0-1. A variant of the longitudinal mixed model allows for the 

decomposition of associations between parameters over time, testing whether 

fluctuations in parameters occur independently or as concurrent fluctuations. 

Fluctuation over time is well-known in PSC for liver biochemistries like bilirubin and 

ALP52, but whether this coincides as part of a flare or disease progression is, to our 

knowledge, not previously described. 

 

4.1.3 Risk stratification and prognostication between individuals 

In paper I, we found a high ICC value in ELF compared to LSM, 0.78 vs. 0.56, 

respectively. The higher ICC favour ELF for stratification between individuals at a 

single time point. ALP yielded an even higher ICC of 0.86, and the decomposed 

mixed model demonstrated concurrent fluctuations between ELF and ALP. These 

findings might imply similar underlying mechanisms for these parameters. 

Contrarily, ELF demonstrated a superior correlation between other biomarkers and 

clinical scores compared to ALP (Paper I, Figure 1). Despite the fact that ALP 

achieved a high ICC value, the existing literature is in evident disfavour of this 

parameter for prognostication and risk stratification due to its inconsistent regarding 

cut-off values and propensity for spontaneous normalization5, 151, 202, 203. Clearly, any 

value of ICC must be interpreted in a broader context. 
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We deduce that ELF has the strongest ability to identify at-risk individuals at a single 

time point. Although a lower ICC may imply a better ability for prognostication, we 

suspect that the lower ICC for LSM comes from a higher degree of sampling 

variability and interobserver variation due to variations in the fasting state, probe 

pressure, and patchy disease distribution. In order to draw firm conclusions about the 

best prognostic tool, a larger patient material with a sufficient number of solid 

endpoints would be mandatory for clinical outcome analyses. 

 

4.1.4 Spontaneous normalization of parameters 

Since endoscopic and pharmacological intervention can influence LSM and ELF204, 

205, we sought to establish any possible treatment influence on our material. 

Regarding UDCA, one in three patients (n=39) received treatment on at least one 

study visit. The low number of patients receiving UDCA did not provide enough 

power for subgroup analysis per study year. However, we reran the mixed model with 

UDCA as a categorical variable, defined as UDCA treatment at any time point during 

study (Table 2, unpublished data). We found that patients who received UDCA had 

higher levels of biomarkers at baseline but also a smaller increment over time than 

UDCA naïve patients. Although there were insufficient data to perform multivariate 

analyses adjusted for the biomarker*treatment interaction, we believe that the 

elevated levels of baseline values were due to confounding factors since UDCA, 

according to Norwegian clinical practice, is not routinely prescribed in PSC, except 

for symptomatic treatment of pruritus. 

 



 57 

 

Furthermore, we have evaluated UDCA usage among the patients who experienced 

either a solitary decline in ALP ≥40% or a concomitant reduction in ELF, LSM, and 

ALP. Out of 113 patients, we observed a reduction in ALP ≥40% in 15 patients, 

seven of whom had received UDCA at any time point during study time, and eight 

did not. We found a reduction in all three parameters in 24 of 113 patients, but only 

six of these had received UDCA during the study. 

Only six patients underwent ERCP with endoscopic interventions (i.e., balloon 

dilatation or stent placement), totaling ten endoscopic procedures during the study 

period (Table 3, unpublished data). Hence, further subgroup analyses were not 

applicable, but the data revealed no apparent effect on either ELF or LSM assessed 

after these procedures. Time from endoscopic intervention to collection of all three 

parameters, ELF, ALP, and LSM, ranged from 4-35 weeks, with a median of 11.5 

weeks. We found a reduction in ALP after three procedures, while only two 

procedures yielded a decrease in ELF or LSM.  Notably, LSM reduction did not 

coincide with reduced ELF or ALP. In conclusion, although our study was not 

designed to evaluate treatment effects over time and further statistical analyses were 
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futile due to inadequate statistical power, we could not decipher a causative effect 

from UDCA or endoscopic treatment. 

 

4.1.5 ELF and concomitant bowel disease 

Most of our patients (75.2%) were diagnosed with IBD at the time, which calls for 

attention to whether bowel inflammation and fibrosis could affect circulatory 

biomarkers. A literature search in PubMed did not retrieve clinical studies on the ELF 

test among IBD patients. Notably, hyaluronic acid, one of the three components of 

the ELF analysis, has been found as colonic deposits and demonstrated an association 

with inflammation in IBD as reviewed206, 207. Although we did not register IBD 

activity in our data material, bivariate regression analysis revealed no association 

between IBD status and ELF level ± 9.8 (p>0.100) (unpublished data). 

 

4.2 Establishment of a multimarker panel 

We explored a large panel of single biomarkers from a cross-sectional dataset to 

establish a panel of combined biomarkers with increased predictive power. High 

correlation and multicollinearity challenged multivariate analyses and were 

approached by network mapping of correlations and elastic network Cox regression 

analysis. 
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4.2.1 Establishment of relationships among biomarkers in a correlation 

network 

From our Gaussian graph model, we extracted three main points (Paper II, Figure 2), 

1) a strong correlation between several biomarkers, 2) independent groups of 

biomarkers from their internal relationship, and 3) a central placement of ELF among 

the predictors examined. 

 

Figure 7. Gaussian graph model. Our analysis found three main groups of biomarkers with higher 

internal relationships. As anticipated, ELF and Pro-C3 are strongly related due to a partially common 

pathway through collagen III formation. Importantly, KT-ratio and neopterin represented highly 

related variables unrelated to the remaining material. (Green lines positive relationship, red lines 

negative relationship). 

Abbreviations: AGP2, anti-glycoprotein 2-IgA; ALP, alkaline phosphatase; BGM, biglycan 

degradation; C3M, C4M, degradation of type III and IV collagen; CALP, calprotectin; CD163, CD206, 

cluster of differentiation 163 and 206; ELF, enhanced liver fibrosis; IL-8, interleukin-8; KTR, 

kynurenine/ tryptophan-ratio; NEOPT, neopterin; PLP, pyridoxal 5’-phosphate; PR3, PR5, PRO-C3 

and PRO-C5, type III and V collagen formation; TMAO, trimethylamine-N-oxide. 
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We found strong relationships between ELF and Pro-C3, as expected since both Pro-

C3 and, in part, ELF measure the collagen III level and collagen III formation, 

respectively. Our results also indicate ELF as a strong predictor by its central 

placement. However, caution should be drawn to this conclusion, as minor 

differences in the input of variables in this model can alter the placement of nodes175. 

Further analyses could have helped to shed further light on this conclusion, like 

comparing AUC values from AUROC analysis, Harrel’s C scores from univariate 

Cox regression analysis, and multivariate regression. Perhaps more interestingly, we 

found a strong relationship between KT-ratio and neopterin, yet, independent from 

the remaining network suggesting a pathway separate from the remaining variables in 

line with the above argument. From this, we hypothesize that parallel pathways 

contribute to the pathogenesis in PSC and might imply a broader approach for 

establishing treatment targets. Single fibrosis markers of the basement membrane and 

interstitial matrix of the ECM seem strongly related, i.e., C4M, Pro-C3, C3M, and 

Pro-C5. 

Interestingly, the inflammatory marker IL-8 was weakly related to the remaining 

variables. One possible explanation might be that inflammatory markers represent an 

earlier disease stage in PSC than fibrosis markers, resulting in a weaker association 

with clinical outcomes for inflammatory markers. Although more advanced statistical 

methods are needed to evaluate our parameters further, one might speculate that the 

GGM analysis considers fibrosis markers as stronger predictors than inflammatory 

markers.  

 

4.2.2 A proposed multimarker panel in PSC 

Our final model suggested a prognostic panel including ELF, PLP, KT-ratio, Pro-C3, 

and C4M with improved predictive capacity. The final panel consisted of a 

combination of biomarkers from different pathways with less association towards 

each other, resulting in gained robustness toward multicollinearity. Multicollinearity 

was especially pronounced between ELF, Pro-C3, and CD163 and might have 
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obscured the findings of our final model. The strong correlation between ELF and 

CD163 might result from common pathways within fibrogenesis, where CD163 is 

known to be involved in the stimulation of hepatic stellate cells from macrophages143. 

Increased CD163 could also represent a response to altered haemodynamic from 

portal hypertension208-210. 

By machine learning, Pro-C3 and CD163 were left out of our elastic network model, 

but still, high correlations between ELF and Mayo risk score challenged our model. 

Therefore, our final model omitted the Mayo risk score, supported by the composition 

of the Mayo risk score related to later stages of liver disease from variables like 

variceal bleeding, bilirubin, AST, and albumin. On the other hand, ELF relies on 

components believed to reflect fibrosis development. Hence, this marker should be 

more likely to reflect early PSC. Indeed, current guidelines recommend ELF for the 

evaluation and follow-up of PSC patients8. 

Consequently, our results suggest a multimarker panel in PSC but necessitate further 

research with validation studies. However, we believe that correlation networks and 

advanced regression analyses represent promising tools for studying combined 

biomarkers as clinical predictors. 

 

4.3 Alterations in liver metabolism in PSC 

Many liver diseases display signs of mitochondrial dysfunction, such as non-alcohol-

related fatty liver disease (NAFLD), acute-on-chronic liver failure (ACLF), liver 

fibrosis, and PBC145, 189, 211-213. Therefore, we wanted to explore indirect markers of 

mitochondrial function in PSC, including fatty acid profiles, to elucidate whether 

mitochondrial dysfunction was present in PSC. 
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4.3.1 Fatty acid and lipid alterations in PSC 

In paper III, we studied fatty acid profiles in PSC, especially regarding mitochondrial 

lipid metabolism. We demonstrated important alterations of the plasma fatty acid 

profiles in PSC. Using hierarchical cluster analysis of plasma fatty acid profiles, we 

found two large clusters of patients which separated quite well, one consisting of all 

healthy controls and PSC patients with bilirubin levels within the normal range and 

one containing PSC patients with elevated bilirubin (Paper III, Figure 1C). Overall, 

the differences were most prominent in the PSC subgroup with cholestasis. 

Our studies in plasma showed significant changes among palmitate C16 and stearate 

C18 fatty acids, reflected by several single fatty acids and increased enzymatic 

activities of stearoyl CoA desaturases (SCD-16 and -18, i.e., D9 desaturase C16:0 and 

C18:0 enzymes) (Paper III, Figure 2C, Supplementary Table 1). This finding 

corresponds to the increased levels of MUFA in people with PSC since these two 

enzymes stimulate conversion from C16:0 and C18:0 into especially C16:1 n-7 

[POA, palmitoleic acid] and C18:1 n-9 oleic acid (Paper III, Figure 2B) as 

reviewed214.  

Palmitate C16:0 also serves as a substrate for elongation into fatty acids of longer 

chain length, such as C18:2n-6 [LA, linolenic acid]215. We found increased 

lipogenesis estimated by the C16:0/C18:2n-6 ratio (Paper III, Figure 2C). Together 

with increased MUFA, these findings indicate increased endogenous biosynthesis in 

PSC. Our findings of reduced long-chain saturated fatty acids (SFAs) (Paper III, 

Figure 1B, and 2A-B, Supplementary Table 1) are in line with increased activity of 

SCD enzymes, as they use SFA for substrates in MUFA synthesis216.  

Fatty acid transport between the peroxisomes and mitochondria is provided by either 

the carnitine transport shuttle or transmembrane proteins for free fatty acids217-220. 

Indeed, carnitine represents the main mechanism for mitochondrial C16 fatty acid 

transportation221. In addition to carnitine levels, we measured carnitine ratios as they 

reflect the intramitochondrial amounts of carnitines221. We found increased levels of 

the long-chained palmitoylcarnitine C16, reflected by a reduced C2/C16 ratio (Paper 
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III, Figure 4A), supporting increased turnover of C16 fatty acids. The alterations in 

C16 and C18 lipids agree with previous smaller studies in PSC and PBC222, 223. Since 

most liver metabolites were not significantly different between PSC and non-

cholestatic liver diseases, our findings could represent more general metabolic 

changes in liver disease than cholestasis per se. 

Fatty acid synthesis is in counterbalance with fatty acid oxidation, i.e., the first step 

yields malonyl-CoA, thereby inhibiting the beta oxidation215. Nonetheless, we found 

reduced short odd-chain carnitines, indicating increased oxidation of short odd-chain 

fatty acids. Therefore, intermediates of fatty acid b-oxidation and the end-product 

acetyl-CoA could have contributed to elucidating the activity from fatty acid b-

oxidation in our study. 

Another aspect of fatty acids is their potentially damaging effect from the 

accumulation of metabolites, possibly linking lipid alterations directly to the 

pathogenesis in PSC. Indeed, studies in vitro have shown palmitate-induced 

inflammation via the toll-like receptor (TLR4) stimulation, NF-kb-related pathways, 

and macrophage activation via CD163224, 225. Intriguingly for PSC, studies have 

linked palmitate to intestinal permeability226, 227. Thus, altered metabolism of C16 

fatty acids could contribute to a self-propagating state of inflammation, emphasized 

by the reduction in anti-inflammatory fatty acids among n-3 and n-6 PUFAs. Indeed, 

supplements with PUFA have ameliorated lipotoxic effects in NAFLD and 

demonstrated ALP-reduction in PSC. Referring to the increase in palmitoleic acid 

C16:1 n-7, especially seen in cholestatic PSC patients (Paper III, Figure 3B), the 

inflammatory role of C16 fatty acids appears more nuanced as POA has demonstrated 

beneficial effects in vivo on inflammation via PPARg228, suggesting different effects 

for the various transcription factors of the PPAR family. In this regard, disruption of 

the palmitate metabolism embraces several known pathways involved in PSC and 

warrants further studies on the role of C16 fatty acid metabolism in PSC. 

Total n-3 and n-6 PUFA were reduced in people with PSC, even if some n-6 PUFA 

were elevated. The reduction in C18:3n-3 [ALA, a-linolenic acid] and linolenic acid 



 64 

C18:2n-6 can explain the reduction in total n-3 and n-6 PUFAs, as they represent the 

most abundant n-3 and n-6 PUFAs, respectively, and are precursors for the longer 

chained PUFAs229. Our findings of altered SFAs, MUFAs, and PUFAs differ from a 

small study including twenty patients with PSC230 but are in line with reports of 

elevated MUFAs in viral and alcoholic liver disease and NAFLD231. In general, n-3 

PUFAs and n-6 PUFAs are considered to possess anti- and proinflammatory 

effects229. Reduced levels of these two main groups of PUFAs are also found in liver 

cirrhosis of various etiologies and might play a role in the fibrogenic process232, 233. 

Furthermore, the reduction in ALA in PSC patients might disadvantage the 

composition of the mitochondrial membranes, as ALA represents a major fatty acid 

and structural component. ALA also serves as a stabilizer for enzymes of the 

respiratory chain, a protective substrate from oxidative stress on the endoplasmic 

reticulum, and prevention of apoptosis in hepatocytes234. 

Analysis of the fatty acid pattern from explanted liver tissue in PSC formed two 

clusters according to bilirubin levels but less prominent than in plasma (Paper III, 

Figure 2 vs. Figure 3). However, the number of liver samples with PSC was 

relatively low (n=24) and might have obscured the analysis. This analysis yielded 

important information but is not directly comparable to our plasma studies since liver 

tissue from non-cholestatic liver diseases will also be subjected to metabolic 

alterations compared to plasma samples from healthy controls. 

 

4.3.2 Peroxisomal function in PSC 

The peroxisomes serve a myriad of functions (Figure 8) and deserve consideration in 

metabolic studies as providers of 

1) Complementary fatty acid oxidation to mitochondrial fatty acid oxidation 

2) De novo lipogenesis of very-long chain fatty acids 

3) Providers of cholesterol and bile acid conjugation 



 65 

Ad 1) the peroxisomes serve b-oxidation of very-long chained (>C20) and branched 

fatty acids into shorter chain lengths/chain-shortened fatty acids for further b-

oxidation in the mitochondria, as well as b-oxidation of bile acid intermediates219. In 

contrast to the mitochondrial b-oxidation that runs to completion yielding ATP, H2O, 

and CO2, the peroxisomal b-oxidation results in H2O2 (hydrogen peroxide) and heat 

production but represents an integral and indispensable role in fatty acid turnover. In 

our material, we found reduced levels of propionylcarnitine C3 and valerylcarnitine 

C5 (Paper III, Figure 4A), handling short the transport of short odd-chain carnitines 

independent of the carnitine shuttle as for all carnitines of chain-length <C14215. 

Resultingly, degradation of odd-chain fatty acids does not seem hampered in people 

with PSC. 

Ad 2) the peroxisomes are also the site of de novo synthesis of very-long-chain fatty 

acids from shorter fatty acid intermediates. We did not find a significant reduction in 

C22:6n-3 [DHA; docosahexaenoic acid] in plasma among people with PSC (Paper 

III, Supplementary Table 1). DHA has previously been shown as an essential 

peroxisomal substrate and is provided either from the diet or de novo synthesis from 

alpha-linolenic acid235. The peroxisomes handle the final steps to DHA formation 

before DHA is transferred to the endoplasmic reticulum for synthesis into compounds 

like phospholipids for incorporation in cellular structures236. On the other hand, very-

long chained SFAs and n-3 PUFAs were reduced in PSC patient plasma, while very-

long chained MUFAs and n-6 PUFAs were increased (Paper III, Figure 1C, 2A-B, 

Supplementary Table 1). Hence, the fatty acid profile regarding DHA and very-long 

chained fatty acids (VLCFAs) are somewhat ambiguous, and further studies on 

lipogenesis in PSC needed to clarify whether this is due to altered peroxisomal 

function or other parts of their synthetic pathways. 

Ad 3) cholesterol levels in plasma did not differ between PSC and HC in our study 

(Paper III, Figure 1, Supplementary Table I). Bile acids are elevated in PSC due to 

biliary obstruction230, 237, but bile acid synthesis is reduced in advanced PSC237. Our 

findings do not allow us to conclude regarding altered peroxisomal function in PSC.  
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Figure 8. Mitochondrial and peroxisomal main functions illustrated with a simplified overview of 

the metabolic processes in the liver. The endoplasmic reticulum (ER), with its proximity to the 

nucleus, is the site of cholesterol synthesis and provides the peroxisomes with substrates like long-

chain fatty acids and bile acids, but also antioxidative mechanisms that counterbalance the 

production of reactive oxygen species from peroxisomal b-oxidation. While the mitochondria 

provide b-oxidation of short, medium, and long-chained fatty acids, the peroxisomal b-oxidation is 

necessary for shortening very-long chained and branched fatty acids for further metabolization in 

the mitochondria. Notably, peroxisomal b-oxygenation relies on shuttling of NAD+ from the 

mitochondria219, which is provided from amino acid metabolization through the kynurenine-

tryptophan-nicotinamide pathway, b-oxidation of fatty acids or the tricarboxylic acid cycle (the 

latter not shown). The peroxisomal b-oxidation yields hydrogen peroxide (H2O2) and heat but not 

energy production in the form of adenosine triphosphate (ATP) like mitochondrial b-oxygenation. 

Transportation of fatty acids ≥14C across the mitochondrial membrane depends on carnitine. The 

first step requires binding of an acyl group (CoA) for diffusion through the outer membrane, where 

the fatty acids are converted to acyl-carnitines by the carnitine palmitoyltransferase 1 (CPT1). The 

carnitine acyltransferase translocase (CACT) provides transport across the mitochondrial inner 

membrane in exchange for free carnitine215, 220. Acyl-carnitines are transformed to free carnitine 

and acyl-CoA by the carnitine palmitoyltransferase 2 (CPT2) before acyl-CoA enters the b-

oxygenation pathway or TCA cycle220. Peroxisomes are also the site of bile acid conjugation from 

cholesterol substrates. 
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Abbreviations: ECT: electron transport chain; ER: endoplasmic reticulum; BA: bile acid; CACT: 

carnitine-acylcarnitine translocase; CoA: coenzyme A, CPT1 and 2: carnitine palmitoyltransferase 1 

and 2; FA: fatty acid; IDO: indoleamine 2,3-dioxygenase; KMO: kynurenine 3-monooxygenase; KTN-

pathway: kynurenine-tryptophan pathway; LCFA: long-chain fatty acid; MCFA: medium-chain fatty 

acid; NAD: nicotinamide adenine dinucleotide; NADH: nicotinamide adenine dinucleotide in 

reduced form; ROS: reactive oxygen species; SCFA: short-chain fatty acid; TDO: tryptophan 2,3-

dioxygenase; VLCFA: very-long chained fatty acid. Created by G. Fossdal using Paint 3D (© Microsoft 

2022) 

 

4.3.3 Increased tryptophan clearance and impaired NAM formation in 

PSC 

The kynurenine-tryptophan pathway leads to synthesis of adenine dinucleotide 

(NAD+) via 3-hydroxykynurenine (HK) and quinolinic acid. NAD is metabolised 

from NAM, and fuels the electron transport chain in mitochondrial fatty acid 

oxidation (Figure 9)238. Our data revealed overall changes in intermediates of this 

pathway with a significant reduction of NAM (Paper III, Figure 4B), indicating 

reduced mitochondrial b-oxidation of fatty acids. Low NAD levels have previously 

shown effect on triglyceride levels by elevating triglyceride levels from 

posttranslational modification239, possibly connecting our finding of diminished NAD 

to triglyceridemia in PSC with cholestasis (Paper III, Supplementary Table I). 

In addition to the reduced amount of NAD available for the electron transport chain 

and peroxisomal b-oxidation219, downstream metabolites of the kynurenine pathway 

also possess a direct inflammatory effect from stimulation of immune cells like 

neutrophils, monocytes, and NK T-cells240-243. Inflammatory mediators like TNF-a 

also represent a direct, negative effect on ATP-synthesis of the respiratory chain244. 

Taken together, altered amino acid metabolism might be a possible inflammatory 

driver in PSC. 
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Figure 9. Overview of the kynurenine-tryptophan pathway. Tryptophan conversion through the 

KT-pathway and the first rate-limiting step via either one of the enzymes tryptophan 2,3-

dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the latter of which we suspect is 

upregulated in PSC and resulting in an increased kynurenine-tryptophan ratio (KTR). We also found 

increased quinolinic acid, an intermediate with potential cytotoxic effects241. Adapted from 

Badawi245. 

Abbreviations: ACMSD: -amino- -carboxymuconate- -semialdehyde decarboxylase; AMO: 

aminocarboxymuconatesemialdehyde decarboxylase; AMS: 2-aminomuconic-6-semialdehyde; 

HAAO: hydroxyanthranilic acid 3,4-dioxygenase; IDO: indoleamine 2,3-dioxygenase; KA: Kynurenic 

acid; KAT: kynurenine aminotransferase; KMO: kynurenine 3-monooxygenase; KYNU: kynureninase; 

QPRT: quinolinate phosphoribosyl transferase, Pic: picolinic acid; TDO: tryptophan 2,3-dioxygenase, 

Trp: tryptophan; XA: xanthurenic acid. 

 

4.3.4 Metabolic alterations and possible new biomarkers in PSC 

Our study demonstrated multiple associations between PSC, cholestasis, and 

metabolites, including lipids and NAD-related metabolites, pointing towards altered 

mitochondrial function in PSC. We found increased lipogenesis in MUFA, C16, and 

C18, with increased transportation and endogenic synthesis of palmitate and stearate 

fatty esters. Lipogenesis inhibits fatty acid beta-oxidation. Indeed, we found low 
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NAD for fuelling the electron transport chain. As discussed above, n-3 and n-6 fatty 

acids were reduced, adding to the variety of metabolic alterations that might be 

implicated in the inflammatory and fibrotic processes in PSC. 

However, the study design did not allow us to conclude regarding the causality of 

metabolic changes vs. pathological processes, nor whether the changes reflect 

disease-driving mechanisms or merely an adaption in homeostasis to a disrupted 

physiological state. Pending future metabolic studies in PSC and giving the vast 

functions of the mitochondria, one could suggest describing these changes as 

mitochondrial alterations rather than dysfunction246. 

 

4.4 Strengths and limitations 

overcoming the scarcity of solid endpoints with biomarkers as surrogates for solid 

endpoints, an issue already addressed in epidemiological research in PSC247. The 

general rarity of PSC, constant fluctuation of symptoms and liver biochemistries, and 

the highly individual onset time until endpoints challenge the number of study 

participants necessary for statistically reliable results. In our studies, we have yet to 

perform a priori power analysis but examined the available data collected from our 

biobank. Hence, our results are prone to type I errors, i.e., discarding a null 

hypothesis and stating a significant difference from coincidental effects. 

Despite the relatively low number of study participants and scarcity of solid 

endpoints, the longitudinal methods applied in study I rely on each participant 

functioning as its control from baseline, increasing resilience towards fewer 

participants. In paper III, we explored a vast range of variables with descriptive 

statistics and a spatial regression analysis towards the phenotypes PSC vs. healthy 

controls and PSC with or without cholestasis. Other confounding factors could have 

been included, like sex, age, and dietary registration regarding cholesterol and fatty 

acid biomarkers. Consequently, paper III might have been prone to type II errors by 

establishing false associations from analysed variables. The long follow-up with a 
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high proportion of solid endpoints and extensive characterization, including ELF and 

a broad range of other biomarkers, represent strengths of the patient panels in papers 

II and III; however, the retrospective study design may have introduced selection bias 

and missing data. In paper I, the prospective design and repeated sampling represent 

strengths. In addition, the longitudinal mixed model includes all study participants in 

the calculations irrespective of missing data within some individuals. This asset 

contrasts the ANOVA analysis, rendering the longitudinal mixed model more robust. 

For all three studies, independent prospective validation panels would have 

strengthened the results. 

Possible selection bias could be considered in paper I, as this material consisted of 

two different patient cohorts, where one of the hospitals functions as a tertiary 

hospital and transplantation centre. However, subgroup analysis did not find 

significant differences in the two respective study populations regarding possible 

confounders like age at inclusion or disease duration, but no significant difference in 

events of decompensated liver disease or liver biochemistries at baseline. Regarding 

signs of advanced PSC, we found somewhat inconsistent results, as a smaller 

proportion of the patients in the tertiary hospital were treated with UDCA but had 

similar numbers of endoscopic interventions. The gender difference might also 

contribute to selection bias, as a larger proportion of female patients demonstrate a 

milder or asymptomatic clinical picture49, suggesting coupling of patient registries in 

PSC and IBD to improve identification and recruitment of patients with PSC.   

Liver biopsies are not clinically indicated in PSC and were not performed in papers I 

and II as this was not ethically justified. Histological assessment of fibrosis degree 

was therefore unavailable for benchmarking our cut-off values. The lipidomic 

analyses in paper III did offer liver biopsies from patients with PSC but from pre-

transplant patients and differed from the respective blood samples. Biopsy material 

was compared to other patients with non-cholestatic liver disease and not healthy 

controls, as was the case for plasma analyses. Our biobank material was handled 

equally in the Oslo and Bergen biobanks and assessed for quality during long-time 

storage by a specific protocol and not subdued to repeated freeze-thaw cycles. In 
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paper III, we have emphasized on mitochondrial lipid metabolism. Notably, future 

studies should proceed with involving peroxisomes and the endoplasmic reticulum as 

part of the complex system of lipid metabolism. It would also be logical to proceed 

with biomarkers from other metabolic pathways, like the tricarboxylic acid cycle and 

amino acid metabolism, function of the electron transport chain (ECT) and handling 

of reactive oxygen species (ROS), in upcoming studies for to further explore 

mitochondrial function in PSC.  
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5. Conclusion 

In the present project, we have contributed novel information to the field of 

prognostic biomarkers in PSC and provided new knowledge regarding mitochondrial 

function and fatty acid profiles in PSC. We have demonstrated superior stability for 

the ELF test with less within-patient variability than LSM or ALP. Our findings 

support ELF as the strongest risk predictor at a single time point and encourage the 

implementation of ELF in clinical practice. Additional studies are needed to define 

what magnitude of change represents a clinically significant difference. Also, our 

demonstration of a subgroup of patients with a concomitant reduction in ELF, LSM, 

and ALP raises the intriguing question of possible spontaneous resolution of PSC and 

encourages further prospective studies.  

Furthermore, our results are proof-of-concept for combinations of biomarkers from 

several biological pathways to improve the predictive power of biomarkers in PSC. 

Therefore, in contrast to the many previous single biomarker studies, future studies 

should emphasize biomarker panels. Multimarker studies could identify subgroups of 

patients with increased risk profiles, provided a sufficient patient number per study 

and independent patient panels. In this way, future studies will offer combinations of 

biomarkers identifying subsets of PSC patients with different risk profiles toward 

fibrosis or malignancy for tailored surveillance. Finally, we have demonstrated 

lipidomic changes relating to fatty acid alterations and mitochondrial dysfunction in 

PSC, which were more severe in cholestasis. These findings should be further 

explored, as they could indicate potential novel therapeutic targets and shed light on 

the mechanism of action for PPARa agonists in PSC. 
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6. Future perspectives 

Our studies have provided new insights regarding prognostic biomarkers in PSC. 

However, independent and prospective studies should validate our findings, with 

larger patient panels and adequate follow-up time for sufficient solid endpoints, i.e., 

mortality, liver decompensation, or hepatobiliary cancer, to allow well-powered 

endpoint analyses. Due to the rarity of the disease, multicentre studies are necessary 

to achieve sufficient patient numbers, including contributions from non-tertiary 

centres, to avoid selection bias.  

In order to meet these challenges, we have established a National network for 

autoimmune liver diseases in Norway and the ScandPSC biobank & patient cohort in 

collaboration with Karolinska University Hospital. Currently, more than 600 patients 

are included from 13 active centres across Norway and all seven university hospitals 

in Sweden, and further expansion is ongoing. Here, patient data and biological 

samples are prospectively collected at annual visits, enabling analyses of repeated 

measurements. The data elements of the registry are carefully harmonized according 

to the recommendations set by the IPSCSG, facilitating international collaboration 

with other centres currently developing similar initiatives. At present, the number of 

endpoints is limited due to short follow-ups for most patients. However, in a few 

years, we expect that ScandPSC will provide a “ripe” material allowing the analyses 

outlined above. Clearly, there is a need to overcome practical issues and 

methodological challenges that could otherwise hamper such projects, like 

harmonization of research protocols and data monitoring to ensure complete datasets. 

This body of work has gained further knowledge about fibrosis markers. Adding 

early fibrosis markers like ELF and elastography for patient follow-up will strengthen 

surveillance protocols. In this regard, transient elastography holds a central position 

as the most established method in clinical practice and reliability for differentiating 

early vs. more advanced fibrosis. In the future, magnetic resonance elastography will 

likely represent a valuable contribution to assessing fibrosis, as this modality offers 

possibilities for standardization between platforms and examinators. 
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This work also inspires us to explore the potential of multimarker analysis further. 

For instance, one might apply statistical methods like factor analysis to elicit groups 

of biomarkers associated with specific endpoints. Essential questions will be which 

combinations of biomarkers are associated with different complications, like cancer 

development vs. liver fibrosis. Implementing new biomarkers in PSC rests on 

unravelling their behaviour throughout the disease course. Large patient studies with 

sufficient clinical endpoints are also necessary to establish relevant cut-off values for 

clinical studies, underscoring the necessity of nationwide prospective liver registries, 

biobanking, and international collaboration. The expanding field of artificial 

intelligence also offers new means of data handling248. 

In conclusion, every patient with PSC should be offered the opportunity to participate 

in clinical studies. Consolidating collaboration and infrastructure across study centres 

can overcome the current methodological challenges in the ongoing work, shedding 

further light on understanding disease development in PSC. 
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Background & Aims: Primary sclerosing cholangitis (PSC) is a progressive liver disease characterised by fluctuating liver
biochemistries and highly variable disease progression. The Enhanced Liver Fibrosis (ELF®) test and liver stiffness measure-
ments (LSMs) reflect fibrosis and predict clinical outcomes in PSC; however, longitudinal assessments are missing. We aimed
to characterise the systematic change in ELF and LSM over time in a prospective cohort of patients with PSC, along with their
longitudinal relationship to alkaline phosphatase (ALP) and bilirubin.
Methods: We included 113 non-transplant PSC patients (86 males [76.1%]; mean age 43.3 ± 15.7 years) with annual study
visits between 2013 and 2019 at 2 Norwegian centres. ELF test, LSM, clinical data, liver biochemistries, and revised Mayo risk
score were measured. We used linear mixed-effects models to estimate change over time, intraclass correlations (ICCs), and
their relationship with ALP and bilirubin.
Results: At baseline, the median (range) ELF test was 9.3 (7.5–12.9) and median LSM 1.26 m/s (0.66–3.04 m/s). ELF and LSM
increased over time (0.09 point/year, 95% CI [0.03, 0.15], p = 0.005, vs. 0.12 point/year, 95% CI [0.03, 0.21], p = 0.009). Between-
patient effects explained 78% of ELF variation (ICC 0.78) and 56% of LSM variation (ICC 0.56). ALP also increased and showed
the highest ICC (0.86).
Conclusions: ELF and LSM increased over a 5-year period. Longitudinal analyses demonstrated differences regarding within-
and between-patient effects, suggesting that the ELF test may have superior reliability for risk stratification compared with
LSM in PSC.
Lay summary: Primary sclerosing cholangitis (PSC) is characterised by substantial disease variability between patients and
fluctuating liver biochemistries. Hence, new biomarkers are needed to identify individuals with an increased risk of devel-
oping end-stage liver disease. We explore the change over time of 2 putative prognostic biomarkers in PSC, the serum
Enhanced Liver Fibrosis (ELF®) test and LSMs by ultrasound, demonstrating differences that may reflect differing abilities to
discriminate risk.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
Primary sclerosing cholangitis (PSC) is characterised by multi-
focal strictures and dilatations of the biliary tree as a result of
inflammation and biliary fibrosis, ultimately progressing to end-
stage liver disease.1–3 The natural course of PSC is highly variable,
with median transplant-free survival ranging from 13 to 20

years.2,4,5 A major unmet need is the lack of established bio-
markers to (a) gauge changes in disease activity that reflect
the pathophysiological processes involved in PSC, (b) identify
high-risk patients for risk stratification and prognostication, and
(c) evaluate treatment effects before reaching clinical end points.
Alkaline phosphatase (ALP) has been applied widely to predict
clinical disease progression, to select patients for clinical trials,
and as a surrogate outcome marker in treatment studies.
Elevated ALP is a consistent marker of poor outcomes at the
group level across several studies.6–9 However, longitudinal
fluctuation in ALP limits its use at the individual level. Thus,
there is a need to identify more accurate biomarkers with less
fluctuation over time.
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The Enhanced Liver Fibrosis (ELF®) test and liver stiffness
measurements (LSMs) are emerging biomarkers for risk predic-
tion and evaluation of treatment effects in clinical trials in
PSC.10,11 They both reflect fibrosis severity but are based on
different approaches. The ELF test is a serum-based biomarker
panel measuring 3 direct markers of extracellular matrix
remodelling and fibrosis.12,13 In contrast, LSM assesses the
physical, viscoelastic properties of the liver using ultrasound-
based elastography methods.14 Both the ELF test and LSM have
been shown to predict transplant-free survival in PSC across
independent studies.15–19 However, studies assessing repeated
measurements are limited and have not established whether ELF
or LSM changes systematically over time in a similar fashion to
each other or similar to ALP. Furthermore, it is not known
whether ELF or LSM fluctuates together with ALP.

Therefore, we aimed to characterise the longitudinal change
in ELF and LSM compared with ALP in a prospective cohort of
patients with PSC. We also aimed to evaluate the relative con-
tributions of intra- and interindividual variation for each of these
variables using repeated measurements. Finally, we sought to
establish the longitudinal associations between ELF, LSM, ALP,
and bilirubin.

Patients and methods
Study design
We prospectively included 113 patients with PSC who did not
undergo transplantation during 2013–2018 from 2 Norwegian
centres: Haukeland University Hospital, Bergen, and Oslo Uni-
versity Hospital, Rikshospitalet, Oslo. The diagnosis of PSC was
based on characteristic findings on magnetic resonance cholan-
giography or endoscopic retrograde cholangiopancreatography
according to established diagnostic criteria.20 The first patho-
logical radiologic finding defined the time of PSC diagnosis. Eight
patients with PSC and features of autoimmune hepatitis were
included. Patients with small-duct PSC were excluded. Inflam-
matory bowel disease was diagnosed based on endoscopy and
histological findings according to accepted criteria.21 Clinical and
demographic information, including laboratory data, was ac-
quired from patient records and research databases. Liver
biochemistry, ELF test, and elastography were sampled annually
(±1 month from study visit) from the baseline visit. All patients
provided informed written consent. The study was in accordance
with the Declaration of Helsinki and approved by the Regional
Committees for Medical and Health Research Ethics of Western
and South-Eastern Norway (Reference 2012/2214/REK VEST and
2008/8670, respectively).

Laboratory analyses
Biochemical analyses were performed following standard labo-
ratory protocols, including haemoglobin, leucocytes, platelets,
international normalised ratio (INR), aspartate aminotransferase
(AST), alanine aminotransferase (ALT), ALP, gamma-glutamyl
transferase (GGT), total bilirubin, albumin, creatinine, immuno-
globulin G4 (IgG4), and C-reactive protein (CRP). The Mayo risk
score and the Fibrosis-4 Index for Liver Fibrosis (FIB-4 score)
were calculated using published algorithms.22–24

ELF test
Frozen serum samples were collected from the 113 patients from
2 biobanks in Bergen and Oslo, following an identical protocol.
The ELF test was analysed using the commercially available kit,

Siemens ELF®Test, performed on an ADVIA Centaur XP analyser
(Siemens Medical Solutions Inc., Tarrytown, NY, USA). The ELF
test was calculated according to the published algorithm,
including the levels of hyaluronic acid (HA), the propeptide of
procollagen type III (PIIINP), and tissue inhibitor of matrix
metalloproteinases-1 (TIMP-1), using the following formula: ELF
test = 2.278 + 0.851 ln(CHA) + 0.751 ln(CPIIINP) + 0.394 ln(CTIMP-1).

Elastography
Point shear wave elastography (pSWE) was performed using an
ElastPQ® Philips iU22 (Philips Healthcare, Andover, MA, USA)
scanner (software version 6.3.2.2, convex C5-1 probe) and ARFI®

Siemens Acuson S3000 (Siemens Medical Solutions USA, Inc.,
Malvern, PA, USA), in the Bergen and Oslo cohorts, respectively.
The examination was performed following international guide-
lines, including at least 3 h of fasting before examination.14

Following a B-mode ultrasound scan of the liver and spleen, LSM
was measured using a right intercostal approach during relaxed
mid-respiration breath-hold with patients in the supine position,
with their right hand beneath the head.

A region of interest (ROI) representing a 0.5×1.5 cm sample
volume was placed 2–6 cm below the liver capsule in an area
where homogenous liver parenchyma could be visualised,
avoiding large vessels and bile ducts. LSM was based on the
median of 10 acquisitions and considered valid when the success
rate was equal to or above 60%. LSM was measured in meters per
second (m/s). The published cut-off value of 4.9 kPa (�1.28 m/s)
was used to stratify patients for subgroup analyses.25 Liver
stiffness is expressed as shear wave speed (m/s) or converted
into Young’s modulus using the equation kPa = 3[(ms−1)2].14 Each
patient was followed by a single elastography platform.

Statistics
Values of p <0.05 were considered statistically significant.
Continuous variables were evaluated for approximate normality
using Q–Q plots and presented as means and SDs or medians and
IQRs as appropriate. Because of significant right skewness, log-
arithmic transformations were applied to liver biochemistries,
ELF, and LSM. Transformation resulted in approximate normality
as assessed by Q–Q plots, in line with the assumptions of para-
metric statistical models. The Mann–Whitney U test, Student’s t
test, and the Chi-square test were applied as appropriate. Cor-
relations at study baseline were tested using the Spearman rank
correlation owing to the non-normality of variables and illus-
trated graphically as a correlation network.

We used a linear mixed model with an unstructured covari-
ance structure for repeated measurement analyses with random
intercept and random slope. Intraclass correlation coefficients
(ICCs) were estimated from an empty-means linear mixed-
effects model. We used a 2-step approach to characterise the
associations between LSM, ELF, ALP, and bilirubin in a multilevel
context. First, the random intercepts, slopes, and residuals from a
multilevel model, either ALP or bilirubin, were estimated and
scaled to z-scores. By standardising the variables to a mean of
0 and a standard deviation of 1, the biomarkers are on the same
scale with comparable effect sizes. The resulting positive or
negative z-score will represent the magnitude of increase or
decrease, respectively, in the effect size for all variables. The z-
scores were subsequently entered as predictors in a second
multilevel model, where they represent between-person differ-
ences (random intercepts), between-person linear rate of change
(random slopes), and fluctuations (the remaining residuals).26
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For the relationship between LSM and ELF, we were able to fit a
multilevel structural equation model with random intercepts
only using both LSM and ELF as separate outcomes. We esti-
mated the correlation between the intercepts and residuals,
representing the between-person and within-person correla-
tions. The model was adjusted for time in study. Missing values
were assumed to be missing at random. Data were pooled for the
2 different elastography modalities as individual patient trajec-
tories were followed longitudinally using a single platform; there
were no significant differences between the 2 cohorts (p = 0.39).

Post hoc analyses were performed for defined subgroups.
Subgroups for liver fibrosis stages F0–2 and F3–4 were defined
using the published cut-off value of 4.9 kPa (�1.28 m/s) for pSWE
in PSC.25 For further subgroup analyses, the cohort was divided
according to presumed high-risk profiles at baseline,8–10,13,15,27,28

that is, ALP >−1.5× upper limit of normal (ULN); ELF level >−9.8; and
for discrimination between mild and advanced fibrosis corre-
sponding to METAVIR score F0–2 vs. F3–4, LSM >−1.28 m/s, as
outlined in Table 1. The analyses were conducted using SPSS
version 26 (SPSS Inc., 2016, Armonk, NY, USA) and STATA 16

(StataCorp. 2019, Stata Statistical Software: Release 16.1. College
Station, TX: StataCorp LP) for all analyses. The correlation
network was generated using the qgraph package in R (R Core
Team [2017]. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria).

Results
Patient characteristics are outlined in Table 1. We included 113
PSC patients (86 males; 76.1%). Their mean age at baseline was
43 years (SD 15.7), with a 4-year median duration of PSC and a
median follow-up time of 4.5 years. Median time from study visit
to LSM was 0 month (SD 1.33 and 2.33 for the Bergen and Oslo
cohorts, respectively). Clinical events are listed in Table S1.

Baseline ELF test, liver stiffness, and ALP values
At baseline, the patients had median (IQR) ELF 9.3 (1.34), LSM
1.26 m/s (0.52), and ALP 151.5 U/L (197) (Table S2). There was no
significant difference between males and females. There were 37

Table 1. Baseline characteristics of the cohorts of patients with PSC.

Demographics and clinical description Total Bergen Oslo Reference values p value

Age at study start, x

̄

(SD) 43.3 (15.7) 44.6 (16.0) 40.1 (14.6) 0.209
Age at diagnosis, x

̄

(SD) 35.3 (14.8) 37.0 (15.1) 31.0 (13.0) 0.045
Males, n (%) 86 (76.1) 58 (71.6) 28 (87.5) <0.001
PSC duration in years, M (IQR) 4.0 (11) 3.0 (13) 7.0 (9) 0.093
Mayo risk score, x

̄

(SD) -0.5 (0.9) -0.5 (0.9) -0.4 (1.0) 0.430
FIB-4 score, M (IQR) 1.1 (1.2) 1.2 (1.5) 0.9 (0.9) 0.808
Decompensated liver disease, n 2 1 1 0.251
Any inflammatory bowel disease, n (%) 85 (75.2) 62 (76.5) 23 (71.9) 0.627

Ulcerative colitis, n (%) 64 (56.6) 45 (55.6) 23 (71.9)
Crohn’s disease, n (%) 12 (10.6) 10 (12.3) 2 (6.3)
Indeterminate, n (%) 8 (7.1) 6 (7.4) 2 (6.3)

UDCA treatment at any time, n (%) 39 (34.5) 25 (22.1) 14 (12.4) <0.001
Patients with endoscopic intervention, n (%) 6 (5.3) 3 (3.7) 3 (9.3) 0.362
Prognostic biomarkers
Participants above cut-off values

ALP,* n (%) 52 (46) 36 (44.4) 16 (50) 0.362
ELF,† n (%) 37 (32.7) 22 (33.3) 10 (31.3) 0.428
LSM,‡ n (%) 50 (45) 37 (45.7) 13 (43.4) 0.098

Levels, M (IQR)
ALP (U/L) 151.5 (197) 149.0 (196) 165.0 (206) 35–105 0.871
ALP by ULN, M (range) 1.4 (0.4, 8.0) 1.4 (0.4, 8.0) 1.5 (0.5, 6.1)
ELF 9.3 (1.34) 9.3 (1.32) 9.4 (1.45) 0.905
LSM (m/s) 1.26 (0.52) 1.26 (0.48) 1.17 (1.21) 0.373

Other blood tests, M (IQR)
ALT (U/L) 53.0 (81) 52.0 (66) 74.0 (127) 10–70 (m)

10–45 (f)
0.241

AST (U/L) 48.0 (49) 47.0 (48) 51.5 (75) 15–45 (m)
15–35 (f)

0.633

GGT (U/L) 228.0 (597) 149.0 (565) 238.5 (753) 10–80 (m <40 years)§

10–45 (f <40 years)§
0.856

Bilirubin (lmol/L) 11.0 (10) 11.0 (9) 12.5 (16) 5–25{ 0.048
Thrombocytes (×109) 245.0 (105) 240.0 (102) 240.0 (111) 145–390# 0.779
Albumin (g/L) 45.0 (5) 46.0 (5)** 44.0 (5)†† see** and†† 0.122

Reference values for laboratory parameters are equal for men and women and across study centres unless otherwise specified. P-values were calculated using Student’s t-test,
Mann-Whitney U test, or Chi-Square test as appropriate.
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ELF, enhanced liver fibrosis; f, females; FIB-4, Fibrosis-4 Index for Liver Fibrosis;
GGT, gamma-glutamyl transferase; LSM, liver stiffness measurement, M, median; m, males; PSC, primary sclerosing cholangitis; UDCA, ursodeoxycholic acid; ULN, upper limit
of normal.
* >−1.5× ULN.
† >−9.8.
‡ >−1.28 m/s.
§ GGT 15–115 U/L for m >−40 years and 10–75 U/L for f >−40 years.
{ Bilirubin <−21 lmol/L.
** Albumin 39–50 g/L for patients <40 years, 39–48 g/L for patients between 40 and 69 years, and 36–48 g/L for patients >−70 years in the Bergen cohort.
†† Albumin 36–48 g/L for patients <40 years, 36–45 g/L for patients 40–69 and 34–45 g/L for patients >−70 years in the Oslo cohort.
# Thrombocytes 145–348×109 (m) and 165–387×109 (f).
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(33%), 50 (45%), and 52 (46%) high-risk patients defined by ELF
test, LSM, and ALP, respectively. Correlation analysis showed a
strong correlation of liver parameters, as illustrated by a network
diagram (Fig. 1). The liver enzymes ALT, AST, GT, and ALP were
strongly correlated; ELF and LSM showed moderate correlation
with each other (rho 0.483, p <0.001), and both were correlated
with ALP, other liver enzymes, bilirubin, and (negatively)
albumin.

Longitudinal change and ICCs
The development over time for the ELF test, LSM, ALP, and bili-
rubin is illustrated in Fig. 2. Using a linear mixed-effects model,
we demonstrated a small but significant increase over 5 years for
ELF (0.09 point/year, 95% CI [0.03, 0.15], p = 0.005) and LSM (0.12
point/year, 95% CI [0.03, 0.21], p = 0.009). Scaling of the outcome
variables to z-scores demonstrated a slightly larger increase in
LSM (0.07 SD per year, 95% CI [0.02, 0.13]) than in ELF (0.06 SD
per year, 95% CI [0.03, 0.20]). By comparison, ALP increased by
0.04 SD per year (95% CI [0.01, 0.07], p = 0.011), and bilirubin
increased by 0.07 SD per year (95% CI [0.02, 0.12], p = 0.007). The
ICC was highest for ALP (0.86) and ELF (0.78), with lower ICCs for
bilirubin (0.64) and LSM (0.56). The results are summarised in
Table 2.

Longitudinal change over time in high-risk subgroups
Post hoc subgroup analyses of predefined high-risk groups, that
is, ELF test >−9.8, LSM >−1.28 m/s, and ALP >−1.5× ULN at baseline,
demonstrated a significantly higher baseline ELF level among the
high-ALP group compared with the low-ALP group (p = 0.001)
and a similar trend for LSM (p = 0.06). Both ELF and LSM
increased significantly over time in the high-ALP group (p = 0.014
and 0.022, respectively), whereas they showed no significant

increase in the low-ALP group (Fig. 3). However, the interaction
between time and the ALP subgroup did not reach significance.
There were no significant differences in the change in ELF or LSM
over time, according to the baseline risk groups defined by ELF or
LSM (data not shown).

Ursodeoxycholic acid (UDCA) treatment was received by 35%
of the patients at any time during the study with a median
duration of 3.4 years (range 1–6 years) of treatment. Subgroup
analysis indicated that ELF and ALP increased significantly over
time in UDCA-naïve but not UDCA-treated patients (ELF: p =
0.009 vs. 0.803; ALP: p = 0.008 vs. p = 0.883), with a similar trend
for LSM (p = 0.057 vs. 0.125); however, data were insufficient to
adjust analyses for the biomarker × treatment interaction.
Endoscopic interventions (n = 10 in 6 patients) during the study
were not associated with consistent changes in ELF at subse-
quent visits.

Longitudinal association between ELF and LSM
Using a multi-outcome multilevel structural equation model
adjusted for time, we found that the correlation between the
random intercepts of ELF and LSM was good (0.79, p <0.001),
representing the between-person association between LSM and
ELF. In contrast, the correlation coefficient of the residuals was
weak (0.24, p = 0.007), representing the within-person associa-
tion between LSM and ELF.

Longitudinal association between ELF test or LSM and liver
biochemistries and Mayo risk score
Over time, liver biochemistries and Mayo risk score were
significantly associated with LSM and ELF outcomes (Table 3).
ALP showed stronger association with ELF (standardised fixed
effect [sFE] 0.47) than with LSM (sFE 0.28). Similarly, ELF showed
a stronger association than did LSM with Mayo risk score (sFE
0.48 vs. 0.37) and the FIB-4 score (sFE 0.56 vs. 0.42). LSM was
more associated with bilirubin (sFE 0.29) thanwas ELF (sFE 0.20),
but ELF and LSM showed similar associations with albumin. The
effect size sFE can be interpreted similarly in magnitude as cor-
relation coefficients.

Between- and within-person associations between ALP,
bilirubin, LSM, and ELF
Variation in the individual means of ALP and bilirubin accounted
for most of the association between ALP, bilirubin, and ELF
(Table 4). By comparison, variation in the annual rate of change
in ALP and bilirubin was not associated with ELF. However, we
identified a smaller but significant association between fluctua-
tions in ALP and ELF. For LSM, variation in individual means
accounted for most of the association between ALP, bilirubin, and
LSM, whereas there was no association with fluctuations in ALP
or bilirubin. However, a higher annual rate of change in bilirubin
was associated with higher LSM scores.

Spontaneous reductions in ELF, LSM, and ALP
The subpopulation with ALP >−1.5× ULN accounted for all of the
patients with >−40% ALP reduction at each of the visits in our
study. Out of the high-ALP group, a total of 13%, 13%, 10%, and 6%
experienced >−40% ALP reduction at visits 1, 2, 3, and 5 years from
baseline, respectively.

In 40% of the total patient cohort, ELF levels decreased from
baseline to 5 years, with a mean value of −0.67. A similar pro-
portion of patients (44.7% and 42.2%) showed a reduction in ELF
levels within the same range (mean change −0.51 and −0.54) at 1

Sex

AGE

DUR

PLT

MAY

BILAST
ALT

ALP
GT

ALB

ELF

LSM

Fig. 1. Correlation network for ELF, LSM, and relevant biochemistries.
Correlations at study baseline were tested using the Spearman rank correla-
tion. The strength of correlations is indicated by the widths of the connecting
lines. Positive and negative correlations are represented by green and red
colour, respectively. The diagram highlights liver enzymes ALT, AST, ALP, and
GT as a group with high correlation. ELF and LSM were most strongly corre-
lated with each other and showed correlations with liver enzymes and nega-
tive correlations with albumin and platelets. ALB, albumin; ALP, alkaline
phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
BIL, bilirubin; DUR, PSC duration; ELF, enhanced liver fibrosis; GT, gamma-
glutamyl transferase; LSM, liver stiffness measurement; MAY, Mayo risk
score; PLT, platelets; PSC, primary sclerosing cholangitis.
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and 2 years from baseline. Reduction in LSMwas shown in 34% of
the patients at 5 years (mean change −0.29 m/s); similar pro-
portions of patients demonstrated LSM reduction at 1 and 2
years from baseline (42.7% and 36.7%, respectively; mean change
of −0.33 to −0.38 m/s). Among the patients with 5-year follow-up
time, all remained in the same category concerning low or high
levels of ELF or LSM, whereas 16% of the patients moved between
categories of low to high ALP as defined by ALP >−1.5× ULN at
baseline). At each follow-up visit (1–5 years from baseline),
about 10% of patients featured a concomitant reduction in all of
ELF, LSM, and ALP (Table S3), out of which only 25% received
UDCA. Six patients received a total of 10 endoscopic treatments
during the study period, of which only 2 procedures were fol-
lowed by significant ALP reductions.

Discussion
To our knowledge, this is the first study to provide an in-depth
characterisation of the variation over time in ELF and LSM as
well as ALP in a prospective cohort of patients with PSC, allowing
differentiation of ‘background noise’ (random variation) from
biological significant variation. ELF and LSM demonstrated a
significant but minor increase over 5 years, in line with previous
reports in patients with PSC and mild fibrosis.9,17,27 With the use
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Fig. 2. Development of ELF, LSM, ALP, and bilirubin over time in patients with PSC (n = 113). Boxplot; the lower and upper whiskers represent the first and
third quartiles, respectively. Each box is represented by the number of measurements for each parameter per year in study. When applying a longitudinal mixed
model analysis considering all available repeated measurements, there was a small but significant increase in ELF and LSM over time (p = 0.005 and 0.009,
respectively). ALP, alkaline phosphatase; ELF, enhanced liver fibrosis; LSM, liver stiffness measurement; PSC, primary sclerosing cholangitis.

Table 2. Liver stiffness measures and liver parameters over time.

Effect size 95% CI p value

ELF Fixed intercept* -0.11 [-0.29, -0.06] 0.196
Fixed slope† 0.06 [0.02, 0.09] 0.005{

Crude ICC‡ 0.78 [0.72, 0.83]
Adjusted ICC§ 0.83 [0.77, 0.87]

LSM Fixed intercept* -0.11 [-0.27, 0.06] 0.199
Fixed slope† 0.07 [0.02, 0.13] 0.009{

Crude ICC‡ 0.56 [0.47, 0.65]
Adjusted ICC§ 0.59 [0.48, 0.70]

ALP Fixed intercept* -0.03 [-0.21, 0.16] 0.775
Fixed slope† 0.04 [0.01, 0.07] 0.011{

Crude ICC‡ 0.86 [0.82, 0.89]
Adjusted ICC§ 0.89 [0.85, 0.92]

Bilirubin Fixed intercept* -0.09 [-0.26, -0.09] 0.325
Fixed slope† 0.07 [0.02, 0.12] 0.007{

Crude ICC‡ 0.64 [0.55, 0.72]
Adjusted ICC§ 0.71 [0.62, 0.78]

ALP, alkaline phosphatase; ELF, enhanced liver fibrosis; ICC, interclass correlation;
LSM, liver stiffness measurement.
* The fixed effect at baseline. All variables have been log-transformed and z-scored
so that the mean represents the grand mean over 5 years. A negative fixed intercept
indicates howmuch lower the variable is at baseline compared with the grand mean,
in standard deviations.
† The fixed slope indicates change in the outcome in standard deviations per year.
‡ The ICC from an empty-means random intercept model.
§ The ICC from a random slope model adjusted for time-in-study.
{ p value <0.05.

5JHEP Reports 2021 vol. 3 j 100328



of standardised z-scores in a linear mixed model, our results
suggest that LSM increased more than ELF and ALP over time. We
demonstrated a strong between-person association between
LSM and ELF but a weak association for individual fluctuations
over time. Overall, in this study, it was indicated that ELF and
LSM may stratify similar patients to high-risk groups at baseline,
whereas there may be different effects driving change in ELF and
liver stiffness over time.

Using ICC analyses yielded by the mixed model, we demon-
strated essential differences between ELF and LSM regarding
between- and within-person effects influencing variation in
these parameters. Whereas ELF showed high ICC, suggesting
predominant between-person variation, between- and within-
person variations contributed relatively equally for LSM. The
relatively stable values within individual patients at repeated
measurements for ELF support ELF as a reliable risk stratification
marker and may imply that the ELF test is superior over LSM for
risk stratification purposes when measured at a single time
point. Biologically, this is plausible, as the ELF test reflects 3
direct markers of extracellular matrix remodelling, providing a
biological link to disease severity, in contrast to LSM, which
represents the sum of several factors affecting liver stiffness.

For a test to be useful for monitoring purposes, the ‘noise-to-
signal ratio’ should be low; that is, any change should reflect a
biological difference. Establishment of the magnitude of varia-
tion between and within patients is, therefore, a key factor for
assessing the qualities of biomarkers. The ICC from the mixed
model represents a measure of within- and between-variation in
a test at a single time point and longitudinally. In general, a
higher ICC value represents a lower degree of variation,28

reflecting a stronger ability to stratify risk between individuals
at a single time point, whereas a lower ICC suggests higher
sensitivity to biological variation over time, relevant for moni-
toring and assessment of treatment effect. However, interob-
server variation and other factors may also contribute to lower
ICC. Our findings are in line with quality assessments of ELF,
which have shown good stability and a low coefficient of varia-
tion.12 The lower within-person variation for ELF compared with
that for LSM may partly reflect the inherent differences between
patented laboratory assays such as the ELF test compared with
ultrasound-based LSM.

As a small note of caution, the ICC of ALP was higher than that
of ELF, yet ALP is notoriously fluctuating over time in patients
with PSC. This trait is a major challenge, limiting the use of ALP in
individual prognostication and monitoring of disease activity. In
the decomposed mixed model analysis, we identified concurrent
fluctuations in ALP and ELF, which might suggest similar un-
derlying mechanisms behind fluctuations in both parameters.
Possibly, ELF may not overcome the problems of individual
fluctuation typical for ALP. In favour of ELF towards LSM, we
demonstrated stronger associations for ELF with ALP and other
liver biochemistries, as well as the Mayo risk score and FIB-4
score.

For LSM, a lower ICC indicated that within-person variation
explained a larger proportion of the variability compared with
that for the ELF test, reflecting either improved sensitivity to
detect biologically relevant changes or increased sampling vari-
ability. LSM has previously demonstrated good agreement to-
wards histological stages of fibrosis and clinical outcome in
PSC,17–19,29 and a strong predictive ability for clinical outcomes in
independent studies.17,18 Moreover, the elastography modalities
we used (pSWE and ARFI quantification) were reported to
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Fig. 3. Linear mixed model analysis of the longitudinal development of ELF
and LSM in high and low-risk groups defined by ALP. The high-risk subgroup
(ALP >−1.5× ULN at baseline) showed significantly higher baseline ELF (p =
0.001) compared with the low-risk group, with a similar trend for LSM (p =
0.06). Both ELF and LSM increased significantly over time in the high-ALP
group (p = 0.014 and 0.022, respectively), whereas there was no significant
increase for ELF or LSM in the low-ALP group. For ELF, there was a trend to-
wards interaction between ALP-defined risk group and time which did not
reach significance (p >0.05), whereas for LSM, there was no interaction be-
tween risk group and time (p >0.50). ALP, alkaline phosphatase; ELF, enhanced
liver fibrosis; LSM, liver stiffness measurement.

Table 3. Associations of ELF and LSM with biochemical markers and clin-
ical scores in a linear mixed-effects model.

Predictor Outcome sFE* 95% CI p value

ALP ELF 0.47 [0.37, 0.56] <0.001
LSM 0.28 [0.16, 0.39] <0.001

Albumin† ELF -0.39 [-0.47, -0.32] <0.001
LSM -0.35 [-0.44, -0.25] <0.001

Bilirubin ELF 0.20 [0.11, 0.29] <0.001
LSM 0.29 [0.18, 0.39] <0.001

Mayo risk score† ELF 0.48 [0.40, 0.56] <0.001
LSM 0.37 [0.26, 0.47] <0.001

FIB-4 ELF 0.56 [0.46, 0.65] <0.001
LSM 0.42 [0.31, 0.53] <0.001

Linear mixed-effects models as described under statistics.
ALP, alkaline phosphatase; ELF, enhanced liver fibrosis; FE, fixed effects; FIB-4,
Fibrosis-4 Index for Liver Fibrosis; LSM, liver stiffness measurement; sFE, stand-
ardised fixed effects.
* sFE calculated as sFE = (FE×SD predictor variable)/SD dependent variable.
† Not log-transformed (all other log-transformed).
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correlate well with histology19,30–32 and demonstrated high ac-
curacy in discriminating between lower and higher degrees of
fibrosis31–33 and excellent correlation to TE in patients with
PSC.25 Because of lack of power for end-point analyses, we
cannot decipher whether the larger relative contribution of
within-patient effects on variability is a result of sampling vari-
ability or reflect biological variation over time. Inter and intra-
observer variability is an acknowledged possible bias in all
ultrasound-based methods.25,34–36 Furthermore, the patchy dis-
ease distribution in PSC and variation in cholestasis may
contribute to variations in LSM.37,38 Based on our results, we
cannot rule out that the lower ICC for LSM results from increased
measurement variability rather than reflecting a relevant change
in fibrosis. The significant linear association between bilirubin
levels and LSM over time but no association between their in-
termediate fluctuations indicates that limited segmental chole-
stasis in PSC does not severely affect LSM over time. This might
suggest that ELF and LSM act as complementary biomarkers,
indicative of slightly different aspects of the disease concerning
fibrosis and cholestasis.

Interestingly, in a post hoc subgroup analysis, we found that
patients with an ALP level >−1.5× ULN at baseline demonstrated
elevated baseline levels as well as a significant increase in ELF
over time in the high-ALP compared with the low-ALP group.
These findings support previous reports proposing this ALP level
as an appropriate cut-off level for risk stratification.6,7,39

Clinical trials in patients with PSC are suffering from a lack of
robust surrogate markers to reliably evaluate the effect of novel
therapeutic agents. Reduction in ALP is commonly used as an
outcome parameter in pharmacological studies; however, spon-
taneous reductions in ALP challenge the use of ALP as a surrogate
marker in PSC.7,8,39,40 Although a reduction of ALP by 40% or
more is a commonly applied primary outcome, this is questioned
by reports of patients showing ALP reductions not supported by
reductions in histological fibrosis.9 In the present study, we
found that about 8% of the patients experienced spontaneous
ALP reductions of at least 40% at 1, 2, and 3 years of study follow-
up. These time points are commonly applied when designing
clinical trials, underscoring the challenges of using ALP reduction
as a surrogate endpoint. Furthermore, we demonstrated that
between one-third and nearly one-half of the patients showed

spontaneous reductions in ELF test and LSM, respectively, during
the same time frame. Moreover, we identified a subgroup of
about 10% of patients at each follow-up visit showing a
concomitant reduction in ALP, ELF, and LSM, raising the question
of whether the fibrosis level or disease stage may actually regress
in PSC. These findings warrant further investigation before
considering these biomarkers as surrogate endpoints in clinical
trials.

UDCA treatment has been associated with ALP reduction in
patients with PSC in clinical studies.41,42 We did not demonstrate
ALP, ELF, or LSM reduction associated with UDCA; however,
subgroup analysis showed significant increases in ELF and ALP
over time in UDCA-naïve (65%) but not UDCA-treated (35%) pa-
tients. Moreover, UDCA users had higher levels of ELF, LSM, ALP,
and bilirubin at baseline, suggesting a more advanced disease in
this group. Unfortunately, our study was not powered to inves-
tigate biomarker × treatment interactions.

Limitations of the study
The major limitation of this study is the limited number of long-
term clinical outcomes such as deaths and liver transplantations,
precluding end point analyses. Liver biopsies allowing direct
assessment of the degree of liver fibrosis were also not available.
However, in PSC, liver biopsies are poorly representative owing
to the patchy disease distribution, and the procedure carries a
risk of adverse outcomes. Current guidelines do not recommend
liver biopsies; hence, this was considered unethical.

Conclusion
The ELF test and LSM increased slightly but significantly over 5
years in a prospective panel of patients with PSC. Our longitu-
dinal analyses demonstrated differences regarding within- and
between-patient effects, suggesting that the ELF test may be
more stable than LSM and is likely to perform better for risk
stratification in PSC using single measurements. We advocate
that the ELF test may hold practical utility for identification of
PSC patients with a high risk of disease progression. ELF and LSM
showed a significant increase over time only in patients with
ALP>−1.5× ULN, supporting this as a relevant cut-off level for risk
stratification. The significance of concomitant reductions in ELF,
LSM, and ALP in a patient subgroup warrants further studies.

Abbreviations
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; CRP, C-reactive protein; ELF, enhanced liver fibrosis;

FIB-4, Fibrosis-4 Index for Liver Fibrosis; GGT, gamma-glutamyl trans-
ferase; HA, hyaluronic acid; ICC, intraclass correlation; IgG4, immuno-
globulin G4; INR, international normalised ratio; LSM, liver stiffness

Table 4. Decomposition of longitudinal associations of ELF and LSM with liver biochemistries in PSC.

Individual means
(random intercepts)

Linear change
(random slopes)

Fluctuation
(residuals)

sFE (95% CI) p value sFE (95% CI) p value sFE (95% CI) p value

ELF as the outcome
ALP 0.37 (0.21, 0.52) <0.001** 0.03 (-0.14, 0.19) 0.768 0.15 (0.11, 0.18) <0.001**
Bilirubin 0.40 (0.26, 0.54) <0.001** 0.16 (-0.01, 0.31) 0.052 0.03 (-0.01, 0.08) 0.161
LSM as the outcome
ALP 0.32 (0.18, 0.46) <0.001** 0.07 (-0.08, 0.21) 0.384 0.05 (-0.01, 0.11) 0.091
Bilirubin 0.42 (0.30, 0.54) <0.001** 0.23 (0.10, 0.35) <0.001** 0.03 (-0.04, 0.10) 0.407

A 2-step multilevel model where first the random intercepts, slopes, and residuals for the predictors ALP and bilirubin were estimated from separate models with time as the
predictor. These now represent differences in individual means and individual linear rate of change, and the residuals represent fluctuating deviations from these. These were
entered as predictors in a second multilevel model, with ELF or LSM as the outcome and time as the only covariate. **Statistically significant at p <0.001 level.
ALP, alkaline phosphatase; ELF, enhanced liver fibrosis; LSM, liver stiffness measurement; PSC, primary sclerosing cholangitis; sFE, standardised fixed effects.
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measurement; PIIINP, propeptide of type III procollagen; PSC, primary
sclerosing cholangitis; pSWE, point shear wave elastography; ROI, region
of interest; TE, transient elastography; TIMP-1, tissue inhibitor of metal-
loproteinases-1; UDCA, ursodeoxycholic acid; ULN, upper limit of normal.
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Fig. S1. Patients included.  

The total number of patients included since initiation of the study.  
  

  
  
  
  
Table S1. Clinical events.  
Number of patients in this PSC patient cohort undergoing clinical events in terms of liver 

transplantation or death since initiation of study.  
  

Indication for liver transplantation (n)  9  
  Biliary dysplasia  5  

Liver failure  2  
Cholangiocarcinoma  1  
Fatigue  1  

Deceased (n)  6  
  Liver failure  2  

Malignancies  2  
Post-transplant complications  1  

  
  
  
  
  
  
  
  
  
  



Table S2. ELF, LSM, and laboratory values at annual visits.  All 

variables displayed as median (IQR).  
  

  T0  T1  T2  T3  T4  T5  
N  

  
 

 

 50  
ELF  9.42 

(1.40) 

LSM  1.24 (0.49) 
 

 

 

 

 1.29 

(0.36) 

ALP  166 

(170)  
ALT  53 (81)  49 (83)  62 (106)  63.5 (85)  

 
48 

(69)  
AST  45 (49)  44 (44)  50 (74)  61 (56)  55 

(50)  
GT  220 (611)  168 (432)  234 (532)  277 (472)  274 (403)  203 

(411)  
Bilirubin 11 (10)  12 (9)  13 (9)  14 (10)  13 (9)  11 (9) 

Albumin 45 (5)  45 (4)  45 (5)  
 
45 (5)  45 (5) 

Platelets  237 (104)  229 (100)  227 (96)  208 (99)    
Abbreviations: ALP, alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; 

ELF, Enhanced liver fibrosis; GT, Gamma-glutamyl transferase; LSM, Liver stiffness measurement;  
  
  
  
Table S3 Spontaneous reduction in ALP, ELF, and LSM. Number of patients with 

spontaneous reduction in either ALP, ELF, LSM or all three parameters. Time represents year 

from baseline.  
  

Time  1  2  3  4  5  
ALP reduction, n (%)  46 (44.7)  39 (43.3)  35 (44.9)  28 (43.1)  28 (56)  
ELF reduction, n (%)  46 (44.7)  38 (42.2)  23 (29.5)  24 (36.9)  20 (40)  
LSM reduction, n (%)  44 (42.7)  33 (36.7)  24 (30.8)  26 (40)  17 (34)  
Reduction in all three risk 

factors, n (%)  
12 (11.7)  12 (13.3)  7 (9.0)  7 (10.8)  5 (10)  

Abbreviations: ALP, alkaline phosphatase; ELF, enhanced liver fibrosis; LSM, liver stiffness measurement.  

 

80   78   65   
9.62 ( 1 . 37)   9.47 (1.77)   9.63 (1.58)   

1 . 28 (0 (  . 63)   1.39 (0.91)   1.37 (0.58)   
139 (141)   170 (244)   168 (230)   









 

Table 1. Biomarkers and literature references. Literature referring to the first published 

association for a potential biomarker towards clinical outcome in PSC or, if otherwise stated, 

other liver diseases. 

  Reference literature 
Fibrosis markers 

 ELF Vesterhus 2015111 
 Pro-C3 

Pro-C5 
C3M 
C4M 

Nielsen 2018112 
 
 
 
 BGM 

VICM 
Vesterhus 2021113 

 
 Anti-GP2 IgA Jendrek 2017114 
 Calprotectin Vesterhus 2017115 
 Autotaxin Dhillon 2019116 

Inflammatory markers 
 IL-8 Vesterhus 2017115, Zweers 2016117 
 CD14 

LPB 
Dhillon 2019118 

 
 CD163 

CD206 
Bossen 2021119 

 
Metabolic markers 
 PLP Kummen 202181 
 TMAO Kummen 201780 
 Neopterin 

KTR 
Dhillon 2021120 

 
Clinical scores 
 Mayo risk score Kim 2000121 
 AOM De Vries 2018122 
 UK-PSC risk score Goode 2019123 
Ultrasound elastography 
 Transient elastography Corpechot 2014124 
  pSWE Mjelle 2020103 
  ARFI Goertz 2019125 
Abbreviations: Anti-GP2, anti-glycoprotein-2; AOM, Amsterdam-Oxford model; BGM, marker of 

biglycan degradation; C3M, C4M, degradation of type III and IV collagen; ELF, enhanced liver 

fibrosis; IL-8, interleukin-8; KT-ratio, kynurenine-tryptophan ratio; LBP, lipopolysaccarhide 

binding protein; PLP, pyridoxal 5’-phosphate; Pro-C3, Pro-C5, type III and V collagen formation; 

VICM, citrullinated type III intermediate filament protein vimentin. 
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