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Abstract in English

Heritability is an important measure to describe a non-Mendelian trait; it measures in

which proportion the value of the trait is affected by genetic material.

In classical biometric models, the heritability is measured as a constant over the entire
trait range. A constant heritability is seen as too reductive in more modern approaches,
which instead work towards defining a continuous heritability, dependent on the trait

value.

In this manuscript we define a heritability curve, a parametric measure of the heritabil-
ity, based on a local definition of the correlation. Using a Gaussian mixture as the
distribution underlying the data, we construct an explicit formula for the heritability

curve. We study its properties and its use, applying it then on real human data.

For the estimation of the Gaussian mixture parameters, we use an algorithm based on
automatic differentiation. This allows us to compute derivatives faster and improve the
precision of the algorithm. We lastly study an Hamiltonian Monte Carlo algorithm to

initialize the parameters in the optimization process.
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Abstract in Norwegian

Arvbarhet er et viktig méal for & beskrive en ikke-mendelsk egenskap; den maler i hvilken
andel verdien av egenskapen pavirkes av genetisk materiale. 1 klassiske biometriske
modeller er arvbarheten konstant over hele egenskapsomradet. Dette blir sett pa som
for reduktivt i mer moderne tilneerminger. I stedet defineres kontinuerlig arvbarhet, som
avhenger av verdien av egenskapen. I dette manuskriptet definerer vi en arvbarhetskurve,

et parametrisk mal pa arvbarheten, basert pa en lokal definisjon av korrelasjon.

Ved & anta at fordelingen som ligger til grunn for dataene er en Gaussian mixture,
konstruerer vi en eksplisitt formel for arvbarhetskurven. Vi studerer egenskapene og

bruken av den, og bruker den deretter pa registerdata fra mennesker.

For & estimere Gaussian mizture parametrene bruker vi en algoritme basert pa automa-
tisk differensiering. Det gjor at vi kan beregne derivater raskere og forbedre presisjonen
til algoritmen. Vi studerer til slutt en Hamiltonian Monte Carlo-algoritme for & ini-

tialisere parametrene i optimaliseringsprosessen.
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Chapter 1

Motivation

Genetic traits can be broadly separated into two categories: Mendelian traits and non-
Mendelian traits. Mendelian traits are discrete and follow Mendel’s law of inheritance;
this means that the phenotype of a individual is almost entirely determined by a pair
of alleles in the genome, one inherited by the mother, one by the father. In this context
alleles are defined as either “dominant” or “recessive”, with the phenotype associated
with the dominant allele always manifesting when a dominant allele is present in the
genotype, and the phenotype associated with the recessive allele manifesting only when a
person inherits the recessive allele from both parents. One example of a Mendelian trait
is albinism [Schalock et al., 2010]. The allele that determines most forms of albinism is
recessive, so a person will be affected by albinism only if they receive a recessive allele

from both parents.

Mendelian traits are overall easier to predict: by knowing the genome of both parents,
one can straightforwardly calculate the probability of a Mendelian phenotype to manifest

in their children.

Non-Mendelian traits, on the other hand, are continuous traits and as such more complex
to model. They are often affected by both several genes and their interaction with each
other, and by external environmental factors. An example of a Non-Mendelian trait is
birth weight: it is a continuous value (for humans, usually ranging between 2.5 kilograms
and 4.5 kilograms), it has a genetic component (there exists a positive correlation with
the birth weight of the parents), and it is also affected by external factors (such as the
diet of the mother, her smoking habits, and the number of gestation weeks [Kramer,
1987]).

The heritability is a measure of the dependence of a non-Medelian trait on genetics

and it is a difficult value to quantify. There are currently two general approaches to
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estimating the heritability of a trait. Thanks to modern technology, it is possible to
generate a complete mapping of all human chromosomes, which makes it more feasible
to identify the loci which influence specific non-Mendelian traits; for example, Yang
et al. [2010] uses GWAS (genome-wide association study) to study the heritability of
human height. Despite the technological advancement, this type of project is still quite

challenging and time-consuming.

The second approach is based more on statistical models than biological experiments;
instead of looking at the genes separately, it defines a latent variable which is responsible
for all the genetic effects. Using well-known formulas that make use of family structures
and the proportions of the genetic material that the family members share, it estimates
both genetic and environmental effect on a trait. This is the approach that we follow in

this manuscript.

The heritability is classically calculated as a constant over the entire range of the data,
that is as a single value independent on the trait value. Recent studies (e.g. Logan
et al. [2012] and Williams [2020]) have suggested that there might be more nuance in
this measure, and that it might be affected by the trait value itself; for example, low

values of a trait could be less heritable than higher ones.

This nuance is particularly interesting when applied to questions into the medicine field.
Let us consider again the example of birth weight. A very low or very high value
of weight at birth can cause severe medical conditions that can have immediate and
possibly lasting consequences to the child’s health (see, e.g. Barker and Osmond [1986],
Reyes and Manalich [2005], and Palatianou et al. [2014]). If such values of birth weight
depend mostly on the environment, an effort can be made to prevent them and hence

to reduce the risks to the child’s health.

This manuscript introduces and studies a continuous measure of the heritability, called
heritability curve, which combines the classical definition the heritability coefficient via
biometrial equations and the correlation curve, a local measure of the correlation, first
defined in Bjerve and Doksum [1993].



Chapter 2

Notation

2.1 Classical biometrical models

Both genome and environment play a role in the value that a non-Mendelian trait
assumes. We can further divide genetic component and environmental component de-
pending on how they interact with each other and the level of randomness of this effect.
While a more refined separation can be made, in this manuscript we consider the follow-
ing four latent variables: additive genetic component (A), dominant genetic component
(D), shared environmental component (C'), and residual (or random) environmental

component (£).

Given a measurement Y of a non-Mendelian trait for a family, for each jth family
member we write

where p is the overall mean and A;, C;, D;, and E; are mutually independent with

mean 0 and variances 0%, o2, o3, and o% respectively. The total variance is then

02:0%+0%+02D+o]25.

The heritability coefficient (in a narrow sense) is then defined as

that is, the proportion of the variance which is ascribed to the additive genetic effect.

The heritability coefficient (in a broad sense) is instead defined as
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that is, the proportion of the variance which is ascribed to both genetic components.
It is classically less studied than a?. From now on when we talk about heritability we

mean a?, the heritability in the narrow sense.

As mentioned above, A is a latent variable, with an unknown variance. In order to
estimate the heritability coefficient, we use the quantities that we can measure, that is
the correlation between family members of the trait in question. Then, making use of
theoretical equations which describe the proportions of shared environment and shared
genetic material among family members, we express the heritability coefficient as a linear

combination of Pearson correlations within the family.

These equations depend on the family structure, that is, which family members we
are taking measurements of. The two family structures that are mentioned in this
manuscript are twin pairs (with a distinction between monozygotic and dizygotic pairs)
and family trios made of father, mother, and child. Other popular family structures
in biometrical models include non-twins siblings, cousins, and the parents’ siblings in
the study. Overall, “closer” family members (such as a parent and a child or a pair
of siblings) share a larger portion of genetic material and are generally affected from
the environment in a similar way. As such, these smaller, closer family structures can
provide a good insight in the heritability of a trait. Moreover, measurements of small

families are easier to collect.

Outside the nuclear family, the proportions of shared genetic material between family
members become small enough to be difficult to properly analyze. For example, a
parent and a child share, on average, half of the genetic material. When looking at a
grandparent and their grandchild, this proportion is already reduced to one fourth and
can be difficult to capture. This is not to say, however, that larger family structures
should not be analyzed: as we will highlight later in this section, a model with more
family members allows for a more refined and detailed subdivision of the latent variables
describing environmental and genetic effects. Our choice to study only twin data and
mother-father-child trios was uniquely determined by the data we had access to, and
the research described in this manuscript can be generalized and refined by analysing a

dataset with information about larger family structures.

Biometrical models allow us to express the heritability coefficient as a linear combination
of the Pearson correlations of pairs within a family. To define the proper formula for
the heritability, we make use of path analysis, which models latent and visible variables
and their interactions in a diagram. As an illustrative example, Figure 2.1 shows the

path model of twin data.



2.1 Classical biometrical models 5

MZ DZ
1 1 | 1/2 1

TN N

® 0 ®O | ®®O® O
Ry pN AN

1 Y2

|
Td 1d |
|
\1/ I

Figure 2.1: Path analysis for a family structure composed of monozygotic twins (on
the left) and dizygotic twins (on the right). Y; represents the measurement of a trait,
while A;, C;, and D; are the latent variables as defined in Section 2.1. The variable E
is hidden in the figure, since there are no connections between it and the other latent
variables.

1/4

In the path model, we use the notation from equation (2.1): Y is the trait measurement
- that is, the measurable variable - while A, C, and D are the latent variables. The
variable F is usually not represented in path models, since the random environmental
effect has no significant relationship with the other latent variables. While the latent
variables A, C, and D can take different values for the family members (denoted with the
indexes 1 and 2 in Figure 2.1), their effect over the phenotype should be consistent over
all family members (so, for both twins, in both monozygotic and dizygotic twins). This
is represented by the arrow connecting each latent variable to the trait value, which is
labeled with the same symbol for all members of the family (in Figure 2.1, for example,
for each twin the arrow labeled “a” connects the value of the latent variable A; to the
trait measurement Y;). The labels of these arrows are not casual; “a” is effectively the
square root of the heritability coefficient, and we will see later in this section how to

extract a formula for a? from this path model.

The arrows that determine the path model are those connecting latent variables with
each other. These paths link the family members together, allowing us to extrapolate
the equations which define the proportions of the variance dependent on the different

latent variables. Let us consider the left side of Figure 2.1, which shows the path model
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for a pair of monozygotic twins. Monozygotic twins develop from one single zygote,
which is then split into two embrios. Because of that, monozygotic twins share the
totality of the genetic material. In our model, the genetic component is divided into two
latent variables, A and D, both of which are identical within a twin pair. In the path
model we visualize it by connecting A; and A, with an arrow labeled with the value 1,

and by doing the same to the variables Dy and Ds.

When it comes to the shared environmental effect when studying birth weight, it makes
sense to assume that monozygotic twins share the totality of the environment. Any
noise and random difference between the two twins is captured by the variable E, the

random environment.

When we look at dizygotic twins, on the right side of Figure 2.1, we expect them to
share the totality of the shared environment as well. On the other hand, dizygotic twins
are born from two separate fecundated eggs, and as such they do not share the totality
of the genetic material. The standard assumption is that they share about half of the

additive genetic material, and one fourth of the dominant genetic material.

This difference in shared genetic material between monozygotic and dizygotic twins is
the key to creating our model. We can measure the correlation of the trait for monozy-
gotic twins and for dizygotic twins (that we will denote as monozygotic correlation and
dizygotic correlation, from now on) and any non-random difference between the two can
only be attributed to a genetic effect, since the environment affects monozygotic and

dizygotic twins equally.

To quantify these proportions, we make use of the path model again. We can see the
monozygotic correlation as a path, made of arrows, that connects the values Y; and
Y5 in the left side of the diagram. We use the path that connects the variables in the
diagram to express the correlation in terms of the proportion of the variance of the
latent variables. All of the arrows in the path model are oriented: they can either point
towards a direction (e.g. A toY") or be bidirectional (e.g. A; to As). When generating a
path between two variables, it is always allowed to follow an arrow along its orientation.
It is also allowed to follow an arrow (or a sequence of arrows) against their orientation,
until the orientation changes. Moving against the orientation, then along it and then
against it again is not allowed (see Wright [1921]). For example, we might wish to find
the connection between the variables Y; and Y;. We can follow the arrow labeled “a”
against its orientation, then move from A; to A along the bidirectional arrow, and lastly
follow the other arrow labeled “a” along its orientation to reach Y3. The rule regarding
the orientation of the arrows prevents getting stuck in a loop; for example, we cannot

start from Y7, move to Y3 through the A variables, and then come back to Y; through
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the D variables because we would follow the arrows against its orientation, then along

it, and then against it again.

To describe the path that joins Y; and Y, through the additive genetic component we
multiply the labels of the arrows to obtain a x 1 X a = a?. That is not the only allowed
path: passing through the shared environment gives a contribution of ¢ x 1 x ¢ = ¢2, and
passing through the dominant genetic component adds a contribution of d x 1 x d = d?.

To calculate the total contribution, we sum the three effects and obtain
pMD) = a2 4 2+ 2. (2.2)
Applying the same rules to the dizygotic plot, we obtain the equation

1 1
pP?) = §a2 +c+ ZdZ' (2.3)

We have now found two equations which link a measurable quantity (the correlation
coefficient) with a linear combination of our unknowns (the proportions of variance a2,
¢, and d?). The goal is to derive from this system of equations a formula for the

proportions of variance, expressed in terms of the correlation coefficients.

Finding a unique solution for this system is currently impossible, because we have more
unknowns than equations. In order to derive a unique expression for each of the four
proportions of variance we require four distinct, non-trivial equations that relate them
to each other and to some measurable quantity - in our case, the correlation coefficients.
In our situation, we have three such equations: the two correlation equations (2.2) and
(2.3), and the equality

A+ +dE et =1,

2 2 2
, ¢, d?, and e” as propor-

which is always true due to the definition of the quantities a
tions of the total variance. If we solve this three-equations system, we can express the

proportions of the total variance as follows:

3
2 (MZ) _ (DZ) 2
a” =2 (,o p ) + 2d ,

(DZ) _ p(]\'fZ) _ ld2, (24)

2
e?=1—pMD _ 242,
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We express a2, ¢, and e? as functions of d2. The system has infinite solutions, one for
each value of d? between zero and one. Notice that we chose to keep d? as free parameter,

but any other parameter could be chosen in its stead and the result would be analogous.

To have a system of equations that can be used for practical applications, given a dataset
comprised of only monozygotic and dizygotic twin pairs, we are forced to simplify the
model. It is usually done by assuming that one of the proportions of the total variance
is zero. In literature, the two most-used models for twin data are the ACE and the
ADE model, which assume no dominant genetic effect and no shared environmental
effect, respectively. The formulas for the ACE and ADE models can be derived either
from the path model of Figure 2.1, by pretending that either D or C' is not present;
or by substituting in Equation (2.4) d? with 0 or ¢? with 0, respectively. The resulting
expressions for the non-zero proportions of variance are listed below, in Equation (2.5)

and (2.6), respectively.

al = g(p(MZ) _ p(DZ))’ o = 4p(DZ) o p(AlZ)7
2= Qp(DZ) _ p(MZ)’ (2.5) &2 = 2(p(MZ) _ 2p(DZ))’ (2.6)
e2=1— p<MZ>, 2—1_ p(MZ)'

Equation (2.5) is also referred as Falconer’s equation (see Falconer and Mackay [1983]).
These equations are widely used, but they rely on the Pearson correlation coefficient to

be computed.

The correlation coefficient measures the intensity of the linear dependence between
two variables. As such, it has a statistical meaning only when the variables are lin-
early related, and is a misleading measure otherwise. The data that we analyze in this
manuscript do not satisfy said condition: indeed, they have what is often called a “pear
shape” (see Figure 2.2a), which does not satisfy the homoskedasticity condition. In
the next section we introduce a tool that allows us to overcome this issue and is the

fundamental stepping stone for this manuscript.

2.2 Correlation curve and heritability curve

The correlation coefficient is a very concise and elegant way to describe the dependence
between two variables, hence statisticians have defined several equivalent mathematical

concepts which can be applied to non-linearly correlated variables. Spearman’s p, for
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example, is a rank correlation coefficient - that is, it measures the statistical dependence
of the rank values of the two variables. In practice, it evaluates how suitable a monotonic
function is to describe the relationship between the two variables (see e.g. Dodge [2008]).
In the field of information theory, the mutual information (MI) is used as measure of
dependence between two variables (see MacKay et al. [2003]). In particular, it is used
to determine the amount of information about the first variable that is gained by only

looking at the second variable.

In Bjerve and Doksum [1993], the authors propose a non parametric measure of cor-
relation for non-linear variables, called correlation curve. The correlation curve is con-
structed by generalizing the classical definition of the correlation coefficient. Let us
assume that the pair (Y3,Y3) is distributed following a bivariate normal distribution
No(pa, pi2, 01, 02, p). Then, we define the correlation coefficient as

p= T2, (2.7)
where 351 is the slope of the regression of Y3 over Y;. The variance of Y; can be rewritten
as expression of the variance of Y7, the regression slope, and the conditional variance of
Y, over Yi:

05 = (0152\1)2 + 03\17

where 03, = 03 (1 — p?). Equation (2.7) can be rewritten as
a 1/32|1

a [(012p1)? + U%Il]l/T (2.8)

This formula is true under the normality assumption, but the goal of Bjerve and Doksum

[1993] is to find a general expression that can be applicable to any pair of variables
(Y1,Y3), independently of their distribution.

For this purpose, the correlation curve was defined as follows:

p(y _ 01/32\1(9)
[(01521(y))? + 03, (w)]'/2
where the slope of the regression line is substituted by the derivative of the conditional
mean of Y5 over Y7 at Y1 =y (B(y) = 1/ (y), with u(y) = E(Y2]Y1 = y)) and the residual

variance is computed conditionally on the same value Y; = y.

(2.9)

As mentioned in the previous section, our goal is to find a replacement measurement for
the Pearson correlation in Equations (2.5) and (2.6) that can be applied whenever the

data does not satisfy the linearity assumption. To achieve this goal, we can estimate the
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correlation curve for each pair of family members in the family structure that we analyze.
In the twin data example, we estimate the monozygotic and dizygotic correlation curves
(denoted with p™%)(y) and pP?)(y) respectively). In the mother-father-child trios
example (which is explored in ARTICLE I), on the other hand, we estimate mother-

father, mother-child, and father-child correlation curves.

When estimating any correlation curve, we are making a choice regarding which variable
we are conditioning on. In some contexts, this choice can be quite straightforward. When
applying this concept to family data, instead, this choice is not at all obvious: one would
expect a level of symmetry in the measure of the correlation curve, especially when
talking about twin data. For this reason, we impose the two following exchangeability

conditions:

Var(Yz|Y1 = y) = Var(VYs = y),

(2.10)
E(YalYy =y) =EM|Yz = y).

We will expand more on these two conditions in the next section, when we compute the

correlation curve for data following a multivariate Gaussian mixture distribution.

Under these conditions, we can drop the indices from o3, (y) and Sy (y) in the correlation
curve. We further use the symbol 71 to denote the marginal standard deviation, to avoid

confusing it with the conditional variance. The formula becomes

- 718(y)
) = B + ) 2

(2.11)

We can now replace the Pearson correlations in Equations (2.5) and (2.6) with the
corresponding correlation curves. The result is a system of equations whose solutions

are functions of the trait value y.

a’(y) = 26" (y) — pP?2 (y)), a*(y) = 4p'P(y) — pMA(y),
Ay) =20P2(y) — pMA(y),  (212)  dP(y) =2(0MD(y) — 20" (y)), (2.13)
e*(y) =1— pMAW), (y) =1 - pM(y).

The curve defined as a?(y) is what we call the heritability curve, a local measure of
the heritability of a trait. The functions c¢*(y), d*(y), and €2(y) are local measures of
shared environment, dominant genetic effect, and random environment, respectively.
These newly defined curves are linear combinations of the correlation curves; as such,

the biggest challenge remains calculating the correlation curves themselves.
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In practice, to calculate a correlation curve we require the following steps:

1. choose a distribution that well describes the dataset;

2. estimate the distributions’s parameters;

3. if needed, compute the marginals for each pair of family members;

4. calculate conditional mean and conditional variance for each such pair;

5. calculate an explicit formula for the derivative of each conditional mean.

In this manuscript the goal is to find an explicit formula of the correlation curves, without
resorting to a numerical approximation. Admitting approximations would simplify some
of these steps, especially when calculating the derivatives of the conditional means, and

it is a promising alternative path to the one we pursued.

The task at hand can be more or less complicated, depending greatly on the distribution
that is chosen to fit the data. Clearly, a Gaussian distribution would return the easiest
solution: one can easily see that, if we assume that the distribution is normal, the
correlation curve is simplified back to the correlation coefficient (a proof of this statement
is provided in ARTICLE I). The purpose of this manuscript, however, is to work with
non-normal data and to apply the concept of a continuous, non-constant heritability to

said dataset.

For this purpose, we directed our interest towards a distribution that maintains some
useful properties of the Gaussian distribution, but guarantees more flexibility: a Gaus-

sian mixture.

(a) Example of pear-shaped (b) Two Gaussian compo- (¢) Three Gaussian compo-
data, with two visible dis- nents fitted on pear-shaped nents fitted on pear-shaped
tinct clusters data data

Figure 2.2: Simulated data with a “pear shape” and two Gaussian mixture fitting,
respectively with 2 and 3 components.
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2.3 Gaussian mixtures

A mixture distribution is a weighted sum of multiple distributions, each with its set of
parameters. To guarantee that a mixture is indeed a distribution, the weights must be
all positive and sum up to one. Each distribution in a mixture is called component (or

kernel). A mixture with m components, then, is a weighted sum of m distributions.

A Gaussian mixture distribution is a mixture distribution whose components are nor-
mal distributions (each with its distinct means, standard deviations and correlation
coefficients). In the most general sense, the density of a multivariate Gaussian mixture

distribution has the form

Zplan(y7 Mk Ek)a
k=1

where N,, describes the density of an n-dimensional normal distribution with mean vector
p and covariance matrix 3. Figure 2.3 is an example of a one-dimensional Gaussian
mixture. In this manuscript we work with two-dimensional data (twin pairs) and three-
dimensional data (mother-father-child trios), so we restrict our interest to n = 2 and

3.

Gaussian mixtures fit rather well on the datasets studied in this manuscript. As men-
tioned in Subection 2.1, BMI and birthweight data often have a “pear shape” similar
to Figure 2.2a. We can imagine this “pear shape” as two (or more) separate clusters
of data, each distributed following a normal multivariate distribution ((see Figure 2.2b
and 2.2¢). A Gaussian mixture is then able to capture these separate clusters into a

single distribution model.

When computing the correlation curve, picking a Gaussian mixture distribution as un-
derlying distribution is a very convenient choice. The conditional mean and conditional
variance of a Gaussian mixture can easily be calculated from their definition, due to the

properties of a mixture distribution (detailed calculations can be found in ARTICLE I).

Finding an exact expression for the densities of the marginal distributions can still
be a challenge; for this reason we impose some restrictions on the parameters of each
Gaussian component. In particular we require that, within each component, all family

members share the same mean and same standard deviation. This means that, for each
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0.3
0.2
0.1
0.0

-2.5 0.0 25 5.0 7.5

Figure 2.3: Density curve of a one-dimensional Gaussian mixture with two components,
with mean values u; = 0, pus = 4, standard deviations 0, = g9 = 1, and weights
p1 =0.25, py = 0.75.

k€ 1,...,m (in the 2-dimensional example),

tr = (ks pir)
1 p?
Ek = Uz
Pt 1

This is not an unreasonable assumption: the pear shape of the data already suggests a
tendency of centering the means of the components along the diagonal Y; = Y3, which
corresponds to the condition on the mean vector. Similar remarks can be made about

the standard deviations.

ARTICLE I shows how to derive the marginal densities when imposing these restrictions.

2.4 Gaussian mixtures and multimodality

Gaussian mixture distributions are often multimodal, with a mode corresponding to
each component (see, for example, Figure 2.3). A certain level of caution is required

when estimating the parameters of a mixture distribution.

To describe some issues that arise from multimodality, we use the Gaussian mixture
from Figure 2.3 as example. The mixture has two components, that we label in ascend-
ing order according to the mean (that is, we assume p; < ps). This choice is, however,
completely arbitrary; if we label the component with the lowest mean as “second com-

ponent” and the one with the highest mean as “first component” we are describing the
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exact same distribution.

This is a common issue with mixture distributions: estimation algorithms often identify
two sets of parameter estimates that are identical, except that the labels of the compo-
nents are switched, and treat them as separate solutions. This makes the optimization
more difficult, because multiple solutions are the optimal one. For this reason, we intro-
duce a parametrization which imposes an order on the components, de facto collapsing
all the different equivalent optimizations into a single one. We define the parameters o

through the following relations:

1] = exp(afl])
uli] = pli — 1] + exp(alfi]) for every i = 2,...,m

The means of the components are now ordered from smallest to largest.

The estimation model that we use in this manuscript is a maximum likelihood method.
The most popular algorithm for optimizing mixture distributions, called the EM algo-
rithm, is also a maximum likelihood model, and is proven to converge (albeit slowly) to
a maximum of the likelihood function (see Wu [1983]). It cannot, however, distinguish
between local and global maxima. This means that, even when the algorithm converges,
we are not certain to have found the optimal parameters of the mixture distribution.

This is an issue that we encounter with our model as well.

Both the EM algorithm and the algorithm that we present in this manuscript make
use of initial values to begin the exploration of the parameter space, and fine tuning
the choice of said initial values is a way to reduce the probability of incurring in local
maxima, instead of the global one. This subject is discussed at length in ARTICLE III,

which proposes an HMC algorithm to explore the space of initial values.



Chapter 3

The algorithm

The common thread in the three articles presented in this thesis is the algorithm that
we wrote to optimize the parameters of the Gaussian mixture which fits the data. The
algorithm is written in the language R [R Core Team, 2020], and interpolates a file writ-
ten in the language C++ [Stroustrup, 1995] to calculate the derivatives of the likelihood
functions, which are then used to improve the performance of the optimization functions

in R.

In this chapter we present an introduction to automatic differentiation, which allows to
calculate derivatives in an efficient way. We then present the package TMB [Kristensen
et al., 2016], which allows R to import and read a C++ file.

3.1 Automatic differentiation

Having access to differential information about the objective function (usually first and
second order derivatives) can strongly improve the quality of the optimization process.
When computing derivatives through an algorithm there are two factors that must be
kept in mind: accuracy and efficiency. Being able to calculate the exact derivative of
a function is de facto useless, if the computation time is so long that the algorithm
becomes unusable. On the other hand, an approximation can be evaluated quickly, but

the results may not be as precise.

The opposite sides of this spectrum are represented by symbolic derivation and numerical
derivation, respectively. Symbolic derivation is used in the field of computer algebra,
and works uniquely on symbolic mathematical expressions. To compute a derivative this

approach uses well-known rules for derivation (such as the product rule and the chain
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rule) and obtains an exact formula of the derivative.

Numeric differentiation, in contrast, approximates the value of the derivative of a func-

tion at a specific point. It does so starting from the formula

flx+h) = f(z)
h

which, for a small enough value of h, approximates the slope of the tangent of the

function f at a point x - that is, it approximates the value f’(z).

Automatic differentiation, shortened to AD (see, e.g. Neidinger [2010]) was developed as
a computational tool for estimating derivatives in opposition to numerical approximation
and symbolic differentiation. It makes use of the chain rule and Laplace approximation
to create an algorithm whose output is a precise and efficient measure of derivatives and

partial derivatives up to the third order.
To explain how AD works, we use a classical example: the function
y = f(x1,%2) = T122 + sin(xq).

We express f(z1,z2) as a chain of simpler functions, that we denote with w;. Together,

they form an evaluation trace, that starts with the inputs z; and z5 and outputs y.

wy =T
Wz = T2
w3 = WiWs (3.1)

wy = sin(w)

Ws = W3 + Wy

To better visualize the logical dependencies of the functions w;, we represent the evalu-
ation trace in the form of a graph (Figure 3.1). For example, the function w, depends
only on wi, while ws is a function of both wy and ws. This decomposition of f(x1,x2)
is useful for computing the value of a function at a point (z1,zs) by identifying the
terms that repeat themselves, especially in more complex functions; more importantly,
it highlights the dependencies that will quicken significantly the computations of the

derivatives.

There are two main approaches to AD: forward accumulation and reverse accumulation
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sin

@ — sin(Xi)+XiXz

Figure 3.1: Graph of the evaluation trace of the function f(x1,z2) = 122 + sin(z;).

(see e.g. Linnainmaa [1976]). The first one consists in computing the derivative of the

terms together with the values of the function itself, in one single (forward) sweep. The

second method, instead, consists in performing first a “forward sweep” that computes

the value of the function and in computing the derivative in a second sweep, from the

end backwards. In mathematical terms, this means that forward accumulation will

estimate the partial derivatives 217”1 starting from ¢ = 1, while the reverse accumulation
dy

will estimate the derivatives J¥ starting from ¢ = 5. We present the two methods

applied to the example function.

For forward accumulation, we require to compute the partial derivatives of each w; with
respect to both x; and x5. For this example, we only show the partial derivatives with

respect to 1, with the computations with respect to xo being analogous.

ow_on
83:1 81’1

ou o, _

axl c’):rl

Oows . Owiwe Ow Ows

Oows _odw ~ Owy 2
81‘1 0:751 (91'1 w2 + ()xl b w2 (3 )
Owy _ Osin(wy) sin(wy) = Cos(wl)% = cos(wy)

8561

87931 8301
Ows 0wz +wy) Owy  Owy )
c?zrl o 811 B (')1;1 + 81’1 " +COb(wl)

As it is shown in Equations 3.2, the decomposition of the function f(x1,z2) into the

simpler functions w; has a direct advantage: the single partial derivatives are easy
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to compute, and by virtue of the definitions of the functions w; we can build from

previous computations in the chain to greatly simplify those of the latter derivatives.

For example, the term 21:1 is the first derivative that is computed, and storing it simplifies
the computations of the terms % and %. This is only amplified for more complex
1 T

functions.

We now show an example of reverse accumulation. First, we perform a “forward sweep”
to estimate the values of all w;’s following their definition in Equation 3.1; they will be

used later. Then, to estimate the derivative of the function f(zi,z2), we compute the

derivatives ddTy (also called adjoints) for every i starting from ¢ = 5 . At each step we

move backward through the graph, and we use the chain rule to express the adjoint 7% dy

in terms of the adjoints -2, for j > i, and the derivatives of the functions w;’s.

dw )
dy _dy _

dws dy

dy _ dy dws _ 1d(wg—i-w4) .

dwy dw5 dw4 dwy

ﬂ _ ﬂdwg) _ 1d(w3+w4) -1

dUJ3 d’lU5 dw3 dw3

dy dy dws d(wywy)

_— = =1—-= wh

dwy dw3 de Wy

dy dy dw, dy dws d (sin(wy) d (wyws
d—m:d—wd—m—}—d—%d—m:l (dﬂ(Jl )—I—l s ) = cos(wy) + ws

Recall that wy = x1, we = x5, and y = f(Tl7 x2). The last two steps of the algorithm,

Of (z1,x2) af( zl,m)
Oxy z2

and in terms of the simple functions

then, express the partial derivatives

w;’s, which we estimated in the “forward sweep”.

Notice that in the forward accumulation example we have not shown the entire process:
in order to have the complete algorithm, we would need to compute the partial deriva-
tives of each w; with respect to x5 as well. This extra step is instead not required in the
reverse accumulation, as explained above. Extra steps are required for reverse accumu-
lation if the function f(x) has multiple outputs: for example, assume that our function

is defined such that f : () — (y1,y2). In that case, we would need to compute both

jl and dy"’
W

tion is preferable when m > n, while reverse accumulation is preferable when n > m.

for each j. Overall, given a function f : R® — R™, forward accumula-

Whenever the function is scalar, then, reverse accumulation is the fastest approach.

The main issue with reverse accumulation is the need to store the intermediate steps

that are required to compute the last derivatives.
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3.2 TMB

The language R has inbuilt several optimization functions that can use differential in-

formation to improve the quality of the estimations.

The default derivation functions in R use symbolic differentiation. To implement auto-
matic differentiation we use the package TMB (Template Model Builder), which allows
to use a template in C++ to define the objective function. It uses the C++ pack-
ages CppAD [Bell, 2017] and Eigen [Jacob, 2006] to use automatic differentiation and to

perform linear algebra operations, respectively.

In practice, when using TMB, we write two separate codes, one using R language and
one using C++ language. In the R code, we import a dataset, define the parameters
of the objective function, and assign an initial value to each. We then compile the
C++ file, which reads in the data and the parameters from the R code and defines the
objective function. Using automatic differentiation, C++ computes the gradient and
the hessian of the objective function, which can then be used back in the R code, where

the optimization phase takes place.

In the Appendix we describe in details a generalized version of the two codes used to

optimize the negative log likelihood function of a Gaussian mixture distribution.
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Chapter 4

Further research

4.1 EM algorithm

A popular approach when fitting a mixture is to assume that each point in the dataset is
generated by one specific mixture component. The problem can be phrased as estimating
the parameters of m separate Gaussian distributions, and then associating each point in
the dataset to one such distribution. The weights p; are then derived by calculating the
proportion of points associated to each density. In this context, we have two separate
sets of unknowns: the parameters describing each component of the mixture (that is g
and X, when working with Gaussian mixtures), and the latent variable which identifies
which component each data point “belongs to”. Under this assumption, a method to
fit a mixture was developed as an iterative algorithm, made of two steps: the first step
assumes the parameters to be known and estimates the latent variable, while the second
step keeps the values of the latent variable fixed and estimates the parameters. This
is the Estimation-Maximization (EM) algorithm [Dempster et al., 1977] applied to the
estimation of Gaussian mixtures. The algorithm is defined for any statistical model
that includes latent variables and has applications in a variety of fields. Relevant to our
research, the EM algorithm is considered the standard approach for maximum likelihood

estimation applied to finite mixture models.

In Dempster et al. [1977] it is proven that each iteration of the EM algorithm increases
the log likelihood, guaranteeing a convergence to a maximum which is, although, not
necessarily the global maximum of the log likelihood function. This is a common issue
among maximum likelihood methods, including the one presented in this manuscript.
A longer discussion about this issue and a proposed solution can be found in ARTICLE
TI1.
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Parameter
Component 1% o p | D
1 (22, 23) (1,0.5) | 0.7 | 0.6
2 (22.2,23.1) | (1,0.5) | 0.5 | 0.3
3 (22.4,23.2) | (1,05) [ 0.2 | 0.1

Table 4.1: Parameters generating the simulated dataset used in Section 4.1

While the EM algorithm always converges to a local maximum of the log likelihood, it
is notoriously slow. This issue is well known and addressed through several approaches
(see e.g. McLachlan and Peel [2000] for a review).

To start the first estimation step, the algorithm requires initial values for the parameters
of the mixture. The choice of initial values affects the speed to which the algorithm con-
verges and which maximum is reached. The initialization of the EM algorithm is widely
discussed, especially in the context of Gaussian mixtures (for example, in Baudry and
Celeux [2015], Biernacki et al. [2003], and Melnykov and Melnykov [2012]). The number
of components is often treated as a hyperparameter that is trained using mathematical

criteria such as AIC or BIC value.

The goal of this section is to compare the EM algorithm to the TMB approach when
estimating Gaussian mixture parameters. We will use a dataset simulated from a mul-

tivariate Gaussian mixture with three components to compare the two methods.

An important remark: the code as we describe it in the Appendix contains strong
restrictions on the parameters of the mixture that cannot be translated in the EM
algorithm. In particular, this holds for the conditions p¥ = p;? and of = or;-“ for each
component k, and each family member 4, 7. We introduced these conditions to simplify
the calculation of the correlation curve, so they are not necessary in this specific example.
To make the comparison between the two models as fair as possible, we rewrote the C++

and R codes to remove these restrictions.

We generate a simulated dataset from a Gaussian mixture with three components; the
parameters are listed in Table 4.1. We choose a dataset with components that are close
to each other, which are usually more difficult to estimate correctly. We use two criteria
to compare the two models: the time the algorithm takes to converge to a solution, and

the negative log likelihood value of the estimated solution.

We first run both algorithms choosing as initial values the real parameters defining the
generating Gaussian mixture (listed in Table 4.1). The results of this approach are
collected in Table 4.2 (upper half). The TMB algorithm is significantly slower than the
EM algorithm, but the negative log likelihood it returns is slightly better.
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True values

Algorithm Conv. time Negative log likelihood
EM 1.18882 193265.3
TMB 69.18763 193262.0
Ten random seeds
Algorithm Conv. time Negative log likelihood
mean ‘ std. dev. mean ‘ std. dev. ‘ min ‘ max
EM 25.23881 | 9.12835 | 193308.5 | 31.32351 | 193279.2 | 193368.2
TMB 167.90230 | 18.16970 | 193262.6 | 0.57158 | 193262.0 | 193263.4

Table 4.2: Convergence time (in seconds) and negative log likelihood for the EM and
the TMB algorithm. The upper half of the table shows the results obtained by choosing
as initial values the true parameter values. The lower half of the table shows the distri-
bution of the results obtained by repeating the initialization through shortemcluster
with ten random seeds.

We then used the function shortemcluster to generate initial values derived by a short
EM run. This function is often used in an EM algorithm to establish initial values which
are in a reasonable range for the parameters. The function is affected by a random
seed, so we repeated the process for ten different seeds, obtaining ten separate sets of
initial values, which we used to initialize both the EM and the TMB algorithm. Lastly,
we collected convergence time and negative log likelihood for all ten attempts, and
studied their distributions calculating mean and standard deviation. For the negative
log likelihood we also recorded minimum and maximum value. The results are collected
in Table 4.2 (lower half).

The EM algorithm is faster with random initial values as well, but it does not settle
into one single solution, and the effect of the different initial values is seen in the larger
standard deviation of the negative log likelihoods. The TMB negative log likelihood,
on the other hand, varies very little; moreover, among the ten attempts, the maximum

TMB negative log likelihood is lower than the minimum EM negative log likelihood.

Overall, we observe that EM is a faster algorithm, with consistently good results. TMB
is slower, but outperforms EM in terms of accuracy, both with accurate initial values

and random ones (albeit within a reasonable range from the true parameters).

4.2 An analysis of the number of components

In ArTICLE I and ARTICLE II, we utilize AIC and BIC values to choose the best number
of components, m, for the fitted Gaussian mixture. If AIC and BIC provided conflicting

results, we relied on the latter. Primarily, our goal was to select the model with the
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Parameter
Component UE 1375 o | puz | pPpz D
1 21.705 | 23.575 | 1.94 | 0.74 | 0.31 | 0.70
2 24.495 | 26.365 | 2.72 | 0.34 | - 0.19 | 0.26
3 27.995 | 29.825 | 4.67 | 0.38 | -0.22 | 0.04

Table 4.3: Parameter estimates used to generate a three-component mixture in Sec-
tion 4.2.

lowest complexity, while still capturing the nuances of the data. The more conservative

BIC was the better criterion to reach this goal.

In both articles, however, the difference in BIC values among some models was almost
insignificant. An important question then arose: how much would the choice between
models - that is, between number of components in a mixture - affect the subsequent
analysis, in particular, in relation to the shape of the correlation and heritability curve?
In this section we explore this issue, plotting heritability curves for Gaussian mixtures

with a variety of components, fitting the same simulated dataset.

We generate a dataset based on the parameters estimated on the twin data of ARTICLE
II. According to the BIC value, a Gaussian mixture model with three components was
preferable, and the subsequent optimization returned the parameter estimates collected
in Table 4.3.

We separately fitted the dataset with Gaussian mixtures with 2, 3, 4, 5, and 10 mixture
components. We also fitted the dataset with a Gaussian distribution for comparison.
We calculated AIC and BIC values for all the models described above. As expected,
both criteria agree that the three components mixture fits the dataset best. In Table 4.4
we collected, for all models, the difference between their AIC and BIC values and those
of the best fitting model (that is, m = 3). We denote these differences with the symbol
AAIC ad ABIC.

The improvement from a simple Gaussian distribution to a mixture is very obvious,
especially compared to the relatively smaller improvements between the other models.
The difference in AIC values between m = 3, 4, 5, and 10 is quite small, and while not

as trivial, the difference in BIC between m = 3, 4, and 5 is also relatively small.

To check the solidity of our results, we plot the heritability curves for all the models

described in this section (Figure 4.1).

We observe that, regardless of the number of components, all heritability curves follow
the same pattern (first decreasing for the majority of the trait range, and then increasing

again until around the 0.975 quantile). The obvious exception is the heritability “curve”
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m AAIC ABIC
1 2938.5 2866.9
2 2389 2031
3 0 0

4 6.4 42.2
) 5.1 76.7

10 39 254.5

Table 4.4: Difference in AIC and BIC values between Gaussian mixtures models with
1, 2, 3, 4, 5, and 10 components, and the best fitting model (m = 3).

for m = 1, which is the constant heritability coefficient along the entire data range by

definition.

As the number of components increases, so does the wiggliness of the heritability curve.
It is particularly noticeable in the curve for m = 10, which also exhibits a big drop
in the left-hand tail (most likely due to high variation and the asymptotic behavior of
heritability curves, explained thoroughly in ARTICLE I).

This result shows that, if we had chosen a different number of components as our model
(for example by using the AIC value instead of the BIC value as selection criterion in
ARTICLE I), the overall conclusions drawn about the heritability curve and its shape

would be unchanged.

4.3 Other non-constant measures of the heritability

4.3.1 Quantile regression

While this manuscript focuses on the heritability curve, its properties and its applica-
tions, a big effort has been put into comparing it with existing non-constant measures

of the heritability - namely, quantile regression.

Quantile regression (introduced in Koenker and Bassett Jr [1978]) is a regression model
which estimates the conditional quantiles of the response variable, instead of its con-
ditional mean (the approach of classical linear regression). Quantile regression is a
powerful tool, since it requires no condition on the distribution of the dependent vari-
able and, relevantly to our research, outputs a dynamic, non-constant regression curve.
It has recently been used to measure the heritability for BMI in Williams [2020].

Since quantile regression is a valid alternative to solving the problem we wanted to
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Figure 4.1: Heritability curves of female simulated data, generated assuming an under-
lying Gaussian mixture distribution. The hyperparameter m varies from one (that is,
assuming an underlying Gaussian distribution) to five. The gray area is a 95% confi-
dence interval for the heritability curve for m = 3 components, the best model according
to AIC and BIC value. 95% of the data is contained between the two vertical lines.

tackle, we decided to inspect it and compare it to the heritability curve in ARTICLE
II, using twin data. Section 7 in the Supplementary Material of ARTICLE II goes into
details on the similarities and the differences between the results of the two methods,

concluding that this topic should be explored more in depth.

4.3.2 Non-parametric models

As mentioned in Section 2.2, our goal when approaching the issue of a non-constant
heritability was to define a fully parametric method, with an explicit formula for both
correlation curve and heritability curve. This approach is very interesting from a math-
ematical and theoretical point of view, but can be very difficult to apply to real data. In
order to generate a heritability curve on our data, for example, we have made strong as-
sumptions about the Gaussian mixture underlying the data, as described in Section 2.3.
While these assumptions are reasonable of the data we inspect in ARTICLE I and ARTI-
CLE II, they restrict significantly the pool of data that we can calculate the heritability

curve of.

For this reason, in ARTICLE II we explored a non-parametric version of the heritability
curve. In particular, this version does not compute the symbolic derivative of the con-
ditional mean, and uses numerical methods instead. A longer discussion of this method
can be found in Section 6 of the Supplementary Material of ARTICLE II.



Chapter 5

The Articles

ARTICLE L HERITABILITY CURVES: A LOCAL MEASURE OF HERITABILITY IN FAMILY
MODELS is a mostly theoretical article which introduces the heritability curve and its
properties. It describes the framework used in this manuscript, studies the asymptotic
behavior of the correlation curve when applied on Gaussian mixture, and presents two
examples: one with measurements of BMI in pairs of twins, and one with measurements

of birth weight in mother-father-child family trios.

ARTICLE II, THE HERITABILITY OF BMI VARIES ACROSS THE RANGE OF BMI — A
HERITABILITY CURVE ANALYSIS IN A TWIN COHORT shows the application of the heri-
tability curve on a large twin cohort dataset and draws conclusions about the heritability
of BML. In the Supplementary Material we further explore the method, by comparing
it to another non-constant measure of heritability, quantile regression, and by defining

a non-parametric version of the curve.

ARTICLE III, EXPLORING THE LIKELIHOOD SURFACE IN MULTIVARIATE GAUSSIAN
MIXTURES USING HAMILTONIAN MONTE CARLO, is a theoretical article which ap-
plies Hamiltonian Monte Carlo methods to initialize the TMB algorithm, with the goal
to optimize the parameter estimates. The article highlights the struggles in applying
Hamiltonian Monte Carlo methods to multivariate Gaussian mixtures and offers three

approaches to increase the chance of finding realistic parameter estimates.
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Appendix: The code

We show the code for a dataset of monozygotic and dizygotic twin pairs (the type of
data illustrated in both ARTICLE I and ARTICLE II). For simplicity, we assume that
all twin pairs are male. We later give a brief explanation on how we deal with sex

differences in the data.

We first explain the R code, keeping in mind that the flow of the algorithm moves
between R and C++ as described in Subsection 3.2.

The number of components of the Gaussian mixture we fit is a hyperparameter, that

must be decided in advance. We provide the code for a generic, fixed value of m.

R code

As mentioned in Subsection 2.4, to initialize the algorithm we require to input an ini-
tial value for each variable of the objective function. Following the restrictions and
reparametrizations described in Subsection 2.3 and Subsection 2.4 the parameters are:
m reparametrized means a’s; m standard deviations o’s; m monozygotic correlation co-

(PZ)g: m — 1 weights 6’s, with the

efficients p™4)’s; m dizygotic correlation coefficients p
last weight defined as 1 — Zﬁal d;. To impose the last condition we first define a vec-
tor of length m and then apply the function delta.n2w (defined below), which returns

a vector of length m — 1.

To provide a general example, we do not choose the numerical initial values for the
parameters, using a mock vector in its stead (for example, the vector of length m
(alpha.1,...,alpha.m) as initialization for the a’s). When applied to a real data,
these mock vectors should be replaced with some appropriate initial values (see ARTI-

CLE III for a longer discussion on the choice of initial values).
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initial_alpha <- (alpha.l,...,alpha.m)
initial sigma <- (sigma.l,...,sigma.m)
initial rhoMZ <- (rhoMZ.1,...,rhoMZ.m)
initial rhoDZ <- (rhoDZ.1,...,rhoDZ.m)
initial delta <- (delta.l,...,delta.m)

delta.n2w <- (m, delta){

foo <- log(delta/deltall])

tdelta <- as.vector(tail(foo, m - 1))
(tdelta)

We then collect all the initial values into a list, called parameters. Instead of optimizing
the standard deviations, we first apply the logarithm; in this way we guarantee a positive
value of the standard deviations (which are calculated later as the exponential of log(c)’s,

the parameters which are optimized).

In a separate list, dat, we then collect all the known information, that is the data in
matrix form (divided between monozygotic and dizygotic twin pairs for convenience)
and the known number of components of the mixture distribution. We also generate
a vector of points that we will use later to estimate correlation curves and heritability
curve. The vector should collect equidistant points into the medium range of values that

the trait we are studying can take.

data_mat MZ <- data.matrix(Data_MZ)

data_mat DZ <- data.matrix(Data_DZ)

dat <-list(data_mat MZ = data_mat_MZ, data_mat DZ = data_mat DZ,

m = m, y_points = y_points)

parameters <- list(alpha = initial alpha,
log_sigma = log(initial_sigma),
rhoMZ = initial rhoMZ, rhoDZ = initial rhoDZ,
tdelta = delta.n2w(m, initial delta))

The functions that allow us to read and compile a C++ code are compile and dyn. load.
The first function runs the C++ code and generates a .DLL file - that is, a dynamically
loaded library. The .DLL file is loaded (through the function dyn.load) and permits
to execute the functions that are defined in the C++ file (namely, as we will see in the

next section, the negative log likelihood).
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(TMB)

compile("Cpp_file.cpp")
dyn.load(dynlib("Cpp_file"))

The function MakeADFun, from the package TMB, reads the .DLL file and generates the
functions required to calculate the objective function defined in the C++ file and its
derivatives. To generate these functions it also requires the data in the list dat and
the initial values for the parameters of the objective function, contained in the list

parameters.

obj <- MakeADFun(data = dat, parameters = parameters,
DLL="Cpp_file")

Lastly, we optimize the parameters of the objective function using a default R optimizer,
nlminb. The objective function, its parameters, and its first and second derivatives are

collected in the object obj generated by MakeADFun.

## Optimization
opt_nlminb <- nlminb(obj$par, obj$fn, obj$gr,objshe,
control = list(iter.max = R

eval .max = ))

Notice that the code described above is general in terms of the number of components.
To test several m’s one can create an automated loop, while setting initial values vectors

with an appropriate length at each iteration.

C++ code

The following code is written in C++ language. Notice that C++ indexes from 0, rather
than 1 (as R does).

As a first step, we read the TMB package with the function include.

<TMB.hpp>

The purpose of the C++ code is to define the objective function as a class that can be

derived. The entire code is contained in the following command:
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< Type>
Type objective function<Type>: : O {

In the R file we constructed two lists - one containing data, another containing param-
eters. We import them in the C++ code with two separate functions (DATA for data,
PARAMETER for parameter).

DATA_MATRIX(data_mat_MZ);
DATA_MATRIX(data_mat_DZ);
DATA_INTEGER (m) ;
DATA_VECTOR (y_points) ;

PARAMETER_VECTOR (alpha) ;
PARAMETER_VECTOR(log_sigma) ;
PARAMETER_VECTOR (rho) ;
PARAMETER_VECTOR(tdelta) ;

We now generate the mean vector mu, the standard deviation vector sigma, and the
weight vector delta from the imported parameters alpha, log sigma, and tdelta using
the appropriate functions. When defining the log likelihood of the Gaussian mixture

distribution, it is more convenient to work directly on these parameters.

// Generate the vector mu
vector<Type> mu(m) ;
mu(0) = exp(alpha(0));

( i=1; 1i<m; i+H){

mu(i) = mu(i - 1) + exp(alpha(i));
}
// Generate the vector sigma
vector<Type> sigma = log_sigma.exp();
// Generate the vector delta
vector<Type> delta(m);
delta(0) = Type(l); // set first element to one
if(m > 1){

delta.tail(m - 1) = exp(tdelta);
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delta = delta/delta.sum();

We construct covariance matrices and mean vectors for each Gaussian component, start-
ing from the initial values read from the R file. We follow the constraints described in
Section 2.3. We create a vector of Gaussian components (mvdnormMZ) which has length
m and whose each element is a Gaussian component, created through a loop. We show

the process for monozygotic twins.

//Create uncentered mixing densities and mean vectors
vector<vector<Type> > mu_vec(m);
matrix<Type> covMZ(2,2);
matrix<Type> I1(2,2);
matrix<Type> U(2,2);
U = U.setOnes();
I = I.setIdentity();
matrix<Type> V = U - I;
density;
vector<MVNORM_t<Type> > mvdnorm(m) ;

( i=0; i<m; i++) {

//covariance matrix of component i

covMZ = sigma2(i)*I + sigma2(i)*rhoMZ(i)*V;
//mean vector of component i

vector<Type> mu_vec_i(2);

mu_vec_i(0) = mu(i);

mu_vec_i(2) = mu(i);

mu_vec(i) = mu_vec_i;

// uncentered density of component i
mvdnormMZ (i) = MVNORM_t<Type>(covMZ) ;

Repeating the process switching rhoMZ with rhoDZ generates the object mvdnormDZ,

which represents the contribution of the dizygotic twins.

Now we define the objective function - that is, the negative log likelihood. Through
a loop we compute the likelihood for each data point in the dataset, and add it to
the quantity nll. Monozygotic and dizygotic twin pairs are divided in two separate

datasets, so we show the code only for the former.
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Notice that in the loop over the Guassian components we take the exponential of
mvdnorm and we then take the negative logarithm of the value obtained. This is be-
cause mvdnorm is by default defined as minus the logarithm of a Gaussian, to streamline
the calculation of the negative log likelihood. Since we are not calculating the negative
log likelihood of a Gaussian distribution, but that of a Gaussian mixture, the logarithm
must be applied after summing all mixture components together; for this reason we

require the extra step explained above.

// Evaluate negative log-likelihood

Type nll = 0;
n mz = data_mat MZ.rows(); // number of MZ pairs
( i=0; i< n_mz; i++){
// Row no. i

vector<Type> Y(2);
Y(0) = data_mat MZ(i,0);
Y(1) = data_mat MZ(i,1);
// Evaluate mixture for obs no. i
Type prob_i;
Giot =05 3 <my j+0)f
prob_i += delta(j)*exp(-mvdnormMZ(j) (Y - mu_vec(j)));
}
// Contribution
nll -= log(prob_i);

We repeat the same process with dizygotic twins, adding their contribution to nll.

The code returns the negative log likelihood, which is then optimized by the R function
nlminb. We can also return the values of the estimated parameters using the function
ADREPORT.

nll;
ADREPORT (mu) ;
ADREPORT (sigma) ;

Other than defining the negative log likelihood function, we use the C++ file to define
the heritability curve. Using ADREPORT, we can then return the estimated value of the

curve to the R file.
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To define the heritability curve, we first must calculate the monozygotic and dizygotic
curve. Again, the process is analogous for the two zygosities, so we illustrate the process

only for monozygotic twins.

We are assuming that the underlying distribution is a Gaussian mixture following the
restrictions detailed in Section 2.3. Under these assumptions, it is possible to obtain
an explicit formula of the correlation curve. In the code we refer to the notation and

decomposition of the correlation curve as defined in ARTICLE I, Section 3.

We initialize the correlation curve, a vector which has the same length as the vector

y-points spanning over the range of the trait studied.

n_points= y_points.size();

vector<Type> cor_curve MZ(n_points); // correlation curve

All the following calculations are performed inside a loop over the points in y_points. In
the loop we initialize and define the conditional probabilities pj(y) = P(d = k|Y> = y).
Recall that m is the number of components, and whenever we loop over m we are

considering the contributions of all mixture components.

vector<Type> p_star(m);

vector<Type> pk_norm(m) ;

( k = 0; k <m; k++){
pk_norm(k) = delta(k)* (y_points(i), mu(k), sigma(k), false);

( k =0; k <m; k=){
p_star(k) = pk_norm(k)/pk_norm.sum();

We then initialize and define the conditional mean p(y), the conditional variance o2(y),
and the derivative of the conditional mean B(y), evaluated at each point y_points(i).

We divide the formula of 5(y) in three pieces to simplify the computations.

// Conditional mean
vector<Type> CM_vec (m) ;
( k =0; k <m; k+t+){
CM_vec(k) = p_star(k)*(mu(k) + rho(k)*(y_points(i) - mu(k)));

}

Type CM = CM_vec.sum();
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// Conditional variance
vector<Type> CV_vec(m);
( k =0; k <m; k++){
CV_vec(k) = sigma(k)*sigma(k)*(1 - rhoMZ(k)*rhoMZ(k))*p_star(k)+
p_star(k)*(mu(k) + rhoMZ(k)*(y_points(i) - mu(k))- CM)=*
(mu(k) + rhoMZ(k)*(y_points(i) - mu(k)) - CM);

}

Type CV = CV_vec.sum();

// Derivative of conditional mean
vector<Type> Beta_A_vec(m);
vector<Type> Beta_B_vec(m);

vector<Type> Beta_C_vec(m);

( k =0; k <m; kt+){

Beta_A_vec(k) = p_star(k)*(rhoMZ(k) - (mu(k) + rhoMZ(k)*
(y_points(i) - mu(k)))*(y_points(i) - mu(k))/
(sigma (k) *sigma(k)));

Beta_B_vec(k) = p_star(k)*(mu(k) + rhoMZ(k)*(y_points(i) - mu(k)));

Beta_C_vec(k) = p_star(k)*(y_points(i) - mu(k))/(sigma(k)*sigma(k));

}

Type Beta = Beta_A_vec.sum() + Beta_B_vec.sum()*Beta_C_vec.sum();

One last component that we require to compute the correlation curve is the marginal

standard deviation 7.

Type mu_bar = (delta*mu).sum();
Type marginal variance = (delta*sigma2).sum() +
(delta*(mu - mu_bar) (mu - mu_bar).sum();

Type marginal_sd = sqrt(marginal_variance M) ;

We can then define the monozygotic correlation curve at the point y_points(i):
Type sigma_Beta = marginal_sd*Beta;
Type sigma_Beta_squared = sigma_ Beta*sigma_Beta;

cor_curve_MZ(i) = sigma_Beta/sqrt(sigma_Beta_squared + CV);

We can repeat the process for dizygotic twins, and obtain the dizygotic correlation
curve. With both monozygotic and dizygotic correlation curves, we can finally define

the heritability curve (we use the formula of e} 5(y) in an ACE model in this context).
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vector<Type> her_curve(n_points);
( i = 0; i < n_points; i++){

her curve(i) = 2x(cor_curve MZ(i) - cor_curve DZ(i));

The curves a4z (y), (y), d*(y), and e*(y) are linear combinations of the monozygotic

and dizygotic correlation curves and can be easily computed analogously to a2 g (y)-

Adding a sex covariate

In the data studied in ARTICLE II we have information about the sex of the twin pairs
(only same-sex twin pairs were collected in the dataset). Following the model explained
in ARTICLE II, we assume that male and female pairs share all parameters, except for
the mean vector. We define a parameter v such that pas = pr +. (In the articles this
parameter is called 3, but to avoid confusing it with the derivative of the conditional

mean J(y) we change the name in this explanation).

We define the new (scalar) parameter gamma, initialized in the R code and passed to the

C++ code through the list parameters.

We also need to provide information about the sex of each pair; we do it with two binary
vectors sexMZ and sexDZ, containing a 0 in the positions corresponding to female twin
pairs, and a 1 in the positions corresponding to male twin pairs. These vectors are
passed to C++ through the list data.

In the C++ code, instead of working with the parameter mu, we define the following two

vectors:

vector<Type> mu_F(m) ;
vector<Type> mu_M(m) ;
( k =0; k <m; k+){

mu_F(i)= mu(i)-0.5*gamma;

mu_M(i)= mu(i)+0.5*gamma;

We then define the objects mu_vec_F and mu_vec M using the appropriate mean param-
eter. When computing the contributions of monozygotic and dizygotic twins to the

negative log likelihood, we condition on the vector sexMZ and sexDZ; for example
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(sexMZ(i) == 1) {
Gnt j =05 § <my j+o){
prob_i += delta(j)*exp(- mvdnorm DZ(j) (Y - mu_vec_M(j)));

and so forth.

We compute two different heritability curves for male and female data, simply repeating
the steps described in the Appendix section "C++ code” separately with the parameter

mu_F and mu_M.
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Heritability curves: A local measure of heritability in

family models

Geir D. Berentsen, Francesca Azzolini, Hans J. Skaug, Rolv T. Lie,

Hakon K. Gjessing

Abstract

This paper introduces a new measure of heritability which relaxes the classical
assumption that the degree of heritability of a continuous trait can be summa-
rized by a single number. This measure can be used in situations where the trait
dependence structure between family members is non-linear, in which case tradi-
tional mixed effects models and covariance (correlation) based methods are inad-
equate. Our idea is to combine the notion of a correlation curve with traditional
correlation-based measures of heritability, such as Falconer’s formula. For estima-
tion purposes, we use a multivariate Gaussian mixture, which is able to capture
non-linear dependence and respects certain distributional constraints. We derive
an analytical expression for the associated correlation curve, and investigate its
limiting behaviour when the trait value becomes either large or small. The re-
sult is a measure of heritability that varies with the trait value. When applied to
birth weight data on Norwegian mother—father—child trios, the conclusion is that
low and high birth weight are less heritable traits than medium birth weight. On
the other hand, we find no similar heterogeneity in the heritability of Body Mass
Index (BMI) when studying monozygotic and dizygotic twins.

1 Introduction

Biometrical modeling of family trait correlations has a very long tradition, going back at
least to Ronald Fisher [Fisher, 1919] and Sewall Wright [Wright, 1920, 1921], and being
developed into an extensive modeling framework over the years [Bulmer, 1985, Neale,
2002], with openly available software tools, such as OpenMx [Neale et al., 2016]. For

a continuous trait Y, such as weight or height, the basic idea is that trait variability —



or more precisely, the variance of the measured trait, Var(Y’) — can be decomposed into
genetic and environmental components, each explaining a portion of the observed trait
variance. Thus, the concept of heritability can, loosely, be defined as the proportion of
trait variance explained by genetic components, with environmental influences assumed
to explain the rest [Hopper, 2002]. As an example, the most common twin model,
known as the ACE model, decomposes the trait Y into additive genetic effects (A),
common (shared) environment (C), and residual (random) environment (E). In terms

2 and e? as the proportions of trait

of variances, we commonly define quantities a?, ¢
variances explained by the components A, C, and E, respectively. Thus, assuming that

no other effects are present, we have a® + ¢ +¢e? = 1.

To separate genetic variance from environmental variance, family data are needed. Ge-
netic correlations between family members decrease in more distant relationships, thus
providing contrasts from which the genetic components can be estimated. For instance,
in the classical ACE twin design, the additive genetic correlation in monozygotic twin
pairs is assumed to be 1, whereas the corresponding correlation, or degree of shared
genetic influence, is assumed to be 1/2 in dizygotic twin pairs. In addition, it is fre-
quently assumed that the amount of shared environment is the same in dizygotic twins
as is monozygotic twins. The quantities a and ¢ above can also be seen as the degree to
which the underlying genes A and shared environmental C' are being “expressed” in the
phenotype of each individual. Thus, the monozygotic twin pair phenotype correlation
will be pM%) = a2 + ¢2, and pP%) = 1a? + ¢ for the dizygotic twin pairs. As a conse-
quence, the difference %ag between monozygotic and dizygotic twin pair correlations is

ascribed to genes alone, providing an estimate of the heritability a?.

The ACE model is very specific in its assumption of additive genetic effects, as well as
independent, additive contributions from the environment. In the biometrical modeling
literature, a wide range of variants and extentions have been developed. Using family
structures of increasing complexity, numerous different effects can be identified, such
as additive genetic effects, dominant genetic effects, X-chromosome effects, effects of
maternal genes on the fetus during pregnancy, effects of mitochondrial genes, gene-
gene interactions, gene-environment interactions, etc. [Neale, 2002, Hopper and Visscher,
2002, Gjessing and Lie, 2008]. Extending the family structures used for modeling is in
general challenging since genetic correlations between more distant relatives quickly
drop to nearly undetectable levels, and assumptions about how environmental factors
are shared within larger families become harder to verify [Gjessing and Lie, 2008]. Still,
with a steady increase in registry-based population studies with large sample sizes and

available data on environmental covariates, such modeling has become feasible.

Common to practically all models in the field is that the degree of heritability is assumed
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Figure 1: Birth weights (gram) for 81,144 mother—father—child trios from the Norwe-
gian Birth Registry. Diagonal: histograms of marginal birth weights. Lower triangle:
pairwise scatter plots with estimated nonparametric regression line (blue) and identity
line (dashed red), where y = x. Upper triangle: pairwise empirical correlation.

constant across the full range of the phenotype. For instance, the estimated proportion
a® of variance explained by additive genes is assumed to be the same whether the
phenotype Y is small, close to its mean, or large. It seems clear, however, that for
instance rare but dramatic environmental influences on the phenotype may occasionally
cause the phenotype to deviate strongly from its mean value, much more than would be
expected under “normal” circumstances. Below, we illustrate our models of heritability
using a child’s birth weight (BW) as phenotype. While the birth weight distribution
is close to a normal distribution, it has a heavier tail to the left (Figure 1); this may

indicate a higher proportion of low birth weight children than what would be expected



from many minor genetic and environmental components adding up during pregnancy.

This simple observation may suggest that the degree of heritability of birth weight can
differ in the different ranges of weight; perhaps the lowest BW values are caused by
“rouge” environmental factors that act more strongly than genetic effects in the tail, or
maybe they are caused by rare, recessive genes that only occasionally excert a strong

negative influence on BW.

These observations motivate us to look for differences in heritability across the range
of the trait value Y. The existing methods for investigating such differences are almost
exclusively based on regression methods. In their seminal work [DeFries and Fulker,
1985], DeFries and Fulker evaluate the degree of regression to the mean for co-twins
of probands from strata in the tails of a continuous trait distribution. The idea is
that if the trait is heritable, then we should observe DZ co-twins with a higher degree
of regression to the mean compared to the MZ co-twins. This approach is known as
DeFries-Fulker (DF) extremes analysis for twins. Later, a formal test was developed to
examine whether the heritability of the trait for probands in the selected strata was equal
or different to the unselected population [DeFries and Fulker, 1988]. This methodology
was extended by Cherny et al. [Cherny et al., 1992a] by considering interaction effects
between the heritability of the trait and the realized value of the trait for the proband.
This approach can be used to detect linear and quadratic changes in heritability as the
trait value changes. These methods all have the drawback of only providing a rough
description of how the heritability varies with the trait value. The DF approach requires
the researcher to select a cut-off point (a low or high trait value) for choosing the strata;
the result can thus be misleading if the heritability changes smoothly as the trait value
vary. Conversely, if there exists a point in the trait distribution where the heritability
jumps and then stabilize again, the Cherny approach will only model this change by a

linear or quadratic curve.

These drawbacks were addressed in  Logan et al. [2012a] using quantile regression;
by using the extended DF extremes analysis [LaBuda et al., 1986] as the quantile
regression equation, the authors obtain a heritability measure for each quantile of the
trait distribution. Consequently, their method results in a heritability measure for each

value of the trait Y = y, corresponding to a specific quantile of the distribution.

However, in the present paper we introduce an approach based on localizing traditional
genetic models. Informally, this means making sense of estimating, for instance, the
additive genetic effect as a function of the phenotype; i.e. to define meaningfully a?(y)
as the proportion of phenotype variance explained by additive genetic effects, conditional

on Y = y. Such a definition may seem self-contradictory since one conditions on the



variable whose variance is being decomposed. Nevertheless, it is fully possible to make
sense of this concept, and we show in this paper how to develop heritability curves, such
as a*(y). This definition thus provides a “local” measure of heritability, depending on

the phenotype value.

As for the ACE twin model, all standard biometrical models rely on the phenotype
correlations between family individuals to estimate the variance components that de-
termine heritability. Our starting point for developing a local measure of heritability is
thus a local measure of dependence between family members; more specifically, we need
a local measure of correlation. There are several local measures proposed in the liter-
ature, such as the local Gaussian correlation [Tjgstheim and Hufthammer, 2013], the
dependence function [Holland and Wang, 1987], and the correlation curve [Bjerve and
Doksum, 1993]. We base our approach on the correlation curve [Bjerve and Doksum,
1993] p(y), which can be defined as a measure of locally explained variance, and thus
fits the framework of heritability as a proportion of explained variance. The correlation
curve is similar to the traditional Pearson’s correlation in that it takes values between
minus one and one, and the square p?(y) is a measure of locally explained variance. In
a bivariate Gaussian distribution, the correlation curve is constant (independent of y),
and equal to the standard Pearson correlation. In contrast to the Pearson correlation
the local correlation of a bivariate relationship depends on direction; for a bivariate ran-
dom variable (Y1,Y2), the locally explained variance of Y, conditional on ¥; = y may

differ from the locally explained variance of Y; conditional on Y, = y.

With phenotype measurements on, for instance, a mother (Y7) and her child (Y3), it
may seem reasonable, for instance, to study the distribution of a child phenotype condi-
tionally on the maternal phenotype. However, most biometrical models are formulated
in terms of genetic and environmental factors shared by the two family members, thus
assuming a form of exchangeability between the two. This is particularly clear in twin
pairs, where conditioning one twin on the other twin is unnatural. In the model of
Logan et al. [2012b] this assignment was done randomly, while Cherny et al. [1992b]
explored both a random assignment and a double-entry approach. However, the pop-
ulation value of the correlation curve can be derived from the joint distribution of two
variables. If the joint distribution is exchangeable, so that (Y7,Y5) has the same bi-
variate distribution as (Y2,Y7), the correlation curve is invariant to which variable we
condition on, i.e. whether we measure the locally explained variance of Y] conditional
on Y5 or vice versa. This means that the role of the mother and child in the above

interpretation can be interchanged.

The correlation curve may be estimated parametrically or non-parametrically from ob-

served values of a bivariate distribution (Y1,Y2) by conditioning on either Y; = y or



Y, = y. However, our approach is instead to first model the bivariate distribution as
a Gaussian mixture distribution, where the mixture distribution is restricted in such a
way as to be exchangeable. From the mixture distribution, the correlation curve can be
derived explicitly. We estimate the distribution by maximum likelihood, and by allow-
ing a sufficient number of components, a mixture distribution is very flexible and fits a
wide range of distributional shapes. Having obtained the parameters of the mixture dis-
tribution, the correlation curve can be derived from its explicit expression by plugging

in the estimated parameters.

The paper is structured as follows. In Section 2, we define a standard mixed-effect
model for continuous traits, and structure it for two specific family models: twin pairs
and mother—father—child trios. Following a standard twin approach [Falconer, 1960], and
models for family trios [Magnus et al., 2001, Lunde et al., 2007], we derive expressions
for the heritability estimates in both family structures. In Subsections 2.2 and 2.3,
we explain the concept of correlation curves, and extend the traditional definition of
heritability to the heritability curve, which depends on the trait value y. In Section 3,
we introduce and analyze a Gaussian mixture [McLachlan and Peel, 2000] for bivariate
phenotype distributions, parameterized to be exchangeable. We then study the limiting
behaviour of the correlation curve for large and small phenotype values under this model
in Subsection 3.1. Lastly, in Subsection 3.2, we discuss the estimation of the correlation
curve for the twin-pairs and the mother—father—child trios models. Section 4 provides two
applications of this approach. Namely, the first application is the analysis of BMI values
for twin pairs collected in the dataset “twinData”, found in the R-package "OpenMx”
[Neale et al., 2016]; the second one is the analysis of birth weight data of mother—father—
child trios from the Medical Birth Registry of Norway. For both family structures we
compute AIC and BIC values to select the best-fitting mixture models, and explore the

resulting distributions and heritability curves. Proofs are provided in an appendix.

2 Development of Heritability curves

2.1 Traditional models for twins and family trios

We first provide a basic description of how traditional biometrical models can be set
up in some generality, and in particular for twins and family trios. While there are
numerous ways of building, parametrizing, and interpreting such models, our approach
is fairly standard, and in a form that supports our development of heritability curves.

Let Y;; be the trait value of individual j in a family 4, and consider the mixed-effect



model (see e.g. McCulloch and Neuhaus [2001])
Yij = p+ B'zij + Ay + Cij + Dij + Eyj, (1)

where A;;, Cj;, D;; and Ej; represent additive genetic, common environmental, domi-
nant genetic, and residual environmental random effects, respectively (see e.g. Falconer
[1960]). We assume the four components A;;, C;;, D;; and E;; to be mutually indepen-
dent, with mean 0 and variances %, 02, 03, and o%. The inclusion of the term f'z;;
(fixed effects) allows the average phenotype level to depend on covariates. Note that
this model assumes no gene-environment interaction. In traditional biometrical mod-
elling (see e.g. Gjessing and Lie [2008]) the random effects are assumed to be normally
distributed with expectation 0, i.e. A;; ~ N(0,0%), Cij ~ N(0,0%), D;; ~ N(0,0%) and
E;j ~ N(0,0%). The assumption of normality is seen as natural based on the central
limit theorem if Y is the result of numerous small, independent genetic and environ-
mental effects that add up to produce the trait value. Under the above assumptions the

total variance of the trait is given by
o* =Var(Yy;) = 04 + 0& + o5 + op. (2)

We define a® = 0% /0?2, ¢ = 0% /0%, d* = 0%,/0?, and €? = 0% /o” as the proportions of
the total variance that derive from each of the four genetic and environmental compo-
nents. Note that

A+ +d* et =1,

i.e. the contributions from all components sum to one. Thus, in a model including A,
C, and E, excluding dominant effects, one may quantify the genes-versus-environment
contribution to trait variability as a®. This proportion is often referred to as heritability
and can be interpreted as how strongly the genetic effect A;; contributes to the trait
value. The heritability based on the additive genetic component is often referred to as
narrow sense heritability. Some models may also include dominant genetic effects, and
in such cases one may refer to a? + d? as the broad sense heritability [Khoury et al.,
1993].

From independent observations of Y;; alone, it is not possible to identify the individual
variance components 03, 0%, 0%, and o2 in (2), only the total variance 2. In order to
make the individual variances identifiable, one has to consider data on family members,
for which the Y’s are correlated due to shared genetic material and environment. We
focus on two basic family structures — mother—father—child trios and twin pairs — in the

following. As is well known, these family structures are quite restricted in the number of



effects they allow to be estimated, and assumptions have to be made about what genetic
and environmental effects to include in each model. In the following, we will present the

specific models that will serve as illustrations when developing heritability curves.

2.1.1 Twins

Perhaps the best known biometrical model is the ACE model for twins, complemented
by the alternative ADE model. While the expressions for twin correlations in these
models are very well known, we state them here as a starting point for the heritability

curves.

Let Y;; be the trait value of twin j (j = 1,2) in twin-pair 7. Let p®™%) and pP?) be the
phenotype correlations cor(Y;1, Yiz) for MZ and DZ twins, respectively. Both ACE and
ADE models include the additive genetic component A. For MZ-twins cor(A;1, Ai) = 1,
while for DZ-twins cor(A;1, A;2) = 1/2. In the standard ACE model, the correlation for
the common environmental effect is assumed to be cor(Cji, Ci2) = 1 in all twin pairs;
thus, one makes the common assumption of DZ twins sharing their environment to the
same degree as the MZ twins. In the alternative ADE one assumes cor(D;1, D) = 1 for
MZ twins and cor(D;y, Djs) = 1/4 for DZ twins. In both models, residual environmental

effects are assumed to be independent.

Since the basic twin models utilize only the p%) and p(P%) phenotype correlations,
they allow estimating two parameters. In addition, €? can be estimated from e? =
1 —a?— c® —d% The ACE model assumes d?> = 0, and thus the parameters a?, ¢?, and
e? can be identified; the ADE model assumes ¢? = 0, and thus the parameters a2, d2,

and e? can be identified.

For the ACE model, it follows from the above that

p(MZ) a+ 027
1
(DZ) §a2 + 2

For the ADE model, the equations are

p(MZ) — a4
p(DZ) _ lag + le.

2 4

2 and d? is by moment estimators, i.e. to

(MZ (PZ) and use €2 =

The simplest approach to estimating a?, ¢

solve this set of equations, using empirical values for p™%) and p
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Figure 2: Path diagram representing the birth weight of mother Y7, father Y5, and child
Y; (represented as squares). The traits are determined by the unobserved genotype
values (A) and environmental values (C') (shown as circles), as well as the independent
residual environmental values (E) (not shown).

2

1 —a% — c® — d? to estimate €. The resulting solutions for the ACE model are the

celebrated formulas of Falconer: [Falconer, 1960]

a* = 2(pM?) — pP2),

& =207 — M2, (3)

e =1—pM2),

For the ADE model, the corresponding set of solutions are

(DzZ) _ (M2Z)

pMA),
d* = 2(pM#) — 2pPD), (4)

2—1— p(MZ).

a? =4p

Without further assumptions, an informal choice between the ACE and ADE models is
often made based on whether empirically p™%) < 2p(P%) or not. If this is the case, the

ACE model is a natural choice; otherwise, the ADE model can be used.

2.1.2 Mother-father-child trios

Let Y;; be the observed trait value of individual j in nuclear family trio i. We let j =
1,2, 3 correspond to the mother, father, and child, respectively. A phenotype correlation

between mother and father may signify, for instance, assortative mating, inbreeding, or



social homogamy among the parents. However, the correlation is typically low, and we
will here assume it is zero [Magnus et al., 2001]. There are thus only two correlations that
provide information: the mother-child and father-child correlations. There are numerous
ways of parametrizing correlations in nuclear families [Magnus et al., 2001, Pawitan et al.,
2004, Lunde et al., 2007, Gjessing and Lie, 2008, Rabe-Hesketh et al., 2008], but being
restricted to two correlations means that these cannot be separated. In our setting,
we assume, for additive autosomal genes, that cor(A;1, Ai3) = cor(As, Aiz) = 1/2, and
that cor(A;nA;z) = 0 for the parents. Also, we assume that mother and child share
an environmental component, but no such sharing between father and child, leading to
cor(Cy, C3) = 1 and cor(Cia, Ci3) = 0. Thus,

10 1/2 101 100
Sa=03|0 1 1/2|, Sc=02]0 1 0|, andEp=051{0 1 0
1/2 1/2 1 101 00 1

are the covariance matrices for the vectors (A1, Aia, Ai3), (Ci1, Cia, Cis), and (Ei1, Eia, Ei3),

respectively.

A graphical representation of the above model is displayed in a path diagram in Figure
2.

Under the above assumptions the vectors (Y, Yia, Yis) are ¢.i.d. multivariate normal

with mean

1+ Bz, p+ B'ain, p+ lais) (5)
and covariance matrix
1 0 %a2 +c32
Y=Y4+30+2p = (04 +05+02) 0 1 ia® |, (6)
%a2 +c? %a2 1

2 ¢2, and e? are defined as above. Again, the unknown values can simply be

where a
estimated by the methods of moments by matching the correlation matrix (6) to its
empirical counterpart, and solve for a?, ¢? and e? under the constraint a® 4+ ¢? + e? = 1.

The solution is given by the following equations

(l2 _ QP(FC)
02 — p(MC’) _ p(FC) (7)
2 = 11— pMO) _ ,FC)



where pM¢

) and pF) are the mother-child and father-child correlations, respectively.

We will, in the following, use these solutions, and those for the ADE twin model, to
obtain local versions of a?, ¢, d?, and e?. Note that in both cases, the underlying
assumption is that the covariance (correlation) matrix completely characterizes the de-

pendence structure between traits in a family and can be decomposed as in e.g. (6).

2.2 Correlation curves for non-linear bivariate relationships

We now explain the concept of local correlation curves, following the approach of Bjerve
and Doksum [Bjerve and Doksum, 1993]. To illustrate the principle of localization, we

use simulated data from a hypothetical phenotype, as seen in Figure 3a.

We consider two strata (A and B) consisting of all mother-child pairs for which the
mother’s trait Y} = y; falls within two intervals (interval A and B) on the x-axis. The
corresponding correlation curve is shown in Figure 3b; as a function of y; (horizontal
axis) it is smaller in stratum A than in stratum B. This indicates that the mother-
child association is stronger in stratum B compared to stratum A. In a non-parametric
regression setting, this would mean that the child’s trait can be predicted by the mother’s
trait with higher precision in stratum B than in stratum A. For both strata, an increase
in the mother’s trait is associated with an increase in the child’s trait since the correlation
curve is positive. Since the correlation curve is continuous, the location argument y; can
be seen as the center of infinitesimal intervals from which strata such as A and B can
be constructed, while the value of the correlation curve is a measure of dependence for
the corresponding strata. A constant correlation curve indicates that the dependence
properties are constant across these strata, while a varying correlation curve indicates

strata that differ in their dependence properties.

If the joint distribution is exchangeable, so that (Y7, Y3) has the same bivariate distri-
bution as (Y3, Y7), the correlation curve is invariant to which variable we condition on,
i.e. whether we measure the locally explained variance of Y; conditional on Y5 or vice
versa. This means that the role of the mother and child in the above interpretation
can be interchanged, and the dependence structure in strata A* and B* in Figure 3a) is
similar to the dependence structure in strata A and B; the correlation curve p(y) as a
function of y thus represents a measure of the mother-child trait dependence when ei-
ther the mother or the child has trait value equal to y. In the next section, we show

more precisely how p(y) is defined in terms of locally explained variance.
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(a) Simulated data from an exchangeable (b) Estimated correlation curve for the

Gaussian mixture, and the definition of data displayed in panel (a), and 95% point-

strata. wise confidence intervals are shown in grey.
The height of the bars displays the average
value of the correlation curve within strata
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Figure 3: Ilustration of the concept of a correlation curve and the role of exchangeability
using simulated data. Strata A and B include all mother-child pairs for which the
mother’s trait value falls in the intervals [1,2] and [9, 10], respectively. Strata A* and
B* include all mother-child pairs for which the child’s trait value falls in the same
intervals.

2.2.1 Standard correlation curves for bivariate relationships

Let (Y7,Y2) be random variables from a bivariate continuous distribution, and define
72 = Var(V}), 72 = Var(Y3), and p = cor(Yy,Ys). Further, define u(y) = E(Y1|Y2 = )
and o2(y) = Var(Y;|Yy = y) as functions of y. Assuming that u(y) is differentiable,
define S(y) = 1/(y), i.e. the slope of the (typically non-linear) regression curve pu(y)
when Y; is regressed on Y;. Recall that in a standard linear regression context, u(y)
is a linear function of y, where the slope B2 := S(y) and the conditional variance

a7y := 0*(y) are both constant.

By the law of total variance,
Var(Y:) = Var(E(Y1[Y2)) + E(Var(Y1]Y2)),

and it thus seems natural to define in general

Var(E(Y1]Y2))
Var(E(Y:1[Y2)) + E(Var(V1]Y2))”

Proportion of Var(Y;) explained by Y, =



In the case of linear regression, Var(E(Y:|Yz)) = 7567, and E(Var(V1]Y3)) = o7, and

the proportion of explained variance can thus be written

(T2B1p2)? _ <72512>2 _

(7'2[31|2)2 + O’%‘Q G

(®)

which is the usual formula for explained variance in a linear regression.

We want to define a “local” variant of p?, describing the proportion of explained variance
when Y, = y, thus to define p?(y) as a function of y. To this end, (8) is a natural starting
point, and the extension to a non-linear setting would thus be to allow both §(y) and

o2(y) to depend on y. This leads to the definition

_ 70(y)
[(RBw)° + o*(y)

72 (9)
]/

where we recall that 72 = Var(Y3), B(y) = % E(Y1|Y; = y), and o%(y) = Var(Y; | Y, =
v)-

Indeed, this is the formula developed by Bjerve et al. [Bjerve and Doksum, 1993] and
Doksum et al. [Doksum et al., 1994]. As pointed out by Bjerve et al., the correlation
curve should not be confused with the conditional correlation obtained by applying the
usual correlation formula to the conditional distribution of (Y3, Y3) given Y2 = y, which
would always be zero. It should also be noted that while 7 is kept fixed in (9), the
denominator (73(y))” + o(y) is no longer necessarily equal to 72 = Var(Y;) from the
original distribution. In fact, for a fized y = yo, it corresponds to Var(Z;) from a hypo-
thetical bivariate distribution (Zy, Zy) where Var(Z,) = 72 and Var(Z;) is determined
from having a linear regression of Z; on Z, with constant slope B(yp) and constant

conditional variance Var(Z|Z2) = o%(yo)-

2.2.2 Correlation curves for symmetric bivariate relationships

In our setting, we are interested in relationships between pairs of family members, for
example, a pair of twins or a child and a parent. We denote the pair’s respective trait
values by Y; and Y3. At first glance, it may seem natural to ask about the explained
variation of a child trait Y7, conditional on its parental value Y5. However, this is less
natural for twins, who are from the same generation. Indeed, most biometrical models
assume that the positive correlation between the trait values is generated by shared genes
and shared environment; the sharing is symmetrical between family members, and the

generational aspect is only used to compute the degree of relatedness. That is, in pairs of



family members, the two members should be exchangeable, so that (Y1, Ys) and (Y2, Y))
have the same bivariate distribution. Clearly, this means that when applying (9) in a
heritability setting, it would be reasonable to expect that Y; conditional on Y5 should
provide the same answers as Y, conditional on Y;. While exchangeability is obviously
not the case for general bivariate distributions, we achieve pairwise exchangeability by
a corresponding restriction of our parametric models for the bivariate distributions, as
described later. When including covariates, the assumption of pairwise exchangeability

should apply to the residuals, i.e. the mean-adjusted traits Y; — 8z and Y5 — Stas.

Note that it would suffice to assume that, for all y,

7 = Var(V;) = Var(Vs) = 75 =: 0,
E(Y1| Y2 =y) = E(Y2 | Y1 =) = uly), (10)
Var(Ys | Vi =y) = Var(Y1 | Y2 = y) = 0°(y),

since this would imply that (9) would be invariant to the direction of conditioning. How-
ever, the models presented in this paper all imply full pairwise exchangeability. We do
not, however, ask for full exchangeability of the multivariate outcome distribution; for
instance, a mother-father-child trio would clearly not have the same trivariate distri-
bution as a child-father-mother trio. Nevertheless, the pairwise exchangeability implies
that all family members have the same marginal distributions. The appropriateness of

the exchangeability assumptions will be addressed in the Discussion.

2.3 Heritability curves

Assuming p(y) to be well defined for the joint distribution of the two family members, we
are interested in the degree to which the value of p(y) can be attributed to heritability
on one side, and to environment on the other. In particular, we are interested in knowing

how these contributions vary with y.

Definition 1 (Heritability curve for the twin ADE model). Assume the exchangeability
property (10) holds for both MZ and DZ bivariate distributions. Adopting the moment
equations (4), we define the heritability curve by

a*(y) = 4pP(y) — pM A (y), (11)

where pM?) (y) and p'P?)(y) are the correlation curves of MZ and DZ twins calculated

according to (9). Similarly, (4) allows local versions of the dominance effect

&(y) =2 [(PM D (y) — 20P (y)] (12)



and residual environment
(y) =1 - pM(y) (13)

to be defined.

Note that with Equation (11), a trait value can in principle display a non-linear associ-
ation within both MZ and DZ twins, but have constant local heritability a*(y) due to a

canceling effect in 4p(P%) () — pM2)(y).

We similarly define the heritability curve for family trios by adopting the genetic model
described in Section 2.1.2 locally.

Definition 2 (Heritability curve for an ACE model of mother-father-child trios).
Assuming the exchangeability property (10), let p™M)(y) and pF(y) be correlation
curves (9) for mother-child and father-child relationships, respectively. The heritability

curves a*(y), *(y), and e*(y) are then given by

a*(y) = 20" (y) (14)
Ay) = pM(y) = pF(y) (15)
(y) =1 - pMI(y) — pF(y) (16)

We next define a parametric class of multivariate densities for family data that can
easily be fit by maximum likelihood, allows for non-linear dependence, and admits an

analytical expression for the correlation curve (9).

3 Correlation and heritability curves for Gaussian

mixtures

Throughout this paper we denote by ¢q(y; p, 2) a d dimensional Gaussian density,
evaluated at y = (y1,...,%4), and with mean vector p and covariance matrix 3. We

will only use d = 1,2, 3.

Consider the observed trait vector y = (y1, y2) for a pair of family members. We assume

that it follows a m-component Gaussian mixture with density

> peda(y; i, Ti) (17)

k=1

where > 7%, pr = 1. The mean and covariance structure of the the kth mixture compo-



nent is taken to be
Th TPk
pr = (ps ), g = ( R (18)

where p, € (—1,1) is the correlation parameter. The components of the mixture are
ordered such that oy < -+ < 0y,. lf 04 = 0441 = -+ = 0, for some g < m, then we
order the components in ascending order with respect of the means, i.e. g < -+ < fi.
Note that under the above constraints on py, and Xy, the exchangeability condition (10)
is satisfied. In addition, Y7 and Y5 have the same marginal distribution, with marginal

density

o) = 3 ay) (19)

as the sum over the individual (weighted) components gi(y) = prd1(y; g, 02). The

(total) marginal mean, marginal variance, and correlation are given by

p=Ype, 0" =Y pe|or+(me— )] and p=0"3 pi [pror + (e — )]
k=1 k=1 k=1
(20)

We next derive local versions of i and 0. Let 0 be a latent variable with P(§ = k) = py,
k=1,...m, showing which mixture component is realized. From Bayes’ rule, it follows

that the distribution of § | Y3 = y is given as

puy) = PO =k[Ya=y) = J (21)

Also, by the assumed normality of each mixture component, it follows that

pe(y) =EYL | Ya =y, 0 = k) = e + pr - (Y — ),

i.e. px(y) is a line with slope py, going through the point (py, k). By the law of total
expectation,

uy) = EYiYs =) =E[E(Y; | Y2 = 4,6) | Y =y

= i PrY) e (y)- 2



Similarly, by the law of total variance:

o2(y) = Var(¥1|Vs = y)
=E[Var (Y, | Yo=y,6=k) | Yo =1y
+Var[E(Y1 | Ya=y,0 =k) | Y2 =1y]
=E(03(1—p}) | Yo =y) + Var (us(y) | Ya =)

= 3 [o20 = ) + o) — )]

We are now ready to give the expression for 3(y) = ¢/(y), to be used in the correlation

curve (9) for the mixture distribution.

Proposition 1. Define
di(y) = —(y — )/}
Then,

m

By) =>" i) [ox + (e(y) — n(y)) di(y)], (24)

k=1

where pi(y) is given by (21).

proof. See Appendix.

Notice that when there is only a single mixture component (m = 1), yielding a bivariate
Gaussian distribution, the above expressions reduce to o = o1, u(y) = p1, o*(y) =
02(1—p?) and B(y) = p1. Inserting these expressions in (9) we get a constant correlation
curve, p(y) = p; for every y. Hence, if m = 1 the heritability curve a®(y), given by (11)

or (14), reduces to the ordinary heritability coefficient a?.

3.1 Properties of the correlation curve under a Gaussian mix-

ture

It is of interest to investigate the asymptotic behaviour of p(y) as y — £oo under
the mixture (17) since this can be used to evaluate the asymptotic behaviour of the
heritability curve a?(y), which in general will depend on the family design. We state

the result in the following theorem, which also includes the limit behaviour of 5(y) and

o*(y).

Intuitively, a one-dimensional mixture distribution is asymptotically dominated in the



tails by the component with the largest variance; if two or more components all share the
largest variance, the sizes of the mean values come into play, with the component with
the smallest mean value dominating when y — —oo, and the largest when y — +o0.
While this in itself is fairly obvious, we here use it to develop the resulting asymptotic
behavior of B3(y), o2(y), and p(y).

We consider the following two cases: Recall the ordering 0? < --. < o2 and define
q=min{l: o7 =02} We define Case [ as ¢ = m. For the alternative, Case II, where
g < m, our conventions is that the mean values are then ordered such that u, < p,. To

simplify the notation, define the constant K as follows:

Case I (g=m), y— oo,

Case I (¢ <m), y— —o0,

= o=

=m,

q,
Case I (g <m), y— 400, = m.
Theorem 3.1.1. The asymptotic behavior of B(y), o2(y), and p(y), given by (24), (23),
and (9), are

lim f(y) = px,

lim 0*(y) = o (1 = pie),
OpK

[02p% + 0%(1 = pk)]

lim p(y) = prc = 73 (25)

The global variance o* is defined as in (20).

proof See Appendix.

Theorem 3.1.1 shows that 3(y), o%(y), and p(y) all stabilize to finite limits as y — 400,
and their behaviour is determined by the variance and correlation of mixture compo-

nent K, in addition to the global variance o

. In Case I we have that the asymptotic
correlation is the same in both tails, as exemplified in Figure 4a) where K = 3 and

p3 =~ 0.5.

Identical correlations in both tails may seem unmotivated for family data. Still, within
the data range the correlation curve will be determined by all of the mixture components,

in accordance with (9), which allows for different behaviour in the tails.

Case II, on the other hand, allows for different asymptotic correlation in the left and

right tail, with the differences being the use of p, versus p,, in (25).

Theorem 3.1.1 is further illustrated in Figure 4 showing the limiting behaviour of (y),
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Figure 4: Illustration of the asymptotic tail behaviour (red line) of the correlation curve
and its builing blocks under a m = 3 component mixture model: (a) p(y), (b) B(y),
(c) o%(y), and (d) pi(y). The mixture model has parameters (o1, 09,03) = (2,4,6),
(p1, ooy pi3) = (1,2,4), (p1, p2, p3) = (0.7,0.8,0.6) and (p1,p2, p3) = (0.3,0.3,0.4).

o?(y), and p(y) for a three-component mixture under Case I. Note that the limiting
correlation satisfies p3 < min(ps, p2, p3) for the parameter values used in the figure.
This is counter-intuitive because the posterior probability p;(y) approaches 1 in the
tails (upper left panel), but still the limiting correlation is not simply p3. The peak in

correlation around ps = 2 is reasonable as the second component has the highest p.

3.1.1 The case of equal o;’s

It is worth studying the special case that 0y = 09 = -+ = 0,,, with their common
value denoted by o¢. This is Case II of Theorem 3.1.1 with ¢ = 1. From (20) we get

2_ 2, 2
o° =0y + 0, where

P — p)?, (26)

= N
NE

o =
k

1
which is the variance due to differences in locations of mixture components. Recall the
convention that the mixture components are ordered such that p; < po < -+ < pi,. We

are now ready to state the following corollary to Theorem 3.1.1.

Corollary 3.1.2. When o1 = -+ = o, the asymptotic behavior of p(y), given by (9), is
. 1+~ . 1+~

1 = d 1 = Pt/ ——=, 27

Jm oY) = puy [ e i ) = Py ey (27)

where v = oﬁ Jok is the ratio of between and within-component variance in the Gaussian

maixture.

The limiting correlations always exceed (in absolute value) p; and p,,, respectively.

When 7 — oo, i.e. the mixture components gets increasingly spread out, both limits



approach 1 in absolute value.

3.2 Estimation

In this section we explain how to fit Gaussian mixtures to family data. On one hand, they
are fully parametric distributions, which can be exploited in estimation and inference.
On the other hand, allowing the number of mixture components m to grow, mixtures
become increasingly flexible, which allows us to view them also as nonparametric tools.
In particular, Gaussian mixtures seem well suited to model small perturbations from

Gaussianity.

First, let y = (y1, y2,y3) denote the trait vector for the mother-father-child trio, which

is assumed to have the following mixture density:

> peds(y; g Bie) -

k=1

Here py, 3 are structured in the following way:

MF MC
of ot ot
MF FC
Hir = (,uka M /l/k')7 Zk = U;%P;(C ) O—]% 0-2[)]2; ) ) (28)
2 (MC) 2 (FC) 2
0Pk 0Pk O

where we use superscripts on the p’s to denote relationship. Integrating the above joint
density with respect to any one of the three family members (y1, ya, or ys) will result
in the bivariate Gaussian mixture (17) from which we defined the correlation curve.
The reason for performing joint estimation, rather than pairwise, is to optimally utilize
the information contained in mother-father-child trios. Note that the three marginals
are identical by construction, although the joint distribution is not exchangeable unless
(MF) _ (MC) _ (FC) ¢ 1.
P = Pi = Pk ork=1,...,m.

Given n such trios, the parameters (ug, ok, pk, Pr) can be estimated by maximizing the
following log-likelihood:

log L =" log | > pros(yis tr, X)) | - (29)

i=1 k=1

Once the parameters are estimated, the heritability curve a?(y) can be obtained via the

correlation curves as described in Definition 2.

For twins, consider first a dizygotic pair with trait vector y = (y1,¥2). The likelihood



(M2)

contribution from n such pairs is:

nM2)

logL(MZ) = Z log ) pedoyis; pory i), (30)

i=1 k=1

where gy, and Xy, are structured as in (18). The likelihood contribution of n(P%) dizy-
gotic twin pairs, log L% is defined analogously using the same number m of mixture
components. The only parameters that differ between the MZ and DZ cases are the cor-
relation parameters py in (18). The fact that pg, g, and oy are shared across the MZ
and DZ mixtures, calls for using a combined log-likelihood log L = log LM%) +log L(P%),
Once the parameters are estimated, the heritability curve a?(y) can be obtained via the

correlation curves as described in Definition 1.

Both of the log-likelihoods (29) and (30) will be maximized using the R-package
TMB [Kristensen et al., 2016]. In TMB the (negative) log-likelihood is implemented
as a C++ function, which is compiled and linked into the R session, where the standard
function minimizer nlminb is employed. In addition, TMB calculates the gradient and
Hessian (1st and 2nd order derivatives) of the log-likelihood by Automatic Differenti-
ation [Kristensen et al., 2016]. Such derivative information can substantially speed up
the minimizer and make it more robust. Finally, TMB uses derivatives to calculate the
approximate standard deviation of any interest quantity, as a function of the parame-

ters, using the delta method. This feature of TMB will be used to estimate pointwise

m  no. of parameters AIC  BIC
1 4 259.4 227.6
2 9 8.0 0
3 14 2.8 185
4 19 6.5 46.0
5 24 0 633

Table 1: Model comparison for the twin BMI data, where m is the number of mixture
components and 5m — 1 is the number of parameters in the model. AIC and BIC values
are relative to the best fitting models (respectively, m = 5 and m = 2).

Parameters k=1 k=2 Global

L1k 2120 2220 21.39
o 063 126 088

M2 075 070 078

PP 028 —0.04  0.30
D 0.81  0.19

Table 2: Parameter estimates for the chosen Gaussian mixture (m = 2) for the twin
data. The mixture components are ordered according to the value of o;. The global
quantities, i, o, p™%) and pP%) are calculated from (20).



confidence intervals of correlation and heritability curves.

For the purpose of selecting the number of mixture components, m, we calculate both
of the criteria AIC = —2log(L)+2Q and BIC = —2log(L) +log(n)Q for each candidate
model, where @ is the number of parameters and log(L) is obtained either from (29) or
(30). Contributing to @ is the total number of pi’s, ui’s, ox’s, and pi’s, but due to the
constraint Y3 | pr = 1 there are only m — 1 free p;’s. Hence, for the trio likelihood (29)
we have ) = 6m — 1, while for the twin likelihood (30), with different p;, for MZ and DZ
twins, we have @ = 5m—1. It is clear that for log(n) > 2, BIC will be more conservative
than AIC, in the sense of favoring smaller values of m. As will be shown below, the
correlation curve tends to be more unstable (fluctuating) for larger values of m. For this
reason we will use BIC as our model selection criterion, but we will still report AIC as

a comparison.

4 Applications

4.1 BMI of twins

We use the “twinData” dataset found in the R-package “OpenMx” [Neale et al., 2016].
As our response, we take BMI measurements (around age 18) for n(™%) = 534 monozy-

(PZ) — 328 dizygotic female-female twin pairs. Table 1 compares mod-

gotic and n
els in the range 1 < m < 5, and it is seen that the pure bivariate Gaussian model
(m = 1) fits considerably worse than any of the mixture models (m > 1). The low-
est AIC and BIC values occur for m = 5 and m = 2, respectively, but it is seen that
AIC is almost indecisive between models with m > 1. Due to its heavier penalization,
log (TL(MZ) + TL<DZ)> = log(862) = 6.8, of the number of parameters, BIC more clearly
favours m = 2. According to our decision to base model selection on BIC, we choose

the model with m = 2.

Table 2 shows the parameter estimates. The first mixture component is dominating
with p; = 0.81. For MZ twins there is high correlation (p;) within in each of the two
components, while for DZ twins ps is close to zero. The (global) correlations for the
mixtures as a whole, matches exactly the empirical Pearson correlations, which are 0.78
(MZ) and 0.30 (DZ), respectively.

Figure 5 displays the estimated correlation curve for both MZ and DZ twins, using the
parameter values from Table 2. Also shown are 95% confidence intervals calculated

using the delta method. Both correlation curves are fairly flat within the center 90%
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Figure 5: Estimated monozygotic (MZ) and dizygotic (DZ) twins correlation curves
for the BMI data, with pointwise 95% confidence intervals (in grey). The dashed lines
display the (overall) Pearson correlation within MZ and DZ twin pairs, respectively.
The vertical green lines represent the 0.05 and 0.95 quantiles of the data.

data range (represented by the two vertical green bars), while they both drop for low
and high BMI. This yields (Figure 6) an estimated heritability curve a?(y) that does
not differ significantly (except maybe around y = 22.3) from the classical heritability
coefficient (4).

The TMB (R and C++) code used to produce the parameter estimates in Table 2 plots
in Figure 6 is available from https://github.com/skaug/Supplementary.

4.2 Birth weight of family trios

To illustrate the family trio analyses, we used birth weights of n = 81,144 complete
mother—father—child trios. The data originally derived from the Medical Birth Reg-
istry of Norway, where the birth weight variables were added some random noise and
rounded off to guarantee anonymity. The same data with some additional restrictions
on parity, plurality, etc. were previously described and analyzed elsewhere [Magnus
et al., 2001]. The data were restricted to all births (mother, father, and child) tak-
ing place within the years 1967-1998. Due to Norwegian ethical and legal restric-
tions, Norwegian data used in this study are available upon request to the Med-
ical Birth Registry of Norway, the Norwegian Institute of Public Health. URL:
https://www.thi.no/hn/helseregistre-og-registre/mfr. Requests for data access can be
directed to Datatilgang@fhi.nojmailto:Datatilgang@thi.no;..

We did not have information about the gender of the child; hence, we performed a
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Figure 6: Estimated dominant genetic component d?(y), heritability curve a?(y), and
environment curve c(y) for the BMI data under the ADE model (Definition 1), with
pointwise 95% confidence intervals (in grey). The red dashed lines display the classical
estimates of dominant component, heritability, and environment, given by (4). The
vertical green lines represent the 0.05 and 0.95 quantile in data.

standardization of the data. We assumed a 50% sex ratio in the offspring, and introduced
the quantity D £ % (Ym — yr), where gy is the mean of the birth weights of mothers,
and yp is the mean of the birth weights of fathers. We hence added D to the father’s
weight and subtracted it to the mother’s weight; in this way, the average among mothers
and fathers is the same, and close (25g deviation) to the average in the offspring. This

standardization is of little consequence to the end result.

Figure 1 summarizes the marginal and bivariate properties of the data. The marginal
distributions are close to a Gaussian shape, but the left tail of the child birth weights
is slightly heavier than the right tail. As suggested in the Introduction, this may be
indicative of strong but rare factors dominating in producing the lowest birth weigths,

which is what we will confirm in our analyses of local heritability below.



m no. parameters A AIC A BIC

1 5 14848 14749

2 11 1148 904.4

3 17 480.4  292.5

4 23 132.1 0

5 29 109.7 33.5

6 35 36.3 16.0

7 41 0 35.5
Table 3: Model comparison for family trios, where m is the number of mixture compo-
nents. The total number of (free) parameters is 6m — 1, counting all p, g, o, p,(fwc)7

péFC) and p](CMF) . AIC and BIC values are relative to the lowest one, represented in red.

Parameters k=1 k=2 k=3 k=4 Global

[k 3516 3687 3093 2243 3493
o 4405 5729 6905 1116  555.0
pMA) 0240  0.143 —0.189 —0.826  0.123
plF 0134 0053 —0.254 —0.845 0.201
pM 0011 —0.084 —0.289  0.750  0.068
D 0.636 0231 0126  0.007

Table 4: Parameter estimates and standard deviations for the Gaussian mixture (m = 4)
fit to the mother—father—child trios. The mixture components are ordered according to
the value of o,. The global quantities, p, o, p™M) pFC) and pMF) are calculated
from (20).

The scatter plots are roughly symmetric around the identity line, which is consistent
with the exchangeability assumption made in Section 2.2. It should be noted, however,
that the left hand tail of the marginal distributions is somewhat heavier in the children
than in the parents; this is likely because parents are selected by the fact that they
have children; it is known that individuals born with low birth weight have somewhat
reduced fertility later in life. We have, however, not taken this into consideration in our

model.

From the non-parametric regression (blue curve), it is clear that there is no association
between mother and father, which is reflected in the low Pearson correlation of 0.0209.
For the two relationships involving the child, the non-parametric regression curve indi-
cates a non-linear relationship, particularly for mother-child. For birth weights less than
3000g there seems to be a low association, while for larger birth weights the association

is increasing.

The Gaussian mixture (17) was fit by maximum likelihood for m = 1,...,7. We com-
puted both AIC and BIC values for this model. According to the BIC criterion, the
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Figure 7: Birth weight (gram) of a random subset of 5000 mother-child pairs taken from
Figure 1. Also shown are 95% level curves (ellipses) for each of the m = 4 mixture
components in Table 4, i.e. each elipse include 95% of the probability mass for that
bivariate normal component.

best fitting mixture has m = 4 components (see Table 3). Parameters estimates for this
model are given in Table 4. Figure 7 shows the underlying mother-child pairs, overlaid

by the five mixture components.

The mother-child distribution is pear-shaped relative to a bivariate normal distribution,
with more spread around the identity line (y; = y2) for small birth weights. The mixture
model adapts to this shape by assigning negative py’s to its two components (k =
3,4) with the smallest py. The remaining two components (k = 1,2), which together
constitute 87% of the probability mass, form a bivariate distribution that is hard to
distinguish visually from a Gaussian distribution. The estimates of global correlation for
the mixture in Table 3, closely match the corresponding empirical Pearson correlations
given in Figure 1 for MC, FC and MF pairs. It is seen to fit the empirical marginals

fairly well, and to posses a heavier left hand tail.
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Figure 8: Estimated mother-child (MC) and father-child (FC) correlation curves for
the Norwegian Birth Registry data, with pointwise 95% confidence intervals (in grey).
The dashed lines display the (overall) Pearson correlation within MC and FC pairs,
respectively. The vertical green lines represent the 0.05 and 0.95 quantiles of the data.

Figure 8 shows the two estimated correlation curves p"® (y) and p™%)(y), which are the
components going into a?(y), ¢2(y), and e%(y), given respectively by (14)—(16). Overall,
the Pearson correlation and the correlation curves for MF exceed those for FC. Both
curves exceed their respective Pearson correlations in the center of the data, while they
decrease for both low and high birth weights. The FC curve has its maximum somewhat
to the left of the maximum of the MC curve. As a robustness check, we also computed
the local Gaussian correlations [Tjgstheim and Hufthammer, 2013] between mother and
child as displayed in Figure 9. These exhibit the same behaviour as the correlation curve;
large values in the center of the data which are decreasing towards both tails. Figure
10 shows heritability and environment curves. The overall conclusion is that variation
in birth weight is mostly attributable to environment, which was also seen in previous
publications [Magnus et al., 2001, Lunde et al., 2007, Gjessing and Lie, 2008], and is
reflected in the classical measures of heritability a?> = 0.246 and environment ¢ = 0.754,

and the variation in the corresponding curves.

Recall that, under the assumed model (7) the heritability curve a?(y) is completely
determined by the FC correlation curve pF®)(y). Since the FC correlation curve exceeds
the Pearson FC correlation in the center of the data, the heritability curve also exceeds

the classical heritability measure in the same region.
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Figure 9: Estimated local Gaussian correlation between mother and child. Note that
this correlation measure has two location arguments (y; and ys).

5 Discussion and conclusion

We have provided closed-form expressions for the correlation curve for exchangeable
bivariate Gaussian mixtures. To our knowledge, this result is new and should be useful
generally in situations where exchangeability can be assumed. Since differences in mean
values may accounted for using a linear predictor like (5), it is only exchangeability
of the residuals, or the weaker condition (10), that is required. In the context of our
family data, the exchangeability assumption is rather reasonable for twin data. In
nuclear families, it is less obvious that parents and children have the exact same marginal
distribution even when using covariates to adjust for systematic generational differences.
With our generational birth weight data, we observe that the left hand tail in the parental
distribution is smaller than among the children. As discussed in Subsection 4.2, this
may well be a selection phenomenon; somebody born with a very low birth weight is
less likely to become a parent, and are thus possibly under-represented in our data file.
For instance, increased mortality among the smallest newborns is thought to lead to a

selection pressure on the birth weight distribution over generations [Cavalli-Sforza and
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Figure 10: Estimated heritability curve a?(y), environment curve c(y), and residual
environment €2(y) for the Norwegian Birth Registry data under the ACE model (Defini-
tion 2), with pointwise 95% confidence intervals (in grey). The red dashed lines display
the classical estimates of heritability and environment, i.e. empirical versions of (7). The
vertical green lines represent the 0.05 and 0.95 quantiles of the data.

Bodmer, 1999].

A restriction of our model is that we have applied it only in situations with simple
family structures where moment estimators of the heritability are explicit. In larger
family structures, several pairwise relationships may provide information about the same
heritability parameters. For instance, family trios with sibling data add the sibling
correlation as a source of information [Lunde et al., 2007]. We will not discuss that
issue further, but note that if pairwise correlation curves are estimated from larger data
structures, weighted least squares estimation may provide a way of combining them into

a common estimate of heritability curves [Gjessing and Lie, 2008].

In our twin BMI example, we chose the ADE model for the estimation since for the

Dz)

estimated overall correlations, p™?%) > 2p( However, as seen in Figure 6, there



are values for y (the BMI) where the estimated d?(y) drops below zero. This indicates
that in this region, the ACE model might be more appropriate. Note that there is
no difficulty in letting the local heritability curves switch from an ADE model to an
ACE model locally. In particular, we see that when pM%) = 2p(P%) bhoth (3) and (4)
provide the same estimates for a? and €2, and both ¢ and d? are estimated as zero. The
estimated heritability curves would thus still be continuous if switching from one model

to another.

The choice of Gaussian mixtures was made due to their flexibility, in the spirit of non-
parametric estimation. Our approach is pragmatic in the sense that we have not at-
tempted to interpret individual mixture components as sub-populations. One reason for
this is the negative estimates for some of the p;, seen in both Table 2 and 4, which would

be hard to interpret biologically.

On the other hand, Gaussian mixtures are fully parametric models, which allows us to
use the standard parametric toolbox. For instance, covariates can easily enter the mean,
as in (5), and it would also be straight forward to formulate model in which the o}, were
affect by family level covariates. A further benefit of having a parametric model is that

we can select model complexity (m) based on standard AIC or BIC criteria.

The parametric structure is also the basis for the results about the tail behaviour of
the correlation curve in Theorem 3.1.1. While the center of the distribution may have
sufficient data to allow stable non-parametric estimation of the heritability, the estimates
in the tails are more dependent on the model structure. This is both a strength and a
weakness of the mixture model. The heritability curves converge to constant values in
the tails, which makes the estimates more stable; on the other hand, those estimates
depend on the dominant mixture components in the tails, and the number and placement

of mixture components may not always be clear cut.

There are also well known problems with Gaussian mixtures. Among these are local
maxima on the likelihood surface [Baudry and Celeux, 2015], which can be explored
by using different initial values for the numerical optimization. We avoided the classical
“label switching” problem by constraining the parameters of the mixture (o’s and p’s),
but have nevertheless observed some sensitivity of the parameter estimates in Table 4.
Although we cannot guarantee that we have found the global optimum of the likelihood
surface, the choice of model complexity (m) seems to be robust to the choice of initial
values. Similarly, the shape of the correlation curves (and consequently heritability and
environment curves) are quite stable. A related problem is that of singlularity of the
Fisher information matrix which can occur for mixture models [Drton and Plummer,
2017]. This could potentially affect the validity of AIC and BIC criteria, as well as



the standard deviations based on the observed Fisher information that have been used
throughout this paper. Such standard deviations are produced automatically by TMB,
and are very convenient in an exploratory phase, but we recommend that they are

validated by simulation (parametric bootstrap).
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A  Proofs

Proof of Proposition 1 Let ¢(y), gx(v), pi(y) etc. be defined as in Section 3. First,
note that

Furthermore, define

d(y) = >_0i (y)di(y),
i=1
i.e. the weighted average of the d;(y)’s. Then

g(y) _ Tt di(y)g:(y)

= d(y).
9(y) 9(y)
For any fraction s(y) = a(y)/b(y) of differentiable functions, note that the chain rule
can be written as & = @ _ ¥@) Thus,
s(y) a(y)  b(y)

Blu) = 1) = 3 (W) + 07 W)malw))
= 301 0) -+ puly) (0iy) — ()

where we make use of 321, p; (y) (di(y) — d(y)) = 0 and 3272, p; (y) (i(y) — p(y)) = 0.

A.0.1 Proof of Theorem 3.1.1 - asymptotic behavior of 3(y), 02(y), and p(y)

For two functions a(y) and b(y), as y — 0o (or —o0), we use the standard notation that
a(y) ~ b(y) means lim,_, a(y)/b(y) =1, and a(y) < b(y) means lim, . a(y)/b(y) = 0.
Our proofs below follow mostly from standard theory on asymptotic behavior of real

functions[Bender and Orszag, 2013].



Asymptotic behavior of mixture components For one mixture component gx(y),

the asymptotic behavior when y — Fo0 is

Hk 1 2
~C _
gk(y) ~ Cpexp <Uk 2077 ) ,

for a constant Cj,. Comparing two components gx(y) and g;(y) with o2 < o7, we clearly

have
a(y) < aily) as y— +oo (31)

since the y2-term dominates the asymptotics. If 02 = o7, assume that p;, < 1. Then

gk(y) < aly) as y— +oo, (32)
and

g(y) < gely) as y— —oc. (33)
Let ax(y) be non-zero polynomial functions in y for k = 1,...,m. Since polynomials are

asymptotically dominated by exponentials of polynomials, the products gi(y)ax(y) are
asymptotically ordered in the same way as in (31), (32), and (33) above.

Asymptotic behavior of mixtures Recall the definition of K in Theorem 3.1.1.
The results above apply directly to the sum >} ; gr(y)ax(y), which will asymptotically

follow the dominant term with k£ = K. Le.,

2 g ()an(y) ~ g (y)ax ).

In particular, for the full density we get

Similarly, if k # K,
peanly) = === =0, (34)

and

Pr(W)ax(y) ~ ax(y).

Conditional mean u(y) Applying the above results to p, we obtain

mwy) = ipi(y)uk(y) ~ pr(y) ~ pK - Y.
k=1



Furthermore, letting ax(y) = pr + (ur(y) — 1(y)) di(y), we get

— Y B wa) ~ ax(y).
k=1

However, by 34,

m

(nx(y) — Z PeW) (x(y) — pe(y))dic(y) = 0

since the K’th term vanishes. It follows that

By) ~ arx(y) = pr.

Conditional variance ¢%(y) For the conditional variance,

Zpk ) |02 (1= ) + li(y) — )]

~ UK(l - PK)~

Correlation curve p(y) Finally, the result for the correlation curve p(y) follows di-

rectly from the results for o2(y) and S(y).
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Abstract

The heritability of traits such as body mass index (BMI), a measure of obesity,
is generally estimated using family, twin, and increasingly by molecular genetic
approaches. These studies generally assume that genetic effects are uniform across
all trait values, yet there is emerging evidence that this may not always be the case.
This paper analyzes twin data using a recently developed measure of heritability
called the heritability curve. Under the assumption that trait values in twin pairs
are governed by a flexible Gaussian mixture distribution, heritability curves may
vary across trait values. The data consist of repeated measures of BMI on 1506
monozygotic (MZ) and 2843 like-sexed dizygotic (DZ) adult twin pairs, gathered

from multiple surveys in older Finnish Twin Cohorts. The heritability curve and



BMI value-specific MZ and DZ pairwise correlations were estimated, and these
varied across the range of BMI. MZ correlations were highest at BMI values from
21 to 24, with a stronger decrease for women than for men at higher values.
Models with additive and dominance effects fit best at low and high BMI values,
while models with additive genetic and common environmental effects fit best in
the normal range of BMI. Thus, we demonstrate that twin and molecular genetic
studies need to consider how genetic effects vary across trait values. Such variation
may reconcile findings of traits with high heritabilities and major differences in

mean values between countries or over time.

1 Introduction

Twin and family studies of humans have provided evidence for genetic influences on
anthropometric measures. One of the most studied phenotypes has been relative weight,
the degree to which an individual is lean, of normal weight or has excess weight relative
to their height. Body mass index (BMI), weight divided by height squared, is the most
used measure in research due to the ease of its assessment and because among adults it is
at most weakly correlated with height [Benn, 1971]. As excess weight is also associated
with risk of cardiovascular and metabolic diseases [Must et al., 1999], BMI is also in

widespread clinical use.

Early meta-analyses on twins based on published summary data have shown that the
heritability of BMI is generally high. The estimates based on twins are consistent with
the patterns of resemblance of other first-degree relationships [Maes et al., 1997, Elks
et al., 2012]. These studies indicated that there is relatively little variation over age, but
non-genetic familial influences seen in childhood and adolescence are largely absent in
adults [Nan et al., 2012, Silventoinen et al., 2010]. By pooling individual data on height
and weight from twin studies across the globe on over 140,000 twin pairs, Silventoinen
et al. [2017] show that heritability of BMI decreases from young adulthood to old age,
with relatively little differences by region or calendar time. Using the same resource with
data from 87,782 twin pairs under the age of 20, Silventoinen et al. [2016] show that
heritability of BMI was lowest in early childhood. Cross-sectional data from these twin
and family studies, as well as from large molecular genetic studies [Khera et al., 2019]
imply that genetic influences are fairly stable over the lifespan from early childhood

onwards.

In contrast, longitudinal twin studies indicate that genetic influences do vary with age.
Molecular genetic analyses suggest that different sets of genes act at different ages,

both in childhood and among adults [Choh et al., 2014]. Twin analyses of children



and adolescents show that as the individual develops and grows, there are novel genetic
influences coming into play at different ages [Silventoinen et al., 2008, 2011]; these may
reflect both changes in lean mass, such as muscle and bone growth, and in fat mass.
Among adults, whose growth has ended, changes in weight result mainly from changes
in body fat. Twin models indicate that genetic effects on weight change are poorly
correlated with the stable component of BMI [Ortega-Alonso et al., 2012, Hjelmborg
et al., 2008]. Analyses of genetic risk scores at different ages support these results [Choh
et al., 2014].

At different levels of BMI, the proportions of lean and fat mass differ on average, and
hence it could be expected that genetic effects are not uniform across all BMI values. In
an analysis of extreme leanness vs obesity, Riveros-McKay et al. [2019] found that the
two traits were only partially correlated genetically (rG = 0.49). Using commingling
analyses of BMI in MZ twin pairs, Price and Stunkard [1989] found twin correlations to
be lower in overweight and obese twin pairs. This restricts to a truncated upper-tail of
the BMI distribution. The authors did not have DZ pairs to derive heritability estimates
at different levels of obesity. Studies of the genetics of BMI across the whole spectrum of
BMI are rare; a recent study uses parent-offspring and sibpair relationship and quantile
regression to estimate heritability of BMI at various BMI values [Williams, 2020]. The
study finds increasing heritability with increasing BMI values, a result seen with other
measures of fatness but not height. However, using family relationships or only MZ
pairs can be challenging to distinguish between genetic and non-genetic familial effects

contributing to the estimated heritability.

Recently Berentsen et al. [2020] extended the classical notion of heritability to that of
a heritability curve, which allows the heritability to vary with the trait value. Using
empirical data from the Finnish Twin Cohort, we demonstrate that there is variation
in the contribution of genetic factors over the range of BMI values seen in a population

sample.

2 Material and Methods

2.1 The dataset

The dataset we use in our analysis contains repeated BMI measurements on 4349 same
sex twin pairs (1506 monozygotic and 2843 dizygotic) from the Finnish Twin Cohort
[Hjelmborg et al., 2008], [Kaprio et al., 2019]. Each twin pair was asked to provide BMI

measurements at different stages in life; for each pair we have up to 7 different values,
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Figure 1: Regression analysis used to estimate BMIz5 (BMI at age 35) for each of 8598
individuals in the study.

at different ages and waves of data collections. Each such measurement is accompanied
by the following information: the twin pair it belongs to, the wave number, the age
at which the measurement is taken, the sex of the twins, and their zygosity. The data
include information not only on weight at the current wave, but also recall of weight

earlier in life.

Since the measurements were taken at different ages for different twin pairs, we use linear
regression, separately on each individual, to obtain estimates of BMI at the reference
age 35, which we denote with BMI35 (Figure 1). To reduce estimation uncertainty, we
consider only twin pairs that have been measured three or more times. The resulting
dataset contains 1493 monozygotic twin pairs (606 males and 887 females) and 2806
dizygotic twin pairs (1218 males and 1588 females). More details on the preprocess of

the data can be found in the supplementary material.

2.2 Statistical methods
2.2.1 Heritability curve

In biometrical models, heritability is typically defined as the proportion of a trait vari-
ance attributed to genetic effects. Depending on the family structure of the data, the
trait variance can be decomposed in several ways. The most commonly used biomet-
rical model for twins is the ACE model, where it is assumed that the trait value can

be decomposed into additive genetic effects (A), common (shared) environment (C),



and residual (random) environment (E). The proportion of trait variance explained by
component A is often referred to as narrow-sense heritability. Another frequently used
model for twins is the ADE model, where the C component in the ACE model is re-
placed by dominant genetic effects (D). The proportion of trait variance explained by
the components A and D combined is then referred to as the broad sense heritability
[Khoury et al., 1993].

Data on monozygotic and dizygotic twins provide contrasts from which the genetic
variance can be separated from the environmental variance. For the ACE model, it is
assumed that the amount of shared environment is the same for the two types of twins
and that the amount of shared additive genetic effects is 100% and 50 % for mono- and
dizygotic twins, respectively. If the correlation between the trait values of monozygotic
twins is larger than the correlation between dizygotic twins, the difference is ascribed
to the additive genetic effects alone, and the trait is heritable. The heritability can be
quantified by comparing empirical correlations of monozygotic and dizygotic twins with
the “expected” correlations implied by the model, and for the ACE model, this results

in the well-known Falconer’s formula [Falconer, 1960] for heritability:

a® = 2(pM?) — pP2)),
C2 _ 2p(DZ> _ p(MZ) (1)

2—1— p(MZ)_

Here a?, ¢ and e? denote the proportions of the total variance explained by the com-
ponents A, C, and E, respectively, while p(™%) and p(P%) denote the Pearson intraclass
correlation of monozygotic and dizygotic twins, respectively. For the ADE model, the

corresponding equations are given by

a? = 4p\0D) _ M2),
d* = 2(pM?P — 2pP%)), (2)
= 1— pM2).

The derivation of equations 1 and 2 can be found in the supplementary material.

Recently, the classical notion of heritability has been extended to that of a heritabil-

ity curve [Berentsen et al., 2020] assuming that trait values in pairs are governed by a



Gaussian mixture distribution (see section 2.2.2). This allows the heritability to vary
with the trait value, resulting in a curve a?(y) that potentially varies for different trait
values y. The heritability curves are derived based on the same type of variance decom-
position as for ACE and ADE model, but conditionally on a given phenotypic value. In
this way, the heritability curve measures the heritability as a function of the trait itself,
and would not be expected to be constant over the whole phenotypic range. The condi-
tioning on a phenotype value is done via local correlations curves [Bjerve and Doksum,
1993]. Rather than comparing the ordinary Pearson correlation between phenotype val-
ues of monozygotic and dizygotic twins, we do the same type of comparison (e.g. using
Falconer’s formula under the ACE model) using correlation curves ppz(y) and ppz(y),
evaluated at different values of BMI. Note that this procedure also provides curves c2(y)
(or d?(y) for the ADE model) and e?(y) allowing the other components in the biomet-
rical model to vary with the trait value as well. When there is no variation with trait

value, the heritability curve reduces to the classical heritability coefficient.

2.2.2 Gaussian mixtures

Classical heritability models assume a bivariate Gaussian distribution for pair of traits
in twins, typically with a positive correlation. Under this assumption the heritability
curve reduces to the classical heritability coefficient [Berentsen et al., 2020], and does
not provide any additional insight. Bivariate Gaussian mixtures are a more flexible
class of bivariate distributions and underlie the implementation of the heritability curve
of Berentsen et al. [2020]. A Gaussian mixture is a weighted sum of Gaussian kernels
(Figure 2). The number m of Gaussian kernels is a data driven parameter, and for
this purpose we use the BIC criterion [Berentsen et al., 2020]. Note that with m =1
the mixture reduces to an ordinary bivariate Gaussian distribution. Each bivariate
Gaussian kernel has three parameters: mean, variance and correlation, i.e. mean and
variance are assumed identical across the twin individuals, yielding in total 3 times m
unknown parameters. Monozygotic and dizygotic twins are allowed to have different
correlations, which introduces m additional correlation parameters. Finally, there are
m weight parameters, but due to a sum-to-one constraint, only m — 1 of these need
to be estimated. The total of Q = 5m — 1 parameters are estimated by maximum
likelihood [Berentsen et al., 2020]. Formulae exist for the marginal mean, variance and

correlation, referred to as “global”, in terms of the kernel-specific parameters.

Covariates can be introduced into both the mean, variance, or covariance part of the
model. In our study sex is the only covariate, and we consider three different configura-

tions of the model:
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Figure 2: BMIs;5 for pairs of female dizygotic twins, obtained by regression analysis.
The three ellipses represent 0.95 probability regions for the three Gaussian kernels of
the fitted mixture distribution. The parameter values associated with each kernel can
be found in Table 2.

1. “Stratified” in which fully separate Gaussian mixtures are fitted for males and
females, except that they are constrained to have the same value of m,

2. “Mean” in which only the mean is sex specific. The mean of each Gaussian kernel

for males is right-shifted by the same amount from females.

3. “Mean+-covariance” in which m mean and correlation parameters are sex specific,

but the variance is assumed equal by sex.

A mathematical description of the model is provided in supplementary material. The



supplement also contains details about how the parameters of the Gaussian mixture

were estimated from data using the software package TMB [Kristensen et al., 2016].

2.2.3 Biometrical model selection

The choice between the ACE and ADE model relies traditionally on the relationship
between the (empirical) Pearson correlations p®™%) and pP%). More specifically, the

DZ) _ p(MZ) indicates which model is more appropriate. Under

sign of the quantity 2
the ACE model, this quantity corresponds to the proportion of variance explained by the
shared environment, ¢?. By contrasting equations (1) and (2) we obtain the relationship
d?> = —2¢? with the proportion of variance explained by the dominant genetic effects, d?.

(MZ) < 0, i.e. ¢ is negative, the ACE model is (most likely)

Consequently, if 2p(P%) — p
misspecified. Vice versa, if 2p(P%) — p(M2) > 0 d? is negative and the ADE model is

misspecified.

In the context of correlation curves, the ACE model may be suitable in some part of
the phenotypic range, while the ADE model may be more appropriate in the remaining
part. Adopting the above procedure, we can then switch between ACE and ADE model
according to the sign of the quantity 20" (y) — p™?)(y); the ACE model is preferred
when 2pP%)(y) — pM2)(y) > 0, and the ADE model otherwise [Berentsen et al., 2020].

3 Results

The longitudinal BMI measurements used in the regression analysis are shown in Fig-
ure la. The distribution of uncertainties in fitted BMI3; is mostly confined to the
interval from 0 to 2, but some twin pairs have higher uncertainty (Figure 1b). The bi-
variate distribution of BMI35 within twins deviates from normality for DZ females and
is having a pear shape with less association for large BMI values (Figure 2). The same
is true for males, and to a lesser extent for MZ twins (Supplementary material). The
mixture model can accommodate this pear shape, by using m = 3 individual Gaussian
components (Figure 2). The fact that the mixture distribution fits data much better
than a bivariate Gaussian distribution (m = 1) is clear from a comparison of BIC values
(Table 1).

The best fitting covariate model is that in which sex affects only the mean of the response
(Table 1). However, the difference in terms of BIC between this model and the stratified

model or the model with a sex effect also in the correlation structure is not large. The



m Mean Mean+covariance | Stratified
Q ABIC | Q ABIC Q A BIC
5 1211.03 | 7 1204.01 8 1125.78
10 47295 | 12 485.87 18  56.92
15 0* 17 12.46 28 17.30
20  0.65 22 12.33 38  56.57
25 11.72 |27 24.59 48  94.98

QU W N =

Table 1: Model selection by the BIC criterion among three candidate models for sex
effect (columns) and the number of mixture components (m). @ represents the number
of parameter estimated, and ABIC shows BIC relative to the best fitting model (*)
across the table. Color red highlights the model with lowest BIC within each column.

latter two are both more flexible in their ability to fit the distributional shape of data
but are being penalized by the BIC criterion for having more parameters than the
selected model. The selected model has m = 3 mixture components. The BIC values in
Table 1 are for the entire dataset (male/female and MZ/DZ). In the stratified model,
this amounts to adding the BIC values computed separately for males and females. In
an additional analysis, where males and females were allowed to have a different value of
m it was found that the best fitting values were m = 2 for males and m = 3 for females,
but the total BIC was not lower than the selected model in Table 1. A more in depth

analysis of the different models can be found in the supplementary material.

The parameter estimates for the mixture model (Table 2; column “Global”) show that
— Hfemale = 1.86 units. The
global correlation is expectedly stronger in MZ twins than in DZ twins (pyjz = 0.70

mean BMI is higher for males than for females by 1 .16

versus ppyy = 0.34). By constraint of the chosen model (Table 1), correlations are
the same for males and females. For the three individual Gaussian components of
the mixture, components k& = 2,3 have a negative correlation for DZ twins, which is
contributing to the pear shape of the overall mixture (Figure 2). Component k = 3 has
the largest standard deviation (o) and represents 100 x p3 = 4% of the data (Table 2).
This part of the data includes twin pairs which may be classified as outliers in the sense

of having a strong negative association in BMI across the twins (Figure 2).

By construction of the selected model, the shape of the correlation curve for males is
identical to that for females, but is right-shifted by an amount fimee — ftfemate = 1.87
(Figure 3). While this might seem like a strong restriction, it is worth noting that our
model is preferred by the BIC criterion over the two other models in Table 1, which both
allow for more flexibility in the correlation curves. Twin [Silventoinen et al., 2017] and
molecular genetic studies of BMI [Khera et al., 2019] have shown very little evidence
of sex-specific genetic variance or genes expressed only in one sex. In contrast, the

distribution of fat differs between men and women, and is affected by genetic factors.



Parameters k=1 k=2 k=3 Global

Hmale 2357 2636 2082 2455
Hfomale 2170 24.49 27.96  22.68
o 194 272 467  2.84
N7 0.74 034 038  0.69
D7 0.31 -0.19 -022  0.36
p 0.70  0.26  0.04

Table 2: Parameter estimates for the chosen m = 3 component Gaussian mixture as-
suming a sex effect in the mean (p). Additional parameters are standard deviation
(), monozygotic and dizygotic correlation (p), and mixture weights p. Each column
(k = 1,2,3) corresponds to different mixture components. The final column refers the
parameter value for the mixture as a whole.

We observe a drop in the correlation curve for high BMI in both monozygotic and
dizygotic twins (Figure 3). The correlations increase before dropping, but this pattern
is more noticeable in dizygotic twins (it increases up to a BMI value of about 24 for

female data and 26 for male data).

The property that the male correlation curve is, by construction, just a right-shifted
version of the female one carries over to the heritability curves. Hence, we only discuss
female heritability in the following. Figure 4 displays curves obtained using both ACE
and ADE genetic models. The panel labeled “common” contains the dominant genetic
component (which appears in the ADE model) and the shared environment (which
appears in the ACE model). The curve for the residual environment is the same in both

models.

The Pearson correlations are p(™%) = 0.74 for monozygotic twins and p(P%) = 0.42

bz) _ p(MZ) i5 positive; hence, if we opt to use

for dizygotic twins. The quantity 2p
one single model for the whole dataset range, the ACE model is most appropriate.
However, as discussed in Section 2.2.3 we can instead switch between ACE and ADE
model depending on the sign of the quantity 2p(P%)(y) — p™%)(y). The dashed line in
Figure 4 indicates the preferred (combined) model. We define the “mid range” of BMI
values (21-27) as the region where the ACE model is preferred and “low/ high range”

BMI values as the region where the ADE model is preferred.

The mid range BMI values are governed by additive genetic effects (A) and to some
extent the shared environment (C). The residual environment (E) plays a larger role for
the upper mid-range BMI values. The heritability curve a? steadily decreases while the
BMI values increase, starting from its highest value of 0.78 for the BMI value 21. The
shared environment curve c?, instead, displays a convex shape, increasing together with

the BMI up until it reaches its maximum value of 0.25 around a BMI value of 24 and
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Figure 3: Correlation curves for male and female data for monozygotic (top) and dizy-
gotic (bottom) twins, with pointwise 95% confidence bands (shaded regions). Vertical
dashed lines show empirical quantiles (not model dependent) separately by sex, but
pooled over MZ and DZ twins.

decreasing after. By construction, ¢? is zero at both extremes.

Low BMI values are overall governed by the genetic effects A and D. Dominant genetic
effects (D) play a more pronounced role as the BMI values decrease, with its maximum
value (0.73) reached at BMI value of 18, while the opposite trend can be seen with the
additive heritability curve a?. We also see a slight increase in environmental effects (E)

as the BMI values decrease.

High BMI values are increasingly governed by environmental effects (E) (for a maximum
value of 0.60) while broad sense heritability is decreasing (Figure 4). Interestingly, a
change in type of genetic action is suggested by the curves; while additive genetic effect,
the A component, is the suggested action for BMI values in the normal range, dominant
genetic and weak epistatic effects (the D component) tend to govern the upper part of
the BMI scale effects (D) ((for a maximum value of 0.52 around a BMI value of 28). The
basis for this suggestion follows from decreasing within-pair correlation in BMI among
MZ pairs with increasing BMI and similar decreasing within-pair correlation among DZ
pairs, however with larger (or faster) decrease for the DZ pairs with increasing BMI.

Implications of this suggested change in mode of genetic influence is discussed below.
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Figure 4: Decomposition of total variance into genetic and envirolmental effects by BMI,
sex, and genetic model (ACE/ADE). Shaded areas indicate 95% pointwise confidence
bands. The environmental part is identical for the ACE and ADE models, indicated by
the pink color in the lower part. The dashed black line represents the combination of
the ACE and ADE models.

4 Discussion

In the present analysis, we demonstrate that multiple mixture models account for the
pairwise relationship of BMI rather than a single bivariate distribution assumed in prior
analyses of twin data of BMI. Further, the 95% probability regions of the kernels of
the distributions are shaped differently as seen in Figure 2. The majority of pairs are
in a symmetric circular distribution, while the remainder are in distributions indicating

greater within pair differences, possibly due to greater than average genetic differences



and/or specific environmental triggers affecting body weight development more in one
twin than in the other. Such pairs discordant for BMI have proved very informative for
the study of causes and consequences of obesity [van der Kolk et al., 2021], [Naukkarinen
et al., 2012]. The existence of several types of bivariate distributions suggests that a
single bivariate normal model of multifactorial inheritance with a polygenic component
is not sufficient to account for the complexity of interplay of genetic and environmental
factors in BMI, even though GWA studies have been highly successful in identifying
hundreds of BMI-associated genes and accounting for about a fifth of the variance in
BMI [Khera et al., 2019]. On the other hand, rare Mendelian variants and various
obesity-related syndromes account for a relatively small proportion of variance in BMI
[Kaur et al., 2017].

When we consider the resulting heritability curves, and associated curves of MZ and
DZ correlations by level of BMI, we observe very high estimates of the contribution of
genetic factors in the region of what is generally termed normal BMI [Seidell and Flegal,
1997]. As BMI comprises both lean (muscle, organs and bone) as well as fat mass,
our results are consistent with the notion that in the absence of excess fat, body build
is highly genetic determined. As BMI increases, the proportion of weight accounted
for by fat mass increases, and the contribution of genetic variation decreases. This
is consistent also with the rapid increase in obesity in global populations [GBD 2015
Obesity Collaborators, 2017] being due to environmental factors rather than changes in

the gene pool over the past decades.

In the ADE model, the genetic effect is split into an additive genetic component (A)
and a dominant genetic component (D). We can compare the curve a?(y) acr, computed
using the ACE model, with the sum a?(y)ape + d*(y), as they both represent the total
heritability of the model (the latter assuming independence of A and D). Hence, even
though a first look at Figure 4 may suggest a contradiction between the heritability
estimate in the ACE and ADE models, we should not compare a?(y) ac and a?(y) apg-
Instead, we can study the behavior of the separate components of the total heritability.
In particular, the dominant genetic component plays a larger role on the tails, while the

additive genetic component has a larger effect in the middle of the data range.

Noteworthy, as can be derived from the biometric model, the D component may re-
flect some evidence for epistatis besides the dominant effects of variants. Hence the

heritability curves may shed light on values for which such action may take place.

For BMI, it is biologically plausible that the genetic and environmental components vary
over the range of BMI. For example, very large or small values of BMI could be caused by

“sporadic” environmental factors such as accidents or by rare genetic mutations whereas



the medium phenotype variation may be dominated by multiple common genetic factors.
The heritability curves then provide insights to an evolutionary normal spectrum of
BMI of which magnitude of genetic variants is observed. Expectedly, genetic action on
BMI for values outside the normal spectrum may stem from different localizations of
variants governing different mechanisms. Hence the curves relate to some combination
of genotypic, environmental and epigenetic interactions, the broad-sense heritability and
it becomes important to study how curves may change given observed genetic variants

which will be a perspective for further studies of correlation curves.

In this paper, we use a Gaussian mixture distribution to fit the data. To test the
soundness of this assumption, we fitted a non-parametric correlation curve and showed
that it returns similar results to Figure 3 everywhere except for low BMI values for female
dizygotic data, where it estimates a higher correlation. See supplementary material for

more details.
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Supporting Material for “The heritability of BMI
varies across the range of BMI — a heritability curve

analysis in a twin cohort”

1 Data preprocessing by linear regression

The purpose of this supplementary is to provide additional information about the anal-
ysis in “The heritability of BMI varies across the range of BMI — a heritability curve
analysis in a twin cohort” (Azzolini, Berentsen, Skaug, Hjelmborg, Kaprio), which is

referred to as “main text”.

The main text studies the BMI of twins using the Finnish Twin Cohort [Kaprio et al.,
2019]. The relevant variables to the analysis are listed in Table 1.

Since the measurements are taken at different ages for different twins, we need to pre-
process the data to obtain a set of comparable values. For each twin, we interpolate in
up to seven BMI measurements from the different waves using simple linear regression

to obtain BMI estimates at age 35 (approximately the average age in the dataset).

We use the program R [R Core Team, 2020] for the computations. We show a simplified

version of the code in appendix A.

Name Description Values

BMI BMI measurements [13.11,29.92]

Age Age of the twin pair at measurement [18,61]

Sex Sex of the pair (only same-sex pairs are included) | 1 (Male), 2 (Female)
Zygoty Zygosity of the twin pair 1 (MZ), 2 (DZ)
Wave Different measurements of the same twin pair from 1 to 7

Tvparnr ID number of the twin pair from 1 to 7639
Twinnumber | Different twins in the same pair 1,2

Twinnid summary of both Tvparnr and Twinnumber from 11 to 76392

Table 1: List and description of the variables included in the dataset.
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Figure 1: Regression lines fitted to BMI-at-age for 100 randomly selected individuals.
The vertical green line is at age 35.

Figure 1 shows the regression lines of 100 randomly selected individuals from the real

data, obtained through the process explained above.

2 Derivation of classical heritability formulas

In this section we show how to derive equations (2.1) and (2.2) in the main text.

Let Y;; be the trait value of twin j (j = 1,2) in twin-pair ¢, and let pM2) and pP?) be
the Pearson correlations cor(Y;, Y;2) for monozygotic and dizygotic twins, respectively.
Consider the mixed-effect model [McCulloch and Neuhaus, 2001]

Yij = p+ p'zi; + Ay + Cij + Dij + iy, (1)

where A;;, C;;, D;; and E;; are mutually independent and follow a normal distribution
with mean 0 and variances 0%, 02, 0%, and 0%, respectively. The total variance of Yj; is
o2 = Var(Y;;) = 04 +02+0%+0%. Note that this model assumes no gene-environment
interaction. We define a®> = 0% /0%, 2 = 02 /0%, d*> = 0%/0?, and ¢* = 0% /0. By
definition,

aA+E+d+e? =1, (2)



i.e. the contributions from all components sum to one.

The ACE and ADE models assume, respectively, that dominant genetic effects and
shared environment do not affect the trait in study; in other words, d?> and c? are

assumed to be zero.

Mono- and dizygotic twins share 100% and 50% of the additive genetic effects, respec-

tively. In formula, we write cor(AMZ, AMZ) =1 and cor(AL%, ABZ) = 1/2.

Monozygotic and dizygotic twins alike share the totality of the common environment,
hence we make the common assumption cor(Cy;,Ci2) = 1. The dominant genetic
component, instead, affects monozygotic and dizygotic twins differently; in particular,
cor(DMZ, DMZ) =1 and cor(D5?, D5%) = 1/4.

Traditional twin models utilize only the p™?4) and p(P%) phenotype correlations, which
for the ACE model are

MZ) g2y &2,

p

(D7) _

p

Ly, »
2a +c,
while for the ADE model are given as

p(MZ) _ CL2 +d2,

1 1
(DZ) _ 2,2~ 2
P 2a +4 .

Equations (2.1) and (2.2) in the main text can be easily derived from 2, 3, and 4.

3 Bivariate Gaussian mixtures

In Berentsen et al. [2020] are described in depth the advantages of using Gaussian
mixture models as underlying distributions when constructing correlation curves. We
summarize below the model that we use in this analysis, but we refer the interested

reader to Berentsen et al. [2020] for more details.

The probability density of a m-component Gaussian mixture for a twin phenotype y =
(yh y2) is
> peda(y; pr i) - (5)

k=1

The parameters pi,...,p, are non-negative values satisfying > ,p, = 1, and



¢2(y; 1, X) denotes a bivariate normal density, with mean vector p and covariance

matrix . In the main text we refer to these densities as kernels.

To guarantee symmetry between the two twins, we impose some conditions on the mean

vector and the covariance matrix:

o oipk
B = (b, i), g = ( S (6)

where py, € (—1,1) is the correlation parameter and oy is the standard deviation. We
further assume the py’s, pi’s, and o;’s to be shared between monozygotic and dizygotic
twins, with only the p;’s being different. This is a natural assumption as marginal BMI
distributions of twins of the same zygosity are expected to be identical. Therefore, we
estimate m—1 p’s, m pi’s, m ox’s, and 2m pi’s. Furthermore, we introduce restrictions

on the means to ensure identifiability of the model (See Section 4 for more details).

We select the most parsimonious number of mixture components using the criterion
BIC = —2log(L) + log(n)@ for each candidate model, where @ is the number of pa-
rameters and log(L) is the log likelihood function, as defined in [Berentsen et al., 2020,
equation (3.14)].

3.1 Models with a sex covariate

The mean and covariance structures (6) allow to introduce covariates easily. In the main
text, we briefly described how to include a sex effect in the model in three different ways.

Below, we show the mathematical formulas.

The “Stratified” model consists in estimating two completely independent Gaussian
mixtures with m components for male and female data, so that the parameters puy’s,

or’s, pr’s, and py’s are all sex specific. The total number of parameters is n = 2(5m —1).

The “Mean” model assumes a sex effect on uy’s; we follow the parametrization from
Berentsen et al. [2020], and introduce a sex effect term 3, such that for each component
k:

i = (i + Bui, e + Buzi), (7)



where z; = 0.5 for male data and x; = —0.5 for female data. Hence, ftimare = Htfemate+Bp-

The total number of parameters is n = bm.

The “Mean+covariance” model assumes a sex effect on both u;’s and p,’s. In addition
to assuming the structure 7 for j;’s, we define the common term j3, such that for each

component k:

o? o2 (pr + X;
Ek _ , k k(/ok Zﬁp ) ’ (8)
(o + Boxi) Ok
where z; = 0.5 for male data and z; = —0.5 for female data. To reflect the differences

between monozygotic and dizygotic correlation coefficients, we introduce two different

parameters, Bé”z and ﬂfz. The total number of parameters is n = 5m + 2.

4 Implementation in TMB

To perform the analysis on the dataset, we use two files, written in two languages: R [R
Core Team, 2020] and C++ [ISO/IEC, 2017]. We access and integrate the C++ code in
the optimization process using the package TMB [Kristensen et al., 2016]. The code is
accessible at https://github.com/skaug/Supplementary, under the repository Azzolini-
etal-BMlIvaries.

In the R file we read the dataset, we initialize the parameters, and we run the optimiza-
tion function. This optimization function invokes the C++ script and minimizes the

negative log likelihood function there defined.

The number of components of the Gaussian mixture is a hyperparameter that we select
using BIC as criterion. We have already performed model selection on the dataset, so

we only report the code for the best fitting model, with m = 3 components.

An issue that arises when Gaussian mixtures are estimated is label switching - that is,
having several equivalent parameter estimates where the only difference is the order of
the components. To avoid this problem, we force the means to be ordered from smallest
to largest. To achieve this we reparameterize the model in terms of o and we then

construct the mean vector p as follows:

M1 =€



“Stratified”

Male data
Par k=1 se k=2 se k=3 se k=4 se Global se
e 2364 011 2633 027 3035 0.20 24.66
o 197 005 246 011  3.67 047 2.59
pAMP 072 002 027 014 024 0.24 0.69
PP 034 004 —029 012 —0.94 0.03 0.36

Dk 0.75 0.05 0.24 0.05 0.02 0.01
Female data
Par k=1 se k=2 se k=3 se k=4 se Global se

e 2162 0.09 2457 025 2823 0.78 22.74
o 191 005 283 013 491 035 2.96
pAMP 075 002 034 009 041 0.20 0.69
pP? 026 004 —022 008 —0.18 0.14 0.34
Dk 0.67 0.04 029 003 004 0.01
“Mean”

Par k=1 se k=2 se k=3 se k=4 se Global se
e 2264 008 2542 023 2889 0.69 23.61
o 194 004 272 012 467 0.32 2.84
pMP 074 002 034 008 038 0.15 0.69
PP 031 003 -0.19 007 -022 0.12 0.36
D 070 0.03 026 003 004 0.01
B, 1.86 0.06

“Mean-+covariance”

Par k=1 se k=2 se k=3 se k=4 se  Global se
L 2141 024 23.17 0.14 26.15 0.91 29.68 0.10 23.57
Ok 1.51 0.10 2.02 0.05 294 0.13 5.02 0.39 2.79

pM? 088 004 065 003 026 009 037 022  0.69
PP 051 010 016 005 -0.30 0.08 -0.14 0.16  0.36

D 0.15 0.05 065 004 018 002 0.02 0.01

B 1.86  0.06
MZ 3, -0.01 0.03
DZ 5, 0.11 0.05

Table 2: Parameter estimates for the best-fitting Gaussian mixtures for each covariate
model. For each estimate, we present its standard error. The mixture components are
ordered according to the value of 0. The global quantities, u, o, p™%) and p(P%) are
calculated from [Berentsen et al., 2020, equation (3.4)].



Global quantities

Parameter “Mean” “Mean+covariance” “Stratified”
male p 24.54 24.50 24.66
female p 22.68 22.64 22.74
male o 2.84 2.79 2.59
female o 2.84 2.79 2.96
male p(M%) 0.69 0.69 0.69
female p(M%) 0.69 0.70 0.69
male p(P%) 0.36 0.42 0.36
female p(P%) 0.36 0.31 0.34

Table 3: Comparison of the global quantities for the three covariate models for both
sexes.

and, for every 2 <i < m,

Wi = fi—1 + €%

This guarantees that p1; < pg < ... < py,. This coding works if all mean components are
expected to be positive (which is the case with BMI), but can easily be tweaked so that

it admits negative values as well.

In the C++ file we read the data and the parameters and we define the negative log
likelihood function that is optimized in the R file. Moreover, we construct the expressions
for the correlation curves and estimate them at 500 points along the BMI range. These

points are used to draw the plots of the curves.

To improve the precision of our estimates, we use both the gradient and the hessian
matrix in the optimization function. We are able to compute the hessian thanks to

automatic differentiation performed by the package TMB.

Due to privacy, we cannot share the dataset we worked on in this document. To present
the performance of the code, we created a simulated dataset. The dataset follows a
Gaussian mixture distribution with three components. As parameters we used the es-
timates we obtained from the analysis on the twin data (Table 2). Figure 2 shows the

scatterplot of the simulated data.

5 Comparison between different covariate models

Figure 3 is an extension of Figure 2 from the main text. The ellipses describe 0.95
probability regions for the three Gaussian components of the best-fitting model. We

observe that male and female dizygotic data are both pear-shaped while that is not so
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Figure 2: Scatterplot of the simulated dataset, divided by sex (male and female) and
zygosity (monozygotic and dizygotic). The dataset follows a Gaussian mixture distri-
bution, using as parameters the estimates from our analysis.

evident in monozygotic data. The correlation coefficients (Table 2) well capture this
difference. It also shows the higher variability of female data, which is captured by the

models with a sex covariate.

Table 2 contains the parameter estimates of the best fitting Gaussian mixture within

each covariate model. They also contain the standard error estimate for each coefficient.

Female data have a larger variance in its right tail (as can be seen in Figure 3) compared
to male data, both for monozygotic and dizygotic twins. This is captured better by
the “stratified” model. We notice that both the weights ps and ps3 and the standard

deviations o9 and o3 are larger for female data. The lower variability in the right tail
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Figure 3: Ellipses representing the three Gaussian kernels, divided by sex and zygosity.

for male data, especially in dizygotic twins, is also reflected in the correlation coefficient
pgDZ) which approaches —1, compared to the value of —0.18 for female data. Despite
these differences being justified by the dataset, the BIC value still prefers the less flexible

mean covariate model.

The values of ;uf and p! obtained through the stratified analysis are quite similar to the
ones from the best fitting model (mean covariate), albeit slightly larger. The average
difference between male and female mean components for stratified analysis is 1.97,
slightly larger than the estimated parameter 5, = 1.86. This is not reflected in the

global quantities (Table 3), which are very similar between the two different models.

Comparing the “mean+covariance” parameter estimates (Table 2) is slightly more dif-
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Figure 4: Correlation curves for monozygotic twins using the three different methods
described in section 3.1. For each method, we plotted the correlation curve for the best
model for both male and female BMI. The horizontal grey lines represent the Pearson
global correlation p%) . The vertical dotted lines represent the 0.05, 0.5, and 0.95
quantiles of the data, divided by sex.

ficult, since the best fitting mixture has one component more than the other two best
fitting models. Looking at the global quantities (Table 3), we see that they are pretty
consistent with the other two models. Moreover, the coefficient 3, is the same as in the

“Mean” model.

The coefficient ﬂéM %) is not significant. The model does identify a more significant sex
effect on the dizygotic correlation coefficient. The BIC values still favors the simpler

“Mean” model.

5.1 Comparison of correlation curves

The differences in BIC values between the best-fitting mixtures among different covariate
models is not very large (see Table 1 in main text). We also showed, in the above section,

that the parameter estimates are relatively consistent between the different models. In
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Figure 5: Comparison of estimated conditional mean curves based on the Gaussian mix-
ture (TMB; red) with the two fully nonparametric estimates (blue and green) obtained
from “loess”. The estimation uncertainty is displayed only for the Gaussian mixture,
and the underlying data are shown as grey dots.

this section we compare the monozygotic correlation curves obtained using the models

from the previous section (“stratified”, “Mean”, “Mean+Covariance”).

Figure 4 displays the estimated monozygotic correlation curves according to the different
models. For each of the three methods, we plot a curve for male data and one for female
data. The three vertical lines represent the 0.05, 0.50, and 0.95 quantiles of the male

and female data separately.

We observe that the curves of the same sex follow the same broad shape. In general,

“stratified” and “mean” models generate curves that are quite similar. We remark



Method — TMB — Loess conditioning on Y1 — Loess conditioning on Y2

Male Female
151
[0) ] <
© 5
= J
(]
>
©
5
= 151
2
S 4 o
(@) 10 N
5-
™ o 0 o 0 o o 0 o 0 o
N~ o N Yol N~ o M~ o N [Te] N~ o
— N N N N [ 2 o N N N N [sp}
BMI

Figure 6: Comparison of estimated conditional variance curves based on the Gaus-
sian mixture (TMB; red) with the two fully nonparametric estimates (blue and green)
obtained from “loess”. The estimation uncertainty is displayed only for the Gaussian
mixture.

that, while the “mean” model generates male and female curves which are identical and
shifted on the x-axis, the same is not true for the more flexible “stratified” model. This
is particularly evident by looking at the distance between male and female curves in the
left, tail.

The curves generated by the “mean+covariance” model deviate slightly from the pattern
above, especially in the right tail. This difference is possibly caused by the different

number of components of the best fitting model.

6 Sensitivity Study

As a sensitivity study, we compared the estimated correlation curve based on the Gaus-
sian mixture with a fully nonparametric method based on the smoother function “loess”
in R. In particular, we computed nonparametric conditional means and variances, and
these were used to obtain nonparametric correlation curves. In “loess” we first regressed

Y1 on Y2, and secondly Y2 on Y1, and hence obtained two different estimated cor-
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Figure 7: Comparison of estimated correlation curves based on the Gaussian mixture
(TMB; red) with the two fully nonparametric estimates (blue and green) obtained from
“loess”. For the Gaussian mixture the estimation uncertainty is displayed for the full
range of BMI values, while for the two nonparametric curves 95% confidence intervals
are displayed only for BMI=18 and 30. The black dot represents the average of the
pooled 100 bootstrap samples.

relation curves. Due to the arbitrary labeling of twin pair members these curves are
estimates of the same quantity, and differ only due to estimation uncertainty. As we
are estimating a conditional mean curve, we will refer to “regressing Y1 on Y2” as

“conditioning on Y2”. We show a simplified version of the code in appendix B.

Looking at Figure 5, 6 and 7 we see that, overall, female curves among different models
seem more similar to each other compared to those of males. A similar observation can
be made for dizygotic curves compared monozygotic ones. We remark that the sample
sizes of the subsets are quite different; there are about 30% more female subjects than
male subjects, and the size of the dizygotic subset is double the size of the monozygotic
subset. The tail behaviour is sometimes discordant with the previous remark, especially

in Figure 7. We investigate this phenomenon later.
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Figure 8: Fully nonparametric correlation curves estimated on simulated data (in black)
compared to the parametric TMB estimate (in red). The estimation uncertainty is displayed
only for the Gaussian mixture.

Figure 5 shows the conditional means obtained using TMB and “loess” conditioning
on both twin pairs separately. The three curves identify the same pattern in the data,
although they do not coincide perfectly along the entire BMI range. We observe a larger

variance in the tails, which can be expected, given the sparsity of the dataset.

The two nonparametric conditional variance curves lie partly outside the pointwise 95%
confidence intervals for the Gaussian mixture (Figure 6), particularly in the tails. There
is also a discrepancy between the two nonparametric curves, and this discrepancy can be
interpreted as estimation uncertainty, because the blue and green curves are the same

estimator applied to two different datasets (switching the roles of Y'1 on Y2).

To compute the derivative of the conditional mean curve needed for the correlation

curve, we used the finite difference approximation

Bly) = ply + h);hu(y - h)7 (9)
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Figure 9: Comparison of quantile regression (dashed) with the correlation curve in Figure 3
of the main text (see caption of that figure).

for h = 0.1, where u(y) is the conditional mean obtained from “loess”. In Figure 7 we
show the loess estimate of the correlation curve. Overall, they show the same results as
the TMB estimate. The behaviour of the curves differ mostly in the tails. We investigate

this, and in particular the left-hand tail for dizygotic females, in more detail below.

To this end we generated 100 bootstrap samples from the dataset, sampling twin pairs
with replacement and randomly reassigning the order of the twin members. For each
of the 100 bootstrap datasets we computed the nonparametric correlation curve, and
subsequently calculated bootstrap mean and standard deviation. Since the largest dif-
ference between correlation curves is in the tails, Figure 7 displays the bootstrap results
only for BMI=18 and 30. The 95% bootstrap confidence intervals are constructed using

1.96 standard deviations around the curve.

The confidence intervals for male data at BMI=18 are very wide; this is probably a
reflection of the few data points around that value in the original dataset. Looking at
the female dizygotic data at BMI=18, neither confidence intervals (blue or green) overlap

with the TMB estimate. Hence, the differences cannot be described by uncertainty alone
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Figure 10: Quantile regression of correlation on the same data as Figure 3 of the main text,
with a 95% confidence interval (in blue) and on simulated data (in red).

and may be attributable to either lack of flexibility of the Gaussian mixture (TMB) or

to some bias in the nonparametric estimator.

To investigate the statistical properties of the nonparametric estimator, we conducted a
simulation experiment in which data were simulated from the fitted Gaussian mixture
(based on the real data). Because an analytic expression for the correlation curve is avail-
able for Gaussian mixtures [Berentsen et al., 2020] we can compare the nonparametric
estimator with the “true” correlation curve. Figure 8 shows that the nonparametric
estimator has an upwards bias throughout the BMI range. Strictly speaking, this con-
clusion is valid only when the true data generating mechanism is a Gaussian mixture,

but it seems necessary to explore the properties of the nonparametric estimator further.



7 Comparison with quantile regression

An alternative to our correlation curve based method, which allows heritability to vary
with BMI, is quantile regression [Williams, 2020, Mitchell et al., 2013, Beyerlein et al.,
2011, Abadi et al., 2017, Rokholm et al., 2011]. Figure 9 compares the correlation
curves with the quantile regression of correlation. The two methods agree fairly well in
the lower half of the BMI range, but in the upper half the correlation curve decreases,

while the quantile regression estimate keeps increasing (roughly speaking).

We next attempt to understand if this discrepancy is due to the use of a Gaussian
mixture in the current analysis, or if it is caused by the correlation curve and quantile
regression yielding fundamentally different measures of correlation. Figure 10 shows
the quantile regression both for the real data (same as Figure 9) and simulated data.
The simulated data were generated from the estimated Gaussian mixture of the current
analysis (see main text), and a sample size of 100,000 twin pairs was used in order to
minimize estimation uncertainty. The curves for the simulated and real data of Figure 10
are fairly similar, indicating that the use of a Gaussian mixture is not the source of the
difference we see in Figure 9. Hence, the conclusion is that the discrepancies in Figure 9
must be caused by the correlation curve and quantile regression being different measures

of correlation, at least for the data in this study. This finding needs further investigation.

A simplified version of the code used to generate Figure 9 and 10 can be found in

Appendix C.

A Data preprocessing, R code

Below, we show a simplified version of the preprocessing code and we apply it to a
dummy dataset. The dataset contains four measurements of two twins belonging to the

same pair.

Dataset
##  Tvparnr Twinnumber Twinid Wave Age Sex Zygoti BMI

## 1 1 1 11 1 20 1 121.3
## 2 1 1 11 2 30 1 1 22.5
## 3 1 1 11 3 37 1 1 23.2
## 4 1 1 11 4 47 1 125.1
## 5 1 2 12 1 20 1 121.6



## 6 1 2 12 2 30 1 122.4

## 7 1 2 12 3 37 1 122.7
## 8 1 2 12 4 47 1 1 23.6
(tidyverse)

value<-c()
newdat<-data.frame (Age=35)
IDs<-unique(Dataset$Twinid)
G IDs) {
Subset<-Dataset’,>/filter (Twinid==j)
(dim(Subset) [11>2){
1m_mod<-1m(BMI~Age, data = Subset)

}

P<-predict(lm_mod, newdata

newdat)

value<-c(value, P)

}

value
1 1
## 23.23226 22.68316

The code separates the dataset depending on the variable Twinid, checks if the number
of waves is larger than two (to reduce uncertainty we only consider twin pairs with three
or more measurements), and performs a linear regression on said dataset. The output

value is the predicted BMI value at age 35 and forms the dataset used in the analysis.

B Nonparametric correlation curve, R code

The code below is a simplified version of the code used to compute the nonparametric
correlation curve. Assume that the dataset called Dataset contains data from one single
zygosity and one sex (for example, only male monozygotic twins). The code shows how
we compute conditional variance and the derivative of the conditional mean using loess.
We only condition on Y2, since conditioning on Y1 follows the same procedure, only with
the role of Y1 and Y2 switched.

The quantity Fit_square corresponds to E(Y'12? | Y2). To compute the conditional
variance, we then calculate E(Y12 | Y2) —E(Y1|Y2)%

To compute the derivative of the conditional mean, we use equation 9 for h = 0.1.



(tidyverse)
vec<-seq(18, , length.out = )
newdata<-data.frame(First=vec,Second=vec,
Firstsq=vec*vec, Secondsqg=vec#*vec)
new_loess<- (data, formula){
loess(formula, data,
control=loess.control (surface="direct"))

}
## conditional mean
CM<-Dataset/>/new_loess(First~Second)%>%

predict (newdata=newdata)
## conditional variance
Fit_square<-Dataset/,>/new_loess(Firstsq~Second)’>/

predict (newdata=newdata)
CV<-Fit_square-CM*CM
## derivative of the conditional mean (beta)
h<-
newdata_plus<-newdata+h
newdata _minus<-newdata-h
Fit_plus<-Dataset’,>/new_loess(First ~Second)’>’

predict (newdata=newdata_plus)
Fit_minus<-Dataset’>/new_loess(First ~Second)’>%

predict (newdata=newdata_minus)
Beta<-(Fit_plus-Fit_minus)/(2*h)
## correlation curve
Sigma_Beta<-sd(Dataset$Second)*Beta
Sigma_Beta_squared<-Sigma_Beta*Sigma_Beta

Correlation_curve<-Sigma Beta/sqrt(Sigma Beta_squared+CV)

C Quantile regression

Below, we show a simplified version of the R code for quantile regression that was used
to produce Figure 9 and 10. For brevity, we only show code for male, monozygotic twin

pairs. The code for the other subpanels are very similar.



(tidyverse)
(quantreg)
## We select male, monozygotic data
MMZ_dat<-Dat’>%filter(Gender=="Male", Zygosity=="MZ")7>7
select(First, Second)
## We switch the order of the twins in some twin pairs, at random
set.seed( )
index<-sample(size=nrow(MMZ dat), x=c(l, 2),replace= )
MMZ dat_s<-MMZ_dat
(i nrow(MMZ_dat)) {
(index[i]==2){
MMZ_dat_s$First[i] = MMZ_dat$Second[i]
MMZ_dat_s$Second[i] = MMZ_dat$First[i]

}
}

## We define a vector of quantiles

quant<-seq(0.1, 0.9, length.out=500)

## We normalize the data and perform quantile regression
v.mmz<-as.matrix (MMZ_dat_s)

dfMMZ<-data.frame((v.mmz- mean(v.mmz))/sd(v.mmz))

modelMMZ <- rq(Second ~ First , tau = quant, data = dfMMZ)

## We access to coefficients and standard errors, used in the plot
summary (modelMMZ)

## We transform the quantiles back to BMI scale
xMMZ<-quantile(x=dfMMZ[, 1], prob=quant)*sd(v.mmz)+mean (v.mmz)

Quantile regression, just like loess, can produce different results whether we condition
on Y1 or Y2. To create a curve that can be compared to the correlation curve, for each
twin pair we randomly choose whether to switch the position of the twins inside the

pair. The resulting dataset MMZ_dat_s was then used in the quantile regression.

The object mode1MMZ contains the coefficient estimate for the regression for each quantile
in quant. The summary of the model allows us also to access to standard errors, which
are used in the plot to produce the 95% confidence interval. We create the quantile
vector by starting in the BMI scale so to have evenly-spaced points when we convert the
results back to the BMI scale. Due to approximation in the rq function, we might lose

some precision in the tails.
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Abstract

Multimodality of the likelihood in Gaussian mixtures is a well-known problem.
The choice of the initial parameter vector for the numerical optimizer may affect
whether the optimizer finds the global maximum, or gets trapped in a local max-
imum of the likelihood. We propose to use Hamiltonian Monte Carlo (HMC) to
explore the part of the parameter space which has a high likelihood. Each sam-
pled parameter vector is used as the initial value for quasi-Newton optimizer, and
the resulting sample of (maximum) likelihood values is used to determine if the
likelihood is multimodal. We use a single simulated data set from a three compo-
nent bivariate mixture to develop and test the method. We use state-of-the-art
HCM software, but experience difficulties when trying to directly apply HMC to
the full model with 15 parameters. To improve the mixing of the Markov Chain
we explore various tricks, and conclude that for the dataset at hand we have found

the global maximum likelihood estimate.

1 Introduction

Mixture distributions are linear combinations of probability densities (called compo-
nents), where the weights of the sum add to one. Mixtures occur naturally for datasets
that are comprised of multiple populations, but more generally they are a flexible mech-
anism for generating probability distributions in dimension 7 > 1. The most popular

mixture distribution, and the focus of this paper, is the Gaussian mixture, with density

(@) = 3 (s e, S,
k=1



where = (z1,...,2,), N, is the r-dimensional Gaussian density with mean vector i
and covariance matrix 3, for k = 1,...,m, and the p;’s are the weights of the mixture
(i, pr = 1). The parameters of the mixture, which will be estimated by maximum

likelihood, are py, ..., Pm, 1, ---y b, and q, ..., 3.

The most widely used estimation method for Gaussian mixtures is the iterative
Estimation-Maximization (EM) algorithm [Dempster et al., 1977]. The EM algorithm
requires initialization of the parameters, and these initial values influence the perfor-
mance, and potentially the result, of the algorithm. While it can be proven that the
EM algorithm, if allowed enough iterations, will reach a local maximum of the likeli-
hood function [Wu, 1983], the computational time might be too high from a practical
perspective. Moreover, the EM algorithm does not necessarily find the global maxi-
mum, but only a local one. The choice of initial parameter values is crucial in reducing
these issues, and several approaches to finding some suitable initial values have been
proposed. The earliest idea was to perform a grid search on the initial values [Laird,
1978], while later approaches prefer to perform a pre-clustering of the data to identify
the separate components. Many clustering methods have been proposed, from K-means
and hierarchical clustering [Shireman et al., 2017], to a shorter run of the EM algorithm
itself [Baudry and Celeux, 2015].

The dependence on initial values carries over to other algorithms for maximizing the
likelihood. In the current paper we use a quasi-Newton algorithm in combination with
automatic differentiation for numerical evaluations of gradient and Hessian of the log-
likelihood [Berentsen et al., 2021, Azzolini et al., 2022]. Although this is a numerically
robust and efficient estimation algorithm, it may be trapped in a local optimum of the
likelihood, if present. To solve this problem we suggest to use a Hamiltonian Monte
Carlo (HMC) [Duane et al., 1987] to sample from the parameter space, and to use the
resulting samples as inital values for the quasi-Newton algorithm. This will amount
to doing a grid search with an irregular grid, using a finer mesh in regions where the

likelihood is high.

To illustrate this approach we use a single simulated dataset from the three component
bivariate Gaussian mixture fitted in Azzolini et al. [2022]. The software Stan [Stan
Development Team, 2019] is used, via the interface tmbstan [Monnahan and Kristensen,
2018], to perform the HMC sampling. We discuss different implementation tricks needed

in order for the sampler to work properly.

In Section 2 we introduce the HMC algorithm and explain its advantages. We then
present the simulated dataset used in the following sections and explain the code used

to perform our tests. In Section 3 we show our preliminary results and the issues that



we encounter while running a off-the-shelf HMC sampling. In Section 4 we propose
three changes to the sampler to fix its major issues and we highlight their advantages
and drawbacks. We moreover use these three new approaches to explore the parameter
space in search of new initial values. Lastly, in Section 5 we draw some conclusions

about the dataset we analyzed and highlight the potential of this approach.

2 HMC and its implementation

2.1 Hamiltonian Monte Carlo

The HMC algorithm is a Markov chain Monte Carlo method which was conceived as an
alternative to the Metropolis-Hastings algorithm with the goal of being more efficient in
sampling from posterior distributions. HMC applies the laws of physics to constrain the
sampler to regions of the parameter space with high posterior density, often referred to
the “typical set”. It does so by introducing a set of auxiliary parameters, that are referred
to as “momenta”, and using these to create a vector field that is aligned with the typical
set. This vector field is generated following Hamilton’s equations [Betancourt, 2017],
which give the algorithm its name. Our goal is to use HMC to sample the parameter
space in proportion to the value of the likelihood function, but of course, by adopting

flat priors on all parameters the likelihood may be viewed as a posterior distribution.

Hamilton’s equations are partial differential equations that relate position and momen-
tum of particles in space to the total energy of the system. In our setting, the “positions
of the particles in space” are the current values of the parameters in the parameter
space. Paired with fictitious momenta, they live inside the so-called phase space, where
we can generate Hamilton trajectories - that is, trajectories which follow the vector field
generated by Hamilton’s equations. The gradient of log-likelihood that is used to solve
Hamilton’s equations is the same as the one used by the quasi-Newton optimization

algorithm.

The HMC method is an iterative algorithm that at each iteration selects a new momen-
tum (chosen stochastically) and pairs it to the current value in the parameter space;
this allows us to follow the Hamilton trajectories in the phase space for a predetermined
amount of time. The momenta are then discarded, projecting the pair (position, mo-
mentum) back onto the parameter space, and the “position” estimate that is reached is
the sample of said iteration. As we will invoke the HMC algorithm only via the inter-
face tmbstan, we do not need to go in more detail, but a deeper dive into Hamilton’s

equations and their use in MCMC algorithms can be found in Betancourt [2017] and



Neal [1993].

Symplectic integrators [Donnelly and Rogers, 2005] are a category of approximators
built specifically for estimating the solution of Hamilton’s equations. Among these, in
this paper we use the Leapfrog integrator [Betancourt, 2017]. Several choices must be
made when implementing the Leapfrog integrator: among these, the number of steps
between one sample and the other, and the size of each such step. The No-U-Turns
(NUTS) algorithm [Hoffman et al., 2014] is a variation of the Leapfrog integrator which

automatically optimizes the number of steps in each iteration.

Sampling from around the typical set is equivalent, if the distribution in analysis is
a unimodal distribution, to sampling mostly around the mode. The log likelihood of
mixtures, however, can often be multimodal. This proves to be an issue, that is further

explored in Sections 3 and 4.

2.2 A simulated dataset

For the purpose of studying the ability of HMC to explore the parameter space of
Gaussian mixtures, we use a simulated dataset which resembles the twin data in Azzolini
et al. [2022]. The dataset contains n = 1200 bivariate observations (1, z2), that we can
interpret as measurements of some trait measured on twin pairs. Of these 1200 twin
pairs, half are same-sex male pairs, and half are same-sex female pairs. We also divide
these data by zygosity of the twin pairs: two thirds are dizygotic (DZ), while the last
third are monozygotic (MZ).

The dataset is simulated from the Gaussian mixture with m = 3 components, which
was the best fitting model in Azzolini et al. [2022]. Twins within a pair have identical
means and standard deviations, e.g. p, = (px, px) (for £ =1,...,3). MZ and DZ groups
share all parameters, except for the correlation coefficient (that we denote with p(#)

and p(P%) | respectively). We hence define the covariate matrices as

(MZ) _ o 1 MY (DZ) _ o 1 a7
XU =0k | g DY S D7) ’ :
%

Pr 1 1

We also assume that male and female data are generated using the same parameters,
except for the mean vector, where pu = uf" + B8, where 8 is a common parameter
between all components. The true values of the parameters of the Gaussian mixture

which generated the dataset can be found in Table 1.



2.2.1 The likelihood function

Since the MZ and DZ groups have different parameter values, we keep their contributions
to the log likelihood separate. Let us denote with n*? the number of MZ pairs, and
with nPZ the number of DZ pairs. Then, the log likelihood corresponding to the model

from which data are generated is:

MZ
log L(0) = Zlog{ZpkNgm“u wy+CiB3,% = E,iwz)}

i=1 k=1

Dz 3
+210g{2pszm“u i+ Ci3, X = Esz)}v

where
0, if the sex of the ith individual is female

C; =
1, if the sex of the ith individual is male

and 6 is the parameter vector containing the 15 parameters that describe the likelihood:

three means iy, three standard d0v1at10ns o, three MZ correlation coefficients p(MZ)7

2)

three DZ correlation coefficients pk , one sex covariate 3, and two weights p;, (with

the third one being defined as p3 =1 — p; — pa).

When estimating these parameters we must constrain their ranges to only meaningful
values, e.g. standard deviations must be non-negative. For this reason, when imple-
menting a MLE code, we rather estimate log(o) instead of o. For the same reason we
estimate only two of the three weights, and then apply a transformation that produces

the third one and normalizes them to sum up to one.

A major issue with mixtures is label-switching, that is the randomness in assigning the
label to the components. This means that two virtually identical mixture estimates can
be treated as different because the labels of the components are switched around. To
prevent this issue, we order the means from lowest to highest by reparametrizing them

as a sum of exponentials: p; = exp(ay), pe = 1 + exp(an), and pz = pa + exp(as).

The problem of maximizing the log likelihood is identical to that of minimizing the
negative log likelihood. Since the software we work on are implemented to solve the
latter problem, for the rest of the paper we will talk about negative log likelihood

instead.



2.3 HMC using TMB and Stan

We use the C++ [ISO/IEC, 2017] code for the log-likelihood used in Azzolini et al.
[2022] which is linked into the R package TMB [Kristensen et al., 2016]. The R routine
niminb is used to maximize the likelihood (1), and TMB is used to calculate both the
gradient and Hessian matrix of the objective function using automatic differentiation.
The use of both first and second order derivatives makes the quasi-Newton method that
is built into nlminb numerically stable [Azzolini et al., 2022]. Throughout the paper we
will refer to the maximum likelihood estimate as “nlminb”. We use box constraints in
nlminb to limit the parameter space. This comes in addition to the reparameterizations

mentioned above.

Via the R-package tmbstan the objective function is sent to Stan, which executes the
HMC sampling algorithm. Stan includes a variety of options for symplectic integrators
and the number of steps in the integrators themselves. We pick the NUTS algorithm,

and we set the step size to 0.95, which is the default value.

TMB has a parameter MAP which controls which parameters should be estimated, or

fixed at particular values. This mechanism will be used to sample from reduces models.

3 Base HMC approach

As a first step we run the R and C++ codes to obtain an estimate of the parameters
via the optimizer nlminb. The results are listed in Table 1. We use these estimates both

as starting values for the HMC sampling and as comparison.

Niminb does a good job estimating the parameters, as it can be seen by comparing its
output to the true values. The parameters that nlminb struggles the most to estimate
correctly are the correlation coefficients (see the standard errors in Table 1), especially

the second and third component of the correlation vector.

We run tmbstan using the nlminb estimates as starting values. Notice that we must
generate a new MakeADFun object with the nlminb estimates as initial values, that will
be used as input for the HMC algorithm. We perform 1000 iterations, and set the
warm-up iterations to 500 (as per default, half of the total amount). The seed is chosen

randomly. The parameter adapt_delta is set to 0.95.

The overall behavior of the samples can be seen in the traceplot of Figure 1. A traceplot

visualizes the development of the samples at each iteration. The warmup iterations are
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Figure 1: Traceplot of the samples produced by the HMC algorithm.

not displayed. To make the plot easier to interpret, we visualize the already transformed

parameters (that is, for example, we visualize p instead of «).

We can immediately notice how differently the estimates of the parameters of the first
and third components behave compared to the second component. The behaviors of
the latter are overall less stable, with spikes that go well beyond the normal range of
the parameter (e.g. o9) or oscillating wildly between all admissible values (e.g. the
correlation coefficients, which oscillate between -1 and 1). The parameter estimates of
the first and third components seem overall more stable and converging to a sensible
value for the parameter. To explore this behavior in more detail, we collect averages

and standard deviations for each parameter estimate in Table 1.



Par True nlminb HMC algorithm

first run 2-component runs base approach

mean std. dev. mean std. dev. mean std. dev.
I 21 21.07 0.09 21.69 0.09 21.68 0.04
112 23 23.09 0.16 / / 22.42 1.32
i3 28 27.93 0.06 27.46 1.60 27.92 0.06
o1 1 1.03 0.04 158 0.73 1.39 0.02
o 1 1.04 0.06 / / 8.36e+24 1.22¢+26
o3 1 097 0.05 1.00 0.11 0.99 0.05
AME 07 0.69 0.04 0.80 0.05 0.79 0.02
P4 05 046 0.10 / / 0.00 0.54
oM 03 0.34 014 0.35 0.13 0.31 0.12
/P9 04 046 0.05 0.67 0.07 0.65 0.02
PP 03 014 0.14 / / 0.00 0.61
PP —02 —0.30 011 -0.27 0.25 —0.28 0.12
n 0.60  0.63 0.05 0.87 0.17 0.91 0.01
P2 030  0.27 0.05 / / 0.00 0.00
3 0.10  0.09 0.01 0.13 0.17 0.09 0.01
8 2 197 0.06 2.0 0.02 2.05 0.07

Table 1: Mean and standard deviations of parameter estimates for simulated dataset.
The column contains the following results: “True” contains the true values of the un-
derlying distribution; “first run” contains nlminb estimates; “2-component runs” con-
tains nIminb estimates under the two-component assumption described in Subsection 4.3;
“base approach” contains average and standard deviations of the samples generated via
a base HMC algorithm.

This table confirms the initial observations we made looking at the traceplot. The spike
shown in the plot of o5 is translated in a very large average and standard deviation. On
the other side, the mean parameters are comparable to the true values, although the

second component has a relatively large uncertainty.

Notice that the estimate of the second weight of the mixture, py, is, with no uncertainty,
zero. This is visible in the traceplot as well: most of the samples lie around a value of 0,
with the only spike reaching a value of 0.0004. This means that, virtually, the samples
that HMC has produced belong to a Gaussian mixture with only two components.
While, in a general setting, this might be a sign that the initial assumption regarding
the number of components might be wrong, we are aware that the mixture distribution

generating the dataset has three distinct components.

Despite this being the case, HMC seems to strongly prefer a solution with fewer com-
ponents than the number suggested by the initial values it is given. To remedy for the
lack of one extra components, the first one compensates by having a larger mean value

(very close to the average of the first two means of the generating mixture) and with a



larger standard deviation.

We can compare global quantities - that is, measures of the parameters of the global
distribution, as defined in Berentsen et al. [2021] - of the true distribution and the
average of the HMC samples. The global mean of the true distribution is the weighted
sum of the three true means, that is 22.3. When estimating the global mean for the
HMC sample, only the first and third component contribute, because the second weight
is zero. This is true for the global quantities of all parameters. The average of the global

quantities of the distributions sampled by HMC are collected in Table 2.

We notice that the averages of the global quantities obtained via HMC sampling are on a
comparable scale to the global quantities of the true distribution, suggesting that HMC
identifies the global distribution underlying the dataset, but struggles when attributing

the correct values to the separate components.

There exists multiple criteria to judge whether a Markov Chain Monte Carlo method
has converged or not. tmbstan provides automatically the Rhat convergence diagnostic,
which compares within- and between estimates. Since we run tmbstan with a single
chain, Rhat is not a recommended diagnostic. As alternative, one can look at the
Geweke diagnostic [Geweke et al., 1991]. According to this diagnostic, several chains do
not converge, among which many of the parameters describing the second component
(the Z-scores are listed in Table 1 of the supplementary material). It is important to
mention, however, that the purpose of this paper is not to verify the convergence of the
algorithm; the goal is to find a better negative log likelihood value, and that can be
found independently on whether the chains have converged or not. This will be further

explored in Section 4.2.

Experiments show this behavior also for other simulations: in particular, when working
with a dataset generated by a Gaussian mixture with two components, HMC tends

to estimate one of the two weights to zero and hence de-facto revert to a Gaussian

Model 1 o pM2  pDZ)
True value 22.30 2.33 0.92 0.87
nlminb 22.02 225 092 0.86

base HMC 2224 224 092 0.86
loop HMC 2254 233 092 0.86
MAP HMC - 225 092 0.86
bounds HMC 22.53 233 0.92 0.86

Table 2: Global quantities of the different models studied in this paper. The first row
lists the true quantities, calculated from the true values of the generating mixture, and
should be treated as reference.



distribution.

This sampling depends on the random seed that is given to tmbstan. Other random
seeds have produced samples that collapse three components into a single non-zero
weighted component, whose parameters are comparable to the global quantities of the
true distribution. A table collecting one such example can be found in the supplementary
material (Table 2).

Another common occurrence is to estimate the means of two components (say, the first
and the second), as identical: the sampler estimates ay as a very large negative number,

hence exp(az) = 0, and ps = 1 + exp(ag) ~ p1 + 0 = p;.

Some specific (and relatively rare) random seeds have also produced the desired three
distinct non-zero components; a longer discussion about this can be found in Subsec-
tion 4.1.1.

This model is clearly not optimized; a confirmation can be obtained by looking at the
negative log likelihood. Using TMB, we estimate the negative log likelihood for each
HMC sample. The HMC sampling method performs significantly worse than nlminb,
reaching a minimum value of 4103.04 against the nlminb value of 4070.52 (see Table 3).

4 More refined approaches

4.1 The fixes

In this section we show three variations of the HMC sampling algorithm that successfully
return samples from three distinct, non-zero Gaussian mixtures. The efficiency of these
methods varies, and we present them starting with the least efficient. Each of these

approaches comes with some restrictions that require to be discussed.

model nlminb base loop MAP bounds
nll 4070.52 4103.04 4071.53 4071.32 4072.46

Table 3: minimum value of the negative log likelihood from the samples collected using
all the approaches described in this paper. The nlminb value is reported as a comparison.



Par.  True val. loop MAP bounds
mean std. dev. mean std. dev. mean std. dev.

101 21 21.06 0.09 - ~21.06 0.11
1o 23 23.05 0.18 - - 23.04 0.20
3 28 27.93 0.06 - - 27.92 0.06
o1 1 103 0.05 1.03 0.03 1.03 0.05
o 1 1.07 0.07 1.0 0.04 1.07 0.07
o 1 0.99 0.06 0.98 0.05 0.98 0.05
P2 0.7 0.69 0.04  0.69 0.04  0.69 0.04
P& 05 047 0.10 0.45 0.08  0.46 0.11
P e 03  0.32 0.13  0.32 0.13  0.32 0.14
piP% 04 0.6 0.05 0.46 0.04 047 0.06
(%) 0.3 0.18 0.13  0.15 0.08 0.17 0.15
piP?) —0.2 -0.29 0.11 -0.29 0.11 -0.28 0.11
n 06 0.62 0.05 0.63 002 0.62 0.06
P2 0.3  0.29 0.05 0.27 0.02 0.29 0.06
3 0.1 0.10 0.01  0.09 0.01  0.10 0.01
8 2 207 0.06 2.07 0.06 2.07 0.06

Table 4: Mean and standard deviation of the samples of the parameters under the three
alternative approaches, from left to right: repeating the sampling 15 times; keeping the
mean parameter fixed; setting boundaries on the parameters. The first column lists the
true values as reference.

4.1.1 Trying different seeds for the random number generator

The first approach that we present relies on brute force. As mentioned in Section 2,
tmbstan requires a random seed to explore the parameter space. Different initial random
seeds can result in vastly different samples. While the majority of our experiments
returned a non-optimal result (as described in Section 3), some random seeds produced

a set of samples which belonged to a non-trivial three-component Gaussian mixture.

This first approach, then, simply consists in repeating the HMC sampling several times,
with a different random seed each time. At the end of each completed sampling, we save
the output only if the negative log likelihood is lower than the one obtained using the
previous seed. In our example, we repeat the HMC sampling fifteen times, and we obtain
at least one result with three distinct, non-zero components. The best results from this
sampling are collected in Table 4. The averages of the parameters are comparable to the
true values, and the standard deviations are reasonable and comparable to the standard

errors obtained via TMB.

This approach relies on repeating multiple times an already lengthy process, and is

the slowest among the three methods we suggest in this section. Moreover, there is a



component of randomness in this result as well: as we mentioned in Section 3, the most
common results collapse two or even all three components into one, so fifteen random

seeds might not be enough to produce one sample from three distinct components.

It is still important to discuss this result, because it proves that HMC can, potentially,

identify three separate components, even though it struggles to do so.

4.1.2 Fixing the value of a subset of parameter

The second approach that we present consists in fixing some parameters to their nlminb
values during the entire sampling process. In this way, HMC receives parameters describ-
ing distinct components, and hopefully it will sample the other parameters accordingly.

We use the argument MAP in the MakeADFun object that is used as input in tmbstan.

When applying this approach, we must choose a subset of parameters to keep fixed.
The (maybe obvious) choice of fixing the weights does not provide consistent distinct
components: two means are often estimated as the same identical value, practically

collapsing these two components into one.

While it is not reflected in the specific example shown in Table 1, the mean parameters
tend to behave quite erratically in the base approach. Two such examples are shown in

Table 2 of the supplementary material.

We show the results of this approach in Table 4. The mean parameters are not reported,
since they are not sampled via HMC. This approach identifies three distinct components
and the parameter estimates are comparable to the true values of the underlying dis-
tribution. Moreover, the standard deviations of the estimates from this approach are

smaller compared to the other two presented approaches.

This algorithm uses nlminb estimates as reference for a set of parameters (the mean
values in this specific case), that are not sampled in the HMC iterations. Note that, in
this example, the nlminb estimates that we inherit are very similar to the real values,

and this can strongly impact the results of this analysis.

Moreover, the smaller standard deviations seem to suggest that keeping some parameters
fixed prevents the other parameters from assuming very unexpected values. This implies
that the samples won’t deviate much from the original nlminb estimates, and if those
weren’t the optimal ones, it would be very difficult for HMC to find a lower negative log
likelihood.

There are other variations of this approach that we can explore: for example, one could



a log(o) p™M7 pPZ) 5 pre-p
lower -5 -5 -1 -1 -5 -5
upper 5 5 1 1 5 5

Table 5: Lower and upper boundaries for the parameters. The same boundary was kept
for the parameter in each component. The boundaries are defined around the parameters
that are used in the function tmbstan.

use the argument MAP to fix only a subset of a parameter vector (in the example of a
Gaussian mixture with three components, one could fix only the first two mean values).
We performed some tests and the randomness of the initial seed plays a role on the
“success” of the sampling process. As mentioned above, other parameters can be chosen
as fixed, and the results can strongly vary depending on the initial seed. Overall, fixing
all three mean parameters has proven to be the most consistent approach. A summary

of these tests can be found in the supplementary material (Table 3).

4.1.3 Bounding the parameter space

The last approach that we present consists in setting boundaries in the space that HMC
explores when collecting samples. As seen in Section 3, when the sample of the weight
of a component is very close to zero the other parameters associated to that component

are very unstable and tend towards extreme values (in Figure 1, it can be seen for o3).

Choosing the boundaries for the parameters is not a trivial feat. The only obvious choice
relates to the correlation coefficients, which should always take a value between —1 and
1. For all the other parameters, the choice of bounds is not as straightforward: we want
to allow HMC to explore the entirety of the relevant parameter space to avoid missing
the best solution. In this case, we are advantaged by knowing the parameters of the
generating Gaussian mixture. We use them as reference, but still give enough space for

HMC to explore the parameter space.

The chosen upper and lower boundaries are listed in Table 5. Notice that the boundaries

are set on the parameters that are read in MakeADFun and tmbstan (e.g. a, log(o)).

The results from this approach are shown in Table 4. The averages and standard devi-

ations are very similar to those of the previous two approaches.

Preventing the sampler from fully exploring the parameter space by setting too restric-
tive boundaries can reduce the efficiency of this experiment. In general, a first analysis
of the dataset can help choosing upper and lower boundaries, especially for the means

and the standard deviations. The issues detailed in Section 3 are often accompanied



linetype [_] MAP : : bounds |_| loop colour niminb estimate

0.15

0.10 1

>

0.05 -

0.00 1 ?
4070 4075 4080 4085 4090
nll

Figure 2: Density curves of the negative log likelihood of the HMC samples compared
to the nlminb estimate.

with very large or very small values for u’s and ¢’s, and preventing these escalations

without compromising a thorough exploration of the parameter space can be achieved.

Moreover, not all parameters require a boundary: the problematic ones are usually the
mean and the standard deviation, so setting lower and upper bounds on these might be
enough to prevent the issues discussed in this paper. The fewer parameters are bounded,
however, the larger is the chance to not estimate three distinct components. As with
the other approaches, the random seed can play an important role. The results of some

experiments in this direction are collected in the Supplementary Material (Table 4).

4.2 Comparison

Looking at Table 4, we notice that in all three samples HMC identifies the three distinct
components. The first weight is overall slightly overestimated, to the expense of the
second weight. These two components are quite close to each other, so a margin of error

is expected.

Overall, these three methods avoid the main issue that we encountered in Section 3 and
provide accurate estimates of the parameters. Table 2 displays global values of these
three approaches as well. The three models capture the overall shape of the distribution,

and they all provide global values which are comparable to the true global values.
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Figure 3: Density curves of the HMC samples compared to real values and nlminb
estimates of the standard deviations of the three mixture components.

Figure 2 collects the density curves of the negative log likelihoods obtained from the
samples of all three approaches. The density curve for the base HMC is not displayed,
since it is on a different scale. While the HMC samples never find a better value than
the nlminb result, there is clear improvement compared to the negative log likelihoods

that were calculated from the base HMC approach.

The minimum values of the negative log likelihood for all approaches are listed in Table 3,

compared to the nlminb result.

Figure 3 shows the densities of the three sigma parameters, for each model, plotted
against the real values and the nlminb estimates. The densities are rather comparable,
with the exception of the “MAP” approach which, as we already discussed, estimates

the parameters with an overall smaller standard deviation.

4.3 Search for a better minimum

The goal of this paper is to find a procedure that can explore the parameter space
thoroughly and efficiently to find initial values that lead to the global minimum of the
negative log likelihood.

We wish, hence, to test the efficiency of the samples that we gathered by using them as

initial values for the TMB algorithm and the optimizer nlminb.

We begin by using the samples gathered by the base HMC algorithm. As it can be
expected, the extreme values of the weights and the standard deviations of the second

component hinder the efficiency of TMB. Since the optimization begins from initial



components min AIC min BIC

1 8934 8959
2 8276 8276
3 8171 8247

Table 6: AIC and BIC values for fitted mixture models with different number of com-
ponents. The first two rows list the minimum values among 500 fitted models (one for
each non-warmup HMC sample). The third row lists AIC and BIC values for the single
nlminb run described in Table 1, second column.

values which are orders of magnitude distant from the true values, most of the iterations
end without converging and with worse negative log likelihoods. The few that converge
do not find a better negative log likelihood.

The base approach substantially samples from a two-component Gaussian mixture, and

this suggested mixture might be a better fit for our dataset.

To verify that our three-component mixture is indeed the better choice, we run TMB for
a two component Gaussian mixture by using only the parameter samples of the first and
third component. We calculate average and standard deviation for each parameter, and
collect the results in Table 1. The parameter estimates are comparable to those of the

first and second component of the HMC sampling, but with a larger standard deviation.

To compare the three-component and the two-component mixture models, we use the
AIC and BIC values. In Table 6, we list the minimum AIC and BIC values of the
fitted two-component mixtures and compare them to the values obtained from the first
optimization via nlminb. The nlminb result still performs the best with a wide margin,
despite the larger number of parameters. In the supplementary material (Table 2), we
presented the estimates for one base case where only one component had a non-zero
weight. To complete this analysis, we also test whether the estimates of that single non-
zero component could find a better fit of the data. Among the three models we studied,
the latter performed the worst. According to these criteria, hence, a three component
mixture is the best fit for this data.

We now test the samples that we obtained by using the three successful approaches of
Subsection 4.1. Following the same procedure, we run TMB using as initial values the
non-warm-up samples of each iteration, for the three separate models. The results are
consistent between the three different approaches: the code converges for each of these
initial values. However, we do not obtain any new solution: the parameter estimates
and negative log likelihood resulting from using any of these sets of initial values are
identical to those that we found in the first run of TMB and subsequent optimization
(that is, the estimates listed in Table 1).



5 Discussion

In all of the experiments carried out, HMC has not been able to find a lower nega-
tive log likelihood than the one found by the quasi Newton algorithm built into nlminb.
While the base HMC approach evidently fails even at identifying the distribution under-
lying the dataset, adding some restraints to the parameter space allows the algorithm
to return samples which are consistent with the target distribution. As our procedure
involves restarting nlminb from every individual sample point we feel that we have pro-
vided evidence that the real global maximum likelihood has been found for this dataset.
Arguably, we should have chosen a dataset which exhibited a multimodal likelihood to
better illustrate the method, but we wanted a dataset with similar properties to that
of Azzolini et al. [2022].

This exploration of the HMC algorithm has found that a base approach struggles with
sampling from a multimodal distribution, and has a tendency to collapse some compo-
nents of the mixture distribution. Of the three approaches we propose to fix this issue,
the last one is the most promising. The first approach relies on randomness and it is
quite time consuming, while the second one relies on trusting the outputs of other opti-
mizers. On the contrary, one can set boundaries large enough to be safe that the main
part of the parameter space is explored, but preventing the extreme estimates that we
incur in the base case. We propose this approach as a tool for exploring the parameter

space in search of the global minimum of the negative log likelihood.

When applying the tmbstan function, there are several options that can be chosen: the
number of iterations, the maximal tree depth, the length of the leapfrog “jump”. These
choices can produce slower or faster processes, more or less efficient. This code, though,
seems to have run into several issues with tmbstan. Indeed, our analysis was hindered
by the simulation getting stuck into areas of the parameter space which would greatly
slow down, or downright interrupt, the algorithm. This happened especially when the

number of iteration was too large.

At a late stage in this work we became aware of the R package pdmphmc [Kleppe, 2023]
which is designed to be a computationally fast and stable implementation of HMC.
By imposing some extra priors, pdmphmc seems to generate samples with good mixing

properties, and should be investigated in further detail.
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Supporting material for “Exploring the likelihood
surface in multivariate Gaussian mixtures using

Hamiltonian Monte Carlo”

Parameter Z-score
o (1.41,-0.69, 1.92)
log(c) (-1.10, -2.18, 0.96)
pM2) (-1.04, 2.44, -0.35)
pP%) (-0.52, -0.03, -1.30)
to (-0.67, 2.72)
8 0.48

Table 1: Z-scores of the Geweke diagnostic for all parameter samples for the HMC
iteration described in Section 3 of the main article. Parameters «, log(o), p™%) and
pP%) are vectors of length three, one element associated to each component of the
Gaussian Mixture in study. The vector t§ has two elements (then converted into a
vector of length three by imposing conditions on the sum of the weights). /3 is a scalar
value. The convergence criterion is |Z| < 1.28. In red, the parameters that do not
converge.



Parameter True values nlminb HMC samples

Example 1 Example 2

average std. dev. average std. dev.
m 21 21.07 0.05 0.00 21.70 0.05
11 23 23.09 0.06 0.10 21.70 0.05
113 28 27.93 22.60 0.07 6.57e+95 1.30e+97
o1 1 1.03 40.05  762.43 4.42 0.25
o 1 1.04 1.87e+21 3.8le+22 1.30 0.03
os 1 097 2.26 0.04 5.54e+57 5.51e+58
P& 0.7 0.69 0.07 0.60 0.96 0.01
P& 05  0.46 -0.27 0.52 0.77 0.02
P2 03  0.34 0.91 0.01 0.05 0.55
p\P% 04  0.46 -0.01 0.66 0.94 0.01
piP?) 0.3 0.4 0.04 0.59 0.64 0.03
piP? —02 —0.30 0.86 0.01 0.00 0.58
B8 2 197 2.16 0.15 2.12 0.09
» 0.60  0.63 0.00 0.00 0.21 0.09
P 030 0.7 0.00 0.00 0.79 0.02
s 0.10  0.09 1.00 0.00 0.00 0.00

Table 2: Real parameter values of the Gaussian mixture generating the simulated dataset
(first column) and nlminb estimates (second column) The last four columns contain av-
erage and standard deviation of two samples generated via No U-Turns HMC. The
warm-up samples are not included. Both examples do not identify three distinct com-
ponents.



Seed

number of fixed parameters

alpha

log sigma

pre-p

3 2

1

3 2

1

2

1

950222
335738
133073
490112

60746
357948
227117
400075
936546
837627

4072.0 4462.2
4071.6 4071.8

NA NA
4072.3 NA
4072.2  4462.1
4071.7 NA
4071.5 4135.4
4072.7 44624

NA 40718
4072.3 4462.5

4103.3
4462.2
4462.2

NA
4463.0
4072.4

NA

NA
4071.9
4462.3

6602.3 4338.2
4273.5  6618.9
NA NA
4273.6 NA
6601.7 7480.8
NA NA
NA NA
4072.4 4103.5
NA 41034
4273.4 4318.1

6601.8
4103.2
4336.8

NA
4073.6
4103.4

NA

NA
4283.4
4461.1

4072.1
7296.2
7296.2
4073.6
4367.3

NA
4365.8
4072.0

NA
4367.0

NA
4196.8
4462.1
4072.4
4110.0
4283.0

NA

NA

NA
4277.3

Table 3: List of negative log likelihoods obtained running an HMC algorithm while
keeping some parameters fixed to their nlminb estimate. We repeated the example with
alpha, log(sigma) and pre-p. For each parameter vector, we attempted fixing all or some
elements. The numbers 1, 2, and 3 in the third row indicate how many elements in the
corresponding parameter vector were kept fixed during the HMC iteration.

Seed Boundaries 1 Boundaries 2 Boundaries 3

950222
335738
133073
490112

60746
357948
227117
400075
936546
837627

4102.6
4073.0
4101.0
4073.0
4073.3
4073.2
4072.8

-Inf

-Inf
4271.9

4462.2
42834
4103.2
4074.2
4104.0
4284.0
4103.7
4073.7
4104.1
4103.5

NA

4271.8
4103.8
4276.6
4073.5
4284.6
4103.5
4406.8

NA

4072.0

Table 4: List of negative log likelihoods obtained by setting boundaries on all or some pa-
rameters during the HMC algorithm. We constructed three separate boundaries, called
in the table “Boundaries 1”7, “Boundaries 2” and “Boundaries 3”. The values chosen as
boundaries are identical to the ones shown in the manuscript, Table 4. “Boundaries 17
imposes boundaries on all the parameters; “Boundaries 2” imposes boundaries on all
parameters except for pre-p and beta “Boundaries 3” imposes boundaries only on mean
and log(sigma).
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