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In order to quantitatively investigate the mechanism of how magnetospheric
convection is driven in the region of magnetotail lobes on a global scale, we
analyzed data from the ARTEMIS spacecraft in the deep tail and data from the
Cluster spacecraft in the near and mid-tail regions. Our previous work revealed
that, in the lobes near the Moon’s orbit, the convection can be estimated by
using ARTEMIS measurements of lunar ions’ velocity. Based on that, in this
paper, we appliedmachine learningmodels to thesemeasurements to determine
which upstream solar wind parameters significantly drive the lobe convection
in magnetotail regions, to help us understand the mechanism that controls
the dynamics of the tail lobes. The results demonstrate that the correlations
between the predicted and measured convection velocities for the machine
learning models (>0.75) are superior to those of the multiple linear regression
model (∼0.23–0.43) in the testing dataset. The systematic analysis shows that
the IMF andmagnetospheric activity play an important role in influencing plasma
convection in the global magnetotail lobes.
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1 Introduction

Characterizing the plasma convection in Earth’s tail regions is important to help
us understand global magnetospheric dynamics. Haaland et al. (2008) and Haaland et al.
(2009) used Cluster data (Escoubet et al., 1997) to show that the plasma convection at ∼10
RE downtail has opposite lateral patterns in the southern and northern lobes. For instance,
the convection shows a pattern such that the north-south convection moves towards the
current sheet in the magnetotail. Ohma et al. (2019) revealed that the asymmetry of the
convection flow could also be affected by magnetic reconnection in the tail, which relates
to magnetospheric activity. Cao et al. (2020b) used the two Acceleration, Reconnection,
Turbulence, and Electrodynamics of Moon’s Interaction with the Sun (ARTEMIS) lunar ion
data (Angelopoulos, 2011) to show that the dawn-dusk component of plasma convection
velocity near the Moon’s orbit (∼60 RE) has a high correlation with the corresponding
component of the upstream Interplanetary Magnetic Field (IMF). The magnetosphere
of the Earth responds to the solar wind flow and IMF, through the Dungey Cycle
driven by dayside magnetic reconnection (Dungey, 1961). Based on previous studies, the
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magnetospheric plasma in both lobes tends to move toward
the central plasma sheet; Kissinger et al. (2011) showed that
variations in solar wind conditions can also control magnetospheric
convection. The magnitude of the convection velocity is influenced
by the upstream solar wind conditions, e.g., solar wind dynamic
pressure, the IMF and its clock angle, and the magnetospheric
activity, as measured using the Dst (disturbance storm time) index.

The Moon has a tenuous exosphere, which is mainly composed
of neutrals sourced from the surface of the Moon via various
processes, e.g., solar wind sputtering, and thermal and chemical
release (Stern, 1999; Sarantos et al., 2012a; Cook et al., 2013;
Vorburger, et al., 2014), and micrometeorite impact (Hartle and
Killen, 2006; Halekas et al., 2011; Halekas et al., 2012; Horányi et al.,
2015). Some of the neutral particles can be eventually transformed
to same-mass heavy ions through photoionization, charge exchange,
and electron impact ionization (McGrath et al., 1986; Sarantos et al.,
2012b; Huebner and Mukherjee, 2015; Zhou et al., 2013). The
motion of lunar ions in the magnetotail lobes reflects their
interaction with the exosphere, the lunar surface, and the ambient
environment of the tail lobes.

Compared to other regions such as the solar wind or the
magnetosheath where the ambient plasma density is much higher
than that of the lunar ions (Halekas et al., 2011), the lunar ion
density in the terrestrial magnetotail lobes is comparable to or even
larger than that of the ambient lobe plasma, and the background
flow is commonly sub-Alfvénic (Halekas et al., 2018).Therefore, the
magnetospheric tail lobes are a unique environment in which to
study the dynamics of the lunar ions. In this scenario, Cao et al.
(2020a) analyzed ARTEMIS measurements to find that lunar ions
are predominantly accelerated by magnetic tension and pressure
forces. As a consequence of this process, the lunar ions are eventually
coupled to the ambient plasma convection by the mass loading
effect. Accordingly, the plasma convection in the deep magnetotail
lobes can be estimated by measurement of lunar ion motion. This
technique allows ARTEMIS to estimate the convection velocity
by utilizing the heavy lunar ions (which have higher energy per
charge for a given convection speed), despite the fact that it cannot
directly detect the convection of ambient low-mass ions, given the
large positive spacecraft potential in the tenuous lobe environment
(Cao et al., 2020b).

In contrast, the convection velocity in the near-Earth tail regions
can be directly measured by the Electron Drift Instrument (EDI) on
the Cluster spacecraft. The EDI emits electron beams and detects
their return to the spacecraft after one or more gyrations. By
continuously tracking the emitted beam, the electron gyro center
drift and thus the convection can be monitored (Paschmann et al.,
1997). The EDI measurement of convection velocity is not affected
by the low density of ambient plasma (Haaland et al., 2008),
and the measurement technique has been extensively validated
in the magnetotail lobes (Noda et al., 2003; Haaland et al., 2008;
Haaland et al., 2009).

Over the past few years, machine learning techniques
have been widely used in space physics and planetary science
(Camporeale et al., 2018). For instance, Kerner et al. (2019) used
a machine learning algorithm to detect novel geologic features
in multispectral images of the Martian surface. Wagstaff et al.
(2019) used machine learning methods to study thermal anomalies,
compositional anomalies, and plumes of icy matter from Europa’s

subsurface ocean. Nguyen et al. (2019) used machine learning
techniques to automatically detect the terrestrial bow shock
and magnetopause from in situ data, and Lazzús et al. (2017)
used machine learning algorithms to forecast the Dst index.
Kronberg et al. (2020) used machine learning techniques to study
solar wind control of energetic particles and X-rays. There are
many other works to apply the machine learning technique to
the space physics research, e.g., Aminalragia-Giamini et al. (2023),
Olshevsky et al. (2021), and Raptis et al. (2020).

In this paper, we used lunar ion data from the ARTEMIS
spacecraft to infer lobe plasma convection velocity near the Moon
in the deep magnetotail lobes (∼60 RE), EDI measurements from
Cluster to determine the convection velocity in the near-Earth
magnetotail between ∼10–15 RE, and solar wind and Dst index data
from NASA’s OMNI data set. We analyzed the relationship between
magnetotail convection and upstream solar wind conditions and the
geomagnetic index. Based on the outputs of two ensemble learning
methods: Random Forest and Gradient Boosting Decision Tree
(GBDT) (Ke et al., 2017), the results confirm that the lobe plasma
convection in the tail regions is controlled by upstream solar wind
and magnetospheric activity.

2 Magnetotail observations and model
methods

The two spacecraft of the ARTEMIS mission, P1 and P2, have
been orbiting the Moon since mid-2011. We used measurements
from two of the onboard instruments: Electrostatic Analyzer
(ESA) (McFadden et al., 2008) and Flux GateMagnetometer (FGM)
(Auster et al., 2008). The ESA measures the ion distribution for
energies between a few eV and 25 keV and the electron distribution
for energies between a few eV and up to 30 keV (McFadden et al.,
2008). The FGM measures the vector magnetic field at a cadence
of ∼4 s minimum. The four Cluster spacecraft fly in formation
in a high inclination 4 × 20 RE polar orbit, with apogee
in the magnetotail between August—November. From Cluster,
we use EDI measurements of the convection in the tail lobes
(Paschmann et al., 1997). Since the measurement regions of the
two missions extend from near-Earth to the Moon’s orbit in the
magnetotail, the coordinate system used in this study is Geocentric
Solar Magnetospheric (GSM), in which the +XGSM axis is defined
to be oriented towards the Sun from the center of the Earth, the
+ZGSM axis towards the direction such that XZ plane contains the
geomagnetic dipole axis, and the +YGSM axis completes the right-
handed system. The data used in this study contains over 240,000
Cluster data points in the near-Earth tail regions and over a few
thousandARTEMIS data points in the deep tail lobe regions near the
Moon’s orbit.The near-Earthmeasurement by the Cluster spacecraft
was limited to be within −8 RE < YGSM < +8 RE and +8 RE < ZGSM <
+16 RE for the northern lobe and be within −8 RE < YGSM < +8 RE
and −16 RE < ZGSM < −8 RE for the southern lobe (Haaland et al.,
2008). The processed data resolution for inputs and outputs during
the training process in the models is smoothed in 1 min scale.
The measurements made in the deep tail lobes typically reveal a
dominant positive or negative Bx component, which indicates the
northern or southern lobes, respectively. As discussed in Cao et al.
(2020b), since the mass loading effect couples the lunar ions to the
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ambient plasma convection, the motion of lunar ions serves as an
approximate tracer of the convection patterns in the tail lobes. More
details about this method can be found in Cao et al. (2020a) and
Cao et al. (2020b).

The machine learning techniques we used in this study include
random forest and GBDT, which are ensemble learning models
(Friedman et al., 2001). The basic principle of this category of the
model is to integrate a group of weak learners into a strong learner
in order to obtain a better performance, where the weak learner
represents a single decision tree in the models. In contrast to a weak
learner that performs at least better than random guessing, a strong
learner is a model doing the prediction work as well as possible
compared to the test dataset. Both random forest and GBDT use
a data structure called decision tree as the substructure of their
models. The random forest and GBDT models usually construct a
number of decision trees. Each tree in the random forest model
receives a sub-dataset as the training dataset, which is sampled
randomly with the replacement from the whole training dataset.
This resamplingmethod is termed the Bootstrapmethod in statistics
(Friedman et al., 2001). The key difference between the two models
is that the GBDTmodel focuses more on the trees with larger errors
during each iteration of the training process, as Figure 1 shows.
During the training process, all trees are independent in theRandom
Forest model. In contrast, during each epoch of the training process,
the GBDT model updates the weights of the next tree every time
after training the previous tree, in order to emphasize the weights
that caused larger errors. Both the random forest and GBDTmodels
have a good ability to reduce the overfitting problem in machine
learning and have been widely used in prediction and/or regression
in scientific problems.

The inputs of the models in this study can be obtained from
the OMNI dataset, including the solar wind IMF vector, the solar
wind dynamic pressure, the locally measured Bx, the Dst index,
and the spacecraft locations in the magnetosphere. The Dst index
describes the magnitude of the ring current, which can be used as
an upstream monitor indirectly. The outputs/targets of the models
are the lateral components of convectional velocity: Vy and Vz. The
combined training data are randomly extracted from 80% of the
dataset of each mission, and the other 20% of the dataset is used
as the test dataset. During the training process, we also used 10-
fold cross-validation (Friedman et al., 2001) to help further reduce
the potential overfitting, and the optimal hyper-parameters (e.g., the
number of trees, the maximum depth of trees, and the maximum
number of features to split a leaf node) in the models are optimized
by using the grid search strategy. The loss function in the models is
Mean Squared Error (MSE). The machine learning training process
is under the Python environment using the scikit-learn package.
Because of the parallel computing ability, the random forest model
was trained by using 8 threads simultaneously.

3 Results of random forest and GBDT
models

The lateral component of magnetospheric convection in the
lobes at different downtail distances has been shown to correlatewith
the upstream solar wind IMF direction (Haaland et al., 2008; 2009;
Cao et al., 2020b). The observed magnetospheric asymmetries such

as the dusk-dawn shift of the polar cap boundary and auroral zone
flow speed asymmetry can affect the open field lines in the lobes,
which may be controlled by the upstream dawn-dusk IMF (Cowley,
1981). Tenfjord et al. (2015), Tenfjord et al. (2018) used an MHD
model to conclude that the driving mechanism might be due to the
upstream lateral magnetic flux transferring to the nightside of the
Earth’s magnetosphere, which then affects the plasma convection in
the magnetotail lobes. Convection in the ZGSM direction is strongly
influenced by dayside solar wind-magnetosphere coupling (Dungey,
1961). This dayside coupling is also reflected in magnetospheric
disturbance indices like, e.g., the Dst index, so a correlation between
lobe convection and the Dst index is often observed (Haaland et al.,
2009), and a larger Dst implies lower activity and thus lower
convection in the tail region.

Figure 2 illustrates the uncertainties of Vy and Vz convection
values predicted by the random forest and GBDT models, trained
using the data set we described in the second section. The left
four panels (2a) show the predicted Vy values of the random forest
and GBDT models respectively for the combined data set from
the two missions, and for the ARTEMIS results alone. The blue
and orange colors represent the 50% and 75% confidence intervals
(CI), with the uncertainties having corresponding probabilities less
than the upper boundary of the shaded regions (Ruhunusiri et al.,
2018). The uncertainty indicates the statistics of the difference
between the prediction and the measurement. In general, the
uncertainty of positive Vy is smaller than that of negative Vy.
The uncertainty of Vy within 50% CI is relatively small. However,
the uncertainty of Vy within 75% CI reveals a somewhat larger
asymmetry between positive and negative values, particularly when
the velocity magnitude is larger than ∼15 km/s. This is probably
because the proportion of the velocities with a large magnitude is
much smaller than that of the velocities with a smaller magnitude,
which represent the majority of the convection velocity values in
the magnetotail lobes (Haaland et al., 2008). The relatively small
proportion of larger velocity values in the data set could result in a
larger bias, increasing the uncertainty of the corresponding range.

The predictions of Vy by the random forest model are better
than those from the GBDT model. For the prediction of the models
for the combined data set, the overall relative deviation of 50% CI’s
uncertainty is around 0.25, and that of 75% CI’s uncertainty for the
only ARTEMIS data could be up to 0.7–1.0. The result showed that
the predictions of these two models are much better than that of a
traditional multiple linear regression model (see details in the next
section).The right four panels (2b) show predicted Vz values for the
random forest and GBDT models. As the figure shows, compared
to the Vy prediction, the overall prediction of Vz by the GBDT
model for the combined data set is slightly better than that of the
random forest model. However, the GBDT model’s prediction for
the ARTEMIS measurement appears a larger uncertainty for the
positive Vz. Besides, the predictions of Vy and Vz from both models
for the combined data set are better than those for the ARTEMIS
data alone, likely due to higher uncertainty in the measurement
of magnetotail convection using the ARTEMIS lunar ion
data.

To identify which input parameters are more influential in
controlling the plasma convection in the magnetotail, we show
the feature importance of each input parameter for the convection
velocity prediction, as depicted in Figure 3. In this study, the feature
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FIGURE 1
The illustration is shown for the architecture of the Random Forest and GBDT models with the input parameters and outputs. The difference between
Random Forest and GBDT is whether the weights are updated between each tree, as the orange dashed arrows indicate. The model training is
iteratively processed until the loss function is minimized.

FIGURE 2
The 50% and 75% confidence intervals of the uncertainties are shown (see details in the text) for the random forest and GBDT models respectively for
Vy and Vz components of magnetospheric convection and for the near-Earth and deep magnetotail lobes. The left four panels (A) show the Vy’s and
the right four panels (B) show the Vz’s.

importance is defined to be the score decrease of the model when
randomly shuffling the values of each single feature, which indicates
how much the model is dependent on that feature. We calculated
10 random shuffles for each parameter and calculated their average,
in order to reduce the potential bias resulting from a single random
shuffle. The results of random forest and GBDT models both reveal
that the upstream IMF By has the highest feature importance for
the Vy component, which indicates that it plays the biggest role of
the chosen input parameters in driving the lobe convection in the
magnetotail, consistent with the previous observations Ohma et al.
(2019), Case et al. (2018), and Case et al. (2020). Next, the feature
importance of the local magnetic field and the Dst index are also
relatively significant, which is probably linked to the fact that
physical processes in the near-Earth magnetosphere, as indicated
by the geomagnetic activity, have a pronounced effect on physical

processes in the downstream region, due to the global disturbance
of the magnetic flux transport through the magnetospheric Dungey
cycle. In contrast, the geometric locations and local magnetic field
in the magnetotail lobes hold the highest feature importance for
the Vz component of the convection. The Vz dynamics may be
more strongly affected by the different magnetic field structures
between the near-Earth and far-tail regions. The locally measured
Bx also plays an important role in controlling the Vz component,
since its sign differs between the two lobes, with the northward-
southward convection generally towards the central current sheet
(Haaland et al., 2008; Cao et al., 2020b). The feature importance
of the Dst index and IMFz could also be comparably important
since the geomagnetic activity and the IMFz can influence the
convection velocity Vz’s pattern (Haaland et al., 2008;Haaland et al.,
2009; Ohma et al., 2019).
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FIGURE 3
The feature importance of the velocity prediction for the random forest and GBDT models. The upper panels are for the Vy component of magnetotail
convection and the lower panels are for Vz, for the random forest and GBDT models. The error bar in black represents the standard deviation of each
parameter’s feature importance. The measurement locations of the spacecraft are represented by the three-dimensional coordinates X, Y, and Z. The
IMFx, IMFy, and IMFz represent the different components of the interplanetary magnetic field. The Dst index and Bx represent one of the geomagnetic
indices and the X component of the local magnetic field in the tail lobes. The Pdyn represents the dynamic pressure of the upstream solar wind.

It is noteworthy that the interpretability of machine learning
models is still insufficient compared to physics-based models, even
if many efforts have beenmade to improve it during the past decade.
Although we discussed the feature importance above, we should
note that it is still empirically based because the machine learning
models we applied are not physics driven. However, the feature
importance provides a useful view to help us understandwhich input
parameters are potentially essential to impact the lobe convection,
especially if we use it to decide the input of a physics-based model.
The combination with physics-based models is beyond the scope of
this study and would be further investigated in future work.

4 Correlation analysis

As described in the previous sections, the magnetospheric
convection in the tail lobes is largely driven by the upstream
solar wind conditions and magnetospheric activity. In this section,
we split the two lobes and statistically investigate the correlation
between solar wind conditions andmagnetospheric activity, and the
plasma convection of the lobes at different down-tail distances. The
correlation calculation is made by restricting the data between the
10% and 90% percentiles, in order to reduce biases from outliers.

We calculated the correlation coefficients between each of the
upstream parameters, the geometric locations of the measurement
made in the magnetosphere, and the lateral velocity components
of the magnetospheric convection in the northern lobe measured
by Cluster and ARTEMIS. The correlation between the convection

Vy and the IMF By has the largest value (∼0.5) in the northern
lobe. Correspondingly, they have the largest anti-correlation in
the southern lobe. This is consistent with previous observations
that showed that the dawn-dusk convection in the tail lobes is
strongly controlled by the IMF By (Haaland et al., 2008; Case et al.,
2018; Case et al., 2020; Ohma et al., 2019; Cao et al., 2020b). The
correlations between the northern and southern lobes (not shown
here) are similar but not exactly symmetric, which is probably due
to two reasons: 1) the magnetic tilt of the Earth results in the
structural asymmetry of the two lobes relative to the incident solar
wind; 2) the measurement locations in the magnetosphere are not
equally distributed among different lobes. The IMF By that affects
the geometry of the upstream interaction with the solar wind can
influence the asymmetry of the convection in the magnetosphere
(Tenfjord et al., 2015).

Compared to the Vy component, the convectional Vz has
a relatively significant correlation coefficient with the geometric
location (∼0.3) compared to others, which is consistent with our
observation of the models. As discussed in the previous section, this
might be due to the influence of different magnetic field structures
among different tail regions. The IMF Bz and the Dst index have
comparable correlations with Vz in the two lobes, which is probably
linked to the upstream reconnection-related interaction driving the
magnetospheric convection, e.g., Dungey Cycle. In addition, the
lateral convection of the lobes is not significantly correlated with
the upstream solar wind dynamic pressure, which is consistent with
previous studies (Haaland et al., 2008; Haaland et al., 2009). On the
global scale, the north-south component of plasma convection in the
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lobes (Vz) has different driving characteristics from that of Vy. For
instance, the response ofVy andVz to theDst index appears different
between the two tail lobes.The correlation of the geometric locations
of the magnetosphere with Vz has also a relatively higher value
(>0.3) compared to that with Vy (<0.08), which might be because
the northward-southward convection is affected by the variation
of magnetic field structure from the near-Earth to the deep tail
regions.

Finally, we calculated the correction between the predicted and
test velocities for the two machine learning models and the multiple
linear regressionmodel.The corresponding correlation for predicted
and test Vy components of random forest is 0.76, and that of GBDT
is 0.75, compared to a much smaller value of 0.23 from multiple
linear regression. The corresponding correlation for predicted and
test Vz components of random forest is 0.78, and that of GBDT is
0.77, compared to a value of 0.43 frommultiple linear regression.The
comparison of the correlation coefficients between these different
models confirms that the machine learning models significantly
outperform the multiple linear regression.

5 Summary

In conclusion, we investigated the potential driving mechanism
of the plasma convection in the magnetospheric lobes with respect
to upstream solar wind conditions and geomagnetic activity, by
utilizing two types of machine learning models: random forest and
GBDT. We used data from the ARTEMIS and Cluster missions,
and the OMNI dataset. This study indicated that the machine
learning technique could be a useful tool to predict the response
of the magnetospheric convection in the tail lobes to the upstream
conditions, and revealed the feature importance of each potential
driving parameter, with results that appear consistent with previous
studies of the convection of the tail lobes (Haaland et al., 2008;
Haaland et al., 2009; Ohma et al., 2019; Cao et al., 2020b). The
ARTEMIS-Cluster-OMNI data-driven models demonstrate that
the convection throughout the near-Earth and far-tail regions is
largely controlled by the upstream solar wind parameters and as
reflected also in magnetospheric activity indices. The IMF By values
have significant correlations with the corresponding component
of the convection in the tail lobes, as predicted. The geometric
locations in the magnetosphere affect the Vz component more
significantly than the Vy component. In addition, the Vz value
in the tail lobes has a comparable response to the IMF Bz and the
Dst index, which may indicate that the upstream solar wind driving
mechanism consistently influences the geomagnetic environment
in the near-Earth magnetosphere and the downstream tail regions.
This is probably associated with the global plasma dynamics, e.g.,
Dungey Cycle. How the dynamics of other magnetospheric regions
(e.g., plasma sheet or current sheet) respond to the upstream
solar wind should be addressed in future studies, as it may
help build a more complete picture of the solar wind–terrestrial
magnetosphere coupling processes. The method of using machine
learning techniques to study the magnetospheric convection
could potentially be applied to the global magnetospheres
of other planets such as those of Mercury, Saturn, and
Jupiter.
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