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Abstract
In this paper, we present a frequency-domain volume integral method to model the

microseismic wavefield in heterogeneous anisotropic-elastic media. The elastic wave

equation is written as an integral equation of the Lippmann–Schwinger type, and the

seismic source is represented as a general moment tensor. The actual medium is split

into a background medium and a scattered medium. The background part of the dis-

placement field is computed analytically, but the scattered part requires a numerical

solution. The existing matrix-based implementation of the integral equation is com-

putationally inefficient to model the wavefield in three-dimensional earth. An integral

equation for the particle displacement is, hence, formulated in a matrix-free manner

through the application of the Fourier transform. The biconjugate gradient stabilized

method is used to iteratively obtain the solution of this equation. The integral equa-

tion method is naturally target oriented, and it is not necessary to fully discretize the

model. This is very helpful in the microseismic wavefield computation at receivers in

the borehole in many cases; say, for example, we want to focus only on the fluid injec-

tion zone in the reservoir–overburden system and not on the whole subsurface region.

Additionally, the integral equation system matrix has a low condition number. This pro-

vides us flexibility in the selection of the grid size, especially at low frequencies for

given wave velocities. Considering all these factors, we apply the numerical scheme to

three different models in order of increasing geological complexity. We obtain the elas-

tic displacement fields corresponding to the different types of moment tensor sources,

which prove the utility of this method in microseismic. The generated synthetic data are

intended to be used in inversion for the microseismic source and model parameters.
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INTRODUCTION

Activities such as fluid injection in the subsurface and
hydraulic fracturing may lead to induced earthquakes and
microseismicity. Microseismic wavefield modelling is a nec-
essary step in characterization of microseismic events. In
elastic media, we use the stiffness, density and microseis-
mic source parameters to generate the waveform data at the
receiver location. The source in microseismic events cannot
be represented by a vectorial point source. Instead, moment
tensors have been used to describe the source mechanisms
of earthquakes (Aki & Richards, 2002; Jost & Herrmann,
1989). The simulation of seismic wave propagation in three-
dimensional (3D) elastic media with a general moment
tensor source representation was first done by Graves (1996).
He employed the staggered-grid finite difference method
(Virieux, 1986) to solve the elastodynamic equation in the
velocity–stress formulation. The work was carried out under
the assumption that the earth model is isotropic.

The lithologies targeted for carrying out the fluid injec-
tion/extraction activities are usually stratified rocks like shale
and sandstone. Along with the horizontal layering, a verti-
cal fracture system is often observed in these rocks. This
can be attributed to the triaxial stress state in the earth’s
crust. Seismic velocity anisotropy can be caused by factors,
such as rock fabric, grain-scale microcracks, rock layering
and aligned fractures at all scales, provided that the charac-
teristic dimensions of these features are small relative to the
seismic wavelength (Worthington, 2008). Seismic anisotropy
can have a significant influence on the recorded wavefield,
which ultimately leads to errors in localization and charac-
terization of the microseismic source. Stierle et al. (2016)
demonstrated that the retrieval of moment tensor and source
mechanism critically depends on anisotropy using laboratory
acoustic emission experiments. Therefore, the development of
a full waveform modelling tool in general anisotropic media
is a necessity for accurate inversion of microseismic data.

Microseismic full waveform modelling can be performed
in the time domain or the frequency domain. Shi et al.
(2018) and Lei et al. (2021) performed the time-domain
seismic full-waveform modelling in anisotropic-elastic media
with moment tensor source representation. To obtain a sym-
metric moment tensor source, the shear–stress increments
were evenly distributed on the adjacent shear–stress grid
points around the true moment tensor source location. In
this research, we apply a volume integral method to model
the microseismic wavefield in the frequency domain. The
moment tensor source can be introduced at any grid point
by using an equivalent body force term (Aki & Richards,
2002). While performing waveform inversion, the possibility
to invert only a few frequencies in a sequential manner can
save computational cost and also avoid getting trapped to local
minima. Furthermore, it is easy to include attenuation effects.

The foundations of integral equations lie in the general prin-
ciples of scattering theory. In the integral equation method,
the actual medium is decomposed into a homogeneous refer-
ence or background medium and a contrast medium. Using
Green’s function for the background medium and numeri-
cal values of the physical properties in the contrast medium,
we obtain the wavefield in the actual medium. The integral
equation approach has been widely applied to solve the non-
linear scattering problem in electromagnetics (Jakobsen &
Tveit, 2018). The same methodology can easily be extended to
elastic wave scattering problems. Gibson and Ben-Menahem
(1991) clearly demonstrated the application of elastic wave
scattering theory to study wave propagations in fractured
media. The Born approximation (Miles, 1960; Hudson & Her-
itage, 1982) to a fully elastic scattering obstacle is one of
the frequently applied methods to compute the scattered field
in elastodynamic wave propagation. It is used to calculate
the wavefields of Rayleigh scatterings due to the perturba-
tions to elastic constants considering only a single scattering
of elastic waves. However, the iterative solver-based volume
integral method accounts for multiple scatterings of elastic
waves. The Born approximation also predicts incorrect travel
times, whereas the full integral equation method accounts for
the travel time difference between the actual medium and the
background medium.

The volume integral method has some advantages and
some disadvantages over the other modelling methods such
as the finite difference method. The finite difference method
is faster than the integral equation method and is geometri-
cally flexible, such as it can use curved cells. However, it is
only required to discretize the domain where the scattering
potential is nonzero when using the volume integral method,
whereas the finite difference method requires a full dis-
cretization of the model. There is no time stepping involved,
and we do not encounter differentiation-related numerical
artefacts in the simulations. The Toeplitz structure of the lin-
ear system matrix in the integral equation formulation (as
a consequence of the translation-invariance of the homoge-
neous background medium) allows one to use the fast Fourier
transform algorithm for efficient implementation of matrix-
vector or operator-function product. Malovichko et al. (2018)
demonstrated that the integral equation system matrix is better
conditioned than that of the finite-difference method. Addi-
tionally, integration is a smooth process and we can work over
multiple well-separated domains (e.g., different reservoirs or
a salt body and a reservoir within a sedimentary basin). It
is still possible to take into account the interactions between
these domains using the scattering-path operator (Jakobsen
& Wu, 2018). Malovichko et al. (2017) discussed how the
integral equation method naturally applies to the computa-
tion of the Fréchet derivatives, and for this reason it is very
attractive for the solution of the inverse problem. One of the
limitations of working with integral equation is that the full
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MICROSEISMIC WAVEFIELD MODELLING 3

integral equation method is known for generating a dense
system matrix. However, the integral equation can in princi-
ple be combined with a preconditioner that leads to a sparse
linear system. Ying (2015) developed a sparsifying precondi-
tioner for the integral equation representing the scalar wave
equation. A preconditioner for elastic integral equation can
also be designed by extending the idea of the contraction
preconditioner originally developed for the integral equa-
tion method of electromagnetic modelling (Zhdanov & Fang,
1997). But these implementations are beyond the scope of the
present study.

Within the framework of seismic wavefield modelling, a
limited number of works have been concluded using the vol-
ume integral method, and most of those focused on acoustic
waves only (Alles & van Dongen, 2011; Malovichko et al.,
2017, 2018; Jakobsen & Ursin, 2015; Xiang et al., 2021).
An acoustic or elastic wave equation can be written as a
corresponding integral equation of the Lippmann–Schwinger
type, and different numerical techniques can be employed
to solve this equation. Jakobsen and Ursin (2015) used the
transition operator approach for seismic forward modelling
in the acoustic approximation. Malovichko et al. (2018) pre-
sented frequency-domain acoustic 3D modelling using the
integral equations method and proved that the method can
accurately calculate the pressure field for models with sharp
material boundaries. Tong and Chew (2009) developed a mul-
tilevel fast multipole algorithm as an accelerator for integral
equation solvers for elastic wave scattering problems. Touhei
(2011) proposed a fast method for the volume integral equa-
tion for elastic wave propagation in a half-space. The fast
transform was implemented by decomposing the kernel of the
transform into the ordinary Fourier and Laplace transforms.

Previous applications of the volume integral equa-
tion method to elastic wavefield modelling have ignored the
effects of seismic anisotropy and have not presented synthetic
seismograms for realistic seismic models. In the volume inte-
gral method, the heterogeneity and anisotropy parameters can
be assigned directly; however, attaining the solution of the
resulting integral equation is a challenging task. Jakobsen
et al. (2020) discussed how to solve nonlinear inverse scat-
tering problems in general anisotropic-elastic media with a
variable density as well as stiffness tensor, but the numeri-
cal examples were restricted to media with constant density.
They used a matrix-based solver for the two coupled inte-
gral equations to perform elastic wavefield modelling. Their
methodology was inefficient in terms of computational cost
and memory.

Our goal is to carry out microseismic wavefield modelling
using the volume integral method. To simulate the wavefield
in reservoir-scale 3D models, we focus on the development of
a computationally efficient numerical solver for the integral
equation. In the second section , we show how the integral
equation can be formulated to incorporate the moment tensor

source into the heterogeneous anisotropic-elastic media. We
utilize the Lippmann–Schwinger equation for elastic waves
(Jakobsen et al., 2020) and implement the moment tensor
source (Stein & Wysession, 2003; Madariaga, 2015) in the
equation using a body force term. In the third section ,
we demonstrate how to efficiently solve the integral equa-
tion in the particle displacement. We emphasize the Fourier
transform-based iterative solver to perform the modelling
work in a matrix-free manner. Symmetries in the off-diagonal
components of the moment tensor, the stiffness tensor and the
strain tensor allow for the use of the Voigt notation during
the implementation. In the integral equation method, compo-
nents of the strain field are also needed to obtain the particle
displacement components. The finite difference method is
used to numerically compute the strain. In the fourth sec-
tion , we apply the method to a homogeneous 3D earth
model. We observe the response of the wavefields to different
types of moment tensor sources. We next test the accuracy
of the integral equation method in computing the micro-
seismic wavefield in the anisotropic-elastic media. This is
accomplished by comparing the integral equation result with
the finite difference time domain result for the same model
parameters. Finally, we examine the microseismic wavefield
in laterally inhomogeneous media to explore the applicability
of the integral equation method for heterogeneous models.

INTEGRAL EQUATION FORMULATION

Waves generated in heterogeneous media can be reflected,
refracted, transmitted and/or diffracted. The elastodynamic
wave equation takes all these phenomena into account. The
components of the particle displacement vector 𝑢𝑖(𝐱) at point
𝐱 due to a force source density with components 𝑓𝑖(𝐱) in
an anisotropic elastic medium with stiffness tensor compo-
nent 𝑐𝑖𝑗𝑘𝑙(𝐱) and mass density 𝜌(𝐱) satisfies the elastodynamic
wave equation[

𝑐𝑖𝑗𝑘𝑙(𝐱)𝑢𝑘,𝑙(𝐱,𝛚)
]
,𝑗
+ 𝜌(𝐱)𝜔2𝑢𝑖(𝐱,𝛚) = −𝑓𝑖(𝐱,𝛚), (1)

where 𝜔 is the angular frequency. The value of each of the
indices can be 1, 2 and 3, indicating the X, Y, and Z com-
ponents, respectively. We assume that 𝑢𝑖(𝐱) is a plane-wave
solution to Equation (1). In the integral equation approach,
the complex interactions of the wave phenomena are termed
scatterings. In this method, we decompose the stiffness tensor
components 𝑐𝑖𝑗𝑘𝑙(𝐱) and the mass density 𝜌(𝐱) as

𝑐𝑖𝑗𝑘𝑙(𝐱) = 𝑐
(0)
𝑖𝑗𝑘𝑙

+ Δ𝑐𝑖𝑗𝑘𝑙(𝐱), (2)

𝜌(𝐱) = 𝜌(0) + Δ𝜌(𝐱), (3)
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4 SHEKHAR ET AL.

where 𝑐
(0)
𝑖𝑗𝑘𝑙

and 𝜌(0) are the stiffness coefficients and mass
density, respectively, of an arbitrary homogeneous refer-
ence/background medium and Δ𝑐𝑖𝑗𝑘𝑙(𝐱) and Δ𝜌(𝐱) are the
corresponding contrast terms.

From Equations (1)–(3), we obtain[
𝑐
(0)
𝑖𝑗𝑘𝑙

(𝐱)𝑢𝑘,𝑙(𝐱,𝛚)
]
,𝑗
+ 𝜌(𝐱)𝜔2𝑢𝑖(𝐱,𝛚) = −𝑓𝑖(𝐱)

−
[
Δ𝑐𝑖𝑗𝑘𝑙(𝐱)𝑢𝑘,𝑙(𝐱,𝛚)

]
,𝑗

− 𝜔2Δ𝜌(𝐱)𝑢𝑖(𝐱,𝛚).

(4)

The second and third terms on the right-hand side of Equa-
tion (4) represent the so-called contrast sources of the moment
tensor and force vector type, respectively. By treating the con-
trast sources similar to ordinary sources and using Green’s
function representation (Jakobsen et al., 2020), we obtain the
following integral equation:

𝑢𝑖(𝐱) = 𝑢
(0)
𝑖
(𝐱) + ∫Ω 𝑑𝐱′𝐺(0)

𝑖𝑗
(𝐱, 𝐱′)

{[
Δ𝑐𝑗𝑘𝑙𝑚(𝐱′)𝑢𝑙,𝑚(𝐱′)

]
,𝑘

+𝜔2Δ𝜌(𝐱′)𝑢𝑖(𝐱′)
}

. (5)

The integral equation in the particle displacement (Equa-
tion 5) demonstrates the linear superposition of the back-
ground and scattered fields. If the elastodynamic Green’s
functions 𝐺(0)

𝑖𝑗
for the background model are known, it is only

required to discretize the contrast model. The integral part has
been computed over a scattered domain Ω, and 𝐱′ is a posi-
tion vector within this region. The superscript (0) denotes a
physical quantity in the homogeneous background medium.
The wavefield in the homogeneous background model due to
the vectorial source with components 𝑓𝑗(𝐬) is obtained by the
following convolution integral:

𝑢
(0)
𝑖
(𝐱) = ∫ 𝑑𝐱𝐺(0)

𝑖𝑗
(𝐱, 𝐬)𝑓𝑗(𝐬), (6)

where 𝐺
(0)
𝑖𝑗
(𝐱, 𝐬) is the solution of[

𝑐
(0)
𝑖𝑗𝑘𝑙

𝐺
(0)
𝑘𝑛,𝑙

(𝐱, 𝐬)
]
,𝑗
+ 𝜌𝜔2𝐺(0)

𝑖𝑛
(𝐱, 𝐬) = −𝛿𝑖𝑛𝛿(𝐱 − 𝐬). (7)

Here, 𝛿(𝐱 − 𝐬) is the three-dimensional (3D) Dirac-delta
function and 𝛿𝑖𝑛 is the Kronecker delta defined by 𝛿𝑖𝑛 = 1,
when 𝑖 = 𝑛, and 𝛿𝑖𝑛 = 0 when 𝑖 ≠ 𝑛. In elasticity theory,
Green’s function gives the displacement generated by a point
force in a certain direction (Snieder, 2002). Here, Green’s ten-
sor𝐺(0)

𝑖𝑗
(𝐱, 𝐬) is the displacement at location 𝐱 in the 𝑖 direction

due to the 𝑖th component of a unit force in the 𝑗 direction
at location 𝐬. The details on Green’s function and its spatial
derivative can be found in the Appendix.

As the Green’s function is inversely proportional to the
distance between the source and the receiver, it is assumed
that the wavefield reduces to zero at infinity. By performing
a partial integration, and using the well-known symmetries of
the elastic stiffness tensor, Equation (5) can be rewritten as
(Červený, 2001)

𝑢𝑖(𝐱) = 𝑢
(0)
𝑖
(𝐱) + ∫Ω 𝑑𝐱′𝐻 (0)

𝑖𝑗𝑘
(𝐱, 𝐱′)Δ𝑐𝑗𝑘𝑙𝑚(𝐱′)𝜖𝑙𝑚(𝐱′)

+ 𝜔2 ∫Ω 𝑑𝐱′𝐺(0)
𝑖𝑗
(𝐱, 𝐱′)Δ𝜌(𝐱′)𝑢𝑗(𝐱′),

(8)

where the strain tensor is the symmetric gradient of the
displacement vector and is given by

𝜖𝑘𝑙(𝐱) =
1
2
[
𝑢𝑘,𝑙(𝐱) + 𝑢𝑙,𝑘(𝐱)

]
(9)

and 𝐻
(0)
𝑖𝑗𝑘

(𝐱, 𝐱′) is the first-order spatial derivative of Green’s
tensor for the background medium. It represents the 𝑖th com-
ponent of the elastic displacement due to the 𝑗𝑘 component of
the contrast stress tensor and is expressed as

𝐻
(0)
𝑖𝑗𝑘

(𝐱) = 1
2

[
𝐺

(0)
𝑖𝑗,𝑘

(𝐱) + 𝐺
(0)
𝑖𝑘,𝑗

(𝐱)
]
. (10)

Equation (8) is known as the Lippmann–Schwinger equa-
tion for elastic wave scattering. In the derivation of this
integral equation, we have made use of the fact that Green’s
function for the background medium only depends on the
difference between the source and receiver coordinates since
a homogeneous background medium is translation invariant.
We also used the fact that any tensor can be decomposed
into symmetric and anti-symmetric parts and that the contrac-
tion of a symmetric tensor with an anti-symmetric tensor is
identical to zero (Pujol, 2003).

Since the third-rank tensor field 𝐻
(0)
𝑖𝑗𝑘

(𝐱) by construc-
tion is symmetric with respect to an interchange of the last
two indices, we can express Equation (8) in an abbreviated
notation as

𝑢𝑖(𝐱) = 𝑢
(0)
𝑖
(𝐱) + ∫Ω 𝑑𝐱′𝐻 (0)

𝑖𝐽
(𝐱, 𝐱′)Δ𝑐𝐽𝐾 (𝐱′)𝜖𝐾 (𝐱′)

+ 𝜔2 ∫Ω 𝑑𝐱′𝐺(0)
𝑖𝑗
(𝐱, 𝐱′)Δ𝜌(𝐱′)𝑢𝑗(𝐱′).

(11)

Here, the small and capital indices take values from 1 to 3
and from 1 to 6, respectively, and Einstein’s summation con-
vention applies (see Auld, 1990). Finally, we note that the
above equation can be expressed more compactly in the hybrid
tensor-operator notation as

𝑢𝑖 = 𝑢
(0)
𝑖

+𝐻
(0)
𝑖𝐽

Δ𝑐𝐽𝐾𝜖𝐾 + 𝜔2𝐺(0)
𝑖𝑗
Δ𝜌𝑢𝑗. (12)
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MICROSEISMIC WAVEFIELD MODELLING 5

In the above expression, we have kept the tensor indices and
the abbreviated indices when expressing the integral equa-
tion in an operator form. The use of hybrid tensor-operator
notation is convenient when discussing the algorithms for
solving the integral equation iteratively. To simplify the
presentation, we use the same notation for the integral
operator 𝐻𝑖𝐽 and its kernel function 𝐻𝑖𝐽 (𝐱, 𝐱′) defined in
Equation (11).

Moment tensor source representation

A moment tensor can be used to represent the seismic source
in the microseismic events related to the slip on a fault plane.
The mathematical models of this type of source can be given
by a 3 × 3 tensor 𝑀𝑖𝑗 . Due to the symmetry of the off-
diagonal elements, it can be written in the Voigt notation
as a 6 × 1 vector 𝑀𝐽 . The expression of the moment ten-
sor source can be understood by analysing the kinematics
behind the distributions of the transformation strain. The
transformation strain describes an alteration of the stress-
free configuration of a solid (Rice, 1998). Depending on
the focal mechanism for microseismic events, the moment
tensor source can be categorized as a single dipole, double-
couple (DC), explosion-type source, etc. (Stein & Wysession,
2003). Planar shear faulting produces a pure DC mechanism
in isotropic media, but generally a non-double-couple (non-
DC) mechanism in anisotropic media (Vavryčuk, 2005). The
non-DC mechanism can be decomposed into an isotropic
component and a compensated linear vector dipole compo-
nent (Vavryčuk, 2015). The moment tensor component of
DC microseismic sources in anisotropic formations have been
eloquently derived by Grechka (2020).

The equivalent body force density (Aki & Richards, 2002)
for the moment tensor source is

𝑓𝑖(𝐱) = −𝑀𝑖𝑗

𝜕

𝜕𝑥𝑗
𝛿(𝐱 − 𝐬)e𝑖𝜔𝑡0 , (13)

where 𝑀𝑖𝑗 is a moment tensor component, 𝐬 represents the
positioning of the microseismic event and 𝑡0 may be referred
to as the rupture time or the timing of the microseismic
event. Using Equation (13) in Equation (6), we obtain the
background displacement field,

𝑢
(0)
𝑖
(𝐱) = ∫ 𝑑𝐱𝐺(0)

𝑖𝑗
(𝐱, 𝐬)𝑀𝑗𝑘

𝜕

𝜕𝑥𝑘
𝛿(𝐱 − 𝐬)e𝑖𝜔𝑡0 . (14)

It is a common practice to assume that the moment tensor
component 𝑀𝑖𝑗 is constant during the entire period of seismic
activity. We can simulate the seismic radiation from a moment
tensor source by using the spatial derivative of Green’s func-
tion. We exploit the property of the Dirac-delta function; that

is, if we integrate the product of a function and the deriva-
tive of the Dirac-delta function over the spatial domain, the
result is the spatial derivative of that function computed at the
source location. The particle displacement field at position 𝐱
due to a moment tensor source at position 𝐬 is now given by

𝑢
(0)
𝑖
(𝐱) = ∫ 𝑑𝐱𝐻 (0)

𝑖𝑗𝑘
(𝐱, 𝐬)𝑀𝑗𝑘e𝑖𝜔𝑡0 . (15)

In an abbreviated notation by

𝑢
(0)
𝑖
(𝐱) = ∫ 𝑑𝐱𝐻 (0)

𝑖𝐽
(𝐱, 𝐬)𝑀𝐽 e𝑖𝜔𝑡0 . (16)

EFFICIENT IMPLEMENTATION OF THE
INTEGRAL EQUATION METHOD

We work in the frequency domain and want to demon-
strate wave propagation in heterogeneous anisotropic media
using the full integral equation solution. To develop a com-
putationally efficient numerical scheme, we employ the
following methodology.

Finite difference for the strain field

The strain tensor in the Voigt notation can be written as

𝜖 =
[
𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6

]𝑇
, (17)

where 𝜖1 ≡ 𝜖11, 𝜖2 ≡ 𝜖22, 𝜖3 ≡ 𝜖33, 𝜖4 ≡ 2𝜖23, 𝜖5 ≡ 2𝜖13 and
𝜖6 ≡ 2𝜖12.

In the integral equation formulation, there is a simultane-
ous computation of both the strain field and the displacement
field. If we solve the two coupled integral equations for the
particle displacement and strain (Jakobsen et al., 2020), the
numerical computation is slow. This is because it requires the
calculation of the second-order spatial derivative of the back-
ground Green’s function. We compute the strain field using
the finite difference operator on the elastic displacement vec-
tors to calculate its derivative with respect to the position
vector. Let the grid spacing in each of the directions be ℎ and
the displacement components in the X-, Y- and Z-directions
be 𝑢1, 𝑢2 and 𝑢3, respectively. The strain field components at
a grid node 𝑖, 𝑗, 𝑘 are given as
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6 SHEKHAR ET AL.

𝜖1(𝑖, 𝑗, 𝑘) =
𝑢1(𝑖 + 1, 𝑗, 𝑘) − 𝑢1(𝑖 − 1, 𝑗, 𝑘)

2ℎ
,

𝜖2(𝑖, 𝑗, 𝑘) =
𝑢2(𝑖, 𝑗 + 1, 𝑘) − 𝑢2(𝑖, 𝑗 − 1, 𝑘)

2ℎ
,

𝜖3(𝑖, 𝑗, 𝑘) =
𝑢3(𝑖, 𝑗, 𝑘 + 1) − 𝑢3(𝑖, 𝑗, 𝑘 − 1)

2ℎ
,

𝜖4(𝑖, 𝑗, 𝑘) =
1
2ℎ

[
𝑢2(𝑖, 𝑗, 𝑘 + 1) − 𝑢2(𝑖, 𝑗, 𝑘 − 1)

+ 𝑢3(𝑖, 𝑗 + 1, 𝑘) − 𝑢3(𝑖, 𝑗 − 1, 𝑘)
]
,

𝜖5(𝑖, 𝑗, 𝑘) =
1
2ℎ

[
𝑢1(𝑖, 𝑗, 𝑘 + 1) − 𝑢1(𝑖, 𝑗, 𝑘 − 1)

+ 𝑢3(𝑖 + 1, 𝑗, 𝑘) − 𝑢3(𝑖 − 1, 𝑗, 𝑘)
]
,

𝜖6(𝑖, 𝑗, 𝑘) =
1
2ℎ

[
𝑢1(𝑖, 𝑗 + 1, 𝑘) − 𝑢1(𝑖, 𝑗 − 1, 𝑘)

+ 𝑢2(𝑖 + 1, 𝑗, 𝑘) − 𝑢2(𝑖 − 1, 𝑗, 𝑘)
]
. (18)

To compute the strain field near the model boundaries,
depending on the position where we are computing the deriva-
tive, we use either the forward or the backward difference.
We fixed a model having 64 grid points in each direction and
used the same model parameters to calculate the strain field by
using the two coupled integral equations and by this strategy.
We found that the results are quite similar. The highest rela-
tive difference was 0.1. The major differences are observed at
the source location and at a few other points in the near field.
This is related to the singularity of Green’s function, the fre-
quency used in the simulation and the size of the grid. But in
the far field, which is the main region of interest, we observe
no striking differences. The difference in the computational
time between the two approaches was 802 s. Though we do
not intend to perform any further quantitative study here, we
can say that this gap increases drastically as the size of the
model increases.

Fast Fourier transform accelerated Krylov
subspace method

Modelling seismic data through the implementation of a
matrix-based method involves high computational costs and
memory consumption. We utilize an iterative solver based on
the fast Fourier transform (FFT; Stein & Wysession, 2003) to
perform efficient seismic modelling, that is, in a matrix-free
manner. The FFT iterative scheme is based on a recurrence
relation and does not lead to the resolution of a linear sys-
tem (Monchiet & Bonnet, 2012). The computational cost
decreases from the order of 𝑁3 for the matrix-based direct
solver method to the order of 𝑁 log𝑁 for the matrix-free iter-
ative method, where 𝑁 is the number of grid points. The

computational memory scales down from the order of 𝑁2 to
the order of 𝑁 .

Equation (12) can be rearranged as

𝑢𝑖 −
[
𝐻

(0)
𝑖𝐽

Δ𝑐𝐽𝐾𝜖𝐾 + 𝜔2𝐺(0)
𝑖𝑗
Δ𝜌𝑢𝑗

]
= 𝑢

(0)
𝑖

(19)

or [
𝛿𝑖𝑙 −

1
2
𝐻

(0)
𝑖𝐽

Δ𝑐𝐽𝐾∇𝐾𝑙 − 𝜔2𝐺(0)
𝑖𝑗
Δ𝜌𝛿𝑗𝑙

]
𝑢𝑙 = 𝑢

(0)
𝑖
. (20)

A fast formulation of the displacement field can be obtained
using the background Green’s function and the spatial deriva-
tive of the background Green’s function in the Fourier
transformed coordinates (k-space):

𝑢𝑖(𝐱) − −1
[
𝐻

(0)
𝑖𝐽
(𝐤)◦ [Δ𝑐𝐽𝐾 (𝐱)𝜖𝐾 (𝐱)]

]
−

𝜔2−1
[
𝐺

(0)
𝑖𝑗
(𝐤)◦ [Δ𝜌(𝐱)𝑢𝑗(𝐱)]

]
= −1

[
𝐻

(0)
𝑖𝐽
(𝐤)◦𝑀𝐽 (𝐤)

]
,

(21)

where  and −1 are the three-dimensional fast Fourier and
inverse fast Fourier transforms, respectively, 𝐱 is a position
vector in the real space and “◦” denotes the elementwise
multiplication operation. Although the formulation of the par-
ticle displacement has been obtained using the continuous
form of FFT over the spatial domain, the discrete form of
FFT is needed to perform the computational operation. The
background medium should be homogeneous to apply the
Fourier transform.

Equation (21) can be written in the form 𝐀𝐮 = 𝐮(0). Here,
𝐀 can be regarded as an operator acting on the elastic dis-
placement component, and 𝐮(0) is the displacement field
component in the homogeneous background medium. Instead
of using a direct solver, we solve the system of equations in
an iterative way using the conjugate-gradient (CG) method
(Shewchuk, 1994; Nocedal & Wright, 2000); however, the
CG is applicable to symmetric positive definite systems only.
When the coefficient matrix is nonsymmetric and nonsingu-
lar, iterative methods such as the biconjugate gradient (BiCG),
biconjugate gradient stabilized (BiCGSTAB) and conjugate
gradient squared (CGS) are useful (Barrett et al., 1994).

T A B L E 1 Runtime for the matrix-free integral equation method at

a single frequency (10 Hz) and using the homogeneous VTI model.

Number of grid points in each direction Computational time (s)

Nx = Ny = Nz = 16 108.32

Nx = Ny = Nz = 32 612.16

Nx = Ny = Nz = 64 1375.49

Nx = Ny = Nz = 128 2181.70
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MICROSEISMIC WAVEFIELD MODELLING 7

F I G U R E 1 Snapshot of the (a) X-component and (b) Z-component of the elastic displacement field in the isotropic background medium for the

homogeneous model at time t = 0.12 s, when 𝑀11 = 𝑀33 =
1√
2

and the other moment tensor components are zero.

F I G U R E 2 Displacement field at 20 Hz in the isotropic background medium for the homogeneous model when 𝑀33 =
1√
2

and the other

moment tensor components are zero.

F I G U R E 3 Displacement field at 20 Hz in the homogeneous VTI medium when 𝑀33 =
1√
2

and the other moment tensor components are zero.

We apply the BiCGSTAB method for the numerical solu-
tion, as this method has a faster and smoother convergence
than the other variants of the CG method (Van der Vorst,
1992). The computational cost per iteration for BiCGSTAB is
similar to BiCG and CGS, but the method does not require the
computation of the transpose of the coefficient matrix, unlike

BiCG. Additionally, there is no issue of error in the solution
like the ones observed with CGS. In CGS, local corrections to
the current solution may be so large that cancellation effects
occur. This may lead to a less accurate solution than sug-
gested by the updated residual (see Van der Vorst, 1992). We
do not want to use the generalized minimal residual method
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8 SHEKHAR ET AL.

F I G U R E 4 Displacement field at 20 Hz in the isotropic background medium for the homogeneous model when 𝑀11 = 𝑀33 =
1√
2

and the

other moment tensor components are zero.

F I G U R E 5 Displacement field at 20 Hz in the homogeneous VTI medium when 𝑀11 = 𝑀33 =
1√
2

and the other moment tensor components

are zero.

F I G U R E 6 Strain field at 10 Hz in the homogeneous isotropic background medium due to an explosion-type moment tensor source.
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MICROSEISMIC WAVEFIELD MODELLING 9

F I G U R E 7 3D view of the (a) X-component, (b) Y-component

and (c) Z-component of elastic displacement field at 10 Hz in the

homogeneous VTI model due to a double-couple source.

(Saad, 2003) because of the increasing storage require-
ments per iteration step, despite the need to compute only
matrix–vector products with the coefficient matrix.

The relative residual error (e) at each iteration step can be
given as

𝑒 = ‖𝐮(0) − 𝐀𝐮‖‖𝐮(0)‖ , (22)

where ‖ ⋅ ‖ is Euclidean norm. We test the convergence of our
scheme by plotting the relative residual error with the itera-
tion numbers. Overall, this solver can be applied to a large

F I G U R E 8 Plot of the relative residual error versus iteration

number for the BiCGSTAB solver in the case of the homogeneous VTI

model.

enough model for which the matrix-based solver is unable to
execute on (we consider a 16 GB memory processor for simu-
lations). The approximate details on the runtime of simulation
per frequency for different model sizes are given in Table 1.

Absorbing boundary condition

One of the challenges in simulating the seismic wavefield in
any model is to avoid reflections at the boundaries. In the
finite difference method, an artificial absorbing boundary can
be implemented by either using the damping boundary con-
dition or perfectly matched layers (Lei et al., 2021). Alles
and van Dongen (2011) developed perfectly matched lay-
ers (PML) for frequency-domain integral equation acoustic
scattering problems. A strong attenuation of scatter pressure
fields is achieved in layers with a thickness of less than a
wavelength by using a plane-wave function that has different
solutions within and outside the PML domain. Osnabrugge
et al. (2016) used a polynomial-based expression for the wave-
field inside the absorbing layer for a similar type of scattering
problem and found an expression for the scattering poten-
tial of the layer in terms of the solution for the polynomial.
The idea was to design a layer that has zero reflectivity for a
normal incidence.

Green’s function approach to calculate the seismic wave-
field incorporates the exponential decay of the wavefield
with the distance. Most of the absorbing boundary condi-
tions given in the differential form can be transformed into
an exponential decay in the integral equation. Strictly speak-
ing, it is difficult to completely avoid any reflections from the
boundaries; however, the amplitude of the reflected wave can
be significantly minimized. The contrast between the actual
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10 SHEKHAR ET AL.

T A B L E 2 Numerical values used in the comparison between the integral equation and FDTD methods for the homogeneous VTI model.

Modeling parameters Values

Number of grid points in each direction Nx = Ny = Nz = 192

Grid spacing in each direction dx = dy = dz = 2.5 m

Source type Moment tensor source, 𝑀12 = 𝑀21 = 1∕
√
2

Source location (300, 300, 180) m

Location of a downhole array of 15 receivers (150, 150, 265) m

Spacing between two consecutive receivers 10 m

Wavelet Ricker with peak frequency = 60 Hz

Time step, number of time steps 0.0003 s, 800

Total time of simulation 0.24 s

Abbreviations: FDTD, finite difference time domain; VTI, transversely isotropic media with vertical axis of symmetry.

medium and the background medium should be zero to have
no reflections at all. In other words, the actual medium wave-
field is the same as the background field. For the integral
equation in the particle displacement, the absorbing bound-
ary condition is introduced by formulating the scattered field
equation such that it gradually vanishes as it approaches the
boundaries.

Let Ω be the domain of the scattered region and Ω𝐵 be the
domain of the boundary layer region for a model and 𝐱𝐁 be a
position within Ω𝐵 . Let 𝐱𝐋 be the position vector for a point
obtained by extending the position vector 𝐱𝐁 to the external
boundary of the model. Then,

𝑙 = ‖𝐱𝐋 − 𝐱𝐁‖. (23)

We can write the integral equation for the displacement as

𝑢𝑖(𝐱) = 𝑢
(0)
𝑖
(𝐱) + Δ𝑢(Ω)

𝑖
(𝐱). (24)

Then, the absorbing boundary condition can be applied
through the following numerical expression:

Δ𝑢(Ω𝐵 )
𝑖

(𝐱) = ∫Ω𝐵

𝑑𝐱𝐁𝐻
(0)
𝑖𝑗𝑘
(𝐱, 𝐱𝐁)Δ𝑐𝑗𝑘𝑙𝑚(𝐱𝐁)𝜖𝑙𝑚(𝐱𝐁)

[
1 − e

− 𝑙2

𝑁𝑖ℎ
2

]

+ 𝜔2 ∫Ω𝐵

𝑑𝐱𝐁𝐺
(0)
𝑖𝑗
(𝐱, 𝐱𝐁)Δ𝜌(𝐱𝐁)𝑢𝑗(𝐱𝐁)

[
1 − e

− 𝑙2

𝑁𝑖ℎ
2

]
.

(25)

Here, ℎ is the grid spacing and 𝑁𝑖 is the number of grid
points in the 𝑖 direction.

Choosing a background medium that is closer to the actual
medium can sufficiently reduce the reflections from the
boundaries. But this is restricted to homogeneous or slightly
heterogeneous models. It is difficult to understand the effects
of the boundary conditions in the frequency domain. There-
fore, we will demonstrate its impact later in the numerical
result section when we generate the time-domain data using
the inverse Fourier transform.

F I G U R E 9 Presentation for the source (*) and receivers (Δ)

mutual placement in a 3D homogeneous VTI model.

NUMERICAL RESULTS AND DISCUSSION

We perform all the numerical simulations for a three-
dimensional (3D) Cartesian mesh. The grid is uniformly
spaced in each direction. The volume of each cell is the prod-
uct of the grid spacing in the X-, Y- and Z-directions. Each
node characterizes a unique stiffness matrix and a density
value. The physical properties do not vary laterally in the
Y-direction. We generally show snapshots of the models on
the XZ plane. The microseismic source is positioned at the
centre of the model unless otherwise stated. To obtain an accu-
rate scattered field, the grid size is chosen as one-fourth or
smaller than the smallest wavelength of the S-waves in the
actual medium.

Model 1: Homogeneous vertical axis of
symmetry model

The homogeneous model represents the transversely isotropic
model with a vertical axis of symmetry (VTI). The
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MICROSEISMIC WAVEFIELD MODELLING 11

F I G U R E 1 0 Synthetic seismograms in the absence of absorbing

boundaries.

density value is 2500 kg/m3 (constant within the model), and
the values for the stiffness coefficients for the VTI medium
(Jakobsen & Johansen, 2000 : table 3, sample at a depth of
3492 m) in units of GPa are

𝑐𝐼𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

34.0 10.6 6.9 0 0 0
34.0 6.9 0 0 0

26.5 0 0 0
10.4 0 0

10.4 0
11.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This VTI medium is the actual medium in the integral
equation approach, and it is decomposed into an isotropic
background medium and a contrast medium. For the isotropic
background medium, the stiffness coefficients 𝑐11 and 𝑐44 are
26.5 and 10.4 GPa, respectively. The numerical values of the
density at every grid point are the same in the background
medium and the actual medium. The dimension of the model
is 640 m in each direction, and the grid size is 10 m.

Displacement wavefields due to a moment tensor
source

We want to demonstrate the microseismic wavefield in the
isotropic background and actual VTI media. The absolute
value of the elastic wavefield normalized with respect to the
background medium wavefield on a decibel scale is given as

𝑢norm
𝑖

= 10log10

[||||||
𝑢𝑖‖𝑢(0)
𝑖
‖
||||||
]
. (26)

The wavefront for a vector point source in an isotropic
media is spherical. However, for the moment tensor source,
the wavefront is lobe shaped. In the time-domain snapshot
(Figure 1), the wavefront has a different polarity in opposite
directions, which means that the pattern of compression and
rarefaction advances in a different fashion around the source.
Figures 1a and 1b show the X and Z components, respec-
tively, of the time-domain wavefield. Figures 2–5 show the
displacement field generated by a moment tensor source on
the XZ-plane passing through the source at a particular fre-
quency (20 Hz in this simulation). Figures 2 and 4 represent
frequency-domain wavefields due to a single-dipole source
and a double-dipole source, respectively, in isotropic media.
Figures 3 and 5 represent frequency-domain wavefield due
to a single-dipole source and a double-dipole source, respec-
tively, in VTI media. Figure 6 shows the strain field generated
by an explosion type of moment tensor source in the isotropic
background medium. We label the strain field components in
the Voigt notation. In Figure 7, we present the elastic wave-
field in the VTI medium due to a double-couple source. The
numerical expression for the source term is obtained follow-
ing Grechka (2020). Figures 7a, 7b and 7c show the X, Y and
Z components, respectively, of this wavefield. The conver-
gence of the numerical scheme for this simulation is shown
in Figure 8.

Comparison with the finite difference time domain
method

To verify our methodology, we compare our results to the
results obtained by using the fourth-order finite difference
scheme in the time domain. The order of the differential oper-
ator, the discretization technique and the fashion in which
the source and its adjacent nodes are treated can signifi-
cantly affect the result of the finite difference method. The
higher the order of the differential operator is the more accu-
rate the wavefields obtained. However, the computational cost
increases as more floating-point operations are needed (Sei
& Symes, 1995). The finite difference solution to the elastic
wave equation with the moment tensor source implementa-
tion can be obtained using the velocity–stress formulation on
a staggered grid (Shi et al., 2018). The particle displacement
can be obtained from the particle velocities by performing
the integration over time. The elastic displacement field at the
receiver position due to a moment tensor source, obtained by
the integral equation method, is in the frequency domain. It
is based on the evaluation of Green’s tensor and its deriva-
tive. We need time domain data to compare this result with
the wavefield of the displacement components obtained by
the finite difference time domain (FDTD) method for the
same model setup (Table 2). The source–receivers setup is
shown in Figure 9. We set the values for the total time of
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12 SHEKHAR ET AL.

F I G U R E 1 1 Comparison between the integral equation and the finite difference methods for the model parameters given in Table 2: (a)

Synthetic seismograms (X-component of the particle displacement) generated using the integral equation method, (b) synthetic seismograms

(X-component of the particle displacement) generated using the finite difference method, (c) difference between the seismograms obtained using two

methods and (d) elastic displacement components at a common receiver.

T A B L E 3 Elastic stiffnesses (in units of GPa) for Model 2 - heterogeneous VTI model.

Stiffness coefficients Top VTI layer Isotropic layer Bottom VTI layer

𝑐11 34.0 29.05 33.8

𝑐33 26.5 29.05 21.9

𝑐55 10.4 10.0 6.0

𝑐66 11.7 10.0 12.0

𝑐13 6.9 9.05 8.0

Abbreviation: VTI, transversely isotropic media with vertical axis of symmetry.

simulation and the time interval equal to the respective val-
ues used in the FDTD method. The chosen time step satisfies
the Courant–Friedrichs–Lewy condition.

First, we take a loop over positive and negative frequen-
cies up to the Nyquist frequency and compute the wavefield
corresponding to each frequency. Then, we perform the
inverse Fourier transform to generate time-domain particle

displacement data. We can see the effects of reflections from
boundaries in the synthetic seismogram (Figure 10). There-
fore, we need to apply the boundary condition introduced
earlier in the implementation section to mitigate this effect
(Figure 11a). Figures 11a and 11b show the wiggle trace
generated using the integral equation and the finite differ-
ence methods, respectively. Figure 11c shows the difference
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MICROSEISMIC WAVEFIELD MODELLING 13

F I G U R E 1 2 Model 2: Heterogeneous VTI model.

between those two wiggle traces. The waveforms of the
elastic displacement field obtained using the integral equa-
tion method and the FDTD method at a common receiver
match well (Figure 11d).

Model 2: Heterogeneous vertical axis of
symmetry model

The 3D model (Figure 12) has three layers. An isotropic layer
is sandwiched between two VTI layers, the parameters of
which are the same as the background medium in the integral
equation. This model represents an underburden–reservoir–
overburden rock system. The dimension of the model is 320
m in each direction, and the grid size is 2.5 m. The thickness of
the top and bottom layers is 108 m. The middle layer is 104 m

thick. The density value is 2500 kg/m3 and is constant within
the model. The values of the stiffness coefficients (Jakobsen
& Johansen, 2000 : table 3) in the different layers are given in
Table 3.

Displacement wavefields due to a moment tensor
source

In Figure 13, we see the displacement field generated by an
explosion-type moment tensor source on the XZ-plane pass-
ing through the source at a frequency of 50 Hz. We select the
high frequency to demonstrate the scattering of waves from
the layer interfaces. The strain field components 𝐸1–𝐸6 are
shown in Figure 14. A significant amount of energy remains
confined to the layer in which the source is present, that is, in
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14 SHEKHAR ET AL.

F I G U R E 1 3 Displacement field at 50 Hz for the heterogeneous VTI model due to an explosion-type moment tensor source.

F I G U R E 1 4 Strain field at 50 Hz for the heterogeneous VTI model due to an explosion-type moment tensor source.

the middle layer. The numerical convergence of the scheme is
presented in Figure 15.

Comparison with the finite difference time domain
method

We perform a comparison between the integral equa-
tion method and the finite difference time domain method to
test the accuracy of the numerical scheme in heterogeneous
media. The model parameters used in the comparison are
given in Table 4. The source–receivers setup is shown in
Figure 16. We obtain a satisfactory match between the
synthetic seismograms obtained using these two methods
(Figure 17). Figures 17a and 17b show the wiggle trace
generated using the integral equation and the finite difference

methods, respectively. Figure 17c shows the difference
between those two wiggle traces. The waveforms of the
elastic displacement field obtained using the integral equa-
tion method and the FDTD method at a common receiver
also look identical (Figure 17d). The amplitude and phase
information from the full waveform modelling can be used
to demarcate the reflection and transmission events in
the layered model. For this model, the strong amplitudes
recorded at the receiver positions represent either the arrival
of the direct waves or the arrival of the waves transmitted
through layer interfaces, and the weak amplitudes are due to
the arrival of the waves reflected from layer interfaces. For
example, in receiver 10 (Figure 17a), the elastic displace-
ment field at time 100 ms is due to the wave reflected at
the interface between isotropic and upper VTI layers. The
arrival prior to that is a direct wave. We can do a similar
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MICROSEISMIC WAVEFIELD MODELLING 15

T A B L E 4 Numerical values used in the comparison between integral equation and FDTD methods for the heterogeneous VTI model.

Modeling parameters Values

Number of grid points in each direction Nx = Ny = Nz = 128

Grid spacing in each direction dx = dy = dz = 2.5 m

Source type Moment tensor source, 𝑀13 = 𝑀31 = 1∕
√
2

Source location (250, 250, 160) m

Location of a downhole array of 15 receivers (100, 100, 120) m

Spacing between two consecutive receivers 10 m

Wavelet Ricker with peak frequency = 60 Hz

Time step, number of time steps 0.0003 s, 800

Total time of simulation 0.24 s

Abbreviation: VTI, transversely isotropic media with vertical axis of symmetry.

F I G U R E 1 5 Plot of the relative residual error versus iteration

number for the BiCGSTAB solver in the case of the heterogeneous VTI

model.

F I G U R E 1 6 Presentation for the source (*) and receivers (Δ)

mutual placement in a 3D heterogeneous VTI model.

interpretation for other receivers based on the
source–receivers placement.

Model 3: Hess model

We also apply our numerical scheme to the resampled
Hess/SEG salt model (Figure 18). The grid size is 10 m. We
use the two-dimensional dataset and extend the model in the
Y-direction to 1 km to make it three dimensional. We want
to observe the effect of the lateral variations in the physi-
cal properties of the medium on the wavefield. The density
values vary within the medium. The model contains a fault
zone. Along with the sedimentary layers, a salt body is also
present. Hence, the geology of this model is much more
complex than that of Models 1 and 2.

Wavefield of displacement components

We observe the wavefield on the XZ-plane passing through
the microseismic source. The strain field components in the
Voigt notation, 𝐸1 to 𝐸6 are shown in Figure 19. The seismic
source is an explosion-type moment tensor. The X, Y and Z
components of the elastic displacement written here as 𝑢𝑥, 𝑢𝑦
and 𝑢𝑧, respectively, are shown in Figure 20. The presence
of the salt body and the fault can be inferred by observing
the strain field components. The importance of the strain field
calculation is that the strain components are needed during the
inversion for the model parameters.

Although a large number of iterations are needed,
the numerical scheme converges for this complex model
(Figure 21). Furthermore, we tested our scheme by setting the
contrast between the stiffness coefficient values at every grid
point in the actual medium and the homogeneous background
medium to be up to 10% and found that it still converges.
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16 SHEKHAR ET AL.

F I G U R E 1 7 Comparison between the integral equation and the finite difference methods for the model parameters given in Table 4: (a)

Synthetic seismograms (X-component of the particle displacement) generated using the integral equation method, (b) synthetic seismograms

(X-component of the particle displacement) generated using the finite difference method, (c) difference between the seismograms obtained using two

methods and (d) elastic displacement components at a common receiver.

CONCLUDING REMARKS

We have developed a scattering approach to frequency domain
modelling of seismic waveform data in general anisotropic
elastic media with variable mass density and elastic stiff-
ness tensor. Our focus was on the modelling of microseismic
waveform data due to a moment tensor source; however, our
scattering approach can also be used for frequency domain
full waveform inversion; that is, to construct the anisotropic
elastic background model in a microseismic imaging experi-
ment. Our scattering approach is based on the transformation
of the elastodynamic wave equation into an equivalent vol-
ume integral equation of the Lippmann–Schwinger type that
contains the boundary conditions. This volume integral equa-
tion involves decomposition of the elastic stiffness and mass
density fields into a spatially invariant part related to an arbi-

trary homogeneous reference medium and a spatially variable
contrast model. It is only required to discretize that part of the
model where the elastic stiffness and mass density fields dif-
fer from that of the isotropic elastic reference medium, making
this method naturally target-oriented.

To solve this integral equation, we did not make use of
any approximations that could limit the applicability of our
scattering approach to media with small contrast. Instead, we
solve the integral equation iteratively using the fast Fourier
transform (FFT) accelerated Krylov subspace method; that is,
a combination of FFT and the biconjugate gradient stabilized
method. Previous attempts to solve this integral equation for
anisotropic elastic media have typically assumed a fixed mass
density and used a matrix representation of the relevant
integral operators; where the computational cost and memory
requirements scaled like 𝑁3 and 𝑁2, respectively, where 𝑁
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MICROSEISMIC WAVEFIELD MODELLING 17

F I G U R E 1 8 Model 3: Hess model.

F I G U R E 1 9 Strain field due to an explosion-type moment tensor source at 10 Hz frequency for the Hess model.
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18 SHEKHAR ET AL.

F I G U R E 2 0 Displacement field due to an explosion-type

moment tensor source at 10 Hz frequency for the Hess model.

F I G U R E 2 1 Plot of the relative residual error versus iteration

number for the BiCGSTAB solver in the case of the variable density

Hess model.

is the number of grid points. In our FFT-accelerated iterative
solution, however, the computation cost and memory require-
ments have been reduced to the order of 𝑁 × log(𝑁) and 𝑁 ,
respectively. Using the FFT in the matrix–vector multiplica-
tion comes with restrictions that the cells cannot be curved and
the grid must be regular. In the context of full-waveform inver-
sion, however, it is common to use a regular Cartesian grid.

Although we have now significantly reduced the compu-
tational cost of the integral equation method, it may still
not be ready for large-scale three-dimensional (3D) appli-
cations. In one of our numerical examples of frequency
wavefield simulation in a large 3D anisotropic elastic model
with variable density, a relatively large number of iterations
was required in order to reduce the relative residual error
of the linear system down to 1e−6. We think that the num-
ber of iterations can be significantly reduced if we employ
a preconditioner to our linear system. Efficient precondition-
ing techniques like convergent Born series (Osnabrugge et al.,
2016), renormalization and homotopy analysis exist for the
integral equation method, but the most promising ones are
limited to acoustic approximation or have been developed for
electromagnetic scattering problems. Therefore, our plans for
future research include a generalization of some of these pre-
conditioners from the acoustic or electromagnetic domains
to the anisotropic elastic case. Another suggestion for future
work is to develop a matrix-free variant of the scattering
domain decomposition method introduced in the transition
operator paper of Jakobsen et al. (2020). A matrix-free domain
decomposition strategy for the integral equation method was
recently presented for the electromagnetic case (Saputera
et al., 2023), suggesting that it is possible to proceed towards
the anisotropic elastic problem. The integral equation method
we have developed can easily be implemented on graphical
processing units, which can lead to a significant improvement
in efficiency. Also, the integral equation method allows us
to treat different frequencies and sources in an embarrass-
ingly parallel manner. Therefore, the CPU times observed
in this study may be significantly reduced if we optimize
our implementation.

One can in principle combine this integral equation method
with ray theory and focus the modelling (or inversion) on
a relatively small target. We have previously developed a
method for target-oriented waveform inversion based on a
combination of the integral equation method and ray-based
methods (Huang et al., 2019) in acoustic approximation. The
anisotropic elastic integral equation developed here may be
particularly attractive for applications to time-lapse studies
and near-surface characterization, in addition to microseis-
mic imaging. Also, it may be attractive to studies of seismic
anisotropy, since it can deal with arbitrary anisotropic media,
although numerical experiments in this work involved trans-
versely isotropic media with vertical axis of symmetry only.
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In our numerical simulation, we need the density and stiffness
coefficient values within a medium. We used three models,
namely, Model 1, Model 2 and Model 3. The details of Models
1 and 2 are given in the numerical results section of the paper.
Model 3 is the SEG/EAGE salt (Hess) model, which can be
downloaded from the SEG website link (https://software.seg.
org/datasets/2D/Hess_VTI/).
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APPENDIX: ELASTIC GREEN’S FUNCTION AND
ITS SPATIAL DERIVATIVE
Many authors have presented the mathematical expression
for the elastic Green’s function. The expressions can be
nonidentical, as they are derived in light of different under-
lying physics. As an example, the Green’s function given by
Červený and Ravindra (1971), Červený and Hron (1980) con-
sidered the ray-geometric propagation of body waves in elastic
media. In the far field, terms corresponding to P- and S-wave
contributions can simply be added to formulate Green’s ten-
sor. However, in the near field, it is not possible to separately
write a Green’s tensor expression for the P and S waves. This
can be attributed to the strong coupling effects between the P
and S waves in the near field. As a high-frequency approxima-
tion, a fundamental limitation of the ray theoretical Green’s
tensor is the inability to model caustics or shadow zones
(Červený, 1985).

The unit polarization vectors for S waves can be expressed
in terms of the unit polarization vector for the P wave. Since
the direction of polarization for the P wave is radial and
outwards from the source towards the receiver, the unit vec-
tor can easily be determined from the distance r between
the source position 𝐱𝐬 and the receiver position 𝐱𝐫 in the
three-dimensional (3D) space.

�̂� = (𝐱𝐫 − 𝐱𝐬)∕𝑟 = 𝐱∕𝑟. (A.1)

The near-field and far-field regions can be demarcated by the
relationship between the wavelength of a P wave (𝜆𝑃 ) of a
circular frequency (𝜔) and the distance r between the source
and the receiver.

𝜆𝑃 = 2𝜋𝛼∕𝜔. (A.2)

The far field is defined as the region of space that is far away
from the source compared to the wavelength (Snieder, 2002)
and is given by the condition,

2𝜋𝑟
𝜆𝑃

≫ 1. (A.3)

For near-field radiation, Wu and Ben-Menahem (1985)
derived an expression for Green’s function considering the
intricate relationship between the P and S waves. Green’s
tensor in the near field is given as

𝐆𝑁𝐹 = −1
8𝜋𝜌𝑟𝛽2

[
1 − 𝛽2

𝛼2

][
𝐈 − 3𝐱𝐱𝐓

𝑟2

]
. (A.4)

Green’s tensor in the far field is given by the following
equation:

𝐆𝐹𝐹 = 1
4𝜋𝜌𝑟𝛼2

e𝑖𝜔𝑟∕𝛼
[
𝐱𝐱𝐓
𝑟2

]
+ 1

4𝜋𝜌𝑟𝛽2
e𝑖𝜔𝑟∕𝛽

[
𝐈 − 𝐱𝐱𝐓

𝑟2

]
.

(A.5)
Here, 𝛼 and 𝛽 are the P-wave velocity and the S-wave veloc-

ity, respectively. 𝜌 is the density of the medium. 𝐱 is the
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MICROSEISMIC WAVEFIELD MODELLING 21

position vector of the receiver point with respect to the source
point. The first term of Green’s tensor in the far field is the far-
field radiation due to the P waves, and the second term is the
far-field radiation due to the S waves. The first-order spatial
derivative of this Green’s function can be determined using
the chain rule of differentiation.

We follow the same strategy as used in Jakobsen et al.
(2020) and concentrate first on the near-field part of Green’s
function. The near-field term (Equation A.4) can be rewritten
in the following form:

𝐺𝑁𝐹
𝑘𝑙

= −
𝐶𝐸𝑘𝑙(𝑟)
𝑈 (𝑟)

, (A.6)

where

𝐶 = 1
8𝜋𝜌𝛽2

(
1 − 𝛽2

𝛼2

)
,

𝐸𝑘𝑙(𝑟) = 𝛿𝑘𝑙 −
3𝑥𝑘𝑥𝑙
𝑟2

,

𝑈 (𝑟) = 𝑟,

𝑈,𝑖 = 𝑥𝑖∕𝑟,

𝐸𝑘𝑙,𝑖 =
3(2𝑥𝑘𝑥𝑙𝑥𝑖 − (𝛿𝑖𝑘𝑥𝑙 + 𝛿𝑖𝑙𝑥𝑘)𝑟2)

𝑟4
,

𝐷𝑖 = 𝑥𝑖,

𝐹𝑘𝑙 = 𝑥𝑘𝑥𝑙,

where 𝛿𝑖𝑗 is Kronecker’s delta function.

𝐺𝑁𝐹
𝑘𝑙,𝑖

= 𝐶

𝑈3

[
𝐷𝑖𝐸𝑘𝑙 −

3
𝑈2

(
2𝐹𝑘𝑙𝐷𝑖 − (𝛿𝑖𝑘𝐷𝑙 + 𝛿𝑖𝑙𝐷𝑘)𝑈2)].

(A.7)

Similarly, we focus on the far-field terms for the P and S
waves.

𝐺𝑃
𝑘𝑙
=

𝑋(𝑟)𝑌𝑘𝑙(𝑟)
𝑈 (𝑟)

, (A.8)

where

𝑋(𝑟) = 1
4𝜋𝜌𝛼2

e𝑖𝜔𝑟∕𝛼,

𝑌𝑘𝑙(𝑟) = 𝑥𝑘𝑥𝑙∕𝑟2,

𝑋,𝑖 =
𝑖𝜔𝑋(𝑟)𝑥𝑖

𝛼𝑟
,

𝑌𝑘𝑙,𝑖 =
𝑟2(𝛿𝑖𝑘𝑥𝑙 + 𝛿𝑖𝑙𝑥𝑘) − 2𝑥𝑘𝑥𝑙𝑥𝑖

𝑟4
,

𝐺𝑃
𝑘𝑙,𝑖

=
(𝑋,𝑖𝑌𝑘𝑙 +𝑋𝑌𝑘𝑙,𝑖)𝑈 −𝑋𝑌𝑘𝑙𝑈,𝑖

𝑈2 . (A.9)

𝐺𝑆
𝑘𝑙
=

𝑉 (𝑟)𝑊𝑘𝑙(𝑟)
𝑈 (𝑟)

, (A.10)

where

𝑉 (𝑟) = 1
4𝜋𝜌𝛽2

e𝑖𝜔𝑟∕𝛽 ,

𝑊𝑘𝑙(𝑟) = 𝛿𝑘𝑙 −
𝑥𝑘𝑥𝑙

𝑟2
,

𝑉,𝑖 =
𝑖𝜔𝑉 (𝑟)𝑥𝑖

𝛽𝑟
,

𝑊𝑘𝑙,𝑖 =
−𝑟2(𝛿𝑖𝑘𝑥𝑙 + 𝛿𝑖𝑙𝑥𝑘) + 2𝑥𝑘𝑥𝑙𝑥𝑖

𝑟4
,

𝐺𝑆
𝑘𝑙,𝑖

=
(𝑉,𝑖𝑊𝑘𝑙 + 𝑉 𝑊𝑘𝑙,𝑖)𝑈 − 𝑉 𝑊𝑘𝑙𝑈,𝑖

𝑈2 . (A.11)
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