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To discover new drugs is to seek and to prove causality. As

an emerging approach leveraging human knowledge and
creativity, data, and machine intelligence, causal inference
holds the promise of reducing cognitive bias and improv-
ing decision-making in drug discovery. Although it has
been applied across the value chain, the concepts and
practice of causal inference remain obscure to many
practitioners. This article offers a nontechnical introduc-
tion to causal inference, reviews its recent applications,
and discusses opportunities and challenges of adopting the
causal language in drug discovery and development.
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Introduction
Causal inference is the process of identifying causal effects based
on prior knowledge, hypothesis, and correlations observed in
data. This article aims at equipping practitioners of drug discov-
ery and development, especially those without formal training in
mathematics and statistics, with necessary knowledge to start
working with causal inference at three levels: (i) to recognize sit-
uations where causal inference is advantageous and to under-
stand why a causal model is needed (Section What is causal
inference and why do we need it?), (ii) to perform causal inference
with software (Section A step-by-step guide of causal inference),
and (iii) to learn and get inspiration from recent applications
(Section Literature review and case studies). Finally, we discuss
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1359-6446/� 2023 The Author(s). Published by Elsevier Ltd.
https://doi.org/10.1016/j.drudis.2023.103737This is an open access article under the CC BY-NC license (h
opportunities and challenges of adopting the causal language
in drug discovery and development. A glossary is offered in the
Supplementary File 1 in the Supplementary material online for
readers to look up definitions of important terms.

Causal inference identifies causations from correlations. In
statistics, correlationmeans the relationship between two random
variables, whether causal or not. For instance, high temperatures
lead to higher ice cream sales; therefore, the variables temperature
and ice cream sales are correlated. Similarly, high temperatures
make wildfire more likely to happen; therefore, the variables tem-
perature and wildfire frequency are correlated. Apparently, ice cream
sales and wildfire frequency are correlated but do not cause each
other. The task of causal inference in this context is to infer
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the causal relationship between temperature, ice cream sales, and
wildfire frequency based on observations.

There is neither a consensus definition of causality nor a sin-
gle way to identify it (Box 1). It is partially because the nature of
causation is still under debate,1 and partially because even simple
causality such as higher temperature causes higher ice cream sales
can be broken down into an infinite chain of causal relationships
that can involve entities across both physical (e.g., molecules,
receptors, cells, organs and systems, society) and time scales.

In this article, we introduce the statistical causal inference
approach and define causality as a probabilistic relationship that
satisfies four conditions: regular probabilistic update, manipulation,
counterfactual condition, and mechanism of action.

Take the example of testing whether a drug is causal for halt-
ing deadly cancer progression. Regular probabilistic update means
that taking the drug modifies the conditional probability of
dying of the disease within a defined time window, regardless
of where and when the trial happens. Manipulation means that
drug treatment shows additional benefit even if we consider all
other factors affecting patient survival, such as age and comor-
bidities. Counterfactual condition means that the death of a
patient would not have been postponed had the drug not been
taken. Finally, mechanism of action means that we understand
why the drug prolongs patient survival, such as by activating
tumour-infiltrating immune cells. Taken together, the four con-
ditions ensure both statistical correlation and mechanistic under-
standing. They embody the causality criteria proposed by Austin
Bradford Hill2 and implement a practical test for the philosoph-
ical reasoning of establishing causality in healthcare.3
What is causal inference and why do we need it?
Why causality matters in drug discovery and development
Causality is indispensable for predicting outcomes of interven-
tion, for answering counterfactual what if questions, and for
human understanding. Although it takes time and effort to iden-
tify causes from correlations, the investment is rewarding. The
history of drug discovery abounds with cases where causality
inspires repurposing of a drug, developing new classes of chem-
ical matters, or refuting the use of a drug.

One prominent example is the history of thalidomide.4

Chemically, thalidomide is a mixture of two enantiomers: the
sedative (R)-enantiomer and the teratogenic (S)-enantiomer.
Although its use was first correlated with an unusually high inci-
dence of birth defects,5 it took decades to identify the cause of
the teratogenicity, that is, the degradation of SALL4 protein via
the E3 ubiquitin ligase complex.6 In the meantime, thalidomide
was found to be potentially effective against drug-resistant mul-
tiple myeloma. Follow-up study based on the first causal finding
offered a causal explanation for this correlation, namely that
thalidomide induces protein degradation of key transcription
factors Ikaros (IKZF1) and Aiolos (IKZF3) with the same ubiquitin
apparatus. Furthermore, the same causal link between thalido-
mide and protein degradation has inspired a flourishing search
for new modalities, including proteolysis-targeting chimera
(PROTAC)7 and other multispecific drugs.8 The ups and downs
of thalidomide, in which causality plays a central role in translat-
2 www.drugdiscoverytoday.com
ing serendipitous findings into new discoveries, is therefore
described as Shakespearean.4

Repurposing drugs to treat COVID-19 offers another recent
example demonstrating the importance of causality. Much liter-
ature reported a correlation between treatment with drugs target-
ing one or both human sigma receptors (r1 and r2), such as
hydroxychloroquine, and negative modulation of SARS-CoV-2
infection. Researchers, however, noticed the intriguing discrep-
ancy that although most compounds have comparable affinity
against sigma receptors, the cellular antiviral activities showed
large variation. It raised the question whether pharmacological
modulation of sigma receptors is causal for SARS-CoV-2 inhibi-
tion. The question led Tummino et al.9 to find that phospholipi-
dosis, instead of target-mediated mechanisms, underlies the
antiviral activity of many drugs. Phospholipidosis, determined
by physicochemical properties of the drugs, results in dose-
limiting toxicity and can be reliably predicted experimentally
and computationally.10 The lack of causal relationship between
pharmacological modulation of sigma receptors and antiviral
activities highlights the importance of dissecting causal mecha-
nisms from correlations, from the opposite angle of the example
of thalidomide.

Although correlations suffice for predictions and (wrong)
explanations, causality enables us to understand why a drug
works or causes harm and to act rationally. What is the relation-
ship between correlation and causation? How can we systemati-
cally identify causations from correlations?

Distinguishing causation from correlation
Causality is often hidden and manifests itself by correlations,
though correlations are not always due to direct causality. There
are six reasons why we observe a correlation between two events:
causation, confounding, coincidence, conspiracy, collider, and
chronology.

We assume that two variables, x and y, depict expression
levels of two proteins, X and Y, in a population of cells.
If x and y are correlated, six scenarios are possible:

1. Causation: expression of X causes expression of Y, or expres-
sion of Y causes expression of X. We may use additional
knowledge to favour one direction over the other. For
instance, if X is a known transcription factor but Y is not,
we may favour the model X ? Y (?reads causes) over Y ? X.

2. Confounding: a third, potentially unobserved, protein U
causes expression of both X and Y, i.e. X  U ? Y.

3. Coincidence: the correlation is solely by chance. If so, we shall
observe diminishing correlations as we collect more data. We
can perform statistical inferences, such as permutation test
and bootstrapping, to test how likely we observe the correla-
tion by chance.

4. Conspiracy, or deliberate selection of data: the correlation is
due to deliberate manipulation of data or the sampling pro-
cess. We may, for instance, create a good correlation by
removing data from all cells where two proteins are not
correlated.

5. Collider: besides conspiracy, nondeliberate selection of obser-
vations from the general population can also cause correla-
tion. Even if x and y are not correlated in all cells (imagine
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random points confined in a circle), by considering only cells
in which at least one of two proteins is expressed over a cer-
tain threshold (imagine removing points between six and
nine o’clock), we observe a negative correlation
between x and y. This is known as the Berkson’s paradox11

or the admission rate bias.12

6. Chronology: If both X and Y change their expression during
the life cycle of a cell, they are correlated in time series even
if neither protein causes change of expression of the other.
Although time can be considered a confounder, it is not a
cause per se of either protein’s expression. Such independent
trends with regard to time are systematically explored by Hans
Reichenbach in The Direction of Time.13 This is a subject of
intensive debate in contemporary philosophy.14

Collectively, we call the six mechanisms the 6C model of corre-
lation. The model helps us distil real causes from empirical corre-
lations by excluding the possibility that alternative mechanisms
are at work. In particular, data and statistical models alone can-
not tell causation apart from confounding. Figure 1 illustrates a
‘toy’ example in the same line of the protein expression example
above. It demonstrates that in order to identify causal relation-
ships from correlations, we need a model of either knowledge
or hypotheses about how data is generated and to operate the
model with statistical modelling.

For some applications, correlation is all we need. In the toy
example illustrated, if our goal is to predict y given x in similar
yet unobserved cells of the same population, correlation suffices,
and there is little need to distinguish between causation and con-
founding. Off-the-shelf statistical and machine-learning models
are good enough, because they exploit correlations between
input variables and the target variable.

Delineating causation from correlation is essential for many
other applications. If our task is to predict the expression of Y
in a cell where we inhibit the expression of X (Figure 1g), such
as by gene silencing, it is essential to know which of the models
below is the correct one: X? Y, or Y? X, or X U? Y. Because
if X ? Y is true, expression of Y will become residual; given the
other two models, expression of Y will not be affected. If we do
not have a model, collecting more data does not help us with
the task.

The simple example illustrates three critical points: (i) causal-
ity is required to predict the outcome of intervention; (ii) data
alone are not able to tell causality, no matter how much data
we have and however complex or fancy the algorithm is; and
(iii) we need both scientific models, that is, prior knowledge
and hypothesis, and data to infer causality.

The takeaway message is that although statistical and
machine-learning models are useful if we ask for correlation,
we need additional tools to recover causality from correlations
if our goal is to intervene in the system. While correlation helps
us to predict or even to explain,15,16 causality helps us to under-
stand and to act.

Causal modelling with directed acyclic graphs (DAGs)
Directed acyclic graphs, or DAGs, are used as computational
models of causal inference. DAGs contain nodes, which repre-
sent variables, and edges, which represent causal relationships.
Like the two-variable cases described above, DAGs represent
either knowledge or hypotheses about causal relationships
between the variables. The edge, that is, the causal relationship,
can have any discrete, linear, or nonlinear functional form. A
lack of edge between any pair of nodes means that we exclude
the possibility that they have direct causality on each other. An
indirect causal relationship may still exist in such cases due to
the propagation of causality through the DAG, as we shall see
below.

Three three-node structures are prevalent in DAGs. Under-
standing these common structures, known as motifs, allows us
to interpret more complex causal models:

1. The pipe (Figure 2a) describes the simplest chain of causality:
X ? Z ? Y.

2. The fork (Figure 2b) describes a variable Z causing both X and
Y: X  Z ? Y.

3. The collider (Figure 2c) describes the situation where a vari-
able Z is caused by both X and Y: X ? Z  Y.

A pipe transduces causality in a chain, such as Vemurafenib
binding to V600E-mutated BRAF ? reduced BRAF signalling ? re-
duced tumour size. If the intermediate cause is manipulated, such
as by mutations enhancing BRAF signalling, the causal effect
from drug on tumour size will diminish or even reverse. Statisti-
cally speaking, X and Y are marginally correlated, and they are
independent conditional on Z.

A fork, like the temperature example raised before, generates
correlations between variables that do not cause each other, for
example: PI3K phosphorylation RAS signalling ? BRAF prolifera-
tion. If the common cause is present, both its effects are corre-
lated; if the common cause is absent, or if we focus on the
subset of the data where the common cause takes the same value,
the effects become independent. Similar to the situation of pipes,
X and Y are marginally correlated, and they become independent
conditional on Z.

Colliders behave very differently from pipes and forks. For
instance, cells that lose the expression of the BOP1 (block of pro-
liferation 1) gene become resistant against vemurafenib.17 The
mechanism can be described by a collider structure: BRAF
V600E ? increased phosphorylation of ERK1/2  loss of BOP1,
namely both BRAF V600E mutation (V600E for short) and loss
of BOP1 (BOP1;) increases ERK1/2 phosphorylation ("pERK1/2).
As long as either condition is satisfied, we can observe "pERK1/2.
Assuming that they are the only two factors influencing
pERK1/2, the collider creates a dependency between V600E and
BOP1;. When "pERK1/2 is true, either V600E or BOP1; or both
must exist; otherwise, neither V600E nor BOP1; is possible. Even
if V600E and BOP1; are statistically independent from each
other, that is, knowing V600E does not give us any information
about whether BOP1 is lost or not, the two events become corre-
lated once we observe "pERK1. In contrast to pipes and forks, X
and Y are marginally independent but become correlated condi-
tional on Z.

Knowledge of causal structure allows us to better recognize
cognitive bias. We demonstrate this point with the example of
colliders. With simulated data generated by the three three-
node structures in Figure 1, we show that we can remove or
www.drugdiscoverytoday.com 3
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FIGURE 1
Distinguishing between correlation and causation. (a) Correlation between two variables x and y, which represents the expression levels of two
proteins X and Y in a population of cells, respectively. Each dot represents one cell. The data were simulated by a linear relationship. (b-d) Three causal
models that can generate the correlation observed in (a). two direct causal relationships (panel b and c) and one with a confounding variable (panel d).
Coincidence, conspiracy, collider, and chronology as reasons generating correlations are not shown for simplicity. (e-f) Data and statistical models alone
cannot tell the direction of causation, or whether confounding variables exist. Panel e shows the linear regression with x as independent variable and y as
dependent variable using data shown in panel A. Panel f shows the regression with the same dataset, with the role of x and y swapped. The correlation
coefficients (R2) of both regression models are identical. (g) Predicting the outcome of interventions requires causal models. Recall that we use x and y to
denote expression of two proteins X and Y in a population of cells. And now we reduce the expression of X artificially to 1.0 (dashed line in black). Depending
on the causal structure, the outcome of Y may be near to the red stars (model in panel b) or blue crosses (models in panel c or d).
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create correlation between x and y if we stratify by the third vari-
able z, depending on the graph structure. The conclusion holds if
z is a continuous variable and if we regress it out in a statistical
model. Imagine now we face a dataset with two variables, x
4 www.drugdiscoverytoday.com
and y; we observe a good linear correlation; and our goal is to pre-
dict the value of y, given a new set of values x. Does a linear
model suffice? Not necessarily, because if there is a variable z
forming a collider with x and y, and its value changes for the



K
EY

N
O
TE

(G
R
EE

N
)

K
EY

N
O
TE

(G
R
EE

N
)

Drug Discovery Today d Volume 28, Number 10 d October 2023 KEYNOTE (GREEN)
new set of values x, then our linear model is likely to fail. Even
the simplest causal graphs show us it is important to know which
factors affect the generation of data.

Besides the pipes, forks, and colliders, we highlight two four-
node motifs:

1. The descendant describes a variant of the collider, where the
variable caused by two variables X and Y is not directly
observed, but its descendant, namely another variable that
is caused by the unobserved variable, is observed. Because
we often use the variable U to indicate an unobserved vari-
able, the DAG can be represented as X ? U  Y and U ? Z.
The structure, for instance, is useful to model the effect of
known risk factors (X) and treatment (Y) on disease status
(U). Though U may not be directly observed, a biomarker
(Z), which is partially affected by U, can be measured.

2. The paw or 3-pan describes a class of motifs, including the one
shown in Figure 5a. The tail variable is known as the instru-
mental variable. Models with instrumental variables are appli-
cable in a wide variety of contexts, including Mendelian
randomization, a technique for target identification to be
described in Section 4, and the analysis of clinical trial data
with noncompliance, that is, when some patients in the treat-
ment arm do not take the medicine as prescribed.18

DAGs consisting of these and other motifs19 can represent
causal relationships between any number of variables. We refer
readers interested in reading and understanding DAGs better to
several outstanding tutorials.20–22

Because DAG structure specifies marginal and conditional cor-
relations, it is possible to rank models by their plausibility, given
data, and to learn the strength of causal relationships. The two
tasks are known as causal identification, or causal discovery, in
which the truth value of a claim of the form ‘C causes E’ is deter-
mined, and quantitative causal estimation, in which a numerical
value s (strength) is estimated for a claim of the form ‘C has an
effect on E.’ Causal discovery is more challenging than causal
estimation, and discovered causal effects usually require causal
estimation before they can be used for high-stakes applica-
tions.23,24 Nevertheless, it plays an important role in reconstruct-
ing causal networks for disease understanding and target
identification, especially because we lack much biological knowl-
edge on how the observed data are generated. See Section 4 for
details.
Relationship between causal inference and established
modelling techniques
Causal inference completes statistical modelling andmechanistic
modelling, two commonly used techniques in drug discovery
and development (Table 1). On one hand, statistical modelling,
including pattern recognition–based machine-learning models,
sometimes termed artificial intelligence (AI), aims at identifying
prediction-relevant features and functions that transform the
features to approximate the target variable and thereby exploit
correlations. The models may or may not have a causal interpre-
tation. On the other hand, mechanistic modelling uses mathe-
matical models of biological processes to describe and predict
how components, information, or energy of a system evolve
with time. Examples include pharmacokinetics and pharmaco-
dynamics models and quantitative system pharmacology models
based on ordinary or partial differential equations, agent-based
models, and hidden Markov models. Although mechanistic
models usually have a causal interpretation and are powerful
for predicting the outcome of an intervention, we often miss
information of important factors that affect the system’s
behaviour.

The three modelling approaches complement and benefit
from each other. Reciprocal benefits between statistical and cau-
sal models are apparent. By discovering and quantifying causal
relationships between observed variables, we can render statisti-
cal models’ causal interpretations. By using advanced machine-
learning approaches, we may learn highly complex functional
forms describing the causal effect25 or discover causality from
high-dimensional data.26 Practically, because we are often lim-
ited by the volume of high-quality data, causal inference may
likely profit from parsimonious statistical models and Bayesian
approaches.27

Results of causal inference help refine and improve existing
mechanistic models by including causal factors and removing
confounding factors. In turn, outputs from mechanistic models
complement the current causal inference regime by predicting
time-dependent outcomes of intervention, in particular those
of components that regulate each other.

Causal inference for experimental data and observational data
The power of causal inference to connect and enhance existing
modelling approaches is particularly prominent in the analysis
of observational studies. Classically, we distinguish observational
studies from controlled experimental studies. In a controlled
experiment, we assign test objects, such as animals in preclinical
experiments, to groups. One group receives the treatment and
the other group does not. If we go one step further to require that
the grouping is randomised with regard to any relevant attributes
of the test objects (passage, sex, body weight, etc.), then we have
a randomised controlled experiment, a gold standard to establish
causality. In an observational study, in contrast, we measure or
survey members of a sample without trying to affect them. Such
data can come from epidemiological studies, electronic health
records (EHRs), insurance claims, and other data that come from
natural (instead of controlled) experiments, such as omics and
behavioural data of healthy individuals and patients.

Several reasons make it imperative to use causal models to
analyse data generated by observational studies. First, it allows
us to integrate knowledge and hypotheses about inevitable biases
in the data generation process. Second, we can investigate the
causal effect of independent variables of interest while consider-
ing other variables that affect the outcome, known as covariates.
Third, we can potentially resolve the effects of variables that
influence both the independent variable and the outcome,
known as confounding variables. If we analyse observational data
as if we were handling randomised experimental data, without
considering the causal structure underlying the data generation
and collection, we may derive false, sometimes ridiculous,
conclusions.28

Even if a study is set up as a classical randomised experiment,
various reasons may break the randomization and demand causal
www.drugdiscoverytoday.com 5



TABLE 1

A comparison of data modelling techniques.

Examples Prediction for
independent and
identically
distributed
samples

Prediction for
outcome of
intervention

Answering
what if,
counterfactual
questions

Data-
driven
discovery

Mechanistic models Pharmacokinetics and physically based
pharmacokinetic models

Yes Yes Yes Maybe

Causal models See discussion and examples Yes Yes Yes Maybe
Statistical models Cox regression model for survival, statistical tests,

(generalised) linear models for omic data, support
vector machines, random forest, neural networks

Yes No No Yes

Adapted from Table 1.1 in Peters et al.137.
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inference to identify the treatment effect. For instance, in clinical
trials, noncompliance is a common issue, where some patients
do not take the treatment as prescribed. To identify the real treat-
ment effect while acknowledging the noncompliance, it is neces-
sary to employ a causal model, with the instrumental variable
model illustrated above as the simplest example. Other issues
that have been successfully addressed by causal inference include
missing data,29,30 such as when patients drop out of the trial, and
intercurrent events, that is, events occurring after randomization
that can either preclude observation of the outcome of interest or
affect its interpretation, as defined by the International Council
for Harmonisation of Technical Requirements for Pharmaceuti-
cals for Human Use in its Guideline E9(E1), such as the develop-
ment of antidrug antibodies.31–34 The book by Guido Imbens and
Donald Rubin provides an outstanding introduction to the anal-
ysis of these and other aberrations from classical randomised
experiments with causal inference.18

Causal inference can leverage both experimental and observa-
tional data to generate insight. Eichler et al.35 proposed a new
framework, known as threshold crossing, that generates evidence
by synthesising historical randomised clinical trials and real-
world data resources. A recent landscape assessment and elicited
comments have also shown that causal inference penetrates and
contributes significantly to clinical trial study design and analysis
by judging the suitability and integrating real-world data from
observational studies.36,37

Finally, we emphasise the importance of study design for both
experimental and observational studies. It is widely acknowl-
edged that well-designed randomised controlled experiments,
both in preclinical drug discovery38 and in clinical drug develop-
ment,39 are the gold standard of verifying causal relationships.
The quality and strength of evidence provided by an observa-
tional study and causal inference is also determined largely by
the study design.40 Study design should be scrutinised prior to
causal inference in order to gauge whether we can answer the
question of interest.
A step-by-step guide to causal inference
We introduce causal inference as an iterative process of six steps:
modelling ? identification ? estimation ? refutation ? refinement
? application. They are illustrated in Figure 3 and detailed below.
To assist practitioners acquiring hands-on experience with causal
6 www.drugdiscoverytoday.com
inference, we offer complementary interactive tutorials Supple-
mentary material. The tutorials, implemented in the program-
ming languages Python (with Jupyter Notebooks) and R (with
Rmarkdown), are available at https://github.com/Accio/causal_-
drug_discovery.

Step 1: Modelling
To start, we construct a DAG to model causal mechanisms that
generated the observed data by synthesising common sense, sci-
entific knowledge, or explicit assumptions. If multiple hypothe-
ses exist, we may build several DAGs and subject them to analysis
and comparison.

In case there is little knowledge and hypothesis available, we
may apply causal discovery techniques to raise hypotheses about
the mechanism of data generation. Commonly used methods
include Bayesian networks,41 factor analysis,42 and encoder-
decoder and other deep generative models.43 Limitations of such
methods include (i) they are often technically challenging (NP-
hard problems), (ii) the results often include many alternative
hypotheses that explain the data equally well, and (iii) the pro-
posed models may not be causal, that is, they fail to be validated
by interventional studies. Nevertheless, the discovered causal
graphs, combined with expert review and curation, may serve
as reasonable starting points.

Step 2: Identification
Once a causal model is set up, we test whether we can answer the
question of interest quantitatively. The quantity that addresses
the causal question, such as how strong is the effect of the drug on
disease progression, is known as the estimand (see more details in
Supplementary File 1, in the Supplementary material online).
In this step, our goal is to assess whether we can estimate the esti-
mand from the data at all, because some graph structures pro-
hibit us from doing so.

In a causal model, the estimand is usually the causal effect
pointing from a treatment (cause) to its target (effect) variable,
which can be a regression coefficient or other numeric values
that quantify the strength of the causal relationship. The causal
graph model structure determines which estimators are available,
and the numerical values of estimates are gauged by the users to
interpret the results and challenged by refutation analysis.

An interesting and important result from theoretical studies is
that we can assert whether an estimand can be identified using

https://github.com/Accio/causal_drug_discovery
https://github.com/Accio/causal_drug_discovery
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FIGURE 2
Common 3-node structures in DAGs. (a) Left. the pipe structure consists of a chain of three variables. The model was used to generate a simulated dataset
of 50 data points. We specified that x follows a Gaussian distribution with mean of 5 and standard deviation, z takes the value of 0 if x < 5 and 1 otherwise,
and y follows another Gaussian distribution with mean defined by 2*z and standard deviation. Middle. simulated data visualised with scatter plot. Each dot
represents one data point. Both plots show x on the X-axis and y on the Y-axis. The positions of the points are the same in both plots. In the left plot, the
regression line (blue) and its confidence interval (grey) are shown for y � x; in the right plot, the regression lines and confidence intervals are shown
dependent on the value of Z. A simple visual assistance is that if x and y are marginally (mid-left plot) or conditionally (mid-right plot) correlated with each
other, then the confidence interval should not contain any horizontal grid line. In this case, it is clear that while x is correlated with y, the correlation is broken
if we condition on z. This summary is shown on the right panel of the plot. (b) Similar to panel a, with the fork structure on the left. Simulation rules (data
points N = 50). z follows a Bernoulli distribution with a probability of success of 0.5. Both x and y follow normal distribution with mean defined by z and
standard deviation. The interpretation of middle and right panels is comparable to panel a. (c) Similar to panel a and b, with the collider structure on the left.
Simulation rules (data points N = 50). Both x and y follow normal distribution with 0 mean and standard deviation. The value of z is 1 if x + y > 0 and �1
otherwise. The interpretation of middle and right panels is comparable to panel a and b. The code to generate both the simulated data and the visualisations
is available at https://github.com/Accio/causal_drug_discovery/blob/main/2021-12-CausalSalad.Rmd.
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graphical models alone, independent of the choice of the estima-
tor and without access to the data. This means that we can tell
whether the question can be answered at all by causal inference
before we collect or generate any data, which is usually the most
time- and labour-consuming step in knowledge acquisition.

In this step, we need to identify the target estimand by spec-
ifying the quantity of interest in the DAG model. Usually, we
use software to identify whether the estimand can be estimated
based on the graph structure. If the estimand is not identifiable,
we have little choice other than modifying our model, redefining
our question, or admitting that the problem cannot be solved
with causal inference. Otherwise, the model is said to be identifi-
able, and we can continue with the estimation step.

A causal model is intrinsically a generative model, namely it
can be used to generate simulated data. Once the identifiability
is established, a common practice is to simulate data with the
model with specified parameters, to run the inference with sim-
ulated data, and to examine both whether the simulated data
reassemble observed data and whether the estimate is consistent
with the input parameters. Inference with simulated data offers
us experience with the model, opportunities to identify bugs
and flaws of the model before the real run, and confidence in
the model and the choice of estimator.
Step 3: Estimation
Next, we collect existing data or generate new data according to
the DAG. The importance of quality control of data cannot be
overestimated: garbage in, garbage out. Data may be filtered so that
only the subset that satisfies the DAG structure is used for the
estimation.

Once we have decided on the estimand and the data, we can
estimate the causal effect by identifying an appropriate estimator
and deriving the estimate from the data, which is usually done
by software (see Box 2 for popular open-source software packages
for causal inference).
www.drugdiscoverytoday.com 7
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FIGURE 3
A six-step model of causal inference, detailed in Section A step-by-step guide of causal inference.
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BOX 2 Emerging software tools for causal inference.

d https://github.com/microsoft/dowhy44

d Dagitty150 in R (GNU), https://www.dagitty.net/

d https://github.com/babylonhealth/counterfactual-

diagnosis

d https://github.com/lingfeiwang/findr

d https://github.com/causal-machine-learning

d https://github.com/uber/causalml

d https://github.com/microsoft/econml

d https://github.com/google/CausalImpact

d https://github.com/IBM/causallib

d https://github.com/uhlerlab/causaldag

d https://github.com/tlverse/tlverse, with tutorial at https://tl-

verse.org/tlverse-handbook/.
The choice of estimator depends on the DAG structure and
the nature of the data. The popular DoWhy package, for instance,
offers diverse estimators depending on the graph structure,
including (i) (generalised) linear regression; (ii) stratification,
matching, or weighting by propensity score, namely the proba-
bility of each unit being assigned to a treatment group given a
set of observed covariates; (iii) using instrumental variables;
and (iv) machine-learning–based estimators implemented in
the EconML package. Although the choice of appropriate estima-
www.drugdiscoverytoday.com
tors is context- and question-specific, several measures can help
us make better choices, especially (i) using simulated data, (ii)
learning from case studies and past experience, and (iii) applying
refutation techniques, discussed in the next step.
Step 4: Refutation
Although estimation is commonly deemed the most important
step in causal inference, in high-stakes applications such as drug
discovery and development, we need to test the robustness of our
estimates. This is achieved by refutation, a collective name of
many modelling techniques to test the strength, validity, and
our confidence of the estimated causal effect. Commonly used
techniques are listed in Supplementary File 1, in the Supplemen-
tary material online.

In addition, one can perform data partition or bootstrapping
to estimate the variability of the estimates. Furthermore, bespoke
refutation techniques can be used to address application-specific
questions, such as noncompliance in randomised clinical trials.44

We refer interested readers to a recent review about these and
other techniques known as sensitivity analysis.45

Statistical causal inference is not the only way to identify
causality (Box 1). Alternative evidence from other models, such
as results from mechanistic models and results from randomised
controlled experiments, should be used to strengthen or chal-
lenge our belief in the output of the causal model.

https://www.dagitty.net/
https://github.com/babylonhealth/counterfactual-diagnosis
https://github.com/babylonhealth/counterfactual-diagnosis
https://github.com/lingfeiwang/findr
https://github.com/causal-machine-learning
https://github.com/uber/causalml
https://github.com/microsoft/econml
https://github.com/google/CausalImpact
https://github.com/IBM/causallib
https://github.com/uhlerlab/causaldag
https://github.com/tlverse/tlverse
https://tlverse.org/tlverse-handbook/
https://tlverse.org/tlverse-handbook/
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BOX 1 An anarchy of approaches to causality.
Despite a long history of causality research in multiple disci-

plines, especially statistics, computer science, epidemiology,

healthcare, and philosophy of science, there is no consensus

way of defining and inferring causality.28 Impactful approaches

for causal inference include the counterfactual outcome frame-

work, the Campbell’s framework, Bayesian decision theory, and

the directed acyclic graph (DAG) approach.142 We note that they

are not mutually exclusive. In this review, we particularly focus on

the counterfactual framework and the DAG approach.
A variety of philosophical and scientific approaches have

been developed to investigate causality. Below is a list of

approaches that mostly impacted the authors:

d The constant conjunction by David Hume.

d Path analysis pioneered by Sewall Wright in 1920s.143

d Potential outcomes proposed by Jerzy Neyman in 1923,

which revealed the possibility of achieving causal infer-

ence with randomised trials.144

d Hill’s causality criteria in 1960s.2(p19)

d Ignorability proposed by Donald Rubin in 1970s, known as

unconfoundedness to epidemiologists and selection on

observables by economists, which lead to propensity

scores.18,145,146

d Bayesian network, DAGs, and do operators proposed

between 1980s and 2000s by Judea Pearl.83,147

d Representation learning for causal inference.132

d Causal machine learning, aiming at individualised causal

inference using high-dimensional features to subdivide

population, with emerging work in medicine and

healthcare.47,148

d Learning causal relationships, representing a more sub-

stantial challenge than causal effect learning.24

d Challenges of estimation from finite sample, see

Shipley.149

We close this box with a quote from Richard McElreath: ‘There

is no method for making causal models other than science. There

is no method to science other than honest anarchy.’
Step 5: Refinement
Even when the estimated causal effects withstand refutation
analysis, they are seldom the sole goal of our investigation.
Given that we lack a comprehensive understanding for virtually
all biological problems, we often need to refine the model, which
includes selection from multiple models, addition of new vari-
ables, interpretation of latent variables and of estimates, and
answering what if questions. The refined model can be used, on
one hand, to guide design of new experiments to further refute
or update the model and, on the other hand, to guide
interventions.

Step 6: Application
One of the ultimate goals of causal inference is to perform inter-
ventions in the real world. The outcomes can be further analysed
in the causal inference framework, therefore closing the loop.

In contrast to a ‘hypothesis-free’ paradigm, where one expects
to learn mechanisms generating the data from data alone, the
cycle of modelling, identification, estimation, refutation, refinement,
and application integrates knowledge, hypothesis, and data to
address scientific questions. Interdisciplinary teamwork is
required to construct explicit models of causality, to collect
estimand-specific data, and to identify causal relationships.
Literature review and case studies
Literature review
To gain an overview of applications of causal inference in drug
discovery and development, we compiled a list of publications
by querying the MEDLINE/PubMed database. We found more
than 800 scientific publications (Table S1 in the Supplementary
material online) up to September 2022. As a comparison, we also
queried publications on machine learning and artificial intelli-
gence and stratified the number of publications by years (Fig-
ure 4a). We note two interesting patterns: (i) publications on
causal inference in drug discovery have increased almost steadily
since 1990, and (ii) the topic receives much less coverage than
machine learning and artificial intelligence. Despite the scope
of the latter two concepts being admittedly much broader, the
patterns underscore the importance of populating the causal
mindset and language among practitioners.

We classified the literature by applications and observed that
causal inference has been applied throughout the value chain of
drug discovery and development (Figure 4b,c). The majority of
publications are about analysis of observational studies, espe-
cially drug safety, pharmacovigilance, and real-world data.
Methodological papers and publications reporting applications
for target identification and assessment, clinical trial design
and analysis, and biomarker studies follow with distance. Appli-
cations in other areas, in particular preclinical and translational
research, are still scarce.

Given the broad application of causal inference, and given
that applications for clinical data, real-world data, and observa-
tional studies have been extensively reviewed elsewhere,36,37,46,47

we focus below on case studies of causal inference for disease
understanding and target identification in translational research.

Translational research includes activities that aim at establish-
ing the causal relationship between drug candidates and disease
progression. It has two interlinked components: forward and
reverse translation. Forward translation predicts drug dosing
and risk/benefit ratio in patients with in silico models and data
from in vitro, ex vivo, and in vivo animal models and microdosing
human studies. Reverse translation informs and improves
decision-making in forward translation by analysing data col-
lected in clinical trials, real-world data, as well as data generated
with clinical stage or marketed molecules in preclinical models.
Forward and reverse translation form a closed loop and comple-
ment each other to validate or refute the proposed causal rela-
tionship between treatment and patient health status.

Although translational research has many facets, we choose
disease understanding and target identification to highlight the
impact of causal inference for two main reasons. First, leveraging
the causal engine in the target identification and selection phase
may have the strongest potential in reducing costs to society of
disease and of drug discovery.48–50 Second, applications in this
area involve heterogeneous and high-dimensional data, such as
www.drugdiscoverytoday.com 9
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FIGURE 4
Established and emerging applications of causal inference along the value chain of drug discovery and development. (a) Publications indexed by
MEDLINE/PubMed with keywords causal inference (green), machine learning (yellow), and artificial intelligence (red). Only peer-reviewed papers relevant for
drug discovery and development are included. Numbers of publications are divided by the total number of publications and multiplied by 100,000. (b)
Classification of publications on causal inference in drug discovery and development into activity categories. We read the abstract, and if available, the full
text, of identified causal-inference publications and manually categorised them. The activities are reversely ordered by the number of total publications. (c)
We positioned activities found in the literature review in the context of both forward and reverse translation. In the middle we show a simplified diagram of
forward translation consisting of four steps. early discovery, lead optimization, early development, and clinical trials. Above and below we show reverse
translation, i.e. analysis of experimental and observational real-world data, and its feedback to forward translation. Applications of causal inference are
highlighted besides the lollipops.
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EHRs and genomic and other omic data. Although the data type
varies in other tasks of translational research, such as risk/benefit
assessment, biomarker selection, and patient stratification and
enrichment, the concepts, software tools, and practice can be
transferred.

Learning causal associations from natural experiments and
observational studies
Although target identification was driven by druggability and
in vitro or animal disease models for a long time, reverse transla-
tion is upending this pattern. Causal inference contributes evi-
dence to support or disaffirm drug targets by analysing data
10 www.drugdiscoverytoday.com
from natural experiments and observational studies. The need
for causal inference is particularly strong in emerging fields such
as microbiome medicine, where high-quality data are relatively
scarce and associative analyses are still prevalent.51 Similarly,
causal inference is needed when the study of disease aetiology
is challenging, such as in neuroscience. Path analysis, a precursor
to and variant of causal inference, has been applied to prioritise
or refute targets in neurogenesis, Parkinson’s disease, and autism
spectrum disorder.52,53,54,55 See Supplementary File 1 (in the Sup-
plementary material online) for a detailed case study with Alzhei-
mer’s disease.
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FIGURE 5
Causal inference for disease understanding and target identification. (a) Mendelian Randomization (MR) estimates the causal effect of an exposure (“x”,
e.g. a gene or protein) on an outcome (“y”, e.g. disease status or clinical trait) using a genetic instrument for the exposure (“z”, an eQTL or pQTL for a gene or
protein exposure). MR is applicable if the instrument is independent of unobserved confounders (“u”) and if the outcome is associated with the instrument
only through the exposure (no alternative paths) (indicated by red crosses). (b) Simulated scatter plot of two coexpressed genes X and Y, with samples
coloured according to the genotype of a genetic marker Z for X. Model selection determines the causal model underlying the data by testing the conditional
independencies implied by each causal DAG. Representative causal models without (top) and with (bottom) unobserved confounders are shown. Model
selection assumes that the edge Z ? X must be included in the model and that Z is independent of any unobserved confounders. (c) When a larger set of
coexpressed genes is considered (left), the data is modelled by a causal Bayesian network (right). Black nodes represent genes (x) and white nodes genetic
instruments (z) that are used to orient the causal directions of gene-gene edges, and the Bayesian network represents the probability distribution of jointly
observing x and z given a set of model parameters H learned from the training data. (d) Controlled perturbation experiments give direct information about
the variables causally downstream of the perturbed node (yellow nodes) and can be used to refute or refine networks reconstructed from observational data.
(e) Models inferred at one scale (e.g. cell-type or tissue-specific gene or protein networks) can be integrated into higher-level models. In the figure, nodes
represent tissue-specific causal Bayesian networks (node colour, tissue; node size, network size) and edges represent “eigengene” similarities. Panel E
obtained from Talukdar, Husain A., et al. Cell systems 2.3 (2016). 196–208 under CC-BY-NC-ND licence.
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Application of causal inference on multiomic data (genomics,
transcriptomics, proteomics, metabolomics) leads us to identify
causal genes, pathways, and gene regulatory networks that have
a direct effect on disease states.56–59 Genome-wide association
studies (GWASs) have mapped the genetic architecture of com-
mon diseases in humans60 and have identified genetic loci that
affect drug response and susceptibility to adverse drug reac-
tions.61 Drugs targeting genetically supported targets were
reported to be twice as likely to be successful as other drugs.62,63

Exploiting GWAS data in drug discovery is challenging, however,
because there are generally hundreds to thousands of genetic risk
variants, mostly lying in noncoding genomic regions and each
typically contributing only a small amount of risk.

Mendelian randomization (MR)64,65 is a statistical approach
that uses genetic variants as randomised instruments (‘natural
experiments’) to identify causal associations between heritable
traits. It is based on the fact that genotypes are independently
assorted and randomly distributed in a population by Mendel’s
laws, or in a less strict manner, independent of each other out-
side haplotype blocks,66 and not affected by environmental or
genetic confounders that affect both the exposure (target manip-
ulation) and the outcome (disease state). If it can be assumed that
a genetic locus affects the outcome only through the exposure,
then the causal effect of the exposure on the outcome can be
derived from their relative associations to the genetic locus,
which acts as an instrumental variable67 (Figure 5a).

By integrating GWAS with studies that map genetic effects on
the transcriptome or proteome (expression or protein quantita-
tive trait loci; eQTLs or pQTLs, respectively), MR can identify
causal associations between molecular traits and disease.68 When
applied to proteomic data, inferred causal associations between
proteins and disease can suggest drug repurposing opportuni-
ties69 or new candidate drug targets.70,71 An advantage of MR is
that it can be performed using summary statistics alone.72 A lim-
www.drugdiscoverytoday.com 11
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itation is that MR tests effects of molecular traits on diseases one
by one and that no molecular pathways are reconstructed. This is
important because the candidate causal factors may act indirectly
or redundantly with other factors, or the candidate factors may
not be druggable themselves but affect intermediate druggable
targets.

When genetics and multiomic data from individuals in a seg-
regating population are merged, comparison of independent,
causative, and reactive DAGs can orient the direction of causality
among QTLs and pairs of correlated genes or proteins73,74 (Fig-
ure 5b). Statistical model selection compares the conditional
independence relationships implied by each DAG and uses max-
imum likelihood to select the model that best fits the available
data. Statistical significance is estimated by expressing the condi-
tional independence implications of the tested DAGs as combi-
nations of likelihood ratio tests. Either their maximum P-value
is treated as an omnibus hypothesis test75–77, or false discovery
estimation is used to express the results of the individual tests
as probabilities of their null or alternative hypothesis being
true.78,79 Accounting for hidden confounders requires additional
assumptions on the genetic instrument, usually satisfied if the
instrument is a cis-acting eQTL or pQTL for the ‘exposure’ vari-
able, and involves a trade-off between a high false-negative rate
or an increased false-positive rate.79,80

Bayesian networks combine the results of pairwise causal
inferences into a causal network model of the underlying biolog-
ical system. Bayesian networks are probabilistic machine-
learning models for expressing both prior knowledge and
inferred conditional independence and causal relationships
among variables.81–83 A Bayesian gene network consists of a
DAG which connects regulatory genes to their targets84,85 (Fig-
ure 5c). The structure of a Bayesian network is inferred from
the data using score-based or constraint-based methods,82 where
the results of pairwise causal inference tests are used to constrain
the DAG search space.84–90 This is done by expressing the joint
likelihood of observing both data types as a standard likelihood
term for observing gene expression data, given the DAG, and
an additional likelihood term for observing the genotype data,
given the expression data and causal interactions implied by
the DAG84,85,88–90 (Figure 5c).

To bridge from the molecular scale to disease states, clinical
phenotypes are not usually modelled as nodes in the causal net-
work. Instead, genome-wide omic data are first partitioned into
coexpression modules associated with clinical traits,91–94 and
causal networks are learned for each module separately and con-
nected in a higher-level Bayesian or coexpression network where
each node is a module ‘eigengene,’ a representation of the mod-
ule’s expression profile by its first principal component95 (Fig-
ure 5e). This higher-level network can model tissue-specific and
intertissue communication processes that are the result of the
‘collective’ states of molecular networks and that are more prox-
imal to physiological disease processes.58,93,94,96

As in almost all other areas of genomics, single-cell technolo-
gies are creating new opportunities for learning causal disease
mechanisms from population-based data.97 Cost-effective strate-
gies for generating single-cell RNA-sequencing data across indi-
viduals have been developed,98,99 and the first large-scale
population genetics studies have been published recently.100–
12 www.drugdiscoverytoday.com
104 A particularly attractive application will be to exploit the fact
that allele-specific expression can be mapped in single cells.105

This will allow us to quantify eQTL effect sizes106 at the level
of an individual instead of a population, which will lead to a bet-
ter understanding of the variation of causal effects across
individuals.

Learning causal associations from controlled perturbation
experiments
Having considered the impact of causal inference on reverse
translation, now we turn to its impact on forward translation
by analysing controlled perturbation experiments (Figure 5d).

For target-based discovery programs, canonical gene knockout
or perturbation experiments in model systems establish causality
in a manner similar to randomised controlled trials. When these
experiments are combined with genome-wide readouts, they
provide insights into the direct and indirect causal targets of
the perturbed gene. Systematic small-molecule and perturbation
screens using RNAi technology followed by transcriptome
sequencing have been performed in cancer cell lines.107

CRISPR-based technology combined with single-cell RNA
sequencing is now rapidly expanding the scope of conducting
genome-wide perturbation screens in human cells.108–112

Causal inference from perturbation experiments allows us to
disentangle direct from indirect effects and predict the outcome
of a new intervention or perturbation. Nested effect models are
probabilistic graphical models to infer a genetic hierarchy from
the nested structure of observed perturbation effects.113,114 A
more formal approach uses causal DAGs and do-calculus to
model causal effects from perturbation screens.115,116

Pioneers and experts in phenotypic drug discovery have long
realised the importance of establishing causal relationships. Mof-
fat et al.117 proposed a model of chain of translatability, namely
from the chemical matter to the assay phenotype, to the preclin-
ical disease model, and finally to human disease. We note the
multiscale nature of this chain of translatability and the resem-
blance of challenges faced by target-based programs and those
faced by phenotypic programs, except for the target identifica-
tion and assessment question. A key open question is whether
causal inference, and in particular causal discovery techniques,
can help phenotypic programs identify molecular targets and
mode of action.

A fundamental issue with forward translation is that cellular
or animal models differ from human physiology. Therefore, a
critical additional request is that the identified link must be per-
sistent in humans in the form of in vitro–in vivo translation, gov-
erned by physiological constraints, and between-species
translation, governed by evolutionary forces.

In order to decide whether experimental findings can be
extrapolated across domains that differ both in their distribu-
tions and in their inherent causal characteristics, we need prior
scientific knowledge about the invariance of certain mecha-
nisms, represented in ‘selection diagrams,’ DAGs in which the
causal mechanisms are explicitly encoded and in which differ-
ences in populations are represented as local modifications of
those mechanisms.118,119 Switching between populations corre-
sponds to conditioning on different values of the variables that
locate the mechanisms where structural discrepancies between
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the two populations are suspected to take place. The transporta-
bility problem can then be formulated and decided using do-
calculus and graphical criteria on the selection diagrams.

Translational study is undergoing a profound change.
Although animal models are traditionally used as a bridge
between in vitro experiments and studies with humans, the field
is witnessing strong interest and investment in human model
systems such as stem cell–derived cell lines, primary cells, orga-
noids, organ-on-a-chip, or other microphysiological systems.
They are currently being tested for many purposes, especially effi-
cacy and safety assessment, prediction and modelling of pharma-
cokinetic and pharmacodynamic parameters, biomarker
identification, and disease modelling.120

From the point of view of causal inference, the key question is
how much the causal model relevant for the disease and the drug
candidate in human systems is conserved in model systems, let it
be in vitro, in vivo, or human model systems. To answer this ques-
tion, it is necessary to establish causal models with each model
system and to compare the models between the systems. So
far, the translational value of most human model systems is
judged by looking alike, that is, to assess similarity in morphology
and/or omic profiles with regard to primary human material. In
order to mimic the causal relationship, more work is required
to assess these systems by functioning alike, that is, to assess their
response upon perturbation and conditions that mimic disease
aetiology and development.121,122
Discussion
This review addresses three questions: (i) When do we need a
causal model? (ii) How can causal inference be performed? (iii)
Which activities in drug discovery have been or will be empow-
ered by causal inference? With the 6C model of correlation and
causation in mind, we argued that causal models are essential
for predictive modelling of the outcome of intervention, for
answering what if questions, and for understanding disease biol-
ogy and why drugs work (or do not). We introduced causal infer-
ence as a six-step iterative process with hands-on examples in the
complementary tutorial. Finally, we performed an extensive liter-
ature review and discussed recent application of causal inference
in translational research.

As discussed in the introduction, causality is multiscale. This
renders causal inference a suitable tool to investigate interactions
between drugs and human biological systems, which are per se
multiscale.123 Leveraging advances in statistical modelling and
mechanism-based multiscale modelling has the potential to
transform heterogeneous data into unified knowledge, which
helps us understand the impact of genetic, epigenetic, and envi-
ronmental factors on drug action.124

An emerging consensus is that the quality of in silico model
predictions outweighs the speed of prediction, and qualitative
statements that enable scientists to focus on promising targets
and regions of chemical space are often more impactful than
quantitative predictions for decision-making.125,126 In line with
this, we foresee three key opportunities for causal inference: (i)
high-quality prediction for predictive modelling of interven-
tional outcomes, including out-of-distribution predictions125,126;
(ii) individualised causal inference and estimation of heteroge-
neous treatment effects127; and (iii) causally and counterfactually
based decision-making.20,128

Besides the opportunities, we foresee three major challenges
to be overcome by researchers and practitioners of causal infer-
ence in the coming decade: (i) the methodology of causal infer-
ence needs to be further developed to embrace the reality and
complexity of biology; (ii) the community needs to share and
have open access to high-quality data and models; and (iii) we
need a change in both language and mindset.

The methodology of causal inference warrants further
research. DAGs, though very powerful, have intrinsic limitations
when used to model biological systems. Edges in DAGs must be
acyclic; that is, we are never trapped in a closed loop by following
the directions of edges. DAGs are therefore not suited for analys-
ing reciprocal causal relationships, though they are prevalent in
biology across scales frommolecular interactions129 to conscious-
ness.130 To model systems with such relationships, one can
either take advantage of longitudinal data to identify causal rela-
tionships131, or model the net output of nodes involved in recip-
rocal relationships as a variable instead of modelling individual
nodes, or employ computational models other than DAGs, such
as graph neural networks and other representation learning tech-
niques.132 Both the theory and the software required for perform-
ing such analyses need further research and development.
Despite recent progress discussed above,26 it is still challenging
to perform causal inference with high-dimensional data, for sys-
tems with multiple complex traits, that is, many factors with
small effect sizes,133–135 and for complex adaptive systems where
feedback loops abound.136–138

Open contribution and access to improve biological models is
essential for the community to refine and leverage causal models.
Resources of causal models are emerging quickly,139 and
community-wide efforts such as DREAM challenges have been
hosted to identify causal relationships from omic datasets.140

Nevertheless, the causal language remains foreign to many
researchers; we do not always distinguish correlation from causa-
tion explicitly, and, in many cases, scientific findings are not rep-
resented as causal models. Although it remains a complex and
unsolved problem of how to populate the causal language and
how to encourage researchers to share data and causal models,
we are cautiously optimistic about further development because
of the potential gain. The Linus’s Law formulated by Eric S. Ray-
mond,141 Given enough eyeballs, all bugs are shallow, is a motiva-
tion for all of us to adopt the causal language and share the
causal models: To share and to refine causal models in a commu-
nity is to understand how biology and drugs work collectively.

Several reasons may make practitioners of drug discovery and
development, including many colleagues we have interviewed,
wary of causal inference. We need the front-up payment of
bringing up knowledge and hypothesis, often exposing our naiv-
ety and lack of knowledge. In a real-world setting, setting up a
model is particularly challenging because we often have incom-
plete information and inaccurate knowledge about human biol-
ogy and the pharmacology and toxicology of drugs, not to
mention the abundance of invisible or unquantifiable quantities
and events that affect the efficacy and safety of drugs. We have to
give up the hope about ‘learning from data alone’ and
‘hypothesis-free approaches.’ We know that machine-learning
www.drugdiscoverytoday.com 13



K
EY

N
O
TE

(G
R
EEN

)
K
EY

N
O
TE

(G
R
EEN

)

KEYNOTE (GREEN) Drug Discovery Today d Volume 28, Number 10 d October 2023
models such as deep neural networks and graphical neural net-
works can learn patterns if they are trained with enough data.
Isn’t it better to accumulate more data and let the machine find
out the causality? Why do we stick to and propose causal
inference?

We welcome these questions and doubts. They lead us to
believe that we need a change in both language and mindset
to think and talk about causality. We argue that (i) causality
exists beyond data, and it is not possible to learn causality from
data alone without prior knowledge and hypotheses; and (ii) the
central task of drug discovery and development is to discover and
validate multiscale causal relationships. The true causal network,
in contrast to causal DAG models, can contain feedback loops
and therefore cannot be subject to the analysis introduced here
as a whole. However, the network can be separated into smaller
subnetworks, each verified by the six-step cycle of causal infer-
ence, and the causality propagates between the scales. The net-
work connects the drug molecule with disease outcome via its
interactions with biological molecules. The interactions emerge
as pharmacology and toxicology on cellular, organ-and-system
levels. Furthermore, the network can be enriched with individual
traits such as genetics, medical history, lifestyle, and environ-
mental factors to allow population analysis.

Concluding remarks
Causal inference offers a principled approach to model- and data-
driven predictive modelling and decision-making. It comple-
ments statistical and mechanistic models to empower an under-
standable synthesis and integration of knowledge and data
across scales. We foresee that further development of its method-
ology, open-accessible causal models and high-quality data, and
a broader adoption of the causal language and mindset will fuel
14 www.drugdiscoverytoday.com
both forward and reverse translation. In short, causal inference
empowers us to seek and to prove causality with new drugs.
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