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Abstract

The unique functioning of Support Vector Machines (SVMs) can create undesirable be-

haviour, however this unique functioning in turn also allow for exploration of novel topo-

logical regularization methods. SVMs are a common machine learning model used for

classification tasks. Like most machine learning models, SVMs can be prone to overfitting

to training data, which hurts its generalization. When optimizing the generalization of

classifiers we can consider topological properties of the decision boundaries. Intuitively, a

decision boundary slicing the input space into numerous disjoint components is less likely

to generalize effectively. Building on this assumption, I propose two novel topological

generalization techniques using properties specific to SVMs.

SVMs work by mapping data into a higher-dimensional feature space, with the goal of

making data linear separable among classes. Analysing this feature space with methods

from topology and Morse theory leads to new methods to change an SVM’s decision

boundary in a manner that reduces its topological complexity. In particular, I define a

measure of topological complexity for SVMs and propose 2 methods intended to decrease

this complexity. I show practical utility of these methods through illustrative examples,

which indicate effectiveness in real-world scenarios. Moreover, the results of experiments

challenge the idea that a maximal margin results in an optimal decision boundary.

This thesis’s goal is to serve as a basic exploration into topological regularization for

SVMs, providing ideas for further research. In the discussion I identify weaknesses and

challenges such as reliance on approximations and computationally costly algorithms,

which can be tackled through further future research.
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Chapter 1

Introduction

1.1 Motivation

Support Vector Machines (SVMs) are a specific kind of machine learning classifiers which

through their unique workings can create undesirable behaviours, however these unique

workings in turn also allow for exploration of novel regularization methods. SVMs, like

other machine learning models, are designed such that they learn to solve pre-defined

problems by finding patterns in data. The way an SVM classifies datapoints is by map-

ping them into a high dimensional feature space, after which the SVM finds an optimal

linear separation of the different classes. The exact workings will be discussed in section

2.3, but in short SVMs transform data to a higher dimensional space with the goal of

making it linearly separable. This process has the potential of generating undesirable

behaviour for the classifier, but in turn also allows for unique topological analysis of the

classifier. Figures 1.1 and 1.2 show 2 examples of Support Vector Machines classifiers

with undesirable behaviour.

One common task tackled with machine learning is data classification, where a ma-

chine learning model is tasked to predict which class some datapoint belongs to. An

example of a classification task is spam detection, where a model predicts whether some

message is either in the class ‘spam’ or ‘not spam’. Classifiers are trained by providing

them a dataset of pre-classified data. Using this dataset the model attempts to optimize

its prediction such that it most accurately can predict the class of any datapoint. The

challenge in training classifiers is that the goal of such models is not necessarily to be

very accurate at predicting the pre-classified data it uses to learn, but instead it should
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Figure 1.1: Let any datapoint x ∈ R, the data is transformed into 2-dimensional space
by mapping it to the function in red and blue. The function used here is f(x) = x3 + x2.
The black line shows a learned linear separator. The colour of the function shows the
prediction of the model for each point, as it is transformed to the high dimensional space.
Assume the datapoint x = 0 is noise, then the model has an undesirable red section
slicing the blue section.

be accurate in predicting unseen data. In other words, we are interested in how well a

model’s prediction generalizes.

Figure 1.1 can be interpreted as an example of overfitting (later explained in section

2.2): the classifier learns to predict the data it is trained with too specifically such

that it degrades the classifiers ability to predict new data. Here the classifier learns an

incorrect pattern from the noise in the training data. Furthermore, Figure 1.2 shows how

undesirable classification for SVMs can happen without it being a result of overfitting.

Here a mapping function that fits poorly to the data creates an undesirable classifier. In

both examples we see that the undesirable behaviour of the classifiers is directly related

to the number of components of the mapping function as sliced by the linear separator.

In this thesis I will explore methods that attempt to mitigate such undesirable behaviour

by reducing this number of components.
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Figure 1.2: Let any datapoint x ∈ R, the data is transformed into 2-dimensional space by
mapping it to the function in red and blue. The function used here is f(x) = x4−x3+0.1x.
The black line shows a learned linear separator. The colour of the function shows the
prediction of the model for each point, as it is transformed to the high dimensional space.
We see that the function has a red section which has no red datapoints in it, and based
on the datapoints next to it, should probably be blue.

1.2 Objectives

The ultimate objective of this thesis is to develop a method that reduces complexity

using topological analysis of the high dimensional feature space, specifically addressing

the undesirable complexity shown in Figure 1.1 and Figure 1.2. This objective can be

split into smaller sub-objectives. The objectives of this thesis are:

• Measure the complexity of SVMs.

• Regularize SVMs through a novel method reducing the complexity.

• Show that the method has a positive effect in practice.

3



1.3 Thesis Outline

Following this introduction and objective statement I will introduce the requisite back-

ground knowledge in Section 2. The background can roughly be split into two parts: ma-

chine learning background, and mathematical background. The background introduces

all concepts required to understand the working of SVMs, and mathematical notions

used later for the novel regularization methods. In Section 3 I will describe two novel

regularization methods for SVMs, and define some measures that give some insight into

the performance of the methods. For both regularization methods I will first discuss the

intuition behind them, before describing the algorithms. In Section 4 I will outline the

setup of three experiments and show their results. Each of the exeriments are chosen

to show a specific use case for the methods. The first 2 experiments show a situation

designed to show the functioning of the methods in a simple environment. The third ex-

periment shows the methods working in a more realistic scenario. I interpret and discuss

the results of these experiments in Section 5. Here I will also identify the strengths and

weaknesses of my proposed methods and provide a conclusion that relates back to the

objectives of this thesis.

4



Chapter 2

Background

2.1 Classification Models

In this thesis I will be working with SVMs, which are a specific kind of classification

model. The goal of classification models, also known as classifiers, is to predict the class

a given input belongs to. An example of a classification task is determining whether a

given message is spam or not. In the case of a spam detector a message is a datapoint

which belongs to either the class ‘spam’ or the class ‘not spam’. The example shows a

binary classifier, that is: a classifier that predicts whether an input is either in class A

or class B. Classification tasks can be extended to have any number of possible classes.

Often a classifier approximates the probability that a datapoint x belongs to any of

the possible classes ci ∈ C of which the class with the highest probability is chosen:

predict(x) = argmax
c ∈ C

P (c | x),

where P (c | x) is the estimated probability of x belonging to class c. Relating back to

the example of the spam filter x is a vector of numerical values representing an message,

and C = {‘Spam’, ‘Not Spam’}.

2.1.1 Performance Measures

In order to determine the ‘goodness’ of a classifier we define performance measures. Con-

sider a binary classifier that predicts a given datapoint to be in either one of 2 classes,

5



lets call these classes the positive and negative class. Besides the prediction of the model,

each point also has a ground truth: the actual correct class. If a model correctly predicts

a datapoint to belong in the positive class we call that a True Positive (TP ), conversely

a correct negative prediction is called a True Negative (TN). When a model incorrectly

predicts a class to be positive while its true class is negative it is called a False Positive

(FP ), and conversely an incorrect negative prediction is called a False Negative (FN),

see table 2.1.

Prediction
Positive Negative

Truth
Positive True Positive False Negative
Negative False Positive True Negative

Table 2.1: Definitions of True–, and False Positives and Negatives

Let TP , TN , FP , and FN be the number of predictions belonging to each respective

case, such that TP equals the number of true positive predictions, and so forth. Using

these definitions we can define performance measures. A common, and intuitive, per-

formance measure is the accuracy score. Accuracy measures the percentage of correct

predictions of the model, thus:

Accuracy =
TP + TN

TP + TN + FP + FN
.

Since the accuracy score looks at the number correct predictions versus the number

of incorrect predictions, for any imbalanced datasets other performance measures might

be more fitting. For this thesis the datasets used will be balanced among classes, so I will

use accuracy as the performance measure.

2.1.2 Decision Boundaries

Let’s consider a dataset X which contains a set of datapoints x, each of which is a vector

of values, such that x = ⟨x1,x2, . . . , xn⟩,∀x ∈ X. We call x1,x2, . . . ,xn the features of

x.

The task of a classification model is to take in a feature vector x and output a

prediction as to what class it belongs to. Since x is a vector, we can view x as a point

in an n-dimensional space, where n is the cardinality of x. Therefore, the class predicted

by a classification model depends on the location of a datapoint in this feature space.

6



Assuming a classifier predicts more than 1 class, then intuitively there must be a subset

S of the feature space where all datapoints x ∈ S are classified as class 1, and another

subset S ′ of the input space where all datapoints x ∈ S ′ are classified as class -1. When

S and S ′ are adjacent in the input space the boundary between them is what we call the

decision boundary. That is; the space where an infinitesimal change in the feature vector

x changes the predicted class of x.

2.2 Training and Generalization

In order to use machine learning classifiers, they have to be trained on a dataset first.

Exactly how a classifier learns differs per choice of model and implementation, but there

are practices that apply to all cases. First we must define what makes a machine learning

model good. Since the goal of a model is to provide useful predictions on data we have

not yet seen, we cannot rely on a models ability to accurately predict on training data.

Instead we need a measure of how well a model predicts unseen data. For this purpose

we use 3 datasets during the training and testing phase: a training set Xtrain, validation

set Xval, and test set Xtest such that

Xtrain ∩Xval = Xtrain ∩Xtest = Xval ∩Xtest = ∅.

Xtrain is intuitively used to train the model. During training we can check how well a

model performs on other data by testing them using Xval. Based on the performance we

can chose to continue training, tune hyper-parameters, or decide the model is finished.

This means that we are optimizing a model to perform well on Xval, so to truly measure

its performance on unseen data the final model can be tested using Xtest.

A model is said to generalize well when it can predict unseen data well. In order

to get a model that does generalize well it has to learn useful patterns from the Xtrain,

without overly focusing on noise patterns that may exist in Xtrain. Models that learn the

specifics of Xtrain too much, such that its ability to generalize is poor is said to overfit.

Conversely, a model that does not learn enough patterns from the training dataset is said

to be underfitting. Figure 2.1 gives a visual intuition on over– and underfitting. This

shows that there is an important balance to be found when training a model, such that

it finds the overarching patterns without learning patterns specific to Xtrain only.
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(a) (b)

(c)

Figure 2.1: As data can be noisy machine learning models have to balance how precise
they fit to patterns in training data. The colour and shape of the datapoints indicate
what class they belong to according, and the red and blue areas of the space show the
prediction of the model for data in those areas. Assume Figure (c) shows the true
underlying pattern, then model (a) overfits to the training data by learning to include
noise, and model (b) underfits by ignoring too much data such that it doesn’t find the
underlying pattern.

2.3 Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models that can be used for

binary or multi-class classification problems [3, 7]. From here on we will consider binary

classification SVMs, without explicitly specifying further on.

SVMs work by finding a way to separate data into classes as best as possible using a

linear decision boundary (a line, plane, or other n-dimensional hyperplane). Let wTX +

b = 0 describe the hyperplane defining the decision boundary, where w is the normal

vector of the hyperplane and b its bias. The classification of any datapoint x is then

determined by the sign of wTx + b. We can see that this is similar to calculating the

8



Figure 2.2: Consider the following example of a SVM. The black line indicates the optimal
linear separator that maximizes the margin, as visualized by the blue and red lines. The
points encircled in black are the support vectors. Note how these support vectors define
the linear separator.

distance of a point x to a hyperplane, which is given by

wTx+ b

||w||
.

The only difference is the scaling factor 1
||w|| which normalizes the length of w. We can

see that this scaling is irrelevant to the problem, as we only care about which side of the

hyperplane the datapoint x is, not the exact distance.

Generally we consider a decision boundary of SVMs optimal if the margin between

the closest datapoints and the linear decision boundary is the largest [3]. This margin is

the minimum distance between any of the datapoints and the hyperplane. These closest

points that determine the margin are known as support vectors, as visualized in figure

2.2.

In the case of linear SVM s we consider the input space to be the feature space, and

therefore find the hyperplane optimally separating the data in this input space.

2.3.1 SVM Kernels

Often data is not linearly separable. In these cases SVMs make use of mapping functions

ϕ. A mapping function ϕ maps a datapoint x from the original space Rn to a higher

dimensional space Rm such that ϕ(x) = Rn → Rm, where n is the amount of input
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space dimensions and m the amount of dimensions of the feature space. Let ϕ(x) =

⟨f1(x), f2(x), . . . , fn(x)⟩ then the functions f1, f2, . . . , fn are called basis functions of ϕ.

A common type of basis function are polynomial functions. Using polynomial basis

functions we map data to a new space generating some polynomial hypersurface. The

goal of this mapping is to transform data in such a way that it can be linearly separated

in this new higher dimensional feature space. Figure 2.3 shows an example of an SVM

classifier mapping 1-dimensional data to a 2-dimensional space.

Figure 2.3: Consider the 1-dimensional dataset as shown in the first plot, where all
points either belong to the red or blue class as indicated by their colour in the plot. Let
ϕ(x) = ⟨x, 0.05(x − 4.5)2⟩. In the right plot we see the data mapped into this feature
space, with the grey dashed line visualizing the curve created by ϕ(x) | x ∈ R. Now the
data is linearly separable in the feature space, for example by the yellow line which is the
separator which maximizes the margin.

We can compute the high dimensional relations of transformed feature vectors with

kernel functions without having to explicitly calculate the transformation ϕ(x) by using

the Kernel Trick, as first shown by M.A. Aizerman, E.A. Braveman, and L. Rozonoer [1].

A kernel function K(x,y) calculates the dot product of x and y in the high dimensional

feature space such that K(x,y) = ϕ(x) · ϕ(y).

There are several types of kernel functions that are often used with SVMs. Some of

the commonly used ones are:

• Linear Kernel (K(x,y) = x · y):
The linear kernel is used in linear SVMs. It represents the standard dot product of

x and y in the input space. So when using the linear kernel the input space is the

feature space.

• Polynomial Kernel (K(x,y) = (x · y + c)d):

The polynomial kernel calculates a relation between x and y in a higher dimensional

space. The amount of dimensions is determined by the amount of dimensions of

10



the input space and the degree set by the parameter d. The parameter c is tunable

setting the relative influence of higher-order terms versus lower-order terms of the

polynomial.

We can find the ϕ that is generated by a polynomial kernel by simply expanding

the kernel function. Consider the following example: let K(x,y) be a polynomial

kernel of degree d = 3 with c = 1, and x = ⟨x1,x2⟩, y = ⟨y1,y2⟩ such that

x ∈ R2 and y ∈ R2. In order to find the mapping generated by K we can work out

K(x,y) = (x · y + c)d for x and y.

K(x,y) = (x · y + 1)3

=

(
2∑

i=1

xiyi + 1

)3

=(x1y1 + x2y2 + 1)3

⇓ Apply multinomial theorem

= (x1y1)
3 + (x2y2)

3 + (1)3 + 3 (x1y1)
2 (x2y2)

+ 3 (x1y1)
2 (1) + 3 (x2y2)

2 (x1y1) + 3 (x2y2)
2 (1)

+ 3(1)2 (x1y1) + 3(1)2 (x2y2) + 6 (x1y2) (x2y2) (1)

=1 + (x3
1)(y

3
1) + (x3

2)(y
3
2) + (

√
3x2

1x2)(
√
3y2

1y2)

+ (
√
3x2

1)(
√
3y2

1) + (
√
3x1x

2
2)(

√
3y1y

2
2) + (

√
3x2

2)(
√
3y2

2)

+ (
√
3x1)(

√
3y1) + (

√
3x2)(

√
3y2) + (

√
6x1x2)(

√
6y1y2).

We know that K(x,y) = ϕ(x) ·ϕ(y), and note how the expansion of K(x,y) looks

like the result of a dot product of 2 vectors. So it follows that

ϕ(x) = ⟨1,x3
1,x

3
2,
√
3x2

1x2,
√
3x1x

2
2,
√
3x2

1,
√
3x2

2,
√
3x1,

√
3x2,

√
6x1x2⟩,

for the polynomial kernel with c = 0, d = 3, and n = 2 such that x ∈ Rn. While

it is possible to define kernels that only add a single dimension to the input data,

often many new dimensions are created like in this example. The ϕ we just found

maps data from R2 to R10. Note however how the polynomial kernel creates one

dimension in which all points are mapped to some constant value. Consequently

this dimension does not help in creating linear separability and can be ignored.

• The Radial Basis Function (RBF) Kernel (K(x,y) = e−γ||x−y||2):

The RBF kernel takes the idea of mapping input data to higher dimensions to its

logical extreme: by definition of e the RBF kernel calculates the relation between

x and y in infinite dimensions. γ is a tunable parameter that controls the spread

11



of the kernel. A kernel with a high γ value is more likely to overfit and vice versa.

To see how the RBF kernel generates a ϕ of infinite dimensions consider the following

example: let K(x,y) be an RBF kernel, with γ = 1, x ∈ R, and y ∈ R for

simplicity. Expanding this kernel gives us:

K(x,y) = e−||x−y||2

= e−||x||2 · e−||y||2 · e2x·y

⇓ Taylor expansion of the last e

= e−||x||2 · e−||y||2
∞∑
n=0

(2x · y)n

n!
.

Note how e−||x||2 and e−||y||2 simply act as some scalar value. This creates a ϕ =

e−||x||2⟨e1(x), e2(x), . . . , e∞(x)⟩, with en(x) =
√

2n

n!
xn [18]. Following this definition

we can see that this ϕ maps data from R to R∞. I will show a more general form

of this feature mapping in section 2.4.1

• The Sigmoid Kernel (K(x,y) = tanh(x · y + c)):

The sigmoid kernel, using a trick similar to the RBF kernel, also computes a relation

between x and y in an infinite dimensional feature space.

2.3.2 Optimization

If the data in the feature space is linearly separable we can optimize an SVM with a hard

margin, finding a linear separator such that no datapoint is misclassified. Let w be the

normal vector of the decision boundary hyperplane and b its bias, such that wTX+b = 0

describes the hyperplane. Let the possible classes C = {−1, 1}. Let yi ∈ C be the class

label of a datapoint xi, then the hard margin constraint can be defined as wTxi + b ≥ 1

for any datapoint xi ∈ {xi| ∀ (xi, yi) ∈ X, yi = 1}, and wTxi + b ≤ −1 for any datapoint

xi ∈ {xi| ∀ (xi, yi) ∈ X, yi = −1}. We can further generalize this to yi(w
Txi + b) ≥ 1,

where yi ∈ {−1, 1} is the class label for xi.

The goal of the optimization is to find a hyperplane such that the margin is maximized.

We can define the margin with 2 hyperplanes parallel to the separator hyperplane as

shown in Figure 2.4.
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Figure 2.4: The margin of a linear separator is defined by the closest datapoints. Here
the black line shows the linear separator, and the blue – and red line visualize the margin
of the separator.

Using the formula for calculating the distance between a point and a line we see that

the distance between any point on wTx + b = 1 to the line wTx + b = 0 is 1
||w|| . This

means the total distance between the 2 lines of the margin is 2
||w|| . With this we can define

the optimization goal as maxw,b
2

||w|| or alternatively minw,b
||w||
2
. In order to simplify for

derivation later we square the ||w|| term. Which results in the final optimization goal

being:

min
w,b

1

2
||w||2,

s.t. yi(w
Txi + b) ≥ 1 for i ∈ {1, 2, . . . , n}.

We can solve this optimization problem using Lagrange multipliers α as follows:

L(w, b, α) =
1

2
||w||2 −

n∑
i=1

αi

[
yi
(
wTxi + b

)
− 1
]
.

Using the derivatives of the Lagrange function w.r.t. w and b we can find conditions for

the global minimum.

∇wL(w, b, α) = 0

∇bL(w, b, α) = 0

13



Solving these equations gives us the following conditions:

w =
n∑

i=1

αiyixi,

n∑
i=1

αiyi = 0.

Substituting in these conditions we can then finally define the dual of the SVM opti-

mization problem as

max
α

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi,

s.t.
n∑

i=1

αiyi = 0.

This dual is relatively easy to solve, as it only requires optimization of the Lagrange

multipliers α instead of both w and b.

In cases where the data can not be linearly separated in the feature space, or if we

want to allow for some misclassification with the goal of improving generalization of the

model, we use the soft margin optimization goal. The idea is that the soft margin allows

for some misclassification when optimizing its linear separator and margin. To achieve

this the hard margin goal is extended as:

min
w,b

1

2
||w||2 + C

n∑
i=1

ζi,

s.t. yi(w
Txi + b) ≥ 1− ζi for i ∈ {1, 2, . . . , n}.

Here ζi is a measure of how far the i-th datapoint is on the wrong side of its corresponding

margin and C is a parameter that determines the importance of ζi. A C with a high

value puts more importance on correct classification, and might push a model towards

overfitting, and vice versa. Figure 2.5 shows a visual intuition for the ζi term.
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Figure 2.5: ζi describes the distance from a datapoint on the wrong side of its margin to
the margin. Here the grey line indicates the linear separator and the blue – and red line
visualize the margin of the separator.

Tackling this optimization problem as shown with the hard margin constraint be-

fore gives us a slightly different dual problem, adding an upper bound to the Lagrange

multipliers.

max
α

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi,

s.t.
n∑

i=1

αiyi = 0, 0 ≤ αi ≤ C.

The Lagrange multipliers αi define how much importance a datapoint xi has on the

definition of the linear separator.

2.4 RBF kernel approximation

In section 2.3.1 I show how the RBF kernel function generates a ϕ that maps R → R∞

for a 1-dimensional input space. I will show an expansion of the definition of ϕ such that

it works for any n-dimensional input space, and a method to approximate such mappings

with a finite dimensional feature space. As this infinite dimensional space can be difficult

or expensive to work with, some might want to approximate the feature space of the

RBF kernel with some finite dimensional space. While these approximate feature spaces

are mostly used for efficient predictions, they are necessary later in this thesis as some

methods rely on finite dimensional feature spaces.

In literature there are several approaches to tackle this problem. In their paper Hui

Cao, Takashi Naito, and Yoshiki Ninomiya [4] show and use a polynomial approximation
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of the RBF kernel function, and show similar performance of these approximate models

as compared to exact RBF models for their specifc usecase.

Alternatively, M. Ring and B.M. Eskofier [17] propose an approximation of the RBF

kernel which truncates the number of feature space dimensions. The paper details the

relative error of the truncated ϕQ against the original mapping ϕ, and show that decision

boundaries can be very accurately estimated following this approach. In this section I

will outline this method, as this is the approximation method I will be using later.

2.4.1 RBF feature space

We know that the ϕ generated by the RBF kernel function can be written as ϕ =

e−||x||2⟨e1(x), e2(x), . . . , e∞(x)⟩ for 1-dimensional data and γ = 1. In the case of higher

dimensional input spaces we first need to introduce the multi-index ni = (n1, n2, . . . , nD)

with D = |x| such that ni ∈ ND
0 . Note that a bold ni refers to a multi-index, and a

regular ni refers to an element of a multi-index. We then define eni
(x) as the tensor

product eni
(x) = en1(x1)⊗ en2(x2)⊗ · · · ⊗ enD

(xD) with D = |x|. As all eni
(x) ∈ R the

tensor product is equivalent to a simple scalar product of the functions.

We can rewrite the RBF kernel as follows:

K(x,y) = e−γ||x−y||2 = e−||x||2 · e−||y||2
∑

ni∈ND
0

eni
(x)eni

(y),

where n ∈ ND
0 = (n1, n2, . . . , nD) with D equal to the number of input space dimensions.

From the definition of eni
(xi) =

√
(2γ)n

ni!
xni
i , we write the general form for the multi-index

as

eni
(x) =

√
(2γ)n1+n2+···+nD

n1!n2! . . . nD!
xn1
1 xn2

1 . . . xnD
D .

We know that a kernel function can be written as an inner product of mapping functions:

K(x,y) = ϕ(x) · ϕ(y). Given the general eni
(xi) we can define a ϕ for the RBF kernel,

generalized for any number of input dimensions, as ϕ(x) = e−γ||x||2⟨en1(x), en2(x), . . . ⟩
for all n ∈ ND

0 .

From this definition we can define the approximate finite dimensional feature space

using a mapping function ϕQ(x) = e−γ||x||2⟨en1(x), en2(x), . . . ⟩ for all ni ∈ ND
0 where
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ni ≤ Q ∀ ni ∈ ni. Note how this feature map is a truncated version of the infinite

dimensional feature map ϕ. The hyper-parameter Q decides the number of dimensions of

ϕ, and is called the Quality hyper-parameter. More precisely the number of dimensions

of ϕQ grows exponentially with respect to D such that the number of dimensions equals

(Q+ 1)D 1.

Figure 2.6 shows how Q determines how well the approximation matches the exact

RBF kernel. We see that a higher Q allows for a more accurate classifier. A formal prove

of this claim can be found in the original paper [17].

Figure 2.6: Plots of 3 SVMs, one using the RBF kernel, two using the approximate RBF
kernel with Q=5 and Q=6 respectively. We see that the approximate decision boundary
gets closer to the RBF decision boundary as the quality parameter Q increases.

1Note that the original paper [17] states a dimensionality of QD, this seems to be a mistake as there
are Q+ 1 numbers which satisfy n ≤ Q | n ∈ N0.

17



2.5 Morse Theory

Morse theory, referring to M. Morse’s work [14], provides tools that will prove useful

when optimizing topological complexity of SVMs. Morse theory provides theorems that

show that a levelset homology of a Morse function only changes at specific point of a

function, called critical points.

Critical points of a function f are defined as all points of f for which all partial

derivatives of f are 0, meaning the slope at a critical point is flat. There are 3 types of

critical points: maxima, minima, and saddle points. In order to determine the type of a

critical point we use the Hessian matrix of f . A Hessian matrix is a matrix of all second

order partial derivatives of f :

Hf (x) =



∂2f
∂2x1

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xn

(x)

∂2f
∂x2∂x1

(x) ∂2f
∂2x2

(x) · · · ∂2f
∂x2∂xn

(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) · · · ∂2f
∂2xn

(x)


.

The Hessian matrix of f gives us the change in slope of f . Using this we can determine

for each critical point whether it is a minimum, maximum, or saddle. Let’s consider a

critical point x:

• The eigenvalues of Hf (x) are all positive, then x is a minimum of f .

• The eigenvalues of Hf (x) are all negative, then x is a maximum of f .

• The eigenvalues of Hf (x) contains a combination of positive and negative values,

then x is a saddle point of f .

We can further use the Hessian Matrix to determine whether some function f is a

Morse function: f is a Morse function if and only if all critical points of f are non-

degenerate. A critical point x is degenerate if the determinant of Hf (x) equals 0 [14].

For Morse functions every critical point x comes with an index i which indicates the

number of linearly independent directions the gradient is decreasing in x. Note that since

we work with Morse functions there are no degenerate critical points. Formally, we define

the index of a critical point x to be the number of negative eigenvalues of Hf (x). So it

follows that:
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• A minimum is a point where the gradient increases in all directions, so the index

of a minimum is 0.

• A maximum is a point where the gradient decreases in all directions, so the index

of a maximum is n where n is the number of variables in f .

• A saddle point is a point where the gradient increases in at least one direction and

decreases in at least one other direction, so the index of a saddle is between 1 and

n− 1. It follows that for functions with > 3 dimensions there can be saddle points

with different indices.

An important notion in topology are Betti numbers : β, as introduced by H. Poincaré

[15] (work translated into English by John Stillwell [19]). Specifically, the n-th Betti

number βn of a topological space represents the amount of unique n-dimensional holes

in that space. Foregoing a more rigorous formal definition of Betti numbers, for the

purposes of this thesis it is important to know that β0 indicates the number of connected

components of a topological space. The topological spaces we consider in this thesis are

the n-dimensional R spaces Rn, and undirected graphs.

With these definitions we can connect Morse Theory to topology by introducing Morse

inequalities [14]: Consider a Morse function f , and let mi denote the count of critical

points with index i. Furthermore, let βi represent the i-th Betti number. The Morse

inequalities are then defined as follows:

m0 ≥ β0

m1 −m0 ≥ β1 − β0

...

md −md−1 + · · · ±m0 ≥ βd − βd−1 + · · · ± β0

These critical points and their indices relate to topology in a specific way. Imagine a

flat plane starting at ∞ moving down, and we look at β0 of the part of a Morse function

f above the plane. We call this the superlevelset homology of f . Morse theory state

that this β0 can only change whenever the plane passes a critical point [12]. Figure 2.7

provides some visual intuition for this claim. For a more formal definition let a, b ∈ R
such that a > b and let Ma = {x|f(x) ≥ a} be a superlevel set of f , then Ma

b = Ma−M b

such that it is the level set in the range [b, a ). It follows that if the Betti numbers of Ma

differ from those of M b then we know that Ma
b contains a critical point. And conversely,

the Betti numbers of Ma will only be different to those of M b if and only if Ma
b contains

a critical point.
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(a) (b)

(c) (d)

Figure 2.7: Maxima indicated by red dots, and minima by blue dots. We can see how
superlevelset homology only changes once the lower bound passes a critical point. (a)
shows a β0 of 0 before passing through the highest maximum, and a β0 = 1 after passing
the first maximum up until reaching the second maximum (b). With the lower bound
between the second maximum and minimum we observe β0 = 2 (c), and finally with a
lower bound below the minimum we see a final change in topology such that β0 = 1 (d).

2.6 Delaunay Graphs

Finally I will introduce Delaunay graphs, named after the B. Delaunay’s paper [8], as

they will help approximate topological complexity later in the methods section. Delaunay

graphs, or Delaunay triangulations, are a specific type of graphs that can be generated

for any set of points for which a distance between them can be determined, creating a

triangulation with the given points as vertices. While there are other definitions, arguably

the most useful way for this thesis is to define a Delaunay graph as the dual graph of a

Voronoi diagram.

A Voronoi diagram, given some set of points X = {x1,x2, . . . ,xn} and a space S,
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slices S into regions such that each xi ∈ X has a corresponding region Ri where for any

s ∈ S xi is the closest point in X. So formally we can describe Ri, given some distance

function d(), as:

Ri = {s ∈ S | d(si,xj) ≤ d(si,xk) ∀ xj,xk ∈ X}.

We call Ri a Voronoi cell. Figure 2.8 shows an example of such a Voronoi diagram.

Note that, although figure shows a 2 dimensional space, this definition generalizes to any

n-dimensional space.

Figure 2.8: For a set of points X, illustrated with black dots, in a 2 dimensional space S
considering the Euclidian distance, we can create a Voronoi diagram. Each Voronoi Cell
Ri, indicated by the differently coloured areas, is the region of S where all points in Ri

are closest to xi ∈ X.

If we now consider all points in X to be vertices of a graph, and create an edge

between all xi,xj ∈ X where their respective Voronoi cells touch we get the Delaunay

graph. Figure 2.9 shows how this is equivalent to the dual graph of the Voronoi diagram.

As discussed these definitions generalize to any n-dimensional space. While the num-

ber of regions of a Delaunay graph is known to scale linearly with the number of points in

2-dimensional spaces, for higher dimensional spaces this scaling does not necessarily hold

anymore. C. Duménil shows that an approximation of this complexity in 3-dimensional

spaces is O(n ln n) [9], but this remains an approximation.
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Figure 2.9: Given a Voronoi diagram connecting the points in X when their cells touch
creates the dual graph of the diagram, the Delaunay graph of X. The points of X are
shown in black. The boundaries of the Voronoi cells are indicated by blue edges, places
where more than 2 cells meet are indicated with a blue vertex. The Delaunay graph is
shown with red edges and vertices in the right plot.

2.7 Related work

2.7.1 Topological Regularization

While it seems there are no works yet into the exact topic of topological regularization

of SVMs, there have been works that incorporate topology in the optimization of other

machine learning models.

A paper by C.Chen, X. Ni, Q. Bai, and Y. Wang [5] proposes a novel topological

regularization method that aims to punish the topological complexity of the decision

boundary, similar to the goal of this paper with the caveat being their focus on neural

networks. Their paper not only finds a way to measure topological complexity of the

decision boundary for a neural network, but also shows they can find a gradient for this

complexity measure. The significance of this is that the existence of this gradient means

that the the topological complexity can be added to the loss function for neural networks,

such that it topology will be optimized during the learning phase. Unfortunately the

paper does not compare results of their method against a baseline neural network, but

they do show increased performance over other machine learning methods.

A regularization method using topology for Convolutional Neural Networks (CNN)

is proposed by J.R. Clough, N. Byrne, I. Oksuz, V.A. Zimmer, J.A. Schnabel, and A.P.

King [6]. This method does not consider the topology of decision boundaries, but rather
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segmentation topology of images. First the paper outlines how persistent homology of an

image can be determined in a meaningful way using a filtration method based on pixel

values. Then the paper continues to describe a loss function which penalizes differences

in the persistent homology between the input data and encoded data. This function is

derivable, meaning the neural network can be optimized following the standard gradient

descent algorithm.

2.7.2 Topology of Decision Boundaries

A paper by M. Masden et al. [13] shows how exact decision boundaries can be constructed

for fully connected neural networks using the ReLU activation function. Consequently

some topological analysis is possible on these decision boundaries such as identifying its

Betti numbers, as shown in their paper. While their approach is specific to RelU Neural

networks, it does illustrate how decision boundaries can sometimes be exactly constructed

using algebraic analysis.

Work by K.R. Varsney and K.N. Ramamurthy [21], in a paper proceeding their work

on the labeled Čech complex [16] (discussed later), introduces a novel way to find persis-

tent homology of a decision boundary. The proposed method tackles a similar problem to

this thesis, in a reverse manner. Whereas I aim to improve topology of decision bound-

aries post hoc, their paper determines topology of decision boundaries beforehand and

use that information to help in Kernel function selection and tuning.

2.7.3 Finding Decision Boundaries

Often decision boundaries are not easily extracted from machine learning models as they

emerge from complex functions instead of being strictly defined. There are previous works

that tackle the problem of finding the decision boundaries in various ways. Research

in this area seems to be mainly focused on neural networks, with little works found

attempting to construct the decision boundary exploiting the properties of SVMs.

In many cases decision boundaries are not exactly constructed, but rather estimated

through sampling the input space. H.Kamari and J. Tang [11] propose a method that

aims to optimize and refine this sampling of the decision boundary using a method dubbed

DeepDIG:Deep Decision boundary InstanceGeneration. As the name implies DeepDIG

generates samples that help estimate the shape of decision boundaries for deep neural
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networks. Samples are generated through autoencoder based methods such that the

samples are misclassified by the model, these are called adversarial samples. DeepDig then

refines these adversarial samples to move them closer to the decision boundary, while still

being misclassified. Now these samples can be used to approximate the decision boundary,

as they are known to be close to it. Their presented results show high accuracy in the

estimation of the decision boundaries over a number of different models and datasets

(MNIST, FashionMNIST, and CIFAR10).

Through an added restriction on the Čech complex [10, p. 72–75] K.N. Ramamurthy,

K.R. Varshney, and K. Mody [16] introduce the labeled Čech complex. This labeled

Čech complex specifies a class ca ∈ {−1, 1} for any 0-simplex a in the complex. Then 1-

simplices are only generated between 2 0-simplices a, b if ca ̸= cb. The 0-simplices are the

datapoints used to train a machine learning model, and the class of a 0-simplex is simply

the class of its corresponding datapoint. The paper illustrates how this labeled Čech

complex can be used to approximate the topological complexity of a decision boundary.

This method is purely dependent on datapoints and their predicted labels. Consequently,

this sampling method can be used for any binary classification model.
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Chapter 3

Methods

In this section I will show the necessary steps and algorithms to both quantify the com-

plexity of the decision boundary, and attempt to optimize it. It is important to note that

the optimization relies on kernels have a mapping ϕ that has a feature space of finite di-

mensions. From this point on ϕ is assumed to meet this criterion, unless stated otherwise.

This means that the following approach will not work for the exact RBF – and Sigmoid

kernel function (2.3.1). The methods are implemented in Matlab, the source code can be

found on GitHub at https://github.com/WillemSch/Topological-Regularization-

SVM.

3.1 Quantify Complexity of Decision Boundary

Since the objective is to decrease complexity of the decision boundary, first I define a

measure of this complexity. Let the complexity of a decision boundary be the 0th Betti

number β0 of the input space when cut by the decision boundary (see Figure 3.1). For

SVMs this is equivalent to the number of components of the hypersurface generated by

ϕ in the feature space when cut by the linear separator, assuming the mapping function

ϕ is continuous.

One logical direction to explore is that of topology of algebraic varieties, the in-

tersection of multiple polynomial functions. This is because ϕ can consist of polynomial

functions, and a hyperplane can be described using a degree 0 polynomial this could prove

to be a valuable tool. Unfortunately methods in this area seem to provide only approxi-

mations or bounds on the Betti numbers of such varieties [2, 20]. Many of these methods
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Figure 3.1: A decision boundary cuts the input space into separate components. In this
example we see how the decision boundary cuts the input space into 5 components: 1
blue component, and 4 red components.

only consider the degrees of the polynomials when determining the approximations. Such

approximations would be pointless for my purposes as I aim to analyse changes in β0 by

moving the linear separator, thus not changing degrees of the polynomials generating the

intersection.

So, alternatively, in this thesis I determine β0 through an approximation by sampling

the input space. First I create a n-dimensional grid G = (V,E) in the input space, where

n equals the number of input space dimensions, V are the vertices of the grid, and E the

edges connecting adjacent vertices. This gives us a discretized approximation of the input

space. To create such a graph I create an empty graph and add vertices one at a time

in order of their indices of each dimension, going through all dimensions in an arbitrary

order. When a vertex is added to the graph I create edges between the new vertex and

vertices whose indices are 1 lower in exactly 1 dimension. Repeat until all vertices are

added to the graph. Second I remove all (v1,v2) ∈ E where predict(v1) ̸= predict(v2)

where predict(vi) is the predicted class of vi. This is equivalent to removing edges

in between vertices which are on different sides of the linear separator in the feature

space. Finally we count the amount of connected components of G which gives us an

approximation of β0. Note that the accuracy of the approximation is dependant on the

resolution of the grid, which in turn determines computation time.

As the number of vertices of the grid graph grows exponentially with respect to the

number of dimensions, it can quickly become impracticable to use. An alternative to grid

sampling in higher dimensional spaces is random sampling. Random sampling lets the

user decide exactly how many samples will be considered when approximating the input

26



space, and with that control the computation time. As we are interested in connected

components in the sliced input space we need to connect the random samples into a graph,

similar to the grid graph. For this I create a Delaunay graph (2.6) from the random

samples. This Delaunay graph is then a randomly sampled discrete approximation of the

input space.

To count the number of connected components in G we perform a Depth First Search

(DFS) on a vertex in the graph. Each vertex we visit during DFS will be labeled as such.

If after the DFS there still are unvisited vertices then we start a new DFS on one of

them, repeating until all vertices are found. For each DFS we increment the counter of

connected components by one.

3.2 Finding the Feature Space Separator

As a result of how SVMs function I cannot immediately extract the learned linear separa-

tor of the feature space. It is, however, possible to reconstruct the hyperplane given that

the ϕ maps to a finite dimensional feature space. In order to construct this hyperplane

I need both the normal vector w and the bias b term such that the hyperplane can be

described as wTx + b = 0. The bias b is already computed for the SVM and can be

easily extracted. The normal vector w needs to be constructed from the support vectors

and corresponding α-values obtained during the Lagrange optimization [7] (2.3.2). The

weights w can then be found using:

w = XαY,

st. X = {ϕ(x) ∀ x ∈ Support Vectors}.

Here α and Y are the alpha values and labels respectively corresponding to the support

vectors ∈ Support Vectors, and ϕ is the mapping function generated by the kernel. As

here we rely on a finite dimensional feature space, in the case of RBF kernels we substitute

in the approximate ϕQ (2.4.1).

3.3 Locating Critical Points

Recall that a point is a critical point if and only if all partial derivatives are zero (2.5)

for that point, in other words: the tangent hyperplane is parallel to the coordinate hy-

perplane. Consequently, a point on a vector valued function ϕ is a critical point if the
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derivative vector is perpendicular to the normal vector of the coordinate hyperplane.

Consider the special case where the linear separator is parallel to the coordinate hyper-

plane. Then moving it along its normal vector w will provide the useful constraint that

the superlevelset homology only changes at the critical points of ϕ (2.5).

If the linear separator is not parallel to the coordinate hyperplane we can use almost

the same approach to determine the superlevelset homology. To do this we consider the

normal vector of the linear separator w as the ‘up’ direction, instead of the normal vector

to the coordinate hyperplane. In this case we will consider a point a critical point if and

only if the derivative vector is perpendicular to w. This is analogous to rotating both

ϕ and the linear separator among the origin such that the direction of w is equal to the

direction of the normal vector of the coordinate hyperplane. This means that we don’t

have to perform these rotations to find the distance from the linear separator to any

critical points of ϕ with respect to the separator.

So in order to find the critical points of ϕ with respect to some normal vector I first

compute all partial derivatives ∂ϕ
∂x

of ϕ for all x ∈ input space dimensions. When working

with an RBF kernel the approximate ϕQ is used here (2.4.1). Then I create the equations

w · ∂ϕ
∂x

= 0 for all partial derivatives. I find the solutions that hold for all the equations,

which give us the critical points in the input space. Finally I obtain the feature space

coordinates by mapping the critical points to the feature space using the ϕ mapping.

3.4 Method 1: Parallel Transformation of the Linear

Separator (PTLS)

3.4.1 Algorithm

One way to change the complexity of the decision boundary is to move the linear separator

such that it intersects critical points of the mapping function ϕ. Recall that the distance

from a point x to a hyperplane wTX + b = 0 is calculated by wTx+b
||w|| . Using this formula

I determine the required bias term bx such that the hyperplane intersects a given point

x by solving the equation

wTx+ bx
||w||

= 0.
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Solving the equation for bx, gives:

bx = −wTx.

Substituting in the new bias term bx in the equation for the linear separator we have

effectively moved it to intersect the given point x, without rotating the hyperplane. In

order to also remove the critical point from the decision boundary, and to allow for

floating point precision errors I move the bias by an extra epsilon value in the distance it

is moved, such that bx = bx+ ϵ sign(bx−B) where B is the original bias of the SVM and

ϵ is an arbitrarily chosen small value. I find the bias bx for each critical point x using the

method described in section 3.3.

Note how the methods do not compute or check the Hessian matrices for the critical

points and therefore cannot determine whether they are degenerate or not. Section 2.5

shows how the Morse inequalities only apply to Morse functions, which require that

all critical points are non-degenerate. This is however not an issue for my methods.

Degenerate critical points with respect to some hyperplane, by their nature, only exist

when the hyperplane is at some exact angle. Any infinitesimal deviation from this angle

degenerates the critical point into 0, or into several other critical points. For this reason,

encountering a degenerate critical point is rare. Furthermore, even if there is a degenerate

critical point, the claim that superlevelset homology only changes at critical points still

holds. That is; the presence of a degenerate critical point does not make it possible for

superlevelset homology to change at any levels that do not intersect a critical point.

3.4.2 Performance Measures

Finally I substitute in the biases as found through the method described before into

the SVM. We can then measure the accuracy of the SVM again to check for change.

Furthermore we can extract some more measures which can provide insight such as the

β0 of the decision boundary and the distance measure which tells us the distance the

linear separator is moved in terms of the size of the margin Dm. Let m be the margin

and d be the distance we moved the linear separator among its normal vector then the

distance measure Dm = |d|
m
. The distance measure Dm provides some intuition of how

extreme the movement of the linear separator is without relying on the scale of the data.
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3.5 Method 2: Artificial Addition of Critical Points

(AACP)

The PTLS method described in the section before moves the linear separator along its

normal vector, such that some critical points are in– or excluded in the superlevelset

generated by ϕ and the hyperplane of the separator. Here I will describe a second method,

the AACP method, that instead of parallel transformations of the hyperplane can also

introduce rotational transformations. We achieve this by adding a datapoint at a critical

point of ϕ with respect to the linear separator. Then I fit a new SVM on this extended

dataset. Through the Lagrange optimization we find a new optimal separator, which is

not necessarily equivalent to a parallel transformation of the hyperplane.

Recall that SVMs have a parameter C that defines the importance of datapoints being

inside their respective margin during fitting (2.3.2). In order for this optimization to work

as you might intuit the SVM must have a sufficient high C, such that it does not allow

the newly introduced datapoint to be misclassified. More specifically, the SVM must not

be allowed to misclassify the newly added datapoint. With this in mind we can rewrite

the SVM optimization goal as

min
w,b

1

2
||w||2 +

n∑
i=1

Ciζi.

Here the general scalar C is changed to a collection of specific C values specific to each

datapoint, such that Ci is the specific C value corresponding to i-th datapoint. As a

result, this approach is limited to hard margin models, or models with a high general –

or specific C value. For later experiments I will use the scalar C version, because SVM

implementations commonly do not allow for a collection of specific C values.

3.5.1 Algorithm

First I find the critical points with respect to the linear separator in the feature space.

I do this using the methods as described in sections 3.2 and 3.3. Then I add one of

the critical points to the dataset with the opposite label than the originally predicted

label. This is because I want the critical point to now be moved to the other side of

the hyperplane slicing the feature space, similar to the PTLS method. After I added the

critical point I fit a new SVM, which will calculate a new optimal hyperplane to separate

the feature space, considering this newly created datapoint.
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3.5.2 Performance Measures

To measure the results of the AACP method we again approximate β0 of the newly fitted

SVM. Furthermore, I measure the accuracy of the SVM in the same way as in method

1. The distance measure Dm as used for method 1 does not work for this method. This

is because the linear separator is no longer simply moved, but found again through the

Lagrange optimization of the SVM problem. Therefore I do not consider any distance

measure like Dm.

3.6 Model Selection

Both the PTLS– and AACP method generate a new model for each critical point found

in the feature space and the baseline unaltered model, making it so we have to decide

which model is best. As the goal is topological regularization one method that at a

glance makes sense is defining some loss function that weighs accuracy and topological

loss. Such a loss function would look like

L = Laccuracy + α Ltopology,

With Laccuracy = 1−accuracy, Ltopology = β0, and α some weighting hyperparameter spec-

ifying the importance of penalizing topological complexity versus optimizing accuracy.

The problem with this approach is easiest shown with an example: Let Ma,Mb,Mc be

models created during the regularization, Ma,Mb,Mc all have some Laccuracy and Ltopology.

The plot in figure 3.2 shows that L, given Laccuracy and Ltopology is a linear function with

respect to α. Moreover we see that the best model changes at discrete values of α, so if

you were to sample α values between these discrete points nothing will change in your

final model. This makes α quite a poor hyperparameter to be optimized.

This leaves us with a simple alternative approach for selecting the best model by

picking the model with best accuracy on a validation dataset. Formally this means that

L = Laccuracy. This approach does in practice deviate from convention. Following this

approach you obtain a set of models after training of topologically regularized SVMs,

which have to go through this model selection step before the ultimate model is found.

This is in contrast to conventional methods, where you obtain one single model after

training.
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Figure 3.2: With the total loss L plotted as a function of the scaling factor α we see that
the best model is constant throughout certain intervals of α, and each model will only be
the best during at most one of these intervals. Here the (Laccuracy, Ltopology) are (0.9, 3)
for Ma, (0.81, 5) for Mb, and (0.5, 7) for Mc.



Chapter 4

Experiments

I will show the setup and results of several experiments using my method on SVM

classifiers. Note that the first 2 experiments are examples specifically made to show

easy to understand cases where my method can help. Source code for the experiments

can be found in the GitHub repository: https://github.com/WillemSch/Topological-

Regularization-SVM.

For all experiments 2 separate datasets are created: a training dataset which is used

to train the SVMs, and a testing dataset which is used to determine the performance of

the models.

4.1 Experiment 1: Data Noise, Example Case

This first experiment intents to show how my proposed method can help remove topo-

logical complexity of a decision boundary caused by noise in data. This experiment is

specifically designed to show this problem in a simple manner.

4.1.1 Method 1: PTLS

Setup

For this first experiment I created a kernel function which results in the mapping function

ϕ(x) = ⟨x, x3+x2⟩. For this example this training dataset is designed to result in a linear
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separator parallel to the coordinate hyperplane cutting the function ϕ into 4 components.

Figure 4.1 visualizes the decision boundary of the SVM by plotting the basis function,

training data, and decision boundary. Note the datapoint at x = 0, this point is the

noisy data which creates complexity in the decision boundary. The SVM is trained

with C=∞, essentially enforcing a hard margin for the classifier. Note that the SVM

implementation used does still allow misclassification with C=∞, presumably due to

digital precision errors. I set the hyper-parameter ϵ = 2−10 when offsetting the bias

following: bx = bx + ϵ sign(bx −B) (3.4).

Figure 4.1: Noise in data can generate undesirable complexity in decision boundaries.
Using a basis function f(x) = x3+x2, the addition of the noisy datapoint x = 0 generates
complexity in the decision boundary.

Results

After training the SVM on the training dataset grid and Delaunay sampling approximate

β0 of the model. The model’s accuracy is determined for the test dataset. After obtaining

the initial results, the bias of the original model is changed such that the linear separator

intersects the critical points. For each critical point the distance measure Dm and the

approximated β0 as described in subsection 3.4.2 are noted, as well as the accuracy of

the altered model on the test dataset. The results for each critical point can be found in

table 4.1 with the results of the baseline SVM at the top. Figure 4.2 visualizes how the

decision boundary changes when using the new found bias values.
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Figure 4.2: When changing the bias such that the linear separator intersects the basis
function at critical points we see topological changes in the decision boundary. The basis
function f(x) = x3 + x2 is shown to visualize the reason of the classification of any input
data. The function is coloured to show the classification of parts of the function, the
colours match with the colours for points in class 1 and -1.

Critical Point
Input space Feature Space Dm β0 Accuracy

Baseline 0 4 78%
(−0.667) (−0.667, 0.148) 0.98246 2 57%

(0) (0,0) 0.50049 2 100%

Table 4.1: Results of experiment 1, using the PTLS method



4.1.2 Method 2: AACP

For the second part of the experiment the AACP method (3.5) is used. Using the critical

points found in the first part of the experiment a new dataset Xc is created per critical

point c where Xc = {X, c}, and yc = {y, −predict(c)}. The notation {X, x} defines

a collection containing X appended by x. New SVMs are fitted on these datasets. The

SVM implementation used uses the distribution of classes in the training data to prefer

labels that are more common when predicting, unless specified otherwise. So, as the

addition of 1 new datapoint creates a slight imbalance in the dataset, I explicitly set the

prior to be that of a uniform distribution, removing the preference of predicting the most

common training label.

For each SVM similar performance measures are calculated as for the PTLS method

with the exception of Dm, as explained in section 3.5.2. These results for each critical

point found can be found in table 4.2. Visualizations of the SVMs can be found in figure

4.3.

Critical Point
Input space Feature Space Dm β0 Accuracy

Baseline 0 4 78%
(−0.667) (−0.667, 0.148) 0.98246 4 57%

(0) (0,0) 0.50049 4 100%

Table 4.2: Results of experiment 1, using the AACP method
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Figure 4.3: The AACP Method adds a critical point to the training dataset such that it is
misclassified in the baseline SVM, after which an SVM is trained on this altered dataset.
The basis function f(x) = x3 + x2 is shown to visualize the reason of the classification
of any input data. The function is coloured to show the classification of parts of the
function, the colours match with the colours for points in class 1 and -1. Note that in the
last plot the added critical point overlaps an already existing point, making it so there
are 2 support vectors of different classes at the same point.

4.2 Experiment 2: Poor Kernel Function, Example

Case

This second experiment will show how the proposed methods can be used to reduce

topological complexity for SVMs when a basis function is chosen which poorly fits to the

data. Similar to experiment 1 the intention of this experiment is to show how undesirable

complexity can emerge, and test my proposed methods’ abilities to combat it. For this

purpose this experiment is again designed such that this specific problem occurs, and not

necessarily to be a realistic example.
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4.2.1 Method 1: PTLS

Setup

First I create a kernel such that ϕ(x) = ⟨x, x4 − x2 + 0.1x⟩. The SVM is trained with

a hard margin constraint on the training dataset (C= ∞). Figure 4.4 shows how the

choice of the basis function with this specific data generates a decision boundary with

unnecessary complexity, hurting the model’s ability to generalize. I set ϵ = 2−10 when

offsetting the bias following: bx = bx + ϵ sign(bx −B).

Figure 4.4: A basis function that poorly fits the pattern of the data can generate undesir-
able complexity in decision boundaries. In this case the basis function f(x) = x4−x2+0.1x
generates complexity without noise in the data.

Results

Similar to the PTLS experiment the results are shown in table 4.4, as well as visualizations

in Figure 4.6. The first row states the scores of the baseline SVM, and further rows state

the scores of the model when the separator is made to intersect the stated critical point.

38



39

Figure 4.5: When changing the bias such that the linear separator intersects the basis
function at critical points we see topological changes in the decision boundary. The basis
function f(x) = x4−x2+0.1x is shown to visualize the reason of the classification of any
input data. The function is coloured to show the classification of parts of the function,
the colours match with the colours for points in class 1 and -1.

Critical Point
Input space Feature Space Dm β0 Accuracy

Baseline 0 5 93%
(0.05) (0.05, 0.003) 0.51245 3 49%
(0.681) (0.681,−0.181) 0.40351 3 74%

(−0.731) (−0.731,−0.322) 1.1084 1 100%

Table 4.3: Results of experiment 2, using the PTLS method



4.2.2 Method 2: AACP

Here the AACP method is used with the same original SVM and orginal dataset as used

for the PTLS method. The procedure here is the same as the second part of experiment

1, using the AACP method. Plots of the baseline, and all newly fitted models are shown

in figure 4.6, with results shown in table 4.4.
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Figure 4.6: The AACP method adds a critical point to the training dataset such that
it is misclassified in the baseline SVM, after which an SVM is trained on this altered
dataset. The basis function f(x) = x4 − x2 + 0.1x is shown to visualize the reason of
the classification of any input data. The function is coloured to show the classification of
parts of the function, the colours match with the colours for points in class 1 and -1.
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Added Critical Point
Input space Feature Space Dm β0 Accuracy

Baseline 0 5 93%
(−0.731) (−0.731,−0.322) 1.1084 3 79%
(0.05) (0.05, 0.003) 0.51245 5 77%
(0.681) (0.681,−0.181) 0.40351 3 97%

Table 4.4: Results of experiment 2, using the AACP method

4.3 Experiment 3: Approximate RBF kernel

This third experiment is meant to show the methods in a less contrived setting to gauge

real world effects. As the goal of the methods is to help regularization of SVM models, in

this experiment we start with a sub-optimal SVM. To make this experiment more relevant

to real world use cases the SVM is trained following the approximate RBF method (2.4.1),

instead of a contrived custom kernel.

Both the training and testing datasets are 2 dimensional datasets generated using

a function. This function creates a balanced dataset between the 2 classes. Class 1 is

generated inside a circle with diameter of 1, centered at (0.5, 0.5). Points in class -1

are generated in a ring with inner diameter of 0.25 and an outer diameter of 1.25, also

centered at (0.5, 0.5). This pattern is visualized in figure 4.7. For these experiments the

training and testing dataset contain 100 and 200 datapoints respectively.

4.3.1 Method 1: PTLS

Setup

Following the approximate RBF method I create a ϕQ, I choose a Q of 15 resulting in

a (15 + 1)2 = 256 dimensional feature space. I set γ = 16 in order to try to generate a

complex decision boundary through overfitting.

First ϕQ maps all data to the high dimensional feature space. Note that this step is

rather slow in my implementation, I assume this is due to the inefficiency of using the subs

function. Then an SVM is trained on this data with using the linear kernel. Matlab’s

symbolic (exact) solver used to find the critical points in the previous 2 experiments works

well on polynomial functions, but not necessarily well on more complex functions. The
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Figure 4.7: This figure shows the pattern for the classes of the generated datapoints
for experiment 3. The red area indicates the space where datapoints for class 1 can be
generated, and the blue area indicates the space where datapoints for class -1 can be
generated. The striped area indicates the overlap in the blue and red area.

large number of feature space dimensions combined with the long running time of the

symbolic solver made it impracticable to use in this experiment. Alternatively Matlab

provides a numerical (approximate) solver which finds 0 or 1 approximate solutions each

time it is run. Through random initialization the numerical solver can find different

solutions each time it is run. This solver can be further optimized by specifying limits

in which it looks for solutions. So I find critical points in this experiment by using the

numerical solver with random initialization over 100 iterations and keep unique solutions,

considering the limits −0.2 < x < 1 for both input space dimensions. I find the new biases

and test them through substitution similarly to the previous 2 experiments.

Results

For each model I measured the accuracy on a separate test dataset, DM , and β0 as

approximated through grid sampling and Delaunay sampling separately. These results

can be found in table 4.5, with visualizations of the models in 4.8.
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Critical Point Dm β0 (Grid) β0 (Delaunay) Accuracy
Baseline 0 3 3 63%

(0.97558, 0.038774) 0.1278 3 3 69.5%
(0.64014, 0.16134) 0.1233 3 2 70.5%
(0.70768, 0.47673) 0.1338 3 4 71%
(0.29223, 0.069893) 0.6008 3 4 56.5%
(0.76266, 0.34814) 0.1296 3 3 70%

(−0.018606,−0.17567) 140.1004 1 1 50%
(−0.12281, 0.50861) 58.0546 2 2 50.5%
(0.82055, 0.68305) 0.1287 4 4 70%
(0.25193, 0.51062) 9.4939 2 2 49.5%
(0.11447, 0.32943) 32.2307 1 1 50%
(0.88205,0.46421) 0.1271 2 3 73.5%
(0.80837, 0.63895) 0.1287 5 5 69.5%
(0.77168, 0.28105) 0.1298 3 4 70%
(0.20472, 0.64426) 14.8038 2 2 48%

Table 4.5: Results of experiment 3, using the PTLS method
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Figure 4.8: The models shown are all instances of an SVM using the approximate RBF
kernel with Q = 15 and γ = 16. Each plot shows the input space decision boundary of
a model where the bias is substituted for some new bias bx such that the feature space
separator is moved past some critical point x. x and y indicate the first – and second
input space dimension respectively. The first plot shows the unaltered model.



4.3.2 Method 2: AACP

The AACP method is performed similarly to the AACP part of the previous experiments.

The approximated critical points found for the PTLS method are used as the critical

points for this method as well. All new models are similar approximate RBF models

with Q = 15, γ = 16, C = ∞, and prior to be that of a uniform distribution. The results

of these models are shown in table 4.6, with visualizations of the model shown in figure

4.9.

Critical Point β0 (Grid) β0 (Delaunay) Accuracy
Baseline 3 3 66.5%

(0.97558, 0.038774) 2 2 61.5%
(0.64014, 0.16134) 3 3 67%
(0.70768, 0.47673) 3 3 66.5%
(0.29223, 0.069893) 3 3 66.5%
(0.76266, 0.34814) 2 2 65.5%

(−0.018606,−0.17567) 4 4 66.5%
(−0.12281, 0.50861) 2 2 62.5%
(0.82055, 0.68305) 3 3 63.5%
(0.25193, 0.51062) 3 4 62.5%
(0.11447,0.32943) 3 2 75.5%
(0.88205, 0.46421) 3 3 67%
(0.80837, 0.63895) 3 4 60.5%
(0.77168, 0.28105) 2 2 65.5%
(0.20472, 0.64426) 3 3 63%

Table 4.6: Results of experiment 3, using the AACP method
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Figure 4.9: As the dataset used to fit the SVM is altered such that a single critical point
x is added with a label yx = −predict(x) a new model is created. The plots visualize
the decision boundary in the input space. x and y indicate the first – and second input
space dimension respectively. Here all models are approximate RBF models with Q = 15,
γ = 16, and C = ∞.



Chapter 5

Discussion, Conclusion, and Future

Work

5.1 Thesis Objectives

In section 1.2 I outlined the objectives set for my thesis. As to reflect on the results of

this thesis, first let’s state the objectives again:

• Measure the complexity of SVMs.

• Regularize SVMs through novel methods reducing the complexity.

• Show that the methods have a positive effect in practice.

In the following subsections I will outline which parts of the thesis relate to which objec-

tives and discuss to what degree I was successful at tackling them.

5.1.1 Measure the Complexity of SVMs

The first objective set was to define some measure of complexity for SVMs and find a

method to measure it. I have chosen the number of connected components of the input

space as it is sliced by the decision boundary to act as this measure of complexity. For

the sake of notational simplicity components of the input space as sliced by the decision

boundary will be referred to simply as components. The intuition here is that many
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small components can be an indication of overfitting, and can be replaced by fewer larger

components. In the motivation (1.1) I show an example of how overfitting to noise can

create an undesirable component in the input space. The second example shows how

undesirable complexity can emerge from a poorly fitting mapping function. This shows

that overfitting is not necessarily the only reason for undesirable complexity

Through literature review I have not found a way to exactly determine this complexity

of an SVM, so I have decided to use an approximation method. The method I have chosen

is the simple grid sampling method, where I discretely approximate the input space by

graph approximation of the input space. For low dimensional input spaces grid graphs can

be used for the approximation, but due to their exponential growth as the number of input

space dimensions grow Delaunay graphs are an alternative for high dimensional spaces.

By classifying each vertex, and removing edges between vertices with different classes, I

can determine the number of connected components of the graph. This approximation

serves as the measure of complexity for SVMs in this thesis.

Relating back to the objective: I have successfully defined a measure of complexity

for SVMs and found a way to approximate it. So the objective has been mostly achieved,

although an exact measure of complexity would be better.

5.1.2 Regularize SVMs by Reducing Complexity

I have proposed 2 methods which can reduce complexity of the decision boundaries of

SVMs. Both methods are designed following the same general idea: changing the number

of intersections of the linear separator with the surface generated by the mapping function

ϕ changes the complexity of the SVM.

The PTLS method build on theorems from Morse Theory (2.5) which leads us to

the conclusion that the complexity of the SVM only changes when the linear separator

is moved past critical points of ϕ. This claim relies on the transformation of our linear

separator to not alter the normal vector, but only its bias. So for the PTLS method I

move the linear separator along its normal vector, such that it moves past critical points

of ϕ. After this transformation I evaluate the SVM, to determine whether the SVM

improved or not.

With the AACP method I attempt to address the restriction of the PTLS method int

that PTLS does not allow for any rotations of the linear separator. I keep the intuition
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provided by Morse theory that we want the linear separator to in– or exclude critical

points. For the AACP method I again find the critical points of ϕ with respect to the

linear separator. For each critical point I add it to the original training data, such that

its label is opposite of the prediction of the original SVM. Then I fit a new SVM on this

dataset and evaluate the model. A downside of this method is that there is no guarantee

that we see changes in the complexity of the SVM, as rotational transformations of the

linear separator can be introduced. Moreover the claim that complexity only changes

by in– or excluding these critical points does not necessarily hold anymore either. This

becomes clear from the definition of critical points: x is a critical point with respect to

some hyperplane wX + b if the dot product x · w equals 0. We can see that when we

rotate our reference hyperplane the critical points change as well, so they are no longer

the same as the points added to the dataset.

Both these methods come with the restriction that they do not work for specific

types of kernels, namely kernels for which the feature space cannot be defined in finite

dimensions. I go over this and other weaknesses of my methods in a later section. As

for reaching the objective, the experiments show that both methods have the ability to

improve SVMs through topological regularization. This success is partially limited by

the restriction mentioned before.

5.1.3 Show the Method’s Positive Effects in Practice

The results of the experiments are shown in the experiments Section 4. The first two

experiments were designed to show the problem that my methods aim to solve. We should

not put too much weight on the measures from the experiments. What the experiments

do show is how the two methods work, and their potential effectiveness. We can see that

the PTLS method can successfully reduce complexity in a model, and given the right

circumstances improve a model’s ability to generalize because of it. We can also see

that almost every alteration of the model, following the PTLS method, results in some

change to the SVM’s complexity. This is where the AACP method differs, as discussed

before. The AACP method does not guarantee any change in complexity, and we can

see this in the results of the experiments. However, from experiment 2 we can see the

AACP method generating less complex decision boundaries, while improving accuracy.

This shows a potential for the method to produce models with more desirable decision

boundaries.

The third experiment shows how the methods work for a less contrived case, specif-

ically for a poorly fitting approximate RBF SVM. Again we can see improvement in
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performance when the linear separator is moved to different spots. However, the exper-

iment does not necessarily show that the PTLS method improves an SVM by reducing

topological complexity, as results also show more accurate classifiers where the topolog-

ical complexity is similar or increased. The results do suggest that choosing the linear

separator such that the margin is maximal is not necessarily the optimal solution.

5.2 Main Contribution

The methods I describe in this thesis provide novel approaches to optimize SVMs using

the topology of their decision boundaries. As described, the PTLS method (3.4) will

find a few alternative values for the bias of an SVM and with it some measures of its

performance and complexity. In section 3.6 I show how we can choose the best model

from the collection of models found. As the topological complexity plays no role in model

selection, it only serves as an indication to show whether the original intuition of the

thesis holds. That means that in practice this measure does not have to be computed.

The AACP method provides us with SVM models with altered linear separators

through fitting a new SVM on an altered dataset. While experiments show the AACP

method can produce more optimal decision boundaries, its behaviour is less predictable

than the PTLS method and does not necessarily alter a model’s complexity.

By the nature of this optimization there is no expectation of large changes in a model’s

performance, but it can provide means to refine models to increase their performance at

least slightly. The large improvements in accuracy for the designed examples should

not be taken as more than illustrative of potential. These examples exist to show what

situations the proposed methods can be helpful in, in quite a contrived manner. As

discussed above, looking at the results of the third experiment challenges the idea that

the optimal linear separator is the one with the maximal margin.

Perhaps most interestingly, the results show that maximal margin is not always the

optimal optimization criteria, and altering the bias can positively change the performance

of an SVM. The PTLS method proposes an automated search for bias values that might

improve the performance. So, in a way, we can view the bias of an SVM as a hyper-

parameter that can be optimized after the learning phase. In this light, the PTLS method

acts as an automated hyper-parameter search.
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I have implemented the methods and experiments discussed in this thesis in Mat-

lab. The code for this can be found on GitHub: https://github.com/WillemSch/

Topological-Regularization-SVM. This code can be rerun, verified, and build upon

by anyone.

5.2.1 Strengths

The main strengths of my proposed methods are shown in the previous sections, where

I show that the methods have the potential to reduce topological complexity and the

prediction accuracy of SVMs. Here I will outline a less obvious strength of this thesis.

Challenging the Maximal Margin Optimization Goal

One of the main takeaways from the results and intuitions is a challenge to the idea

that the optimal linear separator for an SVM is the one that maximizes the margin. The

results of the PTLS method specifically show that this is not necessarily the case, as some

parallel transformation of the separator can improve an SVM. Moreover, the intuition that

less topological complexity can indicate a better decision boundary suggests that some

other optimization goal might result in a better classifier, if it considers such topological

complexity.

5.2.2 Weaknesses

The topological regularization methods I propose in this thesis does, of course, also come

with its weaknesses. In this section I attempt to outline all the weaknesses I found,

knowing that this is likely not an exhaustive list. Where possible I add a potential way

to alter or improve the methods, with the intention to inspire future work in this field.

Exploring Feature Space

The main weakness of my proposed method is that it requires us to explore the feature

space. This is in contrast to the usual workings, and perhaps elegance, of the SVM,

which through mathematical tricks does not require exploration of the feature space.

Besides the potential computational and memory issues this may bring, this characteristic
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of my method also makes it unsuitable to be used with kernels that map to infinite

dimensions. The popular RBF kernel can therefore not be optimized using my approach.

The requirement to explore the feature space comes forth from the use of Morse theory.

If future works can find ways to determine the new bias values through other means, the

reliance on the feature space might be removed, and therefore might benefit the most

from the new regularization methods.

One way to get around this limitation is through finite dimensional approximations of

ϕ for these infinite dimensional kernels. One such method is used in experiment 3. The

approximation for the RBF kernel proves to be especially important for the methods I

propose in this thesis, as RBF kernels have a tendency to generate topologically complex

decision boundaries.

Finding Critical Points

In the proposed method for finding critical points we consider all critical points of the

mapping function ϕ when attempting to optimize the classifier. For mapping functions

with infinite critical points, such as sine functions, this methods will not work. A simple

solution to this problem is to define a range where critical points are considered relevant,

and ignoring all critical points outside this range. This is potentially even desirable to do

even when working with finite critical points, as one might not care about complexity in

decision boundaries outside of the range that any datapoint will be found. For experiment

3 such limits are used already to optimize performance.

Another downside of the reliance on critical points is computational complexity. I

find critical points by solving a set of equations for all input features. Computation time

grows significantly for each extra input feature. This is especially costly for symbolic

(exact) solving of these equations. Alternatively one can use numerical solvers, which

greatly improve computation time, at the cost of potentially missing critical points, and

finding wrong critical points through approximation. This method is used for experiment

3, as the equations become highly complex when using the RBF approximate kernels.

Sampling Decision Boundary

The grid sampling method is used as it can find complexity in the decision boundary

in spots where there is no training data, whereas sampling using the datapoints of the
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training dataset, such as DeepDIG[11], cannot find these complexities. One downside

of this grid sampling is however the exponential growth of the grid with respect to the

input space. The grid will have mn vertices where m is the resolution of the grid and n

the number of input dimensions. Future work in defining the complexity of the decision

boundary can experiment with different (sampling-) methods.

Furthermore, the proposed grid sampling provides an approximation of β0, and not

necessary the exact value. While I have not found a method which can provide any exact

Betti numbers, I will not exclude that this is possible at all. Since we are looking at the

topology of the intersection of a hyperplane and a function one approach could be tackling

the problem using Algebraic varieties or Semi-Algebraic sets. In my review of literature

it seems work on homology of algebraic varieties and semi-algebraic sets only provide

estimates on Betti numbers. However, it seems possible such algorithms are found in the

future.

As an alternative to grid sampling, I also show the performance of the approximation

of β0 through Delaunay graphs. These provide a more scalable and flexible solution as

one can choose the exact number of vertices that generates the Delaunay graph. If one is

interested in β0 for any SVMs with a high-dimensional input space, this method would

likely be the only viable option of the two used in this thesis.

Finally, one can just not do any sampling of the complexity, as it is not required for

any of the functionality. However, it does provide insights in what the methods’ impact

are on decision boundaries.

5.3 Future Work

5.3.1 Penalizing Topological Complexity

While my proposed method allows for optimization of topological complexity of SVM

decision boundaries, this optimization is performed after a linear separator has been

found. A different approach can look into redefining the optimization goal of the SVM

such that the optimal separator is not just the one with the greatest margin, but also

punish topological complexity, similar to how topological losses have been introduced in

loss function for neural networks [5]. By the nature of the optimization process of SVMs

one will need to find a measure of topological complexity which is derivable, and fits with

the Lagrange optimization.
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5.3.2 Exploring the Feature Space

An idea unexplored in this thesis is using the approximate RBF to finding new biases

and critical points for the PTLS – and AACP methods respectively. Then with these

found values performing the methods on the exact RBF model, that is: substituting the

bias bx into the exact RBF model in the case of the PTLS method. If this works the

methods proposed in my thesis can be made applicable to kernels with infinite dimensional

feature spaces as well. The main reason no experiments in this thesis do this is due to

implementational difficulties: the SVM implementation used does not allow for the bias

variable to be changed, and time constraints did not permit implementing a work-around.

5.3.3 Iterative AACP

The second method I propose in this thesis is the AACP method, where a new SVM

is trained on a dataset where a critical point is artificially added. In the experiments

the best model is chosen once this step is done. This leaves an interesting alternative

to look into: iteratively performing AACP. Instead of stopping after choosing the best

model, one can repeatedly keep performing the AACP method in an attempt to further

optimize the SVM. Whether such an iterative approach improves the methods, and if so

what stopping criterion is useful, might prove an interesting topic of research.

5.4 Conclusion

The experiments show there are cases where my proposed regularization methods do

improve the performance of an SVM classifier. This shows there is merit to exploring such

optimization techniques further. The proposed methods do come with their weaknesses

and points of improvement, which can be addressed through further research. Moreover,

the results of the experiments show that the idea that the maximal margin goal generates

the optimal decision boundary is not necessarily true. Following this we can, in the future,

perhaps start to consider the bias of an SVM as a hyper-parameter to be optimized after

training.
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