
University of Bergen
Department of Informatics

Master thesis in Secure and Reliable Communication

On self-equivalences of APN
functions

Author: Vegard Jensløkken
Supervisor: Nikolay Stoyanov Kaleyski

Abstract

In this thesis we investigate the structure of what we call extended linear self-
equivalences for vectorial Boolean functions. That is, (L1, L2, L) such that
L1 ◦F ◦L2+L = F for some vectorial Boolean function F , where L1 and L2 are
linear permutations and L is a linear function.

We implement a parallel version of an algorithm for testing EA equivalence in
the programming language Rust. This allows us to compare the performance
of implementations in C and Rust for similar problems and to conclude that
our Rust implementation is comparable in efficiency while being significantly
easier to write and maintain.

Using our implementation we calculate the self-equivalences for all known
quadratic APN functions up to CCZ equivalence in dimensions 6, 8 and 10.
We discover functions with trivial linear self-equivalence, but with nontrivial
EL self-equivalences. Based on this we formulate a search procedure for ob-
taining new APN functions, which exploits extended linear self-equivalences
in the sameway that the search of Beierle et al. exploits linear self-equivalences.

From the initial test runs of our new algorithm we discover that the search
allows us to start from a given APN function and find APN functions CCZ-
inequivalent to it. More interestingly we observe that the search can even find
non-quadratic APN functions.

Acknowledgements

First of all I would like to thank my supervisor Nikolay Kaleyski for his guid-
ance and for all the time he set aside for me. I will remember all of our funny
and educational zoom meetings.
I would also like to thank all my friends and family for their support.
Last but certainly not least I would like to thankmy girlfriend for all her invalu-
able support, help and for being there for me. I would not have been able to do
this without you.

Vegard Jensløkken

October 2023

Contents

1 Introduction 1
1.1 The problem . 2

2 Background 5
2.1 Representations . 6

2.1.1 Truth table form . 6
2.1.2 Univariate representation 8

2.2 Cryptography . 8
2.2.1 Algebraic degree . 8
2.2.2 Differential uniformity . 9
2.2.3 APN functions . 10
2.2.4 Nonlinearity . 10
2.2.5 AB functions . 11

2.3 Equivalence relations . 12
2.3.1 CCZ-equivalence . 12
2.3.2 EA-equivalence . 12
2.3.3 Affine and linear equivalence 13
2.3.4 Self-equivalence . 13

2.4 Known methods for obtaining new APN functions 14
2.4.1 Polynomial search . 14
2.4.2 Matrix approach . 14
2.4.3 Self-equivalence search 15

2.5 Algorithm for recovering EA equivalence 16

ii

3 Results 19
3.1 Extended linear equivalence group 20
3.2 Rust . 22
3.3 Implementation of Kaleyski’s algorithm 23
3.4 Benchmarking Rust . 23
3.5 Extended linear self-equivalence groups 24
3.6 Generating APN functions from self-equivalences 25
3.7 Backwards search . 26
3.8 Computational results . 27

4 Conclusion and future work 29
4.1 Conclusion . 29
4.2 Future work . 30

Bibliography 32

iii

Chapter 1

Introduction

Modern block ciphers rely on vectorial Boolean functions for their security
against cryptanalytic attacks. APN functions offer optimal resistance against
differential cryptanalysis, which is one of themost efficient methods known to-
day. APN functions are in addition studied from a purely mathematical point
of view, because they correspond to optimal objects in combinatorics, algebra
and other disciplines. While they have been studied in depth since the early
90’s, we still know little about APN functions. One reason for searching for
new instances of APN functions is to get more examples and better understand
their structure.

Obtaining new APN functions through exhaustive search requires computa-
tional resources far beyond what is achievable with current technology. This
makes finding alternative methods of obtaining new functions necessary. The
huge number of functions also makes it necessary to consider them up to a
notion of equivalence. This is typically CCZ-equivalence, EA-equivalence, or
linear equivalence. CCZ-equivalence preserves differential uniformity and is

1

1.1. The problem Chapter 1: Introduction

the most general of these equivalence relations. EA-equivalence is more spe-
cialized and linear equivalence is the least general. In other words, if two func-
tions are linear equivalent, they are also EA- and CCZ-equivalent, but not vice
versa. In this thesis we are going to work with linear and EA equivalence. Two
functions F andG are said to be EA equivalent if,A1◦F ◦A2+A = G; whereA1

and A2 are affine permutations, and A is an affine function. In the case where
A1 and A2 are linear and A is 0, we say that F and G are linearly equivalent.
In other words, we say that F and G are linearly equivalent of the equation,
L1 ◦ F ◦ L2 = G, holds.

Any pair of linear permutations, (L1, L2), such that L1 ◦ F ◦ L2 = F is called
a linear self-equivalence of F . Self-equivalences can be defined in a similar
way for EA equivalence, CCZ equivalence and so forth. Self-equivalences have
previously been used to optimize the search for APN functions by drastically
reducing the size of the search space. Beierle et al. used linear self-equivalence
to obtain newAPN functions [3][2]. Since EA equivalence is strictly more gen-
eral than linear equivalence, a natural question to pose is whether a different
set of functions can be obtained from EA self-equivalences. As part of the work
conducted in this thesis, we show that there exist APN functions which only
have a trivial linear self-equivalence, but have nontrivial EA self-equivalences.

1.1 The problem

Kaleyski proposed an algorithm for recovering EA equivalence between two
functions F and G [13]. This was later implemented in the programming lan-
guage, C, by Heggebakk, where she greatly improved the performance of the
algorithm compared to the original Magma implementation [10]. C is known
to be a highly efficient language, however, it is also known to have a steep learn-
ing curve. Recently Rust has been introduced as an alternative to C which
promises to provide a more user friendly experience, while preserving the ef-
ficiency benefit of C [1]. For this reason we chose Rust as the programming

2

1.1. The problem Chapter 1: Introduction

language for the work in this thesis. This allowed us to compare the perfor-
mance of C and Rust for the particular application of implementing algorithms
similar to the one presented in [10].

We use our Rust implementation to compute the self-equivalences of all known
quadratic APN functions in dimension 6, 8 and 10 up to CCZ equivalence. To
simplify the problem we choose to only consider the cases where A1 and A2,
from the definition of EA equivalence, A1 ◦ F ◦ A2 + A = G, are linear. This
gives us the equation L1 ◦ F ◦ L2 + A = G, and we say the triple (L1, L2, A)

is an extended linear equivalence, or EL equivalence, between F and G. Similarly,
any triple (L1, L2, A) where L1 ◦ F ◦ L2 + A = F is called the extended linear
self-equivalence, or simply EL self-equivalence of F .

It is known that the linear self equivalences (L1, L2) of any vectorial Boolean
function form a groupwith the operation (L1, L2)◦(K1, K2) = (L1◦K1, K2◦L2).
In this thesis we define an operation for composing EL self-equivalences as
(L1, L2, A) ◦ (K1, K2, B) = (L1 ◦K1, K2 ◦L2, L1 ◦B ◦L2 +A). We show that the
EL self-equivalences of any vectorial Boolean function form a group under this
operation.

Based on the EL self-equivalences we propose a search procedure similar to
that of Beierle et al., except that instead of linear self-equivalences it is based
on EL self-equivalences. Unfortunately, we were not able to obtain any new
APN functions, however we show that it is possible to go from quadratic APN
functions to non-quadratic APN functions and to go between different CCZ
classes. This shows that exploring this computational method further may be
worthwhile and may yield new examples of APN functions that may not be
obtainable by other searches.

3

1.1. The problem Chapter 1: Introduction

To summarize, in this thesis we do the following:

1. Implement the algorithm from [13] in Rust to test linear and extended
linear equivalence. In addition, we compare the performance of this Rust
implementation with a previous implementation in C.

2. Define an operation under which the EL self-equivalences of any given
function have a group structure.

3. Compute all the EL self-equivalences of all known quadratic APN func-
tions up to CCZ equivalence in dimension 6, 8 and 10.

4. Formulate a search procedure for obtaining newAPN functions based on
EL self-equivalences.

5. Implement the search procedure and observe that it can (a) go from
the self-equivalences of quadratic APN functions to non-quadratic APN
functions, and (b) to go between different CCZ classes.

4

Chapter 2

Background

Let F2 denote the finite field consisting of the elements 0 and 1 and let Fn
2 de-

note the vector space of dimension n. We denote the extension field of degree
n over F2 by F2n . The elements of the finite field F2n can naturally be identi-
fied with the elements of the vector space Fn

2 ; we will therefore use them inter-
changeably throughout this thesis. We define a Boolean function as a mapping
f : Fn

2 → F2 that takes n binary inputs and outputs a single binary value.
These functions are also known as (n, 1)-functions. Similarly (n,m)-functions
are functions Fn

2 → Fm
2 , that take n binary inputs and output m binary values.

These functions are also known as vectorial Boolean functions and can be seen
as being composed of m Boolean functions. In this thesis, however, we solely
focus on the case where n = m, that is to say, for the remainder of this thesis
we only consider (n, n)-functions.
Any (n, n)-function F , can be written as F (x) = (f1(x), f2(x), ..., fn(x)) for
(n, 1)-functions f1(x), f2(x), ..., fn(x). These functions are called the coordinate
functions of F . The nonzero combinations of the coordinate functions Fb of F ,
where b ∈ Fn

2 for b ̸= (0, 0, ..., 0) are called the component functions of F . More
precisely we define Fb to be Fb =

n∑
i=1

bifi, for b = b1, b2, ..., bn. To give an ex-

ample: Suppose we have the coordinate functions (f1, f2, f3, f4) of F . Based on

5

2.1. Representations Chapter 2: Background

this we define a component function Fb of F and choose a b = (1, 0, 0, 1). This
yields the component function Fb = f1 + f4.

2.1 Representations

There are many ways of representing vectorial Boolean functions. In this sec-
tion we will explain the two representations used throughout this thesis, truth
table form and univariate representation.

2.1.1 Truth table form

Truth table form (sometimes referred to as a lookup table) is arguably the eas-
iest when programming. A truth table is essentially just a list of all the values
of a function. When using truth tables to represent vectorial Boolean functions,
one typically uses the binary representation like in Table 2.1. In practice how-
ever, using binary strings like in Table 2.1 is rarely convenient when program-
ming. When implementing vectorial Boolean functions in truth table form one
typically uses integers to represent the binary strings like shown in Table 2.2.
When using truth tables as input files for programs one typically has one row
with an integer representing the dimension n followed by a line of 2n, space
separated, integers representing the output of the function, as shown in Figure
2.1.

6

2.1. Representations Chapter 2: Background

x1 x2 x3 x4 f1(x1, x2, x3, x4) f2(x1, x2, x3, x4) f3(x1, x2, x3, x4)
0 0 0 0 0 0 0
0 0 0 1 1 0 1
0 0 1 0 0 1 0
0 0 1 1 1 1 1
0 1 0 0 1 0 0
0 1 0 1 0 0 0
0 1 1 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 1 1 0
1 0 0 1 0 0 1
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 1
1 1 0 1 0 0 0
1 1 1 0 1 1 0
1 1 1 1 1 0 0

Table 2.1: Truth table representation of a (4, 3)-function.

(x1, x2, x3, x4) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F (x1, x2, x3, x4) 0 5 2 7 4 0 6 1 6 1 5 2 7 0 6 4

Table 2.2: Integer truth table representation of Table 2.1.

Figure 2.1: Example of a truth table file.

7

2.2. Cryptography Chapter 2: Background

2.1.2 Univariate representation

Another representation of an (n, n)-function, F , is the univariate representation.
This is the polynomial:

F (x) =
2n−1∑
i=0

cix
i,

for some coefficients ci ∈ F2n .
Many important functions, for instance APN-functions and differentially 4-
uniform functions, have a very simple univariate representation.

2.2 Cryptography

Vectorial Boolean functions are widely used in symmetric ciphers and are of-
ten referred to as substitution-boxes or S-boxes. They are usually the only non-
linear part of the algorithms and it is hence important to have a cryptographi-
cally strong function. In fact, the security of the cipher heavily depends on the
properties of the function. For every possible cryptanalytic attack that exploits
weaknesses in the S-boxes, we can define a property that measures how well
the functions resist that attack. In this section we will list some of the most
important cryptographic properties.

2.2.1 Algebraic degree

An important concept is the algebraic degree. This can be used to define func-
tions, such as, affine and linear functions and is also used as a measure of how
resistant a function is to so-called higher-order differential attacks [14].
The algebraic degree can be defined using the univariate representation,

8

2.2. Cryptography Chapter 2: Background

F (x) =
2n−1∑
i=0

cix
i. The largest binary weight of any exponent i in the uni-

variate representation, with ci ̸= 0, is the algebraic degree or simply the de-
gree of the function. To give an example: Suppose we have a (4, 4)-function
F = x13 + x6 + x5. We can see that the exponents in binary are 1101, 0110 and
0101 respectively. Now it is easy to see that the binary weights of the exponents
are 3, 2 and 2. Consequently, we see that F has an algebraic degree of 3.

Using algebraic degree we can define affine and linear functions. A function
with degree of at most one is called affine. An affine (n, n)-function, A, has the
property that A(x) + A(y) + A(z) = A(x+ y + z), for any x, y, z ∈ Fn

2 . A linear
function, L, is simply an affine function satisfying L(0) = 0. Similarly to affine
functions, linear functions satisfy the property that: L(x)+L(y) = L(x+ y) for
any x, y ∈ Fn

2 . Any function with degree exactly 2 is quadratic.

2.2.2 Differential uniformity

Differential uniformity is used for measuring the resistance against differential
attacks [4]. To define differential uniformity we first need to define the notion
of derivative DaF of F in direction a ∈ F2n :

DaF = F (a+ x)− F (x).

Recall that in binary fields subtraction is the same as addition. Therefore, we
can rewrite this as:

DaF = F (a+ x) + F (x).

In addition, we need to define δF (a, b), for any a, b ∈ F2n , which is the number
of solutions x ∈ F2n to the equation DaF (x) = b:

9

2.2. Cryptography Chapter 2: Background

δF (a, b) = #{x ∈ F2n : DaF (x) = b}.

We can now define the differential uniformity of F ,∆F , which is the largest value
of δF (a, b):

∆F = max{δF (a, b) : a ∈ Fn
2 , b ∈ Fn

2 , a ̸= 0}.

2.2.3 APN functions

In order to prevent differential attack, ∆F should be as low as possible. The
lowest possible differential uniformity is 2. The functions that attain this opti-
mal value are known as almost perfect nonlinear functions, usually referred to as
APN functions.

2.2.4 Nonlinearity

Another important propertymeasures a vectorial Boolean function’s resistance
to so called linear attack [16]. A linear attack occurs when an attacker tries to
approximate an (n, n)-function by using a linear or an affine function. The non-
linearity NL(F) is defined as the minimum Hamming distance between any
component function of F and any affine Boolean function. To define this for-
mally we first need to introduce Hamming distance. This is the number of
inputs where two functions disagree.

10

2.2. Cryptography Chapter 2: Background

We can define the Hamming distance as:

dH(F,G) = #{x : F (x) ̸= G(x)}.

The definition of nonlinearity is:

NL(F) = min{dH(Fb, l) : b ∈ Fn
2 , b ̸= (0, 0, ..., 0), l ∈ A},

where A is the set of all affine (n, 1)-functions.
To prevent linear attacks, one should choose functions with high nonlinearity.

2.2.5 AB functions

The nonlinearity of any (n, n)-function F satisfies

NL(F) ≤ 2n−1 − 2(n−1)/2. [6]

When a function satisfies this equationwith equalitywe say that it is almost bent,
abbreviatedAB. These functions provide the best resistance to linear cryptanal-
ysis, however only functions where the dimension n is odd can be AB. In addi-
tion, any AB function must be APN as well [8]. This means that any AB func-
tion provides the best resistance to both linear attacks and differential attacks.
APN functions are not necessarily almost bent, but quadratic APN functions in
odd dimensions are AB [7].

11

2.3. Equivalence relations Chapter 2: Background

2.3 Equivalence relations
When n increases, the number of (n, n)-functions, and in particular APN func-
tions, increase exponentially. Thus, it is necessary to reduce the number of
functions to consider. We do this by only considering functions up to certain
relations of equivalence, that preserve APN-ness. There are different equiva-
lence relations and we will cover some of the most useful ones in this section.

2.3.1 CCZ-equivalence

Themost general known equivalence relation that preserve APN-ness is Carlet-
Charpin-Zinoviev-equivalence or CCZ-equivalence for short [7]. CCZ-equivalence
preserves both differential uniformity and nonlinearity. This makes the rela-
tion very useful when classifying functions. The CCZ-equivalence between
two functions F and G is defined by taking the graph of the functions.

We define the graph of a function F , ΓF , as

ΓF = {(x, F (x)) : x ∈ Fn
2}.

If there exists an affine permutation A of Fn
2 × Fn

2 that maps ΓF to ΓG, then F

and G are CCZ-equivalent.

2.3.2 EA-equivalence

Suppose we have two functions, F and G. They are said to be EA equivalent
if there exist two affine permutations A1 and A2, and an affine function A such
that:

A1 ◦ F ◦ A2 + A = G.

EA-equivalence is a special case of CCZ-equivalence, although In the case of
monomials and quadratic APN functions two functions are CCZ-equivalent if
and only if they are EA-equivalent [17].

12

2.3. Equivalence relations Chapter 2: Background

2.3.3 Affine and linear equivalence

The functions, F andG, are affine equivalent if we have two affine permutations,
A1 and A2, such that:

A1 ◦ F ◦ A2 = G.

This is one of the most specialized equivalence relations that preservers APN-
ness. We can see that it is a special case of EA-equivalence where A from the
equation A1 ◦ F ◦ A2 + A = G, is zero.

In the special case where A1 and A2 are linear, we say that F and G are linearly
equivalent. This is defined as:

L1 ◦ F ◦ L2 = G.

2.3.4 Self-equivalence

For any of the above relations, an equivalence between a function and itself is
called a self-equivalence. For example, a linear self-equivalence of F is any pair
of linear permutations, (L1, L2), such that L1 ◦ F ◦ L2 = F .

13

2.4. Known methods for obtaining new APN functions Chapter 2: Background

2.4 Known methods for obtaining new APN func-
tions

Searching for new APN functions is known to be hard due to the huge number
of functions to consider. As n grows, the number of functions grows super
exponentially. In practice, it is infeasible to perform an exhaustive search over
all of these functions. Another approach for finding new functions is needed.

With the help of some optimizations it is possible to search for functions using
truth tables but this only works up to dimension n = 5. Brinkmann and Lean-
der classified all functions using this approach [5]. This means that we only
consider searches of dimension n > 5.

2.4.1 Polynomial search

One way of reducing the search space is by only considering functions with a
short univariate representation. First, one would go through all monomials,
that is, all possible functions of the form F = xA for all possible A. One then
proceed to go through all binomials of the form F = xA

1 + c1x
B
2 , for all possible

A, c1, B, such that F is APN. Of course this is only possible for relatively short
polynomials.

2.4.2 Matrix approach

Yuyin et al. introduced a new matrix construction they refer to as quadratic
APN matrix, QAM [18]. With this new approach, they managed to discover
2,252 new quadratic APN functions up to CCZ equivalence in dimension n = 8

and 471 new functions in dimension n = 7.

14

2.4. Known methods for obtaining new APN functions Chapter 2: Background

2.4.3 Self-equivalence search

Beierle et al. illustrated that it is possible to use linear self-equivalences to ob-
tain new functions in dimension 6, 7 and 8 [3].

First we take a fixed linear self-equivalence (L1, L2). We search for all functions
F such that L1 ◦F ◦L2 = F . We proceed to guess one value of F , say F (1) = 3.
From here we can obtain F (L2(1)) = L−1

1 (F (1)). Then, we apply L2 again to
obtain F (L2(L2(1))) = L−1

1 (L−1
1 (F (1))). We continue by applying L2 on the left

hand side of the equation andL−1
1 on the right hand side, untilL2 loops around

and we get the original first guess. This means that a single guess can derive
multiple values of F .

With their search, Beierle et al. were able to reduce the search space. Later,
Beierle and Leander applied this search to higher dimensions and obtained
12, 956 new quadratic APN. Of these functions, 12, 921 was in dimension n =

8, and 35 new APN functions in dimension n = 9. Two of the functions in
dimension n = 9were permutations [2].

As shown in Chapter 3, there exist APN functions having only trivial linear
self-equivalence, but nontrivial EL self-equivalence. These functions can not
be found by Beierle’s search, but may potentially be discovered by the search
that we propose in Section 3.5. This search is similar to that of Beierle et al.,
except that we use extended linear self-equivalences.

15

2.5. Algorithm for recovering EA equivalence Chapter 2: Background

2.5 Algorithm for recovering EA equivalence

Recall that there are an exponentially increasing amount of functions to con-
siderwhen the dimension n increases. As a consequence, we need to use equiv-
alence relations to classify them. When searching for new functions any new
function needs to be tested for equivalence against the known ones. This, how-
ever, is not always easy in practice. Since CCZ is the most general equivalence
relation, a function is only considered to be new if it is not CCZ equivalent to
any of the known ones. Due to the fact that the majority of the known APN
functions up to CCZ equivalence are quadratic, we only have to test for EA
equivalence. This is because, like stated earlier, quadratic APN functions are
CCZ equivalent if and only if they are EA equivalent.

Kaleyski has proposed an algorithm for recovering EA-equivalence [13]. This
algorithm uses invariants to check whether two functions, F and G, are EA-
equivalent. The algorithm reconstructs the affine permutations A1 and A2,
from the definition of EA equivalence, in two steps. Without loss of generality
one can assume thatA1 is linear, i.e. L1. For quadratic functions one can also as-
sume thatA2 is linear. We rewrite the equivalence relation asL1◦F ◦L2+A = G.

In our case this algorithm is used for quadratic APN functions, so we will only
consider this case. To obtain L1 we calculate the multiset, MF , containing the
elements MF = {F (x1) + F (x2) + F (x3) + F (x1 + x2 + x3) : x1, x2, x3 ∈ F2n}.
With this multiset we consider the multiplicities of each element.

We calculate the multiset MF for F and MG for G. We know that L1 must
map any element with a given multiplicity in MF , to some element with the
same multiplicity in MG. There are very few linear permutations that satisfy
this condition and this greatly reduces the search space.

After we guessL1 we can obtainL2: By applyingL−1
1 toA andGwe get F ◦L2 =

G′ + A′. This can also be formulated as F ◦ L2 = G′′.

16

2.5. Algorithm for recovering EA equivalence Chapter 2: Background

Kaleyski denote by Tk(0) the set of all k-tuples of elements from Fn
2 that add up

to zero. This can be expressed as: Tk(0) = {(x1, x2, ..., xk) ∈ (Fn
2)

k |
∑k

i=1 xi =

0}. Using this definition, Kaleyski goes on to show that if there is an element
in Fn

2 that is part of a k-tuple that sums up to some element t under G′′, then
the image under L2 has to be part of a k-tuple whose sum under F is t. This can
be expressed mathematically as L2(x) ∈ ∩t∈

∑G
k (0,x)(∪OF

k (0, t), where OF
k (0, t) =

{(x1, x2, ..., xk) ∈ Tk(0) | F (x1)+F (x2)+...+F (xk) = t}. He further explains that
it is sufficient to use k = 3 to restrict the number of L2 to consider. Ultimately
the search space forL1 andL2 is reduced to such an extent that it is feasible to go
through all possible choices and check whether one of them is an equivalence.
Lastly we obtain A′ by solving the equation A′ = F ◦L2 +G′ and verify that A′

is indeed affine. For an exact description of the algorithm, we refer the reader
to [13].

17

2.5. Algorithm for recovering EA equivalence Chapter 2: Background

18

Chapter 3

Results

Beierle et al. show how linear self-equivalence can be used to obtain new APN
functions. This raises the question: can we obtain other functions by using a
more general equivalence relation? We decide to investigate EA equivalence,
however, in order to simplify the study, we restrict to the special case where A1

and A2 from the equation A1 ◦F ◦A2 +A = G are linear. We call this extended
linear equivalence, and write it as L1 ◦ F ◦ L2 +A = G. This is in fact the most
practically relevant case because, for quadratic APN functions, we can assume
that the permutations A1 and A2 are linear without loss of generality.

We implement Kaleyski’s algorithm in Rust and compute all the EL self-
equivalences for every known quadratic APN function up to CCZ equivalence.
We observe that some functions only have trivial linear self-equivalences, but
have nontrivial extended linear self-equivalences. This motivates us to define
a new search similar to that of Beierle et al., except that instead of using linear
self-equivalences, it uses extended linear self-equivalences. Our first step is to
prove that the EL self-equivalences form a group. We do this in the following
section.

19

3.1. Extended linear equivalence group Chapter 3: Results

3.1 Extended linear equivalence group

We introduce the following operation on the set of EL self-equivalences:

Definition 1 Let SEEL(F) denote the set of all EL self-equivalences of F ∈ F2n

and let (L1, L2, a), (K1, K2, b) ∈ SEEL(F).
We define the operation ◦EL as:

(L1, L2, a) ◦EL (K1, K2, b) = (L1 ◦K1, K2 ◦ L2, L1 ◦ b ◦ L2 + a).

From here on we will write ◦ instead of ◦EL, and it should be clear from the
context which operation the symbol refers to.

Recall that a group, is a set, G, with a binary operation ∗ that satisfies the fol-
lowing axioms [15]:

1. It is associative; for any A,B,C ∈ G

(A ∗B) ∗ C = A ∗ (B ∗ C).

2. It has an identity element I such that for any A ∈ G

A ∗ I = I ∗ A = A.

3. Every element has an inverse; for all A ∈ G there exists A−1 ∈ G such
that
A ∗ A−1 = A−1 ∗ A = I .

We now show that for any vectorial Boolean function F ∈ F2n , the set SEEL(F)

together with the operation from Definition 1, form a group. We verify that
each axiom from the definition of a group holds.

20

3.1. Extended linear equivalence group Chapter 3: Results

1. First we prove that the group is associative:
Let A = (L1, L2, a), B = (K1, K2, b), C = (H1, H2, c), then
A ◦B = (L1 ◦K1, K2 ◦ L2, L1 ◦ b ◦ L2 + a) and
B ◦ C = (K1 ◦H1, H2 ◦K2, K1 ◦ c ◦K2 + b).

We can compute A ◦ (B ◦ C) like this:
A◦(B ◦C) = (L1 ◦K1 ◦H1, H2 ◦K2 ◦L2, L1 ◦K1 ◦c◦K2 ◦L2+L1 ◦b◦L2+a).

Then we compute (A ◦B) ◦ C as such:
(A◦B)◦C = (L1 ◦K1 ◦H1, H2 ◦K2 ◦L2, L1 ◦K1 ◦c◦K2 ◦L2+L1 ◦b◦L2+a).

Since A ◦ (B ◦ C) = (A ◦B) ◦ C we know that the group is associative.

2. We proceed to prove that the group has an identity element:
Let I = (id, id, 0), where id is the identity mapping. Let A = (L1, L2, a),
then:
A ◦ I = (L1 ◦ id, id ◦ L2, L1 ◦ 0 ◦ L2 + a) = (L1, L2, a)

= A = I ◦ A = (id ◦ L1, L2 ◦ id, id ◦ a ◦ id+ 0) = (L1, L2, a) = A.

Hence I = (id, id, 0) is the identity element of the group.

3. Lastly we verify that every element has an inverse:
Let A = (L1, L2, a) and A−1 = (L−1

1 , L−1
2 , L−1

1 ◦ a ◦ L−1
2). Let id be the

identity mapping on Fn
2 . Now:

A ◦ A−1 = (L1 ◦ L−1
1 , L−1

2 ◦ L2, L1 ◦ L−1
1 ◦ a ◦ L−1

2 ◦ L2 + a) = (id, id, 0) = I

and
A−1 ◦A = (L−1

1 ◦L1, L2 ◦L−1
2 , L−1

1 ◦a◦L−1
2 +L−1

1 ◦a◦L−1
2) = (id, id, 0) = I .

We have proved that the group has an inverse.

Using the group axioms we have now proved that any vectorial Boolean func-
tion F , the set SEEL(F), forms a group.

21

3.2. Rust Chapter 3: Results

3.2 Rust

The preferred language in programmatic implementation of finite field arith-
metic is typically very high-level, ergonomic alternatives with integrated util-
ities for mathematical calculations. Frequently used are Magma, Python, and
Sagemath. While these languages are well-suited to create a ’proof of concept’
their computational speed is known to be quite slow. This becomes especially
apparent when processing large quantities of data. When trying to speed up
algorithms written in these languages, C and C++ are often used.

For our implementation we wanted to utilize a high-level, easy to learn, mod-
ern programming language. We wanted a high performing language that can
handle large computational data. Rust was a natural choice and to the best of
our knowledge there are not many examples of Rust being used in this field. It
is therefore interesting to see how it performs in comparison to C.

Languages like Java and Python use a process called garbage collector. A
garbage collector is a process that periodically frees up unused memory. This
reduces the cognitive load for the programmer, but it also slows down perfor-
mance. There is no garbage collector in Rust, making it faster and more mem-
ory efficient compared to languages like Java and Python [1]. Languages like C
do not have a garbage collector either, however one must explicitly free mem-
ory, making it easy tomakemistakes. Rust implements a borrow system, where
memory is dropped as soon as it goes out of scope. This ensures thatmemory is
efficiently freedwhile the programmer does not have to explicitly handle it. Be-
ing a modern language, Rust has data structures and a modern compiler with
descriptive errormessages and suggestions forwhen one inevitablymakesmis-
takes. Thus Rust combines a high efficiency comparable to that of C and C++,
with a relative ease of use comparable to modern programming languages like
Java and Python.

22

3.3. Implementation of Kaleyski’s algorithm Chapter 3: Results

3.3 Implementation of Kaleyski’s algorithm

Like described in Section 2.5, Kaleyski proposed an algorithm for computing
EA-equivalences. We have implemented this algorithm in Rust and mad it
available at [11]. This also allowed us to use Rust’s facilities for easy parallel
implementation.

3.4 Benchmarking Rust

Like previously mentioned, the C programming language is frequently used to
increase performance. Heggebakk showed in her thesis that herC-implementation
of Kaleyski’s algorithm is up to 300 times faster than the one in Magma [10].
Unlike our implementation, Heggebakk’s version did not run in parallel. To
compare the two implementations we changed our implementation so that it
too runs sequentially. The comparison was done in the same way and on the
same server as Heggebakk. For each of the functions to be tested, we created
10 different equivalent functions using randomly generated L1, L2 and A. The
test was then done on both of the implementations in order to get an average
running time.

Table 3.1 is structured in the same way as in [10]. The first column is the di-
mension n and the second column is the id in the same way as in [9]. The next
two columns are the running times of Heggebakk’s C implementation and our
Rust implementation, respectively, in seconds. Aswe can see from the table, the
running time of our implementation is faster in 21 out of the 27 tested functions.
For function 5.1 we observe that the running timer is 17 times faster than the C
equivalent and we can calculate that the median speedup of these funcitons is
79%.

23

3.5. Extended linear self-equivalence groups Chapter 3: Results

Heggebakk’s C implementation This Rust implementation
n name time time

1.1 2.2522 0.7156
1.2 2.1718 0.6773
1.3 26.5036 23.2005
1.4 28.4011 19.6781
1.5 73.7415 46.6857
1.6 77.6487 57.3253
1.7 9.9878 9.7976
1.8 20.2737 13.3931
1.9 34.5491 19.2599
1.10 6.1019 4.4727

8 1.11 24.4097 18.4355
1.12 11.8153 6.5502
1.13 16.1372 17.0938
1.14 2.4758 0.6650
1.15 89.5798 110.0045
1.16 8.3757 9.4433
1.17 7.3813 8.1360
2.1 12.4223 8.5608
3.1 13.3039 17.0895
4.1 5.5313 1.1602
5.1 11.6943 0.6815
6.1 2.6697 0.6704
7.1 2.1930 0.6133
1.1 194.7185 34.0678

10 1.2 189.1036 37.8949
1.5 1098.5705 1013.1090
1.6 1225.41360 2335.3506

Table 3.1: Comparison of running times between a C implementation and our
Rust implementation.

3.5 Extended linear self-equivalence groups

We have run our implementation of Kaleyski’s algorithm for all known APN
functions up to CCZ equivalence in dimensions 6, 8 and 10 to compute all the
self-equivalence groups and made it available at [12]. We observe that 3 out of

24

3.6. Generating APN functions from self-equivalences Chapter 3: Results

14 functions in dimension 6 have nontrivial EL self-equivalence and the same is
true for 36 out of 26 514 functions in dimension 8. Most interestinglywe observe
that all three functions with nontrivial EL self-equivalence in dimension 6, and
9 of the functions in dimension 8 have a trivial linear self-equivalence group.
Out of 26 514 functions in dimension 8, 13 758 had a trivial EL self-equivalence
group. In dimension 6, 7 out of 14 had a trivial EL self-equivalence group.

3.6 GeneratingAPNfunctions fromself-equivalences

Based on the previous section, a natural question is whether a search similar to
that of Beierle et al., but using extended linear self-equivalences instead of lin-
ear self-equivalences; this may produce functions that would not be obtainable
from Beierle’s search.

We propose the following search: in our algorithm we assume that F (0) = 0.
To begin, we fill an empty truth table with 2n zeros. We then guess the value
of the first element and generate multiple elements for free. Step-by-step the
search is as follows:

1. We start with the equation: L1 ◦ F ◦ L2 + A = F .

2. We can rewrite the equation as: F ◦ L2 = L−1
1 ◦ F + L−1

1 ◦ A.

3. Due to L−1
1 being linear we can rewrite it again as: F ◦ L2 = L−1

1 (F + A).

4. Using the equation above we can start by assigning the first element of
the first cycle. F (x) = y, for some x, y ∈ F2n .

5. We apply L2 to both sides:
F (L2(x)) = L−1

1 (F (x) + A(x)) = F (L2(x)) = L−1
1 (y + A(x)).

We have now derived the value of F (L2(x)), due to the fact that L−1
1 , L2

and A are all known.

25

3.7. Backwards search Chapter 3: Results

6. Finally we can apply L2 again to get:
F (L2(L2(x))) = L−1

1 (F (L2(x)) + A(L2(x)).
We continue this untilwe loop, in otherwords, untilL2(L2(L2(...(L2(x))))) =

x, being F (x) = y.

We precomputewhatwe call cycles fromL2. A cycle underL2 is all the elements
that can be obtained from some x by successive application of L2.This means
that we start by letting the first element of the first cycle to be 1. Then we apply
L2 to 1 to obtain, say 50. We proceed to apply L2 to 50 to obtain some new
number. We continue doing this until we reach the start, i.e 1. If there are
elements from F2n that do not belong in the cycle, then we start computing the
next cycle. We do this in the same way, except we start by assigning the first
element of this cycle as the smallest element that is not in the previous cycle.

The benefit of precomputing the cycles for each element of the self-equivalence
group of all functions with nontrivial EL self-equivalence is that we are able
to choose the best possible element for the search. If we know that for some
function F in dimension n = 8 we have one L2 that induces 15 cycles, and
another that induces 20 cycles, then we have (28)5 less iterations if we chose
the L2 with 15 cycles. Based on this, we compute all these cycles for all APN
functions with nontrivial EL self-equivalence in dimension 6, 8 and 10 up to
CCZ equivalence.

3.7 Backwards search
In addition to the search described in the previous section, we can also try to
search for new functions by successively replacing the values of cycles. Say the
function has, for instance, 15 cycles. We first try to replace the value of the last
cycle, and then the last two cycles until we reach the first cycle. Consequently,
wemight obtain a new function that shares the two first cycles with the original
function, resulting in us obtaining the functions sooner than if wewere to guess
all the cycles. We call this a backwards search.

26

3.8. Computational results Chapter 3: Results

3.8 Computational results

To gauge the possibility of using these searches to obtain new functions, we
ran some preliminary experimental computations in dimension 6 and 8. We
used both the backwards search and the regular search. We observed that for
the functions “Beierle 14“ and “Beierle 15“ from [2] in dimension 8, we were
able to go from one equivalence class to another. In dimension 6, we ran the
search for the functions “1.3“ and “1.7“ from [9] and we observed that we can
go from quadratic functions to non-quadratic functions. Unfortunately, none
of these functions proved to be new, regardless we have clearly demonstrated
that the search can produce inequivalent functions and indeed functions of a
different algebraic degree. In light of this, this is a computational approach that
deserves further investigation.

27

3.8. Computational results Chapter 3: Results

28

Chapter 4

Conclusion and future work

4.1 Conclusion
We studied extended linear self-equivalences and defined an operation under
which EL self-equivalences form a group. We implemented the EL equivalence
algorithm of Kaleyski in Rust. We benchmarked our implementation and were
able to show that it is comparable to a previous implementation written in C.
We extended our implementation to run in parallel.

We calculated all the self-equivalences for all knownCCZ-inequivalent quadratic
APN functions in dimensions 6, 8, and 10 using our parallel implementation.
Based on these computational resultswe observe that there exist functionswith
non-trivial EL self-equivalence that only have trivial linear self-equivalences.

Based on the results from our computation we formulated an example of a
search similar to that of Beierle et al. This search can find functions having a
nontrivial EL self-equivalence. Using this new search, we ran some prelimi-
nary experimental searches that showed that searches of this type can transi-
tion between CCZ classes, and can even find functions of a different algebraic
degree.

29

4.2. Future work Chapter 4: Conclusion and future work

4.2 Future work

In our work wewere only able to compute self-equivalences for quadratic APN
functions in even dimensions, because Kaleyski’s algorithm does not work for
quadratic APN functions in odd dimensions. One potential direction for future
workwould be to use a different algorithm to calculate EL self-equivalences for
quadratic APN functions in odddimensions and to continue the searches there.

A natural next step would be to take the search and use it to its full potential.
By doing a dedicated computational work, one can try to classify all EL self-
equivalences and run the search in parallel for an extended period of time to
see how many new functions can be obtained.

30

4.2. Future work Chapter 4: Conclusion and future work

31

Bibliography

[1] The Rust Programming Language - The Rust Programming Language.
URL: https://doc.rust-lang.org/book/.

[2] Christof Beierle and Gregor Leander. New Instances of Quadratic APN
Functions. IEEETransactions on Information Theory, 68(1):670–678, January
2022. ISSN 1557-9654. doi: 10.1109/TIT.2021.3120698. Conference Name:
IEEE Transactions on Information Theory.

[3] Christof Beierle, Marcus Brinkmann, and Gregor Leander. Linearly Self-
Equivalent APN Permutations in Small Dimension. IEEE Transactions
on Information Theory, 67(7):4863–4875, July 2021. ISSN 1557-9654. doi:
10.1109/TIT.2021.3071533. Conference Name: IEEE Transactions on In-
formation Theory.

[4] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. Journal of Cryptology, 4(1):3–72, January 1991. ISSN 0933-2790,
1432-1378. doi: 10.1007/BF00630563.
URL: http://link.springer.com/10.1007/BF00630563.

[5] Marcus Brinkmann and Gregor Leander. On the classification of APN
functions up to dimension five. Designs, Codes and Cryptography, 49(1):
273–288, December 2008. ISSN 1573-7586. doi: 10.1007/s10623-008-9194-
6.
URL: https://doi.org/10.1007/s10623-008-9194-6.

32

https://doc.rust-lang.org/book/
http://link.springer.com/10.1007/BF00630563
https://doi.org/10.1007/s10623-008-9194-6

Bibliography Chapter 4: Bibliography

[6] Claude Carlet. Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press, 1 edition, November 2020. ISBN 978-1-108-
60680-6 978-1-108-47380-4. doi: 10.1017/9781108606806.
URL: https://www.cambridge.org/core/product/identifier/9781108606806/

type/book.

[7] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, Bent
Functions and Permutations Suitable For DES-like Cryptosystems. Des.
Codes Cryptography, 15:125–156, November 1998. doi: 10.1023/A:
1008344232130.

[8] Florent Chabaud and Serge Vaudenay. Links between differential and
linear cryptanalysis. In Alfredo De Santis, editor, Advances in Cryptology
— EUROCRYPT’94, Lecture Notes in Computer Science, pages 356–365,
Berlin, Heidelberg, 1995. Springer. ISBN 978-3-540-44717-7. doi: 10.1007/
BFb0053450.

[9] Yves Edel and Alexander Pott. A new almost perfect nonlinear function
which is not quadratic. Advances in Mathematics of Communications, 3(1):
59–81, December 2008. ISSN 1930-5346. doi: 10.3934/amc.2009.3.59.
URL: https://www.aimsciences.org/en/article/doi/10.3934/amc.2009.3.59. Pub-
lisher: Advances in Mathematics of Communications.

[10] Marie Heggebakk. An efficient implementation of a test for EA-
equivalence. Master’s thesis, The University of Bergen, June 2022.
URL: https://bora.uib.no/bora-xmlui/handle/11250/3003709. Accepted: 2022-
07-07T23:40:57Z.

[11] Vegard Jensløkken. jenslokken/EA-equivalence-Rust, October 2023.
URL: https://github.com/jenslokken/EA-equivalence-Rust.

[12] Vegard Jensløkken. jenslokken/Extended-linear-APN-search, October
2023.
URL: https://github.com/jenslokken/Extended-linear-APN-search.

33

https://www.cambridge.org/core/product/identifier/9781108606806/type/book
https://www.cambridge.org/core/product/identifier/9781108606806/type/book
https://www.aimsciences.org/en/article/doi/10.3934/amc.2009.3.59
https://bora.uib.no/bora-xmlui/handle/11250/3003709
https://github.com/jenslokken/EA-equivalence-Rust
https://github.com/jenslokken/Extended-linear-APN-search

Bibliography Chapter 4: Bibliography

[13] Nikolay Kaleyski. Deciding EA-equivalence via invariants. Cryptography
and Communications, 14(2):271–290, March 2022. ISSN 1936-2455. doi:
10.1007/s12095-021-00513-y.
URL: https://doi.org/10.1007/s12095-021-00513-y.

[14] Lars R. Knudsen. Truncated and higher order differentials. In Bart Pre-
neel, editor, Fast Software Encryption, Lecture Notes in Computer Science,
pages 196–211, Berlin, Heidelberg, 1995. Springer. ISBN 978-3-540-47809-
6. doi: 10.1007/3-540-60590-8 16.

[15] Rudolf Lidl and Harald Niederreiter. Algebraic Foundations. In Fi-
nite Fields, Encyclopedia of Mathematics and its Applications, pages
1–46. Cambridge University Press, Cambridge, 2 edition, 1996. ISBN
9780521392310. doi: 10.1017/CBO9780511525926.003.
URL: https://www.cambridge.org/core/books/finite-fields/algebraic-

foundations/97B0BD50368571B6BA2EBB0AED8DC6A1.

[16] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor
Helleseth, editor, Advances in Cryptology — EUROCRYPT ’93, Lecture
Notes in Computer Science, pages 386–397, Berlin, Heidelberg, 1994.
Springer. ISBN 978-3-540-48285-7. doi: 10.1007/3-540-48285-7 33.

[17] Satoshi Yoshiara. Equivalences of quadratic APN functions. Journal of
Algebraic Combinatorics, 35(3):461–475, May 2012. ISSN 0925-9899, 1572-
9192. doi: 10.1007/s10801-011-0309-1.
URL: http://link.springer.com/10.1007/s10801-011-0309-1.

[18] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A Matrix Approach for
Constructing Quadratic APN Functions, 2013.
URL: https://eprint.iacr.org/2013/007. Report Number: 007.

34

https://doi.org/10.1007/s12095-021-00513-y
https://www.cambridge.org/core/books/finite-fields/algebraic-foundations/97B0BD50368571B6BA2EBB0AED8DC6A1
https://www.cambridge.org/core/books/finite-fields/algebraic-foundations/97B0BD50368571B6BA2EBB0AED8DC6A1
http://link.springer.com/10.1007/s10801-011-0309-1
https://eprint.iacr.org/2013/007

	Introduction
	The problem

	Background
	Representations
	Truth table form
	Univariate representation

	Cryptography
	Algebraic degree
	Differential uniformity
	APN functions
	Nonlinearity
	AB functions

	Equivalence relations
	CCZ-equivalence
	EA-equivalence
	Affine and linear equivalence
	Self-equivalence

	Known methods for obtaining new APN functions
	Polynomial search
	Matrix approach
	Self-equivalence search

	Algorithm for recovering EA equivalence

	Results
	Extended linear equivalence group
	Rust
	Implementation of Kaleyski's algorithm
	Benchmarking Rust
	Extended linear self-equivalence groups
	Generating APN functions from self-equivalences
	Backwards search
	Computational results

	Conclusion and future work
	Conclusion
	Future work

	Bibliography

