Deep Learning and Deep
Reinforcement Learning for

Graph Based Applications

Ramin Hasibi

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway
2024

UNIVERSITY OF BERGEN

Deep Learning and Deep Reinforcement
Learning for Graph Based Applications

Ramin Hasibi

Thesis for the degree of Philosophiae Doctor (PhD)
at the University of Bergen

Date of defense: 26.01.2024

© Copyright Ramin Hasibi

The material in this publication is covered by the provisions of the Copyright Act.

Year: 2024
Title: Deep Learning and Deep Reinforcement Learning for Graph Based Applications
Name: Ramin Hasibi

Print: Skipnes Kommunikasjon / University of Bergen

Scientific environment

The work presented in this thesis was carried at the Computational Biology Unit (CBU),
Department of Informatics, Faculty of Mathematics and Natural Sciences, University of
Bergen (UiB).

During my studies my main supervisor was Prof. Dr. Tom Michoel, and I was
co-supervised by Associate Prof. Dr. Pekka Parviainen. Addiotionally, I have been a
member of the National Research School in Bioinformatics, Biostatistics, and Systems
Biology (NORBIS).

S8 Peyg
"..:3 1LY by

COMPUTATION
BIOLOGY UN

-
—Ar-

Scientific environment

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Tom Michoel whose amaz-
ing guidance is the main reason that this thesis was made possible. From day one, he
helped me with ideas and ways to tackle hurdles and inspired me to keep going even when
results seemed unachievable. His efforts have kept me motivated during the four-year
Ph.D. period and he has taught me what it means to be a perfect project leader.

Next, I would like to thank my wife Elham for her immense kindness and support.
Without her, none of the blessings that I have in my life would be possible. I would also
like to thank my family back home who I miss very dearly. Their constant words of en-
couragement have helped me remain strong throughout this journey. I would also like to
thank my friends in Bergen who have created unforgettable memories for me that have
made the living experience in Norway extra enjoyable.

Finally, I would like to thank the Department of Informatics and University of Bergen
for allowing me to pursue my education and favorite research topic at this institute and
for providing me with the necessary resources to do so.

Ramin Hasibi
Bergen, 2023

Acknowledgements

Abstract

Deep learning has provided state-of-the-art performance in many applications such as
computer vision, text analysis, biology, etc. The success of deep learning has also helped
with the emergence of deep reinforcement learning for optimal decision-making and has
shown great promise, especially in optimization problems. Additionally, graphs as a
mathematical representation for structured complex systems have proven to be a power-
ful tool for analysis and problem-solving that offer a fresh perspective on the formulation
of the problem. Introducing graphs as an input modality for machine learning problems
enables deep learning models to either utilize the structure of the graph in their repre-
sentation learning scheme or optimize the graph structure for a downstream evaluation
task. Doing so will also lead to model methods and pipelines that leverage the struc-
tural information provided by graphs to improve performance compared to traditional
machine learning models. In this thesis, we introduce five different use-case applications,
in the format of five research papers, that can be modeled as graphs and aim to provide
novel models that address problems using deep graph representation learning and deep
reinforcement learning models. Our main three application domains are bioinformatics,
computer vision, and logistics.

First, we aim to address two problems in the domain of bioinformatics. In Pa-
per I, we address the issue of integration of continuous omics datasets with biological
networks. We introduce an auto-encoder scheme focused on representation learning of
node features in biological networks and showcase the application of the designed frame-
work in a real-world example through the imputation of missing values in an example
omics dataset. Paper II looks at utilizing graph representation learning for process-
ing metabolic networks. In the proposed approach, we introduce a machine learning
pipeline (from feature extraction to model architecture) based on graph neural networks
and evaluate the pipeline on the task of gene essentiality prediction which is a well-known
application of metabolic pathway networks.

The second domain of applications is the computer vision domain specifically the
problem of human gesture recognition. In Paper IIT and the follow-up Paper IV, we
introduce a gesture recognition system that is both faster and more accurate compared to
the state-of-the-art prediction of human subject gestures from mmWave Radar generated
point clouds. We achieve this by modeling the input point cloud as a spatio-temporal
graph and processing the created graph using the proposed graph representation learning
technique. We further evaluate the system in different experimental conditions in terms
of the angle of the subject with respect to sensing and propose an ensemble approach
for mitigating the effect of changing the sensing angle on the performance of the model.

The last application that we address is the use of deep reinforcement learning to
optimize the structure of the graphs in combinatorial optimization problems in logis-
tics. Paper V introduces a general problem-independent hyperheuristic that utilizes the
decision-making capability of deep reinforcement learning using a problem-independent
state feature information. The proposed framework is trained on a general reward func-
tion to achieve state-of-the-art performance among popular solvers in the field of combi-
natorial optimization. We evaluate the performance of the proposed approach on three
example routing problems as well as a scheduling problem to showcase the effectiveness

vi Abstract

of our method in different problems.

Sammendrag

Dypleering har gitt state-of-the-art ytelse i mange applikasjoner som datasyn, tekst-
analyse, biologi, osv. Suksessen med dyp leering har ogsa hjulpet fremveksten av dyp
forsterkende laering for optimal beslutningstaking og har vist stort potensiale, spesielt i
optimaliseringsproblemer. I tillegg har grafer som matematisk representasjon for struk-
turerte komplekse systemer vist seg & veere et kraftig verktgy for analyse og problem-
lgsning, og gitt et nytt perspektiv pa formuleringen av problemet. Ved & introdusere
grafer som en inputmodalitet for maskinleeringsproblemer kan dypleeringsmodeller enten
bruke strukturen til grafen i sine representasjonsleeringsskjema, eller optimalisere graf-
strukturen i en nedstrgms evalueringsoppgave. Dette vil ogsa fgre til modellmetoder og
pipelines som utnytter den strukturelle informasjonen gitt av grafer til forbedret ytelse,
sammenlignet med tradisjonelle maskinleeringsmodellers kapasitet. I denne oppgaven
introduserer vi fem forskjellige use-case-applikasjoner, gjennom fem forskningsartikler,
som kan modelleres som grafer og tar sikte pa & skape nye modeller som adresserer prob-
lemer ved bruk av dyp grafrepresentasjonsleering og dype forsterkningsleeringsmodeller.
Vare tre viktigste applikasjonsdomener er bioinformatikk, datasyn og logistikk.

Forst tar vi sikte pa & adressere to problemer innen bioinformatikk. I Paper I tar vi
opp spgrsmalet om integrering av kontinuerlige omics-datasett med biologiske nettverk.
Vi introduserer et auto-koderskjema fokusert pa representasjonsleering av nodefunksjoner
i biologiske nettverk, og viser anvendelsen av det utformede rammeverket i et virkelighet-
seksempel gjennom imputering av manglende verdier i et eksempeldatasett for omics.
Paper II ser pa bruk av grafrepresentasjonsleering for & behandle metabolske nettverk.
I den foreslatte tilneermingen introduserer vi en maskinleeringspipeline (fra funksjonsek-
straksjon til modellarkitektur) basert pa grafiske nevrale nettverk og evaluerer pipeli-
nen basert pa prediksjon av genessensalitet, som er en velkjent bruk av metabolske
banenettverk.

Det andre domenet av applikasjoner er datasynsdomenet, spesifikt problemet med
gjenkjennelse av menneskelige gester. I Paper III, og oppfelgingen Paper IV, in-
troduserer vi et gestgjenkjenningssystem som er bade raskere og mer ngyaktig enn
den avanserte prediksjonen av menneskelige motivbevegelser fra mmWave Radar gener-
erte punktskyer. Vi oppnar dette ved & modellere inngangspunktskyen som en spatio-
temporal graf og & bearbeide den opprettede grafen ved bruk av den foreslatte leering-
steknikken for grafrepresentasjon. Videre evaluerer vi systemet under forskjellige eksper-
imentelle forhold ut ifra vinkelen til emnet med hensyn til sansing, og foreslar en ensem-
bletilngerming for & dempe effekten av & endre sansevinkelen pa ytelsen til modellen.

Den siste applikasjonen vi tar for oss er bruken av dyp forsterkningsleering for &
optimalisere strukturen til grafene i kombinatoriske optimaliseringsproblemer i logis-
tikk. Paper V introduserer en generell problemuavhengig hyperheuristikk som utnyt-
ter beslutningsevnen til dyp forsterkende leering, ved & bruke en problemuavhengig til-
standsfunksjonsinformasjon. Det foreslatte rammeverket er trent pa en generell belgn-
ningsfunksjon for & oppna hgykvalitets ytelse blant populeere lgsere innen kombinatorisk
optimalisering. Vi evaluerer ytelsen til den foreslatte tilneermingen med tre eksempler
pa ruting problemer samt et planleggingsproblem, for a vise effektiviteten til metoden
var i forskjellige typer problemstillinger.

viii Sammendrag

Outline

This thesis consists of an introduction and five scientific papers. Chapter 1 gives the
background information needed to understand the papers. The main objectives for this
thesis are provided in chapter 2. A brief summary of the papers is given in chapter 3.
The papers included in this thesis (chapter 5) are:

1.

Ramin Hasibi and Tom Michoel, (2021) A Graph Feature Auto-Encoder for the
Prediction of Unobserved Node Features on Biological Networks, BMC Bioinfor-
matics 22/1,

https://doi.org/10.1186/s12859-021-04447-3

Ramin Hasibi, Tom Michoel, and Diego A. Oyarzun, (2023) Integration of
genome-scale metabolic models and deep graph neural networks for gene essen-
tiality prediction, biorxive preprint available
https://doi.org/10.1101/2023.08.25.554757

Dariush Salami', Ramin Hasibi', Sameera Palipana, Petar Popovski, Tom Mi-
choel, and Stephan Sigg, (2022) Tesla-Rapture: A Lightweight Gesture Recognition
System From mmWave Radar Sparse Point Clouds, IEEE Transactions on Mobile
Computing 22 /08,

https://doi.org/10.1109/TMC.2022.3153717

Dariush Salami, Ramin Hasibi, Stefano Savazzi, Tom Michoel, and Stephan
Sigg, (2022) Integrating Angle-Agnostic Sensing into Cellular Networks using NR
Sidelink, (Submitted to ACM Transactions on Internet of Things)
https://doi.org/10.48550/arXiv.2109.07253

. Jakkob Kallestad, Ramin Hasibi, Ahmad Hemmati, and Keneth Sorensen (2023)

A general deep reinforcement learning hyperheuristic framework for solving combi-
natorial optimization problems, European Journal of Operational Research 309/1,
https://doi.org/10.1016/j.ejor.2023.01.017

'Equal contribution

Outline

Contents

Scientific environment
Acknowledgements
Abstract

Sammendrag

Outline

1 Background
1.1 Graphs as mathematical structures
1.2 Graph formulation o
1.3 Machine learning on graphs oL
1.3.1 Node level prediction
1.3.2 Graph level prediction oL
1.3.3 Graph structure optimization
1.4 Traditional approach to node and graph level tasks
1.5 Supervised deep learning on node and graph level tasks
1.5.1 Sources of error in supervised learning
1.5.2 Set representation learning L.
1.5.3 Message passing neural networks
1.6 Deep reinforcement learning for graph structure optimization
1.6.1 Combinatorial optimization on graphs
1.6.2 Metaheuristics L o
1.6.3 Hyperheuristics
1.6.4 Deep Reinforcement Learning (RL) for combinatorial optimization
1.7 Applications of graph processing on different domains
1.7.1 Bioinformatics applications oL
1.7.2 Computer vision applications
1.7.3 Logistics and scheduling applications

2 Aim of this study
2.1 Bioinformatics o
2.2 Computer vision
2.3 Logistics

3 Summary of the papers

4 Discussion and future aspects

iii

vii

ix

O NOO WO A~ BhW=RH

25
25
25
26

27

33

xii CONTENTS
5 Scientific results 45
Paper T o 47
Paper IT 69
Paper IIT 101
Paper IV . . . o o o 119

Paper V 141

1 Background

1.1 Graphs as mathematical structures

A graph can be described as a mathematical notion to express the structure of a complex
system. Simply put, graphs are derived from sets of elements (nodes) that are connected
through a set of relations (edges). The nodes and edges of a graph can be of the same
or different types which is one of the reasons that graphs are expressive in describing a
wide range of systems. (Barabdsi and Pdsfai, 2016).

Figure 1.1: Example graph of Zachary Karate Club describing a social network of
students attending a club. Nodes and edges correspond to each member and whether they
interacted outside the club. Colors show the two groups that they eventually split into after a
conflict between members. Zachary (1977)

Many real-world complex systems can be described as graphs. A commonly used
example is the social network which is produced from the friends and acquaintances
of individuals with nodes representing the persons and edges between the people who
are friends or know each other from their social life. One example of such a graph is
presented in Fig 1.1. Another important aspect of graphs is their generalizability to
different domains just by representing nodes and edges as elements of said domain. For
example, the same graph notation in social networks can also be applied in chemistry
to describe molecules with nodes and edges representing the atoms and bonds (Gilmer
et al., 2017). This flexibility has introduced graphs in many application domains for
analyzing complex systems:

* In biology, a graph can describe the interaction between genes, proteins, metabo-

2 Background

© ©)

Figure 1.2: Some example applications of graphs for representing real-world systems
(A) a graph showing social networks and people connected by different websites; (B) A correla-
tion network between proteins and metabolites Mastej et al. (2020); (C) A graph depicting the
connection of devices and the direction of dataflow between different nodes in a communication
network Tilwari et al. (2021); (D) An instance of a classic vehicle routing problem in logistics
is represented as a graph Kucharska (2019).

lites, and reactions inside a cell (Emmert-Streib et al., 2014).

* In communications networks, the connection between devices, either wired or wire-
less, can be mapped to a graph structure and analyzed through graph perspective
(Jiang, 2022).

* Power grids can be modeled as graphs with the power stations as nodes and power
transmission lines as edges (Hadaj et al., 2022).

* In transportation and logistics, nodes and edges can be the locations and roads
that connect them and many analyses such as shortest path calculation can be
done on the graph structure (Kool et al., 2019).

Analyzing complex systems through the eyes of graph structure can result in finding
laws and similarities between different systems that were not previously known. Un-
derstanding and discovering such laws and the relationship between the structure and
the nature of the systems is the main motivation behind the emergence of “Network Sci-
ence”. Network science is a study that offers a set of analysis tools that help uncover such
empirical laws from different domain datasets and unfold the complexity of structured
systems. (Easley and Kleinberg, 2010)

With the ever-growing field of network science and graph theory, the amount of
datasets containing such structural information has also increased massively. These high-
quality datasets are generated through many industries that work with these complex
systems such as social networking websites, the pharmaceutical industry (for developing

1.2 Graph formulation 3

drugs), logistics, etc. Other than network science, machine learning can also be used to
process graph-based datasets. In line with discovering similarities and rules about the
structure of graphs, machine learning can take advantage of training certain algorithms
that are tailored to graph-based input datasets and extract a generalized rule for obtain-
ing a preferred result from the input graph. Such trained models can then be applied
in other scenarios to predict for unseen datasets or generate new graph structures with
desired properties to improve the quality of a certain product (Hamilton, 2020). For in-
stance, a generative machine learning model can learn to predict new and stable drugs
by analyzing the graph structure and features of already available drug datasets (You
et al., 2018). In the following sections, we further illustrate the way machine learning
models can take advantage of graph structures.

1.2 Graph formulation

Before going into details about machine learning techniques on graphs, one needs to
understand how to formulate a graph object. A graph G = (V, €) is defined by a set of
nodes V with N = |V| which represents the main domain objects in the system and a
set of edges € which are used to describe the underlying connections between the nodes.
In an undirected graph, a connection from node i to node j can be shown using the
unordered set of {i,j} € €. However, in a directed graph, a connection from node i to
node j does not guarantee a connection in the opposite direction. Thus, the edge from
i to j is represented using ordered pair (7,5). A more straightforward way to represent
all the above information about G is to use the adjacency matrix. The adjacency matrix
A € {0,1}V*N is typically a square matrix the rows and columns of which correspond
to each node in the graph. The elements of the matrix represent the existence of each
edge in the graph. For every two adjacent nodes i and j (nodes that share an edge),
the (7, 7)th entry of the matrix will be equal to 1. All other elements of the matrix will
be zero which corresponds to no connection between the two corresponding nodes of the
matrix entry. The edges in a graph can also be weighted in which case a numerical value
is assigned to each edge in €. This can be reflected in the adjacency entries by replacing
the value 1 with the edge weight for the corresponding entry (Rosen, 2006). Finally,
another aspect of the graph that is used to characterize the underlying system is the
attributions or features that are assigned to each node or edge in the graph. This aspect
is especially important for machine learning methods as they usually work with features
as input to find the appropriate function approximation. In the case of node features,
the values are stored in a Matrix X € R¥*F in which, each row corresponds to the
features of the node in the same row of the adjacency A. An example of such features
can be personal data or image for each person in a social network or spatial information
of each atom in a molecule. The edge set attributes may also be available for some graph
datasets. For instance, the type of relationship between two entities in an author-paper
network (e.g., written, cited, etc.) or the energy levels of a bound between two atoms
can be considered example attributes for a sample edge.

4 Background

1.3 Machine learning on graphs

Machine learning is the study of building automated systems through training an al-
gorithm based on available knowledge to solve a specific prediction problem. When it
comes to graphs, the algorithms are applied to datasets that can be modeled as graphs.
For a typical problem in machine learning, the available knowledge (also known as train-
ing data) is used to train or tune a learning algorithm to predict a desired outcome. The
performance of the algorithm is then evaluated on a separate unseen (during training)
dataset known as test data. Traditionally, machine learning problems are categorized
into three main families of supervised, unsupervised, and RL based on the feedback that
the learning model receives from data. In a supervised setting, the main goal is to predict
a ground truth label for each sample in the dataset. In such a setting, the model lever-
ages the ground truth labels as feedback during training to try and tune the prediction
model. On the other hand, Unsupervised learning lacks (or ignores) label information
and tries to uncover hidden patterns from the characteristics (features) of the dataset
itself rather than their relationship to ground truth labels. In RL, an environment re-
places the dataset and the aim is to maximize the feedback signal that is received from
the environment over a certain amount of steps. RL can be modeled as a high-level
decision-making process where the machine learning model aims to choose the best set
of consecutive actions to solve an episodic problem. Introducing the graph structure
into the problem formulation results in a different type of problem categorization when
it comes to machine learning methods. Tasks on graphs relate to the prediction of a
specific target for each element or the whole structure of the graph or the generation
of a graph with desired properties. Based on this fact, Hamilton (2020) suggested five
categories for machine learning problems on graphs:

* Node level prediction,

* Edge level prediction,

* Graph level prediction,

* Sub-graph (community) level prediction,
* Graph structure optimization.

Both supervised and unsupervised machine learning techniques can be used for the first
four tasks while reinforcement learning is mostly used as an approach to Graph structure
optimization. Out of these 5 categories, in this thesis, we mostly focus on node and
graph-level applications through supervised methods as well as structure optimization
with RL.

1.3.1 Node level prediction

Many machine learning problems on graphs are modeled as node-level predictions. In
this task, the aim is to come up with a learning function that accurately predicts value
y; associated with node i in the graph while utilizing attributes and the structure of
the graph. The target value of a node can be the type (classification), a singular con-
tinuous value (regression), or multiple values associated with a node (multi-class or

1.3 Machine learning on graphs 5

multi-regression). An example application of this task is to try and predict the spam re-
views in a graph of reviewer products (Rayana and Akoglu, 2015) or to find the research
subject of a scientific paper based on a citation network Yang et al. (2016).

Although this problem resembles the classic task of supervised learning in machine
learning, there is a fundamental difference in node-level prediction owed to the connection
of nodes through the structure of the graph. In normal supervised learning problems, the
instances are completely independent of each other and are looked at separately by the
learning model. On the other hand, in graphs, a node contains neighborhood information
that is a result of it being part of the graph. Utilizing this extra information can help the
algorithm to better predict the labels given the input features. This hypothesis stems
from the fact that in a network, similar nodes tend to connect to one another more
often, a phenomenon that is also known as “homophily”. Incorporating this fact into the
machine learning model has been shown to improve the performance specifically in node
level predictions (Hamilton, 2020). Additionally, the notion of semi-supervised learning
has also been used for node-level tasks. In the semi-supervised approach, the model has
access to the features of the nodes in the test set however is “unaware” of the labels of
the test nodes. By doing so, the model uses the features of all the nodes in the graph to
better capture the neighborhood information surrounding each node and use this extra
information for its prediction of the label of each node. During training the model is
tuned based on the labels of the training nodes and for evaluation of the model, the
labels of the test nodes are predicted by the tuned model (Kipf and Welling, 2016).

1.3.2 Graph level prediction

The task of predicting a value based on the whole graph structure is more similar to the
classic supervised approach compared to node-level tasks. In graph-level prediction, each
sample in the dataset is drawn from a distribution independently from other samples.
The difference between this type of prediction and node-level prediction is the fact that
a single target y is predicted for the entire set of nodes in the graph and the training
and test sets are comprised of multiple graphs. The machine learning model has to take
advantage of the features of all the nodes as well as features extracted from the overall
structure of the graph to make its prediction. Example applications of this category
include trying to predict energy properties of a given molecular structure (Wu et al.,
2017), and classifying fake news using news propagation graphs (Dou et al., 2021).

1.3.3 Graph structure optimization

The main objective of structure optimization is to generate graph structures that fulfill
certain criteria in terms of the properties of the structure. For instance, in some appli-
cations, the aim is to create graphs that are similar to the ones that are available in the
training dataset. One of the major applications of this task is the generation of realistic
molecules which is used in the drug design process (You et al., 2018). Another area that
is concerned with the optimization of graph structure is the task of optimizing a cost
according to the graph structure. For example, in logistics, a graph represents the route
that a ship has to take to deliver goods to the destination (Korte and Vygen, 2012).
Therefore, creating graphs that describe a route that achieves minimum cost is the goal
of this problem. In this thesis, we mainly focus on the second type of graph structure

6 Background

learning which is to optimize a solution for a given graph-based optimization problem.

1.4 Traditional approach to node and graph level tasks

Before the introduction of deep learning for structured datasets, prediction tasks on
node and graph levels were typically solved using network science algorithmic frame-
works. One example is the family of network propagation algorithms. This framework is
based on the homophily principle of graph-structured datasets and typically follows an
iterative process in which, at each step, information is propagated through the edges to
nearby nodes until a certain convergence criterion is met Cowen et al. (2017a). A classic
example of this method is the “label propagation” algorithm in which (for the simplest
case) classification of the unlabeled nodes is done by assigning the most frequent label
of the neighbors as the label of the node in each step until each node’s label is the most
frequent in its neighboring nodes (Zhu and Ghahramani, 2002). This family of algo-
rithms has also been explored in the format of diffusion processes in statistical physics in
which heat (information) is propagated through the structure of the graph from nodes to
its neighbors (Thanou et al., 2017). Going beyond one-hop neighbors in the graph, an-
other family of methods, namely “Graph Embedding”, looks to encode high-dimensional
discrete graphs into low-dimensional, dense, and continuous embedding vector spaces
while preserving the structural properties of the graph inside the embedding (Cai et al.,
2018; Belkin and Niyogi, 2001). However, traditional approaches are limited due to the
fact that they require careful, hand-engineered features. Such hand-crafted features are
limited in generalization capability as they are not optimized for a specific task and
do not go through a learning process. Furthermore, designing these features can be a
time-consuming and expensive process. Therefore, the introduction of learning represen-
tations to the domain of graphs has made graph-based machine learning more powerful
and expressive due to the ability to find the optimized set of representations for each
task as well as training powerful non-linear function approximators through the use of
deep learning methods (Hamilton, 2020). Details about such methods and the reason
behind their superior performance are discussed in the following section.

1.5 Supervised deep learning on node and graph level tasks

Deep learning has become the flagship methodology in many of the machine learning
problems over the last decade. The main success of deep learning is owed to its superior
performance on high-dimensional datasets. Learning in high dimensions is a difficult task
that gets exponentially more complicated with increasing the number of dimensions, a
phenomenon that is known as the “Curse of Dimensionality”. However, in deep learning,
the architecture of the models tries to soften this effect by taking advantage of the
domain that the data is representing (e.g., vision, text, graphs, etc.). This is done
through inducing bias from the rules of the data domain. While many deep learning
architectures such as Convulotional Neural Networks (CNNs) (LeCun et al., 2010) and
Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) have taken advantage of
domain structures (i.e., locality in images and time warping in text or sound), graphs
often do not share the same underlying structural constraints as images or time-series
datasets. In fact, as shown in Figure 1.3, contrary to images, graph-based datasets do

1.5 Supervised deep learning on node and graph level tasks 7

Graph Image

(A)

17
o

Training graph Test graph

(B)

Figure 1.3: A graph does mot follow a specific structure constraint (A) In a graph,
each node can have a different number of neighbors whereas an image is always in the form of
a grid with nearby pizels forming a structured neighborhood; (B) The structure and size of the
training graphs (available data) and testing graphs (real-world data) might be different. As a
result, the deep learning model must be able to process both graphs through the same approach
to be applicable to real-world applications.

not have any constraints in terms of the size of each graph instance and the number
of neighbors for each node. For instance, the graphs in the training dataset might
be of smaller size compared to the ones that are produced in real-world environments.
Therefore, the deep learning architecture that processes them should not only be able
to process any graph (considering their structural irregularity) but also take advantage
of this rule in the processing pipeline to improve the performance of the model. In this
section, first, we discuss the difficulty of learning in high dimensional tasks and then
delve into the methods for inducing bias for deep representation learning for the domain
of graph-structured datasets.

1.5.1 Sources of error in supervised learning

In order to understand how deep learning techniques can benefit from inductive bias one
needs to identify the sources of error when it comes to supervised learning tasks. In
traditional supervised learning problem, a number of observed data points D & RMxd
are available for which a label vector Y € RM is assigned. The aim of the learning
algorithm is to find a function mapping f € F which maps the data points to the labels
ie., f(M) =Y. In machine learning, this is done through estimating the true function
f using some family of parameterized functions F = {fyco}. This estimation is done by
minimizing an empirical loss function (e.g., squared loss %|Y — fo(M)]? through some
optimization technique (e.g., stochastic gradient descent) which results in the estimated
function of fg (Bishop, 2007). Given this formulation, three sources of error can be
identified which prevent us from estimating the true function f:

8 Background

1. Approximation error: This error arises from the fact that the family of functions
F lacks the expressive power to estimate the true function f. An example of this
is to try and estimate a non-linear function using linear estimation which never
results in perfect estimation.

2. Statistical error: In the learning task, a finite number of data points are provided
for training. However, most functions require a large amount of data (which in-
creases exponentially with the number of dimensions) to be able to estimate the
true function f. The low number of available data samples limits the approxima-
tion capability of true function f especially in noisy applications where the true
data distribution is not known.

3. Optimization error: This error reflects the quality of optimization techniques to
find the global minimum of the error loss. A lot of the loss functions especially in
deep learning architectures are non-convex functions and optimization algorithms
on these loss functions are prone to finding local minima. Therefore, this error is
defined as the difference in the loss calculated for the final parameter set 6 and the
global minima of the chosen loss function.

While neural networks are known to be universal approximators (Hornik et al., 1989) and
therefore using them would result in a near zero approximation error, the statistical error
would actually be higher (due to overfitting) compared to a simpler family of functions
(e.g., linear). Thus, these two errors act in opposite directions of each other. However,
it can be shown that inducing bias into the architecture of the learning function fy using
the underlying laws of the domain structure can decrease the approximation error while
keeping the statistical error and the complexity of the model (in terms of number of
parameters) the same (Bronstein et al., 2021). For example CNNs take advantage of
the fact that images are pixels on a grid space and neighboring pixels contain useful
information when investigated together. This local information is processed using the
local kernels in the CNN architecture and that is one of the main contributing factors
to the success of such models on the image-based datasets (Krizhevsky et al., 2012).

1.5.2 Set representation learning

Inductive bias in the graph domain datasets arises from the definition of graphs. Graphs
are made from a set of nodes and in sets, there are not any constraints on the ordering
of the elements. This characteristic, which is referred to as permutation invariance, is
the main focus of deep learning for inducing bias and decreasing the approximation error
of the processing module of graph structures. The deep learning architectures that take
graphs as input also process them in such a way that changing the order of the nodes
does not change the output of the learning algorithm. To further illustrate this, first, we
assume a graph that does not have any edges (€ = 0). A function f that takes the input
set of nodes 'V achieves permutation invariance by applying an individual processing step
on each of the nodes separately and aggregating the results for all the nodes to generate
the final output (Zaheer et al., 2017).

S(X,V) = (W), (1.1)

eV

1.5 Supervised deep learning on node and graph level tasks 9

In this setting, v is usually a differentiable parameterized function and the resulting
vector of the aggregation is the representation vector of the entire node set V. Adding
edges back into the mix builds on top of the set representation learning method in formula
(1.1) by considering the local neighborhood of a node as a set and applying the same
formula on the neighborhood rather than the entire graph. Therefore, formula (1.1) for
each node is calculated as:

S(X Ni) = Y (W), (1.2)
JEN:

in which, N; = {j : (j,i) € €} is the neighbourhood set of node i. The output of the
formula (1.2) is the representation vector for the neighborhood of each node and can be
combined with the features of each node and used as input for predicting the labels in a
downstream task. For graph-level prediction, a permutation invariant pooling operator
is used to aggregate all the nodes’ representation vectors.

1.5.3 Message passing neural networks

a
SN

[ON

e]

:

Figure 1.4: The message passing scheme for graph processing; In each layer, the repre-
sentation of each node is updated by aggregating the messages from neighboring nodes.

The graph representation learning framework can also be modeled as a Message Passing
algorithm in which each node in the graph gathers the neighborhood information and
after combining it with its own representation sends a message over the edge to the
nodes that are connected to it. By doing so, the message function for each edge can be
computed as:

mj; = MSG(I]',I‘i,Ig]*i),V(j,Z') cé (1 3)

in which, wgj; are the optional edge features between nodes i and j and MSG is a
parameterized differentiable function. Finally, the output representation of each node
will be the aggregation of all the messages that it received from neighboring nodes and
the features of the node itself as follows:

10 Background

in which the AGG function performs a permutation invariant pooling to keep the induc-
tive bias assumption of set representation learning. In order to combine this framework
with the neural network as an example of an expressive family of functions, the MSG
function is usually a Multi-Layer Perceptron (MLP) with non-linear activation functions.
Additionally, in order to increase the power of the model, multiple layers of message pass-
ing are used where the output of each layer is fed into the next layer, and the resulting
model is referred to as Deep Message Passing Neural Networks (MPNNs) or Deep Graph
Neural Network (GNN). The formula for MPNNs is defined as

B =) (hg’f*”, AGCjex, (Mse(hg‘”'*”., Y, h(g’“(;j)’))) : (1.5)

in which, 0 < k <= K refers to the number of the message passing layer and h(¥) is the
representation vector of each node at layer k. It should also be noted that the input to
the first layer of MPNN are the original node and edge feature set (i.e., h? = z; and
hg(zj) - x(‘lji)

Based on the downstream task and the level of prediction (node or graph level), there
typically is an addition of the Read-out function which given the input representation of
all the nodes H = {h;|i € V} calculates the final prediction values for the target Y.

Y = R(H). (1.6)

Different choices for v, MSG, AGG, and R results in different MPNN frameworks tai-
lored to specific tasks or scenarios. For instance, on node-level tasks, the read-out func-
tion R is usually an MLP function that is calculated on each node representation vector
hl(-K) separately and predicts the target value for that node. But on graph-level predic-
tion, it can be a pooling operation such as sum-pool or average-pool combined with and

MLP to calculate the target prediction for the entire graph.

1.6 Deep reinforcement learning for graph structure optimization

RL is a subfield of machine learning that is concerned with maximizing the expected sum
of a numerical reward signal over a sequence of actions through multiple time steps. In a
typical RL setting, an autonomous agent is tasked with choosing between a set of actions
provided by a dynamic entity called environment over an episode of multiple sequential
decision-making steps. At each step, the chosen action is applied to the environment,
and in return, the environment provides the agent with a set of observable features also
known as states to indicate the change that the action has caused and a numerical reward
value which informs the agent how desirable the chosen action was at that particular
step (Sutton and Barto, 2018).

Deep Reinforcement Learning (Deep RL) is an extension of RL methods that take
advantage of the superior performance of deep learning techniques to make the decision-
making process of RL more powerful. In Deep RL the agent uses the same inductive bias
that the deep learning techniques are known for based on the domain of the state infor-
mation (e.g., image, graph, etc.,) to be able to learn in high dimensional environments.
While traditional RL uses tabular functions to map the state information to the action
space, in the continuous high dimensional state features, the tabular methods can not

1.6 Deep reinforcement learning for graph structure optimization 11

model the environment behavior properly. In such environments, an artificial neural net-
work is mainly used as a function approximator to be able to capture the representation
of the environment feature set and form a Deep RL agent.

Tasks related to graph structure optimization using Deep RL can be classified into
two subgroups based on the objective of structure generation. The first class is concerned
with the generation of realistic graphs that resemble the graphs from a certain dataset. In
this particular task, the generation process that uses machine learning involves training
on a set of available training set and during the generation phase, a graph structure is
sampled from the learned probability distribution of the graph structures. A popular
application of this domain is the generation of molecular structures for discovering new
drug molecules that need to be stable (maintain the correct structural constraints) and
also novel to be able to discover potential new drugs. An example work that utilizes Deep
RL for molecular generation is the work of You et al. (2018), in which an agent is tasked
with the generation of molecules from the ground up by adding a molecule and a bond at
each step of the generation process. The second category of graph structure optimization
acts solely based on a reward function and tries to optimize a cost value defined over
graphs. This family of problems mostly belongs to combinatorial optimization problems.
In this thesis, we address the second type of problem and introduce a novel way of using
Deep RL to solve most applications in this family of problems. In the rest of this section,
first, we introduce combinatorial optimization, then mention the typical methods to solve
them, and how they relate to graphs.

1.6.1 Combinatorial optimization on graphs

Combinatorial optimization is defined as finding a selection of elements (solution) be-
tween a set of elements P = {1,2,...,n}. Each selection is assigned an objective value
calculated using the objective function O : 27 — R, that assigns a value to each possible
selection s € 8. Not all possible solutions are acceptable (feasible) for most problems.
In fact, each feasible solution has to abide by certain rules (also known as problem con-
straints) to be accepted as a possible solution for the combinatorial optimization problem.
The space of feasible solutions 8 C 27 is a finite set, however finding feasible solutions
can be a challenging task in some problem spaces due to the set of constraints that are
defined for the solution space 8. The main aim of this optimization task is to find the
optimal solution s* which achieves the lowest (or highest) amount of objective function
value (Papadimitriou and Steiglitz, 1982).

Almost all combinatorial optimization problems can be modeled as a graph structure
optimization problem (Papadimitriou and Steiglitz, 1982). In this setting, the set of
choice elements is the edge set of the potential edges of the graph € and the resulting
graph G’ from the chosen edge set &' represents a potential solution s’. To further
demonstrate this, we can look at the classic example of Travelling Salesman Problem
(TSP) (Dantzig et al., 1954) where the aim is to find the shortest path among the
possible paths between multiple cities and return to the original starting point. As
shown in Fig. 1.5, This problem can be easily modeled as a graph the nodes of which are
positioned on the 2-dimensional Euclidean space. The weighted edge set is the potential
routes among each pair of cities and a solution is constructed by choosing a subset of
edges for constructing the solution path.

While small instances of certain combinatorial optimization problems could be solved

12 Background

start

6

Figure 1.5: Example TSP instance modeled as a graph. The nodes represent cities and the edge
weights indicate the cost of traveling between cities. An example solution for this problem is
depicted on the right where the objective value is O(s") = 24.

using exhaustive search, the number of possible solutions grows exponentially with larger
instance sizes. In some cases, even finding feasible solutions can be a cumbersome task.
Many of cases of this family of problems can not be solved in polynomial time and are of
computational complexity of NP-complete. This means that there is no exact algorithm
that obtains the global best solution in polynomial time for these problems (Festa, 2014).

To solve combinatorial optimization problems, there exist multiple approaches. The
first family of methods is known as FEzact Solvers. In this approach, the problem is
usually solved using a variation or combination of dynamic programming (Bellman,
1957) or branch and bound (Lawler and Wood, 1966) where only a subset of solution
space is explored where the global best is guaranteed to appear. Although these methods
often guarantee the global best solution, the time and computational complexity of such
solvers can be too resource-consuming. This has led to another family of methods referred
to as Heuristics. In this method, the optimality guarantee no longer stands but the
solutions provided by heuristics are computed in comparatively fast time with acceptable
quality in terms of objective value. This makes the heuristics suitable for larger instances
where using exact solvers is intractable in terms of computation time. The heuristics
are algorithmic strategies designed for each problem specifically to achieve high-quality
solutions. Two main ways to design heuristics are:

1. Constructive: In this type of heuristics, we start from an empty solution set and
elements of the solution are chosen one after the other in each step. Although they
are not as powerful as exact methods or the second family of heuristics, they are
quite fast and provide a good initial solution or a baseline for the second family of
heuristic methods.

2. Perturbative: In such heuristics, we start from an existing solution, and at each
step, a neighboring solution is generated by applying changes to the current solu-
tion.

The amount of change in the solution in perturbative heuristics determines how much
of the neighborhood is explored. While it is important to diversify, we also want to
maintain the quality of the current solution and not start from scratch (intensification).
Therefore, a balance between two strategies is required to obtain a good solution.

1.6 Deep reinforcement learning for graph structure optimization 13

1.6.2 Metaheuristics

While heuristics are typically problem dependent, a subgroup of heuristics titled Meta-
heuristics aim to be more generalizable by providing a high-level set of guidelines
and strategies to develop heuristics for optimization problems (Sérensen and Glover,
2013). generalizability of metaheuristics is often achieved by having some underlying as-
sumptions about the optimization problems that are to be solved. Metaheuristics are
usually closely related to perturbative heuristics. Some classic examples of these algo-
rithms are Genetic Algorithm (Holland, 1992), Particle SwarmOptimization (Kennedy
and Eberhart, 1995), Ant Colony (Merkle and Middendorf, 2006), Tabu search (Glover
and Laguna, 1997), and Simulated Annealing (Kirkpatrick et al., 1983a).

1.6.3 Hyperheuristics

Hyperheuristic is a heuristic that is used to guide the selection or generation process of
low-level heuristics to achieve a better solution quality. The hyperheuristic framework,
first introduced by Cowling et al. (2001), can be classified into two groups of selection
hyperheuristics and generation hyperheuristics. In this thesis, the main focus is on the
former group. The selection hyperheuristic is an iterative process that selects and applies
a low-level heuristic of a solution vector at each step of the search. The selection process
is usually done using a learning algorithm that applies machine learning techniques to
learn from experience either during the search (online) or from training on separate
datasets (offline). The main aim in hyperheuristic research is to build a model that can
be applied on many optimization problems with minimal information about the nature
of the problem. For instance, the only information that a hyperheuristic is provided can
be the number of low-level heuristics, the direction of the optimization (minimization
or maximization), and the objective function value. One of the contributions of this
thesis is to apply Deep RL as a learning selection hyperheuristic approach for solving
combinatorial optimization on graphs.

1.6.4 Deep RL for combinatorial optimization

A Deep RL agent can be seen as a heuristic method that can be trained to choose from
a set of elements. In this application, each set element represents an action that changes
the solution space (state information) and also the objective value which can be the
source for the reward function. Using the Deep RL agent, just like other heuristics can
be in two manners of “constructive” or “perturbative”. In the constructive Deep RL, an
agent starts from an empty solution and at each step selects an element to add to the
solution. For instance, in solving TSP, the agent at each step chooses the next node
of the graph to visit from the last visited node. Typically, in such a setting, the deep
learning architecture is used to process the solution representation, which is a graph
representing the current solution. It can also have information about the global setting
of the problem instance. An instance of this approach is the work of Kool et al. (2019) for
solving routing problems. In this work, an attention-based GNN (Vaswani et al., 2017)
is used to process the input instance as a graph, and at each step this representation
vector along with the current solution is used to choose the next node to visit in the tour.
Although, much research has examined the role of the Deep RL agent in a constructive
manner, using Deep RL in a perturbative manner has produced higher quality solutions

14 Background

due to covering a large portion of solution space during the search. For example, in
Lu et al. (2020), the authors propose to use a Deep RL agent with a deep attention
graph encoder, to select between multiple low-level operators for a certain number of
iterations. However, most frameworks in this field have employed Deep RL agent as a
heuristic, have used it in a problem-specific manner and none has tried to use it as a
hyperheuristic method which makes the framework problem independent.

1.7 Applications of graph processing on different domains

As previously discussed, graphs are used in many real-world applications and in many
industries. In this thesis, we address the applications of deep learning and deep rein-
forcement learning on graphs in specific applications ranging from biology to computer
vision and logistics. In this section, we introduce each application and the graphs that
are used in each domain.

1.7.1 Bioinformatics applications

Complex biological systems operate based on the interaction and coordination between
many small events and their corresponding units. A straightforward way to represent
such interactions and study them is through using graphs. The amount of generated
data in recent years has helped with the generation of such graph-based datasets and
has provided extra motivation for graph-based analysis methods due to the large amount
of easily available data. This is owed to the advent of high throughput technologies that
allow the identification of components such as genes, or proteins, and their activation
levels as well as the interaction between them in different biological conditions and or-
ganisms in omics datasets (Zhu et al., 2007). The term omic next to a biological molec-
ular term indicates the global assessment of a set of molecules. One such assessment is
genomics where the entire genome space of an organism is studied to extract useful in-
formation regarding a disease or a phenotype. Genomes are built from deoxyribonucleic
acid (DNA) molecules and specific areas in the genome that are transcribed into Ribonu-
cleic acid (RNA) are referred to as genes. Some genes are classified as protein-encoding
genes meaning that they will be transcribed into messenger RNA (mRNA) which is later
encoded into proteins for specific functions in the organism. One of the most important
tools in genomics is expression profiling where transcription levels are measured for each
gene in multiple experimental conditions, tissues, or individuals (Hasin et al., 2017). In
humans, such measurements can be used to detect disease-gene activity association to
develop methods for the detection of diseases or monitor their progression. Cellular com-
ponents such as genes, metabolites, and proteins are typically modeled as the nodes in
biological graphs and the interactions that are between these elements often form the
edges in a specific network type. The four types of networks that we consider in this the-
sis are: Transcprition Factor (TF) networks, Protein-Protein Interaction (PPI),
Genetic interaction networks, and Metabolite networks. In the following, we in-
troduce each network and mention how they are built and some classic methodologies
that are used to process them.

1.7 Applications of graph processing on different domains 15

(A) (B)

TF protein
[| I

Kr
DNA Enhancer Target Gene Gene

Up regulation)

Down regulation —-I

Figure 1.6: Transcription factor network as a type of gene regulatory graph. (A) a
protein is binding to the enhancer region of a gene regulating its production rate; (B) an example
of 5 gene TF network is shown with up, down, and auto-regulation examples of connections.

TF Network

TFs are DNA-binding proteins that regulate the mRNA production rate of the genes that
they target by binding to regions called promoters and enhancers near the gene location
(MacNeil and Walhout, 2011). The TF network is a directed network that maps the TF
protein to the genes that the protein regulates. There is also a variation of such networks
(referred to as the gene regulatory network) where the TF nodes are replaced with the
genes that encode them. There are two types of effects that a binding can have on the
production rate of a mRNA. The binding can either cause up-regulation resulting in an
increased rate of mRNA production or down-regulation which has the opposite effect.
There is also autoregulation in some cases where a TF produced by a gene, binds to the
binding site of the same gene and affects its own production rate (MacNeil and Walhout,
2011). Fig. 1.6 depicts an example of such a network with 5 genes and their interactions.

PPI network

Proteins play a major role in vital cellular functions. Most of these functions are done
through protein interactions examples of which are assembly of structural components,
transcription, translation, and many more (Muzio et al., 2020). In this thesis, to integrate
the gene expression profiles with PPI networks, proteins are identified by the genes that
encode them and the expression information for each gene is mapped to the nodes in the
graph.

Genetic interaction network

It is often possible that a mutation in a single gene does not have any major effect on
the growth or fitness of a biological organism. However, when mutations happen in two
different genes, they could lead to a much stronger phenotype. Such observations can be
modeled as a graph in which for a certain phenotype an edge between two genes (nodes
in the graph) represents the fact that the effect of deleting both genes simultaneously on
the phenotype is significantly greater than the sum of the effects of deleting one gene at
a time (Zhu et al., 2007).

16 Background

Metabolite network

Metabolism at genome scale includes the set of multiple interconnected reactions that
produce energy and convert nutrients into biomolecules. Representing metabolic models
as a graph can be as simple as a network with metabolites as nodes and the edges are
representative of the reactions that share those metabolites. Another way to build the
graph is to consider the reactions as nodes and the edges are between the reactions
where one consumes the molecules produced by the other (directed graph). Building
such graphs and assigning the appropriate properties to them in terms of how the nodes
are connected, edge weights, etc., can affect the performance of the downstream task
that utilizes machine learning to process the graph structure (Dusad et al., 2021).

Integration of omics datasets with biological graphs

It has been demonstrated that the structure of biological networks is informative of bi-
ological functions at multiple scales. For instance, degree distributions are a sign of
the relative importance of genes or proteins in a cell; 3-4 node network motifs have
well-defined information-processing roles; and network clusters or communities contain
genes or proteins involved in similar biological processes (Alon, 2020; Barabdsi and Olt-
vai, 2004). At the same time, omics datasets can measure the variation or activation
of certain cellular components across different individuals or experimental conditions.
These datasets are however of a continuous nature and their integration with graph-
based datasets requires methods that can represent the discrete graph structures in a
meaningful wayAn edge between genes means that the effect on the phenotype of delet-
ing both genes simultaneously is significantly greater than the sum of effects of deleting
one gene at a time, in order to benefit the learning model when processing both data
sources. There is a rich history of integrating the complementary viewpoints of biolog-
ical networks and omics data. For instance, “active subnetwork” identification methods
treat omics data as features of network nodes in order to identify well-connected sub-
networks that are perturbed under different conditions (Nguyen et al., 2019). Network
propagation or smoothing methods on the other hand use biological networks to extend
partial information on some nodes (e.g., disease association labels, partially observed
data) to other nodes (e.g., to discover new disease-associated genes or impute missing
data) (Cowen et al., 2017b; Ronen and Akalin, 2018). However, such methods treat bio-
logical networks as discrete structures, which are intrinsically difficult to integrate with
continuous node features or activity measures.

Gene essentiality prediction with metabolic graphs

One popular example of use cases of biological networks is the prediction of essential
genes using metabolic networks. With essential applications in biomedicine and biotech-
nology (for example, for identifying therapeutic targets in complex diseases (Cacheiro,
P et al, 2020)), identification of essential genes has been done through screening as-
says where multiple mutants are built and phenotyped with a suitable fitness selection
strategy. The high cost and complexity of knock-out assays have resulted in a grow-
ing interest in computational approaches for the prediction of knockout genes. These
computational approaches often employ machine learning techniques combined with in-
formation from protein sequence, gene homologies, gene-function ontologies, and protein

1.7 Applications of graph processing on different domains 17

interaction networks (Campos et al., 2019; Li et al., 2020; Zhang et al., 2020; Mobegi
et al., 2017; Aromolaran et al., 2021). When it comes to metabolic genes that code for
catalytic enzymes in metabolic pathways, Flux Balance Analysis (FBA) is a widely em-
ployed method for predicting essentiality (Orth et al., 2010). While FBA has shown great
performance over the well-studied simple organism of E. coli (Monk, J. et al, 2017), the
predictive power of FBA decreases massively in case of higher order organisms (e.g., eu-
karyotes). One could associate this with the objective function that methods such as
FBA assume for deletion strains. While FBA assumes that the objective function (typ-
ically chosen as growth rate) stays identical, it is plausible that gene deletions alter cell
physiology to meet other objectives for survival.

There are numerous variants of FBA and its related algorithms (Lewis et al., 2012),
but at its core FBA computes genome-scale flux distributions that optimize a cellular
fitness objective. Such objectives are typically taken to be the cellular growth rate
modeled as a linear combination of synthesis rates of amino acids, lipids and other
biomass components. By imposing constraints on each metabolic flux, FBA problems
can be solved with efficient linear programming algorithms, which allows to rapidly
simulate the impact of gene deletions on the predicted growth rate and draw predictions
on the essentiality of metabolic genes. In a steady state, a metabolic network can be
described by

Sv =0, (1.7)

in which, v is a n-dimensional vector of reaction fluxes, and S is a n X m stoichiometric
matrix with m metabolites and n enzymatic reactions. The aim of FBA is to obtain
the solution vector v* that satisfies the above condition and at the same time solves the
following optimization problem:

/
v =argmax cv
v

. {Sv -0, (1.8)
subject to
Up < U < Vb,

in which, ¢ is a vector of flux weights, and (vy,, vyy) are lower and upper bounds on
reaction fluxes, respectively.

1.7.2 Computer vision applications

Graphs in computer vision have many applications such as mediator to process images
and videos by extracting human pose or scene structure as a graph (Jain et al., 2015),
label processing through knowledge graphs Chen et al. (2019), or k-shot learning meth-
ods (Garcia and Bruna, 2018). In this thesis, we mostly focus on the application of
graphs in processing point clouds as the input media for a 3-D scenery. Specifically, we
mention mmWave radar-generated point clouds for capturing human movements. First,
we introduce point clouds and their application and then we provide a brief overview of
radar-generated point cloud and their properties.

18 Background

Point Clouds

Figure 1.7: Point cloud samples from the ShapeNet dataset (Chang et al., 2015)
Three different objects of airplane, chair, and table are visualized; colors represent the labels for
part segmentation problem.

While visual scenes are often represented by images in 2-dimensions, 3-D scenery can
be represented through many different formats, e.g., RGB-depth images, voxel images,
meshes, etc. One of the most popular ways to represent 3-D space is by using point
clouds. There are several major benefits of using point clouds among which we can point
to the preservation of 3-D geometric information without the need for discretization
or low cost and complexity of processing the point cloud datasets compared to voxel-
based images (Guo et al., 2021). A point cloud can be defined as a set of points P =
{p1,....pn} € R3 in the 3-D space where each point can also be assigned a feature
set of z, = { fil7 ey fZF }. This feature set can be any values including the 3-dimensional
coordinates, depth, intensity, etc., so as to add more input information for the processing
model. A more obvious way to process the point cloud using a machine learning method
is to look at its definition as a set and apply the set representation learning method (see
section 1.5.2) on the input points (Zaheer et al., 2017; Qi et al., 2016). However, a more
informative way of looking at such inputs is to create a graph on the set of points and
process the input graph using machine learning methods. Doing so would help the model
capture local dependencies and hidden structures in the point cloud through graph edges
as well as the global representation of the overall scene (Wang et al., 2018).

1.7 Applications of graph processing on different domains 19

mmWave radars and moving point cloud generations

(A) (B)

‘r I'X chirp RXchirp TXchirp RX chirp

O

d d+Ad

rTI7

I'’X antena RX antena

>
»

Time

Figure 1.8: Object reflection using mmWave sensors: (A) Chirps are sent and received
by the antennas of the sensor and the range and velocity of the object are calculated using the
frequency and shift of the intermediate signal; (B) The angle of the object is calculated by using
multiple receiving antennas and their distance.

mmWave radars are a class of radar-based technology that utilizes short-wavelength
electromagnetic waves to detect objects in their vicinity. Such radars are able to send
waves and based on the received reflection of the objects, the range, velocity, and angle
of the moving object in their viewpoint is calculated. Two major parts of such radars
are the transmitter (TX) and receiver (RX) components used to send and receive the
radio frequency waves at objects (lovescu and Rao, 2017).

To detect the properties of an object, the radar first sends an electromagnetic signal
the frequency of which rises over a short period of time (Figure 1.8A). This wave is also
known as a chirp. In return, a chirp is reflected from the object and is received by the
RX antenna after a short period of time. the formula for the two transmitter (TX) and
RX waves are as follows:

Aty = sin(wmt -+ (I)tx) (1 9)
Arg = SIN(Wrat + DPry). (1.10)

Once the return signal is received, an intermediate signal is calculated from the difference
of the two TX and RX waves as:

aint = $in((Wig — wrz)t + (Ppp — Pry)). (1.11)

The time delay of the RX chirp 7 is calculated by

2d
T=—, (1.12)
c
in which, d and c are the distance of the object and speed of light, respectively. Following

this, one can derive the constant frequency and the initial phase of the wave by:

finio = ST, (1.13)

drd (1.14)

(Pinto = T?

20 Background

in which, A is the wavelength and S is the slope of change in the frequency of the initial
TX chirp. Thus, by calculating the frequency of the intermediate wave, one can obtain
the distance of an object.

In order to extract the velocity of the moving object, the radar sends a second TX
chirp with a time delay of T,.. The two chirps received by RX will have the same frequency
as the intermediate signal however, their phase will have a shift. The shift of phase and
consequently the velocity of the object is calculated by:

_AmuT,

AP = -, (1.15)
AAD
V= (1.16)

To calculate the angle of the object from the radar sensor, two separate RX anten-
nas are used in the sensing device. The TX chirp is received by each of the antennas
separately resulting in a phase shift between the two received signals due to the dis-
tance between the antennas. The phase shift between the two received signals can be

calculated as:
2 Ad

)\)
in which Ad is the difference of distance between the object and the two antennas (Figure
1.8B). The Ad can be calculated as

AD = (1.17)

Ad = lsin(0), (1.18)

in which, [is the distance between two antennas and 6 is the angle of the object with
respect to the sensor. As a result, the angle 6 can be calculated by

0 = sin~! (m> . (1.19)
27l

-0.50 -0.25 000 025 050 075 100 125 150

Figure 1.9: Point cloud samples from the swipe left gesture for a human subject.
Points and gestures are taken from Pantomime dataset (Palipana et al., 2021). The colors
indicate the time stamp of the gesture which is performed over 30 frames.

1.7 Applications of graph processing on different domains 21

When a human subject performs gestures in front of a mmWave radar sensor, a set of
points is calculated according to the above formulae based on the number of reflections
and the resolution of the radar. Through these calculations, the range, azimuth angle,
and elevation of each point are obtained by using multiple antennas, and a set of points
with time stamps are gathered to represent the performed gestures as shown in Figure.
1.9. By replacing the nodes of the graph with the set of points and generating neighbor-
hood graphs over the set of nodes, we can use GNNs to process the point clouds which
is the approach taken in this thesis.

Gesture recognition with point clouds

Gesture recognition has been one of the most important tasks in computer vision. There
have been many machine learning, and in particular, deep learning models for perform-
ing gesture recognition. One aspect that is important in these models, is the fact that the
input representation plays an important role in both the accuracy and time-complexity
of deep learning-based systems, especially in 3D scenery processing. Some example in-
put media are RGB-depth images Yang et al. (2018); Molchanov et al. (2016); Abavisani
et al. (2019), spectrograms of Doppler signals (Kim and Toomagian, 2016), and point
clouds (Qi et al., 2017, Min et al., 2020)). Point clouds often lead to lower complexity
systems compared to other input formats of 3D scenery processing. Additionally, mod-
els that process other input formats often have to create the format from a direct point
cloud output of the sensor and as a result, might lose some geometric properties through
the transformation process. The point cloud that is generated from mmWave radar sen-
sors is of type motion point cloud which assigns a time stamp or frame number to
each point to build a sequential data structure. In order to process such data struc-
tures, the deep learning models typically follow an RNN based pipeline which extracts
the spatial features iteratively, over multiple time steps to emulate the evolution of ges-
ture through time. However, in the case of the mmWave radar point clouds which have
the innate property of being sparse in each frame (in average 5-10 points per frame),
extraction of frame-wise spatial features does not contribute to the latent representa-
tion of gestures. Moreover, such recursive representation learning, where each frame is
processed separately over multiple time steps, results in computation overhead. As a re-
sult a more resource-consuming prediction model. Therefore, a different representation
learning scheme can address such shortcomings by incorporating graph structure into
the prediction pipeline for input motion point clouds.

Another issue with point cloud processing models is that they are not typically ro-
tation invariant (Li et al., 2021). This means that rotating the input point cloud in
3D space confuses the model into thinking that a different gesture has been performed
while the nature of the gesture is still the same. This can be translated in terms of
capturing the gesture into positioning the subject at a different angle in front of the sen-
sor compared to the angle that is provided in the test set. Moreover, when it comes to
radar-generated point clouds, the observed patterns that originate from reflections off
the same moving object differ conditioned on their distance, angle, and translation rel-
ative to the sensing due to shadowing effects. Such changes are not a direct result of
geometric transformations on the base gesture point cloud. Therefore, the rotation in-
variant or equivariant methods for point cloud processing (Thomas et al., 2018) will not
be effective in this scenario.

22 Background

1.7.3 Logistics and scheduling applications

The final graph application domain that we address is the domain of logistics and more
specifically combinatorial optimization in logistics. Many of the problems in the domain
of logistics are modeled as combinatorial optimization problems. While the routing
and traveling problems heavily dominate this industry, there are also scheduling and
inventory management problems that are modeled as a graph through combinatorial
optimization. In this thesis, we introduce three variants of routing problems and an
instance of a scheduling problem to represent the variation and difficulty of different
problems that exist for operations research. Later, we use instances of these problems
for the evaluation of proposed methods in a research article.

Capacitated Vehicle Routing Problem (CVRP)

One of the most studied problems in routing, CVRP is simply defined as a set of orders
that need to be delivered by a set of vehicles. Each vehicle has a maximum capacity of
goods that can carry and each order contains a certain amount of goods. Each vehicle
starts from a depot and in a "tour” visits a sequence of destinations to deliver orders. The
main objective of the problem is to deliver all orders using a set of tours and minimize
the cost of traveling across all the combined tours.

Pickup and Delivery Problem (PDP)

A variation of the CVRP, in PDP an order needs to be picked up from a certain pickup
point and delivered at another point. The vehicles in this problem are also of maximum
capacity and can carry a certain amount of goods at a time. The objective is also similar
to CVRP, in which all orders must be picked up and delivered at the lowest amount of
travel cost possible while not exceeding the vehicle capacity in each route.

Pickup and Delivery Problem with Time Windows (PDPTW)

PDPTW is a variation of the PDP introduced in Hemmati et al. (2014). In this prob-
lem, vehicles are heterogeneous, in the sense that each vehicle has a different maximum
capacity of goods and starts from a different starting point from others. Moreover, each
call has a time window, within which it has to be picked up and delivered to its des-
tination and certain calls can only be addressed by certain vehicles. There is also the
possibility of outsourcing the orders at a higher price compared to delivering them using
the predefined set of vehicles.

Parallel Job Scheduling Problem (PJSP)

This problem can be modeled as a graph with two types of nodes also known as a
bipartite graph. In this problem, a set of jobs needs to be assigned to a set of machines
that solve those jobs. Each machine has a certain processing speed and each job needs
a certain amount of operations to be done in order to be solved. Each job must be
solved before its preset deadline and the delay in finishing the job after the deadline
increases the cost of the problem. The objective of the problem is to solve all jobs with
the minimum amount of delay possible.

1.7 Applications of graph processing on different domains 23

State of the art metaheuristic in solving combinatorial optimization problems

Among available metaheuristics, Adaptive Large Neighbourhood Search (ALNS) frame-
work of Ropke and Pisinger (2006) has shown good results and decent generalizability
to most combinatorial optimization problems in the domain. This framework which
is an adaptation of Large Neighbourhood Search (LNS) (Shaw, 1998), uses an adap-
tive agent to balance between intensification and diversification by choosing between
a pool of low-level heuristics. The algorithm for ALNS is presented at Algorithm 1.

Algorithm 1: ALNS

Function ALNS
Generate an initial solution s;,;; with objective function of O(s)

Sbest = 5, O(Sbest) = O(Q)

Repeat

s =s

choose I based on adaptive agent

Apply heuristic h to s
if f(sl) < f(sbest) then
‘ Sbest — S
end
if accept(s, s) then
‘ s=s
end
Until Stop-criterion met
return sy,

The adaptive agent assigns probabilities of being chosen at each iteration of the search
to each low-level heuristic and is updated every few iterations based on the performance
of heuristics that were chosen during the previous iterations. Based on this strategy, the
probability of each heuristic h € H can be calculated as:

o A—
ZmeH wT’L i
in which wy, is the weight of each heuristic that is calculated based on the performance
of each chosen heuristic at each point during the search. Additionally, the acceptance
criteria for ALNS usually follows a Simulated Annealing framework (Kirkpatrick et al.,
1983b). The ALNS framework has several advantages. For most optimization problems,
a number of well-performing heuristics are already known which can be used as the oper-
ators in the ALNS framework. Due to the large size and diversity of the neighborhoods,
the ALNS algorithm will explore huge chunks of the solution space in a structured way.
As a result, ALNS is very robust as it can adapt to different characteristics of the in-
dividual instances, and is able to avoid being trapped in local optima (Pisinger and
Ropke, 2019). According to Turkes et al. (2021), the adaptive layer of ALNS has only
minor impact on the objective function value of the solutions in the studies that have
employed this framework. Moreover, the information that the adaptive layer uses for se-
lecting heuristics is limited to the past performance of each heuristic. This limited data
can make the adaptive layer naive in terms of decision-making capability because it is
not able to capture other (problem-independent) information about the current state of
the search process.

(1.20)

24 Background

Another area where ALNS struggles is when faced with a large number of heuristics
to choose from. In order to find the best set of available heuristics for ALNS for a specific
setting, initial experiments are often required to identify and remove inefficient heuristics.
This extra step can be both time-consuming and computationally expensive (Hemmati
and Hvattum, 2017). Furthermore, some heuristics are known to perform very well for
specific problem variations or specific conditions during the search, but they may have
a poor average performance. In this case, it might be beneficial to remove these from
the pool of heuristics available to ALNS in order to increase the average performance of
ALNS, but this results in a less powerful pool of heuristics that is unable to perform as
well during these specific problem variations and conditions.

2 Aim of this study

In this thesis, we aim to address some applications in three domains of bioinformatics,
computer wvision, and logistics which can be modeled as graphs. While for some
applications, methods such as network science or mathematical optimization can be
used, we leverage the machine learning techniques of deep learning on graphs and Deep
RL to improve the available methods as well as introduce new ways of dealing with the
tasks at hand. In the following, we will discuss each domain separately and mention
the need for using machine learning or improvements to the state-of-the-art methods for
each task.

2.1 Bioinformatics

in Paper 1, we propose the use of GNNs to bridge the gap between the discrete biological
graph structures and continuous domains omics datasets. To this end, we aim to come
up with a systematic measurement of the relationship between the structure of a network
and the node feature (e.g., gene expression profile) values. Additionally, we look at ways
to train a GNN auto-encoder with a focus on node feature reconstruction rather than
graph structure encoding. This approach will help the model leverage the structure as
an additional modality in preserving the representation of node features and will have
real-world applications such as imputing missing node values in graph-based datasets.

After establishing the benefit of using GNNs for biological networks, we aim to address
the problem of prediction of gene essentiality by inventing a novel pipeline using deep
learning on graphs and solution vector to the FBA wild-type conditions. To this end, in
Paper 2, we propose FlowGAT, a gene essentiality prediction framework that tries to
leverage the graph representation learning with dynamic graph construction in space of
reaction nodes from metabolite pathways (Beguerisse-Diaz et al., 2018) to predict the
essentiality label of the reaction nodes in the graph.

2.2 Computer vision

In the task of gesture recognition with radar-generated point clouds, our goal is to create
a model that is both fast and accurate in predicting the class of performed gestures from
human subjects. The proposed model needs to be lightweight and fast as this model is
aimed to be deployed on embedded devices which typically have memory and computing
constraints. Additionally, the model should take advantage of the unique structure
of sparse motion point clouds modeled as graphs. To tackle this issue, in Paper 3,
we propose a direct point cloud processing method, Tesla-Rapture (TEmporal graph
SeLf Attention convolution), an MPNN graph convolution based architecture tailored
to sparse point clouds generated by mmWave radars which offer high accuracy and low
computational complexity for inference of input gesture.

After introducing the Tesla-Rapture model, we aimed to increase the robustness of
the model to changing the subject angle with respect to the radar sensor. In Paper
4, we sought to address this problem by providing a dataset that captures the gesture

26 Aim of this study

from 8 different angles from the same gesture and a prediction pipeline that utilizes the
representation learning scheme of Tesla-Rapture along with the voting mechanism of
an ensemble of models to predict the gestures more robustly against changes in sensing
angle. Additionally, a mechanism for sharing the output of each model is proposed
which can be sent over the New Radio sidelink for 5th-generation networks and make
distributed learning a possibility for the proposed framework.

2.3 Logistics

To address the shortcomings of ALNS as a general metaheuristic framework, in Paper
5, we propose Deep Reinforcement Learning Hyperheuristic (DRLH), a general
approach to selection hyperheuristic framework for solving combinatorial optimization
problems. In DRLH, we replace the adaptive layer of ALNS with a Deep RL agent
responsible for selecting heuristics at each iteration of the search to achieve superior
performance compared to the baseline of ALNS and a random selection agent. To make
DRLH more intelligent compared to ALNS, we sought to come up with state features
consisting of a problem-independent feature set from the search process and train the
agent with a problem-independent reward function that encourages better solutions.
The main goal of this framework is to be generalizable and easily adapted to most of the
combinatorial optimization problems in the literature.

3 Summary of the papers

Paper I: A Graph Feature Auto-Encoder for the Prediction of Unobserved
Node Features on Biological Networks

Ramin Hasibi and Tom Michoel

BMC Bioinformatics, 22/1 (2021), doi:10.1186/s12859-021-04447-3

Background: Molecular interaction networks summarize complex biological pro-
cesses as graphs, whose structure is informative of biological function at multiple scales.
Simultaneously, omics technologies measure the variation or activity of genes, proteins, or
metabolites across individuals or experimental conditions. Integrating the complemen-
tary viewpoints of biological networks and omics data is an important task in bioinfor-
matics, but existing methods treat networks as discrete structures, which are intrinsically
difficult to integrate with continuous node features or activity measurements. Graph neu-
ral networks map graph nodes into a low-dimensional vector space representation, and
can be trained to preserve both the local graph structure and the similarity between
node features.

Results: We studied the representation of transcriptional, protein-protein, and ge-
netic interaction networks in E. coli and mouse using graph neural networks. We found
that such representations explain a large proportion of variation in gene expression data,
and that using gene expression data as node features improves the reconstruction of
the graph from the embedding. We further proposed a new end-to-end Graph Feature
Auto-Encoder framework for the prediction of node features utilizing the structure of
the gene networks, which is trained on the feature prediction task, and showed that it
performs better at predicting unobserved node features than regular MultiLayer percep-
trons. When applied to the problem of imputing missing data in single-cell RNAseq
data, the Graph Feature Auto-Encoder utilizing our new graph convolution layer called
FeatGraphConv outperformed a state-of-the-art imputation method that does not use
protein interaction information, showing the benefit of integrating biological networks
and omics data with our proposed approach.

Conclusion: Our proposed Graph Feature Auto-Encoder framework is a powerful
approach for integrating and exploiting the close relation between molecular interaction
networks and functional genomics data.

28 Summary of the papers

Paper II: Integration of genome-scale metabolic models and deep graph neu-
ral networks for gene essentiality prediction

Ramin Hasibi, Tom Michoel, and Diego A. Oyarzun

Background: Genome-scale metabolic models are powerful tools for understanding
cellular physiology. Flux balance analysis (FBA), in particular, is an optimization-based
approach widely employed for predicting metabolic phenotypes. In model microbes such
as Escherichia coli, FBA has been successful at predicting essential genes, i.e. those genes
that impair survival when deleted. A central assumption in this approach, however,
is that both wild-type and deletion strains optimize the same fitness objective. The
optimality assumption may hold for the wild-type metabolic network, but deletion strains
are not subject to the same evolutionary pressures, and knock-out mutants may steer
their metabolism to meet other objectives for survival.

Resutls: In this paper, we present FlowGAT, a hybrid FBA-machine learning strat-
egy for predicting essentiality directly from wild-type metabolic phenotypes. The ap-
proach is based on a graph-structured representation of metabolic fluxes predicted by
FBA, where nodes correspond to enzymatic reactions and edges quantify the propaga-
tion of metabolite mass flow between a reaction and its neighbors. We integrate this
information into a graph neural network that can be trained on knock-out fitness assay
data. Comparisons across different model architectures reveal that FlowGAT predic-
tions for E. coli are close to those of FBA for several growth conditions. Additionally,
FlowGAT displays encouraging generalization power across growth conditions, even in
cases where the underlying graphs and node features differ substantially. This observa-
tion suggests that the proposed architecture and feature extraction method can learn
internal representations that are useful predictors of gene essentiality.

Conclusion: Our approach demonstrates the benefits of combining the mechanistic
insights afforded by genome-scale models with the ability of deep learning models to
extract patterns from complex data. Our results suggest that gene essentiality can
be accurately predicted by exploiting the network structure of metabolism, without
additional assumptions beyond optimality of the wild-type.

29

Paper III: Tesla-Rapture: A Lightweight Gesture Recognition System From
mmWave Radar Sparse Point Clouds

Dariush Salami and Ramin Hasibi, Sameera Palipana, Petar Popovski, Tom Mi-
choel, and Stephan Sigg

IEEE Transactions on Mobile Computing, 22 /08 (2022), doi:10.1109/TMC.2022.3153717

Background: State-of-the-art gesture recognition models are either too resource-
consuming or not sufficiently accurate for integration into real-life scenarios using wear-
able or constrained equipment such as [oT devices (e.g. Raspberry PI), XR hardware
(e.g. HoloLens), or smartphones. The input representation plays an important role in
both accuracy and time-complexity of deep learning based systems. In particular, con-
verting the raw Analog to Digital Con- version (ADC) data from the antenna arrays
to point clouds (i.e., unordered sets of points in space), massively reduces the data size
by several magnitudes (e.g. GBytes to MBytes), which results in faster data transfer,
pre-processing, and inference time. Unlike spectrograms of Doppler signals, point clouds
are easily interpretable since the motions occur in a 3D space. Furthermore, strong
point-cloud processing models exist, since this format is the standard output of a wide
range of sensors.

Results: We present Tesla-Rapture, a gesture recognition system for sparse point
clouds generated by mmWave Radars. State-of-the-art gesture recognition models are
either too resource-consuming or not sufficiently accurate for integration into real-life
scenarios using wearable or constrained equipment such as IoT devices (e.g. Raspberry
PI), XR hardware (e.g. HoloLens), or smartphones. To tackle this issue, we have de-
veloped Tesla, an MPNN graph convolution approach for mmWave radar point clouds.
The model outperforms the state of the art on three datasets in terms of accuracy while
reducing the computational complexity and, hence, the execution time. In particular,
the approach is able to predict a gesture almost 8 times faster than the most accurate
competitor. Our performance evaluation in different scenarios (environments, angles,
distances) shows that Tesla generalizes well and improves the accuracy up to 20% in
challenging scenarios, such as a through-wall setting and sensing at extreme angles. Uti-
lizing Tesla, we develop Tesla-Rapture, a real-time implementation using a mmWave
Radar on a Raspberry PI 4, and evaluate its accuracy and time complexity. We also
publish the source code, the trained models, and the implementation of the model for
embedded devices.

Conclusion: Introducing Tesla-Rapture system, as a fast and accurate gesture recog-
nition interface is a step forward in human-computer interaction scenarios for integration
with many off-the-shelf devices. Given the robustness of the system in different environ-
ments, angels, and distances as well as real-time performance, Tesla-Rapture system can
be incorporated into a wide range of applications e.g., smart homes, vehicular settings,
and human-robot interaction. Furthermore, the model can be trained on a customized
set of gestures and deployed on Tesla-Rapture for a specific real-time application.

30 Summary of the papers

Paper IV: Integrating Angle-Agnostic Sensing into Cellular Networks using
NR Sidelink

Dariush Salami, Ramin Hasibi, Stefano Savazzi, Tom Michoel, and Stephan Sigg

Background: The angle of the human subject with respect to the sensor plays
an important role in Radar based gesture recognition system. It is a known fact that
changing the angle from Odeg results in a different point cloud shape. This new shape is
not exactly reproducible by rotation of the gestures from 0deg due to shadowing effect.
Therefore, a rotation invariant-equivariant framework does not apply in this scenario.

Results: Two different approaches of angle invariant and gesture orientation track-
ing are considered for a gesture recognition system using point clouds. In each approach,
a gesture from a subject is captured from 8 different angles from training and each angle
point cloud is processed using a TeslaConv layer from Paper III. In the first approach,
the weights of the TeslaConv layer is shared among all angles and the prediction of the
gesture is done using an angle invariant pooling mechanism. In the second approach, each
angle’s gesture is predicted separately through a different set of weights and the label is
predicted separately. The final prediction for the gesture is computed through voting en-
semble score. gesture sequences to capture spatio-temporal relation. Angle-agnosticity
is achieved through variations in pooling as well as through orientation tracking. Our
approach outperforms the state-of-the-art algorithms for RF-sensing achieving 100 % ac-
curacy. Moreover, our approach is significantly more resilient to missing angles compared
to state-of-the-art models outperforming them with a margin of 70% when 7 angles out
of 8 angles are not available. We make openly available our dataset comprising 15 sub-
jects, performing 21 gestures which are recorded from 8 angles. Additionally, in order
to implement this framework in the 5th generation mobile network (5g), we recommend
the use of New Radio (NR) sidelink for transmitting the sensor output in order to en-
able the remote sensing of the subject through the cellular network. In our proposed
framework, a sensing user equipment can participate with multiple users and share their
sensed gesture for integrated classification. Moreover, a federated learning scheme is pro-
posed where a central agent is trained based on the information gathered from multiple
sensing users.

Conclustion: Our data aggregation and processing tool-chain outperforms the state-
of-the-art point cloud based gesture recognition approaches for angle-diverse gesture
recordings. Moreover, our proposed pipeline provides a feasible mechanism for integrat-
ing RF-sensing into cellular communication systems.

31

Paper V: A general deep reinforcement learning hyperheuristic framework
for solving combi- natorial optimization problems

Jakkob Kallestad, Ramin Hasibi, Ahmad Hemmati, and Keneth Sérensen

European Journal of Operational Research, 309/1 (2023), doi:10.1016/j.ejor.2023.01.017

Background: Many problem-specific heuristic frameworks have been developed to
solve combinatorial optimization problems, but these frameworks do not generalize well
to other problem domains. Metaheuristic frameworks aim to be more generalizable
compared to traditional heuristics, however their performances suffer from poor selection
of low-level heuristics (operators) during the search process. An example of heuristic
selection in a metaheuristic framework is the adaptive layer of the popular framework of
Adaptive Large Neighborhood Search (ALNS).

Resutls: We propose a selection hyperheuristic framework that uses Deep Reinforce-
ment Learning (Deep RL) as an alternative to the adaptive layer of ALNS. Unlike the
adaptive layer which only considers heuristics’ past performance for future selection, a
Deep RL agent is able to take into account additional information from the search pro-
cess, e.g., the difference in objective value between iterations, to make better decisions.
This is due to the representation power of Deep Learning methods and the decision mak-
ing capability of the Deep RL agent which can learn to adapt to different problems and
instance characteristics. In this paper, by integrating the Deep RL agent into the ALNS
framework, we introduce Deep Reinforcement Learning Hyperheuristic (DRLH), a gen-
eral framework for solving a wide variety of combinatorial optimization problems and
show that our framework is better at selecting low-level heuristics at each step of the
search process compared to ALNS and a Uniform Random Selection (URS). Our exper-
iments also show that while ALNS can not properly handle a large pool of heuristics,
DRLH is not negatively affected by increasing the number of heuristics.

Conclusion: For quite some time now, it has increasingly become evident that the
fields of machine learning and (heuristic) optimization can mutually benefit from an
integration. On the one hand, recent advances in optimization can support the devel-
opment of advanced machine learning methods, since these methods generally solve an
optimization problem (e.g., what is the optimal subset of features from a data set that
predict a certain outcome). This paper addressed the mirror issue: how can optimiza-
tion approaches benefit from an integration of machine learning methods. We believe
that approaches like the one presented in this paper have the potential to make the de-
velopment of a powerful heuristic less dependent on the knowledge of an experienced
developer with a deep insight into the structure of the specific problem being solved,
and may therefore be instrumental in the integration of metaheuristics ideas into general
purpose software packages

32

Summary of the papers

4 Discussion and future aspects

Graphs are considered a powerful tool for modeling a wide variety of systems and often
provide a novel view for analyzing systems as well as a different approach to problem-
solving. Machine learning on graphs offers a gateway to applying the powerful models of
machine learning to process datasets with an underlying structure. Among the machine
learning models, deep learning and deep reinforcement learning offer the most promising
performance owing to the representation power of deep learning architectures. However,
the domain of graphs needs its own deep learning architectures as their structural na-
ture is different from those of images and time series datasets. Adapting the domain of
graphs to deep learning models helps develop new applications of machine learning as
well as providing novel approaches to previously known problems that were solved using
traditional machine learning. To achieve this, the graph can be leveraged as a roadmap
on how to efficiently process the input samples (what GNNs refers to as message pass-
ing) to improve the performance or the structure of the graph can be optimized using
deep reinforcement learning. In this thesis, we focused on applications that can be mod-
eled as graphs and provide appropriate deep learning and deep reinforcement learning
methodologies to achieve state-of-the-art performance.

First, we provided two applications of graph processing solved using GNNs in bioin-
formatics

In Paper I, we studied whether GNN, which learn embeddings of nodes of a graph
in a low-dimensional space, can be used to integrate discrete structures such as biologi-
cal interaction networks with information on the activity of genes or proteins in certain
experimental conditions. Traditionally, this is achieved by for instance network propaga-
tion methods, but these methods do not extract quantitative information from a graph
that could be used for downstream modeling or prediction tasks. GNN on the other
hand can include node features (gene or protein expression levels) in the learning pro-
cess, and thus in theory can learn a representation that better respects the information
contained in both data types. So far the integration of node features in graph represen-
tation learning has mainly been pursued for the task of link prediction. Here instead
we focused on the task of predicting unobserved or missing node feature values. A po-
tential drawback of our method is that it assumes that the interaction graph is known
and of high quality. Future work in this direction could investigate whether it is feasible
to learn graph representations that can do link prediction and node feature prediction
simultaneously, or whether network inference followed by graph representation learning
for one type of omics data can aid the prediction of another type of omics data.

In Paper II, we presented FlowGAT, a GNN that can be trained on knock-out fitness
data to predict the essentiality of metabolic genes. The architecture exploits the inherent
graph structure of metabolic fluxes predicted by Flux Balance Analysis through a combi-
nation of mass flow graphs and node features that describe local connectivity. Using data
from FE. coli and its latest genome-scale metabolic model, we show that FlowGAT can
identify most of the genes that are correctly called as essential by Flux Balance Analysis,
and even correct some of its misclassified essential genes. Our approach is based solely
on the wild-type phenotype predicted by FBA; since it does not require the assump-
tion of optimality in the deletion strains, FlowGAT may provide benefits when applied

34 Discussion and future aspects

to organisms where the growth optimality assumption is not warranted. Additionally,
FlowGAT displays encouraging generalization power across growth conditions, even in
cases where the underlying graphs and node features differ substantially. This observa-
tion suggests that the proposed architecture and feature extraction method can learn
internal representations that are useful predictors of gene essentiality. We also found,
however, that FlowGAT struggled to predict non-essential genes and can be substantially
outperformed by traditional FBA. This phenomenon could arise from various sources,
such as the data imbalance that in our case favors essential labels, or because predict-
ing non-essential genes is intrinsically more challenging than essential ones (Bernstein
et al., 2023). Our approach illustrates the potential of exploring new ways of combin-
ing traditional tools such as Flux Balance Analysis with modern data-driven approaches
and adds to the growing body of literature at the interface of genome-scale metabolic
modeling with machine learning.

Next, we look at the application of gesture recognition on point clouds modeled as
spatio-temporal graphs.

Paper III introduced Tesla-Rapture system, a fast and accurate gesture recognition
interface that is a step forward in human-computer interaction scenarios for integration
with many off-the-shelf devices. Given the robustness of the system in different environ-
ments, angles, and distances as well as real-time performance, Tesla-Rapture system can
be incorporated into a wide range of applications e.g., smart-homes, vehicular settings,
and human-robot interaction. Furthermore, the model can be trained on a customized
set of gestures and deployed on Tesla-Rapture for a specific real-time application. Due
to the computational efficiency and robustness to different environments and angles,
Tesla-Rapture system can be extended to scenarios where egocentric gestures should be
recognized on constrained devices. Tesla prediction model can be modified to adapt to
new applications for wearable devices, e.g., Microsoft HoloLens'. Currently, HoloLens 2
captures hand gestures using RGB-D sensors. Given the benefits of radars over RGB-D
cameras, integration of Tesla-Ra[true with HoloLens improves the performance of hand
gesture recognition which is one of the main interaction mechanisms of this device. One
potential drawback of Tesla is that it does not reach state-of-the-art performance when
it comes to a set of dense gestures collected using a depth camera as evidenced by our
experiments in the paper. However, our approach outperforms PointLSTM (state-of-
the-art model on dense point cloud datasets), with a margin of up to 12.4%, 11.1%, and
4.6% accuracy on mmWave radar generated point cloud datasets of Pantomime, mHome-
Ges, and RadHAR, respectively. While this approach introduces a custom K Nearest
Neighbors (KNN) algorithm to reflect the temporal dependency in graph generation,
the graph is still being created statically using the KNN algorithm. Introducing an RL
agent, imitating the cognitive reward-based learning process, can lead to improvement
in the graph according to the accuracy of the classification model. Therefore, dynamic
graph generation using RL is one possible direction for improving the temporal graph.

Paper 1V is a follow-up on the work of the previous article in which we investigate
the effect of human subjects with respect to the sensing radar. In this work, first, We
have proposed a mechanism for radar sensing to be integrated into cellular communi-
cation systems. In particular, we suggested integrating radar sensing with NR sidelink
in Device-To-Device (D2D) communication. We further investigated a common issue

'https://www.microsoft.com/en-us/hololens

35

related to Radio sensing, which is its angle and rotation dependence. In particular,
we discussed transformations of mmWave point-cloud data which achieve rotational in-
variance, as well as distributed processing based on such rotational invariant inputs at
distributed, angle, and distance diverse devices. Furthermore, and to process the data,
we employed the graph-based encoder of Tesla to capture spatio-temporal features of the
data as well as four approaches for multi-angle learning. The approaches are compared
on a newly recorded and openly available dataset comprising 15 subjects, performing 21
gestures which are recorded from 8 angles. We showed that our data aggregation and pro-
cessing toolchain outperforms the state-of-the-art point cloud-based gesture recognition
approaches for angle-diverse gesture recordings.

In our last article, we look at the use of Deep Reinforcement Learning (DRL) in
optimizing the structure of graph-based problems in combinatorial optimization.

To demonstrate this, in Paper V, we proposed DRLH for solving combinatorial
optimization problems, which utilizes a trained DRL agent to select low-level heuristics to
be applied on the solution in each iteration of the search based on a search state consisting
of features from the search process. In our experiments, we solved four combinatorial
optimization problems (CVRP, PJSP, PDP, and PDPTW) using our proposed approach
and compared its performance with the two separate baselines. Our results show that
DRLH is able to select heuristics in a way that achieves better results in fewer iterations
for almost all of the problem variations compared to ALNS and URS. Furthermore, the
performance gap between DRLH and the baselines is shown to increase for larger problem
sizes, making DRLH a suitable option for large real-world problem instances. Additional
experiments on an extended set of heuristics show that DRLH is not negatively affected
when selecting from a large set of available heuristics, while the performance of ALNS
is much worse in this situation. Enriching or refining the state representation with
additional information is possible with very little effort. We have experimented with
adding problem-dependent information into the state representation and seen that this
gives even better results than sticking with the simple chosen state representation. Yet
once we start to introduce problem-dependent structure and constraint information into
the state representation we lose some of the generality that we strive for with DRLH
as we would have to separately engineer a different state representation for each new
problem. For this reason, we deem this outside of the scope of this paper and leave this
area open for future work. Future research in this area should provide more empirical
evidence for the superiority of DRLH over ALNS by applying this novel hyperheuristic
to different problems. A potential direction for improving the model in the future is
designing a reward function that is both stable and takes into account the difference in
objective value at each iteration of the search. Initial experiments on alternative reward
functions have shown promising results, but are time-consuming to train and not very
stable compared to the proposed reward function that we have used in this paper.

Overall, our main purpose with this thesis is to showcase the benefit of integration of
deep learning and deep reinforcement learning methodologies with problems that have an
underlying structure. For all studied applications, we leverage the structural information,
often modeled as graphs, along with other provided information about the problem set
to improve state-of-the-art performance. We achieve this by leveraging deep learning
architectures into the problem-solving pipelines.

36

Discussion and future aspects

Bibliography

Abavisani, M., H. R. V. Joze, and V. M. Patel (2019), Improving the performance of
unimodal dynamic hand-gesture recognition with multimodal training, in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 21

Alon, U. (2020), An introduction to systems biology: design principles of biological cir-
cuits, 2nd ed., CRC Press, London. 16

Aromolaran, O., D. Aromolaran, I. Isewon, and J. Oyelade (2021), Machine learning
approach to gene essentiality prediction: a review, Briefings in Bioinformatics, 22(5).
17

Barabasi, A.-L., and Z. N. Oltvai (2004), Network biology: understanding the cell’s
functional organization, Nat Rev Genet, 5, 101-113. 16

Barabasi, A.-L., and M. Pésfai (2016), Network science, Cambridge University Press,
Cambridge. 1

Beguerisse-Diaz, M., G. Bosque, D. Oyarzin, J. Pic6, and M. Barahona (2018), Flux-
dependent graphs for metabolic networks, npj Systems Biology and Applications, 4(1).
25

Belkin, M., and P. Niyogi (2001), Laplacian eigenmaps and spectral techniques for em-
bedding and clustering, in Advances in Neural Information Processing Systems, vol. 14,
edited by T. Dietterich, S. Becker, and Z. Ghahramani, MIT Press. 6

Bellman, R. (1957), Dynamic Programming, 1 ed., Princeton University Press, Princeton,
NJ, USA. 12

Bernstein, D. B., B. Akkas, M. N. Price, and A. P. Arkin (2023), Critical assessment
of E. coli genome-scale metabolic model with high-throughput mutant fitness data,
doi:10.1101/2023.01.05.522875, pages: 2023.01.05.522875 Section: New Results. 34

Bishop, C. M. (2007), Pattern Recognition and Machine Learning (Information Science
and Statistics), 1 ed., Springer. 7

Bronstein, M. M., J. Bruna, T. Cohen, and P. Velickovic (2021), Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, CoRR, abs/2104.13478. 8

Cacheiro, P et al (2020), Human and mouse essentiality screens as a resource for disease
gene discovery, Nature Communications 2020, 11(1), 1-16. 16

Cai, H., V. W. Zheng, and K. C.-C. Chang (2018), A comprehensive survey of graph
embedding: Problems, techniques, and applications, IEEE Transactions on Knowledge
and Data Engineering, 30(9), 1616-1637, doi:10.1109/tkde.2018.2807452. 6

38 BIBLIOGRAPHY

Campos, T. L., P. K. Korhonen, R. B. Gasser, and N. D. Young (2019), An Evaluation of
Machine Learning Approaches for the Prediction of Essential Genes in Eukaryotes Us-
ing Protein Sequence-Derived Features, Computational and Structural Biotechnology
Journal, 17, 785-796. 17

Chang, A. X., T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu (2015), Shapenet: An information-
rich 3d model repository, cite arxiv:1512.03012. 18

Chen, Z., X. Wei, P. Wang, and Y. Guo (2019), Multi-label image recognition with graph
convolutional networks, CoRR, abs/1904.03582. 17

Cowen, L., T. Ideker, B. J. Raphael, and R. Sharan (2017a), Network propagation: a
universal amplifier of genetic associations, Nature Reviews Genetics, 18(9), 551-562,
doi:10.1038 /nrg.2017.38. 6

Cowen, L., T. Ideker, B. J. Raphael, and R. Sharan (2017b), Network propagation: a
universal amplifier of genetic associations, Nature Reviews Genetics, 18(9), 551. 16

Cowling, P., G. Kendall, and E. Soubeiga (2001), A hyperheuristic approach to schedul-
ing a sales summit, in Practice and Theory of Automated Timetabling III, edited by
E. Burke and W. Erben, pp. 176-190, Springer Berlin Heidelberg, Berlin, Heidelberg.
13

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson (1954), Solution of a large-scale
traveling-salesman problem, Operations Research, 3, 393-410. 11

Dou, Y., K. Shu, C. Xia, P. S. Yu, and L. Sun (2021), User preference-aware fake
news detection, in Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 5

Dusad, V., D. Thiel, M. Barahona, H. C. Keun, and D. A. Oyarzun (2021), Opportunities
at the interface of network science and metabolic modeling, Frontiers in Bioengineering
and Biotechnology, 8, doi:10.3389/fbioe.2020.591049. 16

Easley, D. A., and J. M. Kleinberg (2010), Networks, Crowds, and Markets - Reasoning
About a Highly Connected World., I-XV, 1-727 pp., Cambridge University Press. 2

Emmert-Streib, F., M. Dehmer, and B. Haibe-Kains (2014), Gene regulatory networks
and their applications: understanding biological and medical problems in terms of net-
works, Frontiers in Cell and Developmental Biology, 2, doi:10.3389/fcell.2014.00038.
2

Festa, P. (2014), A brief introduction to exact, approximation, and heuristic algorithms
for solving hard combinatorial optimization problems, pp. 1-20, doi:10.1109/ICTON.
2014.6876285. 12

Garcia, V., and J. Bruna (2018), Few-shot learning with graph neural networks. 17

Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl (2017), Neural
message passing for quantum chemistry, CoRR, abs/1704.01212. 1

BIBLIOGRAPHY 39

Glover, F., and M. Laguna (1997), Tabu Search, Kluwer Academic Publishers, Norwell,
MA, USA. 13

Guo, Y., H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun (2021), Deep learning
for 3d point clouds: A survey, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(12), 43384364, doi:10.1109/ TPAMI.2020.3005434. 18

Hadaj, P., D. Strzatka, M. Nowak, M. Latka, and P. Dymora (2022), The use of PLANS
and NetworkX in modeling power grid system failures, Scientific Reports, 12(1), doi:
10.1038/s41598-022-22268-7z. 2

Hamilton, W. L. (2020), Graph Representation Learning, Springer International Pub-
lishing, doi:10.1007/978-3-031-01588-5. 3, 4, 5, 6

Hasin, Y., M. Seldin, and A. Lusis (2017), Multi-omics approaches to disease, Genome
Biology, 18(1), doi:10.1186/s13059-017-1215-1. 14

Hemmati, A., and L. M. Hvattum (2017), Evaluating the importance of randomiza-
tion in adaptive large neighborhood search, International Transactions in Operational
Research, 24(5), 929-942, doi:https://doi.org/10.1111/itor.12273. 24

Hemmati, A., L. M. Hvattum, K. Fagerholt, and I. Norstad (2014), Benchmark suite
for industrial and tramp ship routing and scheduling problems, INFOR: Information
Systems and Operational Research, 52(1), 28-38, doi:10.3138 /infor.52.1.28. 22

Holland, J. H. (1992), Genetic algorithms, Scientific American. 13

Hornik, K., M. Stinchcombe, and H. White (1989), Multilayer feedforward networks
are universal approximators, Neural Networks, 2(5), 359-366, doi:https://doi.org/10.
1016,/0893-6080(89)90020-8. 8

Tovescu, C., and S. Rao (2017), The fundamentals of millimeter wave sensors. 19

Jain, A.; A. R. Zamir, S. Savarese, and A. Saxena (2015), Structural-rnn: Deep learning
on spatio-temporal graphs, CoRR, abs/1511.05298. 17

Jiang, W. (2022), Graph-based deep learning for communication networks: A survey,
Computer Communications, 185, 40-54, doi:https://doi.org/10.1016/j.comcom.2021.
12.015. 2

Kennedy, J., and R. C. Eberhart (1995), Particle swarm optimization, in Proceedings of
the IEEE International Conference on Neural Networks, pp. 1942-1948. 13

Kim, Y., and B. Toomajian (2016), Hand gesture recognition using micro-doppler sig-
natures with convolutional neural network, IEEE Access, 4, 7125-7130. 21

Kipf, T. N., and M. Welling (2016), Semi-supervised classification with graph convolu-
tional networks, CoRR, abs/1609.02907. 5

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983a), Optimization by simulated
annealing, Science, 220(4598), 671-680, doi:10.1126/science.220.4598.671. 13

40 BIBLIOGRAPHY

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983b), Optimization by simulated
annealing, Science, 220(4598), 671-680, doi:10.1126/science.220.4598.671. 23

Kool, W., H. van Hoof, and M. Welling (2019), Attention, learn to solve routing problems!
2,13

Korte, B., and J. Vygen (2012), Combinatorial Optimization, Springer Berlin Heidelberg,
doi:10.1007/978-3-642-24488-9. 5

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012), Imagenet classification with deep
convolutional neural networks, in Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’12, p. 1097-1105, Curran
Associates Inc., Red Hook, NY, USA. 8

Kucharska, E. (2019), Dynamic vehicle routing problem—predictive and unexpected
customer availability, Symmetry, 11(4), doi:10.3390/sym11040546. 2

Lawler, E. L., and D. E. Wood (1966), Branch-and-bound methods: A survey, Operations
Research, 14(4), 699-719, doi:10.1287 /opre.14.4.699. 12

LeCun, Y., K. Kavukcuoglu, and C. Farabet (2010), Convolutional networks and appli-
cations in vision, in Proceedings of 2010 IEEE International Symposium on Clircuits
and Systems, pp. 253-256, doi:10.1109/ISCAS.2010.5537907. 6

Lewis, N. E., H. Nagarajan, and B. O. Palsson (2012), Constraining the metabolic
genotype-phenotype relationship using a phylogeny of in silico methods, Nature Re-
views Microbiology, 10(4), 291-305, doi:10.1038/nrmicro2737. 17

Li, F., K. Fujiwara, F. Okura, and Y. Matsushita (2021), A closer look at rotation-
invariant deep point cloud analysis, in 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 16,198-16,207, doi:10.1109/ICCV48922.2021.01591. 21

Li, X., W. Li, M. Zeng, R. Zheng, and M. Li (2020), Network-based methods for predict-
ing essential genes or proteins: a survey, Briefings in Bioinformatics, 21(2), 566-583,

doi:10.1093/bib/bbz017. 17

Lu, H., X. Zhang, and S. Yang (2020), A learning-based iterative method for solving
vehicle routing problems, in International Conference on Learning Representations.
14

MacNeil, L. T., and A. J. Walhout (2011), Gene regulatory networks and the role of ro-
bustness and stochasticity in the control of gene expression, Genome Research, 21(5),
645-657, doi:10.1101/gr.097378.109. 15

Mastej, E., L. Gillenwater, Y. Zhuang, K. A. Pratte, R. P. Bowler, and K. Kechris (2020),
Identifying protein—metabolite networks associated with copd phenotypes, Metabolites,
10(4), doi:10.3390/metabo10040124. 2

Merkle, D., and M. Middendorf (2006), Marco dorigo and thomas stiitzle, ant colony
optimization, mit press (2004) isbn 0-262-04219-3., Fur. J. Oper. Res., 168(1), 269
271. 13

BIBLIOGRAPHY 41

Min, Y., Y. Zhang, X. Chai, and X. Chen (2020), An efficient pointlstm for point clouds
based gesture recognition, in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5760-5769, doi:10.1109/CVPR42600.2020.00580. 21

Mobegi, F. M., A. Zomer, M. 1. de Jonge, and S. A. F. T. van Hijum (2017), Advances
and perspectives in computational prediction of microbial gene essentiality, Briefings
in Functional Genomics, 16(2), 70-79, doi:10.1093/bfgp/elv063. 17

Molchanov, P., X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz (2016), Online
detection and classification of dynamic hand gestures with recurrent 3d convolutional
neural network, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4207-4215. 21

Monk, J. et al (2017), iIML1515, a knowledgebase that computes Escherichia coli traits,
Nature Biotechnology, 35(10), 904-908. 17

Muzio, G., L. O'Bray, and K. Borgwardt (2020), Biological network analysis with deep
learning, Briefings in Bioinformatics, 22(2), 1515-1530, doi:10.1093/bib/bbaa257. 15

Nguyen, H., S. Shrestha, D. Tran, A. Shafi, S. Draghici, and T. Nguyen (2019), A com-
prehensive survey of tools and software for active subnetwork identification, Frontiers
in genetics, 10, 155. 16

Orth, J. D., I. Thiele, and B. 0. Palsson (2010), What is flux balance analysis?, Nature
biotechnology, 28(3), 245-8. 17

Palipana, S., D. Salami, L. A. Leiva, and S. Sigg (2021), Pantomime: Mid-air gesture
recognition with sparse millimeter-wave radar point clouds, Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., 5(1), doi:10.1145/3448110. 20

Papadimitriou, C. H., and K. Steiglitz (1982), Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Inc., USA. 11

Pisinger, D., and S. Ropke (2019), Large neighborhood search, in Handbook of meta-
heuristics, pp. 99-127, Springer. 23

Qi, C. R., H. Su, K. Mo, and L. J. Guibas (2016), Pointnet: Deep learning on point sets
for 3d classification and segmentation, CoRR, abs/1612.00593. 18

Qi, C. R., L. Yi, H. Su, and L. J. Guibas (2017), Pointnet++: Deep hierarchical feature
learning on point sets in a metric space, in Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, NIPS’17, p. 5105-5114, Curran
Associates Inc., Red Hook, NY, USA. 21

Rayana, S., and L. Akoglu (2015), Collective opinion spam detection: Bridging review
networks and metadata, in Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’15, p. 985-994, Association
for Computing Machinery, New York, NY, USA, doi:10.1145/2783258.2783370. 5

Romnen, J., and A. Akalin (2018), netSmooth: Network-smoothing based imputation for
single cell RNA-seq, F'1000Research, 7. 16

42 BIBLIOGRAPHY

Ropke, S., and D. Pisinger (2006), An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows, Transportation Science, 40(4),
455-472, doi:10.1287 /trsc.1050.0135. 23

Rosen, K. H. (2006), Discrete Mathematics and Its Applications: And Its Applications,
McGraw-Hill Higher Education. 3

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning internal represen-
tations by error propagation, in Parallel Distributed Processing: Ezplorations in the
Microstructure of Cognition, Volume 1: Foundations, edited by D. E. Rumelhart and
J. L. Mcclelland, pp. 318-362, MIT Press, Cambridge, MA. 6

Shaw, P. (1998), Using constraint programming and local search methods to solve vehicle
routing problems, in Principles and Practice of Constraint Programming — CP98,
edited by M. Maher and J.-F. Puget, pp. 417431, Springer Berlin Heidelberg, Berlin,
Heidelberg. 23

Sutton, R. S.; and A. G. Barto (2018), Reinforcement Learning: An Introduction, second
ed., The MIT Press. 10

Sorensen, K., and F. Glover (2013), Metaheuristics, pp. 960-970, doi:10.1007/978-1-
4419-1153-7 _1167. 13

Thanou, D., X. Dong, D. Kressner, and P. Frossard (2017), Learning heat diffusion
graphs, IEEE Transactions on Signal and Information Processing over Networks, 3(3),
484-499, doi:10.1109/TSIPN.2017.2731164. 6

Thomas, N., T. E. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley (2018),
Tensor field networks: Rotation- and translation-equivariant neural networks for 3d
point clouds, CoRR, abs/1802.08219. 21

Tilwari, V., M. N. Hindia, K. Dimyati, D. N. K. Jayakody, S. Solanki, R. S. Sinha,
and E. Hanafi (2021), Mbmga: A multicriteria-aware routing approach for the
iot 5g network based on d2d communication, FElectronics, 10(23), doi:10.3390/
electronics10232937. 2

Turkes, R., K. Sorensen, and L. M. Hvattum (2021), Meta-analysis of metaheuristics:
Quantifying the effect of adaptiveness in adaptive large neighborhood search, Furopean
Journal of Operational Research, 292(2), 423-442, doi:https://doi.org/10.1016/j.ejor.
2020.10.045. 23

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin (2017), Attention is all you need, CoRR, abs/1706.03762. 13

Wang, Y., Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon (2018),
Dynamic graph CNN for learning on point clouds, CoRR, abs/1801.07829. 18

Wu, Z., B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing,
and V. S. Pande (2017), Moleculenet: A benchmark for molecular machine learning,

CoRR, abs/1703.00564. 5

BIBLIOGRAPHY 43

Yang, X., P. Molchanov, and J. Kautz (2018), Making convolutional networks recurrent
for visual sequence learning, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6469-6478. 21

Yang, Z., W. W. Cohen, and R. Salakhutdinov (2016), Revisiting semi-supervised learn-
ing with graph embeddings, CoRR, abs/1603.08861. 5

You, J., B. Liu, R. Ying, V. S. Pande, and J. Leskovec (2018), Graph convolutional
policy network for goal-directed molecular graph generation, CoRR, abs/1806.02473.
3,5, 11

Zachary, W. W. (1977), An information flow model for conflict and fission in small groups,
Journal of Anthropological Research, 33(4), 452473, doi:10.1086/jar.33.4.3629752. 1

Zaheer, M., S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. J. Smola
(2017), Deep sets, CoRR, abs/1705.0611}. 8, 18

Zhang, X., W. Xiao, and W. Xiao (2020), DeepHE: Accurately predicting human es-
sential genes based on deep learning, PLOS Computational Biology, 16(9), €1008,229,
doi:10.1371 /journal.pcbi.1008229. 17

Zhu, X., and Z. Ghahramani (2002), Learning from labeled and unlabeled data with
label propagation. 6

Zhu, X., M. Gerstein, and M. Snyder (2007), Getting connected: analysis and princi-
ples of biological networks, Genes & Development, 21(9), 1010-1024, doi:10.1101/gad.
1528707. 14, 15

44

BIBLIOGRAPHY

5 Scientific results

Paper |

A Graph Feature Auto-Encoder for the Prediction of Unob-
served Node Features on Biological Networks

Ramin Hasibi and Tom Michoel
BMC Bioinformatics, 22/1 (2021)

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 HP H
https://doi.org/10.1186/512859-021-04447-3 B M C B I O I nfo rmatl CS

RESEARC Open Access

®
A Graph Feature Auto-Encoder e

for the prediction of unobserved node features
on biological networks

Ramin Hasibi~ and Tom Michoel

*Correspondence:

Ramin.Hasibi@uib.no Abstract

Computational Biology Unit, Background: Molecular interaction networks summarize complex biological pro-
Department of Informatics, h h ¢ t is inf ti f biological f i t ltiol
University of Bergen, Bergen, cesses as graphs, whose structure is informative of biological function at multiple
Norway scales. Simultaneously, omics technologies measure the variation or activity of genes,

proteins, or metabolites across individuals or experimental conditions. Integrating the
complementary viewpoints of biological networks and omics data is an important task
in bioinformatics, but existing methods treat networks as discrete structures, which

are intrinsically difficult to integrate with continuous node features or activity meas-
ures. Graph neural networks map graph nodes into a low-dimensional vector space
representation, and can be trained to preserve both the local graph structure and the
similarity between node features.

Results: We studied the representation of transcriptional, protein—protein and genetic
interaction networks in £. coli and mouse using graph neural networks. We found that
such representations explain a large proportion of variation in gene expression data,
and that using gene expression data as node features improves the reconstruction of
the graph from the embedding. We further proposed a new end-to-end Graph Feature
Auto-Encoder framework for the prediction of node features utilizing the structure of
the gene networks, which is trained on the feature prediction task, and showed that it
performs better at predicting unobserved node features than regular MultiLayer Per-
ceptrons. When applied to the problem of imputing missing data in single-cell RNAseq
data, the Graph Feature Auto-Encoder utilizing our new graph convolution layer called
FeatGraphConv outperformed a state-of-the-art imputation method that does not use
protein interaction information, showing the benefit of integrating biological networks
and omics data with our proposed approach.

Conclusion: Our proposed Graph Feature Auto-Encoder framework is a powerful
approach for integrating and exploiting the close relation between molecular interac-
tion networks and functional genomics data.

Keywords: Gene regulatory networks, Gene expression, Graph neural networks, Graph
representation learning, Molecular networks, Omics, Feature prediction, Feature auto-
encoder

©The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third

party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http/
creativecommons.org/licenses/by/40/. The Creative Commons Public Domain Dedication waiver (httpy//creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 2 of 17

Introduction

Biological networks of genetic, transcriptional, protein—protein, or metabolic interac-
tions summarize complex biological processes as graphs, whose structure or topology
is informative of biological function at multiple scales. For instance, degree distribu-
tions reflect the relative importance of genes or proteins in a cell; 3—4 node network
motifs have well-defined information-processing roles; and network clusters or com-
munities contain genes or proteins involved in similar biological processes [1-3].
Simultaneously, genomics, transcriptomics, proteomics, and metabolomics tech-
nologies measure the variation or activity of genes, proteins, or metabolites across
individuals or experimental conditions [4, 5]. There is a rich history of integrating
the complementary viewpoints of biological networks and omics data. For instance,
“active subnetwork” identification methods treat omics data as features of network
nodes in order to identify well-connected subnetworks that are perturbed under dif-
ferent conditions [6]. Network propagation or smoothing methods on the other hand
use biological networks to extend partial information on some nodes (e.g., disease
association labels, partially observed data) to other nodes (e.g., to discover new dis-
ease-associated genes or impute missing data) [7, 8]. However, existing methods treat
biological networks as discrete structures, which are intrinsically difficult to integrate
with continuous node features or activity measures.

Recently, with the advent of deep learning, the idea of representation learning on
graphs has been introduced. In this concept, nodes, subgraphs, or the entire graph
are mapped into points in a low-dimensional vector space [9]. These frameworks are
known as graph neural networks (GNNs), and use deep auto-encoders to preserve the
local structure of the graph around each node in the embedding, without having to
specify in advance what “local” means. However, not much attention has been paid so
far to the representation of the node features in these embeddings [10, 11].

In this paper, we propose a new framework using graph representation learning on
biological networks which results in embeddings that are compatible with or inform-
ative for molecular profile data, concentrating for simplicity on gene expression data.
The three main contributions of this study are:

1. We introduce a method to systematically measure the relationship between the
structure of a network and the node feature (gene expression) values. This is done
using the Graph Auto-Encoder (GAE) approach of [12] and measuring (i) the per-
formance of reconstructing the network from the embedding, with and without
expression data, and (ii) measuring the variance in expression values explained by
the embedding matrix.

2. We propose the framework of Graph Feature Auto-Encoder (GFAE) for the predic-
tion of expression values utilizing gene network structures, and introduce a new
convolution layer named FeatGraphConv using a message passing neural networks
(MPNN) framework, tailored to reconstructing the representation of the node fea-
tures rather than the graph structure.

3. We show that our new approach to gene expression prediction has practical applica-
tions in tasks such as imputation of missing values in single cell RNA-seq data and
similar scenarios.

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page30of 17

Related work on GNN

Assume that an undirected, unweighted graph G = (V, £) with N = |V| number of nodes
has an adjacency matrix A, where A;; = 1if there is an edge between nodes i and j and
zero otherwise, and degree matrix D, a diagonal matrix with the degrees (number of
neighbours) of each node on the diagonal. Matrix X € RN*Q, called the feature matrix,
denotes node features. One of the first attempts at learning neural networks over graph
structures was the convolution operation on graphs. For an input graph signal x € RV,
the spectral convolution is defined as

8o kx = UgeUTx, (1)

in which U is the matrix of eigenvectors of the symmetric Laplacian
L =D — A =UAUT. UTx s called the Fourier transform of signal x and g is a matrix
function of A, the diagonal matrix of eigenvalues of L.

Due to the high cost of calculating the eigenvalues in the case of large matrices, Ham-
mond et al. [13] proposed to use a Chebyshev series expansion truncated after the K

term to approximate the graph convolution operation with a K*-order polynomial:

K K
goxx~UY T (AU x =) 6, T(A)x, @)
k=0 k=0

in which Ty (.) and 6; are the k™-order Chebyshev polynomials and expansion coef-
ficients, respectively, A= ﬁA — Iy with 7,4« the largest eigenvalue of A and Iy an
identity matrix with size N x N, and finally L = UAUT = ﬁL — I

In the graph convolutional network (GCN) [14], further approximations were done
by setting K = 1, Zyax ~ 2, and 6 = 65 = —0]. As a result, formula (2) was transformed
into

g *x~ (Iy + D" 2AD " 2)x. 3)

Repeated application of gy resulting in high powers of D~ iAD"? can cause numerical
instabilities. Kipf and Welling [14] suggested to set the diagonal elements of A to 1 (add
self-loops) and to recompute D according to the updated adjacency matrix. Therefore,
they used the symmetrically normalized adjacency matrix A in their convolution layer,
with

A =D 2AD71/2, (4)
Thus, the forward operation in a GCN for X is computed as
GCN(X,A) = 0 (A ReLU(AXW ()W) (5)

with weight matrices W; containing the trainable weights for each input feature, and o a
non-linear task specific function such as softmax for a node classification problem [10].
Additional studies on GNNs have shown that a GNN can be viewed as a message-
passing approach based on graph structure, where every node’s message for its neigh-
bours is the aggregation of the neighbourhood information, in which the aggregation

is done through a trainable neural network [15]. This framework is also known as a

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 4 of 17

MPNN. The forward pass in such a network consists of a message passing phase and a
readout phase. In the message passing phase, the hidden representation of each node
is updated through an update function, which aggregates the previous node represen-

tation and the messages of its neighbours according to:
HE = KL, Poolien o M B e))), ()

in which h{f is the hidden representation of node i in layer k, with h? being the node i’'s
input features and e;; is the edge attribute between nodes i and j. Additionally, y and M
are both differentiable functions called the update and message functions, respectively
and Pool is a permutation invariant pooling function. Furthermore, N(i) denotes the set
of neighbouring nodes of node i.

In the readout phase, the feature vector of each node in the graph is computed using
some learnable, differentiable readout function R according to

Y = R({ki € V), (7)

in which, Y is the predicted labels. Different settings of y, M, Pool, and R can lead to dif-
ferent MPNN convolution layers specific to different tasks and scenarios.

Methods

In this section, we present two different GFAE frameworks of predicting expres-
sion values, leveraging the gene regulatory network structure, whose pipelines are
depicted in Fig. 1. In this scenario, X € RN*Q is a matrix of expression values in Q
different experiments for N number of genes (molecular profiles) and A denotes the

adjacency matrix of the gene network.

Structural embedding for indirect prediction of expression values

In this approach, we used the Non-probabilistic GAE model of [12] to represent the
structure of a gene network as depicted in Fig. 1A. First the GCN operation, shown in
formula (5), is modified by setting o in formula (5) to the identity function:

GCN(X,A) = AReLU(AXW)W, (8)

in which Wy and W are trainable weights. Therefore, the embedding matrix of the graph
adjacency Z is calculated by

Z = GCN(X,A). ()]

Furthermore, the weight matrices Wy and W in formula (8) are trained by measuring
how well the embedding reconstructs the graph adjacency matrix, where the recon-
structed adjacancy matrix A is defined as

A = Sigmoid(ZZT). (10)

The cross-entropy error over all the edges in the matrix is used as a loss function,

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 50f 17

4.4,

Relu

» Sigmoid (

GCN Layer

GCN Layer
S
~ fiil
X
BERR
oono
=
~—
L
-1

(A)
Tree 1 Tree 2 Tree T
LN TARN /1IN
=== e e N RS ﬁEE
[v V. V. —— EEEEEE
B L T Bes
ooan \ \ / 1 Z'I'V
7 T2 Vvt X
Regression function f (Z)
(B)
X
EEEEEm
EEEEEE
EEEEEE =
EEEEEE » 9
Bassaa G o EEEEEE
EEEEEE
= — -4. » DmmeEm
NG g re EEsEEE
Fully Connected 5{
A
©

Fig. 1 A Depicts the GAE scheme of [12] tailored to the reconstruction of the adjacency matrix of the graph.
In B we take the embedding matrix of a GAE and train an indirect regression task for the prediction of the
expression values. C lllustrates our proposed GFAE approach for end-to-end learning of graph node features

£:_ZAnlnAm (11)

where A, and A, are the adjacency rows of the nth node in A and A, respectively. The
training of the neural network is done by gradient descent and stochasticity added by
dropout rate. We use the metrics of average precision and area under the ROC curve
related to the reconstruction of A, and the Variance Explained of X by Z to quantify the
relationship between the node features and the graph structure.

As shown in Fig. 1B, the expression values of the genes are obtained following
X=/(2) (12)

where X denotes the predicted expression values. Moreover, fis a regression function for
which we consider linear regression (LR) and random forest (RF) regression as examples.

Message passing neural network for end-to-end prediction of expressions

In the second method, we apply the message passing formula of (6) on the input
expression values in which the messages (hidden representations) are propagated
to each gene from neighbours in the gene network. As shown in Fig. 1C, in this
approach, the model is trained in an end-to-end framework to predict the expression

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 6 of 17

values directly from the input, without the need for training a separate regression
model. To establish the performance of this framework, we used three popular mes-
sage passing schemes for finding the hidden representation of the genes, as well as
introducing our own, for the task of predicting gene expression values. These three
methods are inductive GCN, GraphSAGE [16], and the GNN operator from [17]
(from here on referred to as GraphConv). According to [15], a single GCN layer can
also be viewed as a message passing scheme between the nodes in the graph in the
format of formula (6):

Wi, (13)

PR P
NG \/deg (i) % \/deg(j)

in which deg(i) is the number of neighbours of node i, W is a trainable weight matrix,
and) is the sum pooling operator. This scheme is equivalent to running a single GCN

layer in formula (8). Another MPNN layer is GraphSAGE, whose formula is given by
W= Wy + WZMeanjeN(i)Ui(h/l‘(il)r (14)

in which Mean is the mean pooling operator, and Wy and W are trainable weight matri-
ces. GraphSAGE MPNN assumes that the representation of each node is the summation
of the output from the previous layer and the average of the representation of the adja-
cent nodes. The final MPNN layer, named GraphConv, is calculated through

Wy =W Y Wi 15)
JEN (i)

in which W7 and W, are trainable weight matrices, and Y is the sum pooling operator.
In this layer, the representation of each node is the sum product of the previous layer
representation and the summation of the incoming messages from adjacent nodes.

In our proposed version of MPNN, FeatGraphConv, we first obtain a representation
of every node’s features by running them through a linear layer in the message func-
tion M. This step helps the layer to find optimized message representations for the
propagation phase. Then we aggregate the incoming neighbours’ messages by a mean
pooling operator, based on the hypothesis that in a gene network, a gene’s expres-
sion value is intermediate between its neighbours expression values. For the update
function y, we concatenate the node’s embedding with its aggregated messages, and
run them through a shared weight network, which determines how important each
of these values are in predicting the features of the node. Hence, the formulae for our

FeatGraphConv operator are as follows

gik =Wy * hf.“l

(16)
Hy = Wa(gf|IMeanjen i (g),

in which (.]|.) is the concatenation function and W7 and W represent trainable weight
matrices. In all of the four mentioned layers, the readout function R is defined as a fully
connected linear layer. Thus, X; the predicted expression values for node i are obtained
through

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 7 of 17

Xi=Wxh+b 7)

in which W and b represent trainable weights and bias matrices respectively. For finding
the optimal weights in this framework, mean squared error (MSE) on predicted expres-
sion values is used as the loss function. This method is considered to be a semi-super-
vised training framework due to utilizing the complete structure of the graph in training
the model.

Prediction of expressions from expressions

For comparison of the results obtained through “Structural embedding for indirect
prediction of expression values” and “Message passing neural network for end-to-end
prediction of expressions” sections, we also consider prediction of X directly from X

through simple machine learning algorithms. These algorithms include:

o Multi layer perceptron (MLP) A simple form of a neural network which maps the
input features into output features through multiple layers of neurons (computing
units).

+ Linear regression A linear model for mapping the input to the output.

+ Random forest A set of decision tree models that determine the output value through
the aggregation of the output of decision trees that each are trained on a subset of X

o Markov affinity-based graph imputation of cells (MAGIC) Uses signal-processing
principles similar to those used to clarify blurry and grainy images to recover missing
values from already existing ones in a matrix [18]

Experimental setup

In this section, we describe three experiments that are done to measure the relation-
ship between gene network structure and expression values as well as thoroughly
evaluate the performance of the proposed GFAE. The hyper-parameters of all the
experiments were determined after some initial experiments on a separate validation
set and were kept the same for all the models, to measure the predictive performance
of different approaches under the same set of initial circumstances. These hyper-
parameters are listed in Table 1. In order to make a sound and thorough performance
evaluation, two masking methods are used to divide the data for training and evalua-
tion, the details of which are explained below.

Table 1 Hyper-parameters of the graph neural network

Hyper-parameter Node embedding MPNN
Epochs 500 20,000
Initial learning rate 0.001 0.001
First hidden layer size 64 64

Second hidden layer size 32 32

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 8 of 17

Masking mechanism for the separation of train and test expression values

For evaluation purposes, we separate the expression values of X and X into two sets
of training and testing. For this goal, two different masking techniques are used, the
schemes of which are illustrated in Fig. 2. First, The input expression values X and the
expression values that are to be predicted X are split into train and test through

Xtrain = Merain 0 X, Xirain = Merain 0o X,

~ - ~ (18)
Xtest = Miest 0 X, Xtest = Miest 0 X,

where o is the Hadamard product and Merain> Miest, Mirgin, Miest € {0, 1N *Q are binary
matrices which have the value 1 in train and test indices, respectively. The goal is to train
the models to predict the values of Xirain using the values in Xy, as input and evalu-
ate the models when predicting Xyesr With Xy as input features. In the first masking
method as depicted in Fig. 2A, the masking is done in such a way that both experiments
(columns) and genes (rows) in expression profile matrix are split into separate train and
test sets. Furthermore, in this approach, a model is trained to predict each column of
the X independently (experiments based) to make the evaluation possible for regression
functions, since they are only capable of predicting one value for each gene.

In the second masking mechanism (Fig. 2B), also refered to as the imputation mask-
ing, following the imputation mechanism in auto-encoders, we set X = X to measure
the reconstruction ability of each model in an auto-encoder framework resulting in only
two splits of Xygin and Xyesr. Thus, Mygin is set to 1 for some elements of X at random

and My is calculated as
Miest = ~Mrain, (19)

where — indicates the logical not operator. Additionally, K-fold cross-validation is used
in both masking techniques to ensure the soundness of all obtained results with K set to

10 or 3 depending on the time complexity of the specific experiment.

Experiment on gene network structure embedding

In this experiment, we obtain the embedding matrix of the graph structure Z and
measure the performance of the graph auto-encoder in calculating A (see “Struc-
tural embedding for indirect prediction of expression values” section). We used the
PytorchGeometry implementation of the graph auto-encoder provided by [19]. For our
approach, the normal auto-encoder provided in the package was used, and the varia-
tional auto-encoder was omitted.

Five different sets of input graphs and features to the model were tested:

1. Random graph In this approach Z is calculated by
Z = GCN(In, Arana)s (20)

in which, Iy and A,,,,4 represent an identity matrix of size N x N and the adjacency
matrix of a random graph, respectively. For generating random graphs, we used the
random graph generator of the Python3 package NetworkX, using the Erd6s—Rényi
model [20] (Additional file 1).

Hasibi and Michoel BMC Bioinformatics (2021) 22:525

Expression Values

feature matrix

ANEEEEEEE ()
ANEEEEEEE -
ANEEEEEEE
ANEEEEEEE
HEEN u
O
O
ENEEEE
I |
[
Mirain Xirain
I
I
N
)
g
() Hadamard Product EEEEEE
Masking Method 1 Myar Xpour
(4)
Expression Values
ENEEEEEEN EEC
ANEEEEEEN
ANEEEEEEE
ANEEEEEEE ®)
ANEEEEEEE N\
| | | |
Mirain
1
1
N
()Hadamard Product ~ -/
Masking Method 2 5
Miest Xitest
®)

Fig. 2 The two different approaches of masking of expression values. In A, each dimension of Xees: is
predicted using a separate model trained on Xain. In B, a single model is used to predict all the values of the

Page 9 of 17

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 10 of 17

2. Expression + random graph In this approach, the identity matrix is replaced with the

actual expression values of genes as input features:
Z = GCN(X, Ayand)- (21)

3. Real graph Following the approach used by [12], the embedding matrix Z in this case
is calculated by

Z = GCN(Iy, A), (22)

where A is the adjacency matrix of the input graph.
4. Expression + real graph The embedding Z in this case is calculated through formula

©)
Z = GCN(X, A).

5. Expression The network in this model, is inferred from the (absolute) correlation
between the expression values of different genes. In this approach, the correlation
directly outputs the probability of the edge between two nodes.

By choosing the identity matrix as input features in input setting 1 and 3, each of the
nodes has a distinct set of features, which do not give any indication about the func-
tionality of the node. This way the model will only pay attention to the graph structure
when producing the embedding matrix. The edge set of the graph (&) is split into train
and test sets and performance metrics of average precision (AP), area under ROC curve
(AUC) on the test edge set, as well as the variance of X explained by Z are calculated for
evaluation. The benefit of this experiment is that it allows to measure the relationship
between the expression values and the structure of different gene networks through dif-
ferent metrics obtained from five different input settings as mentioned above.

Experiment on the prediction of expression values using the proposed GFAE

In this experiment, the first masking mechanism (Fig. 2A and “Masking mechanism for
the separation of train and test expression values” section) is used to evaluate different
models for predicting expression values utilizing the structure of the network. Three
sets of models are compared: indirect (Fig. 1B and “Structural embedding for indirect
prediction of expression values” section), end-to-end framework (Fig. 1C and “Message
passing neural network for end-to-end prediction of expressions” section), and baseline
regression models (“Prediction of expressions from expressions” section). Moreover,
two settings of inputs, (X, A) and (Ix, A), are used in the indirect and end-to-end mod-
els to compare their performance with and without input expression values. The pur-
pose of this experiment is that it allows for a simple performance comparison between
graph-based prediction methods in a sample regression task. Furthermore, prediction of
expression values solely based on graph structure is possible in this setting. The average
MSE for the prediction of each column of Xest is reported as the performance metric.

Experiment on the imputation performance of the proposed GFAE
For this experiment, the second masking approach (“Masking mechanism for the sep-
aration of train and test expression values” section) or imputation masking is applied

Hasibi and Michoel BMC Bioinformatics

(2021) 22:525

on the input X in end-to-end models (Fig. 1C and “Message passing neural network
for end-to-end prediction of expressions” section). The goal of this experiment is to
evaluate the proposed GFAE in imputation tasks such as the imputation of missing
values in Single Cell RNA-seq datasets, as well as to compare the reconstruction abil-
ity of the proposed framework against traditional auto-encoders. The MSE of Xy is

the metric used in this experiment to compare different auto-encoders.

Datasets
We evaluated the performance of our method on data for the organisms Escherichia
Coli (E. coli) and Mus Musculus.

+ Network datasets For E. coli, we used transcriptional, protein—protein, and genetic
interaction networks. The transcription network was obtained from RegulonDB [21].
All the positive and negative regulatory effects from the TF-gene interactions data-
set file were included regardless of their degree of evidence (strong or weak) to con-
struct the adjacency matrix. A PPI and genetic interaction network were obtained
from BioGRID [22, 23]. We extracted the interactions from the file “BIOGRID-
ORGANISM-Escherichia_coli_K12_W3110-3.5.180", and considered the “physical”
and “genetic” values of "Experimental System Type’ column for constructing the PPI
and genetic networks, respectively. For Mus Musculus, we used a protein—protein
interaction network extracted in the same way from the file “BIOGRID-ORGAN-
ISM-Mus_musculus-3.5.182"

+ Expression level dataset For E. coli, we used the Many Microbes Microarray Data-
base (M3DB) [24, 25]. All the experiments from the file “avg_E_coli_v4_Build_6_exp-
s466probesd297” were used to construct the feature matrix. For Mus Musculus, the
single cell RNA-Seq data from [26] were obtained from the Gene Expression Omni-
bus.

For each of the networks, the common genes between the network and the expres-
sion data were extracted, and an adjacency matrix and a matrix of features were
constructed from the network and expression level datasets, respectively. A detailed

description of each of the networks is available in Table 2.

Computational resources and source code

All the experiments were done on a Tesla V100 with Python 3. The source code of the
experiments is availabe at https://github.com/RaminHasibi/GraphFeatureAutoenco
der.

Table 2 Summary description of benchmark datasets

TF_net PPI Genetic
Input Expressions Nodes Edges Nodes Edges Nodes Edges
E. coli 466 1559 3184 1929 11,592 3688 147475
Mus Musculus 1468 - - 9951 75,587 - -

Page 11 of 17

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 12 of 17

Results
Graph structural embeddings reconstruct gene networks and explain variation in gene
expression
We obtained low-dimensional embeddings of transcriptional regulatory (TF_net), pro-
tein—protein interaction (PPI) and genetic interaction networks in E. coli and a PPI net-
work in mouse (MPPI), with and without using expression data as node features, and
trained the GAE to optimize the reconstruction of the original graph from the node
embedding (see “Methods” section for details). Figure 3 shows the results for the graph
reconstruction task for various embeddings. As seen in Fig. 3A, B, embeddings learned
from the structure of the real graph alone (“Graph”) performed considerably better than
embeddings learned from random graphs (“Random Graph”), as expected, in terms of
both AUC and AP. The same was true for a standard Pearson correlation coexpression
network inferred from the expression data alone (“Expression”), showing that graph
embeddings and gene expression data independently predict graph structure.

When gene expression data were used as node feature inputs to the GAE (see “Struc-
tural embedding for indirect prediction of expression values” and “Experiment on
gene network structure embedding” sections), graph reconstruction performance fur-

ther increased (“Expression + Graph” row), but this was not the case when expression

AUC grouped by each network AP grouped by each network
1.0
0.9
0.8
0.7
0.6
0.5
0-4"TE net PPl Genetics MPPI TF net PPl Genetics MPPI
(A)
Variance Explained grouped by each network
1.0
EEE Expression + Graph 0.9
s Graph
mmm Expression + Random Graph 0.8
B Random Graph
Emm Expression 0.7
0.6
0.5
0.4 TF_net PPI Genetics
()
Fig.3 A, B Show AUC and AP of test set edge prediction on different gene networks given different input
settings. C Shows the variance explained of the expression data matrix X by the embedding matrix Z (for
exact values see the Additional file 1)

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 13 of 17

data was combined with random graphs (“Expression + Random Graph” row). In other
words, graph embeddings where the distance between nodes respects both their graph
topological distance and their expression similarity result in better graph reconstruc-
tion than embeddings that are based on topological information alone. This shows that
expression profiles are informative of graph structure in a way that is consistent with, but
different from, the traditional view where networks are inferred directly from expression
data using expression similarity measures.

Next we computed the variance of the expression data explained by the different
embeddings (see Fig. 3C and details in the Additional file 1). Despite being trained on
the graph reconstruction task, graph embeddings learned with and without expression
data as node features explained a high percentage of variation in the expression data, but
not when random graphs were used.

In summary, graph representation learning results in low-dimensional node embed-
dings that faithfully reconstruct the original graph as well as explain a high percentage of
variation in the expression data, suggesting that graph representation learning may aid
the prediction of unobserved expression data.

Indirect and end-to-end GFAE predict unobserved expression values
As mentioned in “Experiment on the prediction of expression values using the proposed
GFAE” section, we considered three categories of prediction methods: (i) standard base-
line methods that don’t use graph information (LR, RF, MLP, see “Prediction of expres-
sions from expressions” section), (ii) standard regression methods trained on graph
embeddings instead of directly on the training data (LR-embedding and RF-embedding,
see “Structural embedding for indirect prediction of expression values” section), and (iii)
graph MPNN methods for end-to-end learning of features (GCN, GraphSage, Graph-
Conv, and FeatGraphConv, see “Message passing neural network for end-to-end predic-
tion of expressions” section and Fig. 1. Table 3 shows the performance (average mean
squared error) of all methods on the E. coli data. For this experiment the mouse single-
cell RNA-seq data was omitted due to sparsity of the expression values. The “Features”
and “Graph” columns indicate the input settings of (X, A) and (Iy, A), respectively.

The newly proposed graph convolution layer of FeatGraphConv is able to predict the

unobserved expression values better than the other graph convolutions, due to the fact

Table 3 The average MSE of predicting test expression values X using different models

Method TF_Net PPI Genetics

Features Graph Features Graph Features Graph
GCN 7.791 £ 3550 15.127 +2.280 6.208 +0.607 11.106 4+ 0.52198 5988+ 0696 4.560+ 0.351
GraphSAGE 03324+0.160 8.078 £2.592 0.2654+0.135 2.844 £0.349 0.2334+0.127 4466 £ 1.605
GraphConv 0318+0.154 13812+£4534 0.308 +0.139 3.094 + 0431 02344+0.116 5226+ 1.054
FeatGraphConv ~ 0.285£0.135 7.525 % 2.941 0.244 £0.130 5207 + 1476 0.201£0.112 3.414+0.691
LR-embedding 1.583+0.200 2279+ 0403 1.091 £0.166 1453 +0.264 1.863+0.332 1.653+0.271
RF-embedding 1945+£0318 2.150+0.363 1.472 £0.267 1.452+0.267 188340343 1.897£0351
MLP 0424+£0170 - 035440153 - 03324+0.134 -
LR 0.215+0.126 - 0.147 £0.105 - 0.108 £0.084 -
RF 0.507 £0.143 - 0.194 £0.103 - 1.882+0343 -

(Bold indicates lowest error mean per category of experiments for each group of methods (end-to-end, indirect, or baseline)

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 14 of 17

that this layer is tailored to the prediction of features rather than the reconstruction
of the graph. As expected, all end-to-end methods perform considerably better when
training data is included as node features. The end-to-end methods, with the excep-
tion of GCN, also perform better than the indirect methods where regression models
are trained on graph embeddings. We also observe that the lowest MSE overall is in
fact obtained by baseline LR on the training data alone. However, experiments on Feat-
GraphConv with 20,000 iterations (as opposed to the default of 500 used for all end-to-
end methods in Table 3) showed that this model can decrease the MSE to 0.204 + 0.12,
0.133 £ 0.089, and 0.107 £ 0.083 for each of the TF_net, PPI, and Genetic networks,
respectively, which is better than LR. However, due to the high number of experiments
and the need to train a different model for each of the experiments of Xtest, it is not com-
putationally efficient to train the more complex GNN models with a higher number of
iterations by default for this prediction task.

On the other hand, when the graph structure alone is used (“Graph”), the indirect
embedding-based methods achieve lower error. This could be due to the fact that these
models better capture the structure of the graph, since their loss function is defined on
the reconstruction of the adjacency matrix. Hence when the graph structure is the only
information provided to the model, they are able to better capture this information and
therefore obtain an embedding that better predicts expression data (on the basis of the
results in “Graph structural embeddings reconstruct gene networks and explain varia-
tion in gene expression” section), compared to end-to-end models which try to predict
the expression directly and are operating blindly when expression values are provided as

input.

Graph feature auto-encoding improves the imputation of randomly missing values

in single-cell RNA-seq data

Based on the results in the previous section, we next considered the more challeng-
ing prediction task where unobserved node features are randomly distributed over the
nodes and differ between experiments, that is, the task of imputing randomly miss-
ing data (Fig. 2B). Since there are no fixed sets of training and test nodes, neither the
baseline regression methods of LR and RE, nor the indirect frameworks are applicable
in this case (“Structural embedding for indirect prediction of expression values” sec-
tion). In contrast, the end-to-end GFAE methods allow to train a single model for the
prediction of all the Xye values, which may be placed in any possible order inside the
feature matrix. We used these models for the prediction of expression values in E. coli
and of non-zero values in the single-cell RNAseq data in mouse, and benchmarked them
against two methods that don’t use graph information, namely a normal MLP used in an
auto-encoder scheme, and MAGIC, a method designed specifically to impute missing
data in single-cell RNA-seq data [18] (see “Prediction of expressions from expressions”
section).

As shown in Table 4, our FeatGraphConv convolution layer is able to predict miss-
ing features more accurately than all other methods. It is interesting to note that graph
convolution layers, with the exception of GCN, outperform MAGIC on the single-cell
RNAseq imputation task, although the MLP, which does not use graph information, also

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 15 of 17

Table 4 The average MSE of predicting randomly distributed test values using different auto-
encoder models

Model E. coli Mus Musclus
TF_Net PPI Genetics PPI
GCN 0.043 £ 0.00175 0.065 % 0.004 0.114 4 0.004 0.011 £ 0.001
GraphSAGE 0.027 % 0.0007 0.023 4 0.0004 0.026 4 0.0003 0.004 % 0.0006
GraphConv 0.041 £ 0.003 0.068 + 0.05 0.182 + 0.046 206+273
FeatGraphConv (our) 0.025 £ 0.0008 0.023 + 0.0006 0.025 + 0.0004 0.003 £ 0.0002
MLP Auto-encoder 0.031 £ 0.0007 0.028 £ 0.0003 0.027 4 0.0004 0.004 £ 0.0005
MAGIC 3.505 £ 0.006 3661 £0.017 3.21540.003 0.050 £ 0.0002

(Bold indicates lowest error mean per network)

performs well in this case. The under-performance of GCN in these experiments can be
explained by the fact that a GCN is primarily concerned with the structure representa-
tion of each node through multiplication of the degrees of neighbouring nodes (formula
(13)). This captures the graph structure well, but has a negative effect on the prediction
of node features. This is evident from the fact that other convolution layers that did not
take node degrees into consideration performed better in the tasks given.

Discussion

In this paper we studied whether GNN, which learn embeddings of nodes of a graph in
a low-dimensional space, can be used to integrate discrete structures such as biologi-
cal interaction networks with information on the activity of genes or proteins in certain
experimental conditions. Traditionally, this is achieved by for instance network propaga-
tion methods, but these methods do not extract quantitative information from a graph
that could be used for downstream modelling or prediction tasks. GNN on the other
hand can include node features (gene or protein expression levels) in the learning pro-
cess, and thus in theory can learn a representation that better respects the information
contained in both data types. Thus far the integration of node features in graph repre-
sentation learning has mainly been pursued for the task of link prediction. Here instead
we focused on the task of predicting unobserved or missing node feature values.

We showed that representations learned from a graph and a set of expression profiles
simultaneously result in better reconstruction of the original graph and higher expres-
sion variance explained than using either data type alone, even when the representations
are trained on the graph reconstruction task. We further proposed a new end-to-end
GFAE which is trained on the feature reconstruction task, and showed that it performs
better at predicting unobserved node features than auto-encoders that are trained on the
graph reconstruction task before learning to predict node features.

Predicting or imputing unobserved node features is a common task in bioinformat-
ics. In this paper we demonstrated the value of our proposed GFAE on the problem of
imputing missing data in single-cell RNAseq data, where it performs better than a state-
of-the-art method that does not include protein interaction data. Other potential appli-
cation areas are the prediction of new disease-associated genes from a seed list of known
disease genes on the basis of network proximity [7], or the prediction of non-measured

Hasibi and Michoel BMC Bioinformatics (2021) 22:525 Page 16 of 17

transcripts or proteins from new low-cost, high-throughput transcriptomics and prot-
eomics technologies that only measure a select panel of genes or proteins [27, 28] which
we intend to look into in our future works.

A potential drawback of our method is that it assumes that the interaction graph is
known and of high-quality. Future work could investigate whether it is feasible to learn
graph representations that can do link prediction and node feature prediction simulta-
neously, or whether network inference followed by graph representation learning for one
type of omics data (e.g. bulk RNAseq data) can aid the prediction of another type of
omics data (e.g. single-cell RNAseq).

In summary, our GFAE framework is a stepping stone in a new direction of applying
graph representation learning to the problem of integrating and exploiting the close rela-
tion between molecular interaction networks and functional genomics data, not only for
network link prediction, but also for the prediction of unobserved functional data.

Abbreviations

GNN: Graph neural networks; LR: Linear regression; RF: Random forest; GCN: Graph convolution networks; MPNN: Mes-
sage passing neural network; MLP: Multi layered perceptron; MAGIC: Markov affinity-based graph imputation of cells;
MSE: Mean square error; TF_net: Transcriptional regulatory network; PPI: Protein—protein interaction; AUC: Area under the
ROC curve; AP: Average precision.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-021-04447-3.

[Additional file 1. Appendix of the paper containing extra information regarding the experiments.]

Acknowledgements
We would like to express our deepest gratitude and appreciation for all reviewers and editors.

Authors’ contributions

RH designed and implemented all the baseline methods, the improved auto-encoder layer, and the training scheme and
implementation, performed the experiments, and drafted the manuscript. TM contributed to the design of experiments
and the auto-encoder layer, and to improving the writing of the manuscript. Both authors read and approved the final
manuscript.

Funding
TM acknowledges funding from the Research Council of Norway (§312045).

Availability of data and materials
The source code of this project is written in python and is available on https://github.com/RaminHasibi/GraphFeatu
reAutoencoder.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 2 February 2021 Accepted: 13 October 2021
Published online: 27 October 2021

References
1. Barabasi A-L, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet
2004;5:101-13.

Hasibi and Michoel BMIC Bioinformatics ~ (2021) 22:525 Page 17 of 17

2. ZhuX, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev.
2007;21(9):1010-24. https://doi.org/10.1101/gad.1528707.

3. Alon U. An introduction to systems biology: design principles of biological circuits. 2nd ed. London: CRC Press; 2020.

4. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype—phenotype
interactions. Nat Rev Genet. 2015;16(2):85-97.

5. Hasin, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):1-15.

6. Nguyen H, Shrestha S, Tran D, Shafi A, Draghici S, Nguyen T. A comprehensive survey of tools and software for active
subnetwork identification. Front Genet. 2019;10:155.

7. Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: a universal amplifier of genetic associations. Nat Rev
Genet. 2017;18(9):551.

8. Ronen J, Akalin A. netSmooth: network-smoothing based imputation for single cell RNA-seq. F1000Research.

2018;7:8.

9. Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: methods and applications. CoRR arXiv:1709.
05584 (2017).

10. Wu Z,Pan S, Chen F, Long G, Zhang C, Yu PS. A comprehensive survey on graph neural networks. CoRR arXiv:1901.
00596 (2019).

11. Chami |, Abu-El-Haija S, Perozzi B, Ré C, Murphy K. Machine learning on graphs: a model and comprehensive tax-
onomy. arXiv preprint arXiv:2005.03675 (2020).

12. Kipf TN, Welling M. Variational graph auto-encoders. arXiv:1611.07308 (2016).

13. Hammond DK, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. Appl Comput Harmon
Anal. 2011;30(2):129-50. https://doi.org/10.1016/j.acha.2010.04.005.

14. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. CoRR arXiv:1609.02907 (2016).

15. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. CoRR arXiv:
1704.01212 (2017).

16. Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. CoRR arXiv:1706.02216 (2017).

17. Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M. Weisfeiler and leman go neural: higher-order
graph neural networks. CoRR arXiv:1810.02244 (2018).

18. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, Bierie B,
Mazutis L, Wolf G, Krishnaswamy S, Pe'er D. Recovering gene interactions from single-cell data using data diffusion.
Cell. 2018;174(3):716-72927. https://doi.org/10.1016/j.cell.2018.05.061.

19. Fey M, Lenssen JE. Fast graph representation learning with PyTorch Geometric. In: ICLR workshop on representation
learning on graphs and manifolds; 2019.

20. Erdds P, Rényi A. On random graphs I. Publ Math Debr. 1959;6:290.

21. RegulonDB: RegulonDB network interactions—gene interaction. Data retrieved from RegulonDB Downloadable
Experimental Datasets. http://regulondb.ccg.unam.mx/menu/download/datasets/index jsp; 2019.

22. BioGRID: BioGRID PPl interaction network Ecoli. Data retrieved from BioGRID download page available at https://
downloads.thebiogrid.org/BioGRID/Release-Archive/BIOGRID-3.5.180/; 2019.

23. Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang
F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M. The BioGRID interaction
database: 2019 update. Nucleic Acids Res. 2018;47(D1):529-41. https://doi.org/10.1093/nar/gky1079.

24. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, Juhn FS, Schneider SJ, Gardner TS. Many microbe microarrays
database; 2007. Data retrieved from M3DB download page available at http://m3d.mssm.edu/norm/.

25. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, Juhn FS, Schneider SJ, Gardner TS. Many microbe microarrays
database: uniformly normalized affymetrix compendia with structured experimental metadata. Nucleic Acids Res.
2008;36(Database-Issue):866-70.

26. Cheng S, PeiY,He L, Peng G, Reinius B, Tam PPL, Jing N, Deng Q. Single-cell RNA-seq reveals cellular hetero-
geneity of pluripotency transition and x chromosome dynamics during early mouse development. Cell Rep.
2019;26(10):2593-26073. https://doi.org/10.1016/j.celrep.2019.02.031.

27. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, et al. A next
generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437-52.

28. Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies.
Nat Rev Genet. 2020;22:1-19.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

A.1 Variance explained on features

For an embedding matrix Z € RV*H and feature matrix X € RV*M we calcu-
lated the amount of variance in X explained by Z as

_ tr(PZXTX) A1
27 T(XTX) (A1)
where Py is the projection matrix onto the subspace of RY spanned by the
columns of Z,

Py =7(Z"72)'Z".

Note that if we write the eigendecomposition of X”X as X7X = VIAV, then
the columns of V corresponding to the nonzero eigenvalues in A are the principal
components of X. If Z consist of the #*" principal component, then eq. (A1)
reduces to the familiar variance explained by this component, A; /(> j Aj). If
Z consists of a single vector z € RY with unit length, ||z|| = 1, then eq. (A1)
reduces to

N
V, = Z A (zTu;)?,
i=1 Zj A

a weighted sum of the variances explained by each principal component, with
weights determined by the extent of overlap between z and each principal compo-
nent. Eq. (A1) generalizes this to summing the variances explained by multiple
vectors simultaneously that need not be mutually orthogonal.

A.2 Random Graph Generation using Erdoé s—Rényi model

According to Erdd s-Rényi, a random graph G(n,p) has (g)p edges placed at
random. The degree distribution of each node is calculated through:

Plaee(v) = 1) = (") -, (A2)

which is the binomial distribution. We adjusted the value of p so that the
random graphs would approximately have the same number of edges as the real
networks.

A.3 Results of gene regulatory networks reconstruction
and gene expression variance explained

sotpeordde Surppaqura amjonrys ydels oAl wWoIy dsnouwr
pue 1700 " Ul yI10m)0u [ed180[01q Jur)oni)suosal 10j (Jy) uoiswaid oSerose pue (DY) 0AIMD HOY OY) IdPUN @AY TV O[qR,

C00'0FLT90 TO'0F06S0 8TO0FFEY0 COOOFITINO0 000°0FOT90 GOOFLGG0 STO0OFO8G0 20'0F6LGD uorssordxg
000°0FG0S°0 €00°0FZ00S0 S00°0FISHFO S00'0FI6T'0 0000°0FSE0E0 LOO'OFO6F'0 900°0FT687°0 900°0F6V 0 ydery wopuey
000°0F90¢°0 FOO'0OF68Y'0 TO0'0FSSH'O TT0'0FETE0 0000°0FS0TE0 S00'0FERF'0 ¢00'0FRI6F'0 T0°0F65G0 derp wopuey + uorssordxy
000°0F€S9°0 900°0FV06'0 OT0'0F098°0 CTO'0FLTLO 0000°0FPLI90 FIO'0FESR'0 SIOOFIIERD 0Z0'0FFLE 0 ydery
000°0FZ9L0 900°0FV06'0 €00°0FCL8'0 L00'0FRIGO 000°0FE080 TOOFFG8'0 ¢00'0F20S80 LIO0FR9S0 ydern + uorssoxdxg
1dd sonjoton 1dd Jour I, 1dd sorjouen) 1dd UL,
SNMOSNJ SO 1700 SOMOSNJY SO ji(evlcy Juduy
dv onv

Table A2: The average Variance Explained on Gene Expression from the Reg-
ulatory Networks graph embedding

Input Ecoli
TF _net PPI Genetics
Expression + Graph 0.883+0.005 0.805+0.003 0.7824+0.006
Graph 0.716+0.010 0.75240.008 0.6697+0.010
Expression + Random Graph 0.6604+0.010 0.6674+0.013 0.661840.014
Random Graph 0.6474+0.017 0.6524+0.018 0.6483+0.010

Paper I

Integration of graph neural networks and genome-scale
metabolic models for predicting gene essentiality

Ramin Hasibi, Tom Michoel, and Diego A. Oyarzun,
biorzive, (2023)

(© The copyright holder for this preprint is the authors. All rights reserved. No further
reuse allowed without permission.

Integration of graph neural networks and genome-scale
metabolic models for predicting gene essentiality

Ramin Hasibi and Tom Michoel

Computational Biology Unit, Department of Informatics, University of Bergen, Norway

Diego A. Oyarziin
School of Biological Sciences, University of Edinburgh, UK
School of Informatics, University of Edinburgh, UK
The Alan Turing Institute, London, UK and

Corresponding author: d.oyarzun@ed.ac.uk

Abstract

Genome-scale metabolic models are powerful tools for understanding cellular physiology. Flux balance
analysis (FBA), in particular, is an optimization-based approach widely employed for predicting metabolic
phenotypes. In model microbes such as FEscherichia coli, FBA has been successful at predicting essential
genes, i.e. those genes that impair survival when deleted. A central assumption in this approach, however,
is that both wild type and deletion strains optimize the same fitness objective. The optimality assumption
may hold for the wild type metabolic network, but deletion strains are not subject to the same evolutionary
pressures and knock-out mutants may steer their metabolism to meet other objectives for survival. Here,
we present FlowGAT, a hybrid FBA-machine learning strategy for predicting essentiality directly from wild
type metabolic phenotypes. The approach is based on graph-structured representation of metabolic fluxes
predicted by FBA, where nodes correspond to enzymatic reactions and edges quantify the propagation of
metabolite mass flow between a reaction and its neighbours. We integrate this information into a graph
neural network that can be trained on knock-out fitness assay data. Comparisons across different model
architectures reveal that FlowGAT predictions for E. coli are close to those of FBA for several growth
conditions. This suggests that gene essentiality can be accurately predicted by exploiting the network
structure of metabolism, without additional assumptions beyond optimality of the wild type. Our approach
demonstrates the benefits of combining the mechanistic insights afforded by genome-scale models with the

ability of deep learning models to extract patterns from complex data.

I. INTRODUCTION

The identification of essential genes is crucial for understanding the minimal functional
modules required for survival of organisms [48]. Gene essentiality has key applications
in biomedicine and biotechnology, for example, to identify therapeutic targets in complex
diseases [6], find strategies to combat pathogens [16], or optimize chemical production in
genetically engineered microbes [10]. Identification of essential genes requires screening
assays where multiple knock-out mutants are phenotyped with a suitable fitness selection
strategy. Such screens have been performed on many organisms, including model microbes
such as Escherichia coli [2, 31, 37], Saccharomyces cerevisiae [45] and Bacillus subtilis [26],
as well as pathogens such as Candida albicans [38] and Aspergillus fumigatus [23]. In human
cells, recent work has produced high-resolution deletion assays [6], leveraging progress in
high-throughput technologies such as RNA interference and CRISPR-based screens [48] to

produce detailed maps of gene essentiality in different conditions.

As a result of the cost and complexity of knock-out fitness assays, there is a growing
interest in computational methods that can complement the experimental work with in
silico prediction of fitness effects. These computational approaches often employ machine
learning techniques combined with information from protein sequence, gene homologies,
gene-function ontologies, and protein interaction networks [1, 8, 29, 30, 49]. In the case
of metabolic genes, i.e. those that code for catalytic enzymes in metabolic pathways, Flux
Balance Analysis (FBA) is a widely employed method for predicting essentiality [34]. There
are numerous variants of FBA and its related algorithms [28], but at its core FBA computes
genome-scale flux distributions that optimize a cellular fitness objective. Such objective is
typically taken to be the cellular growth rate modeled as a linear combination of synthesis
rates of amino acids, lipids and other biomass components. By imposing constraints on each
metabolic flux, FBA problems can be solved with efficient linear programming algorithms,
which allows to rapidly simulate the impact of gene deletions on the predicted growth rate
and draw predictions on the essentiality of metabolic genes.

Flux Balance Analysis has shown good prediction accuracy for gene essentiality in the
E. coli bacterium [31] and other model microbes, but predictions for eukaryotes and higher-
order organisms have produced mixed results [18, 22]. The quality of FBA predictions

have also been shown to vary strongly across published models as well as the performance

2

metrics employed to quantify prediction accuracy [4]. An often overlooked limitation of the
FBA approach is the tacit assumption that the metabolism of deletion strains optimizes the
same objective as the wild type. In many cases, deletion strains display suboptimal growth
phenotypes [44] and they are not subject to the same long-term evolutionary pressures as
the wild type. It has also been postulated that deletions of metabolic genes can alter cell
physiology to meet other objectives for survival; for example, an early work hypothesized
that knockout strains may minimize their phenotypic deviation from the wild type [44],
while various works have explored the impact of alternative objective functions [17, 42] and

multiobjective optimization principles [43] in the classic FBA formulation.

Here, we sought to determine if gene essentiality can be predicted directly from wild
type metabolic phenotypes. We developed a hybrid algorithm to predict gene essentiality
using a combination of FBA and deep graph neural networks trained on knock-out fitness
data. This approach does not require the assumption of optimality of deletion strains and
takes maximal advantage of the inherent graph structure of cellular metabolism. Early
attempts to augment the predictive power of FBA with machine learning explored the use
of flux features for improved prediction of gene essentiality [33, 36], and other works have
attempted to predict essentiality from the metabolic graph topology [15]. Most recently,
several authors have developed integrated pipelines aimed at improving FBA predictions for

biomedical [27, 35] and biotechnology tasks [13, 41].

In our approach, starting from wild type FBA solutions we first represent genome-scale
flux distributions as a weighted digraph in a space of reaction nodes, and employ a flow-based
representation for each node based on the redistribution of chemical mass flows between
various paths in the graph. To integrate the graph structure and node features into a single
predictive model, we employ a Graph Neural Network (GNN) with an attention mechanism
[46] termed FlowGAT. We show that FlowGAT can be trained on a small amount of labelled
data from knock-out screens. We demonstrate the effectiveness of this approach using the
latest metabolic model of E. coli, and show that prediction accuracy near the FBA gold
standard. Moreover, model predictions appear to generalize well across various growth
conditions without the need for further training data. The results highlight the advantages
of integrating FBA pipelines with state-of-the-art machine learning algorithms for improved

phenotypic predictions.

II. RESULTS
A. Model architecture and training

In this paper, we propose FlowGAT, a GNN based model to predict gene essentiality
from graphs generated from FBA solutions. As shown in Figure 1A, each node in the
graph corresponds to a metabolic reaction, and we pair each node with a set of flow-based
features and binary essentiality labels obtained from knock-out fitness assays. The graph
structure and node features are integrated into a GNN for binary classification, so as to use
a message passing scheme to propagate node features through the structure of the graph;
this allows learning a rich embedding of the input that contains information from the k-hop
neighbourhood of each node [19]. We next detail the different components of the model and
our training strategy.

a. Graph construction We consider metabolic networks with m metabolites and n en-
zymatic reactions described by the following differential equation model

dX
_ S, 1
dt Sv, (1)

where X is an m-dimensional vector of metabolite concentrations, v is a n-dimensional vector
of reaction fluxes, and S is a n x m stoichiometric matrix. In steady state, the relation Sv = 0
describes all flux vectors that can sustain a specific metabolic state. A common strategy to
estimate v at the genome-scale is to employ FBA to compute a flux vector v* that optimizes
a meaningful biological objective; details on FBA can be found in the Methods section. To
convert such FBA solution vectors v* into a graph, we used the Mass Flow Graph (MFG)
construction proposed by Beguerisse-Diaz et al [3] and illustrated in Figure 1B. Starting
from the stoichometric matrix S, we first build a directed graph with reactions as nodes,
where two nodes are connected if and only if the source reaction produces a metabolite that
is consumed by the target reaction. Each edge in the graph has a weight w; ; that represents
the normalized mass flow from node i to node j. We first compute the flow of metabolite
X from reaction ¢ to j according to:
Flowj?j(Xk)

Zéeck Flowy, (X&) '

where Flow}, (X;) and Flowy, (Xj) are the production and consumption flows of metabolite

Flow, ,;(X)) = Flow}, (X;) x

(2)

X}, by reaction R;, respectively. The set C}, contains the indices of all reactions that consume

4

metabolite Xj. The edge weight w; ; is thus defined as the total mass flow between two nodes,

aggregated over all metabolites X}, that are produced by node ¢ and consumed by node j:

p
Wi 5 = ZF]OWi_U' (Xk) (3)

k=1
Mass flow graphs allow converting FBA solutions into a directed graph, and thus can be
used to represent the network structure of metabolism in different growth conditions or
genetic perturbations. In Figure 1C, we show MFGs built from genome-scale metabolic
models for three model microbes available in the BiGG model database [24] (Escherichia
coli, Saccharomyces cerevisiae and Bacillus subtilis). Further details on the construction of
the mass flow graphs can be found in the Methods section.

b. Design of node features Besides the graph topology, we ascribe a feature vector to
each reaction node that can be exploited for improved performance by the representation
learning approach. This approach is analogous to the structural and positional encoding
schemes employed in graph Transformer architectures to feed models with extra information
about the local connectivity of nodes [32]. Since the edge weights in (3) relate to the
mass flow between reactions, we opted to employ flow-based features that can aggregate
information on incoming and outgoing mass flows from each node. To this end, we employ
the Flow Profile Encoding (FPE) first defined by Cooper and Barahona for general directed
graphs [9]. Given a directed MFG with weighted adjacency matrix A, for each node i we
define the inflow profile of length k as

inflow® = [A*1™1];, (4)

where A* is the matrix k-th power, 1"*! is an m-dimensional vector of ones, and [-]; is the
i-th element of a vector. The inflow of node 7 is thus defined as the weight sum across all

incoming paths of length k. We similarly define the outflow of node i as:
outflow? = [(A/)F1™1];, (5)

where A’ is the matrix transpose. We concatenate inflows and outflows up to maximal

length &, for each node:

FPE; = [51 x inflow;, - - -, B x inflow?™ B! x outflow}, - -- , g x outﬂowk‘“] , (6)

i

where ky, is a hyperparameter that defines the maximum path length, 5 = a/); is a scaling
factor, A; is the largest eigenvalue of the adjacency matrix A, and « is a hyperparameter that
controls for the variable weights of the short and long paths; normalization by the largest
eigenvalue \; ensures convergence for large k, in the sense that limy_,.. [|A*™||/||A*|| = AL
The definition in (6) allows computing a feature vector of length 2k, for each node in the
graph.

c. Representation learning Graph representation learning is concerned with mapping
the nodes into a low dimensional vector which is optimized for downstream tasks such as
classification or regression [21]. GNNs are a family of deep learning methods on graphs
which obtain the embedding vector by incorporating the features of the node and its local
neighbourhood according to a customized message passing scheme called Message Passing
Neural Network (MPNN) [19]. Doing so helps the model capture local and global structural
information about the graph and results in a more expressive embedding space. For more
information about MPNNs refer to the Methods section. In this study, we employ a MPNN
architecture named Graph Attention (GAT) to compute the neighbourhood information
importance in finding the representation of the node [46]. Each layer [of GAT updates the

representation of node i according to:
W= Y ay©'n, (7)
JEN (i)Ui

where hl is the representation vector, N(i) is the set of neighbouring nodes for node i, © is a
set of differentiable weights, and a;; is an attention coefficient that is dynamically calculated

for each node j € N'(i) Ui as

exp(o(hy ", i)
Zue/\f(i)ui exp(q&(hé_l, hi1) 7

(8)

CL]'Z‘ =

where ¢ is a differentiable function optimized through gradient descent optimization algo-
rithms [39]. Details on the message passing and attention schemes can be found in the
Methods section.

d. Data pre-processing FlowGAT can be trained on knock-out growth assay data,
where each gene is labelled as non-essential (0) or essential (1) depending on whether a
fitness score is above or below prescribed threshold. For model training, the binary gene

labels must be converted into their corresponding reaction node labels in the MFG. To

6

this end, we use the Gene-Protein-Reaction (GPR) map included in genome-scale metabolic
models. The GPR is a Boolean function that specifies which gene codes for which proteins,
and conversely how each protein affects a metabolic reaction. The GPR can account for
reactions that are catalyzed by multiple enzymes or by enzymatic complexes encoded in
multiple genes. For those genes that map one-to-one into a single reaction, we transferred
the gene label directly into a reaction label. For those genes that map into multiple reactions
(many-to-one), we transferred the gene label to all reactions deactivated by the gene dele-
tion. When multiple genes map to multiple reactions (many-to-many), the structure of the
GPR does not allow to infer reaction labels from gene labels, and therefore we considered
such reactions as unlabelled. Note that the data also contains nodes that lack essential-
ity labels because their corresponding genes have not been measured in the growth assay.
The unlabeled nodes are made available for model training to make sure that the graph
representation learning can take advantage of the full graph structure without limiting the
representation power of the GAT; the classification loss for training and evaluation of the
model is only calculated on the labeled nodes. We also note that the reaction labels are
typically imbalanced because the MFG is enriched for essential reaction nodes. By definition
in (3), those reactions with zero flux in the wild type FBA solution will have nil edge weights
and thus are disconnected from the graph. During training, the model has access to the
features of all nodes (labeled and unlabeled) through the message passing, but the training
loss is calculated on the labels of the training nodes in semi-supervised fashion (Figure 1D).

Details on model training can be found in the Methods section.

B. Performance evaluation of FlowGAT

To evaluate the performance of FlowGAT, we employed the growth knock-out data for
the Escherichia coli bacterium reported by Monk and colleagues [31], and the iML1515
genome-scale model reported in the same work. We chose the E. coli model because it is the
most complete and best curated metabolic reconstruction in the literature, and thus allows
us to mitigate the impact of misclassification errors caused by poor model quality and focus
on the predictive power of FlowGAT itself. The dataset contains growth rate data for 3,892
E. coli genes grown in various carbon sources.

We built the MFG for E. coli using the wild type FBA solution using glucose as the sole

7

carbon source and the default objective function included in the iML1515 model (growth
rate). The resulting MFG has 444 nodes and after converting the gene labels to reaction
labels with the GPR map we obtained 255 labeled nodes (191 essential, 64 nonessential).
We first compared FlowGAT trained on binary cross-entropy loss with classical binary clas-
sifiers including Support Vector Classifier (SVC), Multi Layer Preceptron (MLP) classifier,
and random forests (RF) classifier using the flow profile embeddings in (6) as feature vec-
tors; details on model training and hyperparameter selection can be found in Methods. The
results in Figure 2A show precision-recall curves, averaged across N = 50 rounds of training
and testing (5 test folds with 20% of nodes resampled 10 times for model retraining); details
on our strategy for model evaluation can be found in the Methods. Among the considered
classifiers, FlowGAT achieves the best Area Under the Precision-Recall Curve (PRAUC)
across all test folds and performs above the no-skill classifier while the classic models signif-
icantly underperform; we note that due to the class imbalance the baseline precision of the
no-skill classifier is 74.9%.

We also compared FlowGAT trained on two other popular node embedding techniques
(Local Degree Profile (LDP) [7] and Random Walk Embedding (RWE) [11]) that have shown
good performance in a number of tasks on molecular graphs, as well as two other message
passing schemes (Graph Convolution Network [25] and Graph SAGE, see Supplementary
Figure S1). Details on these additional node embeddings and message passing strategies
can be found in the Methods section. The results (Figure 2A) show that graph attention
delivers the best performance, and models trained on LDP and RWE node features are
outperformed by the flow profile encodings, possibly because the former do not take account
for directionality and weight of the edges of the MFG.

We further investigated the sensitivity of FlowGAT to the random seed employed for
weight initialization; the distributions in Figure 2B show the PRAUC scores for all models
across the 50 runs. The results suggest that FlowGAT performance is relatively robust;
only the RF classifier delivers tighter predictions, but at the cost of an average performance
below the no-skill baseline.

We finally sought to explore an alternative training scheme using a regression approach.
Since the gene essentiality labels are based on a binarization of continuous measurements of
growth rate, we reasoned that recasting the prediction problem as a regression task could

improve performance. To this end, we employed the non-binarized fitness measurements of

8

growth rate in Monk et al [31] and re-trained FlowGAT as a regressor using Mean Squared
Error (MSE) loss on predicting the non-binary growth rate values; all model hyperparameters
were left unchanged. Following the same evaluation scheme as the above, we used the
FlowGAT regressor to predict growth rates for the reaction nodes in each test fold. We
then used the predicted growth rate as classification scores and computed the precision-
recall curve on the test fold. Upon comparison with the classification approach in Figure
2A-B, the regression results in Figure 2C led to a performance increase in terms of average

PRAUC, as well as tighter predictions that are less sensitive to weight initialization.

After finding the best setting for FlowGAT in terms of architectural design choices, we
fixed the cut-off threshold for the output prediction of FlowGAT trained as a regressor in
Figure 2C to produce binary essentiality predictions for all 50 evaluations by classifying the
nodes that score above the threshold as essential and others as non-essential. We measure
the performance of FlowGAT in terms of three metrics of Precision, Recall, and F1 for the
binary predictions (Figure 2D). The predictions of the FlowGAT regressor manage to keep
both precision and recall above 75% and 90%, respectively.

To better understand the performance of our model, we compared the output of FlowGAT
trained as a regressor (Figure 2C) with those from FBA applied to the genes that appear in
the MFG. First, we mapped each reaction node back to its corresponding into gene labels
using the GPR map. In total, 240 labeled genes appear in the constructed MFG (180
essentials and 60 non-essential. This number is lower than the number of reaction nodes
(255) because some reactions correspond to the same gene based on many-to-one mapping
that was used to assign labels to nodes earlier; for such genes, we aggregated reactions by
maximum prediction value of corresponding reactions. We collected predictions across all
genes and compared these results with the essentiality prediction of FBA for each gene in
Figure 2E. The results suggest that both FlowGAT and FBA find most of the essential
genes, but FlowGAT finds on average 19 essential genes that are misclassified by FBA. In
the case of non-essential genes, however, we found that FlowGAT underperforms and misses

more genes than FBA, likely as a result of non-essential genes being the minority class.

9

C. Essentiality prediction in different growth conditions

The essentiality of metabolic genes can be highly dependent on environmental conditions.
Difference carbon sources can produce important differences on the metabolic phenotype
and, as a result, some genes that are essential in one condition source may be non-essential

in another one.

To test the predictive power of FlowGAT in other growth conditions beyond glucose,
we trained the model using E. coli knock-out fitness data in ten other carbon sources that
cover different entry points into central carbon metabolism [31]. We built the corresponding
mass flow graphs from wild type FBA solutions of the iML1515 model instanced to each
carbon source. To build condition-dependent graphs, we constrained the flux of each nutrient
exchange reaction to a fixed value (Supplementary Table S2). This resulted in 10 different
MFGs that differ on their nodes and their edge weights. Inspection of the reaction nodes
per graph (Figure 3A) reveals differences across graphs for reactions that become active
for specific carbon sources, as well as a large number of reactions that are shared across
conditions. We then evaluated the performance of FlowGAT trained in each of the ten mass
flow graphs, using the growth knock-out fitness data and the regression strategy of Figure
2C; model hyperparameters were left unchanged. In each graph, the number of essential
and non-essential nodes varies and thus, the no-skill baseline varies depending on the class
imbalance in that graph. As seen in Figure 3B, we found that while the PRAUC scores vary
across growth conditions, in all cases FlowGAT outperformed the no-skill classifier by at least
6%. These encouraging results can likely still be improved by introducing condition-specific

hyperparameters for the FlowGAT architecture.

We finally aimed to determine the ability of FlowGAT to generalize predictions across
growth conditions. We conducted a cross-training evaluation, where the model was trained
on a mass flow graph and fitness data from a single carbon source, and tested on the reaction
nodes in a different growth condition. To this end, we also included the FlowGAT model
for glucose discussed in the previous section. As shown in Figure 3C, all 90 cross-tests show
an improvement in PRAUC with respect to each MFG no-skill classifier. Although each
FlowGAT model was trained on a different graph and fitness data, these results suggest that
the model captures a well-performing representation of the data. To test if this is a result

of the similarity between the nodes present in each graph (Figure 3A), we quantified the

10

graph-to-graph similarity using the distance between the distribution of node features. We
estimated the probability density function of the flow profile encodings for each graph using
kernel density estimation and computed the Jensen Shannon divergence between all pairs of
distributions. The results (Figure 3C) do not show a correlation between graph similarity and
the PRAUC scores. For example, the maltose graph embedding is nearly equidistant from
both the acetate and galactose graphs, but FlowGAT trained on maltose has a performance
of approximately 5% better when tested on galactose than in acetate. Likewise, FlowGAT
trained on mannitol performs better when tested in galactose than glycerol, despite the
galactose graph being more dissimilar to the mannitol graph. These observations suggest
that the generalization performance of FlowGAT results from its representation power rather

than the similarity between the input graphs.

III. DISCUSSION

Gene essentiality refers to the concept that some genes are indispensable for the survival
of an organism. These genes often encode proteins that play critical roles in fundamental
cellular processes needed for growth. Since the quantification of gene essentiality requires
knock-out fitness assays across a large number of genes and growth conditions, there is
substantial interest in computational methods that can aid the identification of genes from
a reduced number of measurements. In this paper, we presented FlowGAT, a graph neural
network that can be trained on knock-out fitness data to predict the essentiality of metabolic
genes. The architecture exploits the inherent graph structure of metabolic fluxes predicted
by Flux Balance Analysis through a combination of mass flow graphs and node features that
describe local connectivity.

Using data from F. coli and its latest genome-scale metabolic model, we show that Flow-
GAT can identify most of the genes that are correctly called as essential by Flux Balance
Analysis, and even correct some of its misclassified essential genes. Our approach is based
solely on the wild-type phenotype predicted by FBA; since it does not require the assumption
of optimality in the deletion strains, FlowGAT may provide benefits when applied to or-
ganisms where the growth optimality assumption is not warranted. Additionally, FlowGAT
displays encouraging generalization power across growth conditions, even in cases where the

underlying graphs and node features differ substantially. This observation suggests that the

11

proposed architecture and feature extraction method can learn internal representations that
are useful predictors of gene essentiality. We also found, however, that FlowGAT struggled
to predict non-essential genes and can be substantially outperformed by traditional FBA.
This phenomenon could arise from various sources, such as the data imbalance that in our
case favors essential labels, or because predicting non-essential genes is intrinsically more
challenging than essential ones [4]. Our approach illustrates the potential of exploring new
ways of combining traditional tools such as Flux Balance Analysis with modern data-driven
approaches, and adds to the growing body of literature at the interface of genome-scale

metabolic modeling with machine learning [40, 47].

IV. METHODS
A. Flux Balance Analysis

Flux Balance Analysis (FBA) is one of the popular methods for the analysis of cellular

metabolism. In a steady state, a metabolic network can be described by
Sv =0. (9)

The aim of FBA is to obtain the solution vector v* that satisfies the above condition and at
the same time solves the following optimization problem:
v* = argmax cv
v
Sv =0, (10)

subject to
Up < U < Uyp,

in which, ¢ is a vector of flux weights, and (vi,, vup) are lower and upper bounds on reaction

fluxes, respectively.

B. Mass Flow Graphs

Originally introduced in [3], MFGs are designed to reflect the directional flow of metabo-
lites produced or consumed through enzymatic reactions. In these graphs, reactions are

considered as vertices, and two reactions are connected through a directed edge if they share

12

a metabolite (either as reactants or products). The construction pipeline of these graphs
can incorporate different experimental conditions through varying flux distributions. For
instance, one key advantage of such a pipeline is the automatic pruning of pool metabo-
lites through mapping onto weak connections between graph nodes, therefore reducing their
impact on the overall network structure.

To construct an MFG from a metabolite network consisting of m reactions and n metabo-
lites, first, we obtain the solution vector v* from FBA. Then, we unfold the v* into two-fold

forward and reverse reaction fluxes through

1 | abs(v*) 4+ v*

U*TIL =35 (11)
’ 2 | abs(v*) — v*
Next, the corresponding stoichiometric matrix of vj,, is defined as
I, O
S =[5 8] , (12)
0 diag(r)

in which, S in the n x m stoichiometric matrix corresponds to n reactions and m metabolites
of the original network, and r is an m dimensional Boolean vector indicating whether a

reaction is reversible or not. Finally, the adjacency matrix of the MFG can be calculated as
A(v*) = (835,87 (S5, V"), (13)

where T is the matrix pseudoinverse operator, and V* = diag(v?,,), J = diag(S4,,v3,,) with

; (14)

1
S;m = E(abs(ng) + ng)

S5, — %(abs(ng) —Su). (15)

C. Node feature generation

Mass Flow Graphs are none-attributed, i.e., no specific node features are provided for
reactions (nodes) in the graph. As a result, it is necessary to design a feature generation
pipeline that considers the structure of the graph as well as the edge weights that appear in
the adjacency of the graph. For this task, we propose a node encoding algorithm analogous

to positional encoding of Transformer architectures.

13

Apart from the proposed FPE features in Eq. (6), a second approach to node encoding is
to gather local neighborhood structural statistics based on the degree of each node and its

neighboring nodes [7]. In this approach, the local degree profile of each node is defined as
LDP; = [deg(i), min(DN(4)), max(DN(7)), avg(DN(z)), std(DN(z))], (16)

in which DN(%) is the set of out-degree values for all the neighboring nodes of node i. For
this set the minimum, maximum, average, and standard deviation are calculated and used
as node features of node i. Additionally, a third encoding method relies on random walks

from each node. In this method, a random walk encoding for each node i is calculated as:

RWE; = [RW2, RW?

2 (RN

-, RWftma), (17)

where K, is a hyperparameter for maximum length of the random walks, and RW = AD™!
is the random walk operator and only the random walks that end in node i are considered

for encoding (RWj; is this the i-th element of the diagonal).

D. Message-passing neural networks (MPNN)

For representation learning of the graph features we employed GAT architecture [46]
which is an instance of a MPNN scheme. In a typical graph representation learning task,
the representation of each node is updated through a message passing scheme in which the
information from neighboring nodes is gathered using message formula and aggregated with
the features of the node itself. Thus, a message passing formula for each message from node

j to node i can be written as

l -1
m§'1) = MSG® (hﬁ-e&w}, ej,i) (18)

, where hgl) is the representation vector of node 7 in layer (I) of the MPNN, e;; are the
features of the edge between node ¢ and node j, and N (4) is the set of neighbouring nodes
to node . The operator MSG! is the custom message function which is different in each
layer design. One typical example of such a function is an MLP applied on the input values.
Moreover, the messages for each node are aggregated to obtain the representation of node i
in layer [using

hY = AGGD ({m<” ue N(i)} ,hgf—“) : (19)

ji

14

in which, AGG is a custom permutation invariant operator with regards to messages for
each node.

GAT formulates the message equation in (18) as the multiplication of the attention as
the learnable importance factor of each message by the representation of neighbors. Thus,
the formula in (18) becomes:

m%) = aﬁ@lhé-*l7 (20)
in which, aj; is the attention coefficient and is usually calculated through feeding the fea-
tures of both neighboring nodes 7 and j through a learnable function and calculating the
importance through the softmax function. Other popular examples of MPNN framework are
Graph Convolution Network (GCN) [25] and GraphSAGE [20] which change the message
function and use different aggregation functions. In GCN, the message function in (18) is
calculated as: ol

mly = ———te—, (21)
v/ deg(i)/deg(5)

with the sum pooling operator as the aggregator function. In GraphSAGE, the message
function MSG is the identity function and the aggregation function AGG is calculated as:

hl = O~ + ©'MEAN) AL (22)

where MEAN is the mean pooling operator. The comparison between the performance of

different MPNN schemes is presented in the Supplementary Figure S1.

E. Graph construction

To build the MFGs, we employed the iML1515 model of E. coli MG1655 introduced
by Monk et al [31]. To label the reaction nodes in the graph, we employed the growth
assay data from the same work on strain BW25113. Since BW25113 lacks several genes
from MG1655, we produced FBA solutions by setting their reaction bounds to zero and
assuming aerobic growth. The reaction bounds can be found in Supplementary Table S1.
To simulate F. coli growth in specific carbon sources, we set the corresponding exchange
flux to a fixed value and deactivated all other carbon exchange fluxes. The list of all carbon
sources and their corresponding exchange reactions can be found in Supplementary Table
S2. All calculations were done with the COBRApy toolbox v0.26.3 using the glpk solver
and the default objective function included in the iML1515 model.

15

F. Performance evaluation of binary classifiers

a. Training and evaluation in a single carbon source We start our evaluations of Flow-
GAT from MFG resulting from glucose as the sole carbon source in Figure 2A. After mapping
reactions to genes based on GPR rule set, growth rate values were converted to essentiality
labels based on the threshold of 0.5 and were assigned to corresponding nodes in the MFG.
As mentioned in Section IT A, the labeled nodes in the MFG graph are imbalanced with a
higher number of essentials compared to non-essential nodes. Therefore, for model training,
we employed stratified sampling into 5 folds using built-in scikit-learn [5] functions with 1
fold for testing and 4 folds for training with the labeled nodes and 25% of the training set
is set chosen as validation set (Figure 1D). For the initial tuning of hyperparameters, we
employed grid search for each model and chose the best model settings based on the perfor-
mance on the validation set; hyperparameters were kept constant for all other evaluations
in the paper. All GNN based models were implemented and trained using the GraphGym in
PyG package [14]; classic models (SVC, MLP, RF) were implemented using scikit-learn.
The list of chosen hyperparameters for each model is available in Supplementary Tables S3

and S4.

Due to the small number of available labeled data in our dataset (255 in case of glucose
MFG), to compare the performance of different mmodels (Figure 2) we trained the GNN
models on the training folds and evaluated the performance on the test fold 5 times, each time
changing the train and test fold to ensure that the results are not caused by split bias. In the
case of GNN based models, for each evaluation step, 25% of the training fold was considered
as the early stopping set. We kept track of the best model on the early stopping set, in
terms of the loss value after each training epoch, until the maximum number of epochs was
reached. The weights of the best model at the end of training were then saved and employed
to predict for the nodes of the test fold. Additionally, each training and evaluation step on
a test fold was repeated 10 times with the model retrained with a different initial random
seed to make sure the predictions were not a result of random seed selection for weight
initialization. In total, 50 evaluation steps (5 folds and 10 times for each fold) were gathered
for each model. For the classic models (SVC, RF, MLP), we employed the same process
except for the use early stopping set. We followed the same procedure for model evaluation

in other carbon sources (Figure 3B).

16

b. Training and evaluations across carbon sources To produce the evaluations in Figure
3C, for each MFG the training and early stopping folds were chosen with a 4:1 ratio; in all
cases we tested each model on all nodes of the other MFGs. Following the same scheme as
in the previous section, the best performing model on the early stopping set was chosen for
the evaluation of the test set; the training set was resampled 5 times and each model was
retrained 10 times with different initial weights.

In Figures 3B-C, we quantified the performance improvement of FlowGAT over the no-

skill classifier 100 x (PRAUCF10WGAT — PRAUCno-skill) /PRAUCno_skm.

ACKNOWLEDGMENTS

TM was supported by the Research Council of Norway (grant number 312045). DAO was
supported by the United Kingdom Research and Innovation (grant EP/S02431X/1, UKRI
Centre for Doctoral Training in Biomedical Al. Computations were performed on resources
provided by Sigma2 - the National Infrastructure for High Performance Computing and
Data Storage in Norway (project NS9715).

REFERENCES

[1] Olufemi Aromolaran, Damilare Aromolaran, Itunuoluwa Isewon, and Jelili Oyelade. Machine
learning approach to gene essentiality prediction: a review. Briefings in Bioinformatics, 22
(5), sep 2021. ISSN 14774054,

[2] Tomoya Baba, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kir-
ill A. Datsenko, Masaru Tomita, Barry L. Wanner, and Hirotada Mori. Construction of
Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular
Systems Biology, 2:2006.0008, 2006. ISSN 1744-4292. doi:10.1038/msb4100050.

[3] Mariano Beguerisse-Diaz, Gabriel Bosque, Diego Oyarzin, Jests Picd, and Mauricio Bara-
hona. Flux-dependent graphs for metabolic networks. npj Systems Biology and Applications,
4(1), August 2018. doi:10.1038/s41540-018-0067-y.

[4] David B. Bernstein, Batu Akkas, Morgan N. Price, and Adam P. Arkin. Critical assessment

17

(6]

(7]

(8]

(9]

(10]

(1]

(12]

(13]

of E. coli genome-scale metabolic model with high-throughput mutant fitness data, January
2023. Pages: 2023.01.05.522875 Section: New Results.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Lay-
ton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaél Varoquaux. API design for machine
learning software: experiences from the scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, pages 108-122, 2013.

Cacheiro, P et al. Human and mouse essentiality screens as a resource for disease gene
discovery. Nature Communications 2020, 11(1):1-16, jan 2020. ISSN 2041-1723.

Chen Cai and Yusu Wang. A simple yet effective baseline for non-attribute graph classification.
CoRR, abs/1811.03508, 2018.

Tulio L. Campos, Pasi K. Korhonen, Robin B. Gasser, and Neil D. Young. An Evaluation
of Machine Learning Approaches for the Prediction of Essential Genes in Eukaryotes Using
Protein Sequence-Derived Features. Computational and Structural Biotechnology Journal, 17:
785-796, jan 2019. ISSN 2001-0370.

Kathryn Cooper and Mauricio Barahona. Role-based similarity in directed networks. Decem-
ber 2010. doi:10.48550/arXiv.1012.2726. arXiv:1012.2726 [physics, g-bio].

Varshit Dusad, Denise Thiel, Mauricio Barahona, Hector C. Keun, and Diego A. Oyarzin.
Opportunities at the Interface of Network Science and Metabolic Modeling. Frontiers in
Bioengineering and Biotechnology, 8, 1 2021. ISSN 2296-4185.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph Neural Networks with Learnable Structural and Positional Representations. February
2022. doi:10.48550/arXiv.2110.07875. arXiv:2110.07875 [cs].

Ali Ebrahim, Moritz E. Beber, Synchon Mandal, Matthias Kénig, Henning Redestig, Chris-
tian Diener, Dr Scientist, Peter St John, akavialab, Hemant_Yadav, Zak King, Nikolaus
Sonnenschein, Maximilian Greil, JuBra, Maureen Carey, Ali Kaafarani, Benjamin Sanchez,
Erik Cederstrand, Greg Medlock, Dr Daniel Weilandt, Afif Elghraoui, Vivek Rai, Svet-
lana Kutuzova (Galkina), Justin Taylor, Marvin van Aalst, SigitaR, Wanderrful, Achilles
Rasquinha, Christian Lieven, and Anthon van der Neut. CobraPy. Zenodo, 2023. doi:
10.5281 /zenodo.7823793.

Léon Faure, Bastien Mollet, Wolfram Liebermeister, and Jean-Loup Faulon. A neural-

18

14]

(16]

(17]

(18]

(19]

[20]

21]

22]

mechanistic hybrid approach improving the predictive power of genome-scale metabolic mod-
els. Nature Communications, 14(1):4669, August 2023. ISSN 2041-1723. doi:10.1038/s41467-
023-40380-0. Number: 1 Publisher: Nature Publishing Group.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Lilli J. Freischem, Mauricio Barahona, and Diego A. Oyarzin. Prediction of gene essentiality
using machine learning and genome-scale metabolic models. IFAC-PapersOnLine, 55(23):
13-18, 2022. doi:10.1016/j.ifacol.2023.01.006.

Ci Fu, Xiang Zhang, Amanda O. Veri, Kali R. Iyer, Emma Lash, Alice Xue, Huijuan Yan,
Nicole M. Revie, Cassandra Wong, Zhen-Yuan Lin, Elizabeth J. Polvi, Sean D. Liston,
Benjamin VanderSluis, Jing Hou, Yoko Yashiroda, Anne-Claude Gingras, Charles Boone,
Teresa R. O’Meara, Matthew J. O’Meara, Suzanne Noble, Nicole Robbins, Chad L. Myers,
and Leah E. Cowen. Leveraging machine learning essentiality predictions and chemogenomic
interactions to identify antifungal targets. Nature Communications, 12(1):6497, November
2021. ISSN 2041-1723. doi:10.1038/s41467-021-26850-3.

Carlos Eduardo Garcia Sanchez and Rodrigo Gonzalo Torres Sdez. Comparison and analysis
of objective functions in flux balance analysis. Biotechnology Progress, 30(5):985-991, 2014.
ISSN 1520-6033. doi:10.1002/btpr.1949.

Francesco Gatto, Heike Miess, Almut Schulze, and Jens Nielsen. Flux balance analysis predicts
essential genes in clear cell renal cell carcinoma metabolism. Scientific Reports, 5(1):1-18, jun
2015. ISSN 2045-2322.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for Quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pages 1263-1272. JMLR.org, August
2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pages 1025-1035, December 2017. ISBN 978-1-5108-6096-4.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on Graphs:
Methods and Applications. 2018. doi:10.48550/arXiv.1709.05584. arXiv:1709.05584 [cs].

Benjamin D. Heavner and Nathan D. Price. Comparative Analysis of Yeast Metabolic Net-

19

23]

24]

[26]

27]

work Models Highlights Progress, Opportunities for Metabolic Reconstruction. PLOS Com-
putational Biology, 11(11):¢1004530, nov 2015. ISSN 1553-7358.

Wengqi Hu, Susan Sillaots, Sebastien Lemieux, John Davison, Sarah Kauffman, Anouk Breton,
Annie Linteau, Chunlin Xin, Joel Bowman, Jeff Becker, Bo Jiang, and Terry Roemer. Essential
gene identification and drug target prioritization in Aspergillus fumigatus. PLoS pathogens, 3
(3):e24, March 2007. ISSN 1553-7374. doi:10.1371/journal.ppat.0030024.

Zachary A. King, Justin Lu, Andreas Driger, Philip Miller, Stephen Federowicz, Joshua A.
Lerman, Ali Ebrahim, Bernhard O. Palsson, and Nathan E. Lewis. BIGG Models: A platform
for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research, 44
(D1):D515-D522, January 2016. ISSN 0305-1048. doi:10.1093/nar/gkv1049.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. February 2017. doi:10.48550/arXiv.1609.02907. arXiv:1609.02907 [cs, stat].

K. Kobayashi, S. D. Ehrlich, A. Albertini, G. Amati, K. K. Andersen, M. Arnaud, K. Asai,
S. Ashikaga, S. Aymerich, P. Bessieres, F. Boland, S. C. Brignell, S. Bron, K. Bunai, J. Cha-
puis, L. C. Christiansen, A. Danchin, M. Débarbouillé, E. Dervyn, E. Deuerling, K. Devine,
S. K. Devine, O. Dreesen, J. Errington, S. Fillinger, S. J. Foster, Y. Fujita, A. Galizzi, R. Gar-
dan, C. Eschevins, T. Fukushima, K. Haga, C. R. Harwood, M. Hecker, D. Hosoya, M. F. Hullo,
H. Kakeshita, D. Karamata, Y. Kasahara, F. Kawamura, K. Koga, P. Koski, R. Kuwana,
D. Imamura, M. Ishimaru, S. Ishikawa, I. Ishio, D. Le Coq, A. Masson, C. Mauél, R. Meima,
R. P. Mellado, A. Moir, S. Moriya, E. Nagakawa, H. Nanamiya, S. Nakai, P. Nygaard,
M. Ogura, T. Ohanan, M. O’Reilly, M. O’'Rourke, Z. Pragai, H. M. Pooley, G. Rapoport,
J. P. Rawlins, L. A. Rivas, C. Rivolta, A. Sadaie, Y. Sadaie, M. Sarvas, T. Sato, H. H. Sax-
ild, E. Scanlan, W. Schumann, J. F. M. L. Seegers, J. Sekiguchi, A. Sekowska, S. J. Séror,
M. Simon, P. Stragier, R. Studer, H. Takamatsu, T. Tanaka, M. Takeuchi, H. B. Thomaides,
V. Vagner, J. M. van Dijl, K. Watabe, A. Wipat, H. Yamamoto, M. Yamamoto, Y. Yamamoto,
K. Yamane, K. Yata, K. Yoshida, H. Yoshikawa, U. Zuber, and N. Ogasawara. Essential Bacil-
lus subtilis genes. Proceedings of the National Academy of Sciences, 100(8):4678-4683, April
2003. doi:10.1073/pnas.0730515100. Publisher: Proceedings of the National Academy of Sci-
ences.

Joshua E. Lewis and Melissa L. Kemp. Integration of machine learning and genome-scale

metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nature Com-

20

(28]

29]

(30]

31]

32]

33]

34]

(35]

(36]

37]

munications, 12(1):2700, May 2021. ISSN 2041-1723. doi:10.1038/s41467-021-22989-1.
Nathan E. Lewis, Harish Nagarajan, and Bernhard O. Palsson. Constraining the metabolic
genotype-phenotype relationship using a phylogeny of in silico methods. Nature Reviews
Microbiology, 10(4):291-305, 2012. ISSN 17401534. doi:10.1038/nrmicro2737.

Xingyi Li, Wenkai Li, Min Zeng, Ruiqing Zheng, and Min Li. Network-based methods for
predicting essential genes or proteins: a survey. Briefings in Bioinformatics, 21(2):566-583,
March 2020. ISSN 1477-4054. doi:10.1093/bib/bbz017.

Fredrick M. Mobegi, Aldert Zomer, Marien I. de Jonge, and Sacha A. F. T. van Hijum.
Advances and perspectives in computational prediction of microbial gene essentiality. Briefings
in Functional Genomics, 16(2):70-79, March 2017. ISSN 2041-2649. doi:10.1093 /bfgp/elv063.
Jonathan M Monk, Colton J Lloyd, Elizabeth Brunk, Nathan Mih, Anand Sastry, Zachary
King, Rikiya Takeuchi, Wataru Nomura, Zhen Zhang, Hirotada Mori, Adam M Feist, and
Bernhard O Palsson. iML1515, a knowledgebase that computes escherichia coli traits. Nature
Biotechnology, 35(10):904-908, October 2017. doi:10.1038/nbt.3956.

Luis Miiller, Mikhail Galkin, Christopher Morris, and Ladislav Rampések. Attending to Graph
Transformers. arXiv, 2023. doi:10.48550/arXiv.2302.04181.

Sutanu Nandi, Abhishek Subramanian, and Ram Rup Sarkar. An integrative machine learning
strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-
coupled features. Molecular BioSystems, 13(8):1584-1596, 2017. doi:10.1039/C7MB00234C.
Publisher: Royal Society of Chemistry.

Jeffrey D Orth, Ines Thiele, and Bernhard @ Palsson. What is flux balance analysis? Nature
biotechnology, 28(3):245-8, mar 2010. ISSN 1546-1696.

Gianvito Pio, Paolo Mignone, Giuseppe Magazzu, Guido Zampieri, Michelangelo Ceci, and
Claudio Angione. Integrating genome-scale metabolic modelling and transfer learning for
human gene regulatory network reconstruction. Bioinformatics, 38(2):487-493, 2022. ISSN
1367-4803. doi:10.1093 /bioinformatics/btab647.

Kitiporn Plaimas, Roland Eils, and Rainer Konig. Identifying essential genes in bacterial
metabolic networks with machine learning methods. BMC' systems biology, 4, may 2010.
ISSN 1752-0509.

Morgan N. Price, Kelly M. Wetmore, R. Jordan Waters, Mark Callaghan, Jayashree Ray,
Hualan Liu, Jennifer V. Kuehl, Ryan A. Melnyk, Jacob S. Lamson, Yumi Suh, Hans K.

21

(38]

39]

(40]

(41]

(42]

(43]

44]

Carlson, Zuelma Esquivel, Harini Sadeeshkumar, Romy Chakraborty, Grant M. Zane, Ben-
jamin E. Rubin, Judy D. Wall, Axel Visel, James Bristow, Matthew J. Blow, Adam P. Arkin,
and Adam M. Deutschbauer. Mutant phenotypes for thousands of bacterial genes of unknown
function. Nature, 557(7706):503-509, May 2018. ISSN 1476-4687. doi:10.1038/s41586-018-
0124-0. Number: 7706 Publisher: Nature Publishing Group.

Terry Roemer, Bo Jiang, John Davison, Troy Ketela, Karynn Veillette, Anouk Breton, Fatou
Tandia, Annie Linteau, Susan Sillaots, Catarina Marta, Nick Martel, Steeve Veronneau, Se-
bastien Lemieux, Sarah Kauffman, Jeff Becker, Reginald Storms, Charles Boone, and Howard
Bussey. Large-scale essential gene identification in Candida albicans and applications to an-
tifungal drug discovery. Molecular Microbiology, 50(1):167-181, 2003. ISSN 1365-2958. doi:
10.1046/j.1365-2958.2003.03697 .x.

Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017. doi:
10.48550/arXiv.1609.04747. arXiv:1609.04747 [cs].

Ankur Sahu, Mary-Ann Bléatke, Jedrzej Jakub Szymaniski, and Nadine Topfer. Advances in
flux balance analysis by integrating machine learning and mechanism-based models. Compu-
tational and Structural Biotechnology Journal, 19:4626-4640, January 2021. ISSN 2001-0370.
doi:10.1016/j.csbj.2021.08.004.

Song-Min Schinn, Carly Morrison, Wei Wei, Lin Zhang, and Nathan E. Lewis. A genome-scale
metabolic network model and machine learning predict amino acid concentrations in Chinese
Hamster Ovary cell cultures. Biotechnology and Bioengineering, 118(5):2118-2123, 2021. ISSN
1097-0290. doi:10.1002/bit.27714.

Robert Schuetz, Lars Kuepfer, and Uwe Sauer. Systematic evaluation of objective functions
for predicting intracellular fluxes in Escherichia coli. Molecular Systems Biology, 3(1):119,
January 2007. ISSN 1744-4292. doi:10.1038/msb4100162. Publisher: John Wiley & Sons,
Ltd.

Robert Schuetz, Nicola Zamboni, Mattia Zampieri, Matthias Heinemann, and Uwe Sauer.
Multidimensional optimality of microbial metabolism. Science (New York, N.Y.), 336(6081):
601-4, May 2012. ISSN 1095-9203. doi:10.1126/science.1216882.

Daniel Segre, Dennis Vitkup, and George M. Church. Analysis of optimality in natural and
perturbed metabolic networks. Proceedings of the National Academy of Sciences, 99(23):
15112-15117, 2002. doi:10.1073/pnas.232349399.

22

(45]

[46]

(47]

(48]

(49]

Evan S. Snitkin, Aimée M. Dudley, Daniel M. Janse, Kaisheen Wong, George M. Church,
and Daniel Segre. Model-driven analysis of experimentally determined growth phenotypes for
465 yeast gene deletion mutants under 16 different conditions. Genome Biology, 9(9):R140,
September 2008. ISSN 1474-760X. doi:10.1186/gb-2008-9-9-r140.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning Repre-
sentations, 2018.

Guido Zampieri, Supreeta Vijayakumar, Elisabeth Yaneske, and Claudio Angione. Machine
and deep learning meet genome-scale metabolic modeling. PLOS Computational Biology, 15
(7):1007084, jul 2019. ISSN 1553-7358.

Tianzuo Zhan and Michael Boutros. Towards a compendium of essential genes-from model
organisms to synthetic lethality in cancer cells. Critical Reviews in Biochemistry and Molecular
Biology, 51:74-85, 3 2016. ISSN 15497798.

Xue Zhang, Wangxin Xiao, and Weijia Xiao. DeepHE: Accurately predicting human essential
genes based on deep learning. PLOS Computational Biology, 16(9):e1008229, September 2020.
ISSN 1553-7358. doi:10.1371/journal.pcbi.1008229.

23

flowGAT model c

@ non-essential

>

8 8 O essential o
2 ® O unlabelled 212
c o g 400
S o3 3 20
) oL g o Escherichia coli Saccharomyces cerevisiae
£ O% &n 5 ®fo- nodes iML1515
of kel 3
04 g
o / 5
1]
o E
e . . 0 100 200 300 ; »
graph attention message-passing number of edges Bacillus subtilis
iyo844
flow features
D training
B metabolic network
o ©) L
X, ————» X, é) _ bllnAaryA
Lo o 4 é 3 classification
T X3 —
\] N . e} é o
PN
X, o X @

validation
mass flow graph

Ve

FIG. 1. Elements of the FlowGAT model for gene essentiality prediction. (A) Schematic of

the FlowGAT architecture proposed in this paper. The model integrates a digraph representation of FBA
solutions (Mass Flow Graphs, MFG), where nodes are reactions and edges encode the re-distribution of
metabolite mass flows between reactions. We featurize each node with flow-based scores and label them as
essential or non-essential using data from gene knock-out assays. Using a graph neural network with an
attention layer, FlowGAT predicts essentiality for unlabelled reactions. (B) Construction of mass flow graphs
from FBA solutions. The top network is an exemplar metabolic network, and the bottom digraph is the
corresponding MFG constructed; nodes are reactions and two nodes are connected if they share metabolites
as reactants or products. The edge weights are computed from the metabolite mass flows as described in
(3); more details on the MFG construction can be found in [3]. (C) Exemplar MFGs for several microbes
computed from their genome-scale models using standard FBA [12] with the default growth condition in
each case; density plots show the distribution of edge weights in each case. (D) For model training and
validation, labeled nodes in the MFG are separated into training, validation and test sets. The validation set
is used for early stopping and performance metrics are computed on the test set. We explored two training
frameworks for FlowGAT; as a binary classifier and as a regressor of growth rate that can be binarized to

produce essentiality predictions.

24

1.0 10 1.0
|
08|\ p T e — = 08 ‘ 0o %
_é 06 0 06 08
2) —— FlowGAT (mean AUC=0.8206) <3(graph attention
o graph attention —— IdpGAT (mean AUC=0.8085) c Jassi dol
@ 04 WeGAT (mean AUC=0.7799) Q04 classic models 0.7
. —— MLP (mean AUC=0.7518)
classic models 4 — RF (mean AUC=0.7476)
02 — SVC (mean AUC=0.7315) 02 06
—~ Nosill
*%o 02 04 06 08 o ¢ & & o ; ’ .
X . . X . . KN & 52 S Precision Recall F1
Recall s W & ‘(\s@
C 10 E
’ | —— classification (mean AUC=0.8206) essential genes non-essential genes
~— regression (mean AUC=0.8252)
08 ~—— ~ FBA FBA
T Twesa T TTTTTTTTTTTTTTTTTR
83
5 0.6 1.0 8.p
@
S &)
14 =1
Q0.4 0.8
& FlowGAT FlowGAT
o
0.2 0.6
0.0
0.0 0.2 04 06 0.8 1.0
Recall

FIG. 2. Performance of FlowGAT as predictor of metabolic gene essentiality in Escherichia
coli. (A) Precision-Recall (PR) curves for classic binary classifiers and graph neural networks trained on
essentiality measurements for E. coli growing in aerobic conditions with glucose as the sole carbon course
[31]. Classic models were trained using the Flow Profile Embeddings (FPE) defined in Eq. (6) computed
from wild type FBA solutions. The graph neural networks were trained using the mass flow graph and
the FPE as node feature vectors, as well as two other popular node embedding techniques (Local Degree
Profile, LDP [7] and Random Walk Embedding, RWE [11]). Results show PR curves averaged across 50
model evaluations consisting of 5 rounds of testing on 20% test folds and and 10 rounds of model re-training
for different random seeds; the dashed line represented the precision (74.9%) of the no-skill classifier given
the class imbalance of the data. (B) Distribution of PRAUC scores across the 50 evaluations. The graph
attention models outperform classic binary classifier; among the three considered node embeddings, FPE
provides the best performance. (C) Retraining FlowGAT as a regressor provides slight gains in performance;
inset shows the distribution of PRAUC scores across 50 evaluations; the regressor was trained on growth
rate data [31] and predictions are subsequently binarized to produce essentiality labels. (D) Exemplar
classification results by the best performing model (FlowGAT trained as regressor, as in panel C); results
show precision, recall and Fl-score for the 50 evaluations and fixed classification threshold. (E) Comparison
between FlowGAT and FBA predictions over the entire gene set in glucose MFG; Venn diagrams show the
number of genes called correctly for each model, averaged across 10 rounds of re-training FlowGAT for

different random seeds (for details of training refer to Methods)

25

A RNA charging
Purine, pyrimidine biosynthesis
Membrane lipid metabolism

Citric acid cycle Amino acid metabolism
Anaplertic reactions Folate metabolism

Biomass and maintenance Pentose phosphate pathway
Amino acid i Pyru i
Intracellular demand | Glycolysis/gluconeogenesis

r H\:‘ \?

B C..o o0 e o @ ¢ o 0o
oze] @ @ © © © © @ e o ®
Acetate
Oxoglutarate [] °
Galactose = glutarats [[] L) ® o [5) o)
o
Gluconate E v @ @ @ @ o o . ®@ @ o
c
Glycerol]
s/ 000000 0000
Mannitol § aeell @ @ @ @ @ . e @O @ o
Oxoglutarate 2
c ool @ @ @ @ o @ o o o o
Pyruvate B
Succinate Fouosmre| @ @ @ e o @ © o o o
Glucosamine
Guconate| © @ e @ © @ @ o o O
0 2 4 6 8 10 12
% PRAUC improvement over no-skill Galactose| @ e o @ @ @ © o o O
Acetate e o © O O @ ®@ ¢ o O
@ o < e o S & & &
3 & < & & & & & & & &
& & & S S S N
L P G KAy

o

o
carbon source (testing)

Jensen-Shannon distance

O

% PRAUC improvement

O:=0

°

°

Py
s

©

o

FIG. 3. Essentiality predictions of FlowGAT for Escherichia coli growing in different carbon

sources. (A) Heatmap of reactions present in mass flow graphs (MFG) computed from wild type FBA

solutions computed for ten carbon sources. Each MFG is obtained through changing the carbon source;

the color bar denotes the different metabolic subsystems as annotated in the latest genome-scale metabolic

model iML1515 [31]. (B) Prediction performance of FlowGAT trained and tested on the different condition-

dependent MFGs. Bars show the average improvement of PRAUC scores across the 50 evaluations with

respect to the no-skill classifier; error bars denote one standard deviation of the PRAUC. Full precision-

recall curves for each case can be found in Supplementary Figure S2. (C) Performance of FlowGAT in

cross-testing across different carbon sources; in each case, the model was trained on one graph and tested on

the nodes of all other graphs, totalling 90 cross-test evaluations. The color bar indicates the improvement

in PRAUC over the no-skill classifier; the bubble radius denotes the graph-to-graph distance computed as

the Jansen-Shannon divergence between the distribution of node features.

26

Supplementary Figures and Tables

FPE RWE
1.0
08 m«\“\ ________ -
S 0.6
506 5
@]
S 13
04 =04
—— GAT (mean AUC=0.7799)
—— GAT (mean AUC=0.8206) =
0.2 —— GCN (mean AUC=0.7604) 02 - :ﬁgé?,:::f:f;’g:::;,
—— FlowSAGE (mean AUC=0.7796) No skl e
—— No Skill 0.0 —= No Skil
0.0 ’
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 recal 0.6 0.8 1.
Recall eca
LDP
1.0
0.8 m_—z«:——%‘*—r‘ -
gos
a
S
1<
o 0.4

—— GAT (mean AUC=0.8085)
0.2 —— GCN (mean AUC=0.7757)
SAGE (mean AUC=0.7798)
—= No Skill

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Supplementary Figure S1. Performance comparison between different message passing schemes
and node embeddings. Model training and evaluation followed the same procedure as Figure 2A in the
main text. Results show three node embeddings (Flow Profile Embeddings defined in Eq. (6), Local Degree
Profile, and Random Walk Embeddings as explained in the Methods) and three popular message passing

schemes (Graph Attention as in Figure 2A, Graph Convolution Networks, and Graph SAGE).

Succinate

—— Cls (mean AUC=0.7563)

g 0.6 %}
@ ~—— Rgs (mean AUC=0.7709) >
3 ——- No Skill (0.7255) 2
a 04
0.2 Method
mm Cls
= Rgs
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Recall
(@)
Mannitol
1.0
o —— Cls (mean AUC=0.8345)
S i3
2 —— Rgs (mean AUC=0.8412) S
g ~=+ No Skill (0.7692) g
a 04
0.2 Method
mm Cls
= Rgs
0.0
0.0 0.2 04 0.6 08 1.0
Recall
(d)
Glucosamine
o —— Cls (mean AUC=0.8299)
2 ~—— Rgs (mean AUC=0.8360) S
8 —=- No Skill (0.7647) é
a 04
0.2 Method
mm Cls
I Rgs
0.0
0.0 0.2 04 0.6 0.8 10
Recall
(h)

]

Pyruvate

~—— ClIs (mean AUC=0.8113)

Method
= Cls
== Rgs

Method
. Cls
=3 Ros

Oxoglutarate

Cls (mean AUC=0.7654)

506 o
@ ~—— Rgs (mean AUC=0.7681) >
] ~=- No skill (0.7059) g
& 04
02
0.0
0.0 02 04 06 08 10
Recall
()
Glycerol

Cls (mean AUC=0.7763)

§06 o
< —— Rgs (mean AUC=0.8142) 9
3 ~=- No Skill (0.7451) g
a 04
0.2
0.0
00 02 04 06 08 10
Recall
(b)
Maltose
10
o6 ~—— Cls (mean AUC=0.8337)
S o
2 —— Rgs (mean AUC=0.8484) S
g -~ No Skill (0.7750) g
a 04
02
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Recall
(e)
Gluconate
o6 —— Cls (mean AUC=0.8214)
S (%]
2 —— Rgs (mean AUC=0.8281) 3
] —— FBA (mean AUC=09226) &
& 04
02
.0
0.0 0.2 0.4 0.6 0.8 1.0
Recall
(i)
Galactose
1.0
08 M
cos —— Cls (mean AUC=0.8122)
5 o
2 —— Rgs (mean AUC=0.8089) 3
3 ~ == No Skill (0.7308) g
a 04
0.2
00
00 02 04 06 08 10
Recall
(k)

Method
mm Cls
=3 Ros

Method
= Cls
== Rgs

€06
2 —— Rgs (mean AUC=0.7902) S
] —=- No Skill (0.7451) 3
a 04
0.2
0.0
0.0 02 04 0.6 08 1.0
Recall
(f)
Acetate
o6 —— Cls (mean AUC=0.7815)
S o
] —— Rgs (mean AUC=0.7948) S
@ ~=- No Skill (0.7255) E
a 04
0.2
0.0
0.0 0.2 08 1.0

04 0.6
Recall

0]

Method
= Cis
== Rgs

Method
. Cls
= Ros

Method
mm Cis
=3 Ros

Supplementary Figure S2. Performance comparison of classification and regression training for

FlowGAT trained on labels and mass flow graphs for various carbon sources. For each of the ten

graphs, FlowGAT was trained on the nodes of the graph using both classification and regression training

scheme, as in Figure 2C in the main text. Precision-recall curves were averaged over 5 cross-validation folds

and 10 rounds of re-training for different random seeds.

Reaction Bounds

L-arabinose isomerase (ARAI)
L-ribulokinase (RBK_L1)
Rhamnulose-1-phosphate aldolase (RMPA)

Lyxose isomerase (LYXI) Vb = Vap = 0
L-rhamnose isomerase (RMI),
Rhamnulokinase (RMK)
B-galactosidase (LACZ)

Oxygen exchange (EX_02_¢) v, = —20

Supplementary Table S1. Bounds for exchange reactions for the E. coli iML1515 model

growing in aerobic conditions with glucose as the only carbon source.

Carbon source Reaction Bounds

Succinate EX_succ_e
Pyruvate EX_pyr-e
Oxoglutarate EX_akg_e
Mannitol EX_mnl e
Maltose EX_malt_e
Vi, = —10
Glycerol EX glyce
Glucosamine EX_acgam_e

Gluconate EX _glen_e

Acetate EX ac_e

Galactose EX _gal e

Supplementary Table S2. Exchange reactions for different carbon sources in the E. coli
iML1515 genome-scale metabolic model. For each carbon source, the corresponding reaction

bounds were adjusted and all other reaction bounds for other sources were set to 0.

Hyperparameter Value

Number of message passing layers 4
o Number of post message passing layers 1
‘5 Dimension of hidden layers 16
% Activation function ReLU
= Dropout rate 0.1
km 8
Base learning rate 0.01
Learning rate decay 0.1
Momentum 0.9
& Optimization algorithm ADAM
% Scheduler Cosine Annealing
a Max epochs 200
Min epochs 20
Classification loss Cross entropy
Regression loss MSE

Supplementary Table S3. Hyperparameters list for GNN based models. For each GNN based
model the list of above hyperparameters was determined after initial tuning on a chosen validation
set through grid search. Afterward, the above set was used for all evaluations reported in the paper.
For a fair comparison amongst different GNNSs, the architecture and training hyperparameters are

kept the same and the message passing formula is the only change in the architecture (e.g., GAT,

GCN, SAGE)

Model Hyperparameter Value

Criterion entropy
Max depth 50
Max features sqrt
Num estimators 300
&) Kernel rbf
>
aA Gamma, scale
Activation function ReLU
a, Optimizer ADAM
—
-
=

Hidden layer size 100

Number of layers 2

Supplementary Table S4. Hyperparameters list for classic ML models. For each model
the list of above hyperparameters was determined after initial tuning on a chosen validation set

through grid search.

Paper lll

Tesla-Rapture: A Lightweight Gesture Recognition System
From mmWave Radar Sparse Point Clouds

Dariush Salami', Ramin Hasibi', Sameera Palipana, Petar Popovski, Tom
Michoel, and Stephan Sigg,
IEEE Transactions on Mobile Computing, 22/08 (2022)

'Equal contribution

Paper IV

Integrating Angle-Agnostic Sensing into Cellular Networks
using NR Sidelink

Dariush Salami, Ramin Hasibi, Stefano Savazzi, Tom Michoel, and Stephan
Sigg
(2022)

(© The copyright holder for this preprint is the authors. All rights reserved. No further
reuse allowed without permission.

Paper V

A general deep reinforcement learning hyperheuristic frame-
work for solving combinatorial optimization problems

Jakkob Kallestad, Ramin Hasibi, Ahmad Hemmati, and Keneth Sérensen
European Journal of Operational Research, 309/1 (2023)

European Journal of Operational Research 309 (2023) 446-468

European Journal of Operational Research

= b
UROPEAN /OURNAL OF
PERATI ESEARCH

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejor

Interfaces with Other Disciplines

A general deep reinforcement learning hyperheuristic framework for)
solving combinatorial optimization problems |Gzt

Jakob Kallestad? Ramin Hasibi**, Ahmad Hemmati? Kenneth Sérensen®

A Department of Informatics, University of Bergen, Norway
b Faculty of Business and Economics, ANT/OR - University of Antwerp Operations Research Group, Belgium

ARTICLE INFO

ABSTRACT

Article history:

Received 11 October 2021
Accepted 11 January 2023
Available online 16 January 2023

Keywords:

Heuristics

Hyperheuristic

Adaptive metaheuristic
Deep reinforcement learning
Combinatorial optimization

Many problem-specific heuristic frameworks have been developed to solve combinatorial optimization
problems, but these frameworks do not generalize well to other problem domains. Metaheuristic frame-
works aim to be more generalizable compared to traditional heuristics, however their performances suffer
from poor selection of low-level heuristics (operators) during the search process. An example of heuristic
selection in a metaheuristic framework is the adaptive layer of the popular framework of Adaptive Large
Neighborhood Search (ALNS). Here, we propose a selection hyperheuristic framework that uses Deep Re-
inforcement Learning (Deep RL) as an alternative to the adaptive layer of ALNS. Unlike the adaptive layer
which only considers heuristics’ past performance for future selection, a Deep RL agent is able to take
into account additional information from the search process, e.g., the difference in objective value be-
tween iterations, to make better decisions. This is due to the representation power of Deep Learning
methods and the decision making capability of the Deep RL agent which can learn to adapt to differ-
ent problems and instance characteristics. In this paper, by integrating the Deep RL agent into the ALNS
framework, we introduce Deep Reinforcement Learning Hyperheuristic (DRLH), a general framework for
solving a wide variety of combinatorial optimization problems and show that our framework is better at
selecting low-level heuristics at each step of the search process compared to ALNS and a Uniform Ran-
dom Selection (URS). Our experiments also show that while ALNS can not properly handle a large pool

of heuristics, DRLH is not negatively affected by increasing the number of heuristics.

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

A metaheuristic is an algorithmic framework that offers a co-
herent set of guidelines for the design of heuristic optimization
methods. Classical frameworks such as Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),
and Simulated Annealing (SA) are examples of such frameworks
(Dokeroglu, Sevinc, Kucukyilmaz, & Cosar, 2019). Moreover, there
is a large body of literature that addresses solving combinatorial
optimization problems using metaheuristics. Among these, Adap-
tive Large Neighbourhood Search (ALNS) (Ropke & Pisinger, 2006)
is one of the most widely used metaheuristics. It is a general
framework based on the principle of Large Neighbourhood Search
(LNS) of Shaw (1998), where the objective value is iteratively im-
proved by applying a set of “removal” and “insertion” operators
on the solution. In ALNS, each of the removal and insertion oper-

* Corresponding author.

ators have weights associated with them that determine the prob-
abilities of selecting these during the search. These weights are
continuously updated after a certain number of iterations (called
a segment) based on their recent effect on improving the qual-
ity of the solution during the segment. The ALNS framework was
early on an approach specific to routing problems. However, in re-
cent years, there has been a growing number of studies that em-
ploy this approach to other problem types, e.g., scheduling prob-
lems (Laborie & Godard, 2007). Its high quality of performance
at finding solutions has made it a go-to approach in many recent
studies in combinatorial optimization problems (Aksen, Kaya, Sibel
Salman, & Ozge Tiincel, 2014; Chen, Demir, & Huang, 2021; Demir,
Bektas, & Laporte, 2012; Friedrich & Elbert, 2022; Grangier, Gen-
dreau, Lehuédé, & Rousseau, 2016; Gullhav, Cordeau, Hvattum, &
Nygreen, 2017; Li, Chen, & Prins, 2016). The ALNS framework has
several advantages. For most optimization problems, a number of

E-mail addresses: jakobkallestad@gmail.com (J. Kallestad), Ramin.Hasibi@uib.no (R. Hasibi), Ahmad.Hemmati@uib.no (A. Hemmati), kenneth.sorensen@uantwerpen.be

(K. Sorensen).

https://doi.org/10.1016/j.ejor.2023.01.017

0377-2217/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

J. Kallestad, R. Hasibi, A. Hemmati et al.

well-performing heuristics are already known which can be used
as the operators in the ALNS framework. Due to the large size and
diversity of the neighborhoods, the ALNS algorithm will explore
huge chunks of the solution space in a structured way. As a result,
ALNS is very robust as it can adapt to different characteristics of
the individual instances, and is able to avoid being trapped in lo-
cal optima (Pisinger & Ropke, 2019). According to Turkes, Sorensen,
& Hvattum (2021), the adaptive layer of ALNS has only minor im-
pact on the objective function value of the solutions in the stud-
ies that have employed this framework. Moreover, the information
that the adaptive layer uses for selecting heuristics is limited to the
past performance of each heuristic. This limited data can make the
adaptive layer naive in terms of decision making capability because
it is not able to capture other (problem-independent) information
about the current state of the search process, e.g., the difference
in cost between past solutions, whether the current solution has
been encountered before during the search, or the number of iter-
ations since the solution was last changed, etc. We refer to the de-
cision making capability of ALNS as performing on a “macro-level”
in terms of adaptability, i.e., the weights of each heuristic is only
updated at the end of each segment. This means that the heuris-
tics selected within a segment are sampled according to the fixed
probabilities of the segment. This limitation makes it impossible
for ALNS to take advantage of any short-term dependencies that
occur within a segment that could help aid the heuristic selection
process.

Another area where ALNS struggles is when faced with a large
number of heuristics to choose from. In order to find the best set
of available heuristics for ALNS for a specific setting, initial experi-
ments are often required to identify and remove inefficient heuris-
tics, and this can be both time consuming and computationally ex-
pensive (Hemmati & Hvattum, 2017). Furthermore, some heuristics
are known to perform very well for specific problem variations or
specific conditions during the search, but they may have a poor
average performance. In this case, it might be beneficial to remove
these from the pool of heuristics available to ALNS in order to in-
crease the average performance of ALNS, but this results in a less
powerful pool of heuristics that is unable to perform as well dur-
ing these specific problem variations and conditions.

To address the issues in ALNS, one can use Reinforcement
Learning (RL). RL is a subset of machine learning concerned
with “learning how to make decisions”—how to map situations to
actions—so as to maximize a numerical reward signal. One of the
main tasks in machine learning is to generalize a predictive model
based on available training data to new unseen situations. An RL
agent learns how to generalize a good policy through interaction
with an environment which returns the reward in exchange for re-
ceiving an action from the agent. Therefore, through a trial-and-
error search process, the agent is trained to achieve the maximum
expected future reward at each step of decision making condi-
tioned on the current situation (state). Thus, training an RL agent
(to achieve the best possible results in similar situations), makes
the agent aware of the dynamics of the environment as well as
adaptable to similar environments with slightly different settings.
One of the more recent approaches in RL is Deep RL which benefits
from the powerful function approximation property of deep learn-
ing tools. In this approach, different functions that are used to train
and make decisions in an RL agent are implemented using Artifi-
cial Neural Networks (ANNs). Different Deep RL algorithms dictate
the training mechanism and interaction of the ANNs in the deci-
sion making process of the agent (Sutton & Barto, 2018). There-
fore, integration of the Deep RL into the adaptive layer of the ALNS
can make the resulting framework much smarter at making deci-
sions at each iteration and improve the overall performance of the
framework.

447

European Journal of Operational Research 309 (2023) 446-468

In this paper, we propose Deep Reinforcement Learning Hy-
perheuristic (DRLH), a general approach to selection hyperheuris-
tic framework (definition in Section 2) for solving combinatorial
optimization problems. In DRLH, we replace the adaptive layer of
ALNS with a Deep RL agent responsible for selecting heuristics
at each iteration of the search. Our Deep RL agent is trained us-
ing Proximal Policy Optimization (PPO) method of Schulman, Wol-
ski, Dhariwal, Radford, & Klimov (2017) which is a standard ap-
proach for stable training of the Deep RL agent in different en-
vironments. The proposed DRLH utilizes a search state consisting
of a problem-independent feature set from the search process and
is trained with a problem-independent reward function that en-
courages better solutions. This approach makes the framework eas-
ily applicable to many combinatorial optimization problems with-
out any change in the method and given the proper training step
for each problem separately. The training process of DRLH makes
it adaptable to different problem conditions and settings, and en-
sures that DRLH is able to learn good strategies of heuristic selec-
tion prior to testing, while also being effective when encountering
new search states. In contrast to the macro-level decision making
of ALNS, the proposed DRLH makes decisions on a “micro-level”,
meaning that only the current search state information affects the
probabilities of choosing heuristics. This allows for the probabili-
ties of selecting heuristics to change quickly from one iteration to
the next, helping DRLH adapt to new information of the search as
soon as it becomes available. The Deep RL agent in DRLH is able
to effectively leverage this search state information at each step of
the search process in order to make better decisions for selecting
heuristics compared to ALNS.

To evaluate the performance and generalizability of DRLH,
we choose four different combinatorial optimization problems to
benchmark against different baselines in terms of best objective
found and the speed of convergence as well as the time it takes
to solve each problem. These problems include the Capacitated Ve-
hicle Routing Problem (CVRP), the Parallel Job Scheduling Problem
(PJSP), the Pickup and Delivery Problem (PDP), and the Pickup and
Delivery Problem with Time Windows (PDPTW). These problems
are commonly used for evaluation in the literature and are diverse
in terms of difficulty to find good and feasible solutions. They ad-
ditionally correspond to a broad scope of real world applications.
For each problem, we create separate training and test datasets. In
our experiments, we compare the performance of DRLH on differ-
ent problem sizes and over an increasing number of iterations of
the search and demonstrate how the heuristic selection strategy of
DRLH differs from other baselines throughout the search process.

Our experiments show the superiority of DRLH compared to
the popular method of ALNS in terms of performance quality. For
each of the problem sets, DRLH is able to consistently outperform
other baselines when it comes to best objective value specifically
in larger instances sizes. Additionally, DRLH does not add any over-
head to the instance solve time and the performance gain is a re-
sult of the decision making capability of the Deep RL agent used.
Further experiments also validate that unlike other algorithms, the
performance of DRLH is not negatively affected by increasing the
number of available heuristics to choose from. In contrast to this,
ALNS struggles when handling a large number of heuristics to
choose from. This advantage of our framework makes the devel-
opment process for DRLH very simple as DRLH seems to be able to
automatically discover the effectiveness of different heuristics dur-
ing the training phase without the need for initial experiments in
order to manually reduce the set of heuristics.

The remainder of this paper is organized as follows: In
Section 2, related previous work in hyperheuristics and Deep RL
is presented. In Section 3, we propose the overall algorithm of
DRLH as well as the choice of heuristics and parameters. The

J. Kallestad, R. Hasibi, A. Hemmati et al.

descriptions of the four combinatorial optimization problems used
for benchmarking purposes are illustrated in Section 4. The exper-
imental setup and the results of our evaluation are presented in
Sections 5 and 6, respectively.

2. Related work

In this section, we first define the term “Hyperheuristic” and
review some of the traditional work that fall into this category and
point out their limitations. We also mention some of the methods
that employ Deep RL for solving combinatorial problems and their
shortcomings. In the end, we explain how we combine the best of
two domains (Hyperheuristic and Deep RL) to take advantage of
both their methodologies.

The term hyperheuristic was first used in the context of combi-
natorial optimization by Cowling, Kendall, & Soubeiga (2001) and
described as heuristics to choose heuristics. Burke et al. (2010) later
extended the definition of hyperheuristic to “a search method or
learning mechanism for selecting or generating heuristics to solve
computational search problems”. The most common classification
of hyperheuristics makes the distinction between selection hyper-
heuristics and generation hyperheuristic. Selection hyperheuristics
are concerned with creating a selection mechanism for heuristics
at each step of the search, while generation hyperheuristics are
concerned with generating new heuristics using basic components
from already existing heuristic methods. This paper will focus on
selection hyperheuristics methods.

Although it is possible to create highly effective problem-
specific and heuristic-specific methods for heuristic selection, these
methods do not always generalize well to other problem domains
and different sets of heuristics. A primary motivation of hyper-
heuristic research is therefore the development of general-purpose,
problem-independent methods that can deliver good quality solu-
tions for many combinatorial optimization problems without hav-
ing to make significant modifications to the methods. Thus, ad-
vancements done in hyperheuristic research aims to be easily ap-
plicable by experts and non-experts alike, to various problems
and heuristics sets without requiring extra effort such as domain
knowledge about the specific problem to be solved.

A classic example of using RL in hyperhueristics is the work
of Ozcan, Misir, Ochoa, & Burke (2010) in which they propose a
framework that uses a traditional RL method for solving exami-
nation timetabling. Performance is compared against a simple ran-
dom hyperheuristic and some previous work, and results show that
using RL obtains better results than simply selecting heuristics at
random. The RL used here learns during the search process by ad-
justing the probabilities of choosing heuristics based on their re-
cent performance during the search. This type of RL framework
shares many similarities with the ALNS framework, and therefore
suffers from the same limitations as those mentioned for ALNS.

Apart from RL, supervised learning, which is another ma-
chine learning technique, has also been utilized in hyperheuristic
frameworks to improve the performance. A hyperheuristic method
for the Vehicle Routing Problem named Apprentice Learning-based
Hyper-heuristic (ALHH) was proposed by Asta & Ozcan (2014) in
which an apprentice agent seeks to imitate the behavior of an ex-
pert agent through supervised learning. The training of the ALHH
works by running the expert on a number of training instances and
recording the selected actions of the expert together with a search
state that consists of the previous action used and the change in
objective function value for the past n steps. These recordings of
search state and action pairs build up a training dataset in which a
decision tree classifier is used in order to predict the action choice
of the expert. This makes up a supervised classification problem
in which the final accuracy of the model is reported to be around
65%. In the end ALHH'’s performance is compared against the ex-

448

European Journal of Operational Research 309 (2023) 446-468

pert and is reported to perform very similarly to the expert, and
even slightly outperforming the expert for some instances.

Tyasnurita, Ozcan, Shahriar, & John (2015) further improved
upon the apprentice learning approach by replacing the decision
tree classifier with a multilayer perceptron (MLP) neural network,
and named their approach MLP-ALHH. This change increased the
representational power of the search state and resulted in a bet-
ter performance that is reported to even outperform the expert.
A limitation of ALHH and MLP-ALHH is their use of the super-
vised learning framework which makes performance of these ap-
proaches bounded by the expert algorithm’s performance. A con-
sequence of this is that the feedback used to train the predictive
models of ALHH and MLP-ALHH is binary, i.e. it either matches that
of the expert or not, leaving no room for alternative strategies that
might perform even better than the expert. In contrast, DRLH uses
a Deep RL framework that neither requires, nor is bounded by an
expert agent and therefore has more potential to outperform exist-
ing methods by coming up with new ways of selecting heuristics.
The feedback used to train DRLH depends on the effect of the ac-
tion on the solutions, and the amount received varies depending
on several factors. Additionally, DRLH takes future iterations of the
search into account, while ALHH and MLP-ALHH only consider the
immediate effect of the action on the solution. Because of this, di-
versifying behavior is encouraged in DRLH when it gets stuck, as it
will help improve the solution in future iterations. Another differ-
ence of DRLH compared to ALHH and MLP-ALHH is that the fea-
tures of the search state used by DRLH contain more information
compared to the search state of the other two methods which ul-
timately makes the agent more aware of the search state and thus
capable of making effective decisions.

In addition to hyperheuristic approaches there have also re-
cently been many attempts at solving popular routing problems
using Deep RL by the machine learning community. A big limi-
tation of these works is that they all rely on problem-dependent
information, and are usually designed to solve a single problem
or a small selection of related problems, often requiring signifi-
cant changes to the approach in order to make them work for sev-
eral problems. In first versions of these studies, Deep RL is used
as a constructive heuristic approach for solving the vehicle routing
problem in which the agent, representing the vehicle, selects the
next node to visit at each time step (Kool, van Hoof, & Welling,
2019; Nazari, Oroojlooy, Snyder, & Takac, 2018). Although this is
very effective when compared to simple construction heuristics for
solving routing problems, it lacks the quality of solutions provided
by iterative metaheuristic approaches as well as being unable to
find feasible solutions in the case of more difficult routing prob-
lems that involve more advanced constraints such as pickup and
delivery problem with time windows.

Another approach that leverages Deep RL for solving combina-
torial optimizations is to take advantage of the decision making
ability of the agent in generating or selecting low-level heuristics
to be applied on the solution. Hottung & Tierney (2019) have used
a Deep RL agent to generate a heuristic for rebuilding partially
destroyed routes in the CVRP using a large neighbourhood search
framework. This method is an example of heuristic generation and
is specifically designed to solve the CVRP. Thus, it can not easily
be generalized to other problem domains. In Chen & Tian (2019), a
framework is presented for using two Deep RL agents for finding a
node in the solution and the best heuristic to apply on that node at
each step. Although the authors claim that this method is general-
izable to three different combinatorial optimization problems, the
details in representation of the problem and type of ANNs used for
the agents from one problem to another change a lot depending on
the nature of the problem. Additionally, one would have to come
up with new inputs and representation when applying this method
to other optimization problems that are not discussed in the study

J. Kallestad, R. Hasibi, A. Hemmati et al.

which reduces the generalizability of the framework. Lu, Zhang, &
Yang (2020) suggested the use of a Deep RL agent for choosing
low-level heuristic at each step for the CVRP. This work also suf-
fers from the generalizability to other types of optimization prob-
lems due to the elements of the Deep RL agent that are specific to
the CVRP problem. Additionally, in this approach the training pro-
cess of the agent is designed in such a way that the agent is only
focused on intensification rather than diversification. Thus, the di-
versification in their framework is done by a rule-based escape ap-
proach rather than giving the RL agent freedom to find the bal-
ance between diversification and intensification, which could lead
to better results.

To the best of our knowledge previous work on this topic either
suffer from a lack of generalizability in approach when it comes to
other problems in the domain or they do not take advantage of the
learning mechanism and representation power of Deep RL. In this
work we seek to address these issues by introducing DRLH.

3. DRLH

In this section, we present the DRLH, a hyperheuristic frame-
work to solve combinatorial optimization problems.

Our proposed hyperheuristic framework uses an RL agent for
the selection of heuristics. This process improves on the ALNS
framework of Ropke & Pisinger (2006) by leveraging the RL agent’s
decision making capability in choosing the next heuristic to apply
on the solution in each iteration. The pseudocode of DRLH is illus-
trated in Algorithm 1.

Algorithm 1: DRLH.

Function Deep Reinforcement Learning Hyperheuristic
Generate an initial solution x with objective function
of f(x) (see section 3.5)

H=Generate_heuristics() (see section 3.1)

Xpest = X, f(xbest) = f(X)

Repeat

X =x

choose h € H based on policy 7 (h|s, 6) (see section
3.3)

Apply heuristic h to X

if f(X) < f(Xest) then

‘ Xpest = X
end
if accept (x/, X) (see section 3.3), then

| x=x
end
Until stop-criterion met (see section 3.4)
return X,

3.1. Generating heuristics

The heuristic generation process follows the steps in
Algorithm 2. The set H consists of all possible heuristics that
can be applied on the solution x at each iteration. The general
method for obtaining these heuristics is to combine a removal
and an insertion operator. Furthermore, additional heuristics can
also be placed in H that do not share the characteristic of being a
combination of removal and insertion operators. In the following,
we present one example set of H for the problem types considered
for this paper.

449

European Journal of Operational Research 309 (2023) 446-468

Algorithm 2: Generation of the set of heuristics H.

Function Generate_heuristics
H={};
foreach removal operator r € R do
foreach insertion operator j € T do
Create a heuristic h by combining r and j;
H=HUh;
end
end
foreach additional heuristic ¢ € C do
| H=Huc;
end
return H

3.2. Sample set of heuristics

Each heuristic h € H is a combination of a removal and an in-
sertion operator presented in Tables 1 and 2. Furthermore, one ad-
ditional intensifying heuristic is also added to H. In each iteration,
a heuristic h € H is applied on the incumbent solution x with cost
of f(x) and generates a new solution x’ with cost of f(x’). For our
sample set of heuristics, H has the size of |H| = 29 (7 removals x
4 insertions + 1 additional).

3.2.1. Removal operators R

The set of all removal operators R are provided in Table 1.
Seven removal operators are implemented, five of which are fo-
cused on inducing diversification through a high degree of ran-
domness denoted by Random in their name. For intensification
purposes, we define the operator “Remove_largest_D” which uses
the metric Deviation D. We define the deviation D; as the differ-
ence in cost with and without element; in the solution, and thus
“Remove_largest_D" removes the elements with the largest D;. Fi-
nally, “Remove_t” operator selects a number of consecutive ele-
ments in the solution and removes them.

3.2.2. Insertion operators T

Table 2 lists the set of insertion operators Z used. A total of 4
insertion operators are utilized to place the removed elements in
a suitable position in solution x’. Operator “Insert_greedy” places
each removed element in the position which obtains the minimum
total cost of the new solution f(x"). Operator “Insert_beam_search”
performs beam search with a search width of 10 for inserting each
removed element. Beam search keeps track of the 10 best combi-
nations of positions after inserting each removed element in the
solution and inserts the elements in the best combination of po-
sitions that obtain the minimum f(x') in the search space. The
“Insert_by_variance” operator calculates the variance of the ten best
insertion positions for each of the removed elements. Then the el-
ements are ordered from high to low variance and inserted back
into the solution with the “Insert_greedy” operator. Finally, opera-
tor “Insert_first” places each removed element randomly in the first
feasible position found in the new solution.

3.2.3. Additional heuristic C

Unlike in ALNS where only removal and insertion operators are
used, our framework can also make use of standalone heuristics
that share neither of the these types of characteristics. An exam-
ple of one such additional heuristic, “Find_single_best”, is responsi-
ble for generating the best possible new solution from the incum-
bent by changing one element. This heuristic calculates the cost
of removing each element and re-inserting it with “Insert_greedy”,
and applies this procedure on the solution x for the element that

J. Kallestad, R. Hasibi, A. Hemmati et al.

Table 1
List of all removal operators.

European Journal of Operational Research 309 (2023) 446-468

Name Description

Random_remove_XS
Random_remove_S
Random_remove_M
Random_remove_L
Random_remove_XL
Remove_largest_D

Removes between 2-5 elements chosen randomly
Removes between 5-10 elements chosen randomly
Removes between 10-20 elements chosen randomly
Removes between 20-30 elements chosen randomly
Removes between 30-40 elements chosen randomly
Removes 2-5 elements with the largest D;

Remove_t Removes a random segment of 2-5 consecutive elements in the solution
Table 2
List of all insertion operators.

Name Description

Insert_greedy Inserts each element in the best possible position

Insert_beam_search
Insert_by_variance

best possible position

Insert_first

Inserts each element in the best position using beam search
Sorts the insertion order based on variance and inserts each element in the

Inserts each element randomly in the first feasible position

achieves the minimum cost f(x'). “Find_single_best” is the only ad-
ditional heuristic that is used in the proposed sample set of heuris-
tics, H.

3.3. Acceptance criteria and stopping condition

We use the acceptance criterion accept (x’, x) used in simulated
annealing (Kirkpatrick, Gelatt, & Vecchi, 1983). This acceptance cri-
terion depends on the difference in objective value between the
incumbent x and the new solution x’ denoted as AE = f(x) — f(x)
together with a temperature parameter T that is gradually decreas-
ing throughout the search. A new solution is always accepted if it
has a lower cost than the incumbent, AE < 0. In addition, worse
solutions are accepted with probability e=IAEl/T,

To determine the initial temperature Ty we accept all solutions
for the first 100 iterations of the search and keep track of all the
non-improving steps, AE > 0. Then, we calculate the average of
these positive deltas AE in order to get:

AE
~ o038 m
To decrease the temperature we use the cooling schedule of

Crama & Schyns (2003), and the search terminates after a certain
number of iterations has been reached.

To

3.4. Deep RL agent for selection of h

In a typical RL setting, an agent is trained to optimize a pol-
icy for choosing an action through interaction with an environ-
ment. At each time step (iteration) t, the agent chooses an action
A; and receives a scalar reward R; from the environment indicat-
ing how good the action was. State S; is defined as the informa-
tion received at each time step from the environment based on
the agent’s choice of action A; from a set of possible actions. Thus,
a stochastic policy 7t for the agent is defined as

m(als) = Pr{A: = a|St = s}. (2)

One such type of policy is the parameterized stochastic policy
function in which the probability of action selection is also con-
ditioned on a set of parameters 6 € RY. As a result, Eq. (2) is rede-
fined as

m(als,0) = Pr{A: = a|S; =s,6; = 0}. 3)

in which 6; represents the parameters at time step t (Sutton &
Barto, 2018). In our setting, the policy = is a MultiLayer percep-
tron (MLP), which is a class of non-linear function approximation

450

(Goodfellow, Bengio, & Courville, 2016). In this scenario, the aim is
to obtain the optimal policy 7* by tuning 6 which represents the
weights of the MLP network.

The training process for an RL agent is illustrated in
Algorithm 3. For training the weights of the MLP, we follow the

Algorithm 3: Training the Deep RL agent.
Result: 7* optimal policy
Start with random setting of 6 for a random policy r;
for e < 1 to episodes do
Receive initial state Sy;
for t < 1 to steps do
choose and perform action a € A; according to
m(als,0);
Receive Ry = v and s € S;,1 from the environment
end
Optimize the policy parameters 6 according to PPO
(Schulman et-~al., 2017).
end

policy gradient method of PPO introduced in Schulman et al.
(2017). In order to generalize to different variations of an optimiza-
tion problem, the training process is done for a number of problem
instances (episodes) with each instance corresponding to a differ-
ent set of attributes of the problem. Each instance is optimized for
a certain number of iterations (time steps) and at the end of each
episode the policy parameters € are updated until we obtain the
optimal policy. Once the training process is complete, the optimal
policy 7* is used to solve unseen instances in the test sets.

As mentioned above, three main properties of the RL agent
which are used to obtain the optimal policy 77* for solving the in-
tended problem are the state representation, the action space, and
the reward function. These parameters dictate the training pro-
cess and decision making capability of the agent and are therefore
essential for obtaining good solutions to optimization problems.
Moreover, in our proposed approach, these properties are set to
be independent of the type of problem which helps this approach
generalize to many types of combinatorial optimization problems.
The state representation contains the information about the cur-
rent solution and the overall search state, and is shown to the
agent at each step in order to guide the agent in the action selec-
tion process. The action space consists of a set of interchangeable
heuristics that can be selected at each time step by the agent. Fi-
nally, the reward function guides the learning of the agent during

J. Kallestad, R. Hasibi, A. Hemmati et al.

Table 3
A list of all features used for the state representation.

European Journal of Operational Research 309 (2023) 446-468

Name Description

reduced_cost
cost_from_min
cost

min_cost

temp

cs
no_improvement
index_step
was_changed
unseen

last _action_sign
last _action

The iteration number

)

The difference in cost between the previous & the current solutions
The difference in cost between the current & the best found solution
The cost of the current solution

The cost of the best found solution

The current temperature
The cooling schedule (o
The number of iterations since the last improvement

1 if the solution was changed from the previous, 0 otherwise.

1 if the solution has not previously been encountered in the search, 0 otherwise.
1 if the previous step resulted in a better solution, 0 otherwise.

The action in previous iteration encoded in 1-hot.

training and should be designed in a way that helps the agent op-
timize the objective of the problem. In the following, we explain
the choice for each of these properties.

3.4.1. State representation

The state consists of a set of useful features for guiding the
agent to select the best action/heuristic at each iteration in
the search. We have prioritized general state features that are
independent of the specifics of the problem being solved. In
other words, the state representation is easily applicable to many
optimization problems of different domains. Table 3 lists all the
state features used by the agent.

The state features cost and min_cost together with index_step
allow the agent to know approximately how well it is doing dur-
ing the search. This becomes apparent if cost and min_cost are
higher than their average values during training with respect to
index_step. These state features primarily help at a macro-level
by making the agent stick to a high-level strategy of heuris-
tic selection throughout the search. cost_from_min, temp, cs and
no_improvement inform the agent about how likely a new so-
lution is to be accepted. These state features help the agent
know how much intensification/diversification is appropriate at
that step. For instance if it should try to escape a local optima
or if it should focus on intensification. The last five state features;
reduced_cost, was_changed, unseen, last_action_sign and last_action
inform the agent about the immediate changes from the previous
solution to the current solution. In particular, reduced_cost shows
the difference in cost between the previous and current solution.
was_changed indicates if the solution was changed from the pre-
vious step to the current step. unseen indicates whether the cur-
rent solution was encountered before during the search. Finally,
last_action_sign indicates if the solution improved or worsened
from the previous step, and last_action indicates the action that
was used in the previous step. Together these five features give
information about what action the agent selected in the previous
step and the result of that action. This helps the agent make de-
cisions at a micro-level and is particularly useful as the agent can
avoid selecting deterministic or semi-deterministic heuristics such
as Remove_largest_D, Insert_by_variance and Find_single_best twice
in a row if the first time did not lead to any improvement, because
then it is less likely, if at all, to work the second time on the same
solution. This is particularly important for Find_single_best which
is a fully deterministic heuristic and produces the same result if
applied for two consecutive iterations.

3.4.2. Action

The actions in our setting for the agent are the same as the
set of heuristics H, i.e, A; = H. At each iteration of the DRLH (c.f,,
Algorithm 1), a heuristic h is selected and applied on the solution
by the agent. Therefore the policy function 7 in Eq. (3) is redefined

451

as

7 (h|s,0) = Pr{A; = h|S; =s, 6, = 0}. (4)

3.4.3. Reward function

A good reward function needs to balance the need for gradual
and incremental rewards while also preventing the agent from ex-
ploiting the reward function without actually optimizing the in-
tended objective (also known as reward hacking Amodei et al.,
2016). For our framework, we propose a reward functions that has
the above property. We refer to this as R?3'9, the formula for which
is

if f(X') < f(Xpest)
if f(x') < f(x)

if accept (X', x)
otherwise

5310 _
R”® =

(5)

erwu

Rt5310 is inspired from the scoring mechanism that is applied
in the ALNS framework for measuring the performance of each
heuristic in a segment. This reward function encourages the agent
to find better solutions than the current one as this gives a high
reward. In addition it also gives a small reward if it finds a slightly
worse solution that manages to get accepted by the acceptance cri-
terion. This property of the function in turn motivates the agent
to use diversifying operators when it is no longer able to improve
upon the current solution. Moreover, other reward functions were
considered for the framework which take the step-wise improve-
ment of the solution as well as the amount of improvement into
account. Further experiments on these reward functions demon-
strate that the R?%10 proved to be more stable and faster to train
compared to the others (results in Appendix A). Furthermore, given
the fact that RP'® comes from the original scoring function of
ALNS in Ropke & Pisinger (2006), we use the same function for
our Deep RL agent and ALNS for an equal comparison.

3.5. Solution representation and initial solution

For all the problems described in Section 4, the solution is rep-
resented as a permutation of orders/calls/jobs on each of the avail-
able vehicles/machines. Additionally, for the PDP and PDPTW, each
call should be in the solution twice, one time for each of the
pickup and the delivery elements respectively, and no call can be
present in multiple vehicles, as the same vehicle has to both pick
up and deliver the call.

The initial solutions for all of the problems are created by in-
serting all the orders/calls/jobs into the vehicles/machines using
the insert_greedy operator from Table 2. For each of the problems
and each test instance, DRLH, ALNS and URS start with the same
initial solution for a fair comparison.

J. Kallestad, R. Hasibi, A. Hemmati et al.
4. Problem sets

We consider four sets of combinatorial optimization problems
as examples of problems that can be solved using DRLH. These
problems are the Capacitated Vehicle Routing Problem (CVRP), Par-
allel Job Scheduling Problem (PJSP), Pickup and Delivery Prob-
lem (PDP) and Pickup and Delivery Problem with Time Windows
(PDPTW).

4.1. CVRP

The Capacitated Vehicle Routing Problem is one of the most
studied routing problems in the literature. It consists of a set of
N orders that needs to be served by any of the M number of ve-
hicles. Additionally, there is a depot in which the vehicles travel
from and return to when serving the orders. Following the pre-
vious work, the number of vehicles in this particular problem is
not fixed, but is naturally limited to M = {1, ..., N}. Meaning that
the maximum number of vehicles that can be utilized is N and
the minimum number is 1. Usually the number of vehicles used
will fall somewhere in between depending on which number re-
sults in the best solution. Each order has a weight W; associated
to it, and the vehicles have a maximum capacity. The sequence of
orders that a vehicle visits after leaving the depot before returning
to the depot is referred to as a tour. There needs to be a minimum
of one tour and a maximum of N tours. The combined weight of
the orders in a tour can not exceed the maximum capacity of the
vehicle, and so several tours are often needed in order to solve the
CVRP problem. The objective of this problem is to create a set of
tours that minimize the total distance travelled by all the vehicles
that are serving at least one order.

42. PSP

In the Parallel Job Scheduling Problem, we are given N jobs and
M machines. Each of the machines operate with a different pro-
cessing speed, and so the time required to complete job i on ma-
chine m is T; ,,. Each job has a due time associated with it, and if a
job is finished after its due time, a delay is calculated for that job.
The delay for job i is the difference in time between the due time
and the actual finishing time of job i, and can never be lower than
0. The objective of the problem is to find a sequence of jobs to
complete on each of the machines in order to minimize the total
delay of all the jobs.

4.3. PDP

In Pickup and Delivery Problem we are given N calls and a sin-
gle vehicle with a maximum capacity. Each call has a weight, a
pickup location, and a delivery location, and is served when the
order is transported by the vehicle from the pickup to the delivery
location. The objective of the problem is to minimize the traveling
distance of the vehicle while serving all the calls and not carrying
more than the maximum capacity at any point.

4.4. PDPTW

In pickup and delivery problem, we are given a set of calls. A
call consists of an origin and a destination and an amount of goods
that should be transported. A heterogeneous fleet of vehicles are
serving the calls, picking up goods at their origins and delivering
them to their destinations. Time windows are assigned to each call
at origins and destinations. Pickups and deliveries must be within
the associated time windows. In the event of early arrival of a ve-
hicle to a node before the start of the time window, the mentioned
vehicle must wait until the beginning of the time window before

452

European Journal of Operational Research 309 (2023) 446-468

being able to perform the pick up or delivery. A vehicle is never
allowed to arrive at a node after the end of the time window. Ad-
ditionally, a service time is considered for each time a call gets
picked up or delivered, i.e., the time it takes a vehicle to load or
deliver the goods at each node. For each call, a set of feasible ve-
hicles is determined. Each vehicle has a predetermined maximum
capacity of goods as well as a starting terminal in which duty of
the vehicle starts. Moreover, a start time is assigned to each vehi-
cle indicating the time that the vehicle leaves its starting terminal.
The vehicle must leave its start terminal at the starting time, even
if a possible waiting time at the first node visited occurs. The goal
is to construct valid routes for each vehicle, such that time win-
dows and capacity constraints are satisfied along each route, each
pickup is served before the corresponding delivery, pickup and de-
liveries of each call are served on the same route and each ve-
hicle only serves calls it is allowed to serve. The construction of
the routes should be in such a way that they minimize the cost
function. There is also a compatibility constraint between the ve-
hicles and the calls. Thus, not all vehicles are able to handle all the
calls. If we are not able to handle all calls by our fleet, we have
to outsource them and pay the cost of not transporting them. For
more details, readers are referred to Hemmati, Hvattum, Fagerholt,
& Norstad (2014).

5. Experimental setup

In this section, we explain the baseline methods, process of hy-
perparameter selection, and dataset generation methods used for
evaluation of the DRLH framework.

5.1. Experimental environment

The computational experiments in this paper were run on a
desktop computer running a 64-bit Ubuntu 20.04 operating system
with a AMD Ryzen 5 3600 processor and 32GB RAM.

5.2. Baseline models

Four baseline frameworks are chosen to compare with DRLH.
Three of these methods use the same approach as DRLHin selecting
a heuristic from the same set of heuristics at each iteration with
the difference being in selection strategy. The last baseline uses a
trained Deep RL agent to build a route by selecting a node at each
step. The details of the baselines are presented in the following.

5.2.1. Adaptive large neighborhood search (ALNS)

As our approach is improving on the ALNS algorithm, this
method is chosen as a baseline for performance comparison. This
framework measures the performance of each heuristic using a
scoring function for a certain number of iterations, referred to as
a segment. At the end of each segment, the probability of choosing
a heuristic during the next segment is updated using the aggre-
gated scores of each heuristic in the previous segment. The extent
to which the scores of the previous segment should contribute to
updating the weights is controlled by the reaction factor.

There is a trade-off between speed and stability when choosing
the values of the segment size and the reaction factor. Longer seg-
ments mean less frequent updates of the weights, but may increase
the quality of the update. Similarly, a low reaction factor means
that the weights can take longer to reach their desired values, but
may also prevent sudden unfavorable changes to the weights due
to the stochastic nature of the problem.

5.2.2. Uniform random selection (URS)

As a simpler approach to the selecting heuristics in each itera-
tion, this method selects the heuristic randomly from H with equal
probabilities.

J. Kallestad, R. Hasibi, A. Hemmati et al.

5.2.3. Tuned random selection (TRS)

We introduce another baseline to our experiments which is
refered to as TRS. For this method, we tuned the probabilities
of selecting heuristics using the method of IRace (Lopez-Ibaiiez,
Dubois-Lacoste, Pérez Caceres, Birattari, & Stiitzle, 2016). The pack-
age “IRace” applies iterative F-Race to tune a set of parameters in
an optimization algorithm (heuristic probabilities in our method)
based on the performance on the training dataset.

5.2.4. Attention Module (AM) based Deep RL heuristic

We also consider the AM method of Kool et al. (2019) which
achieved state-of-the-art results among the Deep RL based method
for solving combinatorial optimization problems. This method uses
the Deep RL agent combined with deep attention representation
learning to build the solution at each step in a constructive man-
ner using problem specific features from the environment. As a re-
sult, when applied on new problems, a new set of features as well
as a problem specific representation learning scheme need to be
defined. For example, the time window and vehicle incompatibil-
ity constraints were not mentioned in the original paper and for
that reason we can not solve the difficult problem of PDPTW with
this framework.

5.3. Hyperparameter selection

The hyperparameters for the Deep RL agent determine the
speed and stability of the training process and also the final per-
formance of the trained model. A small learning rate will cause
training to take longer, but the smaller updates to the neural net-
work also increase the chance of a better final performance once
the model has been fully trained. Because the training process is
done in advance of the testing stage, we opt for a slow and sta-
ble approach in order to train the best models possible. The hy-
perparameters of Deep RL agent for the experiments are listed in
Table 4.

In order to decide on the hyperparameters for DRLH, some ini-
tial experiments were performed on the PDP problem (as the sim-
ple baseline problems compared to others) on a separate valida-
tion set to see which combinations performed best. The resulting
set of hyperparameters have been applied for all experiments in
this paper. Our motivation for doing so is that we wanted to test
the generalizability of the framework in terms of the hyperparam-
eters as well as the performance on different problems. By tuning
the hyperparameters on a simpler problem and applying them to
all other problems of all sizes and variations, we tried to avoid
overtuning DRLH for every separate problem to keep the evalu-
ation fair for the baseline methods and make sure that the ad-
vantage of our approach is in the decision making approach not
the choice of hyperparameters for each problem. Moreover, this
adds to the generalizability trait of the framework that does not
require hyperparameter selection for each specific problem. Based
on our experiments we found that these set of hyperparameters
work very well across all the problem variations that we tested.
It is likely that these hyperparameters can work for any under-
lying combinatorial optimization problem, as the hyperparameters
for DRLH are related to the high-level problem of heuristic selec-

Table 4
The hyperparameters used during training for the Deep RL agent of DRLH.

European Journal of Operational Research 309 (2023) 446-468

tion, which stays the same, regardless of what the underlying com-
binatorial optimization problem actually is. In the case of ALNS,
we apply the same set of optimized hyperparameters that are sug-
gested by Hemmati et al. (2014), which is optimized for solving the
benchmark of PDPTW.

5.4. Dataset generation

For all the problem variations we generate a distinct training
set consisting of 5000 instances, and a distinct testing set con-
sisting of 100 instances. Additionally, for PDPTW we also utilize
a known set of benchmark instances for testing (Hemmati et al.,
2014).

5.4.1. CVRP

CVRP data instances are generated in accordance with the gen-
eration scheme of Nazari et al. (2018), Kool et al. (2019), but we
also add two bigger problem variations. Instances of sizes N = 20,
N =50, N=100, N =200 and N =500 are generated where N is
the number of orders. For each instance the depot location and
node locations are sampled uniformly at random from the unit
square. Additionally, each order has a size associated with it de-
fined as y =y;/Dy where y; is sampled from the discrete set
of {1,...,9}, and the normalization factor Dy is set as D,y = 30,
Dsg = 40, D1gg = 50, Dygg = 50, Dsog = 50, for instances with N or-
ders, respectively.

5.4.2. PJSP

For the PJSP we generate instances of sizes N =20, N =50,
N =100, N =300 and N = 500 where N is the number of jobs and
using M = | N/4] machines. Job i's required processing steps PS; are
sampled from the discrete set of {100, 101, ..., 1000}, and machine
m’s speed Sy, in processing steps per time unit, is sampled from
N(u, 0%) with u =10, o =30, and the speed is rounded to the
nearest integer and bounded to be at least 1. From there we get
that the time required to process job i on machine m is calculated
as [PS;/Sm].

5.4.3. PDP

For this problem, PDP data instances of sizes N =20, N =50,
and N = 100 are generated where N is the number of nodes based
on the generation scheme of Nazari et al. (2018), Kool et al. (2019).
For each instance the depot location and node locations are sam-
pled uniformly at random in unit square. Half of the nodes are
pickup locations whereas the other half is the corresponding de-
livery locations. Additionally, each call has a size associated with
it defined as y = y;/Dy where y; is sampled from the discrete set
of {1,...,9}, and the normalization factor Dy is set as Dyg = 15,
Dsg = 20, Dqgg = 25, for each problem with N number of nodes re-
spectively.

5.4.4. PDPTW

For the PDPTW we use instances with different combinations
of number of calls and number of vehicles, see Table 5. For gener-
ating the training set and the 100 test instances, we use the pro-
vided instance generator of Hemmati et al. (2014). Additionally, we

Table 5
Properties of different variations of the PDPTW instance types.

Hyperparameter Value #Calls #Vehicles #Vehicle types
Learning rate le-5 18 5 3
Batch size 64 35 7 4
First hidden layer size 256 80 20 2
Second hidden layer size 256 130 40 2
Discount factor 0.5 300 100 2

453

J. Kallestad, R. Hasibi, A. Hemmati et al.

1.28
500 1.84
13.54
2.82
200 3.16
8 10.62
« 1.46
,,E, 100 2.58
] 6.17
2 0.66
50|(40.78
2.29
-0.01 BN DRLH
20(40.33 B ALNS
0.27 == TRS
0 2 4 6 8 10 12 14
Average improvement (%) over URS
(a) CVRP results, 1k iterations
1.65
100 3.50
8
& 0.64
HES 1.02
S 3.02
<
o
0.03
20-0.01 mm DRLH
0.04 BEA ALNS
= TRS
0 2 4

6
Average improvement (%) over URS

(c) PDP results, 1k iterations

European Journal of Operational Research 309 (2023) 446-468

500

= w
o =}
S S

Problem Size

u
=}

N DRLH
E@A ALNS
B TRS

20

2
Average improvement (%) over URS

3 4 5 6

(b) PISP results, 1k iterations

0.37
0.91
2.97

300
0.52

130 0.73
8 2.50
b 0.63
£ 80 0.49
5 1.61
[
I
o

35

0.41
0.49
133
0.02
0.11
0.15

0 2
Average improvement (%) over URS

EEE DRLH
EZA ALNS
Bmm TRS

18

(d) PDPTW results, 1k iterations

Fig. 1. Performance of DRLH on the generated test set.

use benchmark instances of Hemmati et al. (2014) for the remain-
ing results. The benchmark test set consists of some instances of
each variation, which are solved 10 times during testing in order
to calculate the average best objective for each instance. Previous
work by Homsi, Martinelli, Vidal, & Fagerholt (2020) have found
the global optimal objectives for these instances, and we use these
optimal values in order to calculate the Min Gap (%) and Avg Gap
(%) to the optimal values for instances with 18, 35, 80 and 130
calls. Additionally, we also generate and test on a much larger in-
stance size of 300 calls where we do not have the exact global
optimal objectives, but instead use the best known values found
by DRLH with 10,000 iterations to calculate the Min Gap (%) and
Avg Gap (%).

6. Results

In this section, we present the results of different experiments
on the performance of DRLH. In the first experiment (Section 6.1),
we set the number of iterations of the search to 1000 to compare
the quality of the best found objective by each algorithm over a
limited number of iterations for different problem sizes in the test
set. In the next experiment (Section 6.2), we increase the number
of iterations for all the methods and compare their performance

454

when enough iterations are provided to fully explore the problem
space. We also report the results on the benchmark of Hemmati
et al. (2014) instances (Section 6.3). In order to demonstrate an-
other advantage of using DRLH, we conduct an experiment with
increased number of heuristics to illustrate the dependence of each
framework on the performance of individual heuristics when the
number of heuristics exceeds a certain number (Section 6.4). Ad-
ditionally, we report the convergence speed and the training and
inference time of each framework on instances of each problem
(sections 6.5 and 6.6). Next, to gain insight into the reason be-
hind the superiority of DRLH compared to the state of the art, we
provide some figures and discuss the difference in strategy behind
choosing a heuristic between DRLH and ALNS (Section 6.7). Finally,
we compare the performance of DRLH, with a Deep RL heuristic
approach (Section 6.8). Additional experiments and results regard-
ing the reward function, convergence speed, and dependency of
DRLH on the size of the problem can be found in Appendix.

6.1. Experiment on generated test set
For this experiment, each method was evaluated on a test set

of 100 generated instances for each of the problems introduced in
Section 4. Figure 1(a) shows the improvement in percentage that

J. Kallestad, R. Hasibi, A. Hemmati et al.

European Journal of Operational Research 309 (2023) 446-468

18

Iteration Num.

Fig. 2. Boxplot results for different iterations of PDP100.

Table 6
Average results for PDPTW instances with mixed call sizes after 1000 iterations.
DRLH ALNS URS
Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time
#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)
18 5 0.00 0.18 32 0.00 0.46 25 0.00 0.40 12
35 7 2.67 5.78 9 345 7.08 36 2.46 6.40 27
80 20 3.04 4.85 37 3.64 6.51 98 4.62 7.23 100
130 40 344 4.66 100 4.00 6.24 186 4.85 6.71 176
300 100 2.40 3.15 637 3.10 5.04 599 5.29 6.51 398

using DRLH, ALNS, and TRS have over using URS on CVRP instances
of different sizes. We see that DRLH is able to outperform all the
baselines for all the instance sizes except for the smallest size.
There is also a clear trend that shows how DRLH becomes increas-
ingly better compared to other methods on larger instance sizes.
Figure 1(b) shows a similar result for the PJSP problem. We see
that DRLH is able to outperform the other methods for all of the
instance sizes tested. Compared to the previous results, we see that
the degree of improvement on larger instance sizes is less promi-
nent for DRLH, but we also see that ALNS does not perform notice-
ably better on larger instance sizes at all. Because of that we still
see a clear separation in performance between DRLH and ALNS on
larger instance sizes that seem to grow with larger instance sizes.
Finally, we observe a similar trend for PDP and PDPTW as for the
other problems, which can be seen in Fig. 1(c) and (d), respectively.
From this figure we see that DRLH outperforms ALNS and URS on
all instance sizes tested and that performance difference tends to
increase with larger instance sizes.

6.2. Experiment on increased number of iterations

Figure 2 shows that the number of iterations for improving the
solution affects the minimum costs found for all the methods. We
see that DRLH outperforms the baselines when tested for 1000,
5000, 10,000 and 25,000 iterations, and that the percentage dif-
ference between DRLH, ALNS and URS gets smaller as the number
of iterations grows larger. Intuitively this makes sense as all three
methods are getting closer to finding the optimal objectives for the
test instances, and more iterations for improving the solution dur-
ing the search makes the choices of which heuristics to select less
sensitive compared to searching for a smaller number of iterations.

6.3. Experiment on the PDPTW benchmark dataset

In this section, we report results for PDPTW on the benchmark
test set shown in Tables 6, 7 and 8 for 1000, 5000 and 10,000 iter-

455

ations, respectively. We see from the tables that DRLH outperforms
ALNS and URS on all of the tests on average, showing that it can
find high quality solutions and has a robust average performance.
Furthermore, we can see that the performance difference between
DRLH and the baselines increases on bigger instances, meaning
that DRLH scales favorably to the size of the problem, making it
more viable for big industrial-sized problems compared to ALNS
and URS.

We have also included the average time in seconds for opti-
mizing the test instances. Note that the difference in time-usage is
not directly dependent on the framework for selecting the heuris-
tics (DRLH, ALNS, URS), but rather on the difference in time-usage
of the heuristics themselves. This means that if all the heuris-
tics used the same amount of time, then there would not be any
time difference between the frameworks. However, because there
is a relatively large variation in the time-usage between the differ-
ent heuristics, we see a considerable variation between the frame-
works as they all have different strategies for heuristic selection.

6.4. Experiment on the increased pool of heuristics

In addition to the set of heuristics mentioned in Section 3.1 we
have also created an extended set of heuristics (see list in
Appendix B). In total this extended set consists of 142 heuristics.
Figure 3 shows the average gap of using the extended set com-
pared to using the standard set for each of DRLH, ALNS and URS on
PDPTW. The extended set obtains worse results on average com-
pared to the standard set, but there is an interesting difference
between the performance hit of DRLH, ALNS and URS when com-
paring the results of the extended set and the standard set. We
see from Fig. 3 that DRLH is relatively unaffected by increasing the
number of available heuristics (being only 0.02% worse on aver-
age), while ALNS and URS are performing much worse when using
the extended set, and ALNS is hit especially hard. A likely reason
for this is that there are too many heuristics to accurately explore

J. Kallestad, R. Hasibi, A. Hemmati et al.

European Journal of Operational Research 309 (2023) 446-468

Table 7
Average results for PDPTW instances with mixed call sizes after 5000 iterations.
DRLH ALNS URS
Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time
#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)
18 5 0.00 0.00 56 0.00 0.11 159 0.00 0.01 64
35 7 1.02 2.95 218 0.78 3.24 207 1.26 3.49 141
80 20 1.76 3.25 201 2.11 4.04 503 2.54 414 471
130 40 2.10 3.14 530 2.51 3.93 837 2.91 4.09 767
300 100 0.48 115 2580 1.01 235 2062 2.07 2.99 2352
Table 8
Average results for PDPTW instances with mixed call sizes after 10,000 iterations.
DRLH ALNS URS
Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time
#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)
18 5 0.00 0.00 219 0.00 0.02 338 0.00 0.00 102
35 7 0.67 2.02 182 0.78 2.66 410 0.68 2.77 289
80 20 1.80 2.95 321 2.03 3.33 757 217 3.36 972
130 40 1.93 2.84 877 2.38 3.34 1307 2.56 3.37 1609
300 100 0.00 0.64 4630 0.55 1.89 4120 1.46 2.18 4203
all of them during the search in order to identify the best heuris-
SR DRLH_extended compared to DRLH tics and take advantage of them during the search.
A ALNS_extended compared to ALNS An important conclusion from this result (albeit one that needs
Bl URS_extended compared to URS further empirical proof) is that when using DRLH, it is possible to
1000 Iterations supply it with a large number of heuristics and let DRLH iden-
2.0 1.97 tify the best ones to use. This is not possible for ALNS and con-
sequently it is often necessary to spend time carrying out prior
15 experiments with the aim of finding a small set of the best per-
g 1.20 forming heuristics to include in the final ALNS model. This also
210 o.80 0.89 peeen resonates with the conclusion of Turkes$ et al. (2021), who argue
© (5 0.55 that the performance of ALNS benefits more from a careful a priori
i selection of heuristics, than from an elaborate adaptive layer. Con-
0.05 } o sidering that prior experiments can be quite time consuming, using
0.0) .
DRLH can lead to a simpler development phase where heuristics
&= = Numb:roof calls =t =00 can be added to DRLH without needing to establish their effective-
ness beforehand, and not having to worry whether adding them
will hurt the overall performance. Should a heuristic be unneces-
5000 iterations sary, then DRLH will learn to not use it during the training phase.
1,00 5 In addition to DRLH having a simpler development phase, an
1.0 ; 0.85 increased (or more nuanced) set of heuristics also has a larger po-
_ 0.59 0.61 tential to work well for a wide range of conditions, such as for dif-
& 05 0.32 ferent problems, instance sizes and specific situations encountered
§ o, 03_0'24 O 0.14 Lo in the search. In other words, reducing the set of heuristics could
0.0 negatively affect the performance of ALNS, but much less so for
DRLH. Some heuristics work well only in specific situations, and so
-0.5 s removing these “specialized” heuristics due to their poor average
T . %0 130 300 performance gives less potential for ALNS to be able to handle a
Number of calls diverse set of problem and instance variations compared to DRLH,
which learns to take advantage of any heuristic that performs well
. in specific situations. Of course, these claims are based on a limited
1.0 10000 iterations number of experiments and should be validated in a broad range
o8 = of (future) experiments.
0.6 0.57 — 061 556
g 0.48 9 46 6.5. Average performance results
S o4
8 o s o= In this section, we explore the speed and characteristics of the
000, < oio0 005 .03 performance of DRLH, ALNS and URS on the different problems.
00| ——— Fig. 4 shows that DRLH is able to quickly find better solutions com-
0.2 -0.15 pared to ALNS and URS for all the problems. Although for CVRP,
18 35 80 130 300 DRLH takes a little bit longer initially, but ultimately reaches a

Number of calls

Fig. 3. Results of an Increased Pool of Heuristics.

456

much lower average minimum cost before the convergence of all
three methods start to stagnate. For all the problems, DRLH is able

J. Kallestad, R. Hasibi, A. Hemmati et al.

European Journal of Operational Research 309 (2023) 446-468

400 ——— DRLH
—— ALNS
300 —— URS
o
3
O 200
100
0
0 200 400 600 800
Iterations
(a) CVRP, 500, 1k
11500 —— DRLH
—— ALNS
10500 — URS
o
8 \
O 9500
8500
7500
0 200 400 600 800
Iterations
(b) PISP, 500, 1k
—— DRLH
22 —— ALNS
VRS
@
218
o
14
10
0 200 400 600 800
Iterations
(c) PDP, 100, 1k
le7
—— DRLH
2.10 —— ALNS
R —
+ 2.00
[\
(o}
O 190 e e R e
1.80
1.70
0 200 400 600 800

Iterations
(d) PDPTW, 300, 1k

Fig. 4. Average performance of DRLH, ALNS and URS on each of the problems.

to reach a better cost after less than 500 iterations than what ALNS
is able to reach after 1000 iterations. With the exception of the
CVRP problem, DRLH is also extremely efficient in the beginning
of the search, reaching costs in only 100 iterations that takes ALNS
approximately 500 iterations to match. We refer to Appendix C for
a complete collection of performance plots for all the problems
that we have tested.

6.6. Training and inference time needed for each problem

Tables 9 and 10 report the time needed for training and solv-
ing for the instances of each problem, respectively. The main dif-
ference between DRLH and the baselines is the approach to de-
cision making when it comes to choosing the next heuristic. This
decision making process, on itself, does not add much overhead
on the computational time of the methods. The main difference
in the speed of these methods is the speed of the operators that
they choose. This means that in some cases DRLH chooses op-
erators that are faster or slower compared to baseline which re-
sults in lower or higher computational time. Therefore, when it
comes to computational time, there is not much difference be-

457

tween these methods. This can also be shown in Table 10, in which
in some cases DRLH is faster than the other two baselines and
in some cases it is slower. It should be noted that the execu-
tion time of the operators can be improved if implemented care-
fully or using a faster programming language, e.g., C. However, the
main focus of the paper is to improve the hyperheuristic approach
of choosing the next heuristic at each step, not the execution
time.

6.7. Comparison between heuristic selection strategies

Figure 5 demonstrate the probability of selecting heuristics at
each step of the search for DRLH and ALNS in which each line
corresponds to the probability of one heuristic at every step of
the search. The “micro-level” heuristic usage of DRLH means that
DRLH is able to drastically change the probabilities of selecting
heuristics from one iteration to the next by taking advantage of
the information provided by the search state, see Fig. 5(a) and (b).
This is in contrast to the “macro-level” heuristic usage of ALNS
where the probabilities of selecting operators only are updated
at the beginning of each segment, meaning that the decision

J. Kallestad, R. Hasibi, A. Hemmati et al.

Table 9

Training time for DRLH on different problems.

European Journal of Operational Research 309 (2023) 446-468

Problem Size #lterations #Training Instances Total training time (s) Average time per instance (s)
CVRP 20 1k 1000 4586.85 4.59
CVRP 50 1k 1000 123943 1239
CVRP 100 1k 1000 36330.0 36.33
CVRP 200 1k 100 8618.64 86.19
CVRP 500 1k 50 26483.2 529.66
PJSP 20 1k 1000 28233.7 28.23
PJSP 50 1k 1000 35552.1 35.55
PJSP 100 1k 500 16576.8 33.15
PJSP 300 1k 100 19758.1 197.58
PJSP 500 1k 100 79975.3 799.75
PDP 20 1k 500 1868.66 3.74
PDP 50 1k 100 2160.65 21.61
PDP 100 1k 100 12875.3 128.75
PDPTW 18 1k 600 25340.2 42.23
PDPTW 35 1k 600 121549 20.26
PDPTW 80 1k 500 20704.4 4141
PDPTW 130 1k 100 8595.9 85.96
PDPTW 300 1k 90 53657.5 596.19

Deep Reinforcement Learning Hyperheuristic

Heuristic Probability Heuristic Probability

Heuristic Probability

1.0
ng
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

2k 2.5k

Iteration Number

3k

(a) Smoothed probabilities of selecting heuristics for DRLH.

2.05k

2.15k
Iteration Number

2.25k

2.3k

(b) Actual probabilities of selecting heuristics for DRLH, zoomed in between iteration 2000-2300.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 5. Example of the probability of selecting heuristics for DRLH and ALNS.

Iteration Number

(c) Actual probabilities of selecting heuristics for ALNS.

458

J. Kallestad, R. Hasibi, A. Hemmati et al.

Table 10
Average Time (seconds) required for solving the test instances for each method
DRLH, ALNS and URS.

Problem Size #Iterations DRLH ALNS URS
CVRP 20 1k 4.08 11.58 7.75
CVRP 50 1k 11.58 35.17 23.52
CVRP 100 1k 34.28 99.58 50.65
CVRP 200 1k 102.76 221.22 94.07
CVRP 500 1k 621.74 664.54 238.86
PJSP 20 1k 20.37 18.06 5.65
PJSP 50 1k 30.69 41.84 15.9
PJSP 100 1k 57.05 76.15 34.0
PJSP 300 1k 199.37 237.58 110.81
PJSP 500 1k 453.92 462.34 195.67
PDP 20 1k 3.89 4.17 1.85
PDP 50 1k 314 20.15 9.93
PDP 100 1k 159.86 79.58 45.86
PDPTW 18 1k 32.61 23.85 9.18
PDPTW 35 1k 10.67 29.75 21.18
PDPTW 80 1k 34.82 71.27 68.33
PDPTW 130 1k 110.67 139.45 13232
PDPTW 300 1k 500.9 438.65 361.39

making of ALNS within a single segment is random according to
the locked probabilities for that segment, see Fig. 5(c). Depending
on the problem and available heuristics to select, there might
exist exploitable strategies and patterns for heuristic selection,
such as heuristic(s) that: work well when used together, work
well for escaping local minima, work well on solutions not pre-
viously encountered during the search. Using DRLH, these types
of exploitable strategies can be automatically discovered without
the need for specially tailored algorithms designed by human
experts. We refer to one such exploitable strategy found by DRLH
on our problems with our provided set of heuristics as minimizing
“wasted actions”. We define a wasted action as the selection of
a deterministic heuristic (in our case Find_single_best) for two
consecutive unsuccessful iterations. The reason that this action is
“wasted” is because of the deterministic nature of the heuristic,

Table 11

European Journal of Operational Research 309 (2023) 446-468

which makes it so that if the solution did not change in the previ-
ous iteration, then it is guaranteed not to change in the following
iteration as well. Even though we have not specifically pro-
grammed DRLH to utilize this strategy, it becomes clear by exam-
ining Table 11 that the DRLH has picked up on this strategy when
learning to optimize micro-level heuristic selection. Table 11 shows
that the number of wasted actions for DRLH is almost non-existent
for most problem variations. ALNS on the other hand ends up with
far more wasted actions than DRLH, even though ALNS also uses
Find_single_best much more seldom on average. Figure 5(c) shows
how the heuristic probabilities for ALNS remain locked within the
segments, making it impossible for ALNS to exploit strategies such
as minimizing wasted actions which relies on excellent micro-level
heuristic selection such as what DRLH demonstrates.

6.8. Performance comparison with AM deep RL heuristic

For this experiment, we ran the AM method of Kool et al.
(2019) on our test datasets for the CVRP problem. The trained
models and the implementation of the models needed to solve
the problem have been provided publicly by the authors of this
paper. The dataset generation procedure for both our work and
the AM paper follow the work of Nazari et al. (2018). As a re-
sult, the models are well fit to be evaluated on our test set. For
their method we considered three different approaches : Greedy,
Sample_128 and Sample_1280. In the greedy approach, at each step
the node with the most probability is chosen. In the sampling ap-
proach, 128 and 1280 different solutions are sampled based on the
probability of each node at each step. We test these methods for
sizes n = 20, 50, 100 of the CVRP problem. The time and resources
(Graphical Processing Units) needed to train the AM method for
sizes larger than 100 scales exponentially due to heavy calcula-
tions needed for their representation learning method. Therefore,
we only solve this problem for the mentioned instance sizes.

Figure 6 illustrates the comparison of performance of our
method with the AM method of Kool et al. (2019). As shown in

The percentage of wasted actions of the total number of deterministic heuristics selected, averaged over the test set for

each problem.

(a) CVRP (b) PJSP
Wasted Actions (%) Wasted Actions (%)
#Orders #lterations DRLH ALNS #Jobs #Iterations DRLH ALNS
20 1k 337 26.55 20 1k 0.00 20.82
50 1k 0.00 23.98 50 1k 0.86 24.57
100 1k 1.22 19.48 100 1k 0.00 24.80
200 1k 0.00 2343 300 1k 0.00 24.85
500 1k 0.01 25.15 500 1k 0.00 24.50
(c) PDP (d) PDPTW
Wasted Actions (%) Wasted Actions (%)
#Calls #lterations DRLH ALNS #Calls #lterations DRLH ALNS
20 1k 6.82 31.53 18 1k 0.00 21.68
50 1k 0.00 29.00 35 1k 0.00 28.65
100 1k 0.00 28.01 80 1k 0.00 24.50
100 5k 0.02 30.62 130 1k 0.00 19.60
100 10k 0.00 33.86 300 1k 0.00 17.90
100 25k 0.00 32.69 18 5k 0.00 30.88
35 5k 0.00 36.26
80 5k 0.00 27.49
130 5k 0.00 26.98
300 5k 0.00 26.10
18 10k 0.25 37.82
35 10k 0.00 36.60
80 10k 0.00 3241
130 10k 0.08 29.67
300 10k 0.00 26.10

459

J. Kallestad, R. Hasibi, A. Hemmati et al.

NG - 42
PQQYX R R R R R R 041 3 66
ANt er] S
100
[}
N
(7]
e E;E 1.10
H %4 0.
2 50 B -1.95
[
& 0.78
2.29
L
RAREAREY -1.04
20| [eooo00000000004-3.65 NN DRLH
0.33 A ALNS
?0'27 AM greedy
E=8 AM sample 128
v, AM sample 1280
-4 =2 0 2 8

4
Average improvement (%) over URS

Fig. 6. Comparison of DRLH with the Deep RL method of Kool et al. (2019) (AM)
on test instances of CVRP.

the figure, AM is not able to outperform the baseline of URS in
the size 20 with any of the sampling methods. Regarding size 50
of the problem, in the greedy approach it still falls behind URS.
However, given enough samples, AM manages to perform better
than ALNS in some instances of the CVRP problem. On the other
hand, our method of DRLH outperforms this approach in every sin-
gle instance size as well as being able to handle different problems
without any significant change in the code which is not the case
for the method of Kool et al. (2019).

7. Concluding remarks

For quite some time now, it has increasingly become evident
that the fields of machine learning and (heuristic) optimization can
mutually benefit from an integration. On the one hand, recent ad-
vances in optimization can support the development of advanced
machine learning methods, since these methods generally solve an
optimization problem (e.g., what is the optimal subset of features
from a data set that predict a certain outcome). This paper ad-
dressed the mirror issue: how can optimization approaches ben-
efit from an integration of machine learning methods. We demon-
strated that applying a well-known machine learning approach to
the selection of low-level operators in a metaheuristic framework
results in a robust mechanism that can be used to improve the per-
formance of a heuristic on a broad range of optimization problems.
We believe that approaches like the one presented in this paper
have the potential to make the development of a powerful heuris-
tic less dependent on the knowledge of an experienced developer
with a deep insight into the structure of the specific problem be-
ing solved, and may therefore be instrumental in the integration
of metaheuristics ideas into general purpose software packages.
Our proposed DRLH, a general framework for solving combinatorial
optimization problems, utilizes a trained Deep RL agent to select
low-level heuristics to be applied on the solution in each iteration
of the search based on a search state consisting of features from
the search process. In our experiments, we solved four combinato-
rial optimization problems (CVRP, PJSP, PDP, and PDPTW) using our
proposed approach and compared its performance with the base-
lines of ALNS and URS. Our results show that DRLH is able to select

460

European Journal of Operational Research 309 (2023) 446-468

heuristics in a way that achieves better results in less number of it-
erations for almost all of the problem variations compared to ALNS
and URS. Furthermore, the performance gap between DRLH and
the baselines is shown to increase for larger problem sizes, mak-
ing DRLH a suitable option for large real-world problem instances.
Additional experiments on an extended set of heuristics show that
DRLH is not negatively affected when selecting from a large set
of available heuristics, while the performance of ALNS is much
worse in this situation. Enriching or refining the state representa-
tion with additional information is possible with very little effort.
We have experimented with adding problem-dependent informa-
tion into the state representation and seen that this gives even
better results than sticking with the simple chosen state represen-
tation. Yet once we start to introduce problem-dependent struc-
ture and constraint information into the state representation we
lose some of the generality that we strive for with DRLH as we
would have to separately engineer a different state representa-
tion for each new problem. For this reason we deem this out-
side of the scope of this paper and leave this area open for future
work.

Future research should provide more empirical evidence for the
superiority of DRLH over ALNS by applying this novel hyperheuris-
tic to different problems. A potential direction for improving the
model in the future is designing a reward function that is both sta-
ble and takes into account the difference of objective value at each
iteration of the search. Initial experiments on alternative reward
functions have shown promising results (see Appendix A), but are
time-consuming to train and not very stable compared to the R5310
reward function that we have used in this paper.

Appendix A. Experiments on different reward functions

Al RPM

RfM:{

The RPM reward function focuses more heavily on intensifica-
tion by punishing any action choice that does not directly improve
upon the current solution. This causes the agent to favor intensify-
ing heuristics more strongly than R?310. However, because the PPO
framework leverages the discounted future rewards as opposed to
only the immediate reward for training the agent, even the RFM
can cause the agent to select heuristics with a high likelihood of
immediate negative reward if it sets it up for more positive re-
wards in future iterations.

Figure A.1 illustrates the distribution of minimum costs found
on the PDP of size 100 test set after 1000 and 10,000 iterations
for two different versions of DRLH, trained with reward functions
R?310 and RPM respectively. The model trained with R?310 achieves
a lower median and quantile values for both iteration variations,
compared to the model trained with RPM. This makes the R0 re-
ward function more reliable to perform relatively better, and we
therefore decided to use the RP310 reward function in this paper.

1,
-1,

if f(x') < f(x)

. (A1)
otherwise

Table A1
Average results for PDPTW instances with mixed call sizes after 1000 iterations.

DRLH with R¥10 DRLH with RMC

#C #V Min Gap (%) Avg Gap (%) Min Gap (%) Avg Gap (%)
18 5 0.00 0.18 0.00 0.11
35 7 2,67 578 148 3.65
80 20 3.04 4.85 3.15 4.39
130 40 3.44 4.66 2.99 433
300 100 240 3.15 2.28 3.00

J. Kallestad, R. Hasibi, A. Hemmati et al.

Table A.2
Average results for PDPTW instances with mixed call sizes after 10,000 iterations.

DRLH with RS*10 DRLH with RMC

#C #V Min Gap (%) Avg Gap (%) Min Gap (%) Avg Gap (%)
18 5 0.00 0.00 0.00 0.13
35 7 0.67 2.02 0.42 232
80 20 1.80 2.95 2.55 3.87
130 40 1.93 2.84 2.20 3.04
300 100 0.00 0.64 1.12 1.88
MC
A2. R}
RMC J (Xpest) — F(X') AD
e _ | S Gest) = [(X) (a2)
F (Kpest)

The RMC is a reward function that more directly correlates with
the intended objective of minimizing the cost of the best found
solution, and to achieve this as quickly as possible. Instead of fo-
cusing on rewarding actions that directly improve the solution, this
reward function is subject to the performance of the entire search
process up to the current step, putting a greater emphasis on act-
ing quickly and selecting heuristics that have a greater impact on
the solution. The challenge with using this reward function com-
pared to reward functions such as R?*10 and RPM is that there is
an inherent delay between when a good heuristic is selected and
when the reward function gives a good reward. This makes it more
difficult to train an agent using this reward function, making train-
ing times much longer and less stable than with the R?'0 reward
function.

Having said that, the potential upside of using this reward func-
tion is very promising, and results in Table A.1 show that R{V'C
is able to outperform the R?10 reward function on 1k iteration
searches. However, the agents were unable to learn effectively for
larger number of iterations such as 10k (Table A.2), and so results
for this shows that RMC performs worse than R0 on 10k itera-
tion searches. A potential reason for why the RMC agents were un-
able to learn well on 10k iteration searches is that the amount of
improving iterations are much less frequent, making the feedback
signal from the RMC reward function even more delayed and high
variance. Another potential reason is that the training required in
order to solve 10k iteration searches likely needed more training
than what was possible to carry out for our experiments due to
time constraints with the experiments. We encourage future work
on improving the integration of the RMC reward function into the
framework of DRLH as it likely has a lot of potential.

. R3O
mm RPM

14.22

Iteration Num.
-
~

=
o
~

11 12 13 14

Cost

15 16 17 18

Fig. 7. Comparison of the two reward functions.

461

European Journal of Operational Research 309 (2023) 446-468

Appendix B. Extended set of heuristics

Tables A.3, A4 and A.5 list the extended set of heuristics built
up from 14 removal operators, 10 insertion operators and 2 ad-
ditional heuristics, for a total of 14 x 10 + 2 = 142 total heuris-
tics, using the generation scheme of Algorithm 2. Most of these
heuristics only use problem-independent information, but some
of them rely on problem-dependent information specific to the
PDPTW problem.

Table A.3
List of extended removal operators.

Name Description

Removes between 2-5 elements chosen randomly
Removes between 5-10 elements chosen
randomly

Removes between 10-20 elements chosen
randomly

Removes between 20-30 elements chosen
randomly

Removes between 30-40 elements chosen
randomly

Removes between 80-100 elements chosen
randomly

Removes 5-10 elements with the largest D;
Removes 20-30 elements with the largest D;
Removes a random segment of 2-5 consecutive
elements in the solution

Removes between 5-10 elements that has been
removed the least

Removes between 10-20 elements that has been
removed the least

Remove_least_frequent_XL
Remove_one_vehicle
Remove_two_vehicles

Random_remove_XS
Random_remove_S

Random_remove_M
Random_remove_L
Random_remove_XL
Random_remove_XXL
Remove_largest_D_S
Remove_largest_D_L
Remove_t

Remove_least _frequent S
Remove_least_frequent_M

Removes all the elements in one vehicle
Removes all the elements in two vehicle

Table A4
List of extended insertion operators.
Name Description
Insert_greedy Inserts each element in the best possible position

Inserts each element in the best position using
beam search

Sorts the insertion order based on variance and
inserts

each element in the best possible position
Inserts each element randomly in the first
feasible position

Inserts each element into the least loaded
available vehicle

Inserts each element into the least active
available vehicle

Inserts each element into the closest available
vehicle

Identifies the vehicles that can fit the most of the
removed elements and

inserts each elements into these

Inserts each element using Insert_greedy ordered
by their difficulty,

which is a function of their compatibility with
vehicles, strictness

of time windows,size and more.

Inserts each element into the vehicle that is the
most compatible with the call.

Insert_beam_search

Insert_by_variance

Insert_first
Insert_least_loaded_vehicle
Insert_least _active_vehicle
Insert_close_vehicle

Insert_group

Insert_by_dif ficulty

Insert_best_fit

Table A.5
List of extended additional heuristics.

Name Description

Calculates the cost of removing each element and
re-inserting it with Insert_greedy, and

applies this procedure on the solution x for the element
that achieves the minimum cost f(x').

Removes all of the elements from each vehicle and
inserts them back into the same vehicles

using Insert_beam_search

Find_single_best

Rearrange_vehicles

J. Kallestad, R. Hasibi, A. Hemmati et al.
Appendix C. Additional performance plots

Figures 8, 9, 10 and 11 show the performance of DRLH, ALNS
and URS averaged over the test set for all the problems that we
have tested. These show that DRLH usually reaches better solutions
more quickly than ALNS and URS, as well as ending up with better
solutions overall.

Appendix D. Experiment on the cross size training scheme

In this experiment, in the training phase, an instance of a spe-
cific problem with different size is solved by DRLH in each episode.

462

European Journal of Operational Research 309 (2023) 446-468

This training scheme is referred to as Cross Size (CS) training. Dur-
ing test time, the trained model solved the test instances that were
used in Section 6.1 as well as test instances of slightly different
sizes that were seen during training. As seen in Fig. 12, it is possi-
ble to train one model that can handle many different variations
of instance sizes quite well. Moreover, as shown in Fig. 12(e)-
(h), the model does not specifically overfit on the specific in-
stance sizes included in the training when evaluated on slightly
different test data. This means that the DRLH_CS generalizes very
well, even to sizes higher than any of the ones included in the
training.

J. Kallestad, R. Hasibi, A. Hemmati et al.

European Journal of Operational Research 309 (2023) 446-468

6.9 —— DRLH
—— ALNS
6.7 — URS
Z65
O
6.3

6.1

5.9

o
N
(=3
o

400 600 800
Iterations

(a) CVRP, 20, 1k

— DRLH
13 —— ALNS

—— URS
11

0 200 400 600 800
Iterations

Cost

(b) CVRP, 50, 1k

29 —— DRLH
—— ALNS
25 — URS
"
3
S21
17

0 200 400 600 800
Iterations

(c) CVRP, 100, 1k

= DRLH
60 ——— ALNS
—— URS
+ 50
w
o
O 40
N—

0 200 400 600 800
Iterations

(d) CVRP, 200, 1k

350 —— DRLH
—— ALNS
— URS
+ 250
o
o
150
200

50

o

400 600 800
Iterations

(e) CVRP, 500, 1k

Fig. 8. Average performance of DRLH, ALNS and URS on CVRP.

463

J. Kallestad, R. Hasibi, A. Hemmati et al.

European Journal of Operational Research 309 (2023) 446-468

—— DRLH
420 —— ALNS
—— URS
‘@ 380
(o]
o
340
300
0 200 400 600 800
Iterations
(a) PISP, 20, 1k
—— DRLH
1200 —— ALNS
—— URS
+ 1100
[%)
o
© 1000
200
800 —4 200 400 600 800
Iterations
(b) PISP, 50, 1k
2400 —— DRLH
—— ALNS
2200 & —— URS
o
[%]
8 2000
1800
1600
0 200 400 600 800
Iterations
(c) PISP, 100, 1k
—— DRLH
6400 —TT
— UR
., 6000 k URS
[
(o]
O 5600
5200
4800
0 200 400 600 800
Iterations
(d) PISP, 300, 1k
11500 —— DRLH
—— ALNS
10500 —— URS
- S
3
O 9500
8500
7500
0 200 400 600 800

Iterations

(e) PISP, 500, 1k

Fig. 9. Average performance of DRLH, ALNS and URS on PJSP.

464

J. Kallestad, R. Hasibi, A. Hemmati et al.

European Journal of Operational Research 309 (2023) 446-468

5.9 —— DRLH
57 —— ALNS
4955 —— URS
3
853
5.1
4.9
47 0 200 400 600 800
Iterations
(a) PDP, 20, 1k
12.0 —— DRLH
: —— ALNS
11.0 — URS
@
S 10.0
(&)
9.0 —
8.0
7.0
0 200 400 600 800
Iterations
(b) PDP, 50, 1k
—— DRLH
22 —— ALNS
—— URS
Q18
(o]
o
14
10
0 200 400 600 800
Iterations

() PDP, 100, 1k

Fig. 10. Average performance of DRLH, ALNS and URS on PDP.

465

J. Kallestad, R. Hasibi, A. Hemmati et al.

European Journal of Operational Research 309 (2023) 446-468

1e6
—— DRLH
—— ALNS
1.5 —— URS
o
[%]
o
o
1:3
11 0 200 400 600 800
Iterations
(a) PDPTW, 18, 1k
le6
37 — DRLH
— ALNS
33 —— URS
o
3
329
2.5]
2.1
0 200 400 600 800
Iterations
(b) PDPTW, 35, 1k
1le6
7.0 —— DRLH
6.6 —— ALNS
—— URS
6.2
S
5.8
5.4
5.0
0 200 400 600 800
Iterations
(c) PDPTW, 80, 1k
le7
—— DRLH
—— ALNS
1.00 —— URS
o
w
O
o
0.90
0.80 0 200 400 600 800
Iterations
(d) PDPTW, 130, 1k
le7
—— DRLH
2.10 —— ALNS
— URS
4+ 2.00
wn
o
©1.90
1.80
.70 0 200 400 600 800

Iterations
(e) PDPTW, 300, 1k

Fig. 11. Average performance of DRLH, ALNS and URS on PDPTW.

466

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446-468

300

Problem Size
Problem Size

BN DRLH

NN DRLH

w»: DRLH_CS @z DRLH_CS
EZE ALNS EE ALNS
00 25 50 75 100 125 150 175 0 1 2 3 4 5 6

Average improvement (%) over URS Average improvement (%) over URS

(a) CVRP results, same sizes as training (b) PISP results, same sizes as training
300
130
o o
N AN
(] 2}
£ £ s
35 5
2 4
[-Y [-%
a5
20(0.04 EE DRLH N DRLH
‘0 04 w®: DRLH_CS 18 @z DRLH_CS
) EZE ALNS EZE ALNS
0 2 4 6 0 2
Average improvement (%) over URS Average improvement (%) over URS
(c) PDP results, same sizes as training (d) PDPTW results, same sizes as training
18.02
a & &
3 a @
S50 H H
3 3 3
8 [?
a 756 a a
DRUH_CS = DRLH CS w DRLH CS
B ALNS B ALNS EEE ALNS
0.0 25 5.0 75 10.0 125 150 175 200 o 2 3 4 -] 0 1 & 4 5 6 7
Average improvement (%) over URS Average improvement (%) over URS

Average improvement (%) over URS

(e) CVRP results, unseen sizes in training (f) PISP results, unseen sizes in training (g) PDP results, unseen sizes in training

400

Problem Size
= ~
g 8
8 8

E
3

5 0.19 mva DRLH_CS
0.58 E ALNS

00 05 10 15 20 25 30 35
Average improvement (%) over URS

4.0

(h) PDPTW results, unseen sizes in train-
ing

Fig. 12. Performance of DRLH with Cross Size (CS) training scheme on different problem sizes with 1Kk iterations.

467

J. Kallestad, R. Hasibi, A. Hemmati et al.

References

Aksen, D., Kaya, O., Sibel Salman, F, & Ozge Tiincel (2014). An adaptive large neigh-
borhood search algorithm for a selective and periodic inventory routing prob-
lem. European Journal of Operational Research, 239(2), 413-426. https://doi.org/
10.1016/j.ejor.2014.05.043.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F,, Schulman, J., & Mané, D. (2016).
Concrete problems in Al safety. CoRR. http://arxiv.org/abs/1606.06565.

Asta, S., & Ozcan, E. (2014). An apprenticeship learning hyper-heuristic for vehicle
routing in hyflex. Orlando, Florida. https://doi.org/10.1109/EALS.2014.7009505.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Woodward,]J. R. (2010). A
classification of hyper-heuristic approaches. In M. Gendreau, &].-Y. Potvin (Eds.)
(pp. 449-468). Boston, MA: Springer US.

Chen, C., Demir, E., & Huang, Y. (2021). An adaptive large neighborhood search
heuristic for the vehicle routing problem with time windows and delivery
robots. European Journal of Operational Research, 294(3), 1164-1180. https://doi.
org/10.1016/j.ej0r.2021.02.027.

Chen, X, & Tian, Y. (2019). Learning to perform local rewriting for combinato-
rial optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems:
vol. 32. Curran Associates, Inc.. https://proceedings.neurips.cc/paper/2019/file/
131f383b434fdf48079bff1e44e2d9a5-Paper.pdf

Cowling, P, Kendall, G., & Soubeiga, E. (2001). A hyperheuristic approach to schedul-
ing a sales summit. In E. Burke, & W. Erben (Eds.), Practice and theory of auto-
mated timetabling iii (pp. 176-190). Berlin, Heidelberg: Springer Berlin Heidel-
berg.

Crama, Y., & Schyns, M. (2003). Simulated annealing for complex portfolio selection
problems. European Journal of Operational Research, 150(3), 546-571. https://doi.
0rg/10.1016/S0377-2217(02)00784- 1. Financial Modelling

Demir, E., Bektas, T, & Laporte, G. (2012). An adaptive large neighborhood search
heuristic for the pollution-routing problem. European Journal of Operational Re-
search, 223(2), 346-359. https://doi.org/10.1016/j.ejor.2012.06.044.

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new gener-
ation metaheuristic algorithms. Computers & Industrial Engineering, 137, 106040.
https://doi.org/10.1016/j.cie.2019.106040.

Friedrich, C., & Elbert, R. (2022). Adaptive large neighborhood search for vehicle
routing problems with transshipment facilities arising in city logistics. Comput-
ers & Operations Research, 137, 105491. https://doi.org/10.1016/j.cor.2021.105491.

Goodfellow, 1. J., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA,
USA: MIT Press. http://www.deeplearningbook.org

Grangier, P, Gendreau, M., Lehuédé, F.,, & Rousseau, L.-M. (2016). An adaptive large
neighborhood search for the two-echelon multiple-trip vehicle routing problem
with satellite synchronization. European Journal of Operational Research, 254(1),
80-91. https://doi.org/10.1016/j.jor.2016.03.040.

Gullhav, A. N., Cordeau, J.-F, Hvattum, L. M., & Nygreen, B. (2017). Adaptive large
neighborhood search heuristics for multi-tier service deployment problems in
clouds. European Journal of Operational Research, 259(3), 829-846. https://doi.
org/10.1016/j.ejor.2016.11.003.

Hemmati, A., & Hvattum, L. M. (2017). Evaluating the importance of randomization
in adaptive large neighborhood search. International Transactions in Operational
Research, 24(5), 929-942. https://doi.org/10.1111/itor.12273.

Hemmati, A,, Hvattum, L. M., Fagerholt, K., & Norstad, 1. (2014). Benchmark suite for
industrial and tramp ship routing and scheduling problems. INFOR: Information
Systems and Operational Research, 52(1), 28-38. https://doi.org/10.3138/infor.52.
1.28.

468

European Journal of Operational Research 309 (2023) 446-468

Homsi, G., Martinelli, R, Vidal, T, & Fagerholt, K. (2020). Industrial and tramp
ship routing problems: Closing the gap for real-scale instances. European Jour-
nal of Operational Research, 283(3), 972-990. https://doi.org/10.1016/j.ejor.2019.
11.068.

Hottung, A., & Tierney, K. (2019). Neural large neighborhood search for the capaci-
tated vehicle routing problem. CoRR. http://arxiv.org/abs/1911.09539.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated an-
nealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.
671.

Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing prob-
lems!

Laborie, P., & Godard, D. (2007). Self-adapting large neighborhood search: Applica-
tion to single-mode scheduling problems. In Proceedings MISTA-07: Vol. 8. Paris

Li, Y., Chen, H., & Prins, C. (2016). Adaptive large neighborhood search for the pickup
and delivery problem with time windows, profits, and reserved requests. Euro-
pean Journal of Operational Research, 252(1), 27-38. https://doi.org/10.1016/j.ejor.
2015.12.032.

Lu, H., Zhang, X., & Yang, S. (2020). A learning-based iterative method for solving
vehicle routing problems. In International conference on learning representations.
https://openreview.net/forum?id=BJe1334YDH

Lopez-lbaiiez, M., Dubois-Lacoste,]., Pérez Céceres, L. Birattari, M. & Stiit-
zle, T. (2016). The irace package: Iterated racing for automatic algorithm config-
uration. Operations Research Perspectives, 3, 43-58. https://doi.org/10.1016/j.orp.
2016.09.002.

Nazari, M., Oroojlooy, A., Snyder, L., & Takac, M. (2018). Reinforcement learning for
solving the vehicle routing problem. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information
processing systems: vol. 31. Curran Associates, Inc.. https://proceedings.neurips.
cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf

Ozcan, E., Misir, M., Ochoa, G., & Burke, E. (2010). A reinforcement learning -
great-deluge hyper-heuristic for examination timetabling. International Journal
of Applied Metaheuristic Computing, 1, 39-59.

Pisinger, D., & Ropke, S. (2019). Large neighborhood search. In Handbook of meta-
heuristics (pp. 99-127). Springer.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science,
40(4), 455-472. https://doi.org/10.1287/trsc.1050.0135.

Schulman, J., Wolski, F, Dhariwal, P.,, Radford, A., & Klimov, O. (2017). Proximal pol-
icy optimization algorithms. CoRR. abs/1707.06347. http://dblp.uni-trier.de/db/
journals/corr/corr1707.html#SchulmanWDRK17

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. In M. Maher, & J.-F. Puget (Eds.), Principles and practice
of constraint programming — CP98 (pp. 417-431). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cam-
bridge, MA, USA: A Bradford Book.

Turkes, R, Sorensen, K., & Hvattum, L. M. (2021). Meta-analysis of metaheuristics:
Quantifying the effect of adaptiveness in adaptive large neighborhood search.
European Journal of Operational Research, 292(2), 423-442. https://doi.org/10.
1016/j.¢j0r.2020.10.045.

Tyasnurita, R., Ozcan, E., Shahriar, A., & John, R. (2015). Improving performance of a
hyper-heuristic using a multilayer perceptron for vehicle routing. Exeter, UK, http:
/[eprints.nottingham.ac.uk/id/eprint/45707

ISBN: 9788230865255 (print)
9788230851630 (PDF)

s,
T,
Sy uofseyiunwiwoy saudiy :3utld / gif) ‘UoIsIAIQ UONEdIUNWLIO) :ubisap d1ydels “/////N

	111767 Ramin Hasibi_Elektronisk
	111767 Ramin Hasibi_korrekturfil
	111767 Ramin Hasibi_innmat
	111767 Ramin HasibiElektronsk_bakside
	111767 Ramin HasibiElektronsk_bakside

