
University of Bergen
Department of informatics

λ’ is Confluent

Author: Yan Passeniouk
Supervisor: H̊akon Gylterud

November, 2023

Abstract

The λ-calculus is a well-known model of computation, characterised by its simplicity and
adapted for the implementation of functional programming languages. We present an exten-
sion of the λ-calculus proposed by Gylterud, λ′-calculus, with primitive quotation operations
to allow for internalised self-interpretation, a form of metaprogramming. Using the proof
assistant Agda, we give a formalisation of its syntax and operational semantics and prove
confluence, a property which gives any reducible term a unique normal form.

Acknowledgements

I would first like to express my deep gratitude to my supervisor, H̊akon Gylterud, for every-
thing he has done to make this thesis possible, including, but not limited to: being incredibly
generous with his time, sharing his vast amount of knowledge and staying positive and en-
couraging whilst showing great patience.

I’m also thankful for the rest of the Programming Languages Group, for answers to my
questions, planned and unplanned talks, companionable lunches and the lending of books I
was unable to find otherwise.

I was also fortunate enough to go through multiple iterations of the Jafu reading hall, giving
me enjoyable distractions and opportunities to play some small part in their problem-solving
processes.

Finally, and most of all, I would like to thank my mother, for her steadfast love and support.

Yan Passeniouk
19th of October, 2023

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Previous work . 2
1.3 Martin-Lof Type Theory . 2

2 The λ′-calculus 7
2.1 Definitions and Intuitions . 7
2.2 Encodings and other constructions . 9

2.2.1 De Bruijn Representation . 11
2.3 Properties of λ′-calculus . 12
2.4 Confluence . 17

3 Formalisation 19
3.1 Syntax . 20
3.2 Properties of Λ . 29

3.2.1 Monadic properties of Λ . 37
3.3 Reduction . 40

3.3.1 Single step reduction . 41
3.3.2 Head Normal Form . 42
3.3.3 Decidability of head normal form . 43
3.3.4 Transitive Reflexive Closure . 45

3.4 Confluence . 47
3.4.1 map over parallel reduction . 54
3.4.2 substitute over parallel reduction . 58
3.4.3 The Triangle Property . 66
3.4.4 Confluence . 72

4 Conclusion 75
4.1 Discussion . 75
4.2 Further Work . 76

Bibliography 78

iii

A Omitted Proofs 83

iv

Chapter 1

Introduction

1.1 Background

Metaprogramming is the concept of a program which takes other programs as input to
transform or analyse them, extracting properties, enforcing invariants and possibly generat-
ing other programs[15]. Metaprogramming can be implemented in various ways, including
templates [2], dependent types[14] (a version of which, Martin-Löf Type Theory, is described
below) and preprocessing [12].

The technique of metaprogramming we consider is self-representation, which encodes a ver-
sion of the language using the language itself, exemplified by quotation in the LISP-family of
languages ([1], Ch. 2). quotation in LISP-languages was an inspiration behind the subject
of this thesis, the λ′-calculus, as in these languages the user is unable to reduce expres-
sions which should be equivalent due to a failure of confluence, e.g. ((lambda (x) (eval
’x)) 3) will return 3, while the β-equivalent expression (((lambda (y) (lambda (x) y))
(eval ’x)) 3) will not.

To remedy this, Gylterud ([10]) introduced an extended λ-calculus with a primitive notion
of quotation encoded as an internal operation, in addition to as function abstraction and
application.

This thesis is structured as follows: An introduction which presents the meta-theory we
will be working in along with previous work in the area of self-quotation; a chapter on λ-
calculus, giving an overview of the topics required for a presentation of λ′-calculus along
with a motivated explanation of its intended purpose; with the next chapter giving a guided
tour through the formalisation of our proof of confluence, using the Agda proof assistant and
Unimath library and finally a conclusion with some prospects for the future of λ′.

1

1.2 Previous work

The encoding of self-interpretation/quotation in λ-calculus has been studied continuously for
at least 30 years, though the general concept of quotation stems back at least as far as 1936
[13]. All methods require some form of encoding of the λ-calculus as terms in the λ-calculus,
usually an encoding of it into terms with a certain structure (usually N or Combinatory logic)
and a specific decoding term (defined in/internal to the λ-calculus) which transforms it back
into the encoded term. The earliest encoding which allows for a term to be successfully
evaluated back into the top level calculus was Mogensen’s approach [19] defines the encoding
as a metatheoretic function on terms using higher order abstract syntax.

More recent approaches, such as that of Brown and Palsberg [5] (one of the inspirations
behind λ′) extend the quotation mechanism into a typed λ-calculus (System Fω, with nat-
urals ω and a fixed point operator) which they showed to be normalisable, using a pre-
representation of both types and terms along with a Church-based encoding (explained in
the following chapter) of these terms.

Jay [11] gives an intensional λ-calculus which is confluent and strongly normalising using a
number of standard and non-standard combinators (in the sense of combinatory logic), to
encode the reduction relation and internal quotaion, keeping the calculus and resulting type
theory on a single “level”.

The approach of λ′-calculus is most similar to Mogensen’s approach, but our inclusion of
the internal quotation operator allows for multiple levels of quotation to be represented
internally, whereas Mogensen’s construction requires the syntax of the internal representation
to be represented metatheoretically. We avoid the complications of the large hierarchy of
inference rules and presentations involved with Brown and Palsberg’s approach.

1.3 Martin-Lof Type Theory

We formalise our proof of confluence in the proof assistant Agda [9], which implements a
version of Martin-Lof Type Theory (MLTT), meaning we are using it as our metatheory. It is
a dependent type theory, descended from sequent calculi in the tradition of Gentzen, meaning
logical deductions are produced through inference rules connecting atomic statements named
judgements.

The interested reader may consult [21] (which we base the following exposition on) for
further details, but we will give a brief and incomplete summary of what induction rules
constitute a type, along with a short mention of The Curry-Howard Isomorphism which gives

2

an interpretation of proofs as programs using types to represent basic logical propositions
(specifically of intuitionistic logic).

The first judgement is that of a context Γ ctx, a list of terms and types which might be
empty (then called the empty context). A type A is judged to be a type for some context by
stating Γ ⊢ A Type, A type may have terms which inhabit it, which are said to be of that
type, e.g. Γ ⊢ a : A is a term a of type A in the context Γ.

Notice how both of these are defined with a context, which encodes the dependency of the
right hand side of ⊢ on the left hand side of ⊢. Terms and types can also be judged to be
definitionally equal, Γ ⊢ A .

= B, Γ ⊢ a .
= a′ : A, which differs from the intensional equality

defined below using the Identity type, in that it carries no proof relevant information i.e. it
is simply asserted, allowing us to substitute terms and types freely across the definitional
equality as one would with any equivalence relation.

The context dependency of MLTT-types allows us to define type families , families of types
dependent on variables of other types, or perhaps more intuitively, “functions into the type
level”, which are denoted as (for a fixed type A) Γ, a : A ⊢ B(a) : Type and formed using
the inference rule: Which is read as the type B(a) being indexed by terms of type A (or
more accurately, the family defines sections of the type B(a)).

This in turn allows us to define the type of dependent functions. The non-dependent version
is often seen in functional languages such as Haskell as (->), the function type. We start by
giving a formation rule, the rule to form the type in some context Γ:

Π-Form
Γ, a : A ⊢ B(a) Type
Γ ⊢ Πa:AB(a) Type

Which can be read as “Given a type family B indexed by terms of A, we can produce a type
Πx:AB(x)”. A corresponding introduction rule allows us to produce terms of the Π-type,
which correspond to functions where the the type of the output may depend on the term of
the input. So the introduction rule for the dependent function type reads:

Π-Intro
Γ, a : A ⊢ b(a) : B Type
Γ ⊢ λa. b(a) : Πa:A B(a)

Which we can informally express as “Given a type family B(a) indexed by A, we can produce
a term λa.b(a) of type Πa:A B(a)”, allowing the type family to be encoded as a function on

3

the term/value level. To produce a term of the type we parametrise , we can use elimination
rules, which state the requirements to do so. The function type has the following elimination
rule:

Π-Elim
Γ ⊢ f : Πa:AB(a)

Γ, a : A ⊢ f(a) : B

Which reads “Given a term of the function type from A to B, we can produce a term f(a) of
type B indexed by terms a : A”, intuitively evaluating the dependent function at the value
(a : A). elimination rules are also referred to as “induction principles”, as they have the same
expressive power as structural induction for the structure of the type in question. However,
this does not ensure that the relevant definitional equalities, which is done by computation
rules,

η

Γ ⊢ b : Πa:A B(a)

Γ ⊢ λa. b(a) .= b : Πa:AB(a)

β

Γ, a : A ⊢ b(a) : B(a)

Γ, a : A ⊢ b(a) .= (λ x.b(x))(a) : B(x)

Stipulating a given term of dependent function Πx:AB(a)is definitionally equal to a λ-term
applying the dependent function (η-expansion), and that given a type family B(a) indexed
by type A, the term of the corresponding dependent function type is definitionally equal to
a term of the type family (β-reduction).

If two types A, B are in the same context, we can reconstruct the regular function type as a
special case of the dependent using weakening on the level of judgements (and the notation :=
to mean “defined as”, which we use as a renaming without asserting a definitional equality):

Γ ⊢ A Type Γ ⊢ B Type
Γ, x : A ⊢ B Type

Γ ⊢ A→ B := Πx:A B

and with corresponding rules still holding, while B not being dependent on variables of type
A.

The dependent function type is a part of the encoding often refered to as the Curry-Howard
Correspondence (or Isomorphism), which stipulates a connection between types in a pro-
gramming language and logical formulae (specifically, intuitionistic logic, which lacks the
axiom of excluded middle). We summarise the correspondence in the table below:

4

Logical relation Type Logical Symbol Type Signature
Truth Unit type ⊤ 1

Falsity Empty type ⊥ O

Negation Function to empty type ¬A A→ O

Universal quantification Dependent function ∀a.B(a) Πx:AB(a)
Existential quantification Dependent pair ∃a.B(a) Σx:AB(a)
Conjunction Product type A ∧B A×B
Disjunction Coproduct type A ∨B A+B
Implication Function type A→ B A→ B
Equality Identity type a = b IdAa b

With the proviso that the typed representations of logical operations encode for proof terms
of their constituents, e.g. a term of the (cartesian) product type (a, b) : A×B is read as “A
term providing a proof a type A and proof b of type B”, instead of A ∧B being read as the
claim “A and B are true”. Each of the types having introduction, formation, elimination and
(possibly) computation rules.

One of the key properties of MLTT is the intensional identity type, which through a simple
set of inference rules gives intensional MLTT the ability to express mathematical notions as
abstract as homotopy theory by permitting reasoning about identities as terms of a type.

The formation and introduction rules for the identity type are given as:

Id-Form
Γ ⊢ a : A

Γ, x : A ⊢ IdA a x

Id-Intro
Γ ⊢ a : A

Γ ⊢ refla : IdA a a

The formation rule indexes the identity type for a type A by all terms (a : A), while the
introduction rule establishes a type family witnessing the reflexivity of a each variable (a :
A) with the term refla . This, along with the elimination and computation rules:

Id-Elim
Γ ⊢ a : A Γ, x : A, p : IdA a x ⊢ P (a, p) : Type

Γ ⊢ ind-eqa : P (x, refla) → Πx:AΠp:Id a xP (x, p)

Id-Comp
Γ ⊢ a : A Γ, x : A, p : IdA a x ⊢ P (x, p) : Type
Γ, u : P (a, refla) ⊢ ind-eqa(u, a, refla)

.
= u : P (a, refla)

5

allows us to generate terms parametrised by the identity type (and consequently, each term
of the type A it is an identity for), with the elimination rule/induction principle assuming a
term a : A and some type family P(x, p) indexed by a term (a : A) and the corresponding
term of the identity type and generating dependent function type corresponding to that
family, with a natural definitional equality being stipulated by the computation rule.

These fairly simple rules allow us to define and give terms representing everything from
identities between terms of any other type, to the transitivity and symmetry of the identity
type itself, permitting the construction of equational proofs as types by encoding the as-
sumptions and identities and providing terms for through applications of the properties and
other identities, as will be exemplified in the chapter on formalising and proving confluence.

6

Chapter 2

The λ′-calculus

The λ-calculus was first introduced in 1935 by Alonzo Church as a logical system for the
study of partial recursive functions and with the intention of capturing the essence of function
application and composition as used in other areas of mathematics. Alan Turing used the
λ-calculus to define the expressive power of his eponymous machines [24] (giving Turing
completeness in terms of λ-definability, as the λ-calculus preceeded Turing machines), and so
has been adapted as a suitable model of computation for functional programming languages.

2.1 Definitions and Intuitions

The λ-calculus distinguishes itself from other models of computation (Turing machines etc.)
by its remarkable simplicity, as seen from its definition (based on [23], as with the following
definitions, rewritten into inference rules to conform better with the formalisation1). Given
a set X, we define (\ denoting set difference):

x : X

x : ΛX

x : ΛX y : ΛX

(xy) : ΛX

x : X M : ΛX

(λ x.M) : Λ(X \ {x})

Interpreting these rules, terms of λ-calculus are generated by letting all elements of the set
X be considered variables and applying two operations, function application (ab) and its
left inverse λ-abstraction λa.a, which "binds" a variable, removing it from the set of free
variables. Parantheses denote the order in which application is performed, e.g. one may

1And avoid the issue of which set theory is being employed

7

read λa.a(ab) as a function taking a function a, applying it to b, then applying a again to
the result of the previous application. We call the terms above the line (in the antecedent)
the subterms of the terms below it (in the consequent). The set X is the set of free variables,
with the binding discussed above removing the bound variables from the set.

Substitution into terms of the λ-calculus is defined as a function _[_ := _] : Λ X → X →
ΛX → Λ X in the λ-calculus, as long as we respect the structure of the terms we substitute
into:

x[x := N] ≡ N

y[x := N] ≡ y when x ̸= y

(M1M2)[x := N] ≡ (M1[x := N])(M2[x := N])

λy.M [x := N] ≡ λy.M [x := N]

The first two clauses of the definition simply state that substituting into a term consisting
of 1 variable will yield the term we are substituting if it is the variable we are substituting
on. The third clause propagates the substitution down both sides of an application, and the
final clause prevents bound variables from being captured by the substitution.

Substitution raises the issue of “substitution capture”, as a substitution might result in an
already bound variable being substituted into the term, e.g. (λy.yx)[x := y] ≡ λy.yy. We
avoid this by specifically removing bound variables from the set of free variables, and by
the type signature given, the variable we are substituting will never be in the set of free
variables.

In the formalisation we handle the question of substitution capture and equivalence of terms
with a different technique, De Bruijn indices, explained below.

Defining substitution gives the main computational operation of the λ-calculus, β-reduction:

β

N : ΛX M : Λ(X \ {x})
((λ x. N)M) ; N [x :=M]

Intuitively, computation is performed by substitution into every application for which the
left argument is a λ-abstraction. We call subterms of the form (λx.N)M) redexes. From
β-reduction, we define the ; relation over terms ;, using the rules for generating terms
to locate redexes as subterms and relating two terms if they the right term β-reduces to

8

the left, which we interpret as one “step” of a computation, giving what’s referred to as the
“operational” semantics of λ-calculus.

In the case of two terms “operating” in the same way, i.e. defining the same function, such as
the terms λa b.a and λx y. x, being present in the same term, we would like to avoid name
collisions and so require the λ-calculus to be closed under α-equivalence, so λa b.a ≡ λx y. x.

If we wish to consider more steps of the computation, we define a transitive and reflexive
closure of the reduction relation ;∗.

x;∗ x
x; y y ;∗ z

x;∗ z

We can interpret this reflexive and transitive closure as the “eventual outcome” of the com-
putation of the term or the application of the reduction relation 0 or more times.

We refer to a term which cannot be β-reduced further as “normal”, which we interpret as a
terminated computation, Some terms do not normalise, e.g.

(λx.xx)(λx.xx) ; (λx.x x)(λx.x x)

; (λx.x x)(λx.x x)

; . . .

which is interpreted as a non-terminating computation.

We will use standard shorthand for representing terms, with λx.λy.λz.xyz written as
λxyz.xyz, where the λ associates to the right, and parentheses being omitted when ap-
plication terms are left-associative i.e. (((MN)O)P) = MNOP . We also use upper-case
(M,N) to refer to terms and lower-case to refer to variables (x, y, z).

2.2 Encodings and other constructions

Since there are no primitives for primitive recursive or general recursion in λ-calculus, looping
is performed by recursive calls in the term e.g. λ y.y y will capture a y and apply y to itself,
while the term (λ y.yy)(λ y.yy) reduces as shown before, never reaching a normal form.

This is the prototypical example of a non-terminating computation, meaning it will never
terminate, and an illustrative example of the “reduction” relation not reducing the length
of a term. Non-termination of terms is also dependent on the reduction strategy employed,

9

e.g. the term (λxy. y) (Ω) where Ω = (λ x.x x)(λ x.x x), which will not terminate if the Ω
reductions are performed, while giving the identity λy.y if the leftmost reduction is chosen.

Using a fixed point combinator, which are terms fulfilling the property Fix f ;∗ f(Fix f),
such as Y := λ f.(λx.f(xx))(λx.f(xx)). We perform general recursion with any other closed
term by applying Y (or any other fixed point combinator, as many have been discovered) to
it.

With these basic notions, we can begin to define terms which correspond to already familiar
constructions in mathematics as datatypes in λ-calculus. The terms T := λxy.x and F :=
λxy.y can be seen as Booleans, either choosing x (True) or y (False). This is done without
mention/typing the terms, as the λ-calculus is entirely syntactic, and has no inherent typing
information (or, one might consider it to be unityped). We can define other boolean functions
as terms, taking the terms above as arguments, such as not := λb.b F T .

not T ; (λb.b F T)T

; T F T

; (λxy.x) F T

; (λy.F) T

; F

along with and := λab.abF , or := λab.aTb and so on.

We can perform a case split, equivalent to an if-then-else statement (or implication →)
with a term λt x y.t x y, where t is a predicate (a term reducing to some boolean) applied to
x and y. We can also define the natural numbers in a similar fashion, due to a construction
by Church: Define SUC := λn f s.f (n f s), the successor function (+1) then the numerals
are given by 0 = λ f x.x, and repeated application of SUC, or more explicitly:

0 := λfx. x

1 := λfx.(f x)

2 := λfx.f (f x)

and so on. The issue with this encoding (which Church encountered) is the definition of a
predecessor function, which (apocryphally) eluded him until his student Kleene came with
a solution, which still took n steps to reduce.

Instead, we define both of the above structures to be more reminiscent of inductive datatypes
in a functional language like Haskell [17]. Intuitively, we bind a variable for each of the
constructors in a datatype, and then bind a variable for each of the cases with the variable

10

bound “decorating” the term and representing the constructors. For any recursively defined
type, we add a recursive call in the form of calling the outermost (parameter) variables in
the head, as these are part of the datatype we are defining. The natural numbers can then
be defined by two constructors,

Z := λsz. z

SUC := λnsz.s n (n s z)

Z encoding the nullary constructor for 0, only envoking the z as with the Church encoding
above and SUC encoding the unary constructor of successor, applying s (the successor case) to
the parameter (natural number to be suceeded) and passing both the zero and successor cases
to the previous number. This allows us to give a fairly simple encoding of the predecessor
function, λt.t 0 (λx y.x). This notion of encoding datatypes coincides with the previous
one for the booleans, as both of the constructors are nullary and hence do not require any
recursive calls. This encoding seems to have its origins with Scott and was further extended
by Mogensen [19] (for the definition of a notion of quotation supporting self-evaluation
and self-reduction) as mentioned in Section 1.2, though was arrived at independently by
Gylterud[10].

2.2.1 De Bruijn Representation

The De Bruijn representation of the lambda calculus removes the requirement for renaming,
and therefore α-equivalence from λ-calculus. Intuitively, we do this by explicitly writing a
λ for each bound variable and referring to the bound variables in the body of the term by
the position of the variable in the list of λ’s. Formally, we define the terms of De Bruijn
representation analoguously to the definition of terms above, which we chose to index from
the right:

λx.x 7→ λ.0

λxy.y 7→ λλ.0

λxyz.xz(yz) 7→ λλλ(20)(10)

(λyz.xz)(λab.a) 7→ (λλ(20))(λλ.0)

λfx.fx 7→ λλ10

λfx.ffx 7→ λλ110

We give a type-theoretically flavoured definition (inspired by [6]) of De Bruijn indices, for a
fixed type of free variables X, + denoting the coproduct type and 1 the unit type:

11

x : X

x : ΛX

M : ΛX N : ΛX

(MN) : ΛX

M : Λ(X + 1)

λM : ΛX

We interpret this as the singleton set being a single variable to be bound, where λ acts as
a symbol pointing to this variable, the coproduct encoding the choice of the free variable,
whereas the two other constructors do not require any variable to be free, and so are left
identical to the definition above and interpreted to have “some” amount of free variables.
Using De Bruijn indices, we have a representation of λ-terms which is α-equivalent for all
terms (equivalent up to variable relabling). The definition above will serve as motivation
for the formalisation of λ′’-calculus in the following chapter, along with the more informal
definition in section below.

Substitution for de Bruijn indices will have the same signature as substitution for the set-
based λ calculus, and is expanded on in the next chapter, as it requires some machinery
which is cumbersome to define using induction rules.

Substitution allowing us to define β-reduction similarly to above:

β

N : Λ (X + 1) M : Λ X

((λ N) M) ; N [x :=M]

2.3 Properties of λ′-calculus

The λ-calculus may be extended beyond λ, () and β, with constructions such as products,
reduction rules (such as η-extension) or even combinators, none of which will be necessary
for λ’-calculus to encode our notion of quotation.

Instead, λ′-calculus is extended by a term constructor (′), which binds a finite list of n
variables similarly to the λ-constructor, with all variables considered bound and therefore
removed from the set of free variables. To avoid writing an extended list of variables, we
instead use the notation v : Xn to denote a length n list of free variables, along with {vi}i≤n

as the (flattened) family generated by the vector and \ denoting set difference.

Var
x : X

x : Λ X

Abs
x : X M : Λ X

λx. M : Λ {X − {x}}

App
x : Λ X y : Λ X

(xy) : Λ X

′/Quot
v : Xn M : Λ X

⟨v⟩′M : Λ (X \ {vi}i<n)

12

Harkening back to the discussion of encodings above, we observe that even the λ-calculus
itself can be encoded as terms, We want to use this constructor to denote quoted functions
with the added property of being able to β-reduce under the quote, along with the quotation
operator:

Definition 2.3.1 (Internal representation of λ-calculus).

var := λx cv cl ca cq.cvx

lam := λt cv cl ca cq.cl t (t cv cl ca cq)

app := λt u cv cl ca cq.ca t u (t cv cl ca cq)(u cv cl ca cq)

quot := λn t cv cl ca cq.cq n t (t cv cl ca cq)

Each of the c-variables represent the “constructors” of the λ′-calculus, cv for variables, cl for
λ-abstraction and so on. The variable term var takes a value as input under the variable
constructor, terminating the induction at some variable (encoded in de Bruijn indices as
a natural number). The internal abstraction lam, as with the external λ, only accepts
other terms as input, and as terms are generated inductively, we pass down each of the
c-constructors. Application app binds two variables and performs the recursive subterm
generation in the same way as the lam term. quot is the only constructor taking something
other than the type of free variables and other terms of the internal λ-calculus, specifically a
natural number, to conveniently define the list of quoted variables of a term as the cardinality
of the list (or the highest de Bruijn index).

We need an axiomatised version of head normal form to express the reduction rules be-
low, specifically the quoted application and double quotation, to allow for β-reduction
to be performed under the quote. The shape of a head normal form is given by
λx1 x2 . . . xn.y M1 M2 . . . Mm, the “head” in head normal refering to the variable be-
ing in the first position. We use a modified head normal form, which we refer to as either an
abstractionless or λ-less head normal form, so we identify terms of the form y M1 M2 . . . Mm

or ⟨x1, x2 . . .⟩′y M1 M2 . . . Mm.

We express head normal form, parametrising head normaly with the head variable y:

HNF-Var
y : X

head normaly(y)

HNF-App
head-normaly(N) M : ΛX N : ΛX

head-normaly(NM)

HNF-Quot
N : ΛX head-normaly(N) v : Xn y ̸∈ v

head-normaly(⟨v⟩ ′ N)

13

Which, along with β-reduction and the internal constructors, give the reduction relation
(informally, as we are using “head-normal” to represent the procedure for checking for head
normal form, with a term of the type representing the variable):

β

N : Λ X M : Λ (X \ x)
((λ x. N)M) ; N [x :=M]

′-Var
v : Xn vi : Λ X

⟨v⟩′xi ; (var (numeral (i))

′-Abs
v : Xn M : Λ X x : X

⟨v⟩ ′ (λM)
; lam ⟨(v, x)⟩M

′-App
v : Xn M : Λ X N : Λ X head-normalvi(M)

⟨v⟩′(MN) ; app(⟨v⟩ ′ M)(⟨v⟩ ′ N)

′-Quot
v : Λ Xn w : Xm M : Λ X head-normalwi

(M)

⟨v⟩ ′⟨w⟩ ′ M ; quote (numeral m)(⟨(v, w)⟩′M)

or defining λ′-calculus in using De Bruijn indices, assuming a base type X for free variables ,
natural numbers, coproducts and a unit type, with +n defined by X +0 = X;X +(n+1) =
(X + n) + 1 and representing the variables bound by quotation:

Var
x : X

x : Λ X

Abs
M : Λ (X + 1)

λM : Λ X

App
M : Λ X N : Λ X

(MN) : Λ X

Quote
M : Λ (X + n)

⟨n⟩′M : Λ X

The identification of head normal form can still be described using inference rulesand
parametrising it by the head term as above, and using y ≥ n to indicate that the vari-
able is free and so is not denoted by one of the units in the iterated sum.

HNF-Var
y : X

head normaly(n)

HNF-App
head-normaly(N) M : ΛX

head-normaly(NM)

HNF-Quot
head-normaly(N) y ≥ n

head-normaly(⟨n⟩′N)

As the bound variables of the abstraction and quotation cases are represented by repeated
categorical sums with unit, we do not type them in the lists of bound variables for quotation,

14

we only type it for the reduction of the internal variable constructor, as it requires the variable
to be bound in the list. We use (+):

β

N : Λ X + 1 M : Λ X

((λ N)M) ; N [M]

′-Var
i : Λ (X + n) i < n

⟨n⟩ ′ x; (var (numeral n))

′-Lam
M : Λ ((X + n) + 1)

⟨n⟩ ′ (λ M) ; lam(⟨n+ 1⟩′M)

′-App
N : Λ (X + n) M : Λ (X + n) head normali(M) i < n

⟨n⟩ ′ (MN) ; app (⟨n⟩ ′ M) (⟨n⟩ ′ N)

′-Quot
M : Λ ((X +m) + n) head-normali(M) n ≤ i > m

⟨n⟩ ′ ⟨m⟩ ′ M ; quote (numeral(m)) (⟨n+m⟩ ′ M)

The intention of requiring the head normal form (without λ/abstraction) is to block the
reduction into internal constructors until the leftmost subterm of an application is a variable,
and therefore not being able to expand further through β-reductions, and so can be quoted
safely. Any abstraction subterm which has not been part of a β-redex can be safely quoted
(any quoted redex, being an application, must be reduced for the application to be in head
normal form). A double quotation (quotation of a quotation) for which the inner term is in
head normal form has the list of bound variables concaternated for further reduction and
internally represented as a numeral argument, as explained above.

The existence of a head normal form is undecidable, as shown in [3], but deciding whether
a term is in head normal form is, which is shown in Section 3.3. This is evident intuitively,
as anyone may look at the head position of a λ′-term and note whether a variable occupies
this position.

If the term β-normalises, the entire term will eventually be represented using the internal
constructors, with all quotation constructors absent from the final term. In the case of
a quoted non-normalisable subterm, the quote construction prevents the entire term from
being non-normalisable, allowing for continued computation of the rest of the term, along
with identification of the unsolvable subterm by the presence of the quotation operator.

We can showcase this property by applying the term λx. ⟨ ⟩′ x which will quote any term,
to the K combinator/Boolean truth predicate λxy. x. Calculating:

15

(λx. ⟨ ⟩′ x)(λ x y. x) ; ⟨⟩′ (λx y. x)
; lam⟨x⟩′ (λ y. x)
; lam(lam(⟨x, y⟩′x))
; lam(lam(var(numeral1))

We convert the variable x to its numeric representation 1 as it is the index of x in the list of
quoted variables, and to better reflect the De Bruijn indices we will use for our formalisation.

Using the quotation operator, we admit a typed (with regards to the Scott encoding) form
of reflection internal to λ′, as we can define terms which inspect quoted functions. As an
example, we can define a term counting all occurences of a variable in a term2:

count := λt.t(λn m. (equals n m)10)

(λa ar m. ar (S m))

(λ a b ar br m. add (ar m) (br m))

(λn a arm. ar (add m n))

Where equals ≡ λnm.and (n ≤ m) (m ≤ n) and add ≡ λmn.mn(λtz.S z), with both the
variable counting function and addition illustrating the utility of the recursive encoding, the
addition substituting the second argument into the zero case and adding one in the successor
case.

The counting function requires further explanation. We assume that the input replace each
of the bound cases with a function, to which we also bind our target variable value m, which
allows us to pass it down the recursive call tree. Intuitively, this allows us to “type” the
variable counting function as Λ → N → N, where the first N is the de Bruijn index of the
target variable and the final being the count, semantically overloading the naturals.

The variable case checks whether m is equal to the variable of the term. The abstraction case
continues the recursion, incrementing the target variable to maintain the De Bruijn index
(any λ-term will increment all variables under it). The application case adds the count
of each side of the application, passing the target variable to each of the recursive cases.
The quotation case is similar to the abstraction case, though since it binds more than one
variable, the target is incremented by the bound variables.

2Using letters for variable names to improve readability

16

As an illustrative example, we apply count to the internally encoded term (0 (λ (0 1))) for
the variable 0. The reduction is performed as follows:

count (app (var 0) (lam (app (var 0)(var 1)))) 0

;∗ add ((λm.(equals 0 m) 1 0) 0)((λtrm. tr (S m))

(app (var 1) (var 2)) 1)(. . . (λa b ar br m. add (ar m) (br m)) . . .)1)

;∗ add 1((λm. add ((var 1)(λnm. (equals n m)1 0) . . .)

((var 2)((λn m. (equals n m)1 0) . . .)1)

;∗ add 1(add ((λm. (equals 1 m)1 0) 1) ((λm. (equals 2 m)1 0))1)

;∗ add 1 1

;∗ 2

We use the . . . to signify all of the cases of the count function, along with contracting
irrelevant redexes and some abuse of notation to bring into focus the cases being passed
down the structure recursively. We note the successor case on the lam term, as 1 would refer
to the same variable as 0 in the context of the outer app.

2.4 Confluence

Confluence (or the Church-Rosser property, to which it is equivalent) is a property of rewrit-
ing systems (which one can consider λ-calculus to be) defined as:

Definition 2.4.1 (Confluence). Let A,B,C be a terms in a rewriting system (Σ,;), if
A; B and A; C, then there exists a term D such that B ;∗ D and C ;∗ D.

This is also known as the diamond property, named after the diagrammatic representation of
the two reductions above. It can be intuitively understood as “however you reduce a term,
you will eventually get the same result”, with a simple example given by the natural numbers
and the operations (+,×, ()) e.g. we can reduce (3 + 4) + (4 × 3) as (3 + 4) + (4 × 3) ⇒
7 + (4× 3) ⇒ 7 + 12 ⇒ 19 and (3 + 4) + (4× 3) ⇒ (3 + 4) + 12 ⇒ 7 + 12 ⇒ 19, the terms
7 + 12 and 19 are both D in the definition above.

We show this property by using the Tait–Martin-Löf–Takahashi method, for which we define
a specific reduction relation, parallel reduction denoted ;∗. The idea of parallel reduc-
tion is a reduction relation which reduces all, one or some of the available redexes, but
only for a single reduction step, e.g. the parallel reduction of the term can be given as
(λ x.x) ((λ x.x) y) (λx.z) w ;o {((λ x.x) y)((λx.z) w), (λ x.x) ((λ x.x) y)z, ((λ x.x) y) z}
, but crucially not yz, as we do not perform any reductions beyond those available in the
original term.

17

To prove confluence using ;o, we first show that ; is contained in ;o, which should hold
trivially as ;o is an extension of ;. We proceed by defining a function _∗ : ΛX → ΛX
(pronounced starred), which intuitively performs every reduction possible in a single step,
which amounts to β-redexes for the regular λ-calculus (the term (((λ x.x) y) z) in the
example above) and the various quotation reductions. Using this function, we need to show
a stronger result than the diamond property, namely the triangle property, which states that
given two terms M, N and M ;o N , we can derive N ;o M∗, showing that the every
parallel reduction “factors through” the _∗ function. Finally, we show that ;o is contained
in ;∗, and conclude that since the regular reduction relation ; is contained in ;o and ;o

is confluent, ; is confluent as well.

18

Chapter 3

Formalisation

In this chapter we present a formalisation of λ′-calculus, including a formal encoding of
terms as a datatype, metatheoretical functions for mapping over and substituting into the
free variables of the terms, an encoding of the reduction relation and its transitive reflexive
closure, culminating in the proof of confluence using the Martin-Lof-Tait-Takahashi method,
described informally in the previous chapter.

Following the formalised proof in Agda requires some knowledge its syntax. We liberally
use the parameter inference mechanism Agda provides, denoted by _ for terms, allowing us
to not name every parameter of a given function call, instead allowing the type inference
mechanism of Agda to do the work for us.

In some parts, we will use λ-abstractions (instantiated in the metatheory , not in λ′) as part
of our definitions, denoted as λ x → ?, where ? is some term and x any number of bound
variables. We start by introducing the imports from the agda-unimath [22] library which
we will use:

{-# OPTIONS –without-K #-}

module Syntax where

open import univalent-combinatorics.standard-finite-types
using (Fin; nat-Fin; raise-Fin)

open import elementary-number-theory.natural-numbers using
(N; zero-N; succ-N)

open import elementary-number-theory.addition-natural-numbers using
(add-N)

open import foundation.empty-types using

19

(raise-empty; ex-falso)
open import foundation.raising-universe-levels using

(map-raise)
open import foundation.unit-type using

(star; unit; raise-unit ; raise-star)
open import foundation.identity-types
open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation-core.function-types
open import foundation.negation using (¬)
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation.cartesian-product-types
open import foundation.coproduct-types using

(_+_; inl; inr; is-injective-inl; neq-inr-inl)

The natural numbers N are the Peano numerals, the inductive type generated by a nullary
constructor zero-N and a unary constructor succ-N. We also import a number of the types
discussed in the introduction, such as the unit type, the empty type (and associated nega-
tion), sums and product. We also include identity, and Π and Sigma types, along with some
auxilliary functions relating to all of the above.

The finite type Fin is a type family indexed by the natural numbers, defined inductively as:

Fin 0 := empty

Fin (n+ 1) := Fin n+ unit

with (+) being the the coproduct, serving as the canonical choice of finite types. We use it as
a convenient way to encode De Bruijn indices(every bound unit representing a variable to be
bound), as described in the previous chapter. Finally, we do not assume axiom K, a proper
treatment of which is beyond the scope of this thesis, but we note that (1) assuming it will
turn all types into mere sets and (2) we wish for the results to be as general as possible.

3.1 Syntax

Before giving our formalised proof of confluence, we present the syntax of λ′-calculus, encoded
using De Bruijn indices. As discussed in the previous section, we define De Bruin indices

20

on a type level by coproducts of some type X and the unit type 1. We define some pattern
bindings (renamings) to better suit our needs, along with a useful principle of contradiction
which states that a bound variable cannot equal a free one:

pattern bound x = inr x
pattern free x = inl x

bound=free-absurd : ∀ {i j k} {X : UU i}{A : UU j}{B : UU k} {a : A} {b : B}
→ Id (bound a) (free b) → X

bound=free-absurd ()

The encoding of λ′ is given by the datatype Λ, Λ being defined over some fixed type X in
UU , the universe of small types, which all types we will use are elements of. We can see a
nearly direct translation of the inference rules given for De Bruijn indices in the previous
chapter, using л as a standin for λ as λ is a keyword in Agda. The ∀ quantifier shadows
the dependent function type and Agda’s typechecker automatically infers it to be a natural
number due to its use in Fin n.

infix 10 _’_

data Λ (X : UU) : UU where
var : X → Λ X
л_ : Λ (X + unit) → Λ X
app : Λ X → Λ X → Λ X
’ : ∀ n → Λ (X + Fin n) → Λ X

We also define a pattern for closed terms as a simple way of referring to the first bound
varible in a term (for the definition of internal constructors and other examples) along with
a type denoting closed terms.

pattern v = var (bound star)

Λ-Closed = ∀ {X } → Λ X

We define a map function over the Λ datatype, to lift functions on free variables to functions
on terms, along with hinting at the functorial (and even monadic) structure we show explicitly
later. To do so, we define a special case over the left side (free variables) of arbitrary
coproducts, since both quotation and abstraction are constructed as iterated coproducts of
units. We also define two syntaxes for later use in typesetting proofs.

21

map-free : ∀ {i i’ j }{X : UU i}{X’ : UU i’}{B : UU j}
→ (X → X’)
→ X + B → X’ + B

map-free f (free x) = free (f x)
map-free _ (bound b) = bound b

syntax map-free f = f +

map-free’ : ∀ {i i’ j }{X : UU i}{X’ : UU i’}
(B : UU j)

→ (X → X’)
→ X + B → X’ + B

map-free’ B f = map-free {B = B} f

syntax map-free’ B f = f [B]+

The mapping function recursively applies the function ϕ : X → X’ down every constructor
of the Λ type, using the shortened syntax for map-free for abstraction and quotation to only
map the function over free variables (left side of the coproduct).

map : ∀ {X X’}
→ (X → X’)
→ Λ X → Λ X’

map ϕ (var x) = var (ϕ x)
map ϕ (л f) = л (map (ϕ +) f)
map ϕ (app f x) = app (map ϕ f) (map ϕ x)
map ϕ (Y ’ f) = Y ’ (map (ϕ +) f)

The function shift-variable or _+ allows us to expand the sum of variables under Λ, thereby
encoding bound variables of a term, which is accomplished by mapping free over it. The
shortened syntax refers to map − free, used in our implementation of De Bruijn indices,
along with the .

shift-variable : ∀ {X }{V : UU} → Λ X → Λ (X + V)
shift-variable = map free

syntax shift-variable x = x +

As examples of closed terms of Λ, we encode the identity function λ x.x and the "quotation
function" q, λx. ⟨ ⟩′ x. Note that the empty variable list is still part of the sum (as Fin 0 =

22

empty), so the variable bound by the л must be shifted. The function q may be applied to
any other term, and will produce and internalised version of it.

i : Λ-Closed
i = л v

q : Λ-Closed
q = л (zero-N ’ v +)

As a substitution may change the type of free variables in a term, without changing the bound
variables, _+ is used in the definition of a similar function to map−free, substitute−free−
variables, which applies a substitution to all free variables of a term. As above, we include a
shorthand for readability, adding \ to reference a commonly used notation for substitution,
[x \ t].

substitute-free-variables : ∀ {X X’ : UU}{B : UU}
→ (X → Λ X’)
→ (X + B) → Λ (X’ + B)

substitute-free-variables t (free x) = shift-variable (t x)
substitute-free-variables t (bound x) = var (bound x)

syntax substitute-free-variables f = f \+

substitute-free-variables’ : ∀ {X X’ : UU} (B : UU)
→ (X → Λ X’)
→ (X + B) → Λ (X’ + B)

substitute-free-variables’ B f = substitute-free-variables {B = B} f

syntax substitute-free-variables’ B f = f [B]\+

Substitution is then defined recursively down an expression, analogously to map above, with
() used for the abstraction and quotation cases to handle free variables without changing the
bound. Note that the signature of substitute is a flipped version of monadic composition,
known as bind or (>>=) in Haskell.

substitute : ∀ {X X’}
→ (X → Λ X’)
→ Λ X → Λ X’

substitute t (var x) = t x
substitute t (л f)

= л (substitute (t \+) f)
substitute t (app f x)

23

= app (substitute t f) (substitute t x)
substitute t (Y ’ e)

= Y ’ substitute (t \+) e

Substitution of a single variable is denoted using the mixfix notation _[_], using the substi-
tution function substitute-single below, and is defined to perform β-reduction.

substitute-single : ∀ {X : UU} → Λ X → (X + unit) → Λ X
substitute-single t (free x) = var x
substitute-single t (bound _) = t

[] : ∀ {X } → Λ (X + unit) → Λ X → Λ X
f [x] = substitute (substitute-single x) f

infix 100 _[_]

Vectors (lists indexed by a natural number) are defined for defining nested applications, used
for the internal constructors of λ′.

Vec : ∀ {i} → N → UU i → UU i
Vec zero-N X = raise-unit _
Vec (succ-N n) X = Vec n X × X

– map-Vec : ∀ {i j n} {X : UU i} {Y : UU j}
– → (X → Y)
– → Vec n X → Vec n Y
– map-Vec {n = zero-N} f _ = raise-star
– map-Vec {n = succ-N _} f (pair α x) = pair (map-Vec f α) (f x)

apps : ∀ {n X } → Λ X → Vec n (Λ X) → Λ X
apps {n = zero-N} f _ = f
apps {n = succ-N _} f (pair α x) = app (apps f α) x

To encode the internal constructors of λ′ (as discussed in the previous chapter), we define
functions in our metatheory to construct terms of "arities" 0, 1 and 2. Each construct requires
a "template" (a term of Λ defined directly in the metatheory) which is substituted into by
the construct functions. The template must match the arguments, and since Λ is defined
over the finite type, we define them using finite types corresponding to the arities (Fin 0 for
constant, Fin 1 for unary, Fin 2 on binary).

The unary constructor simply substitutes the argument into the template. The binary is
case split on Fin 2 (which has the explicit type ((empty + unit) + unit)) using construct2-
substitution such that the arguments are substituted into the right sides.

24

raise-Fin’ : ∀ k → N → UU k
raise-Fin’ k zero-N = raise-empty k
raise-Fin’ k (succ-N n) = raise-Fin’ k n + unit

construct0 : Λ (Fin 0) → ∀ {X } → Λ X
construct0 template = substitute (λ {()}) template

construct1 : Λ (Fin 1) → ∀ {X } → Λ X → Λ X
construct1 template argument = substitute (λ _ → argument) template

construct2-substitution : ∀ {X } → Λ X → Λ X → Fin 2 → Λ X
construct2-substitution argument0 argument1 (inr _) = argument1
construct2-substitution argument0 argument1 (inl _) = argument0

construct2 : Λ (Fin 2) → ∀ {X } → Λ X → Λ X → Λ X
construct2 template argument0 argument1

= substitute (construct2-substitution argument0 argument1) template

The templates for each of the constructors, as mentioned in the previous chapter, bind
"cases" for variables, application, abstraction and quotation (respectively) using the л from
the Λ datatype. The recursive calls pass the cases down the expressions, with the var case
terminating the recursion. Each template has at least one free variable, with application
(left and right side of the application) and quotation (number of variables quoted and the
term they belong to) having two. This can be seen from the "unit"s bound on the right of
each of the templates. Since we are using De Bruijn indices, the innermost variable is bound
first (denoted by v, as mentioned above), with following variable referenced by mapping free
using shift-variable (+).

As an example, the following terms:

var-template : {X : UU} → Λ (X + unit)
var-template = л л л л (app (v + + +) (v + + + +))

л-template : {X : UU} → Λ (X + unit)
л-template = л л л л (apps {n = 2} л-case ((raise-star , v + + + +) , recursive-call)) where

var-case = v + + +

л-case = v + +

app-case = v +

quote-case = v
recursive-call = apps {n = 4} (v + + + +) ((((raise-star

, var-case)
, л-case)

25

, app-case)
, quote-case)

are the encodings of the internal constructors var and lam:

var := λx cv cl ca cq.cvx

lam := λt cv cl ca cq.cl t (t cv cl ca cq)

The outermost variable (corresponding to the quoted term) not being represented as an
explicit л due to the use of construct1. Note how the recursive call (t cv cl ca cq) is encoded
using a where binding and the apps function.

The rest of the internal constructors are shown below, and the interested reader may compare
them to those in the previous chapter.

app-template : {X : UU} → Λ ((X + unit) + unit)
app-template = л л л л (apps {n = 4} app-case ((((raise-star

, (v +) + + + +)
, v + + + +)
, recursive-call-t)
, recursive-call-u)) where

var-case = v + + +

л-case = v + +

app-case = v +

quote-case = v
recursive-call-t = apps {n = 4} (v + + + + +) ((((raise-star

, var-case)
, л-case)
, app-case)
, quote-case)

recursive-call-u = apps {n = 4} (v + + + +) ((((raise-star
, var-case)
, л-case)
, app-case)
, quote-case)

quote-template : {X : UU} → Λ ((X + unit) + unit)
quote-template = л л л л (apps {n = 3} quote-case

(((raise-star
, v + + + + +)
, v + + + +)
, recursive-call)) where

var-case = v + + +

26

л-case = v + +

app-case = v +

quote-case = v
recursive-call = apps {n = 4} (v + + + +) ((((raise-star

, var-case)
, л-case)
, app-case)
, quote-case)

fix-template : {X : UU} → Λ (X + unit)
fix-template = app (л (app (v +) (app v v)))

(л (app (v +) (app v v)))

s-template : {X : UU} → Λ (X + unit)
s-template = л л (app (app v (v + +)) (app (app (v + +) (v +)) v))

The internal constructors of λ′-calculus are defined below, using the constructn along with a
version of numerals encoded as an inductive datatype, as described in the previous chapter.

– The zero numeral
z-cons : Λ X
z-cons = л л (v +)

– Constructor for successor numerals
s-cons : Λ X → Λ X
s-cons = construct1 s-template

– Encoding of standard numerals
numeral : N → Λ X
numeral zero-N = z-cons
numeral (succ-N n) = s-cons (numeral n)

– The encoding of variables
var-cons : Λ X → Λ X
var-cons = construct1 var-template

– The encoding of λ-abstraction
л-cons : Λ X → Λ X
л-cons = construct1 л-template

– The encoding of function application
app-cons : Λ X → Λ X → Λ X
app-cons = construct2 app-template

27

– The encoding of quoted terms
quote-cons : Λ X → Λ X → Λ X
quote-cons = construct2 quote-template

– Encoding of fixed points
fix-cons : Λ X → Λ X
fix-cons = construct1 fix-template

When reducing a quoted л-term n ’ л t we have to add the bound variable to the list of
variables represented by the finite type. The term t will be of the type ((X + Fin n) + unit),
and to show it has been quoted we reassociate to the right to get (X + (Finn + unit)) ≡
(X + (Fin(n + 1))), by mapping (in the metalanguage of Agda) the library function map-
assoc-coprod : (A + B) + C → A + (B + C) over the quoted term t for

л to reassociate the bound variable and transform the л-term into its corresponding internal
constructor while respecting the typing constraints.

quote-free-var : ∀ {X : UU} {Y : UU}
→ Λ ((X + Y) + unit)
→ Λ (X + (Y + unit))

quote-free-var = map map-assoc-coprod

Some more type-level yoga has to be done for the internal reduction of the double quoted
term n ′ (m ′ t), for which we wish to join the lists of quoted variables together, which
amounts to joining the Finite types Fin n and Fin m. We do so inductively by defining a
pair of helper functions for the binding the free variables m and bound variables n of the
term, sending both of them to the bound/right side of the sum using the join-Fin function,
and mapping join-Fin over the term.

free+ : ∀ m n → Fin m → Fin (add-N m n)
free+ n zero-N x = x
free+ n (succ-N m) x = free (free+ n m x)

bound+ : ∀ m n → Fin n → Fin (add-N m n)
bound+ n zero-N ()
bound+ n (succ-N m) (free x) = free (bound+ n m x)
bound+ n (succ-N m) (bound x) = bound x

join-Fin : ∀ {j} {X : UU j} m n
→ ((X + Fin m) + Fin n)
→ (X + Fin (add-N m n))

28

join-Fin m n (free (free x)) = free x
join-Fin m n (free (bound x)) = bound (free+ m n x)
join-Fin m n (bound x) = bound (bound+ m n x)

– Apply join-Fin to a term
join-quotes : ∀ {X } m n

→ Λ ((X + Fin m) + Fin n)
→ Λ (X + Fin (add-N m n))

join-quotes m n = map (join-Fin m n)

3.2 Properties of Λ

We show a number of properties of mapping and substitution over λ′ (using the identity
type Id of Martin-Lof Type Theory as an internal notion of equality) for use in our proof
of confluence. We first prove extensionality of mapping, introducing the general pattern
for many of the proofs that follow: each of the properties is defined recursively over the
constructors of Λ, along with an extra lemma showing the property for an arbitrary coproduct
to account for the abstraction and quotation cases. The term refl is of the identity type, and
is used when the claim is trivial i.e. all identities of the claim are definitionally equal.

Extensional equality of functions is pointwise equality, or that two functions are equal if
they are equal for all of their inputs. This is idiomatically encoded as ∀ x → Id (f x) (g
x). Extensionality of map is then the claim that if two functions are pointwise equal, then
mapping those functions over any term is also pointwise equal.

Each of the cases first applies their respective constructs, using the functorial action of the
identity type ap : (f : A → B) → {x y : A} → (p : Id x y) → (Id (f x) (f y)), ap-binary being
the equivalent for binary functions, then either recursively applies the inductive claim or the
pointwise equality.

– ap : (f : A → B) {x y : A} (p : Id x y) → (Id (f x) (f y))

map-free-pointwise : ∀ {X : UU} {A B : UU}
→ (f : A → B)
→ (g : A → B)
→ (∀ x → Id (f x) (g x))
→ ∀ (t : (A + X)) → Id ((f [X]+) t) ((g [X]+) t)

map-free-pointwise f g pw (free t) = ap free (pw t)
map-free-pointwise f g pw (bound t) = refl

29

map-pointwise : ∀ {A B}
→ (f : A → B)
→ (g : A → B)
→ (∀ x → Id (f x) (g x))
→ ∀ t → Id (map f t) (map g t)

map-pointwise f g pw (var t) = ap var (pw t)
map-pointwise f g pw (л t) = ap л_

(map-pointwise (f +) (g +)
(map-free-pointwise _ _ pw) t)

map-pointwise f g pw (app s t) = ap-binary app
(map-pointwise f g pw s)
(map-pointwise f g pw t)

map-pointwise f g pw (n ’ t) = ap (n ’_)
(map-pointwise (f +) (g +)

(map-free-pointwise _ _ pw) t)

Proceeding with the same methodology as above, we show the compositionality of map,
which claims that for all terms of Λ A, mapping two compatible functions (f : A → B) and
(g : B → C) sequentially is identical to mapping their composition (g ◦ f). The variable case
is definitionally equal, as (g ◦ f) x is defined as g (f x).

map-free-◦ : ∀ {A B C : UU} {X : UU}
→ (f : A → B)
→ (g : B → C)
→ ∀ x → Id ((g [X]+) ((f +) x))

(((g ◦ f) +) x)
map-free-◦ f g (free x) = refl
map-free-◦ f g (bound x) = refl

map-composition : ∀ {A B C}
→ (f : A → B)
→ (g : B → C)
→ ∀ x → Id (map g (map f x))

(map (g ◦ f) x)
map-composition f g (var x) = refl
map-composition f g (л x) = ap л_

(map-composition (f +)
(g +)

x
· map-pointwise (λ x → (g [unit]+) ((f +) x))

((g ◦ f) +)

30

(map-free-◦ f g) x)
map-composition f g (app t u) = ap-binary app

(map-composition f g t)
(map-composition f g u)

map-composition f g (n ’ x) = ap (n ’_)
(map-composition (f +)

(g +)
x

· map-pointwise (λ x → (g [Fin n]+) ((f +) x))
((g ◦ f) +)
(map-free-◦ f g) x)

Together, the proceeding lemmas illustrate key properties of map, the first fulfilling exten-
sionality (as pointwise identical functions in the metatheory are reflected under map for terms
of ΛX) and the second compositionality (composition of functions is equal to compositions
of map), showing one part of the functoriality of our construction. The other, identity, can
be shown as follows:

map-free-id : ∀ {X B : UU}
→ (t : (X + B))
→ Id ((map-free {B = B} id) t) t

map-free-id (free x) = refl
map-free-id (bound x) = refl

two-map-frees : ∀ {X B C : UU}
→ (x : (X + B) + C)
→ Id (map-free (map-free id) x) (map-free id x)

two-map-frees (free t) = ap free (map-free-id t)
two-map-frees (bound x) = refl

map-free-pw : ∀ {X B}
→ (t : Λ (X + B))
→ Id (map (map-free {B = B} id) t) (map id t)

map-free-pw (var x) = ap var (map-free-id x)
map-free-pw (л t) = ap л_ (map-pointwise _ _ two-map-frees t)
map-free-pw (app t u) = ap-binary app (map-free-pw t)

(map-free-pw u)
map-free-pw (n ’ t) = ap (n ’_)

(map-pointwise _ _ two-map-frees t)

map-identity : ∀ {A}
→ (t : Λ A)
→ Id (map id t) (t)

map-identity (var x) = refl

31

map-identity (л t) = ap л_ (map-free-pw t · map-identity t)
map-identity (app t u) = ap-binary app (map-identity t)

(map-identity u)
map-identity (n ’ t) = ap (n ’_) (map-free-pw t · map-identity t)

An extensionality property also holds for substitution, though we identify the "substitutions"
f g : X → Λ X’ in the metatheory. The proof follows much in the same way as above the
exception of the case for free variables for the coproduct case, where the pointwise equality
must be shifted from X to X + B, following the definition of \+.

\+-pointwise : ∀ {X X’ : UU} {B : UU}
→ (f g : X → Λ X’)
→ (∀ x → Id (f x) (g x))
→ ∀ t → Id ((f [B]\+) t)

((g [B]\+) t)
\+-pointwise f g pw (free x) = ap shift-variable (pw x)
\+-pointwise f g pw (bound x) = refl

substitute-pointwise : ∀ {X X’}
→ (f g : X → Λ X’)
→ (t : Λ X)
→ (∀ x → Id (f x) (g x))
→ Id (substitute f t) (substitute g t)

substitute-pointwise f g (var x) pw = pw x
substitute-pointwise f g (л t) pw

= ap л_
(substitute-pointwise (f \+)

(g \+)
t

(\+-pointwise f g pw))
substitute-pointwise f g (app t u) pw

= ap-binary app
(substitute-pointwise _ _ t pw)
(substitute-pointwise _ _ u pw)

substitute-pointwise f g (n ’ t) pw
= ap (n ’_)

(substitute-pointwise (f \+)
(g \+)

t
(\+-pointwise f g pw))

To define the associativity of substitute, we need to prove that map and substitute will
commute both from the left (substitution then map) and the right (map then substition),
necessitated by the map function in our definition of substitution.

32

Starting with the left side of the identity and proceeding as before with the application
and variable cases, the substitution and quotation necessitates the use of the composition of
identities. Using the inductive call, we only have the substitution of the extended substitu-
tions composed (ϕ\+ ◦ f+), and so we show its pointwise equality of substitution with the
extended composition (ϕ ◦ f)\+ using the trivial (as both cases are definitionally equal after
a case split) lemma substitute-map-coprod.

– _·_ : {x y z : A} → Id (x y) → Id (y z) → Id (x z)

substitute-map-coprod : ∀ {A B C : UU} {X : UU}
→ (f : A → B)
→ (ϕ : B → Λ C)
→ (x : A + X) → Id (((ϕ \+) ◦ (f +)) x)

(((ϕ ◦ f) \+) x)
substitute-map-coprod f ϕ (free x) = refl
substitute-map-coprod f ϕ (bound x) = refl

– Substitution of a mapped term is the subsitutition with the precomposition
substitute-map-commute-◦ : ∀ {A B C : UU}

→ (x : Λ A)
→ (f : A → B)
→ (ϕ : B → Λ C)
→ Id (substitute ϕ (map f x))

(substitute (ϕ ◦ f) x)
substitute-map-commute-◦ (var x) f ϕ = refl
substitute-map-commute-◦ (л x) f ϕ

= ap л_
(substitute-map-commute-◦ x

(f +)
(ϕ \+)

· substitute-pointwise ((ϕ \+) ◦ (f +))
((ϕ ◦ f) \+)
x
(substitute-map-coprod _ _))

substitute-map-commute-◦ (app x x1) f ϕ
= ap-binary app

(substitute-map-commute-◦ x _ _)
(substitute-map-commute-◦ x1 _ _)

substitute-map-commute-◦ (n ’ x) f ϕ
= ap (n ’_)

(substitute-map-commute-◦ x
(f +)
(ϕ \+)

33

· substitute-pointwise ((ϕ \+) ◦ (f +))
((ϕ ◦ f) \+)
x
(substitute-map-coprod _ _))

The other direction, namely mapping a function over a substitution, is the same as substi-
tuting the composition of a map with a substitution is proven along similar lines, though
stated in the inverse direction from what we described. The pointwise extension is also less
trivial.

In the case of free variables, we have to show that the extension of a map composed with
a substitution is the same as mapping an extended function over an extended substitution.
As the left side of \+ is simply shifting the variable (mapping inl to free) we first establish
an identity of the composition of the function f with free, the substitution ϕ applied directly
to a value (x : X). We then show that this composition is symmetric (inl ◦ f = f+ ◦ inl)
using pointwise equality and a trivial proof and finally reverse the composition, which maps
free over ϕ t, giving us the definition for the free case of \+ = (map free (ϕ x)).

substitute-map-comm-pointwise : ∀ {X X’ X” : UU} {B : UU}
→ (ϕ : X → Λ X’)
→ (f : X’ → X”)
→ (∀ t → Id (((map f ◦ ϕ) [B]\+) t)

(map (f +) ((ϕ \+) t)))
substitute-map-comm-pointwise ϕ f (free x)

= map-composition _ _ _
· (map-pointwise _ _ (_ → refl) _
· inv (map-composition _ _ _))

substitute-map-comm-pointwise ϕ f (bound x) = refl

substitute-map-commute : ∀ {X X’ X” : UU}
→ (ϕ : X → Λ X’)
→ (f : X’ → X”)
→ (t : Λ X)
→ Id (substitute (map f ◦ ϕ) t)

(map f (substitute ϕ t))
substitute-map-commute ϕ f (var x) = refl
substitute-map-commute {X = X } ϕ f (л t)

= ap л_ (substitute-pointwise _ _ t (substitute-map-comm-pointwise ϕ f)
· substitute-map-commute (ϕ [unit]\+) (f +) t)

substitute-map-commute ϕ f (app t t1)
= ap-binary app

(substitute-map-commute ϕ f t)

34

(substitute-map-commute ϕ f t1)
substitute-map-commute ϕ f (n ’ t)

= ap (n ’_)
(substitute-pointwise _ _ t (substitute-map-comm-pointwise ϕ f)
· substitute-map-commute (ϕ [Fin n]\+) (f +) t)

Finally, we can prove that composition of two substitutions is equal to substituting consec-
utively, with the pointwise coproduct lemma using the previous precomposition and post-
composition lemmas. Just as before, we case split, have a trivial case for variables recurse
on the application, and use a pointwise equality for the abstraction and quotation cases.

The pointwise coproduct lemma (with the desugared notation (x : A + D) to represent
universal quantification of the coproduct) uses both of the previously proven identities to
show that an expanded substitution (substitute (g \+)) into an expanded term under the
function f ((f \+) x) is identical to the expanded substitution of their compositions (substitute
g ◦f)\+. We first reassociate the internal expanded term into the substitution using the map
precomposition identity (as \+ is defined as mapping inl for free variables), followed by the
postcomposition identity moving free/inl outside as a map, concluding the proof.

substitute-composition-pointwise : ∀ {A B C : UU} {D : UU}
→ (f : A → Λ B)
→ (g : B → Λ C)
→ (x : A + D)
→ Id (substitute (g \+) ((f \+) x)) (((substitute g ◦ f) \+) x)

substitute-composition-pointwise f g (free x)
= substitute-map-commute-◦ (f x) inl (substitute-free-variables g)
· substitute-map-commute g inl (f x)

substitute-composition-pointwise f g (bound x) = refl

substitute-composition : ∀ {A B C}
→ (f : A → Λ B)
→ (g : B → Λ C)
→ ∀ x → Id (substitute g (substitute f x))

(substitute (substitute g ◦ f) x)
substitute-composition f g (var x) = refl
substitute-composition f g (л x)

= ap л_ (substitute-composition (f \+) (g \+) x
· substitute-pointwise (λ x → substitute (g \+) ((f \+) x))

((substitute g ◦ f) \+)
x
(substitute-composition-pointwise _ _))

substitute-composition f g (app t u)
= ap-binary app

35

(substitute-composition f g t)
(substitute-composition f g u)

substitute-composition f g (n ’ x)
= ap (n ’_)

(substitute-composition (f \+) (g \+) x
· substitute-pointwise (substitute (g \+) ◦ (f \+))

((substitute g ◦ f) \+)
x
(substitute-composition-pointwise _ _))

Using the commutativity of map and substitution (as a conversion mechanism between terms
of map and substitute) and the pointwise equality of substitution, the setup of term substi-
tution into the internal constructors allows us to prove the commutativity of map with the
internal constructors.

construct0-map : ∀ {A B} t
→ (f : A → B)
→ Id (map f (construct0 t))

(construct0 t)
construct0-map t f = inv (substitute-map-commute _ f t)

· (substitute-pointwise _ _ t (λ{(())}))

construct1-map : ∀ {A B} t
→ (f : A → B)
→ ∀ u
→ Id (map f (construct1 t u))

(construct1 t (map f u))
construct1-map t f u = inv (substitute-map-commute _ f t)

· (substitute-pointwise _ _ t (λ _ → refl))

construct2-map : ∀ {A B} t
→ (f : A → B)
→ ∀ u r
→ Id (map f (construct2 t u r))

(construct2 t (map f u) (map f r))
construct2-map t f u r = inv (substitute-map-commute _ f t)

· (substitute-pointwise _ _ t construct2-substitution-map) where
construct2-substitution-map : ∀ x → Id ((map f ◦ construct2-substitution u r) x)

(construct2-substitution (map f u) (map f r) x)
construct2-substitution-map (inl _) = refl
construct2-substitution-map (inr _) = refl

As mentioned above, the internal constructors are special cases of substitute, so the compo-
sition for substitution suffices to prove the commutativity of substitution with the internal
constructors.

36

construct0-substitute : ∀ {A B} t
→ (ϕ : A → Λ B)
→ Id (substitute ϕ (construct0 t))

(construct0 t)
construct0-substitute t ϕ = substitute-composition _ ϕ t

· substitute-pointwise _ _ t (λ{()})

construct1-substitute : ∀ {A B} t
→ (ϕ : A → Λ B)
→ (u : Λ A)
→ Id (substitute ϕ (construct1 t u))

(construct1 t (substitute ϕ u))
construct1-substitute t ϕ u = substitute-composition _ ϕ t

· substitute-pointwise _ _ t (_ → refl)

construct2-substitute : ∀ {A B} t
→ (ϕ : A → Λ B)
→ (u r : Λ A)
→ Id (substitute ϕ (construct2 t u r))

(construct2 t (substitute ϕ u) (substitute ϕ r))
construct2-substitute t ϕ u r = substitute-composition _ ϕ t

· substitute-pointwise _ _ t construct2-substitution-substitution where
construct2-substitution-substitution : ∀ x

→ Id ((substitute ϕ ◦ construct2-substitution u r) x)
(construct2-substitution (substitute ϕ u) (substitute ϕ r) x)

construct2-substitution-substitution (inl _) = refl
construct2-substitution-substitution (inr _) = refl

Identities for mapping and substituting for each of the specific internal constructors are in-
cluded in the appendix, as they follow definitionally from applications of the above identities.

3.2.1 Monadic properties of Λ

We show monadic properties we’ve been hinting at above. A notion of monad (as an pro-
gramming idiom) is considering as a functor/type constructor with two operations, unit : a
→ M a, a lifting of values "into" the monad, and bind : M a → (a → M b) → M b, which
combines monadic functions. In our case, the constructor var : X → Λ X is unit and substitute
: (X → Λ X’) → Λ X → Λ X’ is bind with the first two arguments flipped, which we will call
bind’.

37

There are multiple equivalent methods of defining and proving that an object is a monad,
we chose to follow the Haskell methodology and show that the aforementioned unit (u : A →
T A) and composition (_⊗_ : → (A → T B) → (B → T C) → T C) of a Kleisli category[16]
fulfill the following axioms for all ϕ : A → T B, β : B → T C and α : C → T D, giving the
corresponding expression using bind’:

u⊗ ϕ = ϕ Left Identity
= bind′ u ◦ ϕ

ϕ⊗ u = ϕ Right Identity
= bind′ ϕ ◦ u

(ϕ⊗ β)⊗ α = ϕ⊗ (β ⊗ α) Associativity
bind′ ϕ ◦ (bind′ β ◦ α) = bind′(bind′ ϕ ◦ β) ◦ α

We note that in our case, these properties hold exensionally, in the sense that quantification
over a term t : A is required for all of the identities below and above to hold, so all This
makes Λ a monad in some E-Category, a category enriched over setoids[20].

The constructor var is shown to be the identity of the Kleisli category by a similar argument
to many of the lemmas above, with no outstanding issues:

var-identity-pointwise : ∀ {X B}
→ (x : X + B)
→ Id ((var \+) x) (var x)

var-identity-pointwise (free x) = refl
var-identity-pointwise (bound x) = refl

var-identity : ∀ {X }
→ ∀ (t : Λ X)
→ Id (substitute var t) t

var-identity (var x) = refl
var-identity (л x)

= ap л_ (substitute-pointwise (var \+)
var
x
var-identity-pointwise
· var-identity x)

var-identity (app t u)
= ap-binary app

(var-identity t)
(var-identity u)

var-identity (n ’ x)

38

= ap (n ’_) (substitute-pointwise (var \+)
var
x

var-identity-pointwise
· var-identity x)

The properties of var as a monadic identity for Λ are the first and second laws above, and
are respectively definitionally true or immediate form the identity above.

right-var-substitute : ∀ {X X’ : UU}
→ (ϕ : X → Λ X’)
→ ∀ x → Id (substitute ϕ (var x))

(ϕ x)
right-var-substitute ϕ x = refl

left-var-substitute : ∀ {X X’ : UU}
→ (ϕ : X → Λ X’)
→ ∀ x → Id (substitute var (ϕ x))

(ϕ x)
left-var-substitute ϕ x = var-identity (ϕ x)

Finally, we give an identity related to the Applicative typeclass of Haskell. It states that
mapping a function f (map f x) is identical to the subsititution of f postcomposed with the
variable constructor (which we interpret as our unit), which can be intutively seen from the
type information of (substitute (var ◦ f)), is typed as var : X → Λ X and (f : X → X’), so
postcomposing gives (Λ X → Λ X’), which corresponds to the type of a function mapping
map f.

The actual proof is along the same lines as the previous proofs, again showing the pointwise
equality for coproducts and composing it with a recursive call on the induction hypothesis.

map-subst-law-pointwise : ∀ {X X’} {B}
→ (f : X → X’)
→ (x : X + B)
→ Id (((var ◦ f) \+) x)

((var ◦ (f +)) x)
map-subst-law-pointwise f (free x) = refl
map-subst-law-pointwise f (bound x) = refl

map-subst-law : ∀ {X X’}

39

→ (x : Λ X)
→ (f : X → X’)
→ Id (substitute (var ◦ f) x) (map f x)

map-subst-law (var x) f = refl
map-subst-law {X = X } (л x) f

= ap л_ (substitute-pointwise _ _ x
(map-subst-law-pointwise f)

· (map-subst-law x (f +)))
map-subst-law (app t u) f

= ap-binary app (map-subst-law t f) (map-subst-law u f)
map-subst-law (n ’ x) f

= ap (n ’_)
(substitute-pointwise _ _ x (map-subst-law-pointwise f)
· map-subst-law x (f +))

Finally, we show the associative property of substitute, proving the third law stated above
and establishing Λ as a monad, the proof relying on two applications of the substitute-
composition.

substitute-assoc : ∀ {A B C D : UU}
→ (ϕ : A → Λ B)
→ (ψ : B → Λ C)
→ (α : C → Λ D)
→ ∀ x → Id (substitute (substitute α ◦ ψ) (ϕ x))

(substitute α (substitute ψ (ϕ x)))
substitute-assoc ϕ ψ α x = inv (substitute-composition ψ α (ϕ x))

This concludes all the syntactical notions we need, and we can move our discussion to the
reduction relation before finally finishing with the proof of confluence.

3.3 Reduction

We continue our journey towards the formalised proof of confluence by giving the formal-
isation of the reduction relation outline in the chapter on λ′-calculus, giving us a way to
computationally reason it in Agda. We also include formalisations of our notion of head
normal form and the transitive reflexive closure of the reduction relation.

40

3.3.1 Single step reduction

Reductions for the each of the constructors (lambda, applications on the left and right, quo-
tation) "pass through" towards the subterms, building terms until a potential β-reduction,
an application of a л-term, is reached, at which point a reduction is performed. Note how a
quotation term is defined to have the same behaviour, allowing β-reduction to be performed
under the quote, as advertised in the introduction.

infix 8 _;_

data _;_ {X } : (Λ X) → (Λ X) → UU1 where
β : ∀ f x → (app (л f) x) ; f [x]
л; : ∀ f f ’ → f ; f ’ → л f ; л f ’
app;left : ∀ f f ’ x → f ; f ’ → app f x ; app f ’ x
app;right : ∀ f x x’ → x ; x’ → app f x ; app f x’
’; : ∀ n t t’ → t ; t’ → (n ’ t) ; (n ’ t’)

The variable term encodes a De Bruijn index, and so we use the internal numeral constructor
to represent which variable is being quoted, syntactically corresponding to the index of a
variable in the list. nat-Fin is a library function taking elements of the finite type to the
natural numbers, returning the number corresponding to the element of the finite type.

– Quoting variables
’var; : ∀ n j → n ’ (var (bound j))

; var-cons (numeral (nat-Fin n j))

The reduction to the internal abstraction term moves the bound variable of the л into the
list of quoted variables, incrementing the number of quoted variablese, and applying the
function quote-free-var to reassociate on the type level.

– Quoting λ-abstractions
’л; : ∀ n f → n ’ (л f) ; л-cons (succ-N n ’ quote-free-var f)

Before discussing the next two cases of the reduction relation, we take a detour to introduce
our formalisation of head normal form, as discussed in the previous chapter.

41

3.3.2 Head Normal Form

Our definition of Head Normal Form (also known as β-normal form) is non-standard,
as it does not permit any л-terms to be in head normal form the "head" (leftmost
term of a sequence of applications), which is possible in the literature, where it is usu-
ally defined as the leftmost term before any bound variables i.e. not in the form
λx1λx2 . . . λxn. ((λt.N)M1 . . .Mm), or equivalently, in the form λx1λx2 . . . λxn. y M1 . . .Mm.
We lack a constructor for л-terms as we handle them separately, we cannot have any ab-
stractions binding applications or quotations in this version of head normal form, leaving
us with terms of the form(s) (⟨x1, x2 . . . xn⟩ ′) y M1 M2 . . .Mm. Using this definition,
we can guarantee that redexes reduce under the quote before being reduced to the internal
constructors. (л-terms might still be in head normal form with the canonical definition).

The head normal form is defined as a family over an arbitrary type X (the type of free
variables) Any variable term will trivially be in head-normal form, whilst the application
case requires the first (leftmost) term to be in head normal form, moving leftwards through
the term inductively.

data head-normal {X } (x : X) : Λ X → UU1 where
var-hn : head-normal x (var x)
app-hn : ∀ t u → head-normal x t → head-normal x (app t u)
’-hn : ∀ n t → head-normal (free x) t → head-normal x (n ’ t)

Identity (and therefore uniqueness) of two normal forms is as always given recursively down
each of the cases and distinguished by the head variable, and so the same term will have the
same variable in the head (leftmost position) h1 and h2 being the head normal forms of the
first term of an application (for applications):

head-normal-Id : ∀ {X } (t : Λ X) (x : X) (y : X)
→ head-normal x t → head-normal y t → Id x y

head-normal-Id t x y var-hn var-hn = refl
head-normal-Id _ _ _ (app-hn t u h1) (app-hn t’ u’ h2) = head-normal-Id _ _ _ h1 h2
head-normal-Id _ _ _ (’-hn n t h1) (’-hn .n .t h2) = is-injective-inl

(head-normal-Id _ _ _ h1 h2)

The function is-injective-inl is a result from the Unimath library and gives (eponymously)
the injectivity of the the left side of a sum. Applying it to the recursion in the ’-hn case,
effectively only considering the free variables of the quoted term when determining if its head
variable identical to another.

Returning to the reduction relation, to convert an application into its corresponding internal
constructor while preserving confluence, the quoted application must be in head normal form

42

for an already quoted variable. This prevents a term such as ⟨⟩ ′ ((λx.x) y) from yielding
two different reductions, either by first quoting the lambda and then the variable, or by
performing β-reduction and quoting the result.

Stipulating the requirement of the application being in head normal form ensures the "quota-
bility" of the left side of the application (as it has a variable furthest to the left), while still
leaving the option for terms within the application to be unquotable.

’app; : ∀ n t u i
→ head-normal (bound i) t
→ n ’ (app t u)
; app-cons (n ’ t) (n ’ u)

Reducing to the internal quotation constructor, or quoting a quote, is similar to the applica-
tion term, as we require a head normal form for some bound variable (present in the list of
quoted variables), but with the stipulation that it is not present in the inner (m-sized) list.
The result is the internal constructor quoting the list of variables of the internal constructor,
and proceeding with the reduction by also adding it to the rest of the term and joining the
quotes (on the type level, adding the finite types together).

”; : ∀ m n i t
→ head-normal (free (bound i)) t
→ n ’ (m ’ t)
; quote-cons (numeral m) ((add-N n m) ’ join-quotes n m t)

The the final term of iterated reduction will only contain terms with the constructors of
the λ-calculus (or diverge as with other divergent terms). We can reason about iterated
reduction by encoding a notion of the transitive reflexive closure of a term.

3.3.3 Decidability of head normal form

We define a decision procedure for checking whether or not a term is in head normal form,
encoding it as a sum where inl witnessing the normal form and inr withnessing the lack of
one. Variables are trivially in head normal form, and so are returned in the left case of the
coproduct, var-hn witnessing the head normal form. Lambda terms are definitionally never
in head normal form, as shown below, and we use a metalanguage λ-function to encode the
universal quantification of the lemma л-hn-is-empty. Application and quotation are defined
using lemmas discussed below, passing an extra call with the decision procedure for the the
right side of the application and the quoted term respectively.

43

decide-head-normal : ∀ {X }
→ (t : Λ _)
→ (Σ X (λ x → head-normal x t))

+ ((x : X) → ¬ (head-normal x t))
decide-head-normal (var x) = inl (x , var-hn)
decide-head-normal (л t) = inr (λ x → л-hn-is-empty t x)
decide-head-normal (app t u) = decide-app t u ((decide-head-normal t))
decide-head-normal (n ’ t) = decide-’ n t (decide-head-normal {_ + Fin n} t)

We vacuously observe that abstraction terms are by definition never in (abstraction-free)
head normal form, as there is no constructor in the datatype head-normal including a lambda.

л-hn-is-empty : ∀ {X }
→ (t : Λ (X + unit))
→ (x : X) → ¬ (head-normal x (л t))

л-hn-is-empty t x ()

For the quotation case, we need to further recurse on whether or not the head variable is
bound (part of the list of quoted variables) or free (the term being quoted) and so use a
seperate decision procedure.

If the quoted term is in head normal form for a free variable x, the quotation will also be in
head normal form, so we encode it using the inl constructor over a dependent pair along the
head normal form term using the quotation constructor.

When a term is not in head normal form, the quotation will not have a normal form, which
we show through a pattern matching lambda, a feature of Agda allowing us to define a top-
level helper function inline and letting us give the non-existence of a head normal form for
a quoted term using the non-existence of the quotation.

decide-’ : ∀ {X } (n : N) (t : Λ (X + Fin n))
→ (Σ (X + Fin n) (λ x → head-normal x t))

+ ((i : (X + Fin n)) → ¬ (head-normal i t))
→ (Σ X (λ x → head-normal x (n ’ t)))

+ ((x : X) → ¬ (head-normal x (n ’ t)))
decide-’ n t (inl (free x , hnf)) = inl (x , (’-hn n t hnf))
decide-’ n t (inl (bound x , hnf)) = inr (λ x1 t1 → ¬-decides-’-head-normal _ _ t hnf t1)
decide-’ n t (inr n-hnf) = inr (λ{ x (’-hn .n .t hnf) → n-hnf (free x) hnf })

A term cannot be in a head normal form for a bound variable and we show it by the following
lemma, which uses the identity of head normal form along with the absurdity of equality
between the two sides of a coproduct:

44

¬-decides-’-head-normal : ∀ {X : UU} {n : N} → (x : X) → (i : Fin n)
→ (t : Λ (X + Fin n))
→ (head-normal {X = (X + Fin n)} (bound i) t)
→ ¬ (head-normal x (n ’ t))

¬-decides-’-head-normal x i1 t x1 (’-hn _ .t x2) = bound=free-absurd
(head-normal-Id _ _ _ x1 x2)

showing that for all lists of quoted variables (terms of the finite type x1 : Fin n) and all terms
with n free variables t1 : Λ (X + Fin n), there are no head normal forms of the quoted term
given the (non-existant) normal form of the quoted variables.

The application case is simpler, as it only depends on the head normal form of the first term
t in the application. If the term is in head normal form, we extract the witness of this fact
using pr1, the first projection of the head normal form, and use the inl constructor to encode
the continued decision procedure.

decide-app : ∀ {X } (t u : Λ X)
→ (Σ X (λ x → head-normal x t))

+ ((x : X) → ¬ (head-normal x t))
→ (Σ X (λ x → head-normal x (app t u)))

+ ((x : X) → ¬ (head-normal x (app t u)))
decide-app t u (inl x) = inl ((pr1 x) , (app-hn t u (pr2 x)))
decide-app t u (inr x) = inr (λ y → ¬-decides-app-head-normal y t u (x y))

Finally if the term is not in head normal form, we use the lemma below to show that if the
left side of an application is not in head normal form (¬ (head-normal x t)), neither is the
rest of the application (¬ (head-normal x (app t u))).

¬-decides-app-head-normal : ∀ {X }
→ (x : X)
→ (t u : Λ X)
→ ¬ (head-normal x t)
→ ¬ (head-normal x (app t u))

¬-decides-app-head-normal x t u n-hnf (app-hn .t .u x2) = n-hnf x2

3.3.4 Transitive Reflexive Closure

Encoding the transitive reflexive closure of the reduction relation (;*) can be done in a
fairly minimal way, defining it for a Λ-term t. Reflexivity is simply encoded as a relation of

45

t with itself, the reflexivity of ;. The encoding of transitivity requires a reduction of the
term in the context t ; u and the next step/termination of the reduction u ; ∗v, giving
the transitive composition t; ∗v.

infix 25 _;*_
data _;*_ {X } (t : Λ X) : (Λ X) → UU1 where
;*-refl : t ;* t
;*-trans : ∀ {u v} → t ; u → u ;* v → t ;* v

The transitivity of ; ∗ is used to show the inclusion of the parallel reduction relation in the
reflexive transitive closure, part of the proof of confluence. It’s shown through induction on
both arguments, with a recursion on the t Note how the lemma below includes two terms of
the trans. refl. closure in its context, (x ;* y) and (y ;* z), in contrast to the transitivity
constructor for the datatype, which requires a single step reduction ;.

;*-is-transitive : ∀ {X } {x : Λ X } {y : Λ X } {z : Λ X }
→ x ;* y
→ y ;* z
→ x ;* z

;*-is-transitive s ;*-refl = s
;*-is-transitive ;*-refl (;*-trans x t) = ;*-trans x t
;*-is-transitive (;*-trans x s) (;*-trans y t) = ;*-trans x

(;*-is-transitive s
(;*-trans y t))

Each of the constructors in the reduction relation allows for a pass-through of a term into
the corresponding term of the transitive reflexive closure, allowing us to build terms from
sub-terms similarly to the reduction relation. The complete proofs for each of these are
included in the appendix, as each contains the same cases:

app-;*-left : ∀ {X }
→ {f f ’ x : Λ X }
→ f ;* f ’
→ app f x ;* app f ’ x

app-;*-left ;*-refl = ;*-refl
app-;*-left (;*-trans x ;*-refl) = ;*-trans (app;left _ _ _ x)

;*-refl
app-;*-left (;*-trans x (;*-trans x1 red)) = ;*-trans (app;left _ _ _ x)

(app-;*-left
(;*-trans x1 red))

The first encodes for no reductions (;*-refl), and reflexivity suffices, the next for a single
step of the reduction, using the corresponding constructor of the original reduction and
the final for any amount of steps (;*-trans x (;*-trans x1 red)), applying the constructor
recursively by applying the lemma to the transitive constructor red.

46

Each of the internal constructors also pass through the reflexive transitive closure, and we
show them for fixed terms substituted into the constructors (and whether or not they are
in head normal form), e.g. the terms of the application and the head normal form of the
first subterm. This allows the proofs to be particularly simple, as we do not recurse over
any reduction. We can also construct a more general formulation of this pass-through which
directly takes a term ; and gives a term of ; ∗.

cons-;* : ∀ {X } {n : N} {a b : Fin n → Λ X }
→ (j : Fin n)
→ a j ; b j
→ a j ;* b j

cons-;* j red = ;*-trans red ;*-refl

var-cons-;* : ∀ {X } {n : N}
→ (j : Fin n)
→ (n ’ var (inr {A = X } j)) ;* var-cons (numeral (nat-Fin n j))

var-cons-;* {n = n} j = cons-;* {n = n}
{a = (λ t → n ’ var (inr j))}
{b = (λ t → var-cons (numeral (nat-Fin n j)))}
j (’var; n j)

л-cons-;* : ∀ {X } {n : N}
→ (f : Λ ((X + Fin n) + unit))
→ (n ’ (л f)) ;* (л-cons (succ-N n ’ quote-free-var f))

л-cons-;* f = ;*-trans (’л; _ f) ;*-refl

app-cons-;* : ∀ {X } {n : N}
→ (i : Fin n)
→ (t u : Λ (X + Fin n))
→ head-normal (bound i) t
→ (n ’ app t u) ;* app-cons (n ’ t) (n ’ u)

app-cons-;* i t u hnf = ;*-trans (’app; _ t u i hnf) ;*-refl

quote-cons-;* : ∀ {X } (m n : N)
→ (i : Fin n)
→ (t : Λ ((X + Fin n) + Fin m))
→ (head-normal (free (bound i)) t)
→ (n ’ (m ’ t)) ;* quote-cons (numeral m) ((add-N n m) ’ join-quotes n m t)

quote-cons-;* n m i t hnf = ;*-trans (”; n m i _ hnf) ;*-refl

3.4 Confluence

We have finally reached the point in this thesis where we can show the confluence of λ′.
First, we define the parallel reduction relation as an inductive relation over some type X,

47

similar to the regular reduction relation:

infix 9 _;◦_
data _;◦_ {X } : Λ X → Λ X → UU1 where

The parallel reduction has the same signature as the regular reduction relation as one might
expect, but the differences start already with the first few constructors:

β◦ : ∀ f f ’ x x’ → f ;◦ f ’
→ x ;◦ x’ → (app (л f) x) ;◦ f ’ [x’]

var◦ : ∀ x → (var x) ;◦ (var x)
app◦ : ∀ f f ’ x x’ → f ;◦ f ’ → x ;◦ x’ → app f x ;◦ app f ’ x’
л◦ : ∀ f f ’ → f ;◦ f ’ → л f ;◦ л f ’

The parallel reduction quantifies over more terms (ΛX’s) than the original and contains
more terms in the context for application and β-reduction, as we need to encode all possible
single-step reductions, which the added ;◦-constraints encode. We can (and will below)
recover the regular reduction relation by considering the marked variables (f’ and x’) as f
and x.

’◦ : ∀ n t t’ → t ;◦ t’ → n ’ t ;◦ n ’ t’
’-var◦ : ∀ n j → n ’ (var (bound j)) ;◦ var-cons (numeral (nat-Fin n j))
’л◦ : ∀ n f f ’ → f ;◦ f ’

→ n ’ (л f) ;◦ л-cons (succ-N n ’ quote-free-var f ’)
’-app◦ : ∀ n t t’ u u’ i → head-normal (bound i) t

→ t ;◦ t’
→ u ;◦ u’
→ n ’ (app t u) ;◦ app-cons (n ’ t’) (n ’ u’)

”◦ : ∀ n m t t’ i → head-normal (free (bound i)) t
→ t ;◦ t’
→ n ’ (m ’ t) ;◦ quote-cons (numeral m)

((add-N n m) ’ join-quotes n m t’)

The story with internal constructors is much the same as the reduction relation, with ad-
ditional constraints on the reduction which allow for the transfer of a parallel reduction (a
single-step redex) under the internal constructors.

We define the metatheoretical function ∗ or starred, which as mentioned above reduces every
single step reduction available, but crucially does not do so for multiple reduction steps. To
do so, we define a few helper functions for the internal constructors, which will mutually

48

recurse with the main function note the split on the application term to force β-redexes to
reduce and the calls to the helper functions, where the last argument is a call to starred t:

mutual
starred : ∀ {X } → Λ X → Λ X
starred (var x) = var x
starred (л x) = л starred x
starred (app (л x) y) = (starred x) [(starred y)]
starred (app (var x) y) = app (starred (var x)) (starred y)
starred (app (app x x1) y) = app (starred (app x x1)) (starred y)
starred (app (n ’ x) y) = app (starred (n ’ x)) (starred y)
starred (n ’ var (free x)) = n ’ (starred (var (free x)))
starred (n ’ var (bound x)) = var-cons ((numeral (nat-Fin n x)))
starred (n ’ л x) = л-cons (succ-N n ’ quote-free-var (starred x))
starred {X } (n ’ app t u) = star-app {X } {n} t u

(decide-head-normal t)
(starred (app t u))

starred {X } (n ’ (m ’ x)) = star-” {X } {n} {m}
(decide-head-normal x)
(starred (m ’ x))

The application term is dependent on whether the left term is has a variable in the quoted
list as its head variable. In the case of a free variable in the head position, we cannot
reduce to the internal constructor of application, so instead we use the quote constructor
and recurse on both sides of the application, while if the term is in head normal form for a
bound variable, we fulfill the criteria for reduction to internal application and so we recurse
on both sides of the application. Finally, if the term is not in head normal form we quote a
starred call, represented by r, where the reduction of quotation is blocked and the term is
stuck under the quote.

star-app : ∀ {X } {n : N} (t : Λ (X + Fin n)) → (u : Λ (X + Fin n))
→ (Σ (X + Fin n) (λ x → head-normal x t))

+ ((x : (X + Fin n)) → ¬ (head-normal x t))
→ (r : Λ (X + Fin n)) – spot in the context for a starred call
→ Λ X

star-app {n = n} t u (inl (free x , pr4)) r = n ’ (app (starred t) (starred u))
star-app {n = n} t u (inl (bound x , pr4)) r = (app-cons (n ’ starred t) (n ’ starred u))
star-app {n = n} t u (inr x) r = n ’ r

A similar breakdown is true for the double quotation helper, with the corresponding free
applied to to the decision procedure, to see if the head variable is not in the bound list of
the inner quotation while being bound in the list of the outer quotation:

49

star-” : ∀ {X } {n m : N} {t : Λ ((X + Fin n) + Fin m)}
→ (Σ ((X + Fin n) + Fin m) (λ x → head-normal x t))

+ ((x : (X + Fin n) + Fin m) → ¬ (head-normal x t))
→ (s : Λ (X + Fin n)) – spot in the context for a starred call
→ Λ X

star-” {X } {n} {m} {t} (inl (free (free x) , pr4)) s
= n ’ (m ’ starred t)

star-” {X } {n} {m} {t} (inl (free (bound x) , pr4)) s
= quote-cons (numeral m)

((add-N n m) ’ join-quotes {X } n m (starred t))
star-” {n = n} (inl (bound x , pr4)) s = n ’ s
star-” {n = n} (inr x) s = n ’ s

We continue by showing that the reduction relation ; is included in the parallel relation
;◦. Before doing so, we show the reflexivity of ;◦ for any term of λ′ as a recursion down
each of the constructors of ΛX:

– The parallel reduction relation is reflexive
refl-;◦ : ∀ {X } → (x : Λ X) → x ;◦ x
refl-;◦ (var x) = var◦ x
refl-;◦ (л x) = л◦ x x (refl-;◦ x)
refl-;◦ (app t u) = app◦ t t u u (refl-;◦ t) (refl-;◦ u)
refl-;◦ (n ’ x) = ’◦ n x x (refl-;◦ x)

The reflexivity of ;◦ is used to provide the parallel reductions stipulated by the constructors
of ;◦ translating the applications (one side will stay constant) and internal constructors (as
they do not parallel reduce under regular reduction), otherwise we recurse down each of the
constructors using the induction hypothesis.

;-implies-;◦ : ∀ {X } (x y : Λ X)
→ x ; y
→ x ;◦ y

;-implies-;◦ .(app (л f) x) .(f [x]) (β f x)
= β◦ f f x x (refl-;◦ f) (refl-;◦ x)

;-implies-;◦ .(л f) .(л f ’) (л; f f ’ s)
= л◦ f f ’ (;-implies-;◦ f f ’ s)

;-implies-;◦ .(app f x) .(app f ’ x) (app;left f f ’ x s)
= app◦ f f ’ x x (;-implies-;◦ f f ’ s) (refl-;◦ x)

;-implies-;◦ .(app f x) .(app f x’) (app;right f x x’ s)
= app◦ f f x x’ (refl-;◦ f) (;-implies-;◦ x x’ s)

;-implies-;◦ .(n ’ t) .(n ’ t’) (’; n t t’ s)
= ’◦ n t t’ (;-implies-;◦ _ _ s)

50

;-implies-;◦ .(n ’ (л f)) .(л-cons (succ-N n ’ quote-free-var f)) (’л; n f)
= ’л◦ n f f (refl-;◦ f)

;-implies-;◦ .(n ’ var (bound j)) .(var-cons (numeral (nat-Fin n j))) (’var; n j)
= ’-var◦ n j

;-implies-;◦ .(n ’ app t u) .(app-cons (n ’ t) (n ’ u))
(’app; n t u i x)
= ’-app◦ n t t u u i x (refl-;◦ t) (refl-;◦ u)

;-implies-;◦ .(n ’ (m ’ t)) .(quote-cons (numeral m) (add-N n m ’ join-quotes n m t))
(”; m n i t x)
= ”◦ n m t t i x (refl-;◦ t)

We can now show our first non-trivial result, namely that any term (x : Λ X) will parallel
reduce to the term starred x with all of the redexes being reduced. The proof requires another
mutual block to define, due to the helper functions necessitated by the starred function calling
the main function in certain cases.

The final proof is again a case split recursing over the constructors of the Λ datatype, though
with an additional split on application terms, as starred reduces all available β-reductions,
using helper lemmas for the internal application and quotation constructors to encode the
internal reductions depending on head normal form.

mutual
refl-star-;◦ : ∀ {X } (x : Λ X) → x ;◦ (starred x)
refl-star-;◦ (var x)

= var◦ x
refl-star-;◦ (л s)

= л◦ s (starred s) (refl-star-;◦ s)
refl-star-;◦ (app (var x) s)

= app◦ (var x) (var x)
s (starred s)

(refl-star-;◦ (var x))
(refl-star-;◦ s)

refl-star-;◦(app (л f) x)
= β◦ f (starred f)

x (starred x)
(refl-star-;◦ f)

(refl-star-;◦ x)
refl-star-;◦ (app (app f x) x’)

= app◦ (app f x) (starred (app f x))
x’ (starred x’)

(refl-star-;◦ _)
(refl-star-;◦ _)

51

refl-star-;◦ (app (n ’ t) t’)
= app◦ (n ’ t) _ t’ _ (refl-star-;◦ (n ’ t))

(refl-star-;◦ t’)
refl-star-;◦ (n ’ var (free x))

= ’◦ n (var (free x))
(var (free x))
(var◦ (free x))

refl-star-;◦ (n ’ var (bound x))
= ’-var◦ n x

refl-star-;◦ (n ’ (л s))
= ’л◦ n s

(starred s)
(refl-star-;◦ s)

refl-star-;◦ (n ’ app f x)
= refl-star-app (decide-head-normal f)

refl-star-;◦ (n ’ (m ’ s))
= refl-star-quote (decide-head-normal s)

For quoted application, case split on the decision procedure for evaluating the head normal
form outlined in the previous section. In the case that the term is in head normal form for
some free variable, we continue the recursive call of the application under the quotation,
same as if the term is not in head normal form (inr). In the case of no normal form we case
split further on the left side of the quoted application to allow for β-reductions, which are
not an issue for the free case, as no л-terms are in (our notion of) head normal form. The
only case in which we apply and recurse under the internal constructor is if the left side has
a head variable in the quoted list:

refl-star-app : ∀ {X } {n : N} {f x : Λ (X + Fin n)}
→ (s : ((Σ (X + Fin n) (λ x → head-normal x f))

+ ((x : (X + Fin n)) → ¬ (head-normal x f))))
→ n ’ app f x ;◦ star-app {X } {n} f x s (starred (app f x))

refl-star-app (inl (free x1 , pr4))
= ’◦ _ _ _ (app◦ _ _ _ _ (refl-star-;◦ _) (refl-star-;◦ _))

refl-star-app (inl (bound x1 , pr4))
= ’-app◦ _ _ _ _ _ x1 pr4

(refl-star-;◦ _)
(refl-star-;◦ _)

refl-star-app {f = var x1} {x} (inr ._)
= ’◦ _ _ _ (app◦ _ _ _ _ (refl-;◦ _)

(refl-star-;◦ _))
refl-star-app {f = л f } {x} (inr ._)

= ’◦ _ _ _ (β◦ _ _ _ _ (refl-star-;◦ _)

52

(refl-star-;◦ _))
refl-star-app {f = app f x’} {x} (inr ._)

= ’◦ _ _ _ (app◦ _ _ _ _ (refl-star-;◦ _)
(refl-star-;◦ _))

refl-star-app {f = m ’ f } {x = x} (inr ._)
= ’◦ _ _ _ (app◦ _ _ _ _ (refl-star-;◦ _)

(refl-star-;◦ _))

The induction for the double quotation case is similarly case split, reducing only to the
internal constructor (′′◦) in the case of a the term being in head normal form for a variable
free in the inner list and bound in outer quoted list. Otherwise we recurse down the term
with the relevant terms of the parallel reduction and inductive hypothesis (using the helper
functions directly in some of the cases).

refl-star-quote : ∀ {X } {n m : N} {t : Λ ((X + Fin n) + Fin m)}
→ (s : ((Σ ((X + Fin n) + Fin m) (λ x → head-normal x t))

+ ((x : ((X + Fin n) + Fin m)) → ¬ (head-normal x t))))
→ n ’ (m ’ t) ;◦ star-” {n = n} {m = m} s (starred (m ’ t))

refl-star-quote {t = t}
(inl (free (free x) , hnf))
= ’◦ _ _ _ (’◦ _ _ _ (refl-star-;◦ t))

refl-star-quote {t = t}
(inl (free (bound x) , hnf))
= ”◦ _ _ _ _ x hnf (refl-star-;◦ t)

refl-star-quote {t = var (bound x1)}
(inl (bound x , hnf))
= ’◦ _ _ _ (’-var◦ _ x1)

refl-star-quote {t = app t t1}
(inl (bound x , hnf))
= ’◦ _ _ _ (refl-star-app (decide-head-normal t))

refl-star-quote {t = n1 ’ t}
(inl (bound x , hnf))
= ’◦ _ _ _ (refl-star-quote {m = n1} (decide-head-normal t))

refl-star-quote {t = var (free y)} (inr x)
= ’◦ _ _ _ (refl-;◦ (_ ’ var (free y)))

refl-star-quote {t = var (bound t)} (inr x)
= ’◦ _ _ _ (’-var◦ _ t)

refl-star-quote {t = л t} (inr x)
= ’◦ _ _ _ (’л◦ _ _ _ (refl-star-;◦ t))

refl-star-quote {t = app t u} (inr x)
= ’◦ _ _ _ (refl-star-app (decide-head-normal t))

refl-star-quote {t = n1 ’ t} (inr x)
= ’◦ _ _ _ (refl-star-quote (decide-head-normal t))

53

We recall that the next step outlined in the previous chapter is showing the triangle property
(For all terms x, y x ;◦ y implies y ;◦ (starred x)) for the parallel reduction relation. A
specific case (β-reduction) of this lemma, requires us to show that mapping and substitution
distribute over the parallel reduction.

3.4.1 map over parallel reduction

Before we can show that maps distribute over parallel reductions, we need some preliminary
lemmas. First, we show that we can map a function over a head normal form by recursing over
the constructors of head normal form, required for the internal quotation and application.

map-head-normal : ∀ {X X’}
→ (f : X → X’)
→ (s : X)
→ (t : Λ X)
→ head-normal s t
→ head-normal (f s) (map f t)

map-head-normal f s .(var s) var-hn
= var-hn

map-head-normal f s .(app t u) (app-hn t u x)
= app-hn _ _

(map-head-normal _ _ _ x)
map-head-normal f s .(n ’ t) (’-hn n t x)

= ’-hn _ _
(map-head-normal _ _ _ x)

Many of the cases for the mapping lemma require us to transport over identities which
witness the commutativity of map with single variable substitution, sum reassociation (for
internal abstraction), and joining quotations. Transport (tr : (B : A → UU j) → (x y : A)
→ (p : Id x y) → B x → B y) is a property of the identity type which allows us to transport
two terms of the same type (x y : A) as sections of a type family (B : A → UU j) given an
identity between them (p : Id x y).

The first lemma can be read as "mapping f over a term t with a free variable and then
substituting a single variable with the mapping of f over a different term x is equal to
mapping f over the single variable substitution of x into t.

Commutativity of the single variable substitution differs significantly from the other two, as
it is a special case of substitute for a single free variable. We therefore use the identity for
map and substitution from the left (substitute-map-commute-◦) and show that it is pointwise
equal to the identity of the map and substitution from the left (substitute-map-comute).

54

sub-single-map-pointwise : ∀ {X X’ B : UU}
→ (f : X → X’)
→ (x : Λ X)
→ (t : X + unit)
→ Id ((substitute-single (map f x) ◦ (f +)) t)

((map f ◦ substitute-single x) t)
sub-single-map-pointwise f x (free t) = refl
sub-single-map-pointwise f x (bound star) = refl

sub-single-map-commutes : ∀ {X X’}
→ (f : X → X’)
→ (t : Λ (X + unit))
→ (x : Λ X)
→ Id ((map (f +) t) [map f x])

(map f (t [x]))
sub-single-map-commutes f t x

= ((substitute-map-commute-◦ t (f +)
(substitute-single (map f x))

· substitute-pointwise (substitute-single (map f x) ◦ (f +))
(map f ◦ substitute-single x)
t
(sub-single-map-pointwise {B = unit} f x)))

· substitute-map-commute (substitute-single x) f t

The commutativity of reassociating the coproduct, named quote-map-commute as it’s used in
the quotation of л-terms. We apply the composition lemma of map on both sides (inverted
on the right) and show the pointwise equality of the compositions.

assoc-map-free-commute : ∀ {X X’ B C : UU}
→ (f : X → X’)
→ (x : (X + B) + C)
→ Id (map-assoc-coprod ((f + +) x))

((f +) (map-assoc-coprod x))
assoc-map-free-commute f (free (free x)) = refl
assoc-map-free-commute f (free (bound x)) = refl
assoc-map-free-commute f (bound x) = refl

assoc-map-commute : ∀ {X X’ B C : UU}
→ (f : X → X’)
→ (t : Λ ((X + B) + C))
→ Id (map map-assoc-coprod (map ((f [B]+) [C]+) t))

(map (f [B + C]+) (map map-assoc-coprod t))

55

assoc-map-commute f t = (map-composition (f + +) map-assoc-coprod t
· map-pointwise _ _ lem t)
· inv (map-composition map-assoc-coprod (f +) t) where

lem : ∀ x → Id (map-assoc-coprod ((f + +) x)) ((f +) (map-assoc-coprod x))
lem = assoc-map-free-commute f

The second identity, used to show that join-quote commutes (recall that join-quote is defined
using a map) As both of these are lifts (maps) of functions over two types of free variables
into λ′ calculus, they do not depend on any substitutions and can be shown nearly identically
through reassociation and (trivial) pointwise equality.

join-Fin-map-free-commute : ∀ {X X’ : UU} → (n m : N)
→ (f : X → X’)
→ (x : _)
→ Id (join-Fin n m (((f [Fin n]+) [Fin m]+) x))

((f +) (join-Fin n m x))
join-Fin-map-free-commute n m f (free (free x)) = refl
join-Fin-map-free-commute n m f (free (bound x)) = refl
join-Fin-map-free-commute n m f (bound x) = refl

join-quote-map-commute : ∀ {X X’} {n m : N}
→ (f : X → X’)
→ (t : Λ _)
→ Id (map (join-Fin n m) (map (f + +) t))

(map (f +) (map (join-Fin n m) t))
join-quote-map-commute {n = n} {m = m} f t

= map-composition (f + +) (join-Fin n m) t
· (map-pointwise _ _ lem t
· inv (map-composition (join-Fin n m) (f +) t))
where

lem : ∀ x → Id (join-Fin n m ((f + +) x)) ((f +) (join-Fin n m x))
lem x = join-Fin-map-free-commute _ _ f x

Mapping over the terms of the basic constructors of the λ-calculus amounts to mapping over
each of the subterms of the reduction with termination in the case of variables, where we
apply the function to the variable.

map-;◦ : ∀ {X X’} {x x’ : Λ X }
→ (f : X → X’)
→ x ;◦ x’
→ map f x ;◦ map f x’

map-;◦ f (var◦ x) = var◦ (f x)

56

map-;◦ f (app◦ g h x x’ r1 r2) = app◦ (map f g) (map f h)
(map f x) (map f x’)
(map-;◦ f r1)
(map-;◦ f r2)

map-;◦ f (л◦ t t’ r) = л◦ (map (f +) t) (map (f +) t’)
(map-;◦ (f +) r)

map-;◦ f (’◦ n t t’ r) = ’◦ n (map (f +) t) (map (f +) t’)
(map-;◦ (f +) r)

Using the first of the above identities, we transport the parallel reduction of mapping over a
β-reduction to recursing map down the components of the β case of parallel reduction.

map-;◦ f (β◦ g g’ x x’ r1 r2)
= tr (λ t → map f (app (л g) x) ;◦ t)

(sub-single-map-commutes _ g’ x’)
(β◦ _ _ _ _ (map-;◦ (f +) r1)

(map-;◦ f r2))

The internal variable constructor assumes free variables to map over, as indicated by the
bound j term, referring to the index of the variable in the list. Using map-var, we show that
mapping over the constructor is the same as applying the constructor to the mapping over
its parameters (the internal representation of De Bruijn indices), which is encoded as an ap
of var-cons and the commutativity of the numerals, reflecting the right hand (result) of the
parallel reduction.

map-;◦ f (’-var◦ n j)
= tr (λ x → n ’ var (bound j) ;◦ x)

(inv (map-var f (numeral (nat-Fin n j))
· ap var-cons (map-numeral-fixed f (nat-Fin n j))))

((’-var◦ n j))

We continue to transport over the reduction of the mapping using the same idea as above
with the commutativity of map and coproduct reassociation to show that mapping over
a quoted л-term will reduce to mapping over the continued reduction under the internal
constructor, by applying л-cons to the witness of commutativity and rebuilding the term.

map-;◦ f (’л◦ n g g’ x)
= tr (λ x → map f (n ’ (л g)) ;◦ x)

(ap (λ x → л-cons (succ-N n ’ x))
(assoc-map-commute f g’)

57

· inv (map-л f ((succ-N n ’ quote-free-var g’))))
(’л◦ n (map (f + +) g) (map (f + +) g’)

(map-;◦ (f + +) x))

The quotation case is similar to the л-case, with the added complication of the internal
quotation operator taking both a numeral representing the list of quoted variables, hence we
use ap-binary to apply the quotation constructor to both the identity showing that mapping
over numeral is "fixed" (idempotent) and the commutativity of join-quote and map. We also
map over the proof of head normal form of the induction hypothesis to provide the required
head normal form.

map-;◦ f (”◦ n m t t’ j x x1)
= tr (λ x → map f (n ’ (m ’ t)) ;◦ x)

(ap-binary quote-cons (inv (map-numeral-fixed f m))
(ap (λ t → add-N n m ’ t) (join-quote-map-commute {n = n} {m = m} f t’))
· (inv (map-’ f (numeral m) _)))

(”◦ n m (map (f + +) t) (map (f + +) t’) j
(map-head-normal (f + +) _ _ x)
(map-;◦ (f + +) x1))

The internal application case is easier to prove, as it simply recurses the reduction under the
internal quotation case. The transport uses map-app, a special case of the commutativity
of map and substitution construct2-substitute, along with mapping f over the witness of
head normal form of the left term in the application to give a witness for the term being
transported over.

map-;◦ f (’-app◦ n t t’ u u’ i hnf s1 s2)
= tr (λ x → map f (n ’ (app t u)) ;◦ x)

(inv (map-app f (n ’ t’) (n ’ u’)))
(’-app◦ n _ _ _ _ i (map-head-normal (f +) _ _ hnf)

(map-;◦ (f +) s1)
(map-;◦ (f +) s2))

3.4.2 substitute over parallel reduction

Having proven that one can map over the parallel reduction, we define shift-variable over it,
which is defined as mapping free and adding some amount of fresh free variables.

shift-variables-parallel : ∀ {X V } {x x’ : Λ X }
→ x ;◦ x’

58

→ shift-variable {V = V } x ;◦ shift-variable {V = V } x’
shift-variables-parallel = map-;◦ free

Substitution of free variables follows quite naturally from this, given a term encoding the
pointwise reduction (pw), a term witnessing the parallel reduction of a substitution (ϕ :
X → ΛX ′) to (ϕ′ : X → ΛX ′) for all free variables, we keep the bound variables using the
variable constructor and shift the free varibles.

\+-over-;◦ : ∀ {X X’ B} {ϕ ϕ’ : X → Λ X’}
→ (∀ i → ϕ i ;◦ ϕ’ i)
→ (t : (X + B))
→ (substitute-free-variables ϕ t) ;◦ (substitute-free-variables ϕ’ t)

\+-over-;◦ pw (free f) = shift-variables-parallel (pw f)
\+-over-;◦ pw (bound f) = var◦ (bound f)

We will use the same strategy to prove the distributivity of pointwise reducible substitutions
as for map, so we need to prove identities to transport the parallel reductions. The first of
these is the commutativity of single variable substitution (used for defining β substitution,
hence the name) and full substitution, accounting for free variables by using \+.

We start by composing each of the substitutions, leaving us with a pointwise identity to show.
The bound variables are trivially idenitical as they are not changed under substitution. As
the single variable substitution is defined using a map for free variables, we use the lemma
for precomposition of substitution with map, giving a term with only substitutions, and as
the single variable substitution uses the var constructor we use the witness for var being the
Kleisli identity, and use a trivial witness to show their pointwise definitional equality.

single-substitution-commute-pointwise : ∀ {X X’}
→ (ϕ : X → Λ X’)
→ (x : Λ X)
→ ∀ f
→ Id ((substitute

(substitute-single (substitute ϕ x)) ◦ (ϕ \+)) f)
((substitute ϕ ◦ substitute-single x) f)

single-substitution-commute-pointwise ϕ x (free f) = substitute-map-commute-◦ (ϕ f) _ _
· (substitute-pointwise _ _ (ϕ f) (λ _ → refl)
· var-identity (ϕ f))

single-substitution-commute-pointwise ϕ x (bound star) = refl

single-substitution-commute : ∀ {X X’}
→ (ϕ : X → Λ X’)
→ (f : Λ (X + unit))

59

→ (x : Λ X)
→ Id (substitute (ϕ \+) f [substitute ϕ x])

(substitute ϕ (f [x]))
single-substitution-commute ϕ f x

= substitute-composition (ϕ \+) _ f
· (substitute-pointwise _ _ f (single-substitution-commute-pointwise _ _)
· inv (substitute-composition _ ϕ f))

Proceeding with commutativity of substitution and reassociation of the coproduct (with the
obvious expansion of substitutions). The expansions require the post- and precompositions
of substitution with map (similar to above), with the pointwise lemma being trivial for all
cases but the leftmost (free (free x)), for which we decompose each of the maps (using the
inverse of math-composition).

assoc-coprod-\+ : ∀ {X X’ B C : UU}
→ (t : X → Λ X’)
→ (x : (X + B) + C)
→ Id (((t [(B + C)]\+) ◦ map-assoc-coprod) x)

((map map-assoc-coprod ◦ (t \+ \+)) x)
assoc-coprod-\+ t (free (free x))

= inv (map-composition _ _ _)
· (inv (map-composition _ _ _))

assoc-coprod-\+ t (free (bound x)) = refl
assoc-coprod-\+ t (bound x) = refl

assoc-coprod-substitute-commute : ∀ {X X’ B C : UU}
→ (t : X → Λ X’)
→ (x : Λ ((X + B) + C))
→ Id (substitute (t [(B + C)]\+) (map map-assoc-coprod x))

(map map-assoc-coprod (substitute (t \+ \+) x))
assoc-coprod-substitute-commute t s = (substitute-map-commute-◦ s map-assoc-coprod (t \+)

· substitute-pointwise _ _ s
(assoc-coprod-\+ t))

· (substitute-map-commute (t \+ \+) map-assoc-coprod s)

The commutativity of joining quotes and substitution is proven similarly to the lemma
directly above (inverted due to its use in the proof of parallel substitution). The pointwise
lemma again simply composes the maps in the same way as above, though inverted, reflecting
the swapped identity of the main lemma.

join-Fin-subt-pointwise : ∀ {X X’} {n m : N}
→ (ϕ : X → Λ X’)

60

→ (x : (X + Fin n) + Fin m)
→ Id ((map (join-Fin n m) ◦ (ϕ \+ \+)) x)

(((ϕ \+) ◦ join-Fin n m) x)
join-Fin-subt-pointwise {n = n} {m = m} ϕ (free (free x))

= map-composition _ _ _
· map-composition _ _ _

join-Fin-subt-pointwise {n = n} {m = m} ϕ (free (bound x)) = refl
join-Fin-subt-pointwise {n = n} {m = m} ϕ (bound x) = refl

join-quote-substitute-commute : ∀ {X X’} {n m : N}
→ (ϕ : X → Λ X’)
→ (x : Λ ((X + Fin n) + Fin m))
→ Id (map (join-Fin n m) (substitute (ϕ \+ \+) x))

(substitute (ϕ \+) (map (join-Fin n m) x))
join-quote-substitute-commute {n = n} {m = m} ϕ x

= (inv (substitute-map-commute _ _ x))
· (substitute-pointwise _ _ x

(join-Fin-subt-pointwise {n = n} {m = m} ϕ)
· inv (substitute-map-commute-◦ x _ _))

As above, we must show that terms are in head normal form for the parallel reductions of the
internal constructors, showing that a variable can be substituted/replaced in a head normal
form. We do this by assuming that the substitution (ϕ : X → Λ X’) is identical/equivalent
to the variable constructor, the unit for the Kleisli category generated by Λ. We transport
the constructor for the variable case across the identity and recurse for the others, applying
the free constructor to the quotation case.

head-normal-replace-variable : ∀ {X X’} (x : X) (y : X’) (t : Λ X)
→ (ϕ : X → Λ X’)
→ head-normal x t
→ Id (var y) (ϕ x)
→ head-normal y (substitute ϕ t)

head-normal-replace-variable x y (var .x) ϕ var-hn s
= tr (head-normal y) s var-hn

head-normal-replace-variable x y (app t t1) ϕ (app-hn .t .t1 hnf) s
= app-hn _ _

(head-normal-replace-variable x y t ϕ hnf s)
head-normal-replace-variable x y (n ’ t) ϕ (’-hn .n .t hnf) s

= ’-hn n (substitute (ϕ \+) t)
(head-normal-replace-variable (free x) (free y) t (ϕ \+) hnf

(ap (map free) s))

To derive the substitution of a parallel reduction, we assume a pointwise parallel reduction
of two substitutions for all terms (as with the lemma for \+) and given any other parallel

61

reduction, we can substitute with ϕ and ϕ′ on the left and right sides of the parallel reductions.
The proof method is nearly identical to the proof of mapping over a parallel reduction, β-
reduction and the internal constructors requiring transport over the identities proven above.
The basic constructors for the λ′-calculus are shown by reductions, using \+-over-;◦ for
quotation and abstraction.

substitute-;◦ : ∀ {X X’}
{ϕ ϕ’ : X → Λ X’}
{x x’ : Λ X }

→ x ;◦ x’
→ (∀ i → ϕ i ;◦ ϕ’ i)
→ substitute ϕ x ;◦ substitute ϕ’ x’

substitute-;◦ (var◦ x) s = s x
substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (app◦ f f ’ x x’ x1 x2) s

= app◦ (substitute ϕ f) (substitute ϕ’ f ’)
(substitute ϕ x) (substitute ϕ’ x’)
(substitute-;◦ x1 s)
(substitute-;◦ x2 s)

substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (л◦ f f ’ x) s
= л◦ (substitute (ϕ \+) f) (substitute (ϕ’ \+) f ’)

(substitute-;◦ x (\+-over-;◦ {B = unit} s))
substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (’◦ n t t’ x) s

= ’◦ n (substitute (ϕ \+) t)
(substitute (ϕ’ \+) t’)
(substitute-;◦ x (\+-over-;◦ {B = Fin n} s))

We transport over the right hand side of the parallel reduction, using the first of the com-
mutativity lemmas, similarly to the mapping lemma.

substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (β◦ f f ’ x x’ x1 x2) s
= tr (λ s → substitute ϕ (app (л f) x) ;◦ s)

(single-substitution-commute ϕ’ f ’ x’)
(β◦ (substitute (ϕ \+) f) (substitute (ϕ’ \+) f ’)

(substitute ϕ x) (substitute ϕ’ x’)
(substitute-;◦ x1 (\+-over-;◦ s))
(substitute-;◦ x2 s))

The parallel reduction of substitutions into the internal variable and application constructors
are both shown through another transport across an identity constructed by the commutativ-
ity of substitution and the internal constructors, shown in the section on syntax, composed
with ap of the constructors themselves.

62

substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (’-var◦ n j) s
= tr (λ x → substitute ϕ (n ’ var (bound j)) ;◦ x)

(inv (substitute-var ϕ’ (numeral (nat-Fin n j))
· ap var-cons (substitute-numeral ϕ’ ((nat-Fin n j)))))

(’-var◦ n j)

substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (’-app◦ n a a’ b b’ i hnf x x0) s
= tr (λ x → substitute ϕ (n ’ app a b) ;◦ x)

(ap-binary app-cons refl refl
· inv (substitute-app ϕ’ (n ’ a’) (n ’ b’)))

(’-app◦ n (substitute (ϕ \+) a) (substitute (ϕ’ \+) a’)
(substitute (ϕ \+) b) (substitute (ϕ’ \+) b’) i
(head-normal-replace-variable _ _ _ _ hnf refl)
(substitute-;◦ x (\+-over-;◦ s))
(substitute-;◦ x0 (\+-over-;◦ s)))

The internal abstraction constructor is also transported, using the commutativity of sub-
stitution and reassociation of the product and commutativity of the internal abstraction
constructor and substitution for the identity.

substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (’л◦ n f f ’ x) s
= tr (λ x → substitute ϕ (n ’ л f) ;◦ x)

(ap л-cons (ap (succ-N n ’_)
(inv (assoc-coprod-substitute-commute ϕ’ f ’)))

· inv (substitute-л ϕ’ (succ-N n ’ quote-free-var f ’)))
(’л◦ n

(substitute (ϕ \+ \+) f)
(substitute (ϕ’ \+ \+) f ’)
(substitute-;◦ x (\+-over-;◦ (\+-over-;◦ s))))

Finally, the substitution over the parallel reduction of the internal quotation constructor is
shown by transporting over an identity constructed by using the commutativities of sub-
stitution and the internal quotation, internal natural numbers and joining lists of quoted
variables. We also generate a head normal term in the same way as for the application
operator above.

substitute-;◦ {ϕ = ϕ} {ϕ’ = ϕ’} (”◦ n m t t’ i1 hnf x0) s
= tr (λ x → substitute ϕ (n ’ (m ’ t)) ;◦ x)

(ap-binary quote-cons (inv (substitute-numeral ϕ’ m))
(ap (add-N n m ’_) (join-quote-substitute-commute ϕ’ t’))

· inv (substitute-quote _ (numeral m) (((add-N n m) ’ join-quotes n m t’))))

63

(”◦ n m _ _ i1
(head-normal-replace-variable _ _ _ _ hnf refl)
(substitute-;◦ x0 (\+-over-;◦ (\+-over-;◦ s))))

To simplify the proof of the triangle property, we prove a few specialised lemmas about
parallel reduction, namely that for any two parallel reductions, one with a free variable y
;◦ y’, the single variable substitutions will reduce correspondingly. This corresponds to
β-reduction, and is the main motivation for the introduction of substitute;◦ and map;◦,
though the latter also allows us to prove that quoting free variables distributes over a parallel
reduction in a similar way.

substitute-single-;◦ : ∀ {X } {y y’ : Λ X }
→ (y ;◦ y’)
→ (∀ i → substitute-single y i ;◦ substitute-single y’ i)

substitute-single-;◦ s (free x) = refl-;◦ _
substitute-single-;◦ s (bound star) = s

β-substitute-;◦ : ∀ {X } {x x’ : Λ (X + unit)} {y y’ : Λ X }
→ x ;◦ x’
→ y ;◦ y’
→ x [y] ;◦ x’ [y’]

β-substitute-;◦ s t = substitute-;◦ s (substitute-single-;◦ t)

quote-free-variables;◦ : ∀ {X } {n : N} {x x’ : Λ ((X + Fin n) + unit)}
→ x ;◦ x’
→ quote-free-var x ;◦ quote-free-var x’

quote-free-variables;◦ x = map-;◦ (map-assoc-coprod) x

Due to the construction of the internal constructors as substitutions, we can use the sub-
stitution over parallel reduction to give some very short proofs of their distributivity over
any parallel reduction, using the templates discussed in the section on syntax along with the
reflexivity of parallel reduction.

var-cons-;◦ : ∀ {X } {t t’ : Λ X }
→ t ;◦ t’
→ var-cons t ;◦ var-cons t’

var-cons-;◦ {X = X } red = substitute-;◦ {x = var-template {X = X }}
(refl-;◦ _)
(λ _ → red)

л-cons-;◦ : ∀ {X } {f f ’ : Λ X }

64

→ (f ;◦ f ’)
→ л-cons f ;◦ л-cons f ’

л-cons-;◦ {X = X } red = substitute-;◦ {x = л-template {X = X }}
(refl-;◦ _)
(λ _ → red)

The internal constructors for application and quotation are both encoded using the binary
constructor construct2, but differ their use. For the application term, we reduce both of
the terms, using a lambda record to split on the coproduct used to define the substitution
internal constructors, while the quotation term includes a numeral which is conserved over
the parallel reduction, and so the lambda record stays constant in the left term, using the
reflexivity of parallel reduction.

app-cons-;◦ : ∀ {X } {t t’ u u’ : Λ X }
→ t ;◦ t’
→ u ;◦ u’
→ app-cons t u ;◦ app-cons t’ u’

app-cons-;◦ {X = X } {t = t} {t’ = t’} {u = u} {u’ = u’} red red1
= substitute-;◦ {ϕ = λ{(inl _) → t ; (inr _) → u}}

{ϕ’ = λ{(inl _) → t’ ; (inr _) → u’}}
{x = app-template {X = X }}
(refl-;◦ _)
λ{(inl _) → red ; (inr _) → red1}

quote-cons-;◦ : ∀ {X } {n : N} {t t’ : Λ X }
→ t ;◦ t’

→ quote-cons (numeral n) t ;◦ quote-cons (numeral n) t’
quote-cons-;◦ {X = X } {n = n} {t = t} {t’ = t’} red

= substitute-;◦ {ϕ = λ{(inl _) → (numeral n); (inr _) → t }}
{ϕ’ = λ{(inl _) → (numeral n); (inr _) → t’}}
{x = quote-template {X = X }}
(refl-;◦ _)
λ{(inl _) → (refl-;◦ _); (inr _) → red}

Finally, we show that parallel reduction conserves the head normal form of a term, case-
splitting on the reduction relation. On non-internal application and quotation we recurse
using the induction hypothesis. As none of the internal constructors have an abstractionless
head normal form, we use bound=free-absurd to derive absurdity from the identity of head
normal form.

head-normal-;◦ : ∀ {X } {t t’ : Λ X }
→ (i : X)

65

→ t ;◦ t’
→ head-normal i t
→ head-normal i t’

head-normal-;◦ i (var◦ .i) var-hn = var-hn
head-normal-;◦ i (app◦ .t f ’ .u x’ red red1) (app-hn t u hnf)

= app-hn _ _ (head-normal-;◦ i red hnf)
head-normal-;◦ i (’◦ .n .t t’ s) (’-hn n t hnf)

= ’-hn _ _ (head-normal-;◦ _ s hnf)
head-normal-;◦ i (’-app◦ .n t t’ u u’ i1 hnf s s1) (’-hn n .(app t u) (app-hn .t .u hnf1))

= bound=free-absurd
(inv (head-normal-Id t _ _ hnf1 hnf))

head-normal-;◦ i (”◦ .n m t t’ i1 hnf1 s) (’-hn n .(m ’ t) (’-hn .m .t hnf))
= bound=free-absurd

(is-injective-inl (head-normal-Id t _ _ hnf1 hnf))

3.4.3 The Triangle Property

The main lemma of the confluence result is the triangle property, which (as discussed in the
chapter on λ-calculus) shows that given any (parallel) reduction x ;◦ y, the left hand side
will reduce to the "fully reduced" (with regards to any possible single step of the parallel
reduction relation) term starred x.

We start by case splitting on the reduction x ;◦ y, and show that simplest constructors
also have the simplest proofs (with the exception of β-reduction, which most of this section
has been dedicated to) by recursing down the constructors of variables, application and
abstraction:

triangle-;◦ : ∀ {X } {x y : Λ X }
→ x ;◦ y
→ y ;◦ (starred x)

triangle-;◦ (β◦ x x’ f f ’ x1 x2)
= β-substitute-;◦ (triangle-;◦ x1)

(triangle-;◦ x2)
triangle-;◦ (var◦ x) = var◦ x
triangle-;◦ (app◦ (var f) f ’ x x’ s1 s2)

= app◦ f ’ (var f) _ _
(triangle-;◦ s1)
(triangle-;◦ s2)

triangle-;◦ (app◦ (л f) (л f ’) y x’ (л◦ .f .f ’ s1) s2)
= β◦ f ’ (starred f)

66

x’ (starred y)
(triangle-;◦ s1)
(triangle-;◦ s2)

triangle-;◦ (app◦ (app f f1) f ’ x y s1 s2)
= app◦ f ’ (starred (app f f1)) y (starred x)

(triangle-;◦ s1)
(triangle-;◦ s2)

triangle-;◦ (app◦ (n ’ f) f ’ x y s1 s2)
= app◦ f ’ (starred (n ’ f)) y (starred x)

(triangle-;◦ s1)
(triangle-;◦ s2)

triangle-;◦ (л◦ f f ’ x1)
= л◦ f ’ (starred f) (triangle-;◦ x1)

Moving on to the quotation cases, a quoted variable reduces to the internal constructor for
variables if the variable term is in the list of quoted variables (bound) and otherwise recurses
under the quotation constructor. Quotation of an abstraction term always reduces to the
internal abstraction constructor. The final case encodes β-reduction under the quote, and
uses the induction hypothesis on a β constructor for the parallel reduction.

triangle-;◦ (’◦ n (var (free x)) t’ red)
= ’◦ n t’ (var (free x)) (triangle-;◦ red)

triangle-;◦ (’◦ n (var (bound x)) .(var (bound x)) (var◦ .(bound x)))
= ’-var◦ n x

triangle-;◦ (’◦ n (л f) .(л f ’) (л◦ .f f ’ x1))
= ’л◦ n f’ (starred f) (triangle-;◦ x1)

triangle-;◦ (’◦ n (app .(л f) x) .(f ’ [x’]) (β◦ f f ’ .x x’ s1 s2))
= (’◦ n (f ’ [x’]) ((starred f) [(starred x)])

(triangle-;◦ (β◦ f f ’ x x’ s1 s2)))

We use another piece of Agda syntax, the with abstraction [18], which allows us to perform
a case split on some term not in the context, whether or not the term is in head normal
form in our case. Splitting for application under quotation, we have the case of a head
normal form for free variables, meaning they are not in the list of quoted variables, so
we continue to compute the application term under quotation without reducing to the the
internal constructor, and conversely for a head normal form of a bound variable.

triangle-;◦ (’◦ n (app f x) .(app f ’ x’) (app◦ .f f ’ .x x’ x1 x2))
with decide-head-normal f

triangle-;◦ (’◦ n (app f x) (app f ’ x’) (app◦ f f ’ x x’ s1 s2))
| inl (free t , hnf)

= ’◦ n (app f ’ x’)

67

(app (starred f) (starred x))
(app◦ f ’ (starred f)

x’ (starred x)
(triangle-;◦ s1)
(triangle-;◦ s2))

triangle-;◦ (’◦ n (app f x) (app f ’ x’) (app◦ f f ’ x x’ s1 s2))
| inl (bound t , hnf)

= ’-app◦ n f’ (starred f)
x’ (starred x)
t (head-normal-;◦ (bound t) s1 hnf)

(triangle-;◦ s1) (triangle-;◦ s2)

In the case of the application not being in head normal form, we split on the reduction of the
first term of the application so as match on β-reduction, which is unnecessary if the term is
in head normal form.

triangle-;◦ (’◦ n (app (var t) x) .(app f ’ x’) (app◦ .(var t) f ’ x x’ s1 s2))
| inr not-hnf

= ’◦ n _ _ (app◦ _ _ _ _ (triangle-;◦ s1) (triangle-;◦ s2))
triangle-;◦ (’◦ n (app (л f) x) (app (л f ’) x’)

(app◦ .(л f) .(л f ’) x x’ (л◦ .f f ’ s1) s2))
| inr not-hnf

= ’◦ n (app (л f ’) x’)
(starred (app (л f) x))
(β◦ f ’ (starred f)

x’ (starred x)
(triangle-;◦ s1) (triangle-;◦ s2))

triangle-;◦ (’◦ n (app (app t u) x) (app f ’ x’)
(app◦ .(app t u) f ’ x x’ s1 s2))

| inr not-hnf
= ’◦ n _ _ (app◦ _ _ _ _ (triangle-;◦ s1) (triangle-;◦ s2))

triangle-;◦ {_} {m ’ app (n ’ t) _}
(’◦ m (app (n ’ t) x) (app f ’ x’) (app◦ .(n ’ t) f ’ x x’ s1 s2))

| inr not-hnf
= ’◦ m (app f ’ x’) (starred (app (n ’ t) x))

(app◦ _ _ _ _ (triangle-;◦ s1) (triangle-;◦ s2))

We again use the with abstraction for double quotation, splitting on whether or not the term
is in normal form. Having a head normal form for variables not in the list of quoted variables
(denoted by free (free x)) implies that a double quotation term cannot safely reduce to any
of the internal constructors, and so both of the reductions containing them will be absurd,
which we prove using the head normal forms provided by their induction hypotheses.

68

triangle-;◦ (’◦ n (m ’ t) t’ s1)
with decide-head-normal t

triangle-;◦ (’◦ n (m ’ t) (m ’ t’) (’◦ m t t’ s1))
| inl (free (free x) , pr4)
= ’◦ n (m ’ t’) (m ’ starred t) (’◦ m _ _ (triangle-;◦ s1))

triangle-;◦ (’◦ n (m ’ (app t u)) _ (’-app◦ m t t’ u u’ i hnf s1 s2))
| inl (free (free x) , app-hn .t .u pr4)
= bound=free-absurd (head-normal-Id t (bound i) (free (free x)) hnf pr4)

triangle-;◦ (’◦ n (m1 ’ (m2 ’ t)) _ (”◦ m1 m2 t t’ i s1 hnf))
| inl (free (free x) , ’-hn .m2 .t pr4)
= bound=free-absurd

(is-injective-inl (head-normal-Id t (free (bound i)) _ s1 pr4))

Given the witness of quoted quotation term being in head normal form for some variable
in the list of quoted variables, we can reduce the to the constructor for internal quotation,
but cannot do anything in the cases for quoted internal encodings, as they are encoded as
abstraction terms, and definitionally do not have a λ-less head normal form, the absurdity
being expressed with bound=free-absurd.

triangle-;◦ (’◦ n (m ’ t) (m ’ t’) (’◦ m t t’ x1))
| inl (free (bound x) , pr4)
= ”◦ n m t’ (starred t) x ((head-normal-;◦ _ x1 pr4)) (triangle-;◦ x1)

triangle-;◦ (’◦ n (m ’ (app t u)) _ (’-app◦ m t t’ u u’ i hnf x1 x2))
| inl (free (bound x) , app-hn .t .u pr4)

= bound=free-absurd (head-normal-Id t _ _ hnf pr4)
triangle-;◦ (’◦ n (m1 ’ (m2 ’ t)) _ (”◦ m1 m2 t t’ i hnf s1))

| inl (free (bound x) , ’-hn .m2 .t pr4)
= bound=free-absurd (is-injective-inl (head-normal-Id t _ _ hnf pr4))

triangle-;◦ (’◦ n (m ’ t) t’ s1)
| inl (bound x , pr4)
= ’◦ n t’ (starred (m ’ t)) (triangle-;◦ s1)

In the case of no head normal form for a double quotation reduction, the calculation of
starred continues to recurse under the constructor for quotation for each of the terms, termi-
nating at the internal variable constructor (hence the refl-;◦), continuing under the internal
abstraction constructor, not existing for the internal application (as there is no head normal
form), and continuing under the internal quotation constructor.

triangle-;◦ (’◦ n (m ’ t) _ (’◦ m t t’ x1))
| inr no-hnf
= ’◦ n (m ’ t’) (starred (m ’ t)) (triangle-;◦ (’◦ m _ _ x1))

triangle-;◦ (’◦ n .(m ’ (var (bound j))) _ (’-var◦ m j))

69

| inr no-hnf
= refl-;◦ (n ’ (var-cons (numeral (nat-Fin m j))))

triangle-;◦ (’◦ m (n ’ (л f)) _ (’л◦ n f f ’ x1))
| inr no-hnf
= ’◦ m _ _ (л-cons-;◦ (’◦ (succ-N n)

(quote-free-var f ’)
(quote-free-var (starred f))
(quote-free-variables;◦ {n = n}
(triangle-;◦ x1))))

triangle-;◦ (’◦ n (m ’ (app t u)) _ (’-app◦ m t t’ u u’ i1 hnf x1 x2))
| inr no-hnf
= ex-falso (no-hnf _ (app-hn _ _ hnf))

triangle-;◦ (’◦ n (m ’ (m1 ’ t)) _ (”◦ m m1 t t’ i1 hnf x1))
| inr no-hnf
= ’◦ n (quote-cons (numeral m1) ((add-N m m1) ’ join-quotes m m1 t’))

(starred (m ’ (m1 ’ t)))
(triangle-;◦ (”◦ m m1 t t’ i1 hnf x1))

The internal variable constructor is invariant under the starred function, and so the reflexivity
of parallel reduction suffices, and we use the distributivity of quoting free variables along
with a recursive to the triangle property to construct the continued reduction under the
internal л-constructor.

triangle-;◦ (’-var◦ n j) = refl-;◦ (var-cons (numeral (nat-Fin n j)))
triangle-;◦ (’л◦ n f f ’ red1) = л-cons-;◦ (’◦ (succ-N n)

(quote-free-var f ’)
(quote-free-var (starred f))
(quote-free-variables;◦ {n = n}
(triangle-;◦ red1)))

The starred function for internal application and quotation will continue the reduction be-
neath themselves, the proofs requiring two explicitly calculated identities witnessing the
reduction of starred for the aforementioned terms. Both proofs split on the decidability of
the term, for which all but the bound cases (the bound head normal of the quoted term) are
absurd, and shown using either the inequality of bound and free variables or the non-existence
of a head normal form.

head-normal-starred-app : ∀ {X } {n : N} (t u : Λ (X + Fin n))
→ (s : _)
→ (x : Fin n)
→ (head-normal (bound x) t)
→ Id (star-app {n = n} t u s (starred (app t u))) (app-cons (n ’ starred t) (n ’ starred u))

70

head-normal-starred-app t u (inl (free x1 , pr4)) x hnf
= bound=free-absurd

(head-normal-Id _ _ _ hnf pr4)
head-normal-starred-app t u (inl (bound x1 , pr4)) x hnf = refl
head-normal-starred-app t u (inr x1) x hnf = ex-falso (x1 _ hnf)

head-normal-starred-quote : ∀ {X } {n m : N} (t : Λ ((X + Fin n) + Fin m))
→ (s : _)
→ (x : Fin n)
→ (head-normal (free (bound x)) t)
→ Id (star-” {n = n} {m = m} {t = t} s (starred (m ’ t)))

(quote-cons (numeral m)
(add-N n m ’ map (join-Fin n m) (starred t)))

head-normal-starred-quote t (inl (free (free x1) , pr4)) x hnf
= bound=free-absurd

(is-injective-inl
(head-normal-Id _ _ _ hnf pr4))

head-normal-starred-quote t (inl (free (bound x1) , pr4)) x hnf = refl
head-normal-starred-quote t (inl (bound x1 , pr4)) x hnf

= bound=free-absurd
(head-normal-Id _ _ _ pr4 hnf)

head-normal-starred-quote t (inr y) x hnf
= ex-falso (y (free (bound x)) hnf)

Which we proceed to transport over this identity, using the right hand sides of the reduction
relation as the point and inverting the identities above to account for this, yielding the starred
helpers.

triangle-;◦ (’-app◦ n t t’ u u’ i1 hnf red1 red2)
= tr (λ y → (app-cons (n ’ t’) (n ’ u’)) ;◦ y)

(inv (head-normal-starred-app _ _
(decide-head-normal t) _ hnf))

(app-cons-;◦ (’◦ n t’ (starred t) (triangle-;◦ red1))
(’◦ n u’ (starred u) (triangle-;◦ red2)))

triangle-;◦ (”◦ n m t t’ i1 hnf red)
= tr (λ y → (quote-cons (numeral m)

(add-N n m ’ join-quotes n m t’)) ;◦ y)
(inv (head-normal-starred-quote t (decide-head-normal t) i1 hnf))
(quote-cons-;◦ {n = m}
(’◦ (add-N n m)

(join-quotes n m t’)
(join-quotes n m (starred t))
(map-;◦

71

(join-Fin n m)
(triangle-;◦ red))))

3.4.4 Confluence

Before we can show the confluence of λ′, we must show the inclusion of parallel reduction
in the reflexive, transitive closure of the reduction relation. To do so, we use the explicit
transitivity of ;* and the inclusion of parallel reduction, along with the pass-through of the
relevant constructors under the reflexive transitive closure (discussed in the previous section)
and use of the induction hypothesis for recursion.

;◦-implies-;* : ∀ {X } {x y : Λ X } → x ;◦ y → x ;* y
;◦-implies-;* (β◦ f f ’ x x’ s s1)

= ;*-is-transitive (app-;*-right
(;◦-implies-;* s1))

(β-;* (;◦-implies-;* s))
;◦-implies-;* (var◦ x) = ;*-refl
;◦-implies-;* (app◦ f f ’ x x’ s s1)

= ;*-is-transitive (app-;*-left
(;◦-implies-;* s))

(app-;*-right
(;◦-implies-;* s1))

;◦-implies-;* (л◦ f f ’ s)
= л-;* (;◦-implies-;* s)

;◦-implies-;* (’◦ n t t’ s)
= ’-;* (;◦-implies-;* s)

;◦-implies-;* (’-var◦ n j)
= var-cons-;* j

;◦-implies-;* (’л◦ n f f ’ s)
= ;*-is-transitive (’-;* {n = n}

(л-;* (;◦-implies-;* s)))
(л-cons-;* f ’)

;◦-implies-;* (’-app◦ n t t’ u u’ i x s s1)
= ;*-is-transitive

(’-;* {n = n}
(;*-is-transitive

(app-;*-left
(;◦-implies-;* s))

(app-;*-right
(;◦-implies-;* s1))))

72

(app-cons-;* i _ _ (head-normal-;◦ _ s x))
;◦-implies-;* (”◦ n m t t’ i x s)

= ;*-is-transitive (’-;* (’-;* (;◦-implies-;* s)))
(quote-cons-;* m n i t’

(head-normal-;◦ (free (bound i)) s x))

We can finally show confluence, encoding it as the diamond property, which states that for a
term and two reductions of that term (t ; u and t ; u’), there exists (Σ) a term for which
v to which u and u’ reduce to in zero or more reduction steps (u ;* v × u’ ;* v).

The term is given explicitly as starred t, and we construct the terms of ;* by first using the
inclusion of regular reduction in parallel reduction ;-implies-;◦, use the triangle property
to construct the term u ;◦ starred t, and finally using the inclusion of the parallel reduction
in the reflexive transitive closure to promote the term to u ;* starred t.

’Λ-is-confluent : ∀ {X } {u u’ : Λ X }
→ (t : Λ X)
→ t ; u
→ t ; u’
→ Σ _ (λ v → u ;* v × u’ ;* v)

’Λ-is-confluent t red0 red1 = starred t , ;◦-implies-;*
(triangle-;◦

(;-implies-;◦ _ _ red0)),
;◦-implies-;*

(triangle-;◦
(;-implies-;◦ _ _ red1))

73

74

Chapter 4

Conclusion

4.1 Discussion

Confluence, as with Calculating a possible reduction, using named variables for clarity:

(λx.x)(⟨⟩ ′ ((λy.y) (λz.z))) ; (⟨⟩ ′ (λy.y) (λz.z))

; (⟨⟩ ′ (λz.z))

; (⟨z⟩ ′ lam(z))

; (⟨z⟩ ′ lam(numeral(0))

We may also have performed this reduction by

(λx.x)(⟨⟩ ′ ((λy.y) (λz.z))) ; (λx.x)(⟨⟩ ′ (λz.z))

; (⟨⟩ ′ (λz.z))

; . . .

A more interesting property of confluence is the ability to uniquely define β-equivalence,
which is usually given as the smallest equivalence relation including β-reduction (and internal
constructors, in our case). If we instead define a relation a ≡ b by a and b having a common
reduct1, which is trivially reflexive and symmetric, but not obviously transitive.

Transitivity is guaranteed by confluence of the reduction relation, as for any a ≡ b and
b ≡ c, we have common reducts s and t respectively, confluence giving a term u which s

1A common left-hand term in the transitive, reflexive closure

75

and t reduce to, so a and c reduce to as well. As an example of this, (λy.y)(⟨⟩ ′ (λz.z)) is
β-equivalent to (λx.x)(⟨⟩ ′ ((λy.y) (λz.z))), with the common reduct (⟨z⟩ ′ lam(z)).

Confluence is a key property for an implementation of λ′ as a programming language, as
it guarantees any reduction strategy will produce the same result, meaning that the imple-
menter is free to chose the most efficient strategy/-ies for their purpose, knowing that they
will all produce the same term. The use of De Bruijn indices for our formalisation was partly
motivated by such practical considerations, as they are often used to implement substitution,
as per the intention of their invention[8].

The implementation of such a language would require terms (programs) acting on the internal
representation of λ′, similar to the variable counter from Section 2.2. as an example, a term
which many authors refer to as a “self-reducer”, which is usually defined as a term T : Λ such
that for any fully quoted term Q : ΛX, the application TQ normalises Q while preserving
the “type” defined by the internal constructors. An internalisation of substitution and the
procedure for identifying head normal forms would be required as prerequisites.

We also lack a treatment of η-conversion, the rule λx. f x ≡ f where f does not contain a
free occurence of x, often present in functional programming languages. The issue appears
to be with the notion of head normal form we use for β-reduction, as an η-reduced term
λx.f ; f is not necessarily equivalent when converted into the internal constructors, eg.
lam app (var(f)) (var(x)) ̸≡ var(f)). One either needs further refinement of the notion of
head normal form, or some other normal form ensuring the confluence of η-reduction.

4.2 Further Work

By giving terms which fulfill the formation, introduction, elimination and computation rules
of various types (such as λx.x for the unit type), thereby typing λ′, we may extend the
hypothetical programming language to a typed quotation calculus, similar to [5] and [11].
For this to be useful, normalisation (all terms have a normal form) must be proven.

Another aim of further development for λ′-calculus would be to give it a denotational se-
mantic interpretation. This may come in the form of some domain-theoretic construction
in the same vein as the influencial model of the untyped λ-calculus given by Dana Scott [3]
which initiated the field. It may also come in the form of a Category with Families[7], one
of the categorical models of Martin-Löf Type Theory which may also be applied to weaker
type theories, which the untyped λ-calculus could be considered (all terms being of a single
type).

The confluence of λ′, with its particular requirement of head normal form, raises interesting
questions about which classes of functions can be self-represented. A number of terms, such

76

as those which do not reduce to a normal form, are trivially excluded from this. Bauer[4],
commenting on Brown and Palsberg, shows that if the representation is injective and β-
normal, a self-interpreter will exist, while also showing how they possess more properties
such as the quotation commuting with substitution. He calls for a rigorous and structural
definition of self-interpretation, which we have not found during our literature review for
this thesis, and so might be an open problem.

We also wish to give an appropriate notion of equivalence for the quoted terms, for which
simple β-equivalence will not suffice. As a simple example, we would wish for the expansion
of a fixed point combinator to be identified, so F fix F ≡ F (F fix F) in some sense. Böhm
trees are being investigated as a possible solution for this.

77

78

Bibliography

[1] Harold Abelson and Gerald Jay Sussman. Structure and interpretation of computer
programs. MIT Electrical Engineering and Computer Science. MIT Press, London,
England, 2 edition, July 1996.

[2] Marius Bancila. Template Metaprogramming with C++. Packt Publishing, Birmingham,
England, October 2022.

[3] Hendrik P Barendregt. The Lambda Calculus — Its Syntax and Semantics, volume 103.
North-Holland Amsterdam, 1984.

[4] A. Bauer. On self-interpreters for system t and other typed λ-calculi. In On Self-
Interpreters for System T and Other Typed λ-Calculi, 2017.

[5] Matt Brown and Jens Palsberg. Breaking through the normalization barrier: A self-
interpreter for f-omega. SIGPLAN Not., 51(1):5–17, jan 2016. ISSN 0362-1340. doi:
10.1145/2914770.2837623.
URL: https://doi.org/10.1145/2914770.2837623.

[6] Altenkirch T. ; Ghani N. ; Hancock P. ; Mcbride C. and Morris P. Indexed containers.
Journal of Functional Programming, 25:e5, 2015. doi: 10.1017/S095679681500009X.

[7] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families:
Unityped, simply typed, and dependently typed. In Joachim Lambek: The Interplay of
Mathematics, Logic, and Linguistics, pages 135–180. Springer International Publishing,
Cham, 2021.

[8] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Inda-
gationes Mathematicae (Proceedings), 75(5):381–392, 1972. ISSN 1385-7258. doi:
https://doi.org/10.1016/1385-7258(72)90034-0.

[9] Agda development team. Agda, 2021.
URL: https://wiki.portal.chalmers.se/agda/pmwiki.php.

[10] H̊akon Gylterud. Quote operations.
URL: https://hakon.gylterud.net/research/quote/.

79

https://doi.org/10.1145/2914770.2837623
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://hakon.gylterud.net/research/quote/

[11] Barry Jay. Self-quotation in a typed, intensional lambda-calculus. Electronic Notes
in Theoretical Computer Science, 336:207–222, 2018. ISSN 1571-0661. doi: https://
doi.org/10.1016/j.entcs.2018.03.024. The Thirty-third Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXIII).

[12] Brian W Kernighan and Dennis M Ritchie. C Programming Language, 2nd Edition.
Prentice-Hall software series. Prentice Hall, Old Tappan, NJ, September 1988.

[13] S. C. Kleene. λ-definability and recursiveness. Duke Mathematical Journal, 2(2):340 –
353, 1936. doi: 10.1215/S0012-7094-36-00227-2.
URL: https://doi.org/10.1215/S0012-7094-36-00227-2.

[14] András Kovács. Staged compilation with two-level type theory. Proc. ACM Program.
Lang., 6(ICFP), aug 2022. doi: 10.1145/3547641.
URL: https://doi.org/10.1145/3547641.

[15] Yannis Lilis and Anthony Savidis. A survey of metaprogramming languages. ACM
Comput. Surv., 52(6), oct 2019. ISSN 0360-0300. doi: 10.1145/3354584.
URL: https://doi.org/10.1145/3354584.

[16] Saunders Mac Lane. Categories for the Working Mathematician. Springer Sci-
ence+Business Media, 1998.

[17] Simon Marlow et al. Haskell 2010 language report. 2010.

[18] C. McBride and J. McKinna. The view from the left. Journal of Functional Program-
ming, 14(1):69–111, 2004. doi: 10.1017/S0956796803004829.

[19] Torben Æ. Mogensen. Efficient self-interpretation in lambda calculus. Journal of Func-
tional Programming, 2(3):345–364, 1992. doi: 10.1017/S0956796800000423.

[20] Erik Palmgren. On Equality of Objects in Categories in Constructive Type Theory.
In Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi, editors, 23rd Inter-
national Conference on Types for Proofs and Programs (TYPES 2017), volume 104
of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:7, Dagstuhl,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
071-2. doi: 10.4230/LIPIcs.TYPES.2017.7.
URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.7.

[21] E. Rijke. Introduction to Homotopy Type Theory. 2022.
URL: https://arxiv.org/abs/2212.11082.

[22] Egbert Rijke, Elisabeth Bonnevier, Jonathan Prieto-Cubides, Fredrik Bakke, and oth-
ers. The agda-unimath library, 2023.
URL: https://github.com/UniMath/agda-unimath/.

80

https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.1145/3547641
https://doi.org/10.1145/3354584
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.7
https://arxiv.org/abs/2212.11082
https://github.com/UniMath/agda-unimath/

[23] Terese. Term rewriting systems. Cambridge tracts in theoretical computer science.
Cambridge University Press, Cambridge, England, March 2003.

[24] A. M. Turing. Computability and λ-definability. J. Symb. Log., 2(4):153–163, December
1937.

81

82

Appendix A

Omitted Proofs

Identities Relating to Internal Constructors

From Section 3.2

map-s : ∀ {A B}
→ (f : A → B)
→ (t : Λ A)
→ Id (map f (s-cons t)) (s-cons (map f t))

map-s {A} = construct1-map s-template

map-numeral-fixed : ∀ {X X’}
→ (f : X → X’)
→ (n : N)
→ Id (map f (numeral n))

(numeral n)
map-numeral-fixed f zero-N = refl
map-numeral-fixed f (succ-N n) = map-s f _ · ap s-cons (map-numeral-fixed f n)

map-var : ∀ {X X’}
→ (f : X → X’)
→ (t : Λ X)
→ Id (map f (var-cons t))

(var-cons (map f t))
map-var = construct1-map var-template

map-л : ∀ {X X’}
→ (f : X → X’)
→ ∀ g

83

→ Id (map f (л-cons g))
(л-cons (map f g))

map-л = construct1-map л-template

map-app : ∀ {X X’}
→ (f : X → X’)
→ ∀ g x
→ Id (map f (app-cons g x))

(app-cons (map f g) (map f x))
map-app = construct2-map app-template

map-’ : ∀ {X X’}
→ (f : X → X’)
→ ∀ n t
→ Id (map f (quote-cons n t))

(quote-cons (map f n) (map f t))
map-’ = construct2-map quote-template

Pass-through of constructors under ;*

From Section 3.3.4

app-;*-right : ∀ {X }
→ {f x x’ : Λ X }
→ x ;* x’
→ app f x ;* app f x’

app-;*-right ;*-refl = ;*-refl
app-;*-right (;*-trans x ;*-refl) = ;*-trans (app;right _ _ _ x)

;*-refl
app-;*-right (;*-trans x (;*-trans x1 red)) = ;*-trans (app;right _ _ _ x)

(app-;*-right
(;*-trans x1 red))

л-;* : ∀ {X }
→ {x x’ : Λ (X + unit)}
→ x ;* x’
→ (л x) ;* (л x’)

л-;* ;*-refl = ;*-refl
л-;* (;*-trans x ;*-refl) = ;*-trans (л; _ _ x)

;*-refl
л-;* (;*-trans x (;*-trans x1 s)) = ;*-trans (л; _ _ x)

84

(л-;*
(;*-trans x1 s))

’-;* : ∀ {X n}
→ {t t’ : Λ (X + Fin n)}
→ (t ;* t’)
→ (n ’ t) ;* (n ’ t’)

’-;* ;*-refl = ;*-refl
’-;* {n = n} (;*-trans x ;*-refl) = ;*-trans (’; n _ _ x) ;*-refl
’-;* {n = n} (;*-trans x (;*-trans x1 s)) = ;*-trans (’; n _ _ x)

(’-;* (;*-trans x1 s))

β-;* : ∀ {X } {f f ’ : Λ (X + unit)} {x : Λ X }
→ (f ;* f ’)
→ (app (л f) x) ;* (f ’ [x])

β-;* ;*-refl = ;*-trans (β _ _) ;*-refl
β-;* {f = f } {f ’ = f ’} (;*-trans x ;*-refl) = ;*-trans (app;left _ _ _

(л; _ _ x))
(β-;* ;*-refl)

β-;* (;*-trans x (;*-trans x1 s)) = ;*-trans (app;left _ _ _
(л; _ _ x))
(β-;* (;*-trans x1 s))

85

	Introduction
	Background
	Previous work
	Martin-Lof Type Theory

	The '-calculus
	Definitions and Intuitions
	Encodings and other constructions
	De Bruijn Representation

	Properties of '-calculus
	Confluence

	Formalisation
	Syntax
	Properties of
	Monadic properties of Λ

	Reduction
	Single step reduction
	Head Normal Form
	Decidability of head normal form
	Transitive Reflexive Closure

	Confluence
	map over parallel reduction
	substitute over parallel reduction
	The Triangle Property
	Confluence

	Conclusion
	Discussion
	Further Work

	Bibliography
	Omitted Proofs

