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Abstract
The distorted Born iterative method reduces a nonlinear inverse scattering problem to

a sequence of (ill-posed) linear inverse scattering problems that can be solved using

a regularized least-squares formulation. This method was originally applied to two-

dimensional electromagnetic problems but has been implemented to solve acoustic and

electromagnetic problems in three dimensions. It has also been applied to seismic prob-

lems but only for moderately large two-dimensional models. Previous applications of

the distorted Born iterative method to seismic inverse scattering were based on a matrix

representation of the relevant integral operators. The matrix-based implementation is

simple and transparent but not very suitable for large-scale computations since the mem-

ory requirement and computational cost scales like 𝑁2 and 𝑁3, where 𝑁 is the number

of grid blocks. In this paper, we introduce a matrix-free variant of the distorted Born iter-

ative method, which is much more suitable for large-scale problems, since the memory

requirements and computational cost have been reduced to 𝑁 and 𝑁 log(𝑁), respec-

tively. Our matrix-free implementation utilizes a fast-Fourier-transform-accelerated

iterative method to solve the linear system that results after discretization. In the compu-

tation of Fréchet derivatives, we avoid the direct computation of Green’s functions for

heterogeneous media, by solving an equivalent direct scattering problem. The adjoint of

the Fréchet derivative operator is also computed in an efficient matrix-free manner, by

exploiting the physical interpretation and reciprocity of the Green’s function. We illus-

trate the potential of the matrix-free variant of the distorted Born iterative method using

synthetic waveform data for large two- and three-dimensional models. The main conclu-

sion is that the distorted Born iterative method has been transformed into a more practi-

cal tool for seismic as well as electromagnetic and acoustic nonlinear inverse scattering.

K E Y W O R D S
acoustics, full waveform, inverse problem, mathematical formulation, seismics

INTRODUCTION

In exploration seismology, full waveform inversion (FWI) has
emerged as the ultimate method for reconstruction of the sub-
surface properties using all the kinematic and dynamic infor-
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mation contained in the observed waveform data (Virieux &
Operto, 2009). From a mathematical perspective, FWI can
be regarded as an optimization problem where the goal is to
minimize a data misfit function that measures the difference
between the calculated and observed waveform data (Taran-
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tola, 1984). It can be implemented in both the time (Tarantola,
1984) and frequency domains (Pratt et al., 1998). This paper
only discusses a particular scattering-based implementation in
the frequency domain. From a physical perspective, FWI can
be regarded as an inverse scattering problem, where the goal
is to reconstruct the properties of a scattering domain from
observations performed outside this domain. This inverse
scattering problem is nonlinear because the relationship
between the observed waveforms and the unknown scattering
potential is nonlinear. In both pure and applied sciences, vari-
ous methods exist for solving such nonlinear inverse scattering
problems (Pike & Sabatier, 2002). In this study, we focus on
the so-called distorted Born iterative (DBI) method.

The DBI method was originally proposed to solve
the inverse electromagnetic scattering problem for a two-
dimensional (2D) reconstruction of permittivity (Chew &
Wang, 1990; Wang & Chew, 1989). It reduces the nonlinear
problem to a series of linear problems based on the distorted
Born approximation. There are many implementations of the
DBI method in microwave imaging and ultrasound tomogra-
phy (Belkebir et al., 1997; Chandra et al., 2015; Huthwaite &
Simonetti, 2011; Hopfer et al., 2017; Souvorov et al., 1998;
Semenov et al., 2005; Semenov & Corfield, 2008). In seismic
exploration, people are more familiar with the scattering-
integral approach (Chen et al., 2007; Djebbi & Alkhalifah,
2020; Tao & Sen, 2013). Essentially, the scattering-integral
approach can be viewed as a DBI method since they are
both derived from the scattering theory and they both use the
Green’s function and wavefield in the background medium to
form the sensitivity kernel. Recently, the DBI method and/or
the scattering-integral approach have been widely investi-
gated in seismic FWI. Tao and Sen (2013) introduced the
scattering-integral approach within frequency-domain FWI
and compared it with the conventional FWI. Jakobsen and
Ursin (2015) used a T-matrix method of the multiple scatter-
ing theory to perform nonlinear seismic waveform inversion.
Alkhalifah and Wu (2016) proposed a Born series multiple
scattering approach and gave insights into the importance
of multiple scattering in Alkhalifah et al. (2018). Liu et al.
(2015) developed a matrix-free Born kernel FWI scheme
by accumulating decomposed vector–scalar products based
on the scattering-integral approach. Yang et al. (2016) used
the scattering-integral approach to invert velocity and den-
sity simultaneously. Malovichko et al. (2017) applied the
DBI method with the quasi-analytical approximation to three-
dimensional FWI. Eikrem et al. (2019) combined the DBI
method with an iterated extended Kalman filter to perform
the Bayesian inversion of seismic data. Huang et al. (2019)
used the DBI method to achieve a target-oriented inversion
for estimating the reservoir changes with the time-lapse seis-
mic data. Huang et al. (2020) estimated the uncertainties of
five parameters for Bayesian anisotropic elastic FWI using the
DBI method with the iterated extended Kalman filter.

All those developments demonstrate that the DBI method
can accurately estimate the underground physical properties;
however, until recently, its practical implementations were
uncommon due to its substantial computational cost. So there
is still a great demand to further improve the efficiency of the
DBI method. Therefore, in this paper, we develop an efficient
FWI scheme based on a variant of the DBI method with the
adjoint method (Hesford & Chew, 2010; Tarantola, 1984; Tao
& Sen, 2013) and the fast forward solver (Eikrem et al., 2021;
Osnabrugge et al., 2016). Remis and Van den Berg (2000)
and Oristaglio and Blok (2012) have demonstrated that the
DBI method is consistent with the Gauss–Newton method
in optimization theory. Therefore, the approximate Hessian
matrix and its inverse are also needed when solving the nor-
mal equation at each iteration of traditional DBI methods. To
avoid saving and inverting the huge Hessian matrix, we use
the conjugate gradient method with the Fréchet operator and
its adjoint to replace the Hessian and its inverse. However, the
matrix–vector multiplication at each conjugate gradient iter-
ation is still very costly and the background Green’s function
and wavefield need to be updated and stored for the construc-
tion of the Fréchet operator and its adjoint after the update of
the background model. Inspired by Hesford and Chew (2006,
2010), we found that the physical meaning of the Fréchet oper-
ator and its adjoint represent forms of wavefields. Based on
that, we use the adjoint-state method to find the formulation
of the adjoint operator. Further, we rewrite the Fréchet and
adjoint operators in new expressions that only include wave-
field operations. The new wavefields can be obtained via the
fast forward solver with fastFourier transform. In the new
variant of the DBI method, only the Green’s function for a
homogeneous background medium needs to be saved and it is
saved in a compact format due to its Toeplitz structure.

This paper is organized as follows: We first review the tradi-
tional DBI method; then, we introduce the Fréchet operator,
adjoint operator and normal equation; further, we present a
matrix-free implementation of the Fréchet and adjoint opera-
tor; finally, we provide numerical examples to test the validity
of the proposed method.

METHODOLOGY

The distorted Born iterative method

In the frequency domain, the propagation of seismic waves
in the acoustic approximation is governed by the Helmholtz
equation (Červenỳ, 2001; Jakobsen & Ursin, 2015; Morse &
Feshbach, 1954)[

∇2 + 𝜔2

𝑣2(𝐱)

]
𝑝(𝐱, 𝜔) = −𝑆(𝐱, 𝜔), (1)
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where 𝑝(𝐱, 𝜔) is the wavefield (pressure in acoustic medium)
and 𝜔 is the angular frequency. 𝑣(𝐱) and 𝑆(𝐱, 𝜔) are the
velocity and the source, respectively.

Considering a background medium 𝑣𝑏(𝐱), the wavefield
within it, 𝑝𝑏(𝐱, 𝜔), satisfy[

∇2 + 𝜔2

𝑣2
𝑏
(𝐱)

]
𝑝𝑏(𝐱, 𝜔) = −𝑆(𝐱, 𝜔), (2)

By adding [𝜔2∕𝑣2
𝑏
(𝐱)]𝑝(𝐱, 𝜔) on both sides of (1) and then

subtracting (2), we have

[
∇2 + 𝜔2

𝑣2
𝑏
(𝐱)

][
𝑝(𝐱, 𝜔) − 𝑝𝑏(𝐱, 𝜔)

]
= −

[
𝜔2

𝑣2(𝐱)
− 𝜔2

𝑣2
𝑏
(𝐱)

]
𝑝(𝐱, 𝜔). (3)

Equation (3) can be expressed in a volume-integral form as

𝛿𝑝(𝐱, 𝜔) = 𝜔2 ∫Ω 𝑑𝐱′𝐺𝑏(𝐱, 𝐱′, 𝜔)𝛿𝑚(𝐱′)𝑝(𝐱′, 𝜔), (4)

where 𝛿𝑝(𝐱, 𝜔) = 𝑝(𝐱, 𝜔) − 𝑝𝑏(𝐱, 𝜔) is the wavefield perturba-
tion, Ω is the scattering domain where the scattering potential
is non-zero and 𝛿𝑚(𝐱) is the model-parameter perturbation
that is defined as

𝛿𝑚(𝐱) = 1
𝑣2(𝐱)

− 1
𝑣2
𝑏
(𝐱)

. (5)

The Green’s function 𝐺𝑏(𝐱, 𝐱′, 𝜔) is the solution to[
∇2 + 𝜔2

𝑣2
𝑏
(𝐱)

]
𝐺𝑏(𝐱, 𝐱′, 𝜔) = −𝛿

(
𝐱 − 𝐱′

)
, (6)

where 𝛿(𝐱 − 𝐱′) is the Dirac delta function that represents
a unit impulse. By comparing (2) and (6), we can find that
the physical meaning of Green’s function is the wavefield
generated by the unit impulse. So the total wavefield is the
superposition of the wavefields generated by all unit impulses.
If the background medium is smooth, the Green’s function can
be constructed by ray theory (Červenỳ, 2001). In an arbitrary
background medium, the Green’s function can be numeri-
cally solved by using the finite difference method (Kirchner
& Shapiro, 2001) or the integral equation method (Jakobsen
& Ursin, 2015). More details about the Green’s function can
be found in Arfken and Weber (1999). For the simplicity of
notation, we suppress the dependency on 𝜔 for the wave-
field 𝑝, the source term 𝑆 and the Green’s function 𝐺 in the
following formulas.

In practical implementations, the wavefield from the real
model is only recorded at the receiver positions. By assum-
ing the real model is close to the background model, we
can approximate the wavefield within the real model by the

wavefield within the background model. Based on the above
analysis, we rewrite (4) as

𝛿𝑝(𝐫) ≈ 𝜔2 ∫Ω 𝑑𝐱′𝐺𝑏(𝐫, 𝐱′)𝛿𝑚(𝐱′)𝑝𝑏(𝐱′), 𝐫 ∈ 𝐷, (7)

where 𝛿𝑝(𝐫) = 𝑝(𝐫) − 𝑝𝑏(𝐫) is the wavefield perturbation
at receiver position and 𝐷 is the observed data domain.
Equation (7) gives a linear relation between the wavefield
perturbation and model perturbation to solve 𝛿𝑚 from 𝛿𝑝. In
the distorted Born iterative (DBI) method, we first assume
a known background model and calculate the background
Green’s function 𝐺𝑏 and background wavefield 𝑝𝑏. Then we
can get 𝛿𝑝 and solve 𝛿𝑚 from 𝛿𝑝. After we have 𝛿𝑚, we can
update the background model and use the updated model as
the new background model to calculate the new 𝛿𝑚 until the
background model is close enough to the real model.

The normal equation

Equation (7) can be expressed in an operator form as

𝛿𝐦 = 𝛿𝐩, (8)

where  is the Fréchet operator, which is represented by

[𝑋](𝐫) = 𝜔2 ∫Ω 𝑑𝐱′𝐺𝑏(𝐫, 𝐱′)𝑋(𝐱′)𝑝𝑏(𝐱′). (9)

In most cases of seismic exploration, determining 𝛿𝐦 from (8)
is ill-posed. To solve this problem, we adopt the generalized
Tikhonov method (Menke, 2012), which yields a closed-form
solution to (8) by minimizing the objective function

(𝛿𝐦) = ‖𝛿𝐩 − 𝛿𝐦‖22 + 𝜆2‖𝛿𝐦‖22, (10)

where ‖ ⋅ ‖22 is the 𝐿2-norm and 𝜆 is the regularization param-
eter that balances the influence of the fidelity term and the
regularization term. There are various strategies for select-
ing the regularization parameter (Constable et al., 1987;
Farquharson & Oldenburg, 2004; Hansen, 1998). It can also
be determined by a self-adaptive cooling scheme, in which an
initial regularization parameter is established at the start of the
iteration process and subsequently decreased as the number
of iterations increases (Jakobsen & Ursin, 2015). Minimiz-
ing (10) is equivalent to solving the regularized normal
equation (Virieux & Operto, 2009)

(† + 𝜆2)𝛿𝐦 = †𝛿𝐩, (11)

where † is the adjoint of the Fréchet operator, which can be
obtained through the inner product rule of the operator and its
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adjoint as

[†𝑌 ](𝐱) =
{
𝜔2𝑝𝑏(𝐱)

[
∫𝐷 𝑑𝐫𝐺𝑏(𝐱, 𝐫)𝑌 ∗(𝐫)

]}∗
, (12)

where {⋅}∗ denotes the complex conjugation. More details
about the derivation of the adjoint operator can be found in
Appendix A.

Matrix-free implementation of the Fréchet and
adjoint operators

In the traditional DBI method, Equation (11) is solved by
matrix inversion (Huang et al., 2020; Jakobsen & Ursin,
2015). However, the direct solver requires a lot of computa-
tional time and memory. Therefore, we solve for the model
update 𝛿𝐦 via the conjugate gradient method in conjunc-
tion with the matrix-free implementation of the Fréchet and
adjoint operators. By setting 𝐽 (𝐱′) = 𝑋(𝐱′)𝑝𝑏(𝐱′), the Fréchet
operator can be rewritten as

[𝑋](𝐫) = 𝜔2 ∫Ω 𝑑𝐱′𝐺𝑏(𝐫, 𝐱′)𝐽 (𝐱′). (13)

The integral part of Equation (13) can be interpreted as
the observed wavefield from a heterogeneous background
medium due to the source 𝐽 (Hesford and Chew, 2010), so
that Equation (13) can be rewritten as

[𝑋](𝐫) = 𝜔2𝑝𝐽 (𝐫). (14)

In Equation (14), 𝑝𝐽 (𝐫) can be solved from the data
equation (Jakobsen & Ursin, 2015)

𝑝𝐽 (𝐫) = 𝑝
(0)
𝐽
(𝐫) + 𝜔2 ∫Ω 𝑑𝐱𝐺(0)(𝐫, 𝐱′)𝜒𝑏(𝐱′)𝑝𝐽

(
𝐱′
)
. (15)

Here, 𝑝𝐽 (𝐱′) is the wavefield within the background medium,
which can be solved from

𝑝𝐽 (𝐱) = 𝑝
(0)
𝐽
(𝐱) + 𝜔2 ∫Ω 𝑑𝐱𝐺(0)(𝐱, 𝐱′)𝜒𝑏(𝐱′)𝑝𝐽

(
𝐱′
)
, (16)

where

𝑝
(0)
𝐽
(𝐱) = ∫Ω 𝑑𝐱′𝐺(0)(𝐱, 𝐱′)𝐽 (𝐱′) (17)

is the incident wavefield caused by the source 𝐽 ,

𝜒𝑏(𝐱′) =
1

𝑣2
𝑏
(𝐱′)

− 1
𝑣20

(18)

is the contrast between the heterogeneous background
medium 𝑣𝑏 and the homogeneous medium 𝑣0, and 𝐺(0)(𝐱, 𝐱′)
is the Green’s function in the homogeneous medium. The ana-
lytic formulas of the homogeneous Green’s function are found
in Červenỳ (2001) as

𝐺(0)(𝐱, 𝐱′) =
{

1
4 i𝐻

(1)
0 (𝑘0𝑟), in 2𝐷,

1
4𝜋𝑟 exp(i𝑘0𝑟), in 3𝐷,

(19)

where 𝑟 = ‖𝐱 − 𝐱′‖ and 𝐻
(1)
0 is the Hankel function of the

first kind and zeroth order.
In the context of the adjoint operator, the part in square

brackets of Equation (12) can be interpreted as the wavefield
back-propagating from the receiver to the scattering domain,
as per the physical interpretation of the Green’s function
𝐺𝑏(𝐱, 𝐫). So we rewrite (12) as

[†𝑌 ](𝐱) =
[
𝜔2𝑝𝑏(𝐱)𝑝𝑌 (𝐱)

]∗
, (20)

where

𝑝𝑌 (𝐱) = ∫𝐷 𝑑𝐫𝐺𝑏(𝐱, 𝐫)𝑌 ∗(𝐫) (21)

is the back-propagating wavefield. Here, 𝑝𝑌 (𝐱) can be solved
from

𝑝𝑌 (𝐱) = 𝑝
(0)
𝑌
(𝐱) + 𝜔2 ∫Ω 𝑑𝐱′𝐺(0)(𝐱, 𝐱′)𝜒𝑏(𝐱′)𝑝𝑌 (𝐱′),

(22)
where

𝑝
(0)
𝑌
(𝐱) = ∫𝐷 𝑑𝐫𝐺(0)(𝐱, 𝐫)𝑌 ∗(𝐫). (23)

In the new expressions of the Fréchet derivative (14) and
its adjoint operator (20), only three vectors 𝑝𝐽 , 𝑝𝑏 and 𝑝𝑌
remain. Their related equations, (15), (16) and (22), are equa-
tions of the Lippmann–Schwinger type, which can be easily
solved by iterative solvers, such as the preconditioned Born
series (Eikrem et al., 2021; Jakobsen et al., 2020), the conju-
gate gradient method (Hestenes & Stiefel, 1952) and so on.
Because the homogeneous Green’s function 𝐺(0) depends on
𝐱 − 𝐱′, the integrals that include it can be calculated quickly
and accurately by utilizing the fast Fourier transform. This is
crucial for speeding up the overall inversion method.

In the conventional DBI method, Equation (11) is trans-
formed into matrix form after discretization and is then solved
using matrix inversion. The computational complexity and
storage requirement of the matrix inversion method scale like
𝑁3 and 𝑁2, respectively, where 𝑁 is the number of grid
blocks to divide the computational domain. In our method, the
scales of the computational cost and storage requirement are
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A L G O R I T H M 1 Pseudo code for matrix-free distorted Born

iterative (DBI) method

𝑁 log(𝑁) and 𝑁 , respectively. Details about the matrix-free
DBI method can be found in Algorithm 1.

NUMERICAL EXAMPLES

Our code is written in the MATLAB language, and all the
numerical examples in this paper were run on a computer with
an Intel i7-7700 CPU and 64 GB of RAM.

Conceptual reservoir model

In the first numerical example, we create a conceptual reser-
voir model to compare the performance of the matrix-free
and conventional matrix-based distorted Born iterative (DBI)
methods. Figure 1 shows the real and initial velocity mod-
els. The model has been discretized into 249 × 71 grids,
each of area 20 m×20 m. The measurements are produced
by 71 sources and 249 receivers that are evenly distributed
on the surface of the model. For each source, we use a
Ricker wavelet of 7.5 Hz central frequency and sample it with
a sampling interval Δ𝑡 = 0.004 s and a total record length
𝑇 = 3 s. We employ the fast Fourier transform to transform
the Ricker wavelet into the frequency domain to generate
frequency component data. In this example, six frequency
components have been used for inversion: 3, 7.5, 10, 12, 15
and 18 Hz. The preconditioned Born series (Jakobsen et al.,
2020; Osnabrugge et al., 2016), with the hierarchical precon-
ditioner (Eikrem et al., 2021), is our forward modelling solver.
The rank and level for construction of the hierarchical precon-
ditioner (Eikrem et al., 2021) at each frequency are 4, 4, 4,
4, 4, 4 and 20, 40, 50, 60, 70, 80, respectively. More details
about the hierarchical preconditioner, the rank and level and
the preconditioned Born series can be found in Appendix B.

F I G U R E 1 Real (a) and initial (b) velocity model used in the first

numerical example.

F I G U R E 2 Inverted velocity using (a) matrix-based DBI and (b)

matrix-free DBI.

We use the anti-reflection boundary layer (Osnabrugge et al.,
2021) to reduce the artificial boundary reflection from the
computational boundaries. For both the matrix-free DBI and
matrix-based DBI, the tolerance 𝜂 of normalized data error is
set to 0.01 and the maximum number of iterations 𝑘 of model
updates is set to 10. The inner conjugate-gradient-method
loop is stopped when the relative change in the residual falls
below a tolerance of 0.1 or the number of iterations reaches
30. At the beginning of each frequency, we set the initial
value of the regularization parameter and the decrease factor
as 𝜆ini = 0.0005 and 𝑎 = 0.1, respectively.

The inverted velocity of the matrix-based DBI and matrix-
free DBI is shown in Figure 2. The results of these two DBI
methods are similar and acceptable. In order to better observe
the details of the inverted model, we display three profiles
of the inverted velocities as shown in Figure 3. In Figure 3,
we can see that the differences between the profiles of the
matrix-free DBI method and the matrix-based DBI method
are minimal. In the upper and middle parts, the inverted pro-
files of these two methods are both close to the real model.
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F I G U R E 3 Profile comparison of different velocity models at

(a) x = 1.488 km, (b) x = 3 km and (c) x = 4.488 km. The yellow line

denotes the initial velocity model. The purple line denotes the real

velocity model. The red line denotes the inverted velocity model using

conventional matrix-based DBI. The blue line denotes the inverted

velocity model using matrix-free DBI. These three locations are

highlighted by the dashed red lines in Figure 2.

The lower parts are not well inverted. One explanation is that
the bottoms lack illumination due to the absorbing boundary
layer. To quantify the difference between the updated model
𝑚 and the real model 𝑚true, we compute the normalized model
error 𝜖𝑚 defined as

𝜖𝑚 = ‖‖𝐦 −𝐦true‖‖∕‖‖𝐦true‖‖. (24)

Figure 4 shows how the normalized data errors and model
errors change with the number of iterations for matrix-based
and matrix-free DBI at different frequencies, in which it is
visible that both methods work well and 𝜖𝑚 of the matrix-
based DBI method converges to a smaller value than the
matrix-free DBI method. That is because the solution of the
normal equation obtained via the conjugate gradient method
in matrix-free DBI is not as accurate as the solution obtained
by the direct matrix inversion method in matrix-based DBI.
However, we recognize that their differences are small. The
computational time of the matrix-based DBI is 2.90 × 104 s,
while the matrix-free DBI is 2.77 × 103 s.

Marmousi model

To further investigate the performance of the proposed
matrix-free DBI method in a more realistic case, we use a
resampled Marmousi2 model (Martin et al., 2006), as shown
in Figure 5a, for our second numerical example. This model
has a size of 7.6 km in the horizontal direction and 2.08 km

F I G U R E 4 Convergence diagrams of the conventional

matrix-based DBI and the matrix-free DBI at all frequencies:

(a) normalized data error 𝜖𝑑 versus the number of iterations,

(b) normalized model error 𝜖𝑚 versus the number of iterations and

(c) the frequency corresponding to each iteration. The blue line denotes

using matrix-based DBI. The red line denotes using matrix-free DBI.

F I G U R E 5 Marmousi model used in the second numerical

example: (a) real velocity model and (b) initial velocity model.

in the vertical direction. We discretized it into 380 × 104 grid
points. The size of each grid point is 20 m × 20 m. The ini-
tial model (Figure 5b) we used in this example is a smoothed
version of the real model, which is generated by filtering the
real model with a Gaussian smoothing filter with a standard
deviation of 10. There are 104 sources and 380 receivers uni-
formly distributed along the surface to simulate the synthetic
data. We use the same Ricker wavelet as in the first numerical
example as the source. We choose six frequencies (3, 7.5, 10,
12, 15 and 18 Hz) to carry out this numerical example.

Because the memory demand of the matrix-based DBI
method exceeds our computer’s memory, only the matrix-free
DBI method has been implemented here. The forward mod-
elling solver is still the preconditioned Born series. The rank
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F I G U R E 6 Marmousi model: (a) inverted velocity model. (b)

The difference between the real model and the inverted model.

F I G U R E 7 Profile comparison of different Marmousi velocity

models at (a) x = 1.9 km, (b) x = 3.8 km and (c) x = 5.7 km. The red

line denotes the initial velocity model. The yellow line denotes the real

velocity model. The blue line denotes the inverted velocity model using

matrix-free DBI. These three locations are highlighted by the dashed

red lines in Figure 6a.

and level used to construct the preconditioner for different
frequencies (from low to high) are 5, 5, 5, 5, 5, 4 and 20,
50, 60, 70, 80, 140, respectively. The initial regularization
parameter and the decrease factor are set as 𝜆ini = 0.001 and
𝑎 = 0.1, respectively. The maximum number of iterations and
the residual tolerance of the conjugate gradient method are
set as 20 and 0.1, respectively. The maximum number of iter-
ations and the tolerance for the model update are set as 𝑘 = 10
and 𝜂 = 0.01, respectively. The inverted velocity in Figure 6
shows that most of the details of the Marmousi model have
been well reconstructed. Figure 7 shows a profile compari-
son of different velocities at different locations. We can see
that the model inverted by the matrix-free method approxi-

F I G U R E 8 Convergence diagrams of the matrix-free DBI in the

Marmousi example: (a) normalized data error 𝜖𝑑 versus the number of

iterations at all frequencies, (b) normalized model error 𝜖𝑚 versus the

number of iterations at all frequencies and (c) the frequency

corresponding to each iteration.

mates the real model closely. The convergence diagrams of
the normalized data error and model error with iteration num-
ber at all frequencies are plotted in Figure 8, which shows
that the matrix-free DBI method also works well for the com-
plicated model. The computational time of this example is
3.57 × 104 s.

We also test our method in the presence of noise. The noise
has been added by using this formula (Jakobsen & Ursin,
2015)

𝐝noisy = 𝐝 + |𝐝|√
SNR

⋅
𝜎|𝜎| , (25)

where 𝜎 is a vector of independent random numbers obtained
from a Gaussian distribution and SNR is the signal-to-noise
ratio used to measure the noise level. We have tried three
noise levels: 5%, 10% and 20% with different SNRs: 26, 20
and 14 dB. The inverted velocities are shown in Figure 9.
We can see that a higher noise level causes a deterioration
in the inverted results. However, even when the noise level is
as high as 20%, the structure of the Marmousi model can still
be reconstructed.

Three-dimensional model

To demonstrate the feasibility of our method in a three-
dimensional (3D) inversion context, we consider a 3D velocity
model (shown in Figure 10), which is resampled from part of
the 3D overthrust model (Aminzadeh et al., 1997). The resam-
pled model consists of 128 × 64 × 32 grid blocks. The size of
each grid block is 20 m × 20 m × 20 m. To better visualize
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F I G U R E 9 Noise test for matrix-free DBI in the Marmousi

example. The inverted models with different noise levels: (a) 5%,

(b) 10% and (c) 20%.

F I G U R E 1 0 Part of the 3D overthrust model, which was used in

the third numerical example.

the model’s inner structure, we only show three slices of the
model in Figure 11, the same for the initial and inverted mod-
els. The initial model (Figure 12) we used for this example is
generated by filtering the real model with a Gaussian smooth-
ing filter with a standard deviation of 8. We set 64 sources and
256 receivers uniformly distributed on the top of the model
to get the synthetic data. The same Ricker wavelet as used
in the previous numerical examples has been used to simu-
late the source. To show that other forward modelling solvers
can also be used in our method, we adopt the generalized
minimal residual method (Saad & Schultz, 1986) to solve the
forward problem in this example. Due to the limitation of our
computer’s memory, we do not include the absorbing bound-

F I G U R E 1 1 Three slices to show the inner structure of the 3D

real model.

F I G U R E 1 2 Three slices to show the inner structure of the 3D

initial model used for the 3D inversion test. The 3D initial model is a

smooth version of the 3D real model shown in Figure 10.

ary here but one can easily include it when the computer’s
memory is large enough.

Six frequencies (3, 5, 7.5, 10, 12 and 15 Hz) were used
for this example. Due to the memory problem of the matrix-
based DBI method, only the matrix-free DBI method has been
implemented here. The tolerance, maximum number of itera-
tions, initial regularization parameter and decrease factor used
in Algorithm 1 are set as 𝜂 = 0.001, 𝑘 = 10, 𝜆ini = 0.001 and
𝑎 = 0.1, respectively. The maximum number of iterations and
residual tolerance for the conjugate gradient method are set
to 20 and 0.1, respectively. The inverted model is shown in
Figure 13, where we can see that the matrix-free DBI method
achieves a satisfactory 3D inversion result. The convergence
diagrams in Figure 14 show that the normalized data error
and model error both converge well at each frequency. The
computational time of this example is 9.88 × 104 s.
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F I G U R E 1 3 Three slices to show the inner structure of the 3D

inverted model.

F I G U R E 1 4 Convergence diagrams of the matrix-free DBI in

the 3D example: (a) normalized data error 𝜖𝑑 versus the number of

iterations at all frequencies, (b) normalized model error 𝜖𝑚 versus the

number of iterations at all frequencies and (c) the frequency

corresponding to each iteration.

CONCLUDING REMARKS

We have improved the classic distorted Born iterative (DBI)
method based on the integral equation for the mid- and large-
size seismic inversion problems. The need to invert the huge
approximate Hessian matrix at each iteration was eliminated
via the implicit implementation of the Fréchet derivative
and its adjoint operators from their physical interpretations.
The efficiency of the overall method was improved via the
use of the fast-Fourier-transform-accelerated forward solvers.
The preconditioned Born series and the Krylov-space method
used in this paper provide the requisite for efficiency, reduc-
ing the computational cost and storage demand of the Fréchet
operator, the adjoint operator, the approximate Hessian and

the inverse of the approximate Hessian. The improved compu-
tational cost and storage demand make the DBI method more
efficient and practical for seismic applications. Numerical
examples show the accuracy and effectiveness of this matrix-
free DBI method in two- and three-dimensional cases as well
as the effect of noise. We compared the computational cost of
the conventional DBI method and the matrix-free DBI method
for a two-dimensional conceptual reservoir model. The results
show that the computational time of the matrix-free DBI
method is reduced by approximately 90% compared to the
conventional DBI method under that configuration. There are
two loops for each frequency in the matrix-free DBI method:
the outer loop of the model update and the inner loop of the
conjugate gradient method. The stopping criteria for these two
loops have a significant impact on the computational cost of
the matrix-free DBI method. For example, the computational
time can be further reduced if we set a higher tolerance of the
conjugate gradient method while the inverted result will be
worse. One could explore adopting different termination cri-
teria for these two loops to see if cost-benefit trade-offs are
worth it for actual implementations. In addition, the matrix-
free DBI method does not require a lot of memory, which
makes it a potential choice to be implemented for moderate- or
large-scale inverse problems on small computers. Moreover,
this matrix-free DBI method provides a connection between
the adjoint state method and the integral equation method.
There is great potential to design more efficient full waveform
inversion algorithms from existing integral equation meth-
ods that are commonly used for electromagnetic and acoustic
applications. In future work, extending the proposed matrix-
free DBI method to more general cases, such as elastic
media, anisotropic media and so on, will be investigated and
implemented.
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APPENDIX A: DERIVATION OF THE ADJOINT
OPERATOR
The adjoint operator † must satisfy (Tarantola, 2005)

⟨[𝑋](𝐫), 𝑌 (𝐫)⟩𝐷 =
⟨
𝑋(𝐱), [†𝑌 ](𝐱)

⟩
Ω , (A.1)

where < ⋅ > denotes an inner product of two vectors in the
Hilbert space. Using the definition of the inner product to
expand (A.1) yields

∫𝐷 𝑑𝐫[𝑋](𝐫)𝑌 ∗(𝐫) = ∫Ω 𝑑𝐱𝑋(𝐱)
{
[†𝑌 ](𝐱)

}∗
, (A.2)

where {⋅}∗ represents complex conjugation. Substituting the
Fréchet operator (9) into the left side of (A.2) and changing
the integral orders, we have

∫𝐷

𝑑𝐫
[
𝜔2 ∫Ω

𝑑𝐱𝐺𝑏(𝐫, 𝐱)𝑋(𝐱)𝑝𝑏(𝐱)
]
𝑌 ∗(𝐫) = ∫Ω

𝑑𝐱𝑋(𝐱)𝜔2𝑝𝑏(𝐱)
[
∫𝐷

𝑑𝐫𝐺𝑏(𝐫, 𝐱)𝑌 ∗(𝐫)
]
.

(A.3)
Comparing the right-hand side of (A.3) and (A.2) obtains

{
[†𝑌 ](𝐱)

}∗ = 𝜔2𝑝𝑏(𝐱)
[
∫𝐷 𝑑𝐫𝐺𝑏(𝐫, 𝐱)𝑌 ∗(𝐫)

]
. (A.4)

Taking the complex conjugate on both sides of (A.4) and
using the reciprocity property of the Green’s function (Aki
& Richards, 1980), we finally yield

[†𝑌 ](𝐱) =
{
𝜔2𝑝𝑏(𝐱)

[
∫𝐷 𝑑𝐫𝐺𝑏(𝐱, 𝐫)𝑌 ∗(𝐫)

]}∗
. (A.5)

APPENDIX B: THE PRECONDITIONED BORN
SERIES
The details of the preconditioned Born series are presented
here for completeness. Considering the background medium
𝑣𝑏 in (4) is a homogeneous medium 𝑣0, Equation (4) can be
rewritten as

𝑝(𝐱, 𝜔) = 𝑝(0)(𝐱, 𝜔) + 𝜔2 ∫Ω 𝑑𝐱′𝐺(0)(𝐱, 𝐱′, 𝜔)𝜒(𝐱′)𝑝(𝐱′, 𝜔),
(B.1)

where

𝑝(0)(𝐱, 𝜔) = ∫ 𝑑𝐱′𝐺(0)(𝐱, 𝐱′, 𝜔)𝑆(𝐱′, 𝜔) (B.2)

is the wavefield within the homogeneous medium and

𝜒(𝐱′) = 1
𝑣2(𝐱′)

− 1
𝑣20

(B.3)

is the contrast between the real and the homogeneous medium.
𝐺(0)(𝐱, 𝐱′, 𝜔) is the Green’s function for the homogeneous
background medium which can be found in Equation (19).

For numerical implementations, we discretized the scatter-
ing domain Ω into 𝑁 uniform grid blocks, each of area Δ𝑠.
The wavefield and the parameter within each discretized grid
block are assumed to be constant. After discretization and
rearrangement, Equation (B.1) can be written compactly in
matrix form as

𝐩 = 𝐩(0) +𝐆(0)𝐕𝐩, (B.4)

where 𝐕 = Diag(𝛘) is the scattering potential matrix with the
scattering potential at all scattering points on the diagonal.
In Equation (B.4), the wavefields 𝐩, 𝐩(0) and the scattering
potential vector𝛘 are𝑁 × 1 vectors, the Green’s function𝐆(0)

and the scattering potential matrix 𝐕 are 𝑁 ×𝑁 matrices.

https://doi.org/10.1111/1365-2478.13323
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Equation (B.4) can be solved directly by matrix inver-
sion, but matrix inversion includes an inversion of a full
large matrix, which is very costly. It can also be solved by
the Born series (Morse & Feshbach, 1954), but this series
only converges if the scattering potential is weak enough. In
order to solve Equation (B.4) efficiently for a strongly scat-
tering medium, we introduce the preconditioned Born series
(Eikrem et al., 2021; Osnabrugge et al., 2016)

𝐩 =
∞∑
𝑘=0

𝐌𝑘𝐇𝐩(0), (B.5)

where 𝐇 is the preconditioner we will discuss in detail later
and

𝐌 = 𝐈 −𝐇 +𝐇𝐆(0)𝐕. (B.6)

The preconditioned Born series (B.5) is guaranteed to con-
verge if the spectral radius 𝜎 of 𝐌, denoted 𝜎(𝐌), is less
than unity. In Equation (B.6), 𝐇 can be selected to make
sure 𝜎(𝐌) < 1. Jakobsen et al. (2020) gave examples of
a few simple 𝐇, all of which are diagonal matrices. For
general implementation, Eikrem et al. (2021) proposed a non-
diagonal 𝐇 based on the randomized low-rank approximation
(Halko et al., 2011) and the hierarchical matrix (Hackbusch,
1999). We adopt the hierarchical preconditioner from Eikrem
et al. (2021) in this paper.

If 𝐌 = 0, 𝜎(𝐌) = 0 so that 𝜎(𝐌) < 1. But when we set
𝐌 = 0 in Equation (B.6), 𝐇 = (𝐈 −𝐆(0)𝐕)−1, which is the
same as matrix inversion. The key idea of Eikrem et al. (2021)
is to find an 𝐇 that is not equal to (𝐈 −𝐆(0)𝐕)−1 but approxi-
mate to (𝐈 −𝐆(0)𝐕)−1. Then 𝜎(𝐌) ≠ 0 but 𝜎(𝐌) ≈ 0, which
still satisfies 𝜎(𝐌) < 1. In Eikrem et al. (2021), 𝐈 −𝐆(0)𝐕 is
approximated by a hierarchical matrix (Hackbusch, 1999). To
construct the hierarchical matrix, first we need to divide the
square matrix 𝐈 −𝐆(0)𝐕 into four equal-sized square blocks.
Then, we keep the blocks on the off-diagonal unchanged and
continue to divide the diagonal blocks into four equal parts.
Next, we keep repeating the previous step to divide the diag-
onal blocks further. The number of divisions is the level.
Finally, we will divide the full matrix 𝐈 −𝐆(0)𝐕 as shown in
Figure B.1, which is an example of the four-level division. In
Figure B.1, the grey blocks are kept as full matrices and the

F I G U R E B . 1 Structure of the hierarchical matrix that

approximates 𝐈 −𝐆(0)𝐕: the grey blocks are full matrices and the white

are approximated by low-rank matrices.

white blocks are approximated by the multiplication of two
low-rank matrices

𝐖 = 𝐀𝐁𝑇 , (B.7)

where 𝐖 is an 𝑛 × 𝑛 matrix representing any white block, 𝐀
and 𝐁 are both 𝑛 × 𝑘 matrices and 𝑘 is the rank whose value is
much smaller than 𝑛. After approximating all the white blocks
with low-rank matrices, we get the hierarchical matrix. Next,
we use the rule of the 2 × 2 block matrix inversion recursively
to find the inverse of the hierarchical matrix

⎛⎜⎜⎝
𝐀 𝐁
𝐂 𝐃

⎞⎟⎟⎠
−1

=
⎛⎜⎜⎝
𝐀−1 + 𝐀−1𝐁

(
𝐃 − 𝐂𝐀−1𝐁

)−1𝐂𝐀−1 −𝐀−1𝐁
(
𝐃 − 𝐂𝐀−1𝐁

)−1
−
(
𝐃 − 𝐂𝐀−1𝐁

)−1𝐂𝐀−1 (
𝐃 − 𝐂𝐀−1𝐁

)−1 ⎞⎟⎟⎠.
(B.8)

This inverse is the approximation of (𝐈 −𝐆(0)𝐕)−1, which
can be used as the preconditioner 𝐇 in the preconditioned
Born series. Although all the above steps are formulated
with matrices, in practical applications, we can use them
with randomized methods (Halko et al., 2011) and fastFourier
transform without needing to form the full matrix, which
significantly reduces memory consumption. A more detailed
description of the hierarchical preconditioner can be found in
Eikrem et al. (2021).
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