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Abstract 

Classification of zooplankton to species with broadband echosounder data could increase the taxonomic resolution of acoustic surveys 
and reduce the dependence on net and trawl samples for ‘ground truthing’. Supervised classification with broadband echosounder data 
is limited by the acquisition of validated data required to train machine learning algorithms (‘classifier s ’). We tested the hypothesis that 
acoustic scattering models could be used to train classifiers for remote classification of zooplankton. Three classifiers were trained with 

data from scattering models of four Arctic zooplankton groups (copepods, euphausiids, chaetognaths, and h ydroz oans). We evaluated 

classifier predictions against observations of a mixed zooplankton community in a submerged purpose-built mesocosm (12 m 

3 ) in- 

sonified with broadband transmissions (185–255 kHz). The mesocosm was deployed from a wharf in Ny- ̊Alesund, Svalbard, during the 
Arctic polar night in January 2022. We detected 7722 tracked single targets, which were used to evaluate the classifier predictions of 
measured zooplankton targets. The classifiers could differentiate copepods from the other groups reasonably well, but they could not 
differentiate euphausiids, chaetognaths, and h ydroz oans reliably due to the similarities in their modelled target spectra. We recommend 

that model-informed classification of zooplankton from broadband acoustic signals be used with caution until a better understanding 

of in situ target spectra variability is gained. 

Keywords: machine learning; zooplankton; classification; broadband acoustics; cage experiment 
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Introduction 

Acoustic target classification of zooplankton is needed to 

improve our understanding of variability in zooplankton 

spatio-temporal distribution and community composition. 
In the past decade, the commercial availability of broad- 
band echosounders has made it possible to characterize the 
backscattering spectra of aquatic targets over a continuous 
frequency range (Bassett et al. 2018 ). Compared to conven- 
tional narrowband echosounder methods, the wider band- 
width of frequency-modulated (FM) echosounders offers the 
potential for improved classification of fish and zooplankton 

(Benoit-Bird and Waluk 2020 ). In addition, pulse-compression 

signal processing of broadband data improves the range reso- 
lution and the signal-to-noise ratio, enabling weak zooplank- 
ton targets to stand out above the stochastic background noise 
(Chu and Stanton 1998 , Ehrenberg and Torkelson 2000 ).
These improvements have made it possible to distinguish 

smaller and acoustically weaker individual targets, such as 
© The Author(s) 2023. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
esozooplankton (0.2–20 mm), offering the potential for tar- 
et classification using the target strength (TS [dB re 1 m 

2 ])—
requency response spectra [TS(f), hereafter ‘target spectra’] 
s a predictive feature (Bandara et al. 2022 ). 

Machine learning, a field of artificial intelligence (AI), is
n increasingly popular tool for target classification in fish- 
ries acoustics, reflecting a broader trend of AI applications 
n the marine sciences (Beyan and Browman 2020 , Malde
t al. 2020 ). Machine learning algorithms are objective, ef-
cient, and can handle the large, complex datasets associated 

ith broadband sampling (Malde et al. 2020 ). In short, su-
ervised classification algorithms are trained to predict the 
lass of new, unidentified samples with reference to scattering 
pectra from labelled training samples (i.e. samples for which 

he class is known) to optimize the classification function. In
 fisheries acoustics context, the class is typically the species
or a broader functional group, e.g. based on gross anatom-
cal properties) of the target or aggregation. The feature 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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ariables used to predict the class of each target may in-
lude various acoustic features (e.g. backscattering strength
nd derived quantities), often in combination with geomet-
ic features (e.g. school length and height; Proud et al. 2020 )
r bathymetric features (e.g. distance from the seabed) (Ko-
neliussen 2018 ). Machine learning algorithms improve the
otential for real-time target classification and subsequent
nalysis (such as density estimates; Blackwell 2020 ) in fish-
ries acoustics, which is of interest given the increasing use
f autonomous or remotely operated vehicles equipped with
chosounders (e.g. Ludvigsen et al. 2018 , De Robertis et al.
019 , Malde et al. 2020 , Dunn et al. 2022 ). However, a ma-
or obstacle to applying supervised classification in broadband
sheries acoustics is the collection of labelled observations to
rain the algorithms (Handegard et al. 2021 ). 

Labelled observations of target spectra have been obtained
sing various direct sampling or remote sensing methods,
ll of which have limitations. For example, directed trawl
ampling of acoustic targets in areas with high densities of
he species of interest has been used for jellyfish (Brierley
t al. 2001 ), Antarctic krill (Hewitt and Demer 1996 ), and
esopelagic fish (Sobradillo et al. 2019 ), but this method

s prone to sampling biases like net avoidance and acous-
ic shadowing of weaker targets (Peña 2018 ). Optical veri-
cation has been used to validate acoustic targets, for exam-
le, krill (Lawson et al. 2006 ) and salps (Wiebe et al. 2010 ),
ut has limited range resolution, especially for small targets
Trenkel et al. 2011 ) and is further limited by avoidance of
he external light source (Geoffroy et al. 2021 ). Controlled
ank experiments with zooplankton (e.g. McGehee et al. 1998 ,
auly and Penrose 1998 , Stanton et al. 1998 ) have typically re-
ied on purpose-built or laboratory sonars (Conti et al. 2005 ,
makasu and Furusawa 2006 ) because there are physical lim-

ts associated with (large and powerful) commercially avail-
ble echosounders (i.e. beam angle and near-field range; Sim-
onds and MacLennan 2005 ). Controlled cage experiments
ave been used to measure the acoustic signal of large Antarc-
ic krill (e.g. Foote et al. 1990 ), jellyfish (Monger et al. 1998 ),
nd fish (e.g. Legua and Lillo 2017 , Gugele et al. 2021 ), but
easurements of mesozooplankton remain challenging be-

ause detection of weak scatterers requires a cage designed
o minimize noise and reverberation (Knutsen and Foote
997 ). 
Model-informed classification theoretically removes the

eed to collect measurements of known targets for use as la-
elled training data (e.g. Cotter et al. 2021 ). Validated scat-
ering models (e.g. Korneliussen and Ona 2003 , Peña 2018 ,
otter et al. 2021 ) provide theoretical target spectra for each
lass (e.g. species) expected to be present in the acoustic data.
ound scattering models are considered validated when pre-
ictions of acoustic backscatter are comparable to benchmark
odels (Gastauer et al. 2019 ). Benchmark models are predic-

ions of acoustic backscatter from exact or approximate an-
lytical models and serve to find the limitations and validity
omain of sound scattering models (Jech et al. 2015 ). These
odelled spectra are then used as labelled training data for
achine learning classification algorithms (hereafter, ‘classi-
ers’). This approach has been used to classify scatterers into
ross anatomical groups based on their acoustic properties for
esopelagic species (Cotter et al. 2021 ) and reef fish (Roa et al.
022 ). However, to our knowledge, model-informed classi-
cation of target spectra has not yet been validated for any
pecies. 
This study aims to evaluate the validity and reliability of
odel-informed classification for the target spectra of zoo-
lankton species with similar gross anatomical properties and
ize distributions. We applied model-informed classification
o a mixed assemblage of Arctic mesozooplankton that was
ominated by fluid-like species, i.e. animals with sound scat-
ering properties similar to water (e.g. euphausiids, copepods,
nd salps) (Stanton and Chu 2000 ). The objectives were three-
old: (i) to design an in situ mesocosm experiment to in-
onify zooplankton in a near-natural environment with min-
mal background noise and reverberation; (ii) to evaluate
he performance of classifiers trained with scattering mod-
ls for differentiating weakly backscattering mesozooplank-
on groups; and (iii) to validate the classifier predictions on a
nown community of zooplankton. We conclude by providing
ecommendations for model-informed classification of target
pectra. 

aterials and methods 

tudy area and zooplankton collection 

ooplankton were collected in Kongsfjorden, Svalbard, from
he R/V Helmer Hanssen using a Tucker trawl (1 m 

2 opening
nd 1000 μm mesh size, 10 min at 3 m s –1 ) on the night of 15
anuary 2022 ( Fig. 1 ). T welve T ucker trawl tows were taken
t the depth of the strongest sound scattering layer ( ∼150 m)
s seen from the vessel’s echosounder (Kongsberg Discovery
S, Horten, Norway; Simrad EK60, 18–38 kHz, 1.024 ms
ulse duration, 2 Hz ping rate). Samples from all tows were
ombined and kept alive for up to 15 h in running seawa-
er, and delivered unsorted to the wharf in Ny- ̊Alesund on 16
anuary. The zooplankton samples were stored overnight in
hree 100-L holding tanks with a low-pressure flow system
f filtered ambient seawater ( ∼2 

◦C) at the Kings Bay Marine
aboratory. An additional Tucker trawl sample collected on
5 January was preserved in a 4% formaldehyde-in-seawater
olution buffered with hexamine and stored for species shape
nalysis. 

esocosm design and experiment 

coustic data were collected on 17 January 2022 from a meso-
osm deployed from a wharf in Ny- ̊Alesund ( Fig. 1 ). The
esocosm, or AZKABAN (Arrested Zooplankton Kept Alive

or Broadband Acoustics Net experiment), was formed by a
uboid of zooplankton net (3 m high, 2 m wide, and 2 m long)
ith a 500 μm mesh, enclosing a volume of 12 m 

3 ( Fig. 2 a).
he net was mounted on the top section of an 8 m high by
 m wide and 2 m long aluminium frame oriented vertically
 Fig. 2 a). Ropes attached eyelets on the net to the frame at
ach corner and along the edges. 

A 200 kHz nominal frequency transducer (ES200-7CDK-
plit; Kongsberg Discovery AS) was mounted on a plate cen-
red inside the mesocosm through a hole on the top panel
f the net with the acoustic axis pointing directly down. A
ideband Autonomous Transceiver (WBA T ; Kongsberg Dis-

overy AS) was fastened to the frame to operate the trans-
ucer ( Fig. 2 ). The AZKABAN frame was purpose-built by
avbruksstasjonen (Ringvassøya, Norway) and designed to

ontain the entire main lobe of a 7 

◦ opening beam angle trans-
ucer inside the net. 
The AZKABAN mesocosm was deployed by crane and low-

red into the fjord ( Fig. 2 b). Zippers on the top and bottom
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Figure 1: Study area in Kongsfjorden with locations of the mesocosm experiment from the wharf in Ny- ̊Alesund (red square) and Tucker trawl 
deplo yments f or the e xperiment (blue circles with some o v erlap; n = 12). T he y ello w circle indicates the Tuck er tra wl deplo yment from which 
z ooplankton w as preserv ed f or morphometric analy ses (y ello w circle; n = 1). T he red bo x in the inset sho ws the location of the study area within the 
Svalbard archipelago. 

Figure 2: (a) Schematic of the AZKABAN mesocosm with the small zooplankton net (left) and large fish net (left). Only the configuration with a small net 
(left) was used for this study to limit the volume of insonified mesozooplankton. The acoustic transceiver (yellow cylinder) is at tac hed to the frame and 
the transducer (orange cylinder). There is a hole at the top of the net for the transducer face to be unobstructed inside the net. (b) The AZKABAN 

mesocosm lifted with the crane at the end of the experiment. 
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panels of the net were used to add the alive and active zoo- 
plankton from the holding tanks into the submerged net. The 
frame was lowered such that the depth of the transducer face 
was ∼0.5 m below the surface. The mesocosm was recovered 

after 3 h of data collection ( Supplementary Fig. S1 ). The zoo- 
plankton were rinsed off the net and collected for species com- 
osition analysis. The species composition of the recovered 

esocosm sample was analysed by identifying and counting 
0% of the total sample for all species with > 1000 individu-
ls. All other species were counted for the entire sample. 

The mesocosm experiment was conducted on an unsorted 

ssemblage to maintain a high detection probability (i.e. with 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
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Table 1: Scattering model parameters distributions for each zooplankton group. 

Parameters Copepods Euphausiids Chaetognaths Hydrozoans 

Modelled species Calanus glacialis Thysanoessa inermis Parasagitta elegans Aglantha digitale 
Length (mm) N (3.3, 0.7) a L (2.4, 0.3) d (10.6, 0.6) a L (2.4,0.4) a 

Length-to-width ratio N (5.3, 0.9) a N (11.0, 2.0) a N (26.0, 8.0) a N (2.8,0.5) a 

Density contrast ( g ) N (0.997, 0.005) b N (1.037, 0.005) b N (1.03, 0.005) e N (1.007, 0.005) f 

Sound speed contrast ( h ) N (1.027, 0.007) b N (1.026, 0.005) b N (1.03, 0.005) e N (1.007, 0.005) f 

Orientation ( ◦) N (90, 30) c N (20, 20) e N (0, 30) e N (90, 30) g 

a Measurements from the preserved sample with the distribution assessed as the best fit based on a 1:1 line between theoretical and empirical quantiles in Q-Q 

plots. 
b Kögeler et al. (1987) ; February–March measurements. 
c Blanluet et al. (2019) 
d Measurements from a subsample of the mesocosm experimental sample. The distribution was assessed as the best fit based on a 1:1 line between theoretical 
and empirical quantiles in Q-Q plots. 
e Lavery et al. (2007) 
f Inferred from a comparison of measurements of hydrozoans from Monger et al. (1998) and Brierley et al. (2001 , 2004) to model predictions. 
g Monger et al. (1998) from swimming shape analysis. 
The distributions are log-normal: L (meanlog and sdlog), normal: N (mean and SD), and gamma: (shape and rate), where SD is the standard deviation. 
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arge numbers of target animals in the enclosure). The sam-
ling effort required to obtain sufficient animals for single-
pecies experiments was deemed too great in time and hence
xpense. In addition, separating the live mesozooplankton
rom a mixed assemblage (as caught) into single species groups
ould have risked injuring or killing individuals. Using the un-

orted mixed population meant that individual animals were
andled minimally and that stress to them was minimized; this
eft it likely that natural swimming behaviour was preserved. 

coustic data collection and calibration 

uring the AZKABAN experiment, the WBAT was pro-
rammed to transmit frequency-modulated pulses covering
he entire available bandwidth from 185 to 255 kHz. The
ransmitted pulses had fast ramping, a pulse duration of 512
s with 75 W transmit power, and a ping interval of 0.35 s.
imultaneous pinging of two split-beam transducers is not
ossible with a WBAT, so we had to restrict the bandwidth
o that achievable by one transducer alone for the experi-
ent. The simultaneous pinging of two or more transducers
ould improve the classification potential of broadband sig-
als (Benoit-Bird and Waluk 2020 ). Of the available trans-
ucers with a 7 

◦ beam width (120, 200, and 333 kHz), the
00 kHz transducer was chosen to have the greatest signal-
o-noise ratio of the targeted species (mesozooplankton) while
chieving a small wavelength to detect smaller zooplankton
7 mm; Simmonds and MacLennan 2005 ). We used a short
ulse length to resolve targets near the net boundary and re-
uce reverberation volume (Soule et al. 1997 ). 
The acoustic system was calibrated on 19 January 2022

ith two spheres made of tungsten carbide (WC) with 6%
obalt binder and diameters of 38.1 and 22 mm (Demer et al.
015 ). Calibrations were processed with the EK80 software
version 21.15; Kongsberg Discovery AS). The calibration pa-
ameters were calculated for each sphere ( Supplementary Fig.
2 ) and combined. 

cattering models 

he training dataset for the classification was created with
cattering models for the most abundant taxonomic groups
n the Tucker trawl samples ( ≥1000 individuals). The most
bundant were calanoid copepods, euphausiids, chaetognaths,
nd pelagic hydrozoans. All these groups are considered fluid-
ike scatterers with sound speed contrast ( h ) and density con-
rast ( g ) of 1 ± 5% (Stanton and Chu 2000 ). Near-unity sound
peed and density contrasts imply that the material proper-
ies of the scatterers are not significantly different from the
urrounding medium (seawater). To model the scattering of
he zooplankton groups, we chose the phase-compensated dis-
orted wave Born approximation (PC-DWBA) model because
he parameters of this model are flexible to geometry, mate-
ial properties, and acoustic frequency ranges, which makes
he model adequate for the broad range of fluid-like zoo-
lankton groups in this study (Chu and Ye 1999 , Gastauer
t al. 2019 ). The DWBA has been extensively tested (Lavery
t al. 2007 ), and the PC-DWBA model has been used to infer
ength or material properties for Antarctic krill, Euphausia su-
erba (Amakasu et al. 2017 ), decapod shrimp, Palaemonetes
ulgaris (Chu et al. 2000 ), and eggs of North Atlantic cod,
adus morhua (Chu et al. 2003 ) by comparison of model
utputs with measurements of known species (in controlled
aboratory experiments or concurrent trawl sampling). We ran
000 model simulations for each zooplankton group using the
ooScatR package (version 0.5, Gastauer et al. 2019 ) with R

version 4.1.2) with shape, size, and material properties pa-
ameters chosen from distributions selected on the basis of the
esocosm-experiment samples, the preserved sample, or liter-

ture ( Table 1 ). The modelled spectra were calculated with a
.5 kHz frequency resolution. 
The preserved Tucker Trawl sample was diluted and sub-

ampled on 22 June 2022 for imaging of copepods ( n = 70),
uphausiids ( n = 20), chaetognaths ( n = 70), and hydrozoans
 n = 70). Images were taken with a Leica M205 C stereomi-
roscope fitted with a Leica MC170 HD camera, and shape
nalysis was performed with an image processing software,
mageJ (version 1.53, National Institutes of Health, USA). The
hapes were processed with ZooScatR with R to calculate the
ength and length-to-width ratio. Large individuals ( > 16 mm)
ere measured with a ruler. For the euphausiids, the length
istribution was calculated from a subsample of 77 individu-
ls from the mesocosm experiment sample. The processed im-
ges were used to create a shape input for each zooplankton
roup and its scattering model ( Supplementary Fig. S3 ). 

Material properties of copepods vary geographically and
easonally, predominantly because of their lipid reserves re-
uired to sustain the winter season (Sakinan et al. 2019 ). We
elected g and h from Kögeler et al. (1987) because of the avail-
bility of measurements from the winter season (February–
arch) and the proximity to the Arctic of their measurements

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
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of Calanus spp., thereby Arctic copepods. For hydrozoans, lit- 
erature values for density and sound speed contrast were lim- 
ited; therefore, we inferred the values for g and h from a com- 
parison of the measurements from Brierley et al. (2001 , 2004) 
and Monger et al. (1998) to the model predictions, a method 

used by Lavery et al. (2007) . 

Acoustic data processing 

All acoustic data were processed in Echoview 13.0 (Echoview 

Software Pty Ltd, Hobart, Tasmania). Data analysis was re- 
stricted to samples within the 1.0–2.25 m range to exclude 
the near-field region (0.5 m) (Simmonds and MacLennan 

2005 ) and the echo from the bottom of the net (2.5 m) 
( Supplementary Fig. S1 ). The ‘Single Target Detection—
wideband’ operator was applied to the pulse-compressed 

wideband data ( Supplementary Table S1 ). The minimum value 
for the compensated TS threshold was set to the minimum 

allowable value, −120 dB re 1 m 

2 , to enable the detec- 
tion of weak scatterers. The identified single targets were 
grouped into tracks using the ‘Detect Fish Tracks’ algorithm.
We used conservative parameters to increase the likelihood 

of each track containing targets from only one individual 
( Supplementary Table S2 ). Tracks were visually assessed to 

remove outlier targets to further ensure that each track origi- 
nated from only a single zooplankton target. 

The target spectra of all single targets assigned to a track 

were exported from Echoview for analysis. All target spectra 
were calculated using a Fourier transform window size of 0.33 

times the pulse length (0.25 m) with a 0.5 kHz resolution. The 
Fourier transform window size was selected as a compromise 
to maximize frequency resolution while minimizing the like- 
lihood of incorporating backscattering from multiple targets 
(Benoit-Bird and Waluk 2020 ). 

Noise level 

The noise level inside the mesocosm affected the minimum 

backscatter detectable from organisms. In this case, noise 
level is considered all unwanted signals, including background 

noise and reverberation from the cage. The noise level within 

AZKABAN was calculated using a 1-min segment of data col- 
lected during a period of low single echo detections (11:25–
11:26 UTC). First, single target detection was applied to the 
pulse-compressed TS with less stringent detection thresholds 
( Supplementary Table S2 ) to identify all possible targets. Sec- 
ond, targets were removed from the dataset using a mask.
The target masks covered entire pings to avoid contamination 

by side lobes associated with pulse compression from targets.
The remaining signal was designated as noise. Weak targets 
that were not identified by the single target detection algo- 
rithm were included in the noise level estimation (see exam- 
ple of unidentified targets in Supplementary Fig. S1 ). Finally,
the noise level was calculated by exporting the median target 
strength frequency response profile for increments of 0.1 m 

depth bins. 
Thereafter, when selecting single targets for the spectra 

analysis, targets were flagged (i.e. excluded from the analy- 
sis) if their target strength at nominal frequency (200 kHz) 
had a signal-to-noise ratio (SNR) of < 10 dB (Simmonds and 

MacLennan 2005 ) when compared to the noise level at nom- 
inal frequency at the range of the target. We calculated the 
proportion of flagged targets below the SNR threshold rela- 
ive to the total amount of targets. The full spectrum was not
ssessed because of the peaks and nulls in the target spectra. 

lassifier training 

arious algorithms have been used for acoustic target clas- 
ification in previous fisheries acoustics studies, including k- 
earest Neighbours (Cotter et al. 2021 ), decision trees (Fer-
andes 2009 , D’Elia et al. 2014 ), random forests (e.g. Proud
t al. 2020 , Gugele et al. 2021 ), gradient boosting (Escobar-
lores et al. 2019 ), support vector machines (Roberts et al.
011 , Roa et al. 2022 ), and neural networks (e.g. Simmonds
t al. 1996 , Cabreira et al. 2009 , Brautaset et al. 2020 ). Here,
hree supervised classifiers that take different approaches to 

lassification were compared ( Table 2 ). The algorithm k-
earest Neighbours (kNN; Goldberger et al. 2004 ) was cho-

en because it has been used for model-informed classifica- 
ion of broadband acoustic measurements previously (Cot- 
er et al. 2021 ). LightGBM (Ke et al. 2017 ), an implemen-
ation of gradient boosting (Friedman 2001 ), was chosen be-
ause it was considered representative of decision tree-based 

nsemble methods with the potential for improved perfor- 
ance compared to random forest (Fernández-Delgado et al.
014 ), which is widely used in fisheries acoustics (Fernandes
009 , Gugele et al. 2021 ). Finally, the support vector ma-
hine algorithm (SVM; Cortes and Vapnik 1995 ) was cho-
en because it is another widely used algorithm that, together
ith gradient boosting, has been identified as among the best-
erforming classification algorithms based on comparisons of 
erformance on large data set collections (Fernández-Delgado 

t al. 2014 ). 

raining on modelled target spectra 

raining of each machine learning classifier was conducted 

n Python (version 3.9) using the Scikit-learn library (version 

.1.1, Pedregosa et al. 2011 ). An L 

2 -normalization was ap-
lied to each target spectra from individuals modelled with the
C-DWBA model simulations so that if the values were to be
quared and summed, the sum would equal one (Komer et al.
014 ). The target variable (i.e. the classification output) was
he zooplankton group: copepod, euphausiid, chaetognath, or 
ydrozoan. 
For each classifier described in Table 2 , we optimized the

yperparameters (Supplementary Information Codes S1, S2,
nd S3) and estimated the classifiers’ performance on a hold-
ut dataset through cross-validation (CV; Stone 1974 ). Nested 

V (Wainer and Cawley 2021 ) was used to optimize the hy-
erparameters and evaluate the performance of the classifiers 
 Supplementary Fig. S4 ). Nested CV ensured that separate
ata were used to train, validate, and test the classifier and
rovided an estimate of the classifier’s true error with mini-
al bias (Varma and Simon 2006 ). We compared the classi-
ers’ success using mean class-weighted F1 score (Equation 1; 
edregosa et al. 2011 ) because that is appropriate for scenar-
os where both false positives and false negatives are equally
ndesirable. 
The F1 score is a measure of overall accuracy calculated as

he harmonic mean of precision and recall, defined as 

F 1 i = 

2 × (
precision i × recall i 

)

(
precision i + recall i 

) . (1) 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
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Table 2: Ov ervie w of the machine learning algorithms (i.e. classifiers) compared in this study. 

Classifier Description Strengths Limitations 

k-Nearest 
Neighbours 
(kNN) 

Predicts the class of new samples by taking 
a majority vote of the k training samples, 
which are closest in distance by some 
metric (e.g. Euclidean distance) (Fix and 
Hodges 1951 ). 

Few hyperparameters therefore easy 
to implement. Interpretable; an 
‘explainable artificial intelligence’ 
algorithm (Islam et al. 2021 , 
preprint: not peer reviewed). 
Computationally inexpensive, 
facilitates repeat classification, and 
examining the effects of 
parameters. 

Limited ability to deal with 
noise and outliers 
(Korneliussen et al. 2018 ). 
Limited ability to identify 
low abundance groups 
(Peña 2018 ). Vulnerable 
to overfitting. 

LightGBM Implementation of gradient boosting, a 
decision tree-based ensemble method 
similar to random forest (Breiman 2001 , 
Friedman 2001 ). Gradient descent is 
used to minimize a loss function with the 
addition of each new tree to the 
ensemble. Thus, each new tree attempts 
to correctly classify samples that were 
previously misclassified (Hastie et al. 
2009 ). 

Suitable for large datasets (Ke et al. 
2017 ) and robust to outliers 
(Hastie et al. 2009 ). Reduced risk 
of overfitting (Hastie et al. 2009 ). 

Rarely used in fisheries 
acoustics. Many 
hyperparameters, 
optimization is 
computationally 
expensive. 

Support Vector 
Machine (SVM) 

Maps data to a higher-dimensional feature 
space in which classes are linearly 
separable; the optimal decision 
boundary (hyperplane) has the maximal 
distance between itself and the closest 
training data points (support vectors) of 
any class (Cortes and Vapnik 1995 , 
Hastie et al. 2009 ). 

Few hyperparameters therefore easy 
to implement. Results are 
consistent and reproducible 
between repeat implementations 
(Bennett and Campbell 2000 ). 

Sensitive to outliers 
(Kanamori et al. 2017 ). 
Unsuitable for large 
datasets, as it is very 
computationally 
expensive (Cervantes et al. 
2008 ). 

The strengths and limitations are detailed for use in fisheries acoustics. 
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Precision reports the relative success of the classifier, ex-
ressed as 

precision i = 

T i 

( T i + F P i ) 
, (2) 

here T is the number of true positives and FP is the number
f false positives for each class i (each zooplankton group).
hereas recall is a measure of the sensitivity from repeat de-

ections, expressed as 

recall i = 

T i 

( T i + F N i ) 
, (3) 

here FN is the number of false negatives for each class i
each zooplankton group). An F1 score of 1.0 would indi-
ate that a classifier could correctly classify all samples. The
1 score was only calculated for the classifier training on
he modelled target spectra because the label of the mod-
lled target spectra was known. There was only one individual
er target spectra; therefore, we did not need to account for
ixtures. 
Hyperparameter optimization was repeated on the entire
odelled dataset (1000 target spectra for each of the 4 zoo-
lankton groups) without subsampling to obtain the final
rained classifiers. 

lassifier sensitivity 

o determine the optimal frequency bandwidth for model-
nformed classification of copepods, euphausiids, chaetog-
aths, and hydrozoans, kNN classifiers were trained and eval-
ated with modelled target spectra over the bandwidths com-
only used in fisheries acoustics (Simmonds and MacLen-
an 2005 ). The selected bandwidths were the individual
andwidths from the 70, 120, 200, and 333 kHz transduc-
rs produced by Kongsberg Discovery AS (45–90, 90–170,
85–255, and 283–383 kHz) and their continuous band-
idth (45–383 kHz). Only kNN was used for this anal-
sis as it is less computationally expensive than the other
lgorithms. 

A kNN classifier was also trained using modelled cross-
ectional backscattering strength—frequency spectra σ bs (f),
he linear scale of TS(f), for the bandwidth of 185–255 kHz—
o examine the effect of the logarithmic scale of the modelled
arget spectra on the classification performance. 

Additionally, we evaluated the classifiers’ sensitivities to the
arameterization of material properties in the scattering mod-
ls because this can strongly influence backscattering inten-
ity (Chu and Ye 1999 , Sakinan et al. 2019 ). A PC-DWBA
odel was parameterized using material property values for
ntarctic copepods drawn from the literature ( Calanus spp.)

 g = 0.995 ± 0.001 and h = 0.959 ± 0.010; Chu and Wiebe
005 ). These values are from spring (2 May 2002) but from
imilar water temperatures ( −0.8–0.4 

◦C) as those used for
rctic copepods in this study. All other model parameters

or copepods and the other zooplankton groups remained the
ame. 

lassification 

he trained and optimized classifiers were used to classify the
easured in situ target spectra from AZKABAN into zoo-
lankton groups (copepods, euphausiids, chaetognaths, or hy-
rozoans). The classifier predictions were evaluated by com-
aring: (i) the predicted class distributions to the species com-
osition of the zooplankton sample recovered from AZKA-
AN; (ii) the class predictions from each classifier (classifier
greement); and (iii) the class predictions for targets from the
ame track (within-track consistency). 
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Table 3: Taxonomic group, species, count, and proportion of the sample retrieved from the net after the experiment. 

Taxonomic group Species 
Total 

individuals 
Proportion of 
sample (%) 

Median length 
(mm) ( ±SD) 

Copepoda Calanus spp. 13 380 50 .61 3.3 ( ±0.7) 
Copepoda Metridia spp. 6310 23 .87 
Copepoda Paraeuchaeta spp. 710 2 .69 
Copepoda Other copepods 160 0 .61 
Euphausiacea Thysanoessa inermis 2485 9 .40 11.0 ( ±4.0) 
Chaetognatha Parasagitta elegans 2220 8 .40 17.0 ( ±5.0) 
Hydrozoa Aglantha digitale 1000 3 .78 11.0 ( ±5.0) 
Decapoda Juvenile Pandalus spp. 76 0 .29 
Decapoda Benthic shrimp 2 0 .01 
Pteropoda Clione limacina 40 0 .15 
Amphipoda Themisto spp. 27 0 .10 
Amphipoda Undetermined 14 0 .05 
Fish (larvae) Leptoclinus maculatus 7 0 .03 
Mysidacea Undetermined 4 0 .02 

Samples with < 1000 individuals were counted for the entire recovered mesocosm sample. The groups in grey were modelled to create the labelled training 
dataset for the classification algorithms. 
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Results 

Species composition 

The zooplankton sample collected from AZKABAN after the 
experiment showed that copepods were numerically domi- 
nant. Over 20 000 copepods were in AZKABAN, mostly 
Calanus spp. ( > 13 000 individuals; Table 3 ). The second most 
abundant group was euphausiids, which were an order of 
magnitude less abundant in the samples than copepods. The 
most common euphausiid was Thysanoessa inermis , and the 
population consisted mainly of small juveniles (median length 

of 11 mm; Table 3 ). The sample contained almost as many 
chaetognaths as euphausiids, predominantly Parasagitta ele- 
gans . The fourth most abundant group in the sample were 
hydrozoans, predominantly Aglantha digitale . All other zoo- 
plankton and fish sampled had < 100 individuals; therefore,
we did not include these species in the classification analysis 
due to the low likelihood of repeated detections. During the 
experiment, the AZKABAN mesocosm had a total density of 
2203 individual zooplankton per m 

3 . 

Scattering models 

Copepods were the smallest scatterers in this experiment with 

a median total length ( ± SD) of 3.3 ± 0.7 mm and an av- 
erage modelled TS of −113 dB re 1 m 

2 across the frequency 
spectrum. The amplitude of the modelled target spectra was 
typically lower for the copepods than the other three groups.
Modelled Antarctic copepods had similar target spectra re- 
sults but with a 5 dB mean increase across the spectra com- 
pared to the Arctic copepods, with an average TS of −107 dB 

re 1 m 

2 (Fig. 3a; blue). 
Euphausiids and hydrozoans had the same median total 

lengths of 11 mm ( ±4 mm for euphausiids and ±5 mm for 
hydrozoans). Despite their similar length distributions, eu- 
phausiids had a higher average TS ( −89 dB re 1 m 

2 for eu- 
phausiids and −94 dB re 1 m 

2 for hydrozoans) due to dif- 
ferences in their material properties. However, both groups 
had relatively flat average spectra over the measured band- 
width ( Fig. 3 b and d). Lastly, chaetognaths had the longest 
median length (17 ± 5 mm) but had a relatively low median 

TS ( −98 dB re 1 m 

2 ). The target spectra of chaetognaths had 

a slight positive slope and a large dispersion of TS intensity 
( Fig. 3 c and g). 
oise level 

he noise level inside AZKABAN was low, being below 

100 dB re 1 m 

2 throughout the mesocosm ( Fig. 4 ) and across
he frequency bandwidth. There were peaks in the noise level
rofile at 1.1, 1.6, and 1.9 m range from the transducer ( Fig.
 ). The noise profile followed a similar magnitude and trend
cross the bandwidth, with ∼5 dB re 1 m 

2 variability. We
ound that the signal-to-noise ratio at 200 kHz was < 10 dB re
 m 

2 for 10.6% of the single targets used for classification, as
hown by the overlaid detected target used for classification 

nalysis in Fig. 4 . This was deemed adequate, and all targets
ere retained for subsequent analyses. 

esocosm target detections 

 total of 7722 tracked single targets were detected during the
-h AZKABAN mesocosm experiment. The mesocosm target 
etections were from a mixed zooplankton assemblage, and 

ndividual detections were from targets of unknown identity.
here were 777 distinct tracks, with a mean of 10 single target
etections per track. The minimum number of detections in a
rack was 4, and the maximum was 178. 

valuation of classifier training 

he optimized kNN classifier used the KDTree algorithm (Pe- 
regosa et al. 2011 ) and Euclidean distance as the distance
etric. For the kNN classifier, the optimized value for the
umber of training samples closest in distance to the query
ample used for predictions, k, was 1. The optimized SVM
lassifier used a radial basis function kernel, and the optimized
ightGBM comprised 3400 trees with a maximum tree depth 

f 7. Full details of the optimized classifiers are provided in
upplementary Information Codes S1, S2, and S3. 

lassifier performance 

he F1 scores reflect the classifiers’ performance at classify-
ng the modelled target spectra. The highest class-weighted 

1 score was achieved using LightGBM (0.71 ± 0.02), fol- 
owed by kNN (0.70 ± 0.03) and SVM (0.59 ± 0.03) for
he 185–255 kHz bandwidth. Per-class F1 scores showed con- 
istently highest scores for copepods (0.71–0.87). The lower 
er-class F1 scores for euphausiids (0.64–0.72), hydrozoans 
0.58–0.67), and chaetognaths (0.44–0.58) indicated that the 
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Figure 3: (a–d) All PC-DWBA model simulation results for each dominant zooplankton group. For copepods (a), the model results are shown for Arctic 
species (black; Kögeler et al. 1987 ) and Antarctic species (blue; Chu and Wiebe 2005 ). (e–h) L 2 -normalized PC-DWBA model simulation results for each 
dominant zooplankton group. 

Figure 4: B ack ground noise profile inside AZKABAN across the a v ailable 
bandwidth (185–255 kHz; blue lines). The grey dots indicate the TS of 
each detected tracked target detection at 200 kHz. The detection zone is 
delimited by the horizontal black lines at 1–2.25 m. The transducer face 
and top of the net are at 0 m range and the bottom of the net is at 3 m 

range. 
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lassifiers had limited precision and/or recall in classifying
hese groups. The limited precision and recall of the classifiers
ere reflected in the confusion matrices for each classifier (i.e.

he high numbers of misclassifications; Supplementary Tables
3 , S4, and S5 ). 

lassifier sensitivity 

he nested CV procedure was conducted for modelled tar-
et spectra across five different frequency bandwidths (45–
0, 90–170, 185–255, 283–383, and 45–383 kHz) to test the
ffect of bandwidth selection on classifier performance. The
omparisons were only run with kNN because it was the least
omputationally expensive algorithm of those used in this
tudy and, based on the results in Table 4 , provided similar
erformance to LightGBM. The mean class-weighted F1 score
or kNN with the full bandwidth (TS 45–383 kHz ) was 0.92 ( ±
.02) ( Supplementary Table S6 ). The best score for a single
transducer’ was 0.86 ( ± 0.01), using modelled spectra at the
entre bandwidth of the 120 kHz transducer (TS 70–190 kHz ). 

The cross-sectional backscatter spectra ( σ bs 185–255 kHz ) (i.e.
he linear domain representation of the target spectra) were
lso used to train a kNN classifier. Using the linear scale of
he target spectra brought a slight improvement to classifier
erformance (mean class-weighted F1 score: 0.73 ± 0.03 in
he linear domain compared to 0.70 ± 0.02 in the logarithmic
omain). 
The performance of the kNN classifier trained with mod-

lled target spectra of Antarctic copepods (Supplementary
ode S5) (mean class-weighted F1 score: 0.69 ± 0.03;
upplementary Table S7 ) was not significantly different from
he classifier trained with modelled target spectra of Arctic
opepods (mean class-weighted F1 score: 0.70 ± 0.02). 

lassification of in situ measurements 

ll classifiers predicted a different class distribution to the
pecies composition of the zooplankton sample recovered
rom AZKABAN ( Fig. 5 ). For kNN, hydrozoans were pre-
icted to be the most abundant class, followed by chaetog-
aths, euphausiids, and copepods, which was the inverse of
he recovered sample ( Fig. 5 ). For LightGBM, chaetognaths
ere predicted as the most abundant class with no copepod
etections. The SVM predictions implied a majority of hydro-
oans, followed by euphausiids, chaetognaths, and copepods.

The measured in situ target spectra for each class, as clas-
ified by kNN and LightGBM, were generally consistent with
ach other and the modelled spectra ( Fig. 6 ). However, the
easured in situ target spectra classified as copepods by kNN
ad a higher target strength than the copepods’ modelled tar-
et spectra ( Fig. 6 ). Of the mesocosm targets, those with high
ntensity and flat target spectra were labelled as copepods by
he SVM classifier . However , the target spectra for euphausi-
ds, chaetognaths, and hydrozoan predictions from SVM were
n general agreement with the modelled results. 

Only 18.13% of the measured target spectra (1400 sam-
les) were classified as the same zooplankton group by all

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
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Table 4: Classifier F1 scores estimated through nested cross-validation (mean ± SD) for the 185–255 kHz bandwidth. 

Classifier kNN LightGBM SVM 

Mean class-weighted F1 score 0.70 ± 0.03 0.71 ± 0.02 0.59 ± 0.03 
Mean F1 score for copepods 0.87 ± 0.02 0.87 ± 0.02 0.71 ± 0.03 
Mean F1 score for euphausiids 0.70 ± 0.03 0.72 ± 0.03 0.64 ± 0.03 
Mean F1 score for chaetognaths 0.58 ± 0.04 0.58 ± 0.05 0.44 ± 0.03 
Mean F1 score for hydrozoans 0.66 ± 0.04 0.67 ± 0.03 0.58 ± 0.04 

A score of 1.0 indicates that a classifier could correctly classify each sample (100% classification success). 

Figure 5: (a) Composition of the zooplankton sample used in the mesocosm experiment as a proportion of the total sample for the four most abundant 
groups ( n = 26 435). (b–d) the proportion of predicted targets of the total detections for tracked single targets ( n = 7722) assigned to each group by 
k-nearest neighbours (kNN), LightGBM, and support vector machine (SVM) classifiers. 
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three classifiers: 10.09% were consistently classified as hydro- 
zoans, 5.93% as chaetognaths, 1.29% as euphausiids, and 0% 

for copepods because no target spectra were labelled as cope- 
pods by LightGBM. Pairwise comparisons of classifiers show 

that 50.62% of tracked single target spectra (3909 samples) 
were classified as the same zooplankton group by kNN and 

LightGBM, compared to 42.55% (3286 samples) by kNN and 

LightGBM and 29.31% (17 103 samples) by LightGBM and 

SVM. 
SVM had the highest within-track prediction consistency: 

on average, 75% of targets within a track were assigned the 
same class label. However, 70% of tracks included at least two 

different classes. For LightGBM, 67% of detections within a 
track were assigned to the same class, and 100% of tracks 
included at least two classes, compared to 62 and 93%, re- 
spectively, for kNN. 
iscussion 

ZKABAN: a mesocosm for in situ broadband 

coustic backscatter measurements 

ZKABAN was designed to facilitate in situ broadband 

coustic backscatter measurements of caged fish and zoo- 
lankton. The estimated noise level of AZKABAN was suffi- 
iently low to enable the detection of mesozooplankton. Noise 
nd reverberation from mesocosm walls have been a major 
hallenges in past experiments with weak scatterers (Knut- 
en and Foote 1997 ). The successful detection of weak targets
n the AZKABAN mesocosm was partly due to the improve-
ents in signal-to-noise ratio and range resolution associated 

ith pulse compression of the broadband received signal. 
The purpose-built mesocosm offered a practical plat- 

orm for broadband measurements of mesozooplankton. The 
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Figure 6: Modelled: PC-DWBA model simulations (theoretical) target 
spectra for each zooplankton group. kNN, LightGBM, and SVM: 
measured target spectra of tracked single targets from the mesocosm 

experiment as classified by k-Nearest Neighbours (kNN), LightGBM, and 
support vector machine (SVM). All panels include the number ( n ) of target 
spectra in each panel. 
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esign enabled the zooplankton sample to be added to the sub-
erged net from a small boat, minimizing stress on the ani-
als. It was also possible to recover the samples after the ex-
eriment for enumeration and morphometric analysis. There-
ore, this mesocosm could be an effective experimental setup
or controlled behavioural experiments, such as reactions to
ifferent sources and intensities of light and sound. 

erformance of classifiers trained by modelled 

arget spectra 

f the three conceptually different classifiers trained on mod-
lled target spectra, the best-performing classifier was Light-
BM, with a mean class-weighted success rate of 0.71. Cope-
ods consistently had the highest mean F1 score (0.71–0.87),
ndicating that copepods’ modelled target spectra could be dis-
riminated from the other modelled target spectra. The sensi-
ivity analysis with the copepods parametrized with Arctic or
ntarctic material properties demonstrated that changes in g
nd h have little effect on the normalized target spectra ( Fig. 3 a
nd e) or classification success ( Table 4 , Supplementary Table
7 ). All the classifiers were limited in their ability to discrimi-
ate between euphausiids, chaetognaths, and hydrozoans. De-
pite parametrizing the scattering models with representative
arameters and shapes of the different zooplankton group or-
anisms, these groups had overlapping modelled target spec-
ra. Presumably, the overlap in the modelled target spectra of
uphausiids, chaetognaths, and hydrozoans is due to the close
imilarity of the parameter distributions. The model’s inability
o resolve the target spectra of different fluid-like zooplank-
on directly introduces consequences for target detection and
lassification. This suggests that thresholds should be estab-
ished to determine possible taxonomic resolution for classifi-
ation of species with overlapping model parameter distribu-
ions. Ross et al. (2013) report a similar effect with juvenile
uphausiids and pteropods and conclude that the similarity in
requency responses of these groups may render them indis-
inguishable. 

Previous studies on supervised classification of target spec-
ra have used coarse taxonomic resolution to manually la-
el measured target spectra to create a training set based
n model-informed classes. Cotter et al. (2021) achieved a
lass-weighted F1 score of 0.90 for the classification of manu-
lly labelled fluid-like and gas-bearing targets detected with a
roadband echosounder (25–40 kHz) using k-Nearest Neigh-
ours. Roa et al. (2022) classified six reef fish using scat-
ering models with a wide bandwidth (30–200 kHz) and
ound high classification accuracy (F1 score > 80%). We
lso found a wide bandwidth (45–383 kHz) resulted in high
lassification performance (class-weighted mean F1 score of
.92 ± 0.02). However, the wide bandwidth (45–383 kHz)
esults were not possible to validate with the mesocosm ex-
erimental setup. Furthermore, we achieved higher accuracy
ith a lower bandwidth (90–170 kHz; class-weighted mean
1 score of 0.86 ± 0.01) than the one used in the mesocosm
185–255 kHz). Despite the higher F1 scores at a lower band-
idth (90–170 kHz), we used 185–255 kHz for its smaller
avelength for a better target size resolution. For the classifi-

ation of in situ measurements, physical and practical limita-
ions of target size and echosounder properties (beamwidth,
avelength, and transmit power) must be considered in ad-
ition to the F1 score of the classifier. While previous model-

nformed classification studies (Cotter et al. 2021 , Roa et al.
022 ) may have achieved better classification performances
ecause the classes they used had distinct acoustic properties,
n contrast to our study, their model-informed classifiers were
ot validated with in situ measurements . 

iscrepancies between classifiers predictions and 

n situ measurements 

e used the AZKABAN mesocosm experiment to validate the
erformance of three model-trained classifiers using measure-
ents of a mesozooplankton community sample for which

he species composition was known. Overall, the zooplank-
on community composition determined by the classifiers dif-
ered from the actual composition in the mesocosm. Copepods
ere overwhelmingly the most abundant group in the meso-

osm ( Fig. 5 a) but were consistently the least abundant class
n the classifier predictions ( Fig. 5 b–d). Hydrozoans were the
east abundant group in the mesocosm but the most abundant
redicted class for kNN and SVM. Whereas for LightGBM,
haetognaths were the most abundant class. These major dis-
repancies show that model-informed classification was not
uccessful on in situ target detections. 

Small copepods in the mesocosm (3 mm in length) were
robably not detected, given the spatial resolution of the
avelength (7 mm at 200 kHz; Simmonds and MacLennan
005 ). The classifier predictions reflected this, with few cope-
od predictions and the target strength mismatch between
he modelled and predicted results ( Fig. 6 ), despite the rela-
ively high F1 scores for copepods. Therefore, while the larger
opepods were detected acoustically, the majority of cope-
ods were likely not identified by the echosounder. A higher
requency range (283–383 kHz) with a shorter wavelength

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad192#supplementary-data
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would theoretically resolve the issue, but previous noise level 
tests (not presented here) showed that the increased noise level 
at higher frequencies would not allow the detection of indi- 
vidual weak scatterers ( < −110 dB re 1 m 

2 ). Future studies 
testing model-informed classification of zooplankton with the 
200 kHz transducer should only select the zooplankton frac- 
tion > 7 mm. In that case, if the model-informed classification 

is successful, the proportion of each zooplankton group cal- 
culated from in situ target detections may match the real pro- 
portion in the zooplankton sample. 

The in situ target detections were also used to assess the 
within-track consistency of predictions between classifiers.
The target tracking algorithm associates many single target 
detections to an individual organism as it travels across the 
acoustic beam. There was a high variability of zooplankton 

groups assigned to each track, highlighting the large variabil- 
ity in target spectra from an individual organism. The inhomo- 
geneity of predictions per track and poor agreement between 

classifiers provide compelling evidence that model-informed 

classification of fluid-like mesozooplankton is unreliable. 

Recommendations to improve model-informed 

classification of zooplankton 

Our results on classifier training with modelled target spec- 
tra suggest that the classification performance is highly de- 
pendent on the choice of algorithm when the groups cannot 
be reliably differentiated. Good practice for machine-learning- 
based science typically requires that a classifier’s performance 
is evaluated on a test set ‘drawn from the distribution of sci- 
entific interest’ (Kapoor and Narayanan 2022 , preprint: not 
peer reviewed). Model-informed acoustic target classification 

is appealing because it avoids the practical challenges and cost 
of obtaining labelled measurements of known species empiri- 
cally (by sampling in the field or tank). However, using model- 
informed classification inevitably means that the samples used 

to train, validate, and test a classifier are not drawn from the 
distribution of scientific interest. 

This study used a scattering model flexible to geometry, ma- 
terial properties, and acoustic frequency changes to generate 
training data for supervised machine learning classifiers. For 
future studies, we suggest that model-informed classification 

could be useful in assessing the theoretical classification poten- 
tial of different bandwidths. However, classifier performance 
must be considered in the context of factors such as the tar- 
get strength of the species of interest at a given frequency and 

the frequency’s range resolution for the classification of in situ 

measurements. We conclude that a better understanding of the 
variability in the acoustic measurements from individuals is 
required before model-informed classification of target spec- 
tra can be implemented reliably. Features in broadband spec- 
tra, such as the locations of nulls and peaks, can provide in- 
sight into morphological characteristics of individuals (Reeder 
et al. 2004 , Kubilius et al. 2020 ). A better understanding of 
these features could increase classification potential and the 
information we can extract from target spectra. 

Summary and conclusions 

This study evaluated a model-informed classification of zoo- 
plankton from broadband echosounder data using in situ 

measurements (185–255 kHz) of a mixed Arctic mesozoo- 
plankton assemblage in a purpose-built mesocosm. Acous- 
tic scattering models generated modelled target spectra for 
he four most abundant zooplankton groups in the meso- 
osm: copepods, euphausiids, chaetognaths, and hydrozoans.
hree different supervised machine learning algorithms were 

rained using modelled target spectra, and then compared in 

erms of their ability to classify the in situ measured target
pectra obtained from the mesocosm experiment. Investiga- 
ions of the classifier training using modelled target spectra 
howed that kNN and LightGBM classifiers could not dif- 
erentiate euphausiids, chaetognaths, and hydrozoans reliably.
he classifier training results were confirmed by their incon- 
istent predictions of euphausiids, chaetognaths, and hydro- 
oans within-track and between classifiers for the in situ meso-
osm measurements. The lack of consistent predictions within 

 track suggests that the variability in target spectra per class
s greater than in the target spectra between the different zoo-
lankton groups from the sound scattering models. The out- 
tanding challenge remaining is to understand the ping-to- 
ing variability in the spectra of individual scatterers (Martin 

t al. 1996 , Dunning et al. 2023 ). 
Another remaining challenge for this method is the require- 
ent to model the dominant taxa that are expected to be

ound in the study area. An Arctic fjord was selected as the
tudy location in part because of the low species diversity. For
egions with higher diversity, similar taxa could be grouped 

ased on their material properties and shape to expand model-
nformed classification. In addition, in situ imaging could 

omplement the acoustic measurements to increase the tax- 
nomic resolution of model-informed classification (Ohman 

t al. 2019 ). 
The mesocosm design used in this study was an effec-

ive platform for measurements of fluid-like scatterers, which 

ould be used to develop a better understanding of measured
ariability in target spectra. For example, mesocosm exper- 
ments with fewer individuals or a series of single-species 
xperiments could improve model validation for broadband 

chosounder measurements of freely swimming individuals.
owever, a semi-permanent installation for longer experiment 

eriods, visual validation through video or imaging for swim-
ing behaviour information, and repeat experiments would 

e required to complete such comparative studies. 
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