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a b s t r a c t

The q-Coloring problem asks whether the vertices of a graph can be properly colored
with q colors. In this paper we perform a fine-grained analysis of the complexity of q-
Coloring with respect to a hierarchy of structural parameters. We show that unless
the Exponential Time Hypothesis fails, there is no constant θ such that q-Coloring
parameterized by the size k of a vertex cover can be solved in O∗(θ k) time for all
fixed q. We prove that there are O∗((q − ε)k) time algorithms where k is the vertex
deletion distance to several graph classes for which q-Coloring is known to be solvable
in polynomial time, including all graph classes F whose (q+1)-colorable members have
bounded treedepth. In contrast, we prove that if F is the class of paths – some of the
simplest graphs of unbounded treedepth – then no such algorithm can exist unless the
Strong Exponential Time Hypothesis fails.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In an influential paper from 2011, Lokshtanov et al. showed that for several problems, straightforward dynamic
rogramming algorithms for graphs of bounded treewidth are essentially optimal unless the Strong Exponential Time
ypothesis (SETH) fails [15]. (Section 2.2 gives the definitions of the two Exponential Time Hypotheses; see [4, Chapter 14]
r the survey [18] for further details.) Some of the lower bounds, as the one for q-Coloring, even hold for parameters such
s the feedback vertex number, which form an upper bound on the treewidth but may be arbitrarily much larger. For other
roblems such as Dominating Set, the tight lower bound of Ω∗((3−ε)k) holds for the parameterization pathwidth, but is
ot known for the parameterization feedback vertex set. In general, moving to a parameterization that takes larger values
ight enable running times with a smaller base of the exponent. In this paper, we therefore investigate the parameterized
omplexity of the q-Coloring and q-List-Coloring problems from a more fine-grained perspective.
In particular, we consider a hierarchy of graph parameters – ordered by their expressive strength – which is a common

ethod in parameterized complexity, see e.g. [8] for an introduction. One of the strongest parameters for a graph problem
s the number of vertices in a graph, in the following denoted by n. Björklund et al. showed that the chromatic number
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(G) (the smallest number of colors q such that G is q-colorable) of a graph G can be computed in O∗(2n) time [2], so the
base of the exponent in the runtime of the algorithm is independent of the value of χ (G). We show that if you consider
slightly weaker parameter, the size k of a vertex cover of G, it is very unlikely that there is a constant θ , such that

q-Coloring can be solved in O∗(θ k) time for all fixed q ∈ N: It would imply that ETH is false.
However, we show that there is a simple algorithm that solves q-Coloring parameterized by vertex cover, and for

hich the base of the exponential term in its runtime is strictly smaller than the base q that is potentially optimal for
he treewidth parameterization. (A proof of the following proposition is deferred to the beginning of Section 3.)

roposition 1. There is an algorithm which decides whether a graph G is q-colorable and runs in O∗((q−1.11)k) time, where
k denotes the size of a given vertex cover of G.

On the other hand, the above algorithm does not obviously generalize to other parameterizations. To derive more
general results about obtaining non-trivial runtime bounds for parameterized q-Coloring, we study graph classes with
small vertex modulators to several graph classes F: Given a graph G, a vertex modulator X ⊆ V (G) to F is a subset of its
vertices such that if we remove X from G the resulting graph is a member of F , i.e. G − X ∈ F . If |X | ≤ k, we say that
G ∈ F + kv. (For example, graphs that have a vertex cover of size at most k are Independent + kv graphs.) Hence, we
study the following problems which were first investigated in this parameterized setting by Cai [3].

q-(List-)Coloring on F + kv Graphs

Input: An undirected graph G and a modulator X ⊆ V (G) such that G − X ∈ F (and lists Λ : V → 2[q]).

Parameter: |X | = k, the size of the modulator.

Question: Can we assign each vertex v a color from [q] (from its list Λ(v)) such that adjacent vertices have different
colors?

Given a No-instance (G,Λ) of q-List-Coloring we call (G′,Λ′) a No-subinstance of (G,Λ), if (G′,Λ′) is also No and G′ is
an induced subgraph of G withΛ(v) = Λ′(v) for all v ∈ V (G′). We show that if a graph class F has small No-certificates for
q-List-Coloring, meaning that there is a function g :N → N such that each No-instance whose graph is from F contains
a No-subinstance whose size is bounded by g(q), then q-(List-)Coloring on F + kv graphs can be solved in O∗((q − ε)k)
time, for some ε > 0. This notion was introduced by Jansen and Kratsch to prove the existence of polynomial kernels for
said parameterizations [13].

In addition to that, we give some further structural insight into hereditary graph classes F , for which F + kv graphs
have non-trivial algorithms: We show that if the (q + 1)-colorable members of F have bounded treedepth, then F + kv
has O∗((q− ε)k) time algorithms for q-Coloring when parameterized by the size k of a given modulator, for some ε > 0.
We prove that this treedepth-boundary is in some sense tight: Arguably the most simple graphs of unbounded treedepth
are paths. We show that q-Coloring cannot be solved in O∗((q − ε)k) time for any ε > 0 on Path + kv graphs, unless
SETH fails — strengthening the lower bound for Forest + kv graphs [15] via a somewhat simpler construction. Using
this strengthened lower bound, we prove that if a hereditary graph class F excludes a complete bipartite graph Kt,t for
some constant t , then, assuming SETH, F + kv has O∗((q − ε)k) time algorithms for q-(List-)Coloring if and only if the
(q + 1)-colorable members of F have bounded treedepth.

We would like to add that such treedepth-boundaries have been observed in other contexts as well: In the problems
studied e.g. in [7,10], the parameterization treedepth leads to positive results while the parameterization pathwidth leads
to negative results.

The rest of the paper is organized as follows: In Section 2 we give some fundamental definitions used throughout the
paper. We present some upper bounds in the hierarchy in Section 3 and lower bounds in Section 4. In Section 5 we present
the aforementioned tight relationship between the parameter treedepth and the existence of algorithms for q-Coloring
with nontrivial runtime and we give concluding remarks in Section 6.

2. Preliminaries

We assume the reader to be familiar with the basic notions in graph theory and parameterized complexity and refer
to [4–6,9] for an introduction. We now give the most important definitions which are used throughout the paper.

We use the following notation: For a, b ∈ N with 1 ≤ a < b, [a..b] := {a, a+ 1, . . . , b} and [a] := [1..a]. For a function
f : X → Y , we denote by f|X ′ the restriction of f to X ′

⊆ X . For a set X and an integer n, we denote by
(X
n

)
the set of all

size-n subsets of X .
For asymptotic resource bounds, the O∗-notation suppresses polynomial factors in the input size. All logarithms used

in the paper have a base of 2.
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.1. Graphs and parameters

Throughout the paper a graph G with vertex set V (G) and edge set E(G) is finite and simple. We sometimes shorthand
‘V (G)’’ (‘‘E(G)’’) to ‘‘V ’’ (‘‘E’’) if it is clear from the context. For graphs G, G′ we denote by G′

⊆ G that G′ is a subgraph
of G, i.e. V (G′) ⊆ V (G) and E(G′) ⊆ E(G) ∩

(V (G′)
2

)
. We often use the notation n = |V | and m = |E|. For a vertex

v ∈ V (G), we denote by NG(v) (or simply N(v), if G is clear from the context) the set of neighbors of v in G, i.e.
NG(v) = {w ∈ V (G) | {v,w} ∈ E(G)}.

For a vertex set V ′
⊆ V (G), we denote by G[V ′

] the subgraph induced by V ′, i.e. G[V ′
] = (V ′, E(G)∩

(V ′

2

)
). A graph class

F is called hereditary, if it is closed under taking induced subgraphs.
We now list a number of graph classes which will be important for the rest of the paper. A graph G is independent, if

E(G) = ∅. A cycle is a connected graph all of whose vertices have degree two. A graph is a forest, if it does not contain
a cycle as a subgraph and a linear forest if additionally its maximum degree is at most two. A connected forest is a tree
and a tree of maximum degree at most two is a path. A graph G is a split graph, if its vertex set V (G) can be partitioned
into sets W , Z ⊆ V (G) such that G[W ] is a clique and G[Z] is independent. We define the class

⋃
Split containing all

graphs that are disjoint unions of split graphs. A graph G is a cograph if it does not contain P4, a path on four vertices,
as an induced subgraph. A graph is chordal, if it does not have a cycle of length at least four as an induced subgraph.
A cochordal graph is the edge complement of a chordal graph and the class

⋃
Cochordal contains all graphs that are

disjoint unions of cochordal graphs.

Definition 2 (Parameterized Problem). Let Σ be an alphabet. A parameterized problem is a set Π ⊆ Σ∗
× N, the second

component being the parameter which usually expresses a structural measure of the input. A parameterized problem is
(strongly uniform) fixed-parameter tractable (fpt) if there exists an algorithm to decide whether ⟨x, k⟩ ∈ Π in f (k) · |x|O(1)

time where f is a computable function.

The main focus of our research is how the function f (k) behaves for q-Coloring with respect to different structural
graph parameters, such as the size of a vertex cover.

In particular, we study a hierarchy of parameters, a term which we will now discuss. For a detailed introduction we
refer to [8, Section 3]. For notational convenience, we denote by Πp a parameterized problem with parameter p. Suppose
we have a graph problem and two parameters p(G) and p′(G) regarding some structural graph measure. We call parameter
p′(G) larger than p(G) if there is a function f , such that f (p′(G)) ≥ p(G) for all graphs G. Modulo some technicalities, we
can observe that if a problem Πp is fpt, then Πp′ is also fpt. This induces a partial ordering on all parameters based on
which a hierarchy can be defined.

2.2. Exponential time hypotheses

In 2001, Impagliazzo et al. made two conjectures about the complexity of q-SAT — the problem of finding a satisfying
truth assignment for a Boolean formula in conjunctive normal form with clauses of size at most q [11,12]. These
conjectures are known as the Exponential Time Hypothesis (ETH) and Strong Exponential Time Hypothesis (SETH),
formally defined below. For a survey of conditional lower bounds based on such conjectures, see [18].

Conjecture 3 (ETH [11]). There is an ε > 0, such that 3-SAT on n variables cannot be solved in O∗(2εn) time.

Conjecture 4 (SETH [11,12]). For every ε > 0, there is some q ∈ N such that q-SAT on n variables cannot be solved in
O∗((2 − ε)n) time.

3. Upper bounds

In this section we present upper bounds for parameterized q-Coloring. In particular, in Section 3.1 we show that
if a graph class F has No-certificates for q-List-Coloring whose size only depends on q, then there exist O∗((q − ε)k)
time algorithms for q-Coloring on F + kv graphs for some ε > 0 depending on F . In Section 3.2 we show that if the
(q+1)-colorable members of a hereditary graph class F have bounded treedepth, then F has No-certificates of small size.

We begin by proving Proposition 1 and repeat its statement.

Proposition (restated). There is an algorithm which decides whether a graph G is q-colorable and runs in O∗((q−1.11)k) time,
where k denotes the size of a given vertex cover of G.

Proof. Let X ⊆ V (G) be the given vertex cover of G of size k. We observe that if G is q-colorable, then any valid q-coloring
of G can be extended from a valid q-coloring of G[X]. We know that in any q-coloring γ : V (G) → [q] there is a color class
that contains at most ⌊k/q⌋ vertices in X . The algorithm now works as follows. We enumerate all sets S ⊆ X of size at
most ⌊k/q⌋ and check whether they are independent. If so, let S ′ denote the set consisting of S together with all vertices

′
in V (G) \X that do not have a neighbor in S. Note that G[S ] is independent, since X is a vertex cover and its complement
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s an independent set. We then recurse on the instance G − S ′ with q decreased by one (and the size of the modulator
ecreased by |S|). Once q = 2, we check whether the remaining graph is 2-colorable (or equivalently, bipartite) in linear
ime.

We now compute the exponential dependence of the runtime by induction on q. As base cases we consider q ∈ {1, 2, 3}.
he cases q = 1 and q = 2 are trivial, since the problem can be solved in polynomial time. For q = 3, the number of
enerated subproblems is bounded by

∑⌊k/3⌋
ℓ=0

(k
ℓ

)
, which is at most 2H(1/3)k, where H(x) = −x log(x)− (1− x) log(1− x) is

the binary entropy [9, page 427]. Since H(1/3) ≤ 0.9183, the algorithm generates at most 20.9183k
≤ 1.89k subproblems,

all of which can be solved in polynomial time. For the induction step, let q > 3 and assume for the induction hypothesis
that for (q− 1), the exponential dependence of the running time is upper bounded by (q− 1− 1.11)k. Note that we may
assume that k ≥ q, for if q > k, we are dealing with a trivial Yes-instance: each vertex in the vertex cover S receives one
of k ≤ q − 1 distinct colors, and the vertices outside of S all receive the same color, distinct from all colors appearing on
S. It is clear that this results in a proper q-coloring of the input graph. Since the algorithm enumerates all subsets of X of
size ℓ for each ℓ ∈ [⌊k/q⌋],3 and the size of the parameter decreases by ℓ in each call, using the induction hypothesis we
find that the exponential term in the running time is upper bounded by

⌊k/q⌋∑
ℓ=0

(
k
ℓ

)
(q − 2.11)k−ℓ ≤

k∑
ℓ=0

(
k
ℓ

)
(q − 2.11)k−ℓ · 1ℓ = (q − 2.11 + 1)k = (q − 1.11)k,

since
∑n

i=0

(n
i

)
· ai · bn−i

= (a + b)n by the Binomial Theorem.
We now argue the correctness of the algorithm, again by induction on q. The base cases, q = 1 and q = 2 are again

trivially correct. For the induction step, consider q > 2 and assume for the induction hypothesis that the recursive calls
to solve (q − 1)-Coloring are correct. Suppose G has a q-coloring γ and let T ⊆ V (G) denote the color class with the
fewest vertices from X . Then, |T ∩ X | ≤ k/q, so the algorithm guesses the set S = T ∩ X . Since the corresponding set S ′

contains all vertices in G − X that do not have a neighbor in S and γ is a proper coloring, we can conclude that S ′
⊇ T .

Hence, G − S ′ is a subgraph of the (q − 1)-colorable graph induced by the other color classes of γ which the algorithm
detects correctly by the induction hypothesis. Conversely, any (q − 1)-coloring for G − S ′ can be lifted to a q-coloring of
G by giving all vertices in the independent set S ′ the same, new, color. □

3.1. Small No-certificates

In earlier work [13], Jansen and Kratsch studied the kernelizability of q-Coloring and established a generic method
to prove the existence of polynomial kernels for several parameterizations of q-Coloring. We now show that we can use
their method to prove the existence of O∗((q − ε)k) time algorithms, for some ε > 0, for several graph classes F + kv as
well.

We first introduce the necessary terminology. Let (G,Λ) be an instance of q-List-Coloring. We call (G′,Λ′) a
subinstance of (G,Λ), if G′ is an induced subgraph of G and Λ(v) = Λ′(v) for all v ∈ V (G′).

Definition 5 (g(q)-size No-certificates). Let g :N → N be a function. A graph class F is said to have g(q)-size No-certificates
for q-List-Coloring if for all No-instances (G,Λ) of q-List-Coloring with G ∈ F there is a No-subinstance (G′,Λ′) on at
most g(q) vertices.

Theorem 6. Let F be a graph class with g(q)-size No-certificates for q-List-Coloring. Then, there is an ε > 0, such that
q-List-Coloring (and hence, q-Coloring) on F + kv graphs can be solved in O∗((q − ε)k) time given a modulator to F of
size at most k. In particular, the algorithm runs in O∗

(
(qg(q)·q − 1)k/(g(q)·q)

)
time, where the degree of the hidden polynomial

depends on g(q).

Proof. Let G ∈ F + kv with vertex modulator X , such that F has g(q)-size No-certificates for q-List-Coloring, and let
Λ be the lists of allowed colors on the vertices of G, so that (G,Λ) is an instance of q-List-Coloring. The idea of the
algorithm is to enumerate partial colorings of X , except some colorings for which it is clear that they cannot be extended
to a proper coloring of the entire instance. The latter can occur as follows: After choosing a coloring for some vertices of
X and removing the chosen colors from the lists of their neighbors, a No-subinstance appears in the graph G − X .

To find a partial coloring of G[X] that can trigger a No-subinstance to appear in G − X , we first check, for each No-
certificate (H,ΛH ) of F , if H is isomorphic to a subgraph of G − X . If we find such an isomorphism ϕ from H to some
G′

⊆ G − X , then we have to find out if some coloring of a subset of X forces the lists of each vertex v ∈ V (G′) to be the
same as the list of the vertex u ∈ V (H) with ϕ(u) = v.

More precisely, for each v ∈ V (G′), we determine whether v has neighbors in X that can receive the colors that are on
the list of v but not on the list of u ∈ V (H) where ϕ(u) = v. We need one such vertex for each color in Λ(v) \ΛH (u).

Since one vertex of X suffices per vertex in G′ and color in [q], it is enough to consider subsets X ′ of X that are of size
at most g(q) · q. If we find such an X ′ that can be colored as desired, we can exclude at least one coloring of the at most
qg(q)·q colorings of G[X ′

] to branch on, which results in a branching algorithm with the claimed running time. We illustrate
the idea discussed in this paragraph in Fig. 1, and give the details of the resulting procedure in Algorithm 1.
36
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Fig. 1. The intuition of the algorithm of Theorem 6, exemplified with F being the class of matchings. Note that matchings have 2-size No-certificates
or q-List-Coloring. We consider a 4-List-Coloring instance on the right and a No-certificate (H,ΛH ) on the left. The shown coloring of the three
ertices in X triggers a No-subinstance to appear in G−X and can therefore be discarded. This, together with the fact that G−X has No-certificates
hose size only depends on q, which is constant, is how a nontrivial running time is achieved.

Input : A graph G ∈ F + kv with vertex modulator X and Λ : V → 2[q].
Output: Yes, if G is q-list-colorable, No otherwise.

1 Let ζ be the set of No-instances of q-List-Coloring on F of size at most g(q), which is computed once by complete
enumeration;

2 if ∃ (H,ΛH ) ∈ ζ , G′
⊆ G − X and X1, . . . , Xq ⊆ X with |Xi| ≤ g(q) for all i ∈ [q] such that:

1. ∃ isomorphism ϕ : V (G′) → V (H)
2. For all c ∈ [q] and v ∈ Xc we have c ∈ Λ(v)
3. (∀v ∈ V (G′))(∀c ∈ Λ(v) \ΛH (ϕ(v))) ∃w ∈ Xc with {v,w} ∈ E(G)

3 then
4 foreach proper coloring γ :X → [q] where X =

⋃
i Xi and ∀v ∈ X : γ (v) ∈ Λ(v) do

5 if (∀c ∈ [q])(∀v ∈ Xc ) : γ (v) = c then
6 Skip this coloring, it is not extendible to G − X;
7 else
8 Create a copy (G′′,Λ′′) of (G,Λ) and denote by X ′′ the vertex set in G′′ corresponding to X in G;
9 For each vertex v ∈ X ′′ and each neighbor w of v: Remove γ (v) from Λ′′(w);

10 Recurse on (G′′
− X ′′,Λ′′);

11 if the recursive call returns Yes then
12 Return Yes and terminate the algorithm;
13 Return No;
14 else
15 Determine if (G[X],Λ) is q-list-colorable and if so, return Yes;

Algorithm 1: q-List-Coloring for F + kv graphs where F has g(q)-size No-certificates.

Let us discuss the details behind Algorithm 1, which we just outlined. The main condition (line 2) checks whether
the input graph G contains the graph of a minimal No-instance as an induced subgraph. If so, then we consider such a
ubgraph G′ and we look for a neighborhood of V (G′) in X (the sets X1, . . . , Xq), which can block the colors that are on
the lists Λ but not on the lists of the minimal No-instance. If these conditions are satisfied, then we know that we can
exclude the coloring on X1, . . . , Xq which assigns each vertex v ∈ Xc the color c (for all c ∈ [q]): This coloring induces
No-subinstance on (G,Λ). It suffices to use sets Xc of at most g(q) vertices each. To induce the No-instance, in the
orst case we need a different vertex in Xc for each of the g(q) vertices in H that do not have c on their list. Hence, as
escribed from line 4 on, we enumerate all colorings γ :X → [q] (where X =

⋃
i Xi) except the one we just identified

s not being extendible to G − X . For each such γ , we make a copy of the current instance and ‘assign’ each vertex v
orresponding to a vertex in X the color γ (v): We remove γ (v) from the lists of its neighbors and then remove v from
he copy instance. In the worst case we therefore recurse on qg(q)·q − 1 instances with the size of the vertex modulator
ecreased by g(q)·q. If during a branch in the computation, the condition in line 2 is not satisfied, then we know that there
s no coloring on the modulator that cannot be extended to the vertices outside the modulator and hence it is sufficient
o decide whether (G[X],Λ) is q-list-colorable (as pointed out in line 15). This can be done using the following standard
eduction from q-List-Coloring to q-Coloring: We add a q-clique to G[X] on vertices [q]. For each i ∈ [q] and v ∈ X , we
dd an edge between i and v if i /∈ λ(v). The resulting graph G′ has a q-coloring if and only if (G[X],Λ) is q-list-colorable.
o determine if G′ has a q-coloring we use the algorithm for Chromatic Number due to Björklund et al. [2]. As soon as
ne branch returns Yes, we can terminate the algorithm, since we found a valid list coloring.

laim 7. If the condition of line 2 does not hold, then G is q-list-colorable if and only if G[X] is q-list-colorable.

3 Note that since k ≥ q, such sets X always exist.
37
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roof. The forward direction is trivial since any proper coloring of G yields a proper coloring of its induced subgraph G[X].
o prove the reverse direction, we show that if the condition of line 2 fails, any proper q-list-coloring of G[X] can be
xtended to a proper q-list-coloring of the entire graph.
Suppose that γ : X → [q] is a proper q-list-coloring of G[X]. Define a q-list-coloring instance (G − X,Λ′) on the

graph G − X , where for each vertex v ∈ V (G − X) the list of allowed colors is Λ′(v) := Λ(v) \ {γ (u) | u ∈ NG(v) ∩ X}.
If (G − X,Λ′) has a proper q-list-coloring γ ′, then we can obtain a proper q-list-coloring for G by following γ on the
vertices in X and γ ′ on the vertices outside X . The fact that the colors for vertices in X are removed from the Λ′-lists of
their neighbors ensures that the resulting coloring is proper, and since each list of Λ′ is a subset of the corresponding
list in Λ, the coloring satisfies the list requirements. We therefore complete the proof by showing that (G − X,Λ′) must
be a Yes-instance. Assume for a contradiction that (G − X,Λ′) has answer No. Since G − X ∈ F , which has g(q)-size No-
certificates, there is an induced subinstance (G′,Λ′′) of (G−X,Λ′) on at most g(q) vertices, where G′ is an induced subgraph
of G − X and therefore of G. Since (G′,Λ′′) is a No-instance on at most g(q) vertices, the instance (H := G′,ΛH := Λ′′) is
contained in the set of enumerated small No-instances. For each v ∈ V (G′), for each color c that belongs to Λ(v) but not
to Λ′(v) = Λ′′(v) we have γ (u) = c for some u ∈ NG(v)∩X , by definition of Λ′. Initialize X1, . . . , Xq as empty vertex sets.
For each v ∈ V (G′) and color c ∈ Λ(v) \ Λ′′(v), add such a vertex u to Xc . Since γ satisfies the list constraints, for each
vertex v ∈ Xc with c ∈ [q] we have c ∈ Λ(v). Hence these structures satisfy the conditions of line 2; a contradiction. □

Claim 8. If the condition of line 5 holds, then the coloring γ cannot be extended to a proper q-list-coloring of G.

Proof. To extend the coloring γ to the entire graph G, each vertex v of G− X has to receive a color of Λ(v) \ {γ (u) | u ∈

NG(v)∩X}, since the color of v must differ from that of its neighbors. For each vertex v in the subgraph G′, for each color c
in Λ(v) \ΛH (ϕ(v)) there is a neighbor of v in Xc (by condition 3 of line 2) that is colored c (by line 5). Hence the colors
available for v in an extension form a subset of ΛH (ϕ(v)). But since G′ is isomorphic to H , and (H,ΛH ) is a No-instance,
no such extension is possible as it would yield a proper q-list-coloring of (H,ΛH ). □

Using these claims we prove correctness by induction on the nesting depth of recursive calls in which the condition
of line 2 is satisfied. If line 2 is not satisfied (which includes the base case of the induction), then the algorithm is correct
by Claim 7 and the fact that we invoke a correct algorithm in line 15 as a subroutine [2]. Now, suppose that the condition
of line 2 is satisfied, and assume by the induction hypothesis that the recursive calls (line 10) are correct. Let (G,Λ) with
modulator X be the current instance. We recurse on each possible proper q-list-coloring of the set X , except the one
described in the condition in line 5 for which Claim 8 shows it cannot be extended to a proper q-list-coloring. If (G,Λ)
has a proper q-list-coloring γ , then in the branch where we correctly guess the restriction of γ onto the vertices in X we
find a Yes-answer: the restriction of γ on G′′

−X ′′ is a proper q-list-coloring of (G′′
−X ′′,Λ′′) since the colors we removed

from the lists were not used on G′′
− X ′′ (they were used on their neighbors in X ′′). Conversely, if some recursive call

yields a Yes-answer, then since we restricted the lists before going into recursion, we can extend a proper q-list-coloring
on the smaller instance with the coloring γ on X to obtain a proper q-list-coloring of (G,Λ).

We now analyze the runtime. Since q is a constant, g(q) is constant as well and computing the set ζ in line 1 can be
done in constant time. Using the same argument we observe that the condition in line 2 checks a polynomial number of
options: The size of ζ and the size of its elements are constant and hence there is a polynomial number (at most |ζ | ·ng(q))
of subgraphs of G to consider. Once such a subgraph of G is fixed, we can enumerate all of the at most g(q)! isomorphisms
and all of the at most (kg(q)·q)q = O((ng(q)·q)q) tuples of sets X1, . . . , Xq with an additional polynomial overhead. Hence the
work in each iteration, excluding the recursive calls and line 15, is polynomial.

Line 15 can be done in O∗(2k+q) time, which is O∗(2k) for constant q, using the O∗(2n) algorithm for Chromatic
Number [2] and classic reduction from q-List-Coloring to q-Coloring outlined above.

Using these facts we bound the total runtime. In the worst case we branch on qg(q)·q − 1 instances in which the size of
the modulator decreased by g(q) · q. By standard techniques [17, Proposition 8.1], this branching vector can be shown to
generate a search tree with O((qg(q)·q − 1)k/(g(q)·q)) nodes. If the work at each node of the tree is polynomial, we therefore
get a total runtime bound matching the theorem statement. If we do not execute line 15, then indeed a single iteration
takes polynomial time. If line 15 is executed, then we spend O∗(2k) time on the iteration. However, in that case we do not
recurse further, so the time spent solving the problem on G[X] can be discounted against the fact that we do not explore
a search tree of size (qg(q)·q − 1)k/(g(q)·q) > 2k for q ≥ 3. The time bound follows.

This concludes the proof of Theorem 6, noting that we can apply any algorithm for q-List-Coloring to solve an instance
of q-Coloring by giving each vertex in a given instance of q-Coloring a full list. □

In [13, Lemmas 2–4], Jansen and Kratsch showed that the (hereditary) graph classes
⋃

Split,
⋃

Cochordal, and Cograph
have (q + 4q)-, ((q + 1)!)-, and (2q2 )-size No-certificates for q-List-Coloring, respectively. Combining these bounds with
Theorem 6 gives the following consequence, (where Proposition 1 yields the result for the class Independent).

Corollary 9 (of Theorem 6, Proposition 1, and Lem. 2, 3 and 4 in [13]). There is an ε > 0, such that the q-Coloring and
q-List-Coloring problems on F + kv graphs can be solved in O∗((q − ε)k) time given a modulator to F of size k, where F is
one of the following classes: Independent,

⋃
Split,

⋃
Cochordal and Cograph.
38



L. Jaffke and B.M.P. Jansen Discrete Applied Mathematics 327 (2023) 33–46

3

h
C

D

N

P
(

t
a

i

o
h

c

n

.2. Bounded treedepth

We now show that if the (q + 1)-colorable members of a hereditary graph class F have treedepth at most t , then F
as qt-size No-certificates. For a detailed introduction to the parameter treedepth and its applications, we refer to [16,
hapter 6].

efinition 10 (Treedepth). Let G be a connected graph. A treedepth decomposition T = (V (G), F ) is a rooted tree on the
vertex set of G such that the following holds. For v ∈ V (G), let Av denote the set of ancestors of v in T . Then, for each
edge {v,w} ∈ E(G), either v ∈ Aw or w ∈ Av .

The depth of T is the number of vertices on a longest path from the root to a leaf. The treedepth of a connected graph is
the minimum depth of all its treedepth decompositions. The treedepth of a disconnected graph is the maximum treedepth
of its connected components.

The main result of this section is the following.

Lemma 11. Let F be a hereditary graph class whose (q+1)-colorable members have treedepth at most t. Then, F has qt-size
o-certificates for q-List-Coloring.

roof. Consider an arbitrary No-instance (G,Λ) of q-List-Coloring for a graph G ∈ F . If G is not (q + 1)-colorable
ignoring the lists Λ), then remove an arbitrary vertex from G. Since this lowers the chromatic number by at most one,
the resulting graph will still be a No-instance of q-Coloring and therefore of q-List-Coloring. Repeat this step until
arriving at a subinstance (G′,Λ′) that is (q + 1)-colorable. By assumption, G′ has treedepth at most t . Fix an arbitrary
reedepth decomposition for G′ of depth at most t . We use the decomposition to find a No-subinstance by a recursive
lgorithm. Given a No-instance (G,Λ) and a treedepth decomposition T of G of depth at most t , it marks a set M ⊆ V (G)

such that the subinstance induced by M is still a No-instance and |M| ≤ qt .
If the treedepth decomposition has depth one, then mark a vertex with an empty list (which must exist if the answer is

No). When the decomposition has depth > 1, then do the following. Let T be a tree of the decomposition that represents
an arbitrary connected component C that cannot be list colored. Observe that such a component exists in a No-instance.
Let r be the root of T . For each color c ∈ Λ(r), create a list coloring instance (C −{r},Λc) on a graph of treedepth t −1 as
follows. The graph is C −{r} and its decomposition consists of T minus its root (which therefore splits into a forest), and
the lists equal the old lists except that we remove c from the lists of all of r ’s neighbors. Observe that the subinstance
has answer No, since otherwise the component C has a proper coloring. Recursively call the algorithm on this smaller
instance to get a set Mc that preserves the fact that (C − {r},Λc) has answer No. After getting the answers from all the
recursive calls, mark the vertices in the set M containing the root r together with the union of the sets Mc for all c ∈ Λ(r).

To bound the size of the set M , let h(t) denote the maximum number of marked vertices in a treedepth decomposition
of depth t . Clearly, h(1) = 1. If t > 1, we recurse in at most q ways on instances of treedepth at most t − 1, hence the
number of marked vertices is described by the recurrence h(t) ≤ q · h(t − 1)+ 1 which resolves to h(t) ≤

qt−1
q−1 and hence

h(t) ≤ qt , as claimed.
We now prove that the above described marking procedure preserves the No-answer of an instance of q-List-Coloring.

We use induction on t , the depth of a treedepth decomposition T (with root r) of the graph G of a q-List-Coloring No-
nstance (G,Λ). The base case t = 1 is trivially correct: A graph has treedepth one if and only if it is independent and
since a graph is q-list-colorable if and only if its connected components are q-list-colorable, the only minimal No-instance
f treedepth one is a single vertex with an empty list, which we marked in the procedure. Now suppose for the induction
ypothesis that t > 1 and for all t ′ < t , the marking procedure is correct. Consider a treedepth decomposition T of

a connected component C of (a subgraph of) G and the set M of currently marked vertices. Suppose for the sake of a
contradiction that (G[M],Λ|M ) is a Yes-instance with proper list-coloring γ : M → [q]. Let Cγ (r) denote the connected
omponent of C − {r} we branched on for color γ (r) and Mγ (r) the set of marked vertices in Cγ (r). By the induction
hypothesis (which applies since Cγ (r) has treedepth at most t − 1), we know that (G[Mγ (r)],Λγ (r)) is a No-instance of q-
List-Coloring. But γ|Mγ (r) is a valid solution for that instance if γ is a proper coloring: the color of r cannot appear on its
eighbors in Mγ (r), and therefore γ|Mγ (r) satisfies the list constraints of Λγ (r). This contradicts the fact that (G[Mγ (r)],Λγ (r))

is a No-instance. □

To see the versatility of Lemma 11, observe that the vertices of a (q+1)-colorable split graph can be partitioned into a
clique of size at most (q+ 1) and an independent set, which makes it easy to see that they have treedepth at most q+ 2.
Since the treedepth of a disconnected graph equals the maximum of the treedepth of its connected components, we then
get a finite (qq+2) upper bound on the size of minimal No-instances for q-List-Coloring on

⋃
Split graphs. An ad-hoc

argument was needed for this in earlier work [13, Lemma 2], albeit resulting in a better bound (q + 4q).

4. Lower bounds

In this section we prove lower bounds for q-Coloring in the parameter hierarchy. Since in the following, the ‘F + kv’-
notation is more convenient for the presentation of our results, we will mostly refer to graphs which have a vertex cover
of size k as Independent + kv graphs and graphs that have a feedback vertex set of size k as Forest + kv graphs.
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In Section 4.1 we show that there is no universal constant θ , such that q-Coloring on Independent + kv graphs can
be solved in O∗(θ k) time for all fixed q ∈ N, unless ETH fails. We strengthen the SETH-based lower bound of [15] for
q-Coloring, ruling out O∗((q − ε)k)-time algorithms on Forest + kv graphs, to a SETH-based lower bound ruling out
O∗((q− ε)k)-time algorithms on Linear Forest+ kv graphs in Section 4.2. Note that by the constructions we give in their
proofs, the lower bounds also hold in case a modulator of size k to the respective graph class is given.

4.1. No universal constant for Independent + kv graphs

The following theorem shows that, unless ETH fails, the runtime of any fpt-algorithm for q-Coloring parameterized by
vertex cover (equivalently, on Independent + kv graphs) always has a term depending on q in the base of the exponent.

Theorem 12. There is no (universal) constant θ , such that for all fixed q ∈ N, q-Coloring on Independent + kv graphs can
be solved in O∗(θ k) time, unless ETH fails.

Proof. Assume we can solve q-Coloring on Independent + kv graphs in O∗(θ k) time. We will use this hypothetical
algorithm to solve 3-SAT in O∗(2εn) time for arbitrarily small ε > 0, contradicting ETH. We present a way to reduce an
instance ϕ of 3-SAT to an instance of 3q-List-Coloring for q an arbitrary power of 2, say q = 2t for some t ∈ N. The larger
q is, the smaller the vertex cover of the constructed graph will be. It will be useful to think of a color c ∈ [q] (recall that

= 2t ) as a bitstring of length t , which naturally encodes a truth assignment to t variables. The entire color range [3q]
artitions into three consecutive blocks of q colors, so that the same truth assignment to t variables can be encoded by
hree distinct colors c, c + q, and c + 2q for some c ∈ [q]. The reason for the threefold redundancy is that clauses in ϕ
ave size three and will become clear in the course of the proof.
Throughout the following, keep in mind that q = 2t for some t ∈ N. Given an instance ϕ of 3-SAT, we create a graph

G3q and lists Λ : V (G3q) → 2[3q] as follows. First, we add ⌈n/t⌉ vertices v1,i (where i ∈ [⌈n/t⌉]) to V (G3q), whose colorings
will correspond to the truth assignments of the variables x1, . . . , xn in ϕ. We let Λ(v1,i) = [q] for all these vertices. In
particular, the variable xi will be encoded by vertex v1,⌈i/t⌉. We add two more layers of vertices v2,i, v3,i (where i ∈ [⌈n/t⌉])
to G3q whose lists will be Λ(v2,i) = [(q+1)..2q] and Λ(v3,i) = [(2q+1)..3q], respectively (for all i). Throughout the proof,
we denote the set of all these variable vertices by V =

⋃
i,j vi,j, where i ∈ [3] and j ∈ [⌈n/t⌉].

For each i ∈ [2] and j ∈ [⌈n/t⌉] we do the following. For each pair of colors c ∈ [((i − 1)q + 1)..(i · q)] and
c ′

∈ [(i · q + 1)..((i + 1)q)] such that c + q ̸= c ′, we add a vertex ui,j
c,c′ with list Λ(ui,j

c,c′ ) = {c, c ′
} and make it adjacent to

both vi,j and vi+1,j. Note that this way, we add O(q2) and hence a constant number of vertices for each such i and j. We
denote the set of all vertices ui,j

·,· for all i and j by U .

Claim 13. Let i ∈ [2] and j ∈ [⌈n/t⌉]. In any proper list-coloring of G3q, the color c ∈ [((i − 1)q + 1)..(i · q)] appears on vi,j
if and only if the color c + q appears on vi+1,j. If color c ∈ [((i − 1)q + 1)..(i · q)] appears on vi,j and c + q appears on vi+1,j,
hen all vertices ui,j

·,· can be assigned a color from their list that does not appear on a neighbor.

roof. We first observe that the lists of vi,j and vi+1,j are Λ(vi,j) = [((i−1)q+1)..(i ·q)] and Λ(vi+1,j) = [(i ·q+1)..(i+1)q],
espectively. Suppose that c appears on vi,j. Then, for every color c ′

∈ [(i · q + 1)..((i + 1)q)] with c ′
̸= c + q there is a

neighbor ui,j
c,c′ of vi,j with list Λ(ui,j

c,c′ ) = {c, c ′
}. Since c already appears on a neighbor of ui,j

c,c′ , we know that in each proper
oloring, ui,j

c,c′ must be colored c ′, blocking this color for its neighbor vi+1,j. As this prevents any color c ′
̸= c + q from

ppearing on vi+1,j, in any proper list-coloring that vertex is colored c + q. (A proof of the converse works the same way.)
For the second statement, suppose c appears on vi,j and c + q appears on vi+1,j. Then any vertex ui,j

c′,c′′ created by the
rocess above has list {c ′, c ′′

} ̸= {c, c+q} by construction. Hence ui,j
c′,c′′ can safely be assigned a color of {c ′, c ′′

}\{c, c+q},
which does not appear on any of its neighbors. □

Claim 13 shows that in any proper list-coloring of V , there is a threefold redundancy: If color c appears on v1,i, then
color c+q appears on v2,i and c+2q appears on v3,i. For the next part of the construction, we use the binary expansion of a
non-negative integer x, which is the unique sequence of ⌊log x⌋+1 bits b0, . . . , b⌊log x⌋ ∈ {0, 1} such that x =

∑
⌊log x⌋
i=0 2i

·bi.
We associate a proper list-coloring of V with the truth assignment whose True/False assignment to the ith block of t
consecutive variables follows the 1/0-bit pattern in the least significant t bits of the binary expansion of the color of
vertex v1,i. Conversely, given a truth assignment to x1, . . . , xn we associate it to the coloring of V where the color of
vertex v1,i is given by the number whose least significant t bits match the truth assignment to the ith block of t variables,
and any remaining bits are set to 0. The colors of v2,i and v3,i are q and 2q higher than the color of v1,i.

For each clause Cj ∈ ϕ we will now add a number of clause vertices to ensure that if Cj is not satisfied by a given truth
assignment of its variables, then the corresponding coloring of the vertices V cannot be extended to (at least) one of these
clause vertices.

Let Cj ∈ ϕ be a clause with variables xj1 , xj2 , and xj3 . Then, v1,⌈j1/t⌉, v1,⌈j2/t⌉, and v1,⌈j3/t⌉ denote the vertices whose
colorings encode the truth assignments of the respective variables. In the following, let j′i := ⌈ji/t⌉ for i ∈ [3]. Note that

there is precisely one truth assignment of the variables xj1 , xj2 , and xj3 that does not satisfy Cj. Choose ℓ1, ℓ2, ℓ3 ∈ {0, 1}
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Fig. 2. An illustration of the reduction given in the proof of Theorem 12. On the left there is a schematic overview of the graph G3q and on the
right an example of a subgraph induced by two vertices v1,j and v2,j together with the corresponding vertices in U for 24-List-Coloring.

such that ℓi = 0 if and only if the ith variable in Cj appears negated. For i ∈ [3] let Fi ⊆ [q] be those colors
hose binary expansion differs from ℓi at the (ji mod t)-th least significant bit, and define F+q

i := {q + c | c ∈ Fi}
nd F+2q

i := {2q + c | c ∈ Fi}. This implies that the truth assignment encoded by a proper list-coloring of V falsifies
he ith literal of Cj if and only if it uses a color from Fi on vertex v1,j′i . By Claim 13, this happens if and only if it uses
a color from F+q

i on vertex v2,j′i , which happens if and only if it uses a color of F+2q
i on vertex v3,j′i . Hence the truth

ssignment encoded by a proper list-coloring satisfies clause Cj if and only if the colors appearing on (v1,j′1 , v2,j′2 , v3,j′3 )
do not belong to the set F1 × F+q

2 × F+2q
3 . To encode the requirement that Cj be satisfied into the graph G3q, for

each (c1, c2, c3) ∈ F1 × F+q
2 × F+2q

3 we add a vertex wc1,c2,c3 to G3q that is adjacent to v1,j′1 , v2,j′2 , and v3,j′3 and whose
list is {c1, c2, c3}. The threefold redundancy we incorporated ensures that the three colors in each forbidden triple are all
distinct. Therefore, if one of the three neighbors of wc1,c2,c3 does not receive its forbidden color, then wc1,c2,c3 can properly
receive that color. This would not hold if there could be duplicates among the forbidden colors. The reduction is finished
by adding these vertices for each clause Cj ∈ ϕ. We denote the set of clause vertices by W . For an illustration see Fig. 2.

Claim 14. The formula ϕ has a satisfying truth assignment if and only if the graph G3q obtained via the above reduction is
3q-list-colorable.

Proof. Suppose ϕ has a satisfying truth assignment ψ : [n] → {0, 1}. Let γψ be the corresponding proper coloring of V ,
as described just below the proof of Claim 13. We argue that γψ can be extended to the vertices W as well. Let Cj ∈ ϕ be
a clause on variables xj1 , xj2 , and xj3 and let wc1,c2,c3 ∈ W be a vertex we introduced in the construction above for Cj. For
i ∈ [3], let γ i

ψ := γψ (vi,⌈ji/t⌉).
Since γψ encodes a satisfying truth assignment, we know that there exists an i∗ ∈ [3], such that γ i∗

ψ ̸= ci∗ (since
otherwise, ψ is not a satisfying truth assignment to ϕ). Hence, the color ci∗ is not blocked from the list of vertex wc1,c2,c3
which can then be properly colored. By Claim 13 we know that the remaining vertices U can be properly list-colored as
well.

Conversely, suppose that G3q is properly list-colored. We show that each proper coloring must correspond to a truth
assignment that satisfies ϕ. For the sake of a contradiction, suppose that there is a proper list-coloring γψ : V (G) → [3q]
which encodes a truth assignment ψ that does not satisfy ϕ. Let Cj ∈ ϕ denote a clause which is not satisfied by ψ on
variables xj1 , xj2 , and xj3 . For i ∈ [3], we denote by γ i

ψ := γψ (vi,⌈ji/t⌉) the colors of the variable vertices encoding the truth
assignment of the variables in Cj. Since ψ does not satisfy Cj we know that we added a vertex wγ 1

ψ
,γ 2
ψ
,γ 3
ψ

to W , which is

djacent to v1,⌈j1/t⌉, v2,⌈j2/t⌉, and v3,⌈j3/t⌉. This means that the colors γ 1
ψ , γ

2
ψ , and γ

3
ψ appear on a vertex which is adjacent

o wγ 1
ψ
,γ 2
ψ
,γ 3
ψ
and hence the coloring γψ is improper, a contradiction. □

We have shown how to reduce an instance of 3-SAT to an instance of 3q-List-Coloring. We modify the graph G3q to
obtain an instance of q-Coloring which preserves the correctness of the reduction. We add a clique K3q of 3q vertices to

G3q, each of whose vertices represents one color. We make each vertex in v ∈ V ∪ W ∪ U adjacent to each vertex in K3q
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hat represents a color which does not appear on v’s list in the list-coloring instance. (The same trick was used in the
roof of Theorem 6.1 in [15].) It follows that the graph without K3q has a proper list-coloring if and only if the new graph
as a proper 3q-coloring.
We now compute the size of G3q in terms of n and q and give a bound on the size of a vertex cover of G3q. We observe

hat |V| = 3⌈n/t⌉, |U| = O(q2 · ⌈n/t⌉), and clearly, |V (K3q)| = 3q. To bound the size of W , we observe that for each clause
Cj, we added (2log q−1)3 vertices (since we considered all triples of bitstrings of length t = log q where one character is
fixed in each string) and hence |W| = O(q3 · m) with m the number of clauses in ϕ. It is easy to see that V ∪ V (K3q) is a
ertex cover of G3q and hence G3q has a vertex cover of size 3⌈n/ log q⌉ + 3q.
Assuming there is an algorithm that solves q-Coloring on Independent + kv graphs in O∗(θ k) time together with an

pplication of the above reduction (whose correctness follows from Claim 14) would yield an algorithm for 3-SAT that
uns in time:

θ3⌈n/ log q⌉+3q
· ((q2 + 3)⌈n/ log q⌉ + 3q + q3 · m)O(1)

= θ3⌈n/ log q⌉+3q
· (n + m)O(1)

= θ3⌈n/ log q⌉+3q
· nO(1)

= O∗
(
θ3⌈n/ log q⌉+3q)

= O∗

(
2

3 log θ
log q n

)
ence, for any ε > 0 we can choose a constant q large enough such that (3 log θ )/(log q) < ε and Theorem 12 follows. □

.2. No nontrivial runtime bound for Path + kv graphs

We now strengthen the lower bound for Forest+ kv graphs due to Lokshtanov et al. [15] to the more restrictive class
of Linear Forest+kv graphs. Before we give the proof, we discuss the similarities and differences between the reduction
n [15] and ours, and point out how we achieve the stronger lower bound. In both cases, most of the work is done in
educing SAT to q-List-Coloring on graphs with the desired structure, and the lower bound for q-Coloring (without the
ists) follows from a standard trick.

Both reductions take a SAT instance ϕ to an equivalent q-List Coloring instance (G,Λ), where G has a set of vertices
X whose q-(list-)colorings encode the truth assignments to the variables of ϕ. This set X will be the modulator to the
target graph class. To ensure that precisely the q-list-colorings of G[X] that encode satisfying truth assignments of ϕ can
be extended to the remainder of the graph, Lokshtanov et al. add one path Pj per clause Cj, where each internal vertex in Pj
corresponds to a truth assignment of some variables of ϕ that satisfies Cj. For the path Pj to be properly list-colorable, one
of its internal vertices vj has to be colored with a special color. This color can only appear on vj if the coloring encoding
the corresponding truth assignment appears on G[X]. This is achieved by attaching vj via a so-called connector to X , that
enforces the desired behavior. For each clause Cj, the path Pj and its connectors form a tree; therefore, G−X is a forest. In
contrast to this, our reduction introduces for each clause Cj, and each coloring µ of some vertices Xj in X that corresponds
to a truth assignment to the variables in Cj that does not satisfy Cj, one path Pj,µ to G. Here, a coloring of G[X] should only
be extendible to Pj,µ if µ does not appear on Xj. To achieve this, it suffices to connect the vertices in Xj to the vertices of
Pj,µ directly, without the use of intermediate connectors. This has the effect that G− X is a linear forest (a disjoint union
of paths).

Let us begin. First, we describe the crucial clause gadget that we just hinted at in the following lemma.

Lemma 15. For each q ≥ 3 there is a polynomial-time algorithm that, given (c1, . . . , cm) ∈ [q]m, outputs a q-list-
coloring instance (P,Λ) where P is a path on 6m + 2 vertices that contains distinguished vertices (π1, . . . , πm), such that
he following holds: For each (d1, . . . , dm) ∈ [q]m there is a proper list-coloring γ of P in which γ (πi) ̸= di for all i, if and only
f (c1, . . . , cm) ̸= (d1, . . . , dm).

roof. The path P consists of consecutive vertices v0, v1, . . . , v6m, v6m+1. Vertex v0 is the source and v6m+1 is the sink. The
emaining 6m vertices are split into m groups D1, . . . ,Dm consisting of six consecutive vertices v6(i−1)+1, . . . , v6i (i ∈ [m])
each. We first add some colors to the lists of these vertices which are allowed regardless of (c1, . . . , cm). Later we will
add some more colors to the lists of selected vertices to obtain the desired behavior.

Initialize the ‘default’ list of vertex vi for i ∈ [6 m] to contain the two colors {(i mod 3) + 1, (i + 1 mod 3) + 1}, so
hat the first few lists are {2, 3}, {3, 1}, {1, 2}, and so on. Initialize Λ(v0) := Λ(v6m+1) := {2}. With these lists, there is no
roper list-coloring of P . The color for the source vertex is fixed to 2, forcing the color of v1 to 3, which forces v2 to 1,
nd generally forces vi to color (i+ 1) mod 3+ 1. Hence v6m is forced to (6m+ 1) mod 3+ 1 = 2, creating a conflict with
he sink v6m+1 which is also forced to color 2.

We now introduce additional colors on some lists, and identify the distinguished vertices π1, . . . , πm among the
ertices vi′ (where i′ ∈ [6 m]), to allow proper list-colorings under the stated conditions. (Note that in the rest of the
roof, we will make use of two symbols for any distinguished vertex, depending on which is more convenient at the
ime: πi where i ∈ [m] and vi′ where i′ ∈ [6 m].) For a group Di of six consecutive vertices, the interior of the group
onsists of the middle four vertices. For each index i ∈ [m], choose πi as a vertex from the interior of group Di such that ci
s not on the default list of colors for πi. Since there is no color that appears on all of the default lists of the four interior
ertices, this is always possible. Add ci to the list of allowed colors for πi. Note that for this construction to work, we need

t least three colors. If ci ≥ 4, then each vertex of the interior of the group Di could serve as the distinguished vertex,
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Fig. 3. An example 5-List-Coloring instance created as in the proof of Lemma 15, for some (c1, . . . , cm) with c1 = 3, c2 = 2, and cm = 5; the
remaining values of ci , i ∈ {3, . . . ,m − 1}, are not specified in this example and their impact on the resulting path and the lists of the vertices is
not shown in the figure. Note that any vertex in the interior of Dm could serve as the distinguished vertex, since color 5 does not appear on any
default list.

since in that case ci is not on any default list. Applying this construction for all i yields the list-coloring instance (P,Λ).
For an illustration see Fig. 3.

It is easy to see that the construction can be performed in polynomial time. To conclude the proof, we argue that (P,Λ)
has the desired properties. Observe that if (d1, . . . , dm) = (c1, . . . , cm), then a proper list-coloring γ of P in which γ (πi) ̸=

di = ci for all i ∈ [m] would in fact be a proper list-coloring of P under the default lists before augmentation, which
is impossible as we argued earlier. It remains to argue that when (d1, . . . , dm) differs from (c1, . . . , cm) in at least one
position, then P has a proper list-coloring γ with γ (πi) ̸= di for all i ∈ [m]. To construct such a list-coloring, for each
index i ∈ [m] with ci ̸= di, assign vertex πi the color ci. Since the vertices πi are interior vertices of their groups, the
distinguished vertices are pairwise nonadjacent and this does not result in any conflicts. For distinguished vertices πi
with ci = di, we will assign πi a color from the default list of vertex πi; since ci is not on the default list this results in the
desired color-avoidance. We therefore conclude by verifying that the remaining vertices can be assigned a proper color
from their default list.

To do so, assign the source vertex its forced color and propagate the coloring as described above, until we reach the
first distinguished vertex πi with ci ̸= di (where i ∈ [m]). Let i′ ∈ [6 m] denote the index of πi among all vertices of P ,
i.e. πi = vi′ . In the current partial coloring, vi′−1 received color ((i′ − 1)+ 1) mod 3+ 1 = i′ mod 3+ 1 which is a color on
the default list of vi′ . Hence, we do not create a conflict between vertices vi′−1 and vi′ as we gave vi′ the color ci which
was not on vi′ ’s default list by construction. The other color on the default list of vi′ is (i′ + 1) mod 3 + 1, which is also
on the list of vi′+1, as Λ(vi′+1) = {(i′ + 1) mod 3 + 1, (i′ + 2) mod 3 + 1}. Hence, assigning vi′+1 color (i′ + 1) mod 3 + 1
does not create a conflict between vi′ and vi′+1, again since we assigned vi′ a color which was not on its default list.

– If iwas the last index for which ci ̸= di, then, for all i′′ ∈ [(i′+2)..6m] we continue giving vertex vi′′ color i′′ mod 3+1.
This way the sink can be properly list-colored.

– If not, we give vi′+2 color i′ mod 3 + 1 (= (i′ + 3) mod 3 + 1). Note that since all distinguished vertices are interior
vertices of the groups, vi′+2 cannot be a distinguished vertex and hence has not been previously assigned a color.
We now propagate this coloring along the path as before until we reach the next distinguished vertex which has
already been assigned a color.

We repeat the construction until all vertices are properly list-colored. □

Theorem 16. For any ε > 0 and q ≥ 3, q-Coloring on Linear Forest + kv graphs cannot be solved in O∗((q − ε)k) time,
unless SETH fails.

Proof. To prove the theorem, we will first show that if q-List-Coloring on Linear Forest + kv graphs can be solved in
O∗((q − ε)k) time for some q ≥ 3 and ε > 0, then there is some δ > 0 such that for every s ∈ N, s-SAT can be solved in
O∗((2 − δ)n) time, contradicting SETH. By the same argument as in the proof of Theorem 12, we then extend the lower
bound to q-Coloring.

Suppose we have an instance ϕ of s-SAT on variables x1, . . . , xn. We construct a graph G and lists Λ : V (G) → 2[q], such
that G is properly list-colorable if and only if ϕ is satisfiable. The first part of the reduction is inspired by the reduction of
Lokshtanov et al. [15, Theorem 6.1], which we repeat here for completeness. We choose an integer constant p depending
on q and ε and group the variables of ϕ into t groups F1, . . . , Ft of size ⌊log(qp)⌋ each. We call a truth assignment for the
variables in Fi a group assignment. We say that a group assignment satisfies clause Cj ∈ ϕ if Cj contains at least one literal
which is set to True by the group assignment. For each group Fi, we add a set of p vertices v1i , . . . , v

p
i to G, in the following

denoted by Vi with Λ(vji) = [q] for all i and j. Each coloring of the vertices Vi will encode one group assignment of Fi.
We fix some efficiently computable injection fi : {0, 1}|Fi| → [q]p that assigns to each group assignment for Fi a distinct
p-tuple of colors. This is possible since there are qp ≥ 2|Fi| colorings of p vertices with q colors. For a variable xi ∈ ϕ we
can identify the set of vertices whose colorings encode the truth assignment of the group containing xi. Since each group
has size ⌊log(qp)⌋, the truth assignments of a variable xi ∈ ϕ are encoded by (some) colorings of the vertices in Vi′ , where
i′ = ⌈i/⌊log(qp)⌋⌉.

We now construct the main part of the graph G. Let Cj ∈ ϕ be a clause on variables xj1 , . . . , xjs′ , where s′ ∈ [s]. The⋃
p
truth assignments of these variables are encoded by the colorings of the vertices in VCj := i∈[s′] V⌈ji/⌊log(q )⌋⌉. We say
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hat a coloring µ :VCj → [q] is a bad coloring for Cj if there is a group for which the coloring does not represent a group
ssignment, or if no group assignment encoded by µ satisfies clause Cj.
For each bad coloring µ we construct a path using Lemma 15 which ensures that G is not properly list-colorable if µ

ppears on VCj . Let j
′

i := ⌈ji/⌊log(qp)⌋⌉ and consider the following vector of colors induced by µ:

cµ =

(
µ

(
v1j′1

)
, . . . , µ

(
v
p
j′1

)
, . . . , µ

(
v1j′

s′

)
, . . . , µ

(
v
p
j′
s′

))
(1)

e add to G a path Pcµ constructed according to Lemma 15 with cµ as the input vector of colors. Let (π1, . . . , πp·s′ )
enote the distinguished vertices of Pcµ . We make each variable vertex vℓj′i

∈ VCj (where i ∈ [s′] and ℓ ∈ [p]) adjacent to
he distinguished vertex πp·(i−1)+ℓ in Pcµ , intending to ensure that if all vertices in VCj are colored according to µ, then
this partial list-coloring on G cannot be extended to Pcµ . Adding such a path for each clause in ϕ and each bad coloring
finishes the construction of (G,Λ).

We first count the number of vertices in G and then prove the correctness of the reduction. There are O(n) variable
vertices and for each of the m clauses, there are at most qp·s bad colorings, each of which adds a path on at most O(p · s)
vertices to G, by Lemma 15. Hence, the number of vertices in G is at most

O
(
n + m · qp·s(p · s)

)
= O(n + m) = nO(1), (2)

as p, q, s ∈ N are fixed and m = O(ns).

Claim 17. (G,Λ) is properly q-list-colorable if and only if ϕ has a satisfying truth assignment.

Proof. Suppose ϕ has a satisfying truth assignment ψ . For each group Vi the truth assignment ψ dictates a group
assignment, which corresponds to a coloring on V by the chosen injection fi. Let γψ :

⋃
i Vi → [q] denote the coloring

of the variable vertices that encodes ψ . We argue that γψ can be extended to the rest of G, respecting the lists Λ. For
every Cj ∈ ϕ on variables xj1 , . . . , xjs′ and every bad coloring µ :

⋃s′
i=1 Vj′i

→ [q] w.r.t. Cj (where j′i = ⌈ji/⌊log(qp)⌋⌉), we
added a path Pcµ to G, constructed according to Lemma 15, whose distinguished vertices we denote by (π1, . . . , πp·s′ ). Note
that cµ denotes the vector representation of the coloring µ as in (1). Let cγ denote the vector representation of γ restricted
to the variable vertices ∪

s′
i=1Vj′i

, appearing in the same order as in cµ. Since γψ encodes a satisfying truth assignment of ϕ,
cµ ̸= cγ . Hence, by Lemma 15, we can extend γψ to Pcµ without creating a conflict; it asserts that there is a proper
list-coloring γ ′ on Pcµ such that γ (vℓj′i

) = cγ (p · (i − 1) + ℓ) ̸= γ ′(πp·(i−1)+ℓ) for all i ∈ [s′] and ℓ ∈ [p]. Hence, every pair of
adjacent vertices between the vertices of Pcµ and the vertices encoding the truth assignments of the variables in Cj can
be list-colored properly and we can conclude that γψ can be extended to Pcµ and subsequently, to all of G.

Now suppose (G,Λ) has a proper list-coloring γ and assume for the sake of a contradiction that ϕ does not have a
satisfying truth assignment. Then, the restriction of any list-coloring of G to (some of) the variable vertices

⋃
i Vi must be

a bad coloring for some clause in ϕ. Let Cj denote such a clause for γ and let cγ denote the corresponding vector of colors,
restricted to the variable vertex groups that encode the truth assignments to the variables in Cj. We added a path Pcγ to
G which by Lemma 15 cannot be properly list-colored such that each distinguished vertex gets a color which is different
from the color of the variable vertex it is adjacent to. Hence, one of the distinguished vertices of Pcγ creates a conflict and
we have a contradiction. □

Observation 18.
⋃

i Vi is a modulator to Linear Forest.

The previous observation can easily be verified, since G consists of the variable vertices attached to a set of disjoint
paths. Note that

⏐⏐⋃
i Vi

⏐⏐ ≤ p
⌈

n
⌊log qp⌋

⌉
= p

⌈
n

⌊p log q⌋

⌉
since we partitioned the n variables into groups of size ⌊log qp⌋, and

ach group is represented by p vertices. By Claim 17 and Observation 18 we can now finish the proof of Theorem 16 in
he same way as the proof of [15, Theorem 6.1], in particular Lemma 6.4 yields the claim.

laim 19 (Cf. Lemma 6.4 in [15]). If q-List-Coloring on Linear Forest + kv graphs can be solved in O∗((q − ε)k) time for
ome ε > 0, then there is some δ > 0, such that for all s ∈ N, s-SAT can be solved in O∗((2 − δ)n) time.

roof. Let λ := logq(q−ε) < 1, such that (q−ε)k = qλk. We choose a sufficiently large constant p such that δ′
= λ

p
p−1 < 1.

Given an instance ϕ of s-SAT, we use the above reduction to obtain (G,Λ), an instance of q-List-Coloring. Correctness
follows from Claim 17. By (2), and since p is constant, the size of G is polynomial in n, the number of variables of ϕ. By
Observation 18 we know that G has a modulator to Linear Forest of size k ≤ p⌈ n

⌊p log q⌋⌉. By the choice of p we have
k ≤ λp⌈ n

⌊p log q⌋⌉ ≤ λp n
(p−1) log q + λp ≤ δ′ n

log q + λp. Hence, s-SAT can be solved in

O∗((q − ε)k) = O∗(qλk) = O∗(qδ
′ n
log q +λp) = O∗(2δ

′n+λp) = O∗(2δ
′n) = O∗((2 − δ)n)

ime for some δ > 0 which does not depend on s. □
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We have given a reduction from s-SAT to q-List-Coloring on Linear Forest + kv graphs. As in the proof of Theorem 12,
we can make the reduction work for q-Coloring as well by adding a clique Kq of q vertices to the graph, each of which
epresents one color and then making each vertex in G adjacent to each vertex in Kq which represents a color that is not
n its list. Since this increases the size of the modulator by q, which is a constant, this does not affect asymptotic runtime

bounds and completes the proof of Theorem 16. □

Note that we can modify the reduction in the proof of Theorem 16 to give a lower bound for Path + kv graphs as
well: We simply connect all paths that we added to the graph to one long path, adding a vertex with a full list between
each pair of adjacent paths.

Corollary 20. For any ε > 0 and constant q ≥ 3, q-Coloring on Path + kv graphs cannot be solved in O∗((q − ε)k) time,
nless SETH fails.

. A tighter treedepth boundary

In Lemma 11 we showed that if the (q+ 1)-colorable members of a hereditary graph class F have bounded treedepth,
hen F has constant-size No-certificates for q-List-Coloring and hence F + kv has nontrivial algorithms for q-(List-
)Coloring parameterized by the size of a given modulator to F . One might wonder whether a graph class F + kv has
nontrivial algorithms for q-Coloring parameterized by a given modulator to F if and only if all (q+1)-colorable members
n F have bounded treedepth. However, this is not the case. In [13, Lemma 4] the authors showed that q-Coloring
arameterized by the size of a modulator to the class Cograph has nontrivial algorithms. Clearly, complete bipartite
raphs are cographs and it is easy to see that (the 2-colorable balanced biclique) Kn,n has treedepth n + 1. In this section
e show that, unless SETH fails, bicliques are in some sense the only obstruction to this treedepth boundary.
We use a combinatorial theorem which in combination with Corollary 20 will yield the result.

heorem 21 (Corollary 3.6 in [14], Theorem 1 in [1]). For any s, k ∈ N there is a P(s, k) ∈ N such that any graph with a path
f length P(s, k) either contains an induced path of length s, or a Kk subgraph, or an induced Kk,k subgraph.

Theorem 22. Let F be a hereditary class of graphs for which there exists a t ∈ N such that Kt,t is not contained in F , let q ≥ 3,
and suppose SETH is true. Then, q-Coloring parameterized by a given vertex modulator to F of size k has O∗((q − ε)k) time
algorithms for some ε > 0, if and only if all (q + 1)-colorable graphs in F have bounded treedepth.

Proof. Assume the stated conditions hold for F and t . In one direction, if all the (q+ 1)-colorable graphs in F have their
treedepth bounded by a constant, then there are constant-size No-certificates for q-List-Coloring on F by Lemma 11,
implying the existence of nontrivial algorithms by Theorem 6.

For the other direction, suppose that there is no finite bound on the treedepth of (q + 1)-colorable graphs in F . We
claim that F contains all paths, which will prove this direction using Corollary 20. If the longest (simple) path in a graph G
has length k, then G has treedepth at most k since any depth-first search tree forms a valid treedepth decomposition, and
has depth at most k since all its root-to-leaf paths are paths in G. Hence a graph of treedepth more than n contains a path
of length more than n. Since the (q + 1)-colorable graphs in F have arbitrarily large treedepth, the preceding argument
shows that for any n there is a (q+1)-colorable graph in F containing a path of length more than n. In particular, for any n
there is a (q + 1)-colorable graph Gn in F containing a (not necessarily induced) path of length P(n,max(t, q + 2)), the
Ramsey number of Theorem 21. Hence graph Gn contains an induced path of length n, a clique of size max(t, q+2), or an
induced biclique with sets of size max(t, q+ 2). Since a (q+ 2)-clique is not (q+ 1)-colorable, Gn contains no such clique.
If Gn contains an induced biclique subgraph with sets of size max(t, q+2), then since F is hereditary it would contain Kt,t ,
which contradicts our assumption on F . Hence Gn contains an induced path of length n, implying that F contains a path
of length n since it is hereditary. As this holds for all n, class F contains all paths, implying by Corollary 20 and SETH that
there are no nontrivial algorithms for q-List-Coloring parameterized by the size of a given vertex modulator to F . □

6. Conclusion

In this paper we have presented a fine-grained parameterized complexity analysis of the q-Coloring and the q-List-
Coloring problems. We showed that if a graph class F has No-certificates for q-List-Coloring of bounded size or if the
(q + 1)-colorable members of F (where F is hereditary) have bounded treedepth, then there is an algorithm that solves
q-Coloring on graphs in F + kv (graphs with vertex modulators of size k to F) in O∗((q − ε)k) time for some ε > 0
(depending on F). The parameter treedepth revealed itself as a boundary in some sense: We showed that Path + kv
graphs do not have O∗((q − ε)k) time algorithms for any ε > 0 unless SETH fails — and paths are arguably the simplest
graphs of unbounded treedepth. Furthermore we proved that if a graph class F does not have large bicliques, then F +kv
graphs have O∗((q − ε)k) time algorithms, for some ε > 0, if and only if F has bounded treedepth.

Treedepth is an interesting graph parameter which in many cases also allows for polynomial space algorithms where
e.g. for treewidth this is typically exponential. It would be interesting to see how the problems studied by Lokshtanov
et al. [15] behave when parameterized by treedepth. Naturally, a fine-grained parameterized complexity analysis as we
did might be interesting for other problems as well.
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pen Problem. Consider a different problem than q-Coloring, for example another problem studied in [15]. For which
arameters in the hierarchy can we improve upon the base of the exponent of the SETH-based lower bound? Does the
arameter treedepth establish a dividing line as well?
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