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Abstract 

The phosphoinositide 3-kinase (PI3K) pathway is essential for many cellular functions 

including; proliferation, cell survival, differentiation and metabolism. Although this pathway 

has been well studied in the cytoplasm, the role of PI3Ks in the nucleus has also been 

emerging as essential determinants of cell function. Previous work from our group has 

mapped the class I PI3K p110β and its product PtdIns(3,4,5)P3 to the nucleus and nucleolus 

in a breast cancer cell line. Here, we aimed to understand and characterize the role of this 

kinase and its lipid product in the nucleus during tumorigenesis and adipocyte 

differentiation. We first found that the PI3K is active in the nucleus of differentiating 3T3-

L1 and endometrial cancer cells and identified an active form of Akt in the nucleoli of 

endometrial cancer cell lines. Using subcellular fractionation, mass spectrometry and 

different staining methods, we confirmed the nucleolar localization of PtdIns(3,4,5)P3 in 

several cell types but at different levels. In adipocytes, the levels of p110 were low in the 

nucleus and nucleoli upon differentiation. In contrast, endometrial cancer cell lines had high 

amounts of nuclear p110β and PtdIns(3,4,5)P3. The nucleolus is the sub nuclear site where 

ribosomal RNA (rRNA) transcription and processing occurs and interestingly we found that 

inhibition of p110β reduced the level of transcription of this RNA species. In addition, 

endometrial cancer cell lines with high amounts of nuclear p110β and PtdIns(3,4,5)P3  

showed significant elevations in pre-rRNA transcription.  

To gain further insights of the nuclear roles of PtdIns(3,4,5)P3, we used  a quantitative 

interactomics approach and identified 219 PtdIns(3,4,5)P3 interacting proteins that were 

highly enriched in cytokinesis, RNA processing and DNA repair functions. PARP1 (Poly 

(ADP-ribose) polymerase 1), a DNA repair protein abundant in the nucleoli, was one of the 

identified proteins which was then validated to interact with phosphoinositides directly, 

including PtdIns(3,4,5)P3. The nucleolar presence and co-localization of PARP1 with 

PtdIns(3,4,5)P3 was dependent on active rRNA transcription. Altogether the results from this 

thesis suggests an active role of the class I PI3K p110β and its product PtdIns(3,4,5)P3 in the 

nucleolus of differentiating adipocytes and endometrial cancer cells but with distinct 

regulation. 
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1. Introduction 

1.1 General aspects of Polyphosphoinositides 

Polyphosphoinositides (PPIn) are derived from the phosphorylation of 

phosphatidylinositol (PtdIns). PtdIns is a glycerophospholipid which consists of two 

hydrophobic acyl chains attached to the glycerol backbone, which is itself coupled to an 

inositol head group via a phosphodiester bond with the 1´ OH group (Figure 1) [1]. The 

inositol ring can be phosphorylated at the 3´, 4´, or 5´ positions resulting in several 

combinations and a total of seven variants, one tri-phosphorylated (PtdIns(3,4,5)P3), three 

di-phosphorylated (PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2) and three mono-

phosphorylated PPIn (PtdIns3P, PtdIns4P, PtdIns5P) (Table-1). They are called PPIn and 

have unique functions in the cell [1-3]. These low-abundance phospholipids comprise less 

than 1% of the total lipid content of the cell with the highest amounts of PPIns accounting 

for PtdIns(4)P and PtdIns(4,5)P2 [4]. The most dominant type of fatty acyl chain found in 

mammalian phosphoinositides are stearoyl and arachidonoyl represented as C18:0/C20:4 or 

summed as 38:4 (total number of carbons: total double bonds count in fatty acids) [5].  The 

hydrophobic acyl tails allow them to be anchored in cellular membranes and through their 

inositol head group, exposed to the aqueous milieu, they bind specific PPIn-binding domains 

on target proteins [6]. As summarized in table-1, PPIn localize in different cellular 

membranes. For example among other cellular compartments PtdIns(3)P and PtdIns(3,5)P2 

localize at the membrane of early or late endosomes and PtdIns(4)P to the Golgi, PtdIns5P to 

the endoplasmic reticulum and PtdIns(4,5)P2, to the plasma membrane [7, 8].     

 

 

 

 

  

Figure 1. Chemical structure diagram of phosphatidylinositol (PtdIns). The inositol head group can be 

phosphorylated at the 3´, 4´, or 5´ OH to generate different variants of polyphosphoinositides (PPIn). The 

hydrophobic fatty acid chains (here shown as C18:0/C20:4) are attached to the glycerol backbone which is 

linked to the inositol head group by a phosphodiester bond [1, 5].  
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These lipids act as signaling molecules and their levels are tightly regulated. Their 

synthesis and metabolism is catalyzed by a series of lipid kinases and phosphatases which 

can convert these PPIns to each other [1] (see Table 1).  

 

PPIn can either act directly as second messengers or as precursors to other second 

messengers to regulate a wide range of cellular processes [3, 4, 30, 31]. The levels of some 

Table-1. Properties of the seven polyphosphoinositides lipid species. The red circles represent 
the phosphate group on the inositol ring shown here in green. The acyl chains are shortened due to 
space constraints.  The phosphatases using the indicated PPIn as substrate and the kinases 
producing them are listed. Phosphatases are indicated in bold. PtdIns: phosphatidylinositol. MTM: 
myotubularins.  PI3K: phosphoinositide 3-kinase. PTEN: phosphatase and tensin homolog. SHIP: 
Src homology 2-domain-containing inositol phosphatase. The abundances are a percentage of the 
total amount of phosphoinositides. This table is modified and updated from the tables in the 
following references: [4, 9]. 

PPIn Localization Kinase/Phosphatase Abundance Reference 

PtdIns3P 
Endosomes, 
Nuclear envelope, 
Nucleolus, smooth 
endoplasmic 
reticulum, Golgi 

PI3K class II and III 
MTMs 

Low               
Less than 2% 

[1, 4, 10-
12] 

PtdIns4P 
Golgi, 
Nucleoplasm 

PI4 kinases 
 (Type II and III) 

High             
about 10% [4, 13-16] 

PtdIns5P Cytoplasm 
Nucleus, Golgi, 
Endoplasmic 
reticulum 

PIKfyve (PI5K) 
 

Low               
Less than 1% 

[1, 4, 8, 17-
22] 

PtdIns(3,4)P2 

 

plasma membrane 
Nuclear envelope 

PI3K class II  
PtdIns-3,4-P2 4 
phosphatase type I and 
II 

Low               
Less than 1% 

[1, 4, 23, 
24] 

PtdIns(3,5)P2 
Endosomes PIKfyve (PIP5K) 

MTMs  
Low               
Less than 1% 

[1, 4, 22, 
25] 

PtdIns(4,5)P2 plasma membrane 
Nuclear speckles, 
Nucleolus 

PIP4 Kinases    
PIP5 Kinases 
5-phosphatases 
PtdIns-4,5-P2 4 
phosphatase type I 
 and II 

High             
about 10% 

[1, 4, 24, 
26, 27] 

PtdIns(3,4,5)P3 
 plasma membrane 

Nuclear matrix 
Nucleolus 

PI3K class I,     
PIP5 Kinase  
PTEN (acts on 3’OH) 
SHIP1/2 (acts on 5’OH) 

Low               
Less than 1% 

[1, 4, 28, 
29] 
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PPIn can change rapidly upon cellular stimulation. A perfect example for this is 

PtdIns(3,4,5)P3 (also known and referred to as PIP3), which has low levels in resting cells 

and is increased rapidly upon various stimuli [1]. The best known target for PtdIns(3,4,5)P3 

binding is a basic amino acid lining pocket of proteins containing the pleckstrin homology 

(PH) domain in several of its effector proteins [32-34].   

1.2 The Phosphoinositide3-Kinase family 

The PI3K enzymes consist of a family of lipid kinases that phosphorylate the 3’OH 

on the inositol ring of PPIn or PtdIns and generate the lipid second messengers; PtdIns(3)P, 

PtdIns(3,4)P2, and PtdIns(3,4,5)P3 [35-37]. Based on their structure and substrate specificity, 

the PI3K family is organised into 3 main classes, class I, II and class III [38]. Class I PI3Ks 

are heterodimers that consist of a catalytic subunit of either p110,   or  associated with 

a regulatory subunit of p85, p85, p55 or p101, p87 [2, 39]. Class II PI3Ks are monomers 

and mammalian cells have three isoforms of this class; PI3K-C2α, PI3K-C2β, and PI3K-C2γ 

[40]. The preferred substrate of class II PI3Ks is PtdIns both in vitro and in vivo and they 

generate PtdIns(3)P[40]. Class II enzymes can also generate PtdIns(3,4)P2 in vitro and have 

been reported to generate it also in vivo [41]. Vps34 (vacuolar protein sorting 34) is the only 

member of the class III PI3K bound to its adaptor Vps15 and it generates PtdIns3P [12, 42]. 

The protein and gene names of the catalytic and regulatory subunits of the PI3K pathway are 

listed in table 2.    

Table 2. The PI3K family gene names and protein products. Table was 
adapted and modified from the following reference: [43]. 
 

PI3K Regulatory subunit Catalytic subunit 
Gene Protein Gene Protein 

Class 
IA 

PIK3R1 
PIK3R2 
PIK3R3 

p85α, p55α, p50α 
p85β 
p55γ 

PIK3CA 
PIK3CB 
PIK3CD 

p110α 
p110β 
p110δ 

Class 
IB PIK3R5 p101 PIK3CG P110γ 

 PIK3R6 p84 (also known as 
p87)   

Class 
II No known regulatory subunit 

PIK3C2A 
PIK3C2B 
PIK3C2G 

C2α 
C2β 
C2γ 

Class 
III PIKCR4 VPS15 PIK3C3 VPS34 
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1.2.1 Class I PI3K signaling  

The in vivo substrate for this class of PI3Ks is PtdIns(4,5)P2 which results in the 

generation of PtdIns(3,4,5)P3 [2, 44]. The p85 subunit interacts with the p110 catalytic 

subunit and has a negative regulatory effect on p110 activity [45-47]. Upon activation by the 

receptors the inhibition of p110 by p85 is blocked and p110 can then generate 

PtdIns(3,4,5)P3 by phosphorylating PtdIns(4,5)P2 [48]. It is well known that the binding of 

PtdIns(3,4,5)P3 to some of its target proteins are through the PH domain [33, 34]. Akt, a 

protein kinase, is a downstream signaling molecule of the PI3K pathway and binds to 

PtdIns(3,4,5)P3 through its PH domain and then localizes to the plasma membrane for 

further activation [49-51]. Prior lysine residue deacetylation of the PH domain by SIRT1 

deacetylase is crucial for PtdIns(3,4,5)P3 binding [52]. Akt is then subsequently activated by 

the PtdIns(3,4,5)P3  binding protein phosphoinositide-dependent protein kinase 1(PDK1) and 

mammalian target of rapamycin (mTOR) complex 2 by phosphorylation at Thr308 and 

Ser473 respectively (Figure-1) [53, 54]. Since PPIn lipids act as signalling molecules in a 

wide range of cellular processes, the cells have a mechanism to precisely control and 

regulate their levels and localizations in the cell. As a result of lipid phosphatases activity the 

levels of PtdIns(3,4,5)P3 can be regulated. The tumor suppressor phosphatase and tensin 

homolog  (PTEN) is an antagonist of the actions of class I PI3Ks, by dephosphorylating 

PtdIns(3,4,5)P3 to PtdIns(4,5)P2, thereby negatively regulating this pathway [55]. Other 

regulators of PtdIns(3,4,5)P3 levels are SH2 (Src homology 2)-domain-containing inositol 

phosphatase (SHIP) 1 and 2 polyphosphate 5-phosphatases that can dephosphorylate 

PtdIns(3,4,5)P3 to PtdIns(3,4)P2 [56, 57].   

The Class I PI3Ksare activated through either tyrosine kinase receptors (for p110α, 

p110 and p110) or the G protein coupled receptors (for p110, and p110γ) [2, 58]. RAS 

proteins (family of small GTPase’s) can directly bind to p110α, p110δ and p110γ  isoforms 

and activate them, while the p110β is activated by RAC1 and CDC42 (RHO family of 

GTPases) [59-62]. While the expression of both p110δ and p110γ is restricted to immune 

cells, both p110 and  are ubiquitously expressed [35]. As mentioned earlier, they both 

target PtdIns(4,5)P2 and produce PtdIns(3,4,5)P3, have very similar catalytic and regulatory 

domains, share the same mode of activation and embryonically lethal when knocked out [63, 

64]. Although it may seem that p110α and p110β may possess redundant roles in the cell 

each of these isoforms has somehow distinct properties and functions. As an example, while 
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both isoforms have essential roles in metabolism and insulin signaling, only p110α is 

necessary for vascular endothelial growth factor (VEGF) signaling [63-69]. One feature that 

may explain their different cellular roles is that they localise in specific cellular 

compartments. More precisely, while both isoforms are present in the cytoplasm, only p110β 

is found in the nucleus in chromatin enriched fractions and the nucleoli [28, 70]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Diagram of class IA PI3K activation at the cell membrane. Upon ligand binding and stimulation 

of the receptor tyrosine kinases or the G-protein-coupled receptors, class IA PI3Ks are activated and they 

phosphorylate phosphatidylinositol (4,5)-bisphosphate (PIP2) and generate phosphatidylinositol (3,4,5)-

triphosphate (PIP3). The generated PIP3 then interacts with the pleckstrin homology (PH) domain containing 

proteins such as Akt and targets them to the plasma membrane which leads to their activation and triggers a 

signaling cascade leading to many cellular functions. For its activation, AKT contains critical residues 

(Thr308 and Ser473) that need to be phosphorylated (phosphate groups are shown as red circles) by PDK1 and 

mTORC2 respectively. PTEN function as antagonists of the PI3K activity by converting PIP3 to PIP2 [71]. 

This diagram is based on information from the figures in the following references: [51, 72]. 
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1.2.2 Nuclear PPIn 

Although the actions of PPIn are mostly known at the plasma membrane, several 

studies have shown their presence together with PPIn kinases and phosphatases in the 

nucleus and there is a growing appreciation to the important roles they play in the nucleus 

[73, 74] (Table-3). In the early 1980s the nuclear presence of PPIns and their metabolizing 

enzymes were discovered to be restricted to the nuclear membrane [75]. Later on, it was 

shown, by Cocco and colleagues in 1987, that when the nuclear membrane was depleted 

from mouse erythroleukemia nuclei using detergents, these isolated nuclei still contained 

PPIns which was followed by more studied showing the PPIn signalling and metabolism in 

the nucleus [76-80]. The chemical structure of these lipids is suitable for the hydrophobic 

environment of the membrane but as to how the acyl chains of these lipids are kept away 

from the aqueous environment of the nucleus is still a matter of debate. There are 

suggestions that by interaction with proteins these acyl chains are shielded in structured 

pockets [16, 73]. An example for this is the binding of the nuclear receptor Steroidogenic 

Factor-1 (SF-1) to PtdIns(4,5)P2 which shielded the acyl chains of the lipid in its 

hydrophobic ligand binding pocket, while allowing the inositol head group to be accessible 

for phosphorylation by lipid signaling enzymes [81, 82].  

Proteins with basic residues that can attract the negatively charged inositol head 

group are expected to be good targets for nuclear phosphoinositide binding. Examples of 

such proteins are histones that can have up to 35% of basic amino acids in their structure and 

they have been shown to bind PPIns [83]. Consistent with this are studies that have shown 

the interaction of PtdIns(4,5)P2 to histone H1 that can regulate RNA polymerase 

transcription [84]. A list of the nuclear proteins discovered to bind to PPIns and of their 

functions is given in Table 3. Furthermore, by enriching for nuclear PPIn-binding proteins 

using neomycin displacement and subsequently PtdIns(4,5)P2 pull down, a number of 

nuclear PtdIns(4,5)P2 binding proteins have been identified [31]. Most of the identified pool 

of proteins contained at least one the following polybasic motif, K/R-(X (n= 3-7)-K-X-K/R-

K/R rich in lysine and arginine residues (56%) but not structured domains [31].  
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Table-3. Nuclear PPIns and their interacting proteins; ALY (THO complex subunit 4), BAF 
(BRG1-associated factors), BASP1 (brain acid soluble protein 1), EBP1 (ErbB3-binding protein 1), 
ING2 (inhibitor of growth protein 2), LRH-1 ( liver receptor homolog-1), NPM (nucleophosmin), 
PDZ (Postsynaptic density protein, Disc large, Zona occludens), Pf1 (PHD Factor 1), PIKE (PI3-
Kinase Enhancer), PIP3-BP (PtdIns(3,4,5)P3-binding protein), SAP30 (Sin3A-associated protein 30), 
SAP30L (human SAP30-like protein), SF-1 (steroidogenic factor-1), Star-PAP (speckle targeted 
PIP5KIα regulated poly (A) polymerase), TAF3 (Transcription initiation factor TFIID subunit 3), 
Topo IIα (DNA Topoisomerase IIα), UHRF1 (Ubiquitin-like with PHD and Ring finger domains 1). 
Table updated and modified from the following reference [85]. 
 

PPIn Nuclear 
localization Interacting proteins Possible Function Reference 

PtdIns(3,4,5)P3 
Nuclear matrix, 
Nucleolus 

PIP3-BP, NPM, ALY, 
PIKE, AKT, SF-1, 
LRH-1, EBP1 

Cell survival, 
Proliferation, 
Transcriptional 
regulation, mRNA 
export 

[28, 29, 82, 
86-94]  

PtdIns(4,5)P2 
Nuclear 
speckles, 
Nucleolus 

Star-PAP, Topo IIα, 
BAF complex, ALY, 
SF-1,  LRH-1, BASP, 
Histone H1, PDZ 
protein syntenin-2 

mRNA expression, 
DNA topology, 
Chromatin remodeling, 
proliferation, Nuclear 
receptor transcriptional 
activity, RNA pol I 
transcription, pre-
mRNA processing 

[15, 27, 29, 
31, 82, 84, 
94-100] 

PtdIns(3,4)P2 
Nuclear 
membrane unknown unknown [23] 

PtdIns5P Nuclear foci Pf1, SAP30/SAP30L, 
ING2, TAF3, UHRF1 

Transcriptional 
regulation, Tumor 
suppressor, Regulation 
of DNA methylation, 
DNA damage response 

[101-106] 

PtdIns4P 
Nucleoplasm, 
Nucleoplasmic 
foci 

Pf1,  SAP30/SAP30L Transcriptional 
regulation 

[15, 101, 
102] 

PtdIns3P 
Nuclear 
envelope, 
Nucleolus 

Pf1,  SAP30/SAP30L Transcriptional 
regulation 

[11, 15, 
101, 102] 

 

1.2.3 Nuclear PtdIns(3,4,5)P3 and PI3Ks  

Several studies have demonstrated that members of the PI3K pathway are localized 

in different sub-nuclear compartments and can have distinct functions [107-109]. The levels 

of the PPIns in the nucleus are regulated by the PPIn kinases and phosphatases present also 

in the nucleus with both class I and class II PI3Ks showing nuclear localizations. Among the 

PtdIns(3,4,5)P3 generating enzymes, the class I PI3K p110β but also IPMK (Inositol 

polyphosphate multikinase) localize to the nucleus [110, 111].The nuclear p110β isoform 
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has been shown to have a nuclear localization signals (NLS) and is involved in multiple 

important cellular functions such as DNA replication, cell cycle progression and DNA 

double strand break (DSB) repair [70, 111-113].  Nuclear IPMK was shown to 

phosphorylate PtdIns(4,5)P2 when bound to SF-1 and generates the SF-1/ 

PtdIns(3,4,5)P3 complex, which becomes activated and can induce transcription [82]. In 

addition IPMK is involved in the nuclear mRNA export of transcripts that are enriched in 

DNA repair functions [89]. The class II PI3K-C2α also contains an NLS at the C2 domain 

and it localizes to the nuclear speckles. [114]. Nuclear speckles are enriched in pre-mRNA 

splicing machinery components and are hence site of pre-mRNA-processing [115]. 

PtdIns(4,5)P2 has been identified to also localize in the nuclear speckles [26, 96]. 

PtdIns(3,4,5)P3 is found in the nucleoplasm around speckles where its precursor 

PtdIns(4,5)P2 localizes [26, 86]. Importantly, production of PtdIns(3,4,5)P3 in the 

nucleoplasm was blocked by wortmannin (a pan PI3K inhibitor), suggesting that this pool is 

made by PI3Ks [86]. However as mentioned earlier the kinase activity of IPMK can also 

generate the nuclear PtdIns(3,4,5)P3 and can therefore contribute in the synthesis of nuclear 

PtdIns(3,4,5)P3 [110]. Our group has more recently reported the presence of PtdIns(3,4,5)P3 

in the nucleoplasm and the nucleolus in of a breast cancer cell line [28]. The presence of 

PtdIns(3,4,5)P3 in the nucleolus was also greatly decreased following PI3K inhibition [28]. 

The downstream signaling molecule of the PI3K pathway, Akt, also localizes to the nucleus 

and can be either translocated in its active form to the nucleus or activated there [116, 117]. 

The PTEN and SHIP2 phosphatases are also present in the nucleus [118]. However, the 

activities of PTEN in the nucleus are suggested to be phosphatase independent in several 

studies [119-121]. One study on the other hand showed that nuclear PTEN impacts the level 

of PtdIns(3,4,5)P3 [87].  

There are only a few PtdIns(3,4,5)P3-binding proteins that have so far been identified 

in the nucleus (see Table 3). These include the PtdIns(3,4,5)P3-binding protein (PIP3-BP) 

found in the brain [93]. PIKE (L-isoform of PI3K enhancer) is also a nuclear PtdIns(3,4,5)P3 

binding protein which when mutated at its binding site it translocates to the cytoplasm [92]. 

Another nuclear PtdIns(3,4,5)P3 interactor is the mRNA export protein, ALY (THO complex 

subunit 4) which its binding to PtdIns(3,4,5)P3 is thought to mediate the selective transport 

of certain mRNA transcripts enriched in DNA repair functions from the nucleus [89]. The 

association of the nucleolar protein, Nucleophosmin with PtdIns(3,4,5)P3 has also been 

reported [88]. In addition recently, PtdIns(3,4,5)P3 was found to interact with the EBP1 
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protein in the nucleolus where the nucleolar localization of EBP1 was lost when it was 

mutated at the PPIn-binding motifs [28]. 

1.2.4 PI3K in the nucleolus 

During interphase the nucleus is divided into different sub-compartments which are 

referred to as the nuclear bodies where specific nuclear processes occur. The nucleolus is 

among one of these microenvironments and is the largest sub-nuclear structure [122, 123]. 

The nucleolus is the territory where ribosomal DNA regions are co-organised, transcribed 

and where ribosomes are assembled [122, 124]. Ribosomes are composed of four ribosomal 

RNAs (rRNAs) and many different ribosomal proteins. In humans, nucleolar organizer 

regions (NORs) are mainly tandem repeats of ribosomal genes (18S, 5.8S, and 28S rRNA 

genes) located on acrocentric chromosomes (chromosomes 13, 14, 15, 21 and 22) with 

intergenic spacer regions [122, 125-128]. First, the 47S rRNA precursor is transcribed and 

after several processing steps, the 18S, 5.8S, and 28S rRNAs are generated which then 

together with 5S (made outside of the nucleolus) and the ribosomal proteins will form the 

40S and 60S subunits [124, 129-131]. The transcriptional state of rDNA is determined by the 

epigenetic markers on the DNA and the presence of the transcription factor UBF (upstream 

binding factor) [132]. The nucleoli of mammalian cells are divided into 3 different regions 

(Figure-3); the fibrillar centers, dense fibrillar component and the granular component [122]. 

The fibrillar center contains the ribosomal DNA and the border with the dense fibrillar 

component is where the rRNAs are transcribed and start their maturation. In the granular 

component the ribosomal subunits assemble and get prepared to be exported to the cytosol 

[122, 133-135]. A heterochromatin shell surrounds the nucleolus that contains mostly silent 

DNA, although genes encoding for tRNA and 5S RNA have also been reported to localize in 

these perinucleolar heterochromatin areas [136, 137]. On the other hand associated with the 

surface of the nucleolus is the perinucleolar compartment (PNC) which was first described 

when the polypyrimidine tract-binding (PTB) protein was characterized and detected as 

intense foci in this area [138] (Figure-3). This compartment contains many RNA binding 

proteins and also RNA polymerase III transcripts [139].  

Over the years the presence of some of the PPIns and their metabolizing enzymes has 

also been reported in the nucleolus. The PPIns and their metabolizing enzymes identified in 

the nucleolus to date are listed in table 4. Our group has recently mapped p110β and 
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PtdIns(3,4,5)P3 to nucleoli in AU565 cells [28]. This may be relevant to a previous study 

showing the interaction of the nucleolar protein NPM to PtdIns(3,4,5)P3 [88].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Diagram of the compartments in and around the nucleolus. At the boundary of the fibrillar center 

(FC) and dense fibrillar component (DFC) the transcription of rDNA by RNA polymerase I occur. The pre-

RNA is cleaved and modified to 18S, 5.8S and 28S ribosomal RNAs in the DFC. The Granular component 

(GC) is where these rRNAs go through their final maturation and assemble to form the 40S and 60S ribosome 

subunits [122]. Together with the ribosomal proteins and the 5S rRNA a functional ribosome is formed and 

exported to the cytoplasm. The nucleolus is surrounded by a heterochromatin shell which mostly contains silent 

DNA known as the perinucleolar heterochromatin [136, 137]. The perinucleolar compartment is also associated 

with the nucleolar surface which is rich in RNA binding proteins and transcripts of RNA polymerase III [139].  

Multiple proteins that play essential roles in regulating rRNA transcription and 

synthesis are affected and regulated either directly by PPIns or other members of the PI3K 

pathway. UBF and transcription initiation factor-I (TIF-I) are two examples of essential 

nucleolar factors that are influenced by this pathway [27, 140]. A minor pool of 

PtdIns(4,5)P2 has been reported to be localized in nucleoli and to be involved in the 

regulation of RNA polymerase I transcription by binding to UBF [27, 141]. A study in 2004 
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showed that insulin receptor substrate 1(IRS-1) can translocate to the nucleolus and stimulate 

the phosphorylation of UBF by a PI3K p110 isoform (likely p110) and therefore result in 

the activation of the rDNA promotor [142]. Akt is involved in activating and stabilizing TIF-

I and therefore enhancing rRNA transcription [140]. A recent study on Drosophila S2R+ 

cells showed that inhibition of PI3K or TOR (using LY294002 or rapamycin) decreases the 

expression of rRNA [143].    

Table-4. Known nucleolar PPIns and PPIns metabolizing enzymes.  

PPIns or enzymes Nucleolar function Reference 

PtdIns(3,4,5)P3 unknown function [28]  

PtdIns(4,5)P2 Promotes Pol I transcription [27, 96, 141] 

p110β unknown function [28] 

PTEN Regulation of ribosome biogenesis [144] 

SHIP1 unknown function  [145] 

PI4K230/IIIα Possibly produces PtdIns4P (precursor of PtdIns(4,5)P2) [146, 147] 

PIP5KIα rDNA silencing [148] 

 

1.3 Selected functions of the PI3K pathway in health and disease  

This pathway is essential for cell survival and plays major roles in many aspects of 

cell biology [51]. Upon PI3K activation multiple downstream pathways can be triggered 

simultaneously which can explain the participation of PI3K in a wide range of cellular 

processes. The balance between PI3K isoform specific signalling is critical and the 

development of the immune system is a perfect example of its importance as not only 

changes in certain PI3K genes can lead to immunodeficiency but also inhibition of certain 

PI3K isoforms can increase the efficiency of immune cells against tumour cells [149, 150].   

The PI3K-mTOR and Akt signalling pathway is among the most mutated pathways in 

human cancers [151, 152].  Even though inactivation and loss of the PTEN tumor suppressor 

is the most common alteration in the PI3K pathway leading to cancer [153], abnormalities in 

the different isoforms of PI3K can also lead to multiple diseases. Activating mutations in the 

PIK3CD gene (that encodes PI3Kδ) have been associated with diseases related to the 
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respiratory and immune system [154]. In 2004, the PI3K genes in different human cancers 

were sequenced by Samuel et al [155]. The mutations discovered in the PIK3CA gene 

(encodes p110) were mostly located at the helical and kinase domains and were found at 

later stages of tumorigenesis. Mutations in other p110 isoforms are not very common in 

cancer cells. However, PTEN deficient cancer cells have been shown to be dependent upon 

the product of the PIK3CB gene, p110β, in tumorigenesis in some cancers, including breast 

and prostate cancers [68, 156-158]. It has been shown that overexpression of the non-alpha 

p110 isoforms (β,  or subunits) can trigger oncogenic phenotypes in their wildtype state 

[159]. mTOR is a member of PIKK (phosphoinositide 3-kinase -related protein kinases) 

family and it comprises the catalytic subunit of mTORC1 and mTORC2 complexes [160]. 

The mTOR complexes mediate the PI3K pathway signaling and activating mutations of Akt 

and mTOR occur occasionally in cancer cells [152, 161, 162]. PDK1, that activates Akt by 

phosphorylation, was found to accumulate in the nucleus in a PI3K signaling dependent 

manner and it appeared to be involved in tumorigenesis to a higher extend than the 

cytoplasmic PDK1 [163, 164].    

1.3.1 PI3K in endometrial cancer 

Among the gynecological and female reproductive system cancers, endometrial cancer 

is the most prevalent in developed countries and the incidence of this cancer is increasing 

[165-167].  Endometrial cancer (EC) is the tumor of the inner lining of the uterus and can 

occur in women both before and after menopause and due to abnormal symptoms this type 

of cancer is normally diagnosed at early stages [168-170]. Endometrial carcinomas have 

long been divided into two subtypes; type I and type II [171]. Type I accounts for up to 70% 

of endometrial cancers with low grade tumors that associate with obesity, positive for 

hormone-receptors and have good prognosis [171, 172]. Types II, on the other hand, are less 

common and high grade, hormone receptor negative endometrial cancers that result in poor 

outcomes [171, 172]. Some of the mutations that can be seen frequently in type I tumors are 

in the PTEN, PIK3CA, KRAS and PIK3R1 genes [173-176]. One of the clinical problems in 

the treatment of this cancer is the heterogeneity and the different molecular subgroups that 

the endometrial cancer comprises. This has effected the risk assessments and the treatments 

that the patients are receiving which results in either under or over treatments [177]. 

Therefore in order to select an appropriate therapy, knowing the molecular mechanisms 

underlying each endometrial tumor subgroup is critical. 
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PI3K/AKT/mTOR pathway mutations in endometrial cancers were reported to be 

among the highest compared to any other tumor type in The Cancer Genome Atlas with 

PIK3CA and PTEN being among the most frequently mutated genes [174]. PTEN mutations 

are most frequent in early lesions as compared to PIK3CA mutations that are more frequently 

seen in invasive tumors [178, 179]. In addition, an increased PI3K signaling was also 

correlated with an aggressive phenotype of endometrial cancer [180]. Mutations in PIK3CB 

are rare in comparison with the PIK3CA gene, however mutations in p110, was also 

discovered in an endometrial lesion [181]. Mostly, the mRNA levels of PIK3CB has been 

reported to increase in some endometrial cancer specimens [182] and more extensively in a 

study from our group [183]. The aforementioned study has indeed shown an increase in 

PIK3CB mRNA levels early in cancer progression, i.e. from complex atypical hyperplasia to 

grade 1 lesions. The mRNA levels remained high in grades 2 and 3 as well as in non-

endometrioid and metastatic lesions.  

Because of the high number of mutations in the PI3K pathway that occur in 

endometrial cancers multiple inhibitors that target this pathway have been used in clinical 

trials including Pilaralisib (a pan PI3K inhibitor), GDC-0980 (PI3K/mTOR inhibitor) and 

MK-2206 (an Akt inhibitor) [184-186]. Increased sensitivity of endometrial cancer cells to 

chemotherapeutic drugs have been observed upon downregulation of the Akt isoforms [187]. 

The use of a pan PI3K inhibitor, BKM-120, on patient derived endometrial xenografts 

showed a decrease in tumor volume [188]. Because endometrial cancer harbor frequent 

PTEN mutations, a recent clinical trial using a selective p110 inhibitor has been carried out 

on patients with advanced cancers with PTEN loss including 3 patients with endometrial 

cancer [189]. Some beneficial effects were observed due to the treatment in some patients. 

This study is encouraging as it demonstrates the possible therapeutic benefit of inhibiting 

p110 in PTEN-deficient tumors and hence rationalizes further research efforts in better 

understanding the underlying molecular mechanism of action of p110.  

1.3.2. PI3K and adipogenesis 

Adipocytes are the main cells of the adipose tissue and store the excess fatty acids 

obtained from the diet as triacylglycerol (TAG) in form of lipid droplets and by doing this 

they have a high impact on cell metabolism [190, 191] . There are two well studied types of 

adipocytes; white and brown adipocytes as well as the emerging beige adipocytes. White 

adipocytes involved in the storage of fat and have high lipid content however the brown 
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adipocytes are involved in thermogenesis [191, 192]. Adipogenesis occurs in a multi-step 

process involving first the differentiation of mesenchymal cells to pre-adipocytes followed 

by several processes leading to a mature adipocyte [193, 194]. In order to accumulate the 

maximum amount of fat, the nucleus of adipocytes moves towards the plasma membrane 

while the morphology of cells are changing to a spherical shape as they become more mature 

adipocytes [190]. 3T3-L1 cells are mouse fibroblast cells that have the potential to 

differentiate in to adipocytes and have been frequently used in studies of adipogenesis [195, 

196]. The differentiation of the 3T3-L1 cells into adipocytes is initiated by a cocktail of 

insulin, dexamethasone and 3-isobutyl-1-methylxanthine [197].  

Signaling through insulin results in the uptake of glucose and the storage of fatty 

acids as TAGs in adipocytes [198]. The insulin receptor (IR), which is a tyrosine kinase 

receptor undergoes auto phosphorylation upon insulin binding and initiates downstream 

signaling [199-201]. Insulin is able to regulate glucose uptake by shifting the glucose 

transporter GLUT4 from cytosolic vesicles to the plasma membrane [202, 203].  Inhibition 

of the PI3K pathway in 3T3-L1 cells prevents the translocation of GLUT4 indicating an 

essential role of PI3K in insulin signaling [204, 205]. The involvement of Akt in GLUT4 

transfer is well established as expression of active mutant of Akt has a positive and 

stimulated impact on in GLUT4 translocation in adipocytes whereas inhibition of Akt plays 

a negative role in this process [206, 207]. For the expression of specific genes that will result 

in the adipocyte phenotype, transcription factors are tightly regulated during adipogenesis 

and they come in two waves of activation.  The expression of the key transcription factors in 

adipogenesis, PPARγ (peroxisome proliferator-activated receptor γ) and C/EBPα 

(CCAAT/enhancer-binding protein) are induced during the second wave of this cascade 

[208, 209].  

There are several specific substrates that transfer signals from the insulin receptor 

and the link to the PI3K pathway downstream of IR is through the Insulin Receptor Substrate 

(IRS)-1 [210]. Through the SH2 domain, the regulatory subunit p85 of class I PI3K binds to 

IRS which subsequently initiates the production of PtdIns(3,4,5)P3  [210]. Inhibition of PI3K 

signaling can have major effects on cells; among them is the effect on cell differentiation 

[211]. Inhibitor of the PI3Ks has shown to impair the differentiation of 3T3-L1 (pre-

adipocytes) cells into adipocytes [212]. It has also been shown that the levels of p110β 

increases during adipocyte differentiation but the expression of the p110α does not change 
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[213]. In contrast, an increase in the levels of p110α  has also been reported during adipocyte 

differentiation [214]. Using selective inhibitors of p110, p110 and p110, our group and 

others have further shown that p110 plays a dominant role in adipogenesis, while p110 

and p110 also contribute to this process [215-217]. How these three isoforms act and 

whether they regulate different processes in adipogenesis is still however unclear. Insulin 

also activates the class II PI3KC2α in adipocytes. The increase in activity of PI3KC2α upon 

insulin stimulation in 3T3-L1 adipocytes was shown to be independent of IRS-1 and the 

insulin receptor [218]. However, the molecular mechanisms of action of PI3KC2α are poorly 

understood.   
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2. Aims of the study 

Many cellular processes are dependent on the PI3K pathway as its members have 

central roles and play important functional aspects for living cells. The malfunctions in PI3K 

signalling can contribute to multiple different diseases. The PI3K is involved in regulating  

metabolism and cell growth and its hyper activation in many cancer types due to genetic 

alterations of components of the pathway has been reported [39, 51, 151, 219].  

This pathway is orchestrated by several isoforms but our understanding of the exact 

contribution of each of these isoforms in the different cellular processes still lags behind. 

Furthermore, the complexity of this pathway increases due to the different subcellular 

localisations of these isoforms and their lipid products (see tables 1, 2 and 3 for summary). 

PtdIns(3,4,5)P3 is an important second messenger in this pathway and its function has been 

well studied in the cytoplasm. Recent studies have mapped the class I PI3K p110 and its 

product PtdIns(3,4,5)P3 to the nucleus but the functional role of PtdIns(3,4,5)P3 in the 

nucleus is still poorly understood.  In this thesis we aimed to study the significance of 

PtdIns(3,4,5)P3 and p110β in the nucleus and how this links to cell differentiation and 

increase in cell proliferation (leading to cancer). This was performed by the means of the 

following aims:   

1. To determine the levels of p110β and PtdIns(3,4,5)P3 in the nucleus and to define 

their mode of action in tumorigenesis   

2. To characterize the role of nuclear PtdIns(3,4,5)P3 by identifying its interacting 

partners in the nucleus  

3. To determine the involvement of nuclear PI3Ks in adipocyte differentiation 
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3. Summary of results 

Elevated nuclear p110β and PtdIns(3,4,5)P3 levels correlate with higher grade of 

endometrial cancer and increase in rRNA transcription  

In a recent study, our group has shown that the p110, but not p110, protein levels 

were consistently elevated in endometrial cancer (EC) cells. In addition, PIK3CB mRNA 

levels were increased in grade 1 endometrioid endometrial lesions compared to complex 

hyperplasias [183]. While p110 and p110 both depict cytoplasmic localizations, p110 is 

also found in the nucleoplasm and in the chromatin rich fractions [70, 113]. Moreover, our 

laboratory has reported for the first time the presence of p110 and its product 

PtdIns(3,4,5)P3 in the nucleolus in addition to the nucleoplasm [28]. In this thesis, we have 

shown that all EC cell lines showed an increase in nuclear p110β levels when compared to 

non-tumour endometrial cells (EM). When primary endometrial tumours were 

immunohistochemically stained for p110β, high nuclear to cytoplasmic ratios correlated with 

a higher tumour grade. In EC cells, active p-S473-Akt was also increased in the nucleus, 

indicating the presence of an active PI3K pathway in the nuclei of these cells. Moreover, the 

presence of p110β in the nucleus correlated with elevated levels of PtdIns(3,4,5)P3 in 

particular in PTEN-deficient EC cells. Treatment with a p110β selective inhibitor reduced 

the nuclear levels of p-S473-Akt and PtdIns(3,4,5)P3 suggesting that the p110β may be 

responsible for the production, at least partly, of the nuclear pool of PtdIns(3,4,5)P3 in these 

cells. Immunofluorescence staining of EC cells showed the nucleolar localization of p110β, 

consistent with the previous report from our group [28].  PtdIns(3,4,5)P3 was also detected in 

the nucleoli of multiple EC cell lines using immunofluorescence staining. We chose the 

RL952 endometrial cancer cells that contain the highest levels of nuclear PtdIns(3,4,5)P3 to 

study its chemical composition in the nucleoli. Nucleolar PtdIns(3,4,5)P3 measurements by 

LC-MS/MS detected the PtdIns(3,4,5)P3 (38:4) species. Ribosomal RNA transcription levels 

of different EC cells were measured by real-time RT-qPCR. The PTEN-deficient RL95-2 

cells with very high p110β and PtdIns(3,4,5)P3 levels in nucleus/nucleolus showed an 

increase in the pre-rRNA transcription levels. 
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The identified nuclear PtdIns(3,4,5)P3 binding proteins were enriched in DNA repair and 

RNA processing factors   

Mapping of p110β by immunostaining and cellular fractionation showed the presence 

of this kinase and its lipid product PtdIns(3,4,5)P3 in the nucleoplasm and strongly in 

nucleoli of HeLa cells. In particular, we showed that p110β and PtdIns(3,4,5)P3 appeared in 

the nucleolus following the exit from mitosis, as the nucleoli reformed. Importantly, the 

appearance of nucleolar PtdIns(3,4,5)P3 was due to the p110β activity, as shown in murine 

embryonic fibroblast with WT versus kinase inactive p110β. Considering that by binding to 

proteins via specific domains or motifs PPIn elicit signaling responses, we pursued to 

systematically identify PtdIns(3,4,5)P3 effector proteins in the nucleus. To this end, we have 

adapted a quantitative proteomics-based approach that our group has previously employed to 

identify PtdIns(4,5)P2 nuclear interacting proteins [31]. This method uses the polybasic 

aminoglycoside neomycin to displace and enrich for PPIn-binding nuclear proteins in 

combination with a lipid pull down assay. Neomycin would therefore compete for PPIn-

protein interaction through electrostatic forces and displace the proteins. PtdIns(3,4,5)P3 

versus control beads lipid pull downs were performed from neomycin-displaced proteins 

collected from stable isotope labeled (13C/15N) and non-labeled HeLa S3 nuclei respectively. 

Quantitative and statistical analyses revealed the identification of a total of 219 proteins as 

potential PtdIns(3,4,5)P3 binders. Gene ontology analysis of these proteins showed an 

enrichment of multiple biological processes including the top following categories; RNA 

splicing, cytokinesis, mRNA processing and DNA repair. So far, we have chosen to focus on 

Poly [ADP-ribose] polymerase 1 (PARP1), one of the proteins within the DNA repair group, 

as it has previously been clearly detected in the nucleolus  [220, 221] and to bind to NPM 

[220]. Among the DNA repair proteins, PARP1 was identified to co-localize with 

PtdIns(3,4,5)P3  in nucleoli, which suggests the possible involvement of this PPIn in 

nucleolar response to rDNA damage. Furthermore, the presence of both PARP1and 

PtdIns(3,4,5)P3 in the nucleoli were reorganized upon inhibition of RNA polymerase I, and 

no longer co-localized at the same foci. During the nucleolar rearrangement however 

PtdIns(3,4,5)P3 co-localized with UBF in the perinucleolar caps. p110β was also 

translocated to the periphery of the nucleoli however it no longer colocalize with RNA 

polymerase I upon inhibition of  rRNA transcription. Interestingly, preliminary data showed 

that the selective inhibition of p110β induced a decrease in rRNA transcription in HeLa 

cells.  



 27 

Nuclear PI3K pathway is involved in the differentiation of 3T3-L1 cells into adipocytes 

 We have previously shown that p110α, β and δ catalytic isoforms of class I PI3K are 

expressed in the 3T3-L1 cells and that p110α contributes to TAG storage to a higher degree 

than the p110 β and δ isoforms [215]. Here, we show that during the differentiation of 3T3-

L1 cells into adipocytes, the PI3K enzymes PI3KC2α and p110β are found in the same sub-

nuclear compartments as their lipid products PtdIns(3,4)P2 and PtdIns(3,4,5)P3. 

Immunofluorescence staining and cellular fractionations showed the presence of p110β in 

the cytoplasm and the nucleoli whereas PI3KC2α was detected in the nucleoplasm with 

weak detection in the cytoplasm. The PI3K-Akt pathway was found to be active in the 

nucleus during differentiation and p-S473-Akt was detected 30 min after inducing the 

differentiation in 3T3-L1 cells. Nuclear lipid extracts from different stages of the 

differentiation showed an increase in both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 upon insulin 

stimulation. PtdIns(3,4,5)P3  could also be detected in the nucleoli of stimulated 3T3-L1 

cells. Potential PPIn interacting proteins were extracted by neomycin at day1 following 

stimulation and DNA Topoisomerase II (Topo IIα) was detected as a potential binding 

partner for both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 and nucleolin as an effector protein of just 

PtdIns(3,4,5)P3. 
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4. General discussion  

The PI3K pathway regulates many fundamental cellular processes such as 

metabolism, cell survival, proliferation and growth [51, 222]. In this thesis we emphasised 

on the role of nuclear PI3K/Akt signalling in the context of metabolism and tumorigenesis.  

An increase in lipid synthesis is required to satisfy the needs of proliferating cancer 

cells for producing membranes and mediating signal transduction [223]. Cells are dependent 

on lipids to perform many of their functions and among the many alterations that occur in 

cancer cells are the deregulation in lipid biosynthesis [224, 225]. Lipids are not only key 

structural components of membranes but are also signaling molecules themselves of which 

their mechanisms of regulation can be altered, hence contributing to tumorigenesis [225]. In 

our study, we have particularly focused on lipid signaling in the nucleus. In paper I, we show 

that the levels of PtdIns(3,4,5)P3 are elevated in the nuclei of endometrial cancer cells. We 

also show that the PI3K pathway is active in the nucleus of these cells as they exhibit 

increased phosphorylated Akt levels, particularly in PTEN deficient endometrial cancer cells 

compared to non-tumour endometrial (EM) cells. This is in line with existing knowledge that 

in human cancers Akt is frequently activated which can block apoptosis and result in 

abolishing the checkpoints of the cell cycle [226].  The lipid phosphatase PTEN is one of the 

most mutated proteins in endometrial cancers [174] and PTEN deficiency potentially 

implicates higher levels of PtdIns(3,4,5)P3.  Indeed, PTEN is well known to control the 

levels of PtdIns(3,4,5)P3 particularly on plasma membranes [86, 227, 228]. PTEN is also 

found in the nucleus but was shown not to control the levels of the nuclear PtdIns(3,4,5)P3 

pool [86, 229, 230]. The other phosphatase that uses PtdIns(3,4,5)P3 as a substrate is TPIP 

(TPTE and PTEN homologous inositol lipid phosphatase) but this was found to localize on 

the endoplasmic reticulum [231]. Instead, the nuclear pool of PtdIns(3,4,5)P3 could possibly 

be controlled by 5-phosphatases. For example, SHIP2 was identified in the nuclear speckles 

and could hence regulate at least part of the nuclear pool of PtdIns(3,4,5)P3 [232]. However, 

its nuclear substrate was suggested to be PtdIns(4,5)P2 as it can be highly detected in this 

sub-nuclear site [232]. Furthermore, we found that p110 is overexpressed in endometrial 

cancer (EC) cells. This would suggest that the levels of this kinase needs to be tightly 

regulated and overexpression could lead to high PtdIns(3,4,5)P3 levels hence contributing to 

tumorigenesis. This kinase is indeed tumorigenic in its WT state when overexpressed [159].  

Since p110 was found with increased levels not only in the cytoplasmic but also in the 
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nuclear fractions of EC cells (paper I), we would suggest that the tumour-promoting 

properties of p110 could be due to its action from both of the locations. At least, a previous 

report showed that selective inhibition of p110 decreased cell proliferation in PTEN-

negative EC cells [183] but whether the cytoplasmic, nuclear or even the combined fractions 

of p110 contributes is not known at present.  

We found PtdIns(3,4,5)P3 and its kinase p110β to localize to the nucleolus of 

different types of cell lines that we have studied, including 3T3-L1 cells (paper III), 

endometrial cancer cells (paper I), and HeLa cells (paper II). Importantly, we have shown 

that the appearance of PtdIns(3,4,5)P3 in the nucleus of EC cells (paper I) and in the 

nucleolus of MEF cells (paper II) is dependent upon p110 activity. As the increase in 

nuclear p110β levels correlated with higher grade of endometrial tumours, this suggests a 

role for p110β to contribute to tumour development in a nucleolar dependent manner.  The 

nucleolus is the site of ribosome production, involving rRNA synthesis, processing and 

assembly with ribosomal proteins [122, 124]. Growing evidence suggests that upregulation 

of nucleolar functions correlate with cancer progression [233-235]. More than 50 years ago, 

it was discovered that the size of the nucleolus was larger in malignant tumor cells when 

compared to normal cells [236]. Recently a link between elevated levels of nucleolar activity 

and ribosome biogenesis with an increased risk of cancer development has been uncovered 

[237]. There is a high demand for protein synthesis in highly dividing and proliferating 

cancer cells and since protein synthesis is reliant on ribosomes, an increase in nucleolar 

activity would be required to reach these demands. We found that the transcription of rRNA 

is elevated in endometrial cancer cells that have the highest nuclear levels of PtdIns(3,4,5)P3 

and p110β. These results correlate well with a study by Drakas et al that suggested that a  

p110 isoform (potentially the β isoform) can activate rDNA transcription by interacting with 

and phosphorylating the transcription factor UBF [142]. This study did not however explore 

the lipid kinase activity of p110 (). Our results also confirm the study in 1965 showing that 

phospholipids tend to occupy active chromatin rather than repressed chromatin [238].  

Furthermore, our preliminary results showing a reduction in rRNA synthesis upon p110β 

inhibition (paper II) adds additional support for the role of PtdIns(3,4,5)P3 and p110β in 

rRNA transcription. The exact mechanism of action of nucleolar p110β regulating rDNA 

transcription is still unknown but may be linked to the following findings. The activity of the 

p53 tumor suppressor protein is regulated by ribosome biogenesis [239] which is thought to 

be due to the inhibition of MDM2 (a p53 degrading protein) by a complex composed of 
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ribosomal proteins such as RPL11 and RPL5 with the 5S rRNA [240]. Therefore, an 

upregulation of ribosome biogenesis correlates with decreased p53 activity levels as the 

MDM2 inhibition increases [241]. Furthermore, NPM which is a key player in ribosome 

biogenesis has previously been shown to bind to PtdIns(3,4,5)P3 and to have an anti-

apoptotic activity [88]. NPM also prevents the inhibition of MDM2 by keeping p14ARF (an 

antagonist of MDM2) in the nucleolus and therefore promoting p53 stability and activation 

[242]. NPM can be phosphorylated by Akt which prevents its effect on the nucleolar 

accumulation of p14ARF hence leading to opposite effect on p53 [243]. Considering that 

PtdIns(3,4,5)P3 binds NPM, this interaction could play a role in regulating NPM-mediated 

p14ARF nucleolar sequestration. Also, PtdIns(3,4,5)P3 could also possibly activate Akt 

locally in the nucleolus and induce Akt-mediated phosphorylation of NPM. In line with this, 

Kwon et al have shown that PtdIns(3,4,5)P3 can compete for its interaction with NPM and 

Akt in the nucleus [87]. It is also possible that increased nucleolar p110 and PtdIns(3,4,5)P3 

levels in endometrial cancer cells can contribute to tumor progression by orchestrating the 

regulation of p53 activity by PtdIns(3,4,5)P3 interaction with NPM. The tumor suppressor 

PTEN is also found in the nucleolus and interestingly reduction in the levels of PTEN was 

correlated with increased biogenesis of ribosomes [144]. PTEN deficient endometrial cancer 

cells can potentially have higher nucleolar PtdIns(3,4,5)P3 levels with less phosphatase 

activity and hence promote tumorigenesis.    

The nucleolus is primarily known as the site where rRNA is transcribed and processed 

but it is also associated with major roles in other cellular processes such as cell cycle 

regulation [234]. During the cell cycle the transition of cells from the G1 phase to S phase is 

dependent on the amount of ribosome synthesis [244]. When we synchronized HeLa cells 

with nocodazole treatment followed by mitotic shake-off, we observed the appearance of 

p110β in the nucleolus within 3 hours after replating which was about the same time as the 

appearance of RNA polymerase I in the nucleoli (paper II). However, PtdIns(3,4,5)P3 did not 

appear in the nucleolus until 2 h later, perhaps due to the delayed activation of p110β. At 

least, using the same method in WT and kinase inactive p110β MEFs, PtdIns(3,4,5)P3 was 

apparent in nucleoli 4 h post-plating and was dependent on p110β activity. We speculate that 

the co-appearance of RNA polymerase I and p110β may indicate a role of this kinase in 

rRNA transcription, which again supports our findings that correlated rRNA transcription to 

increased levels of p110β in endometrial cancer cells. 
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In paper II, we have shown that the nuclear interacting partners of PtdIns(3,4,5)P3, are 

enriched to function in RNA processing and DNA repair mechanisms. Interestingly, p110β 

has already been shown to sense DNA damage and to regulate DNA repair and knock down 

of p110β results in the impairment of the DNA repair pathway [111]. In addition, it is also 

shown that PtdIns(3,4,5)P3 localises to sites of DNA repair in the nucleus [111]. Our 

interactomics data (paper II) shows nuclear PtdIns(3,4,5)P3 interacting proteins have a 6 fold 

enrichment in DNA repair mechanisms, hence adding further support to these existing 

studies. Some of the DNA repair proteins identified have been previously shown to localize 

in the nucleolus and even shown to have dual functions with roles in ribosome biogenesis, 

such as APEX1 (apurinic/apyrimidinic endodeoxyribonuclease 1), NPM and PARP1 [221, 

245, 246]. DNA damage response is highly important and is an active process in the early 

stages of cancer cells in order to detect the DNA lesions caused by the replication stress 

[247]. Since cancer cells are dependent on the repair of DNA breaks, many cancer drugs are 

targeted to the DNA damage signaling molecules such as PARP1 inhibitors [248]. PARP1 is 

a critical protein involved in DNA repair with the ability to bind to the DNA damage sites 

and promote the accumulation of DNA repair proteins on those sites [249]. The boundaries 

of the dense fibrillar component (DFC) and the fibrillar center of the nucleolus is where 

rRNA transcription occurs and the PARP protein has been shown to localize in the DFC 

[250].  Upon DNA damage the activation of PARP1 is dependent on DNA-dependent 

protein kinase (DNA-PK) to inhibit the synthesis of rRNA [251]. We have identified DNA-

PK in addition to PARP1 in our list of potential PtdIns(3,4,5)P3 interacting proteins. In 

addition, we have determined the direct interaction of PARP1 with PPIn including 

PtdIns(3,4,5)P3 in vitro and observed a co-localization of PARP1 with PtdIns(3,4,5)P3 in the 

nucleoli by immunofluorescence staining. When rDNA is damaged, RNA polymerase I is 

inhibited and this causes the translocation of the rDNA to the perinucleolar heterochromatin 

caps where the DNA repair machinery will then accumulate to have easier access to 

damaged sites [252]. Similar to other research groups we show in paper II that in response to 

the RNA polymerase I inhibition by actinomycine D treatment, PARP1 leaves the nucleolar 

interior and translocates to the surrounding area [220]. However, our findings demonstrate 

that PtdIns(3,4,5)P3 no longer co-localizes with PARP1 upon treatment and remains together 

with UBF where it is known to co-localize with other rRNA transcriptional machinery 

components in the perinucleolar caps [253].  On the other hand, the function of PARP1 in 

the nucleolus is not restricted to DNA repair and it impacts ribosome biogenesis as well 

[221]. Being highly abundant in the nucleolus, PARP1 interacts with key nucleolar proteins 
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such as nucleolin, NPM and fibrillarin [220, 221, 254]. In addition studies in Drosophila 

show that PARP1 generates poly(ADP-ribose) which acts as a matrix to keep the nucleolar 

proteins together [221]. Since NPM is known to interact with the DNA binding domain of 

PARP1 [220], it is possible that there is a potential crosstalk between PtdIns(3,4,5)P3 and 

these proteins to regulate ribosome biogenesis.   

Our findings demonstrate that mRNA processing and splicing factors were enriched 

over 12 fold in PtdIns(3,4,5)P3 interacting proteins which adds to findings from our lab and 

others that show the presence of several other PPIns and their kinases in RNA rich 

compartments (also referred to as ribonucleoprotein (RNP) bodies) such as nuclear speckles 

and the nucleoli [26-28, 255]. They are membrane-less and they are abundant in proteins and 

RNA [256]. While the acyl chains of PPIn have been shown to be potentially shielded in 

ligand binding pockets of nuclear receptors [81, 82, 90] it is uncertain why and how the 

negatively charged PPIn can reside in close proximity of negatively charged phosphate 

groups of RNAs. We can speculate that PPIn can bind to RNA effector proteins and while 

their acyl chains are shielded, they perhaps compete with RNA for their interaction with the 

effector protein. This regulation can be assumed to be through a repelling effect to disrupt 

the protein –RNA interaction. On the other hand the nucleoli have been shown to have a 

condensed liquid phase behavior which seems to be a common characteristic of the 

membrane-less ribonucleoprotein rich organelles [257, 258]. Whether the presence of PPIn 

in these organelles can drive the phase transitions and change the biophysical properties of 

these environments still remains to be uncovered.   

The PI3K pathway is complex due to the multiplicity of its isoforms and the variety of 

functions that they each perform in different subcellular compartments. One of the key 

findings in this thesis is that the PI3K signalling is active in the nucleus of 3T3-L1 cells 

during differentiation into adipocytes (paper III). The levels of phosphorylated Akt and its 

interacting PPIn; PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are increased following the induction of 

adipocyte differentiation. Class I and II PI3K isoforms, which produce these PPIn, were 

found to be present in the nucleus of differentiating 3T3-L1 cells. PI3KC2α that potentially 

makes PtdIns(3,4)P2 localizes to the nucleoplasm while p110β that produces PtdIns(3,4,5)P3 

localizes to the nucleolus. Consistent with our studies on HeLa cells (paper II) and EC cell 

lines (paper I), as well as a previous study in breast cancer cells [28], PtdIns(3,4,5)P3 

localizes in the nucleolus together with p110β in 3T3-L1 cells, albeit at low levels. Because 
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of seemingly low levels observed by immunofluorescence microscopy, p110β was not 

detectable by Western immunoblotting of nuclear fractions under the conditions used. 

Immunofluorescent stainings also showed that the levels of p110β in the nucleoplasm of 

differentiating 3T3-L1 cells to be low as compared to its lipid product PtdIns(3,4,5)P3 where 

it is localised diffusely. This suggests that the PtdIns(3,4,5)P3 present in the nucleoplasm 

may be the product of the kinase activity of another kinase, i.e. IPMK (Inositol 

polyphosphate kinase). While the nucleoleolar pool can be produced by p110β  [110]. The 

p110β levels in the nucleoli of differentiating 3T3-L1 were not as high as we had observed 

in the endometrial cancer cell lines or HeLa cells. Even though a rapid proliferation stage 

occurs in the growth arrested 3T3-L1 preadipocytes upon induction of differentiation, these 

cells will again become growth arrested and then commit to differentiate to adipocytes [193, 

259]. Therefore, differentiating 3T3-L1 cells do not require high nucleolar activity since the 

rate of rRNA transcription is linked to the growth status of the cell [260, 261]. Using the 

same approach as in paper II, i.e. by incubating nuclei with neomycin to enrich for and 

collect potential PPIn binding proteins, we have identified nucleolin and TopoIIα by mass 

spectrometry, as neomycin-displaced proteins from nuclei obtained 24 h after inducing 

adipogenesis. Interestingly, inhibition of the p110β isoform showed an increase in the levels 

of nucleolin and TopoIIα displaced by neomycin, indicating that a pool of these proteins are 

no longer retained by nuclear PtdIns(3,4,5)P3, but rather by other mechanisms. Thus 

neomycin could then displace these proteins by competing with either other PPIn or nucleic 

acids that they may bind to TopoIIα. Notably, nucleolin is one of the most abundant proteins 

in the nucleolus and it plays many different functions such as rRNA synthesis, cell cycle 

regulation and cell proliferation which add additional support for the importance of the 

presence of PtdIns(3,4,5)P3 in the nucleolus [262, 263]. Topo IIα was identified to bind both 

PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in a current project in our laboratory and since the levels 

of both these lipids increase upon inducing differentiation, these results support and validates 

our previous finding that the Topo IIα levels increase in the early stages of adipogenesis in a 

PI3K dependent manner [215]. Although there are still uncertainties about the exact function 

that these kinases and PPIn play in the process of differentiation, they are novel nuclear 

factors that seem to be required to initiate the early stages of 3T3-L1 cell adipogenesis.   
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5. Conclusions 

We show in this thesis that the molecular landscape of interactions that the PI3K 

pathway has in the nucleus is as complex as in the cytosol. The components of the PI3K 

pathway localize in distinct compartments of the nucleus with tendency to RNA rich bodies. 

Indeed in the nucleus they are contributing in the regulation of a variety of processes 

including differentiation and tumorigenesis.  The localization of PtdIns(3,4,5)P3 in the 

nucleoli and its interaction with nucleolar proteins such as NPM and PARP1 suggests that 

this signaling lipid is involved in regulating nucleolar activity. Since we find p110β 

localizing with PtdIns(3,4,5)P3 in the nucleolus we conclude that this lipid is locally 

produced in the nucleolar compartment. The nuclear/nucleolar levels of both p110β and 

PtdIns(3,4,5)P3 are high in cancer cells which demand higher levels of ribosome biogenesis 

in contrast to differentiating cells that require less. All together the results from this thesis 

provide evidence for novel nuclear functions for members of the PI3K pathway and suggest 

that nucleolar p110β/PtdIns(3,4,5)P3 may be central in sensing the different metabolic 

requirements upon differentiation and proliferation.  
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Abstract 

Endometrial cancer (EC) is often cured by surgery but tumours recur unpredictably in 

about 20% of cases and have poor response to current treatments and targeted therapeutics are 

not available for routine clinical use. Genes encoding for components of the phosphoinositide 

3-kinase (PI3K) signalling pathway are frequently mutated in EC, including inactivating 

mutations of PTEN and activating mutations of PIK3CA. These genetic alterations do not 

however account for all tumours and other alterations in other genes of the pathway could 

contribute. Analysing cell lines and annotated clinical samples, we have previously found that 

p110 (encoded by PIK3CB) is highly expressed in cancer cells and that PIK3CB mRNA 

levels increase early in tumourigenesis. Selective inhibition of PI3K p110 and p110 led to 

different effects on cell signalling and cell function, p110 activity being correlated to cell 

survival in PIK3CA mutant cells and p110β with cell proliferation in PTEN-deficient cells. To 

understand the mechanisms governing the differential roles of these isoforms, we assessed 

their sub-cellular localisation. p110 was cytoplasmic whereas p110was both cytoplasmic 

and nuclear with increased levels in both compartments in cancer cells. 

Immunohistochemistry of p110 in clinically annotated patient tumour sections revealed 

cytoplasmic staining in intact endometrial glands in low grade tumours and nuclear staining in 

higher grades. Consistent with  this, the presence of high levels of p110β in the nuclei of EC 

cells, correlated with high levels of its product phosphatidylinositol 3,4,5-trisphosphate 

(PtdIns(3,4,5)P3) in the nucleus. In addition, we observed that p110β and its lipid product 

PtdIns(3,4,5)P3 were localised in the nucleoli of EC cell lines. PTEN-deficient EC cells with 

the highest amount of nuclear PtdIns(3,4,5)P3 and p110β showed elevated nucleolar activity 

as assessed by the increase in the pre-rRNA transcriptional levels. Altogether these results 

present a nucleolar role for the PI3K pathway that may contribute to tumour progression in 

endometrial cancers.  
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Introduction 

The phosphatidylinositol 3-kinase (PI3K) signalling pathway is frequently 

hyperactivated in cancer, often due to genetic or epigenetic alterations in several gene 

members of the pathway (1-3). Class I PI3Ks consist of heterodimers of catalytic subunits 

(p110α, β, δ or γ) and adaptor proteins (p85α and its variants, p85β or p55γ) (4) and 

phosphorylate the 3’-hydroxyl group of the phospholipid phosphatidylinositol 4,5-

bisphosphate (PtdIns(4,5)P2) to generate phosphatidylinositol 3,4,5-trisphosphate 

(PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 binds to effector proteins including the serine/threonine 

kinases AKT/Protein Kinase B (PKB), 3-phosphoinositide-dependent protein kinase 1 

(PDK1) and SIN1 via their phosphoinositide-binding plextrin homology (PH) domain (5-7). 

AKT is further activated by phosphorylation on Thr308 and Ser473 by PDK1 and mammalian 

target of rapamycin complex 2 (mTORC2) respectively (8). Activated AKT can act at 

different intracellular sites, where it phosphorylates a myriad of substrates that regulate cell 

survival, cell proliferation and growth as well as metabolism (9). The production of 

PtdIns(3,4,5)P3 is regulated by phosphatase and tensin homolog deleted on chromosome 10 

(PTEN), a lipid phosphatase which dephosphorylates PtdIns(3,4,5)P3 back to PtdIns(4,5)P2, 

thereby opposing PI3K-mediated signalling and hence limiting the potential cancer-promoting 

effects of class I PI3K activity (10). 

p110α and p110β are ubiquitously expressed, share the same enzymatic properties and 

generate the same lipid product, and initiate the same signalling cascade. Despite these shared 

features, the two isoforms are both essential for development as individual knockout mice are 

embryonically lethal, hence suggesting non-redundant functions (11, 12). Moreover, their 

mode of activation is distinct, with p110α carrying out most of receptor tyrosine kinase 

(RTK)-mediated PI3K signalling and p110β being regulated by G-protein coupled receptors 

(GPCR) (3, 13-15) through different adaptor proteins (16). In cancer, the oncogenic properties 

of p110α are due to activating mutations of its gene PIK3CA (17). In contrast, PIK3CB, the 

gene encoding p110β, is rarely mutated in cancer, with only two reports so far describing 

activating mutations (18, 19). PIK3CB was however shown to be the key isoform mediating 

tumorigenesis in PTEN-deficient tumours in particular in breast, prostate and ovarian cancer 

cells (20-24), possibly due to its ability to promote oncogenic transformation in its wild type 

state (25). Furthermore, the importance of p110β in tumorigenesis was recently highlighted in 

a study by Juric et al (26). This study showed that PIK3CA mutant breast cancer cells which 

were initially sensitive to p110α specific inhibition eventually developed resistance with 
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acquired loss of PTEN in metastatic lesions. These cells could however revers the resistance 

when p110β inhibition was combined. Regarding their functions, a few studies have reported 

that the two isoforms can contribute differently to cell survival and proliferation, with p110α 

playing more of a role in cell survival and p110β in cell cycle progression and DNA 

replication (27-29). Another distinguishing feature about these two isoforms is their sub-

cellular localisation. Although p110α and β are both found in the cytoplasm and 

share/compete for similar upstream receptor activation and downstream signalling cascades, 

p110β is also found in the nucleoplasm and in the chromatin fraction (29, 30). Moreover, we 

have recently reported the presence of p110β and PtdIns(3,4,5)P3 in the nucleolus (31). 

The PI3K pathway is the signalling pathway most frequently altered in endometrial 

cancer (EC) with more than 80% of tumours harbouring somatic alteration in at least one gene 

component of the pathway, including high frequency mutations in PTEN, PIK3CA and 

PIK3R1 (encoding p85α) and low frequency in Akt and PIK3R2 (encoding p85β) (32, 33). 

Loss of function of the tumour suppressor gene PTEN, due to loss of heterozygosity or 

somatic mutations is the most common event in Endometriod EC (EEC) and occurs early in 

18-48% of lesions with atypical hyperplasia (34, 35). PIK3CA, the gene encoding the catalytic 

p110α subunit of class I PI3K, is frequently mutated in 10-39% of EEC but in contrast to 

PTEN has a low frequency in early lesions and a high frequency in aggressive, invasive less 

differentiated tumours (35, 36). In addition, mutations in PTEN were found to co-exist with 

those of PIK3CA or PIK3R1, thereby leading to enhanced activation of the PI3K pathway (36-

39). PIK3CA gene amplification can also account for other mechanisms for PI3K pathway 

activation and was found to correlate with a PI3K activation profile, segregated more 

frequently to aggressive and invasive tumours whereas point mutations segregated to non-

aggressive (40) or to lower grade tumours (36). In contrast to PIK3CA, mutation events are 

rare in PIK3CB with 2.2% in EC according to data from COSMIC release v80 –Feb 2017 

((41) http://cancer.sanger.ac.uk/cosmic), including a recently characterized oncogenic 

mutation in its catalytic domain (19). PIK3CB mRNA levels were found to be elevated in 

endometrial tumours compared to normal tissue in a few patient samples (42). In a recent 

study, we have shown that the p110β protein levels are elevated in EC cell lines and that 

mRNA levels are increased in grade 1 endometrioid endometrial lesions compared to complex 

hyperplasias (43). We have recently reported the presence of p110β and of its product 

PtdIns(3,4,5)P3 in the nucleolus of the breast cancer cell line AU565 (31). In this study, we 

showed an increase in the nuclear levels of both p110β and PtdIns(3,4,5)P3 in EC cells. We 

further showed that high p110β levels correlated with high rRNA transcription which suggests 
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the involvement of this kinase and its lipid product PtdIns(3,4,5)P3 in increased nucleolar 

activity in cancer. 

 

Results 

p110β is cytoplasmic and nuclear in endometrial cancer cell lines and patient tumours 

Previous studies have shown that p110α and p110β are differently localized and that 

this may contribute to the variable function of both catalytic subunits (29-31). We determined 

the subcellular localization of catalytic isoforms, as well as the two regulatory subunits p85α 

and p85β, in EM and endometrial cancer cells by Western immunoblotting. As shown in 

Figure 1A, p110α concentrated to the cytoplasmic fraction in all cell lines. p110β expression 

was low in EM cells detected mostly in the cytoplasmic fraction and with very low levels in 

nuclear fractions. All cancer cell lines had higher levels of p110β in the cytoplasmic fraction 

than EM cells. In the nuclear fractions, all cancer cell lines demonstrated high p110β levels 

except for EFE-184 cells. In the majority of cell lines p85α was restricted to the cytoplasmic 

fraction. In contrast, p85β was mostly undetectable in the cytoplasmic fraction in all cells 

except for MFE-280 cells, but was concentrated to the nuclear fraction, with high levels in 

EM, KLE, EFE-184 and MFE-280 cells and lower levels in the remaining cells (Figure 1A). 

When detected by immunostaining, p110β was localized in the cytoplasm as well as in 

nucleoli together with the nucleolar protein nucleophosmin (Figure 1B). The localisation of 

p110β in the nucleoplasm varied amongst cell lines. To determine if the localization pattern of 

p110β could also be observed in human tissues, we examined a patient cohort including 727 

primary endometrial tumours by immunohistochemistry. While most patients showed p110β 

cytoplasmic detection with various degrees of intensity, 23% of all cases showed nuclear 

staining (Fig. 2A). In addition, a significant correlation was observed between high nuclear to 

cytoplasmic localisation-intensity ratio for p110β and high grade or histological type II 

endometrial tumour (Figure 2B).  

 

The levels of PtdIns(3,4,5)P3 are increased in nuclei of EC cells in a p110-dependent 

manner 

We next determined if the presence of p110β in the nucleus correlates with nuclear 

PI3K pathway activity by first assessing the presence of active p-S473-AKT. As shown in 

Figure 3A, the cytoplasmic and nuclear levels of p-S473-Akt were low in EM, KLE, EFE-184 

and MFE-280 cells, while high levels were observed in MFE-296, MFE-319, RL95-2 and 



 
 

6 
 

Ishikawa cells, consistent with our previous study using total cell extracts in the same cells 

(43). Interestingly, high nuclear p-S473-Akt levels were inversely correlated with low levels 

of p85β (Figure 1A). Furthermore, we determined the nuclear level of PtdIns(3,4,5)P3 of all 

cells examined following nuclear isolation, lipid extraction, and detection with GST-GRP1-

PH, a PtdIns(3,4,5)P3 specific probe (Figure 3B). The purity of the fractionation was verified 

by Western immunoblotting using markers for the cytoplasm, nucleus and endoplasmic 

reticulum (Supplementary Figure S1). PtdIns(3,4,5)P3 levels were high in most cancer cells 

and highest in RL95-2 cells compared to EM cells (Figure 3C). To test if p110β is responsible 

for the synthesis of nuclear PtdIns(3,4,5)P3 when PTEN is lost, we treated the PTEN-deficient 

cell line RL95-2 with TGX-221, a p110β selective inhibitor. Treatment for 3 days reduced the 

levels of nuclear PtdIns(3,4,5)P3 (Figure 3D) and nuclear p-S473-Akt (Figure 3E). However, 

the levels of total Akt were increased in the cytosol while it was decreased in the nucleus 

following p110β inhibition. The decrease in nuclear p-Akt may hence be due to loss of 

translocation of active pAkt from the cytoplasm. 

 

High nucleolar p110β levels correlates with high rRNA transcription  

Using immunofluorescence microscopy, we show that p110β is found together with 

PtdIns(3,4,5)P3 both in the nucleoplasmic and nucleolar compartments of RL95-2 (Figure 4A) 

and MFE-319 cells (Supplementary Figure S2). Furthermore, AKT was found to associate 

with the nucleolar pool of p110β and its active p-S473 form with the nucleolar protein 

nucleophosmin as discrete foci (Supplementary Figure S3). Nucleolar fractionation of RL95-2 

cells confirmed the presence of p110β in the same compartments (Figure 4B). Tubulin, 

fibrillarin and lamin A/C were used as cytoplasmic, nuclear and nucleolar markers, 

respectively to validate the fractionation procedure. Lamin A/C was found in both the 

nucleoplasmic and nucleolar compartments as previously reported (44). In order to 

characterize the molecular composition of the PtdIns(3,4,5)P3 species present in the nucleus, 

we performed targeted LC-MS/MS on the lipid extracted from different subcellular fractions 

of RL95-2 cells, which harbour the high nuclear PtdIns(3,4,5)P3 levels. In particular, the 

species PtdIns(3,4,5)P3 (38:4) was detected in the nucleolar fraction (Supplementary Table 

S1). Interestingly, the same PtdIns(4,5)P2 (38:4) molecular species was also detected in the 

same fraction and can be hence thought as a possible substrate for p110β in the nucleolus.  

The main function of the nucleolus is to synthesise ribosomes which involves rRNA 

transcription and processing (45). Elevated levels of nucleolar activity have been correlated to 

an increased risk of cancer development (46). We next examined whether EC cells with high 
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levels of p110β and PtdIns(3,4,5)P3 in the nucleus had high level of rRNA transcription. 

Consistently, RL95-2 cells, showed the highest level of pre-rRNA synthesis when compared 

to EM cells (Figure 4C). Surprisingly, MFE 319 cells showed very little difference in 

transcription. 

 

Discussion 
Cellular compartmentalisation provides an additional important mode of regulation for 

signalling cascades in order to achieve specificity and to precisely coordinate cellular outputs. 

The PI3K pathway has been extensively studied from a cytoplasmic perspective. However, a 

few studies have detailed the distinct intracellular localisation of PI3K enzymes. For example, 

p110 is found to be restricted to the cytoplasm while p110β is present both in the cytoplasm 

and the nucleus, in particular in the nucleoplasm, the chromatin fraction and the nucleolus 

(29-31). The compartmentalisation of these enzymes is likely to impact on signalling 

networks and to mediate different cell functions, hence accounting for the pleiotropic effects 

attributed to PI3K signalling. Although the PI3K signalling pathway is pivotal in cancer, the 

impact of the subcellular localisation of PI3K in processes attributed to tumourigenesis is still 

poorly understood. Our findings demonstrate that p110 and p110β are differently 

compartmentalised in EC cells. Consistent with previous studies (29, 30), p110 is 

cytoplasmic and p110β nuclear. p110 and p110 isoforms may hence share some of the 

functions attributed to PI3K signalling operating in the cytoplasm, perhaps due to their 

recently reported cross-activation (47). In addition, the presence of genetic mutations 

affecting PIK3CA or PTEN would influence PtdIns(3,4,5)P3-mediated downstream functions 

induced by p110 and p110 respectively in this compartment. Furthermore, we found that 

the levels of p110β is high in the nucleus of EC cell lines compared to EM cells.  In clinically 

annotated tumour samples, we show a correlation between the nuclear p110β levels and an 

increase in endometrial cancer progression as tumours with higher grade histology presented 

high p110β nuclear to cytoplasmic ratio. These results would indicate the importance of the 

regulation of the levels of this isoform. Indeed, the overexpression of p110β has previously 

been shown to lead to cell transformation in its wild type state (48). Furthermore, our studies 

demonstrate that EC cells, not only have high nuclear levels of p110β, but also elevated levels 

of PtdIns(3,4,5)P3, its lipid product as well as the active form of the oncoprotein AKT, p-

S473-Akt, the critical signalling effector of PtdIns(3,4,5)P3. Here, we demonstrate that upon 

p110β inhibition, the levels of the active form of Akt, p-S473-Akt, were decreased in EC 
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nuclei. The nuclear PtdIns(3,4,5)P3 levels were also reduced in these cells following p110β 

inhibition, which suggests that the nuclear pool of PtdIns(3,4,5)P3 is, at least partly, the 

product of the kinase activity of p110β. The existence of a molecular link within the nucleus 

between PtdIns(3,4,5)P3 and Akt is however not clear from this study. Additional mechanisms 

of regulation required for the activation of Akt were not explored in this study. These would 

include the PtdIns(3,4,5)P3-dependent activation of PDK1 and mTORC2, known to be critical 

for the phosphorylation and full activation of Akt (6, 7).  

A clear relationship between elevated nucleolar activity and increased risk of cancer 

has been shown (46). Thus, nucleolar processes need to be tightly regulated with high fidelity 

to ensure appropriate cell growth and proliferation in response to external signals. One 

potential molecular link regulating these processes is the PI3K pathway. A few studies have 

shown that the transcription and processing of the pre rRNA is stimulated in a PI3K and 

mTOR-dependent manner (49-51). In addition, the PtdIns(3,4,5)P3 effector protein 

nucleophosmin (52) as well mTORC1 are known to also localize to the nucleolus, where they 

can regulate nucleolar function (51, 53-55). Nuclear Akt has also been shown to regulate 

rRNA transcription by activating the TIF-I transcription factor (56). How PI3K, Akt and 

mTOR are activated in a nucleolar context is however not known. Moreover, the responsible 

PI3K isoform was not identified in those studies. In this study, we showed that both 

PtdIns(3,4,5)P3 and p110β were localised in the nucleolar compartment, raising the possibility 

of p110β acting as a regulator of nucleolar functions in a kinase-dependent manner. The 

detection of PtdIns(3,4,5)P3 in the nucleolus was further confirmed by LC-MS/MS analyses 

in the form of 38:4 (carbons:double bonds) for its acyl chains, which is consistent with the 

reported most common chemical form of fatty acyl chains for polyphosphoinositides (PPIn) 

(57). We could not identify PtdIns(3,4,5)P3 in the cytoplasmic and nucleoplasmic fractions by 

LC-MS/MS, which may be due to the high amount of protein present in these fractions. PPIn 

and in particular PtdIns(3,4,5)P3 are minor components, which could potentially get lost in the 

protein interphase during extractions. Immunofluorescent staining indicated also of the 

presence of both total Akt and phosphorylated Akt in nucleoli, which can suggest a local 

activation of this protein by PtdIns(3,4,5)P3 present in nucleoli. Again, this would need to be 

explored further. 

Our findings demonstrate that the RL95-2 endometrial cancer cells, high in nuclear 

PtdIns(3,4,5)P3 and p110β levels, have significantly increased pre-rRNA transcription. The 

proliferation of these cells was shown to be at least partly dependent upon the activity of 

p110β (43). It would therefore be sensible to speculate that an increase in ribosome 
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production will help increase cell proliferation and subsequently cancer progression. 

Nucleolar p110β would hence provide a mode of regulation of ribosome synthesis necessary 

for protein synthesis and ultimately cell division. p110β can therefore potentially increase 

tumour progression in EC cells by producing the nucleolar pool of PtdIns(3,4,5)P3 and 

thereby increasing the biogenesis of ribosomes required for tumour growth. However, the 

exact molecular mechanisms by which PtdIns(3,4,5)P3 or p110β can influence nucleolar 

function remains to be further explored.  

 

Materials and methods 

Reagents 

Antibodies used in Western immunoblotting and immunostaining are listed in Supplementary 

table S2. 

 

Patient series 

Tissue was collected from patients diagnosed with endometrial cancer at Haukeland 

University hospital during the period from 2001-2013 and included a total of 234 clinical 

samples with 18 endometrial cancer precursor lesions (complex atypical hyperplasias, CAH), 

174 primary tumours and 42 metastases. Clinical data were collected as described earlier (58, 

59). The patient cohort used for p110β immunohistochemistry is described in detail in Tangen 

et al (59). This study was conducted in line with Norwegian legislation and international 

demands for ethical review, approved by the Norwegian Data Inspectorate, Norwegian Social 

Sciences Data Services and the Western Regional Committee for Medical and Health 

Research Ethics (NSD15501; REK 052.01). Patients signed an informed consent. 

 

Cell lines and cell culture conditions 

Cancer cell lines were obtained from ATCC (KLE, RL95-2), DSMZ Germany (MFE-296, 

MFE-319, EFE-184 and MFE-280) and Sigma-Aldrich (Ishikawa). EM-E6/E7-hTERT (EM), 

a non-transformed endometrial cell line isolated from glandular endometrial tissue and 

immortalized with E6/E7 and human TERT (60, 61), was a gift from Professor PM Pollock 

(University of Queensland, Australia). All cells were authenticated by short tandem repeat 

DNA profiling (IdentiCell Service, Dept. Molecular Medicine, Aarhus University Hospital, 

Denmark for all cancer cell lines and MD Anderson Cancer Center, USA for EM cells), as 

previously described (43). All cancer cells were cultured in Dulbecco’s modified Eagle’s 
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medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 

IU/ml penicillin and 100 μg/ml streptomycin). EM cells were cultured in DMEM/Ham’s F12 

supplemented with Insulin-Transferrin-Selenium, 10% FBS and antibiotics and changed to 

DMEM containing 10% FBS and antibiotics 24 h before harvest. Cells were harvested when 

they reached a maximum of 80% confluence.  

 

Whole cell extracts, subcellular fractionation and Western immunoblotting 

Whole cell extracts were prepared in radioimmunoprecipitation assay (RIPA) lysis buffer (50 

mM Tris pH 8.0, 0.5% deoxycholic acid, 150 mM NaCl, 1% NP-40, 0.1% SDS) 

supplemented with 5 mM NaF, 2 mM Na3VO4 and 1x Sigma Protease Inhibitor Cocktail. 

Nuclear fractionation was carried out according to O’Caroll et al. (62) and nuclear pellets 

were lysed in RIPA buffer. RL95-2 cells required an additional syringing step of the nuclear 

pellet resuspended in wash buffer (10 mM Tris-HCl pH 7.5 and 2 mM MgCl2) to avoid 

cytoplasmic contamination. The nucleoli were isolated according to the protocole described in 

Lam et al 2006 (63). In brief cells were grown in 10 large 15cm dishes up to 70% confluency. 

Fresh medium was added to the cells 1 hour prior to the fractionation. Cells were trypsinized 

and washed 3 x with cold PBS. The cell pellet was collected by centrifugation and re-suspend 

in 5ml of buffer A containing 10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0,5mM 

DDT, 1 % Igepal and protease inhibitor cocktail. After 5 min of incubation on ice the cells 

were syringed by passed through a 23-gauge needle 16 times. After centrifugation at 218x g 

for 5 min at 4°C the supernatant was collected as the cytosolic fraction and the nuclear pellet 

was re-suspended in 3 ml of buffer S1 (0.25 M sucrose, 10 mM MgCl2 and protease inhibitor 

cocktail). The suspension was layered over 3ml of buffer S2 (0.35 M sucrose, 0.5 mM MgCl2 

and protease inhibitor cocktail) and centrifugation was performed at 1430 x g for 5 min at 

4°C. The pellet was then re-suspended in 3 ml of S2 before sonicating (7 times: 10 sec 

on/10sec off) on ice. The lysate was then layered over 3 ml of S3 (0.88 M Sucrose, 0.5 mM 

MgCl2 and protease inhibitor cocktail) and centrifugation was performed at 3000 x g for 10 

min at 4°C. The top layer was collected as the nucleoplasmic fraction and the pellet which 

contained the nucleoli was washed once with 500µl of S2. Equal amount of proteins (40-50 

µg) were resolved by SDS-PAGE, immunoblotted as described previously (64) and detected 

by enhanced chemiluminescence using the SuperSignal West Pico Chemiluminescent 

Substrate (Pierce) and visualized with a BioRad ChemiDocTM Xrs+. See table S3 for 

antibodies and dilutions. 
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RNA extraction 

After pelleting the cells were washed two times with PBS and resuspended in 1ml TriReagent 

(Sigma) and incubated at room temperature for 5 min. 200µl of chloroform was added and 

mixed vigorously before incubating at room temperature for 1 min and centrifuging (at 12000 

x g and 4°C) for 15 min. Phenol -chloroform-isoamyl alcohol mixture (Sigma) was added 

(500µl) to the upper phase and after mixing was incubated at room temperature for 2 min 

before centrifuging (at 12000 x g and 4°C) for 10 min. To the upper phase chloroform (500µl) 

was added and after mixing and incubating at room temperature for 1 min it was centrifuged 

(at 12000 x g and 4°C) for 10 min. 20 µg of RNA grade glycogen (Thermo Fisher Scientific) 

and 500 µl isopropanol was added to the upper phase and after mixing well it was incubated 

at room temperature for 20 min before centrifuging (at 13000 x g and 4°C) for 20 min. The 

pellet was resuspended in 1 ml of ice cold ethanol (70%) and centrifuged (at 8000 x g and 

4°C) for 5 min. The extracted RNA was dissolved in water for RT-qPCR analysis.  

 

RT-qPCR  

From total RNA extracts of RL952, MFE319 and EM cells 1µgr was used to make cDNA 

with random primers according to the protocol from the High-Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher scientific). Real-time PCR was performed on Roche Light 

Cycler 480 using PowerUp SYBR Green Master Mix (Thermo Fisher scientific). Primers used 

for the target pre-rRNA gene (5’ external transcribed spacer region) were: 5’-

GAACGGTGGTGTGTCGTTC-3’ and 5’-GCGTCTCGTCTCGTCTCACT-3’ (65) and for 

the RPS12 gene (as reference gene) were: 5′-ATTCAGCTTCACCCGTAACC-3′ and 5′-

CAACCACTTTACGGGGATTC-3′ (66).  

 

Lipid Extraction from nuclear fractions 

Following cell fractionation, the nuclear pellets were resuspended in nuclear resuspension 

buffer (10 mM Tris pH 7,4, 1 mM EGTA, 1,5 mM KCL, 5mM MgCL2, 320 mM sucrose)  

and counted. Lipids were extracted from each nuclear fraction using a method adapted from 

Grey et al (67). Nuclei were incubated in 1 mL MeOH/CHCl3 2:1 to extract neutral lipids for 

10 min at room temperature with shaking at 1200 rpm and vortexed 3-4 times. The samples 

were centrifuged at 3000 g for 5 min at 4 °C and supernatants were discarded and the same 

procedure was repeated. The acidic lipids were then extracted with 750 µL MeOH/CHCl3/0.1 

M HCl 80:40:1 2:1:0.8 and incubated for 15 min at room temperature and vortexed 4 times 

during the incubation followed by centrifugation at 3000 g for 5 min at 4 °C. The pellets were 
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resuspended with 250 µL CHCl3 and 450 µL 0.1 M HCl and centrifuged at 3000 g for 5 min 

at 4 °C and a phase split between the organic and aqueous phases was apparent. The organic 

phase (bottom phase) was collected in conical glass tubes and dried at 60°C under N2 gas. 

Lipids were resuspended with 4-6 µl of MeOH/CHCl3/H2O 2:1:0.8, vortexed for 30 seconds 

before being sonicated in an ice bath for 5 min and vortexed again for 30 seconds. Proteins 

were recovered from lipid extraction and the protein concentration was estimated for 

validation of the fractionation by western blotting. 

 

Lipid Overlay Assay 

Lipids obtained from lipid extraction were spotted on HybondTM-CExtra membranes, 2 µl at a 

time. The membranes were left to dry for 1 hour at room temperature protected from light. 

The membranes were next blocked for 1 h at room temperature with the appropriate blocking 

buffer (1% fat-free milk in PBS pH 7.4) and further incubated with 0.5 µg/mL GST-GRP1-

PH in the same buffer overnight at 4°C and protected from light. GST-GRP1-PH was 

expressed and purified as described previously (68). The membranes were washed 6 x 5 min 

in PBS-T (0.05% Tween 20) and then incubated with anti-GST conjugated to HRP (1:30 000) 

in blocking buffer for 1 h at room temperature. The blots were washed 6 x 5 min with PBS-T. 

The signal was detected by ECL using the SuperSignal West Pico Chemiluminescent 

Substrate or with SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher 

scientific) and detected with a BioRad ChemiDocTM Xrs+. Lipid spot densitometry was 

quantified using ImageJ.  

 

Immunostaining, immunohistochemistry and microscopy 

Cells grown on coverslips were fixed with 3.7% paraformaldehyde/PBS for 10 min, washed 

thrice with PBS, permeabilised with 0.25% Triton X-100/PBS for 10 min, blocked for 1 h 

with blocking buffer (3% BSA in 0.05% Triton X-100/PBS) and incubated with primary 

antibodies diluted in blocking buffer overnight at 4°C and subsequently with fluorescently-

labelled secondaary antibodies diluted in blocking buffer for 1 h at room temperature. Washes 

were performed with 0.05% Tween-20/PBS after antibody incubation. The coverslips were 

mounted in ProLong Gold Antifade Reagent containing 4’,6-diamidino-2-phenylindole 

(DAPI). Images were acquired with a Leica DMI6000B fluorescence microscope using x40 or 

x100 objectives or Leica TCS SP5 confocal laser scanning microscope using a 63x/1.4 oil 

immersion lens. Images were processed with a Leica application suite V 4.0. TMA sections 

from a cohort including 727 patients were stained and scored for p110β expression following 
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a protocol previously described (59). Briefly, three cylinders of 0.6 mm were retrieved from 

high tumour purity areas using a custom-made precision instrument (Beecher Instruments, 

Silver Spring, MD, USA) and mounted in a paraffin block. TMA sections (5 µm) were stained 

for p110β expression and scored visually by light microscopy by 2 independent observers 

(CK and ILT). Scoring was performed blinded for information regarding clinical 

characteristics and outcome. A semi quantitative and subjective scoring method was used, and 

a staining index was calculated as a product of staining intensity (0-3) and area of positive 

tumour cells (1≤10%, 2=10-50% and 3≥50%). 
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Figure legends 
 

Figure 1: p110α and p110β demonstrate different subcellular compartmentalisation 

(A) Actively growing cells were fractionated into cytoplasmic and nuclear fractions. Equal 

protein concentrations were resolved by SDS-PAGE and analysed by Western 

immunoblotting using the antibodies as indicated. (B) Co-immunostaining of p110β and 

nucleophosmin in actively growing KLE, MFE-319 and RL95-2 cells and imaged by 

epifluorescence microscopy. Scale bar 10 µm (x100).  

 

Figure 2: High nuclear levels of p110β are more prevalent in high grade and type II 

endometrial tumours 

(A) Representative histochemistry images of cytoplasmic and nuclear p110β staining in 

primary endometrial tumours detected with anti-p110β. (B) Quantitative graphs of nuclear (N) 

to cytoplasmic (C) ratio measured following p110β histochemistry of 728 patient histology 

samples. G represents the grade of the tumour. 

 

Figure 3: Nuclear PtdIns(3,4,5)P3 levels are elevated in endometrial cancer cells 

(A) Actively growing cells were fractionated into cytoplasmic and nuclear fractions. Equal 

protein concentrations were resolved by SDS-PAGE and analysed by Western 

immunoblotting using the antibodies as indicated. (B) PIP array spotted with 1.56 to 100 

picoM of each of the seven PPIn species incubated with GST-GRP1-PH and an anti-GST-

HRP conjugated antibody. (C) PtdIns(3,4,5)P3 (PIP3) detection from nuclear acidic lipids 

extracted from actively growing cells, by overlay assay with GST-GRP1-PH domain and anti-

GST-HRP conjugated antibody (upper panel). PIP3 signal/mg nuclear protein were calculated 

and expressed as folds compared to EM values (lower panel–graph. n=3, * p< 0.05 t-test). (D) 

PtdIns(3,4,5)P3 (PIP3) detection by overlay assay with GST-GRP1-PH domain and anti-GST-

HRP conjugated antibody from nuclear acidic lipids extracted from RL95-2 cells treated with 

or without 10 µM TGX-221 for three days. (E) Western immunoblotting of cytoplasmic (cyt) 

and nuclear (nuc) fractions from RL95-2 cells treated with or without 10 µM TGX-221 for 

three days. 
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Figure 4: Pre-rRNA expression is increased in RL95-2 cells with high nuclear levels of 

p110β.  

(A) Confocal microscopy of actively growing RL95-2 cells co-stained with the indicated 

antibodies (Scale bar 5 µm). (B) Sub-cellular fractionation of RL95-2 cells showing the 

nucleolar presence of p110β (C) Relative pre-rRNA expresstion to RPS12 gene in RL95-2, 

MFE 319 and EM cells is shown in the graph. The expressions of all samples were 

normalized to EM cells. 
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Supplementary methods 

LC-MS and lipid extraction from cytoplasmic, nuclear and nucleolar fractions 

Cytoplasmic, nuclear and nucleolar fractions were isolated from RL95-2 cells. Prior to 
lipid extraction, the cytoplasmic and nuclear fractions were pelleted at 48 000 g for 1 hour in 
a TLi 100.2 rotor. The lipid extraction procedure described in Clark & al. (2011) was 
followed. Extraction: Fractionated pellets were resuspended in 170 µL H2O, sonicated with 
rod for 5 sec and transferred to 2 mL Eppendorf-tubes. The original tubes were rinsed with 
750 µL of quench mix (MeOH:CHCl3:HCl 484:242:23.55 by volume) and then added to the 2 
mL-tubes. The tubes were shaken by hand 3 times for 10 sec and sonicated in ultrabath for 30 
sec. Subsequently 20 ng of each internal standard (PIP/PIP2 and PIP3) was added to each 
tube, and a blank tube with only internal standard was also prepared. The tubes were again 
shaken by hand for 3 times for 10 sec, and let to stand for 5 min. To each tube was added 725 
µL CHCl3 and 170 µL 2 M HCl. The tubes were shaken by hand 3 times for 10 sec, and 
centrifuged at 1500 g for 5 min. The lower phases were transferred to new 2 mL tubes, and 
708 µL pre derivatization mix (MeOH:CHCl3:HCl 12:24:9 by volume) was added. The tubes 
were shaken by hand 2 times for 10 sec, and centrifuged at 1500 g for 3 min. The upper 
phases (most of it) were removed and discarded, and the lower phases were carefully 
transferred to new 2 mL tubes. To each tube 50 µL TMS-diazomethane was added. The tubes 
were let to stand for 10 min, and then 6 µL concentrated acetic acid was added. 700 µL post 
derivatization mix (MeOH:CHCl3:H2O 12:24:9 by volume) was added, and the tubes were 
shaken by hand 2 times for 10 sec, and centrifuged at 1500 g for 3 min. The lower phases 
were transferred to new 2 mL tubes, and 700 µL post derivatization mix was added. The tubes 
were shaken by hand 2 times for 10 sec, and centrifuged at 1500 g for 3 min. Now the lower 
phases were transferred to glass tubes, and 100 µL methanol: H2O (9:1) was added, and the 
tubes were vortexed and gently concentrated under nitrogen-flow to about 10 µL left. Then 80 
µL MeOH was added to each tube, and they were sonicated in ultrabath for 30 sec and 
transferred to MS-sample vials and after evaporation with nitrogen gas they were stored in the 
glass tubes at -20 °C. LC-MS: An Agilent triple quad MS (model 6460) was used directly 
connected to an Agilent HPLC system. PIP/PIP2 and PIP3 samples (in 80:20 MeOH:H2O) 
were injected (2 µL) and separated on a C4 column, and introduced to the MS at full scan 
acquisition. Data were analyzed by the provided software (Agilent MassHunter). 

 

  



Supplementary Table S1. LC-MS/MS analysis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in different 
subcellular fractions of RL95-2 cells.  

NQ: non-quantifiable.  

PPIn species Cytoplasm Nucleus Nucleolus 
PIP3 32:0  0,00 NQ 0,00 
PIP3 32:1  0,00 NQ 0,00 
PIP3 32:2  0,00 NQ 0,00 
PIP3 34:0  0,00 NQ 0,00 
PIP3 34:1  0,00 NQ 0,00 
PIP2 34:1 457,73 NQ 0,00 
PIP3 34:2  0,00 NQ 0,00 
PIP2 36:1 511,29 NQ 0,00 
PIP3 36:2 0,00 NQ 0,00 
PIP2 36:2 452,03 NQ 0,00 
PIP3 36:3  0,00 NQ 0,00 
PIP3 36:4  0,00 NQ 0,00 
PIP3 38:0  0,00 NQ 0,00 
PIP2 38:0 0,00 NQ 30,86 
PIP3 38:1  0,00 NQ 0,00 
PIP3 38:2  0,00 NQ 0,00 
PIP3 38:3  0,00 NQ 0,00 
PIP2 38:3 749,90 NQ 2324,82 
PIP3 38:4  0,00 NQ 113,15 
PIP2 38:4 512,51 NQ 1463,64 
PIP3 38:5  0,00 NQ 0,00 
PIP3-16:17  0,00 NQ 0,00 
PIP3-36:0  0,00 NQ 0,00 
PIP3-36:1  0,00 NQ 0,00 

 

  



Supplementary Table S2. Antibodies used for immunofluorescence (IMF), 
Immunohistochemistry (IHC) or Western immunoblotting (WB) 

Antibody Catalog number Company Dilution 

PtdIns(3,4,5)P3 Z-P345b Echelon IMF: 1:400 

Nucleolin 12247 Cell signaling Technology IMF: 1:100 

Nucleophosmin 32-5200 Zymed/Life Tech IMF: 1:1000 

PI3K p85 05-212 Millipore WB: 1:2000 

PI3K p85 S3089 Epitomics  WB: 1:5000 

PI3K p110 1683-1 
4249 

Epitomics  
Cell signaling Technology  WB: 1:5000 

PI3K p110 ab151549 
3011 

Abcam  
Cell signaling Technology  

IHC/IMF: 1:50 
WB:1:1000 

-Tubulin T5168 Sigma  WB: 1:20000 

p-S473-AKT 9271 Cell signaling Technology  WB: 1:1000 

Total AKT 2920 Cell signaling Technology  WB: 1:2000 

Lamin A/C sc-376248 Santa Cruz Biotechnology  WB: 1:10000 

GST-HRP ab3416 Abcam WB: 1:30000 

Goat anti-Mouse 
IgG Alexa Fluor 
594 

A-11005 Thermo Fisher Scientific         
 IMF: 1:200 

Goat anti-Rabbit 
Alexa Fluor 488 A-11008 Thermo Fisher Scientific         

 IMF: 1:200 

Calnexin ab22595 Abcam WB: 1:2000 
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Supplementary Figure S1

Supplementary Figure S1: Purity of fractionation
Actively growing cells were fractionated into cytoplasmic and nuclear fractions. 
Equal protein concentrations were resolved by SDS-PAGE and analysed by 
Western immunoblotting using the antibodies as indicated.
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3

Supplementary Figure S2: p110β and PtdIns(3,4,5)P3  are nucleolar in MFE-319 cells
Actively growing MFE-319 cells were immunostained using the antibodies as indicated 
and imaged using epifluorescent microscopy. Scale bars are of 5 µM.



p110b AKT Merge 

Supplementary Figure S3 

NPM Merge pS473-AKT 

Supplementary Figure S3. AKT and its active form pS473-AKT are nucleolar. 
Actively growing RL95-2 cells were co-stained with the indicated antibodies and imaged by 
epifluorescence microscopy. NPM indicates nucleophosmin. 
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Abstract 
Phosphoinositides (PIs) play essential functions as signalling molecules, either directly 

or by acting as precursors to other signalling molecules. Although their functions have been 

mostly elucidated in the cytoplasm, PIs are also intranuclear where they contribute to 

chromatin remodelling, transcription and mRNA processing. In particular, the PPIn 

phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3) and its producing kinase, class I 

phosphoinositide -3 kinase p110 have been previously mapped to the nucleus and nucleoli. 

To gain further insights into the nuclear functions of this PPIn, we applied a previously 

developed quantitative mass spectrometry-based approach to identify the nuclear targets of 

PtdIns(3,4,5)P3. We found 219 potential PtdIns(3,4,5)P3 interacting proteins that were 

enriched in RNA processing, cytokinesis and DNA repair functions. Interestingly, many of 

these interactors were identified as nucleolar proteins, some of which had dual functions in 

both rRNA transcription and DNA repair. Poly(ADP-Ribose) Polymerase 1 was one of the 

identified proteins which was then found to interact directly with PtdIns(3,4,5)P3 and its 

localization together with this lipid in nucleoli was dependent on active polymerase I 

transcription. In conclusion, we report a potential role for p110 and its lipid product 

PtdIns(3,4,5)P3 in regulating nucleolar function.  

 

 

Introduction 
Polyphosphoinositides (PPIn) are low abundant glycerophospholipids consisting of 

phosphorylated derivatives of phosphatidylinositol (PtdIns) (PPIn nomenclature from (1)). 

PtdIns consists of two fatty acyl chains coupled to a glycerol backbone, which is itself bound 

to a myo-inositol group via a phosphodiester linkage (2). The inositol ring can be reversely 

phosphorylated at the 3’, 4’ and 5’ hydroxyl groups, producing seven different PPIn, i.e. the 

monophosphorylated PtdIns3P, PtdIns4P and PtdIns5P, the diphosphorylated PtdIns(3,4)P2, 

PtdIns(3,5)P2 and PtdIns(4,5)P2, and finally the triphosphorylated PtdIns(3,4,5)P3 (2). These 

lipids are precursors of second messengers or can act directly as signalling molecules. They 

are synthesised in different subcellular compartments due to the presence of specific PPIn 

metabolizing kinases and phosphatases (3, 4). Their presence in the nucleus was discovered 

over three decades ago (5) and the notion of PPIn metabolism and signalling occurring in the 

nucleus independently of the cytoplasm became evident shortly after in several studies (6-9). 

With the exception of PtdIns(3,4)P2 and PtdIns(3,5)P2, the remaining five PPIn have been 
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detected or quantified in the nucleus (6, 8, 10-20). Since then, several studies have identified 

multiple nuclear processes attributed to nuclear PPIn including mRNA processing, splicing 

and export, chromatin remodelling transcription as well as cell cycle progression (21-27). 

Nuclear PPIn regulate these processes mostly by interacting with proteins containing 

polybasic regions (PBR)/K/R motifs (20, 28, 29) rather than structured PPIn-binding domains 

harboured by cytoplasmic proteins (30).  

So far several nuclear PPIn-interacting proteins have been individually identified and 

characterized (27, 31, 32). In addition, global PPIn interactomics studies have been performed 

mostly from whole cell extracts to gain further insight into PPIn nuclear roles (33-40). To 

focus on nuclear PPIn-interacting proteins, nuclear fractionation was then combined to PPIn 

interactomics (41). Using this approach led to the identification of PtdIns(4,5)P2 nuclear 

interacting partners involved in mRNA transcription regulation, mRNA splicing and protein 

folding (41). Two of these nuclear proteins were further validated to interact directly with 

PPIn (20, 41). Considering that PtdIns(3,4,5)P3, a key signalling PPIn, is also present in the 

nucleus (15, 19) and in particular in the nucleolus together with the class I phosphoinositide -

3 kinase (PI3K) p110 (20), we performed quantitative mass spectrometry-based 

PtdIns(3,4,5)P3 interactomics from isolated HeLa nuclei according to the method that we have 

previously developed (41). We identified 219 potential PtdIns(3,4,5)P3 interactors with 

functions highly enriched in RNA processing, mRNA splicing, cytokinesis and DNA repair. 

Interestingly, 29% of these proteins belonged to the nucleolar database (42), many of which 

were annotated to the DNA repair category, including the Poly(ADP-Ribose) Polymerase 1 

(PARP1) protein. 

 
Results 
 

Both p110β and PtdIns(3,4,5)P3 localize to the nucleoli in HeLa cells  

To extend our previous findings on the nucleolar localisation of p110β and 

PtdIns(3,4,5)P3 in the breast cancer cell line AU565 (20), we first determined their exact 

subcellular localization in HeLa cells by immunofluorescence staining and confocal 

microscopy using specific antibodies for p110β and PtdIns(3,4,5)P3 (Figure 1). We found that 

p110β localized to the cytoplasm and nucleoplasm with strong staining in the nucleoli where 

it co-localized with the RNA polymerase I subunit RPA194 (Figure 1A). The presence of 

p110β in these compartments was further validated by Western immunoblotting following the 
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nucleolar fractionation of HeLa cells. Equal amounts of protein from each cytoplasmic, 

nucleoplasmic and nucleolar fractions were analysed by western blotting and p110β was 

detected in all three fractions (Figure 1B). PtdIns(3,4,5)P3 was also detected in all three 

cellular compartments by immunofluorescence staining (Figure 1C). The nucleolar staining of 

PtdIns(3,4,5)P3 showed intense foci that colocalised with the key nucleolar proteins nucleolin 

and the transcription factor upstream binding factor (UBF) (Figure 1C). In addition, 

PtdIns(3,4,5)P3 and p110β were found to colocalise in the nucleolus in some cells, as 

indicated with an asterisk, but not in others (Figure 1D). This may suggest that the activation 

of p110β and the synthesis of PtdIns(3,4,5)P3 may be cell cycle dependent. 

 

p110β produces the nucleolar pool of PtdIns(3,4,5)P3 and colocalizes with RNA 

polymerase I as the cells exit mitosis 

p110β is activated during G1 in the nucleus and contributes to G1 to S phase transition 

(43, 44). In parallel, rRNA transcription oscillates during the cell cycle, as it is lowest during 

mitosis and is re-activated in G1 phase with highest activity thereafter in S and G2 phases 

(45). We therefore next examined the appearance of p110β and PtdIns(3,4,5)P3 during the 

reformation of nucleoli after mitosis (Figure 2). We performed a combination of nocodazol 

treatment and mitotic shake-off to synchronize and enrich for mitotic HeLa cells. After re-

plating the collected mitotic cells on coverslips, the cells were fixed at different time points 

and immunostained. After 1 h, the cells were still in mitosis and both p110β and 

PtdIns(3,4,5)P3 were present mostly in non-DNA regions. We found that p110β colocalises 

with RPA194 3 h after replating, as the cells exit mitosis and the nucleoli start to reform. With 

a lag of up to 2 to 5 h, PtdIns(3,4,5) P3 started to reappear in the nucleoli. To determine if the 

pool of PtdIns(3,4,5)P3 present in the nucleoli is produced due to the kinase activity of p110β, 

we compared the nucleolar appearance of PtdIns(3,4,5)P3 in p110β kinase inactive and WT 

mouse embryonic fibroblast (MEF) cells using the same synchronisation method. Four hours 

post-replating, cells were labelled with a GFP-GRP1-PH probe and an anti-nucleophosmin 

antibody as a nucleolar marker (Supplementary Figure S1). In line with our results in HeLa 

cells, PtdIns(3,4,5)P3 was detected together with nucleophosmin in the p110β WT MEFs. In 

contrast, the p110β kinase inactive MEF demonstrated a substantial decrease in 

PtdIns(3,4,5)P3 nucleolar staining .  
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Nuclear PtdIns(3,4,5)P3-binding proteins are enriched in RNA processing and splicing 

factors 

 In order to identify the interacting partners of PtdIns(3,4,5)P3 in the nucleus we 

employed a quantitative proteomics method that we have previously developed for the 

identification of nuclear PtdIns(4,5)P2 effector proteins (41). Following SILAC labelling of 

HeLa S3 cells, nuclei were isolated and incubated with neomycin to enrich for and displace 

potential PPIn-binding proteins from nuclei (Figure 3A). Equal protein amounts obtained 

from heavy labelled and light labelled cell populations were incubated with PtdIns(3,4,5)P3-

conjugated beads or control beads respectively. The specificity of the PtdIns(3,4,5)P3 affinity 

beads was validated by incubating them with GST-tagged PH domain of the GRP1 protein 

(well known for its affinity to PtdIns(3,4,5)P3) (46) (Figure 3B). The control beads showed no 

affinity whereas the PtdIns(3,4,5)P3 beads were able to pull down the GST-GRP1-PH domain. 

Importantly, this interaction was competed out by the pre-incubation of free PtdIns(3,4,5)P3 

with the probe. The pull down eluates were combined and separated by polyacrylamide gel 

electrophoresis (PAGE). Following trypsin digestion, the peptides were analysed by LC-

MS/MS and identified and quantified using Proteome explorer. Statistical analyses 

demonstrated 219 proteins to be specifically pulled down by PtdIns(3,4,5)P3 including 

proteins with previous history as PtdIns(3,4,5)P3 interacting proteins, i.e. nucleophosmin (47) 

and ALY (48) (Supplementary Table S1). We further examined the presence lysine/arginine 

rich motif (K/R-(Xn=3–7)-K-X-K/R-K/R), which has previously been reported to be a motif 

enriched in PtdIns(4,5)P2-binding proteins (41) and found that 38% of these proteins harbour 

at least one of them (Supplementary Table S2 and Figure 3C). For a better understanding of 

the biological processes of these proteins, they were annotated to the Gene Ontology (GO) 

database for biological processes and enrichment was performed using the PANTHER web 

tool (49).The biological functions that were over represented by 2 fold are shown in Figure 

3D. In particular, RNA splicing, cytokinesis, mRNA processing, induction of apoptosis and 

DNA repair were functions particularly enriched in the PtdIns(3,4,5)P3 pull down protein list 

by over 5 fold. Furthermore, 29% of all potential PtdIns(3,4,5)P3 interactors are annotated to 

the nucleolar database and 47% to the T cell nucleome (50) including 28 common to both 

nucleome lists (Supplementary Table S1). 

 

PtdIns(3,4,5)P3 co-localizes with PARP1 in the nucleoli 

 Considering the presence of PtdIns(3,4,5)P3 in nucleoli, a large number of potential 

PtdIns(3,4,5)P3 interacting proteins were also linked or annotated to the nucleolus. Searching 
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through the literature for clear evidence of nucleolar localization of the PtdIns(3,4,5)P3-

binding protein list, we focused on PARP1, a chromatin-associated protein that is highly 

abundant in nucleoli (51, 52). PARP1 is one of the thirteen protein annotated to the DNA 

repair enriched biological process and has a PtdIns(3,4,5)P3 /control ratio of 1.5 and harbours 

one K/R motif (Table 1). We first validated the direct interaction of PARP1 with PPIn by lipid 

overlay assay using phospholipid-immobilized strips and the GST-PARP1 protein (Figure 

4A-B). PARP1 was found to interact with all PPIns except PtdIns(3,4)P2 as well as 

phosphatidic acid and phosphatidylserine. Furthermore, immunofluorescent staining showed 

that PtdIns(3,4,5)P3 co-localizes with PARP1 in the nucleolus of HeLa cells (Figure 4C). 

 

The nucleolar localisation pattern of PtdIns(3,4,5)P3 is affected by RNA Polymerase I 

inhibition 

 To understand the conditions that determine PtdIns(3,4,5) P3  and PARP1 association 

in the nucleolus, we inhibited RNA polymerase I transcription by treating HeLa cells with 

actinomycin D. Three hours of treatment led to the loss of co-localization between 

PtdIns(3,4,5)P3 and PARP1. Indeed, PtdIns(3,4,5)P3 formed a compact structure towards the 

interior of the nucleoli whereas PARP1 translocated to the periphery of the nucleolus (Figure 

5A). It is already known that nucleolar proteins from the fibrillar center and the dense fibrillar 

component translocate to the perinucleolar caps (clusters found around the nucleolus), or the 

nucleoplasm upon inhibition of rRNA transcription (52, 53). We also examined the 

localisation of p110β upon actinomycin D treatment and found that this kinase changed its 

pattern as well from a relatively homogenous staining within nucleoli (Figure 1A) to a more 

focused pattern (Figure 5B). Since the nucleolar presence of PARP1 is dependent on active 

polymerase I transcription (52), these results would suggest that p110β as well as the 

PtdIns(3,4,5)P3-PARP1 association in nucleoli rely on active rRNA transcription. To assess 

that PtdIns(3,4,5)P3 is indeed involved in rRNA transcription we used a specific p110β 

inhibitor  to reduce the pool of nucleolar PtdIns(3,4,5)P3. Preliminary results showed a 

gradual decrease in rRNA transcription level from 18 to 42 hours of treatment 

(Supplementary Figure S2). These results indicate therefore a potential role for p110β and/or 

PtdIns(3,4,5) P3 in ribosomal RNA transcription.  
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Discussion 
Evidence of the presence of PPIn in the nucleus together with their producing kinases 

is now well established (23, 27, 32, 54, 55). Interestingly, they are found in RNA rich 

compartments, such as the nuclear speckles and nucleolus in particular for PtdIns(4,5)P2 (16-

18, 56) and PtdIns(3,4,5)P3 (20). In this study, we have extended our previous findings (20) 

by showing a common localization of p110 as well as its product PtdIns(3,4,5)P3 in the 

nucleolus in an additional cell line, namely HeLa cells. Importantly, we showed that the 

presence of PtdIns(3,4,5)P3 in the nucleolus was dependent upon the activity of p110. To 

support these findings, a minor pool of PtdIns(4,5)P2 has been reported in the nucleolus and 

could hence substantiate the nucleolar synthesis of PtdIns(3,4,5)P3 (17, 57). In addition, both 

the PPIn kinase isoforms, PI4K II and PIP5K I, which synthesise PtdIns 4P and 

PtdIns(4,5)P2, respectively, were also reported present in the nucleolus (58, 59). Recent 

studies also identified the PtdIns(3,4,5)P3 phosphatases PTEN and SHIP1 in the nucleolus 

(60, 61). All the components allowing a PI3K metabolic cycle to be operational are therefore 

in place in the nucleolus for the regulation of PtdIns(3,4,5)P3 synthesis and a potential role in 

this sub-nuclear compartment. Indeed, a potential role for p110 regulating rRNA 

transcription is shown in this study using a selective inhibitor. The remaining question about 

the biophysical existence of PtdIns(3,4,5)P3 in a non-membranous environment such as the 

nucleolus is still unanswered. Studies pointing to the existence of different phase 

environments due to specific arrangements of RNA binding proteins such as nucleophosmin 

and RNA in the nucleolus may be worth exploring to tackle this issue. 

To further decipher the role of nuclear PtdIns(3,4,5)P3, we applied a PPIn 

interactomics method that we previously developed but to identify PtdIns(4,5)P2 effectors 

(28). To this end, we have identified 219 proteins specific for the PtdIns(3,4,5)P3 pull down 

that were highly enriched in RNA processing and splicing factors. The nucleolus, which 

contains a large amount of rRNA species, is mostly known to be a compartment where rRNA 

transcription and processing occur (62). However, it is also associated with other functions 

such as DNA repair (63). Indeed, a growing body of evidence indicates that some of the 

identified nucleolar DNA repair proteins also possess roles in ribosome biogenesis, such as 

the nucleophosmin, nucleolin, APEX1 (apurinic/apyrimidinic endodeoxyribonuclease 1), and 

PARP1 proteins (63-66). Interestingly, among the PtdIns(3,4,5)P3 interacting proteins 

identified, there was a 6 fold enrichment of DNA repair proteins listing 13 proteins, ten of 

which were found in at least one of the nucleolome datasets previously published, including 
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PARP1 and APEX1. Some of the identified PtdIns(3,4,5)P3 effector proteins may not be 

direct binders as some of them do not harbour any PPIn interaction site. They could hence be 

pulled down as multiprotein complexes. In contrast, PARP1 harbours one K/R motif, binds to 

PPIn directly and associate with PtdIns(3,4,5)P3 in the nucleolus. In this case, it may be 

possible that this PPIn regulates the complex formation of PARP1 with several of these 

factors. 

Nucleophosmin has been shown to bind the DNA binding domains of both PARP-1 

and PARP-2 (52) and it is a well-known PtdIns(3,4,5)P3 interacting protein (47). When cells 

are not under stress condition, an enrichment of both PARP1 and poly ADP-ribose can be 

observed in the nucleolus (67). The dense fibrillar component of the nucleolus is where PARP 

has been shown to localize (68) and our immunofluorescent staining indicate a co-localization 

with PtdIns(3,4,5)P3 in this area. Upon RNA polymerase I inhibition, PARP1 delocalizes 

from the nucleolus, indicating that the presence of PARP1 in the nucleolus is dynamic and 

dependent on RNA polymerase I transcriptional activity. This delocalization from the 

nucleolus is accompanied by other nucleolar proteins such as NPM and UBF (52, 69, 70). In 

this study, inhibition of RNA pol I led to the expected change of pattern for PARP1 but also 

prevented the colocalisation with PtdIns(3,4,5)P3, which relocalised to UBF-labelled 

nucleolar caps. Interestingly, the pattern of localisation of p110 changed dramatically from a 

diffuse pattern to concentrated foci. Alltogether, these studies suggest that the organisation of 

proteins and lipids within the nucleolus is affected by the active transcription of rRNAs. 

Alternatively, PtdIns(3,4,5)P3, itself may potentially regulate rRNA transcription through its 

binding to histone H1. Histone H1 is emerging to play important roles in the nucleolar 

structure and integrity (71). Both PARP1 and NPM are also histone H1 interacting proteins. 

Histone 1, as a linker histone, plays an important role in forming compact chromatin (72) and 

its PARylation by PARP1 has been shown to remove H1 from the chromatin, hence causing it 

to relax (73). NPM binds to histone H1.5 and has a silencing effect on this linker histone (74). 

At the same time histone H1 has been shown to bind to PtdIns(4,5)P2 via its C-terminal region 

can (75). Although we did not study the possible interaction of histone with PtdIns(3,4,5)P3, 

this PPIn may form a complex with PARP1, nucleophosmin and H1 to regulate the 

architecture of the nucleolus to allow transcription to occur. 
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Materials and methods 
 

Cell culture and SILAC labeling: 

HeLa cells were grown in DMEM medium containing 10% fetal bovine serum (FBS) 

in 5% CO2 at 37°C. p110βD931A/D931A kinase inactive and p110βWT/WT MEFs were from Dr 

Julie Guillermet-Guibert (Université Toulouse III-Paul Sabatier, Toulouse, France) and grown 

in the same medium as HeLa cells. For SILAC (Stable isotope labelling with amino acids in 

cell culture) labelling, HeLa S3 cells were grown in heavy (13C6,15N2-labelled lysine and 
13C6, 15N4-labelled arginine) or light (unlabelled amino acids) DMEM medium (Silantes, cat# 

280001300) supplemented with 10% dialyzed FBS (Silantes, cat# 281000900). To examine 

the efficiency of SILAC labelling the incorporation of heavy amino acids was validated by 

LC-MS by Dr Bernd Thiede (University of Oslo, Norway).  

 

Cellular fractionation 

 The nucleolar isolation was adapted from Lam et al 2006 (76). In brief, cells were 

grown in 10 x 15 cm dishes up to 70% confluency. 1 hour after adding fresh medium, the 

cells were washed, trypsinized and washed again 3 times (this time with ice cold PBS). The 

cell pellet was re-suspended in 5 ml of buffer A (10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 

mM KCl, 0,5mM DDT, 1 % Igepal and protease inhibitor cocktail) and incubated on ice for 5 

min. The cells were then passed 12 times through a 23-gauge needle to disrupt the cell 

membrane. The lysates were then centrifuged at 218x g for 5 min at 4 °C. The supernatant 

was collected as the cytosolic fraction and the pellet containing the nuclei was re-suspended 

in 3 ml of buffer S1 (0.25 M sucrose, 10 mM MgCl2 and protease inhibitor cocktail) and 

layered over 3ml of buffer S2 (0.35 M sucrose, 0.5 mM MgCl2 and protease inhibitor 

cocktail) and centrifuged at 1430xg for 5 min (4 °C). The supernatant was removed and the 

pellet was re-suspended in 3 ml of buffer S2 and sonicated 7 times 10 sec on/10 sec off on ice. 

The nuclear lysate was layered over 3 ml of S3 (0.88 M Sucrose, 0.5 mM MgCl2 and protease 

inhibitor cocktail) and Centrifuged at 3000xg for 10 min (4°C). The nucleoplasmic fraction (3 

ml of the top layer) was collected and the nucleoli pellet was washed once with 500 µl of the 

S2 buffer. 
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Neomycin extraction and PtdIns(3,4,5)P3 pull down 

Nuclei were isolated and washed with retention buffer containing 20 mM Tris pH 7.5, 

70 mM NaCl, 20 mM KCl, 5 mM MgCl2, 3 mM CaCl2 and protease inhibitor cocktail. The 

nuclei were then incubated with freshly prepared 5 mM neomycin (Neomycin trisulfate salt, 

Sigma-Aldrich) in retention buffer, rotating for 30 min at RT. After centrifugation at 13000 

rpm for 5 min, the supernatant containing the neomycin-displaced protein extract was 

collected. Neomycin supernatants were dialysed three times in 900 ml of cold lipid pulldown 

buffer containing 20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.1 % Igepal using 

Slide-A-Lyser Mini dialysis units (Thermo Fisher) for 1 h at 4°C each time. The protein 

concentration was measured using BCA (bicinchoninic acid) protein assay (ThermoFisher 

Scientific) and equal amount of extracts were used for each lipid pulldown. The GST-GRP1-

PH protein was expressed as previously described (28). The heavy extracts were incubated 

with PtdIns(3,4,5)P3 beads (Echelon Biosciences p-B345a) and the light extracts were 

incubated with control beads (Echelon Biosciences P-B000) for 1 hour rotating at 4°C. The 

beads were then washed 3x with the lipid pulldown buffer containing phosphatase (5mM β-

glycerophosphate, 5 mM NaF and 2 mM Na3VO4) and protease inhibitor cocktail. For testing 

the efficiency of the lipid pull downs GST-GRP1-PH (purified as described in (41)) was used 

combined with a competition with free 20µM PtdIns(3,4,5)P3 diC8 (Echelon p-3908).  

Proteomics 

In-gel digestion 

In-gel trypsin digestion was performed as described (77) with some modifications. 

Briefly, the Coomassie brilliant blue-stained protein bands were excised, and following 

several washes, the gel pieces were subjected to a reduction step using 10 mM DTT in 100 

mM ammonium bicarbonate (NH4HCO3) buffer for 45 min at 56°C. Alkylation was 

performed with 55 mM iodoacetamide in 100 mM NH4HCO3 for 30 min at room temperature 

in the dark. Digestion was performed with 10 μl of trypsin (10 mg/l in 50 mM NH4HCO3) 

overnight at 370C. Eluted peptides were recovered, and the gel pieces were subsequently 

washed in 2.5% formic acid/80% acetonitrile for 30 min at 370C. The acid wash was 

combined with the original peptide eluate and dried. Samples were resuspended in 0.1% 

formic acid and analysed directly by nano-LC-MS/MS. 

Nano LC-MSMS 

Digested peptide mixtures were analysed by nano-LC-MS/MS. Mass spectrometry 

(MS) was performed using a QExactive HF (Thermo Scientific) coupled to an Ultimate 
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RSLCnano-LC system (Dionex). Optimal separation conditions resulting in maximal peptide 

coverage were achieved using an Acclaim PepMap 100 column (C18, 3 μm, 100 Å) (Dionex) 

with an internal diameter of 75 μm and capillary length of 25 cm. A flow rate of 300 nl/min 

was used with a solvent gradient of 5% B to 45% B in 85 min followed by increasing the 

gradient to 95% B over 5 min. Solvent A was 0.1% (v/v) formic acid, 5%DMSO in water, 

whereas the composition of solvent B was 80% (v/v) acetonitrile, 0.1% (v/v) formic acid, 5% 

DMSO in water. 

The mass spectrometer was operated in positive ion mode using an Nth order double-

play method to automatically switch between Full scan acquisition of peptide precursor ions 

and HCD generated fragments both using the Orbitrap mass analyser. Survey full-scan MS 

spectra (from 400 to 1,600 m/z) were acquired in the Orbitrap with resolution (R) 60,000 at 

400 m/z (after accumulation to a target of 3,000,000 charges). The method used allowed 

sequential isolation of the 10 most intense ions for fragmentation, depending on signal 

intensity, using HCD at a target value of 20,000 charges and resolution of 30,000. Target ions 

already selected for MS/MS were dynamically excluded for 30 s. Unassigned and 1+ charges 

were excluded from fragmentation selection. General MS conditions were electrospray 

voltage, 2.5 kV with no sheath or auxiliary gas flow, an ion selection threshold of 2,000 

counts for MS/MS, an activation Q value of 0.25, activation time of 12 ms, capillary 

temperature of 2000C, and an S-Lens RF level of 60% were also applied. Charge state 

screening was enabled, and precursors with unknown charge state or a charge state of 1 were 

excluded. Raw MS data files were processed using Proteome Discoverer v.2.1 (Thermo 

Scientific). Processed files were searched against the SwissProt human database using the 

Mascot search engine version 2.3.0. Searches were done with tryptic specificity allowing up 

to one missed cleavage and a tolerance on mass measurement of 10 ppm in MS mode and 20 

ppm for MS/MS ions. Structure modifications allowed were oxidized methionine, and 

deamidation of asparagine and glutamine residues, which were searched as variable 

modifications. Using a reversed decoy database, false discovery rate (FDR) was less than 1%.  

 

Cell synchronization 

HeLa cells grown up to 70% confluency were treated with 50 ng/mL of nocodazole for 

16 h. After treatment most of the growth medium was removed from the cells and transferred 

to a 50 ml tube leaving only 3 ml on the dish. The mitotic cells were collected by mechanical 

shake-off and transferred to a centrifuge tube. The shake-off procedure was repeated by 

adding 10 ml PBS and was added to the same centrifugation tube. The cells were pelleted by 
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centrifugation at 70 g for 5 min. After washing the pellet twice with 10 ml of growth medium 

the cell pellet was re-suspended in growth medium again and plated on cell culture dishes 

with coverslips covered with poly-L-Lysine. The cells were collected at different time points 

after re-plating.  

 

Immunofluorescence staining 

HeLa cells grown on 12 mm coverslips were fixed with 3.7 % paraformaldehyde for 

10 min and washed twice with PBS and then permeabilised with 0.25 % Triton X-100 in PBS 

for 10 min at room temperature. Cells were blocked for 1 h with 5% goat serum in PBS- 0.1% 

Triton. Primary antibody (diluted in blocking buffer) incubation was performed overnight at 

4°C followed by secondary antibody conjugated to Alexa-488 or Alexa-594 incubation for 1 h 

at room temperature. Washes were performed with PBS-T (0.05% Tween20), between each 

antibody incubation. Nucleic acid staining was performed by 15 min incubation with Hoechst 

33342 diluted in PBS. For antibody dilutions, see the supplementary Table S3. 

 

SDS-PAGE and Western Immunoblotting 

Proteins were resolved by SDS-PAGE and then transferred to nitrocellulose 

membranes. The membrane was then blocked with 7% milk in PBS-T (PBS pH 7.4, 0.05 % 

Tween-20) for 1 hour at room temperature before incubation with primary antibodies 

overnight at 4°C (for antibody dilutions see the supplementary Table S3). After washing with 

PBS-T, the membrane was incubated with HRP conjugated secondary antibodies for 1 hour at 

room temperature. The enhanced chemiluminescence (ThermoFisher Scientific) was added 

and the Chemidoc XRS+ imaging system from Bio-Rad was used for visualization. 

 

Lipid overlay assay 

Lipid overlay assay were performed according to Karlson et al (20) using 0.5 µg/mL 

of recombinant GST (purified as described in (20))  or GST-PARP1 obtained from BPS 

Bioscience. 
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Table 1. List of potential PtdIns(3,4,5)P3 binding protein annotated to DNA repair. 

Proteins pulled down by PtdIns(3,4,5)P3 and annotated to the DNA repair enriched process, 

identified with at least 2 peptides, with heavy/light log2 ratios >0.5, are indicated in this table. 

Their presence (+) or absence (-) in the nucleolar database (NoDB) (42), the T cell nucleome 

(50) and/or the HeLa nucleome (78) is indicated. 

 
Uniprot 

ID 
Name description 

Gene 

symbol 
Ratio K/R motif 

No 

DB 
T cell HeLa 

P46063 ATP-dependent DNA helicase 

Q1 

RECQL 2.271 KNTGAKKRK 
- + - 

Q09028 Histone-binding protein RBBP4 RBBP4 2.3 - - + - 

Q16531 DNA damage-binding protein 1 DDB1 2.101 - - + - 

P29372 DNA-3-methyladenine 

glycosylase 

MPG 18.81 - 
+ - - 

P78527 DNA-dependent protein kinase 

catalytic subunit 

PRKDC 2.112 
KHVSLNKAKKRR - + - 

P49916 DNA ligase 3 LIG3 2.119 KRHWLKVKK - + - 

O60934 Nibrin NBN 1.575 KNFKKFKK 

RYNPYLKRRR 

KEEEEEEKPKR 

KKEEIKDEKIKK 

- - - 

P09874 Poly [ADP-ribose] polymerase 

1 

PARP1 1.5 RWDDQQKVKK 
+ + - 

Q9BQ67 Glutamate-rich WD repeat-

containing protein 1 

GRWD1 3.158 
- - - + 

Q14683 Structural maintenance of 

chromosomes protein 1A 

SMC1A 1.772 

KVEDELKEKK 

KHYKKRK 

KAVDKLKEKK 

RNIREFEEEKVKR 

KKDENEIEKLKK 

- + - 

Q92466 DNA damage-binding protein 2 DDB2 2.474 - - - - 

P27695 DNA-(apurinic or apyrimidinic 

site) lyase 

APEX1 3.9 
- + - - 

Q16576 Histone-binding protein RBBP7 RBBP7 2.003 - - - - 
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Figure legends 

 
Figure 1. p110β and PtdIns(3,4,5)P3 are nucleolar.  

(A, C, D) Co-immunostaining of HeLa cells was performed with the indicated antibodies and 

imaged by confocal microscopy. RPA194 indicates RNA polymerase I subunit, PIP3; 

PtdIns(3,4,5)P3; UBF, upstream binding factor. Scale bar represents 5µm. (B) HeLa cells 

were fractionated into cytosolic, nucleoplasmic and nucleolar fractions. Equal amounts of 

proteins (60 g) were separated by SDS-PAGE and western immunoblotting was performed 

using antibodies for the specified proteins. 

 

Figure 2. Co-localization of p110β with RNA polymerase I at the exit of mitosis.  

HeLa cells were treated with nocodazole (50 ng/ mL) for 16 hours before mitotic cells were 

collected by shake-off. The collected mitotic cells were re-plated on cover slips covered with 

poly-L-Lysine and fixed at the different time points as indicated. Immunofluorescent staining 

was then performed with the indicated antibodies and imaged by confocal microscopy. Scale 

bar represents 10µm. 

 

Figure 3.  Nuclear PtdIns(3,4,5)P3 interactome.  

(A) The experimental setup is shown where the SILAC labelled and unlabelled HeLa S3 

nuclei are incubated with 5 mM neomycin and the displaced proteins are pull down using 

control beads or PtdIns(3,4,5)P3 conjugated beads and subsequently analysed by LC-MS/MS. 

(B) GST-GRP1-PH (2 µg) pull down with control or PtdIns(3,4,5)P3 conjugated beads with or 

without 20 µM free PtdIns(3,4,5)P3. Eluates were western immunoblotted using an anti-GST 

antibody conjugated to horse radish peroxidase. (C) Biological processes Gene ontology 

enrichment of the proteins pulled down specifically by the PtdIns(3,4,5)P3 conjugated beads. 
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Figure 4. PtdIns(3,4,5)P3 colocalises with PARP1 in the nucleolus.  

(A) PIP strip schematic showing the positions of the spotted lipids (www.echelon-inc.com). 

LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; PI, phosphatidylinositol; PE, 

phosphatidylethanolamine; PC, phosphatidylcholine; S1P, sphingosine-1-phosphate; PA, 

phosphatidic acid; PS, phosphatidylserine. (B) PIP strips incubated with recombinant GST or 

GST-PARP1 and detection of protein-lipid interactions using an anti-GST-HRP conjugated 

antibody. (C) HeLa cells co-stained with anti-PARP1 and PtdIns(3,4,5)P3 antibodies and 

imaged by confocal microscopy. Scale bar represents 20µm in the top image and 10µm in the 

bottom image.  

 

Figure 5. Inhibition of RNA polymerase I leads to altered nucleolar patterns of PARP1, 

PtdIns(3,4,5)P3 and p110. Co-immunostaining of HeLa cells treated with 200 ng/mL 

actinomycin D for 3 h with indicated antibodies and confocal microscopy imaging. Scale bar 

indicates 5µm. 
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Supplementary methods 

 
RNA extraction: HeLa cells were collected by centrifugation and after two washes with PBS, 

the cell pellet was suspended in 1ml TriReagent (Sigma) and incubated at room temperature 

(RT) for 5 minutes. Chloroform (200µl) was added and after vigorous shaking was incubated 

at RT for 1 minute before centrifugation (4°C at 12000 x g) for 15 minutes. To the upper 

phase 500µl of Phenol -chloroform - isoamyl alcohol mixture (Sigma) was added and after 

vigorous shaking was incubated at RT for 2 minute before centrifugation (4°C at 12000 x g) 

for 10 min. Chloroform (500µl) was added to the upper phase after mixing was incubated at 

RT for 1 min before centrifugation (4°C at 12000 x g) for 10 minutes. To the upper phase 20 

µg of RNA grade glycogen (Thermo Fisher Scientific) and 500 µl isopropanol was added 

after mixing was incubated at RT for 20 minutes before centrifugation (4°C at 13000 x g) for 

20 min.  To the pellet 1 ml of ice cold 70% ethanol was added and after mixing was 

centrifuged (4°C at 8000 x g) for 5 min. The RNA pellet was dissolved in water for RT-qPCR 

analysis. 

 

RT-qPCR: cDNA was made from total RNA extracts of HeLa cells using the High-Capacity 

cDNA Reverse Transcription Kit (Thermo Fisher scientific). PowerUp™ SYBR™ Green 

Master Mix (Thermo Fisher scientific) was used for the real-time PCRs, performed using 

Roche Light Cycler 480. To amplify the target pre-rRNA, we used the following primers for 

the 5’ external transcribed spacer region: 5’-GAACGGTGGTGTGTCGTTC-3’ and 5’-

GCGTCTCGTCTCGTCTCACT-3’ (1). As a reference gene we used RPS12: 5′-

ATTCAGCTTCACCCGTAACC-3′ and 5′-CAACCACTTTACGGGGATTC-3′ (2).  
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Supplementary figures

WT

NPMDAPI GFP-GRP1-PH Merge

KI

Supplementary figure S1- Co localization of PtdIns(3,4,5)P3 with Nucleophosmin
at the exit of mitosis. MEF p110β WT and Kinase inactive  (KI) cells were treated for 
16 hours with 50ng/ml nocodazole as described in the methods and collected after mitotic
shake-off. Cells were fixed after 4 hours of replating. Immunoflourescent staining was 
performed using GFP-GRP1-PH and the Nucleophosmin antibody.



 

 

 
 

 

 
 

 

Supplementary Figure S2.  pre-rRNA transcription levels are reduced upon p110β 
inhibition. HeLa cells were treated with the selective p110β inhibitor (10 M) for the times 
indicated and pre- rRNA qPCR was performed. Relative pre-rRNA expression to RPS12 gene 
are shown where the levels decreased in a time dependent manner. 
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Supplementary Table S3- List of antibodies used and dilution for immunofluorescence 
(IMF) staining or western immunoblotting (WB) 

 

Antibodies Reference 
Number 

Company name Dilutions  

PtdIns(3,4,5)P3 Z-P345b Echelon IMF: 1:400 

Nucleolin 12247 Cell signaling Technology IMF: 1:100 

PI3K p110 beta ab151549 

3011 

Abcam  

Cell signaling Technology  

IMF: 1:50 

WB:1:2000 

Fibrillarin 2639S 

 

Cell signaling Technology IMF: 1:100 

WB:1:5000 

RPA194 sc-48385 Santa cruz  IMF: 1:100 

UBF sc-9131 Santacruz  IMF: 1:50 

Nucleophosmin 32-5200 Zymed IMF: 1:1000 

Nucleolin 14574S Cell signaling Technology IMF: 1:100 

αTubulin T5168 Sigma  WB: 1:20000 

Hochest 33342 C10330 Thermo Fisher Scientific         IMF: 1:1000 

PARP1 9542S Cell signaling Technology IMF: 1:50 

Goat anti-Mouse IgG 

Alexa Fluor 594 

A-11005 Thermo Fisher Scientific         

 

IMF: 1:200 

Goat anti-Rabbit 

Alexa Fluor 594 

A-11012 Thermo Fisher Scientific         

 

IMF: 1:200 

Goat anti-Rabbit 

Alexa Fluor 488 

A-11008 Thermo Fisher Scientific         

 

IMF: 1:200 

Goat anti-Mouse IgG 

Alexa Fluor 488 

A-11001 Thermo Fisher Scientific         

 

IMF: 1:200 
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Abstract 

Spatial organisation is critical in signalling events. In particular, phosphoinositide 3-

kinase (PI3K) signalling events have been shown to occur in both the cytoplasm and the 

nucleus. However, little is known about the regulation of this pathway within the nucleus and 

its contribution to adipocyte differentiation. In this project, the nuclear PI3K pathway was 

studied in the context of adipogenesis using mouse 3T3-L1 pre-adipocyte cells. We have 

shown that the PI3K/Akt pathway is active upon the induction of differentiation in the 

cytoplasm as well as in the nuclear compartment but in a delayed manner. We have shown the 

presence of the class I PI3K catalytic subunits p110α and p110β and class II PI3KC2α in the 

cytoplasm. In addition, p110β was localized in nucleoli and PI3KC2α in foci in the 

nucleoplasm. The levels of the products of these enzymes, PtdIns(3,4)P2 and PtdIns(3,4,5)P3 

respectively, were shown to increase in the nucleus upon short term stimulation and up to 24h. 

The distribution differed for these 3’-phosphorylated polyphosphoinositides (3P-PPIn) in the 

nucleus and coincided with the localisation of the PI3Ks. To characterise the nuclear role of 

these PPIn, we have identified several potential nuclear PPIn-interacting proteins that are 

differently regulated during adipogenesis in 3T3-L1 cells by mass spectrometry. Altogether, 

this study demonstrates the presence of an active PI3K-Akt pathway as well as 3P-PPIn in 

distinct nuclear sub-sites in the nuclei of differentiating adipocytes. We suggest that nuclear 

p110β and PI3KC2α and their 3P-PPIn products regulate distinct nuclear processes 

contributing to adipocyte differentiation. 
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Introduction 
         The adipose tissue is a major source of metabolic fuel and contributes to whole body 

energy homeostasis by regulating fatty acid storage and mobilisation depending upon 

hormonal and energetic cues [1]. In the fed state, adipocytes are under the influence of 

insulin, which induces glucose and fatty acid uptake, esterification into triglycerides (TAGs) 

and storage into droplets (major lipogenesis pathway in adipocytes) as well as inhibition of 

TAG lipolysis [2, 3]. Insulin activates signalling cascades through the insulin receptor (IR), 

by inducing the phosphorylation of IR substrates and the activation of the class IA 

phosphatidylinositol 3 kinase (PI3K) signalling pathway [4-7] as well as class IIα PI3K [8]. 

Ultimately, the transcription of specific insulin responsive gene products is activated enabling 

glucose and lipid homeostasis [2, 3, 7]. Activation of class I PI3K generates the 

polyphosphoinositide (PPIn) lipid product phosphatidylinositol(3,4,5) triphosphate 

(PtdIns(3,4,5)P3) which can be dephosphorylated to PtdIns(3,4)P2 by SHIP2 (Src-homology-2 

(SH2) domain-containing inositol 5-phosphatase) [9, 10]. These PPIns bind to and recruit the 

protein kinases Akt and 3-phosphoinositide-dependent protein kinase-1 (PDK1) to the plasma 

membrane via their PPIn-binding module plecktrin homology (PH) domains and Akt becomes 

activated by sequential phosphorylation on Thr308 and Ser473 by PDK1 and mammalian 

target of rapamycin complex 2 (mTORC2) respectively [11, 12]. Activated Akt can 

translocate to different intracellular sites where it phosphorylates a myriad of substrates. 

When in the nucleus, Akt phosphorylates and inactivates the transcription factor FoxO1 by 

nuclear exclusion, thus permitting adipogenic gene transcription [13]. Although a central role 

for Akt downstream of PI3K activation has clearly been demonstrated genetically and 

biochemically in insulin actions in glucose uptake and lipid metabolism [14], other effectors 

such as atypical PKCs have been implicated [15]. Additional effector proteins of 

PtdIns(3,4,)P2 and PtdIns(3,4,5)P3  have also been identified in interactomics studies in 

different cell types [16-18] but the functional significance of these interactions is largely 

unknown. Furthermore, Akt-independent responses to insulin signalling have also emerged in 

recent years both in hepatocytes and adipocytes [19-22]. For example, insulin stimulates the 

stepwise translocation of vesicles containing the GLUT4 glucose transporter to the plasma 

membrane in both Akt-dependent and independent processes, but still in a PI3K-dependent 

manner in adipocytes [20]. Consistently, decrease in class I PI3K activity in insulin resistance 

did not always correlate with a decrease in Akt activity, despite the observed lower glucose 

uptake [23, 24] and elevated free fatty acids due to inappropriate lipolysis [25]. These studies 
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suggest therefore the existence of Akt-independent events and the potential contribution of 

other PPIn effector proteins in insulin actions but downstream from PI3K activity.  

         Class I PI3Ks are heterodimeric proteins of a catalytic subunit and a regulatory subunit 

and organised in 2 sub-classes. Class IA consists of p110α, β or δ and a regulatory protein 

(p85α, p85β, p50α, p55α or p55γ) and class 1B consists of p110γ which interacts with 

p87/p101. p110α and β are ubiquitously expressed whereas p110δ and γ are expressed in 

hematopoietic cells [10]. Adipocytes express both p110α and p110β and low levels of p110δ 

[4, 26-28]. Both p110α and β are activated by insulin and generate PtdIns(3,4,5)P3, but 

pharmacological studies using isoform specific inhibitors have shown that p110α, is the 

dominant isoform necessary for acute Akt activation as well as their adipocyte differentiation, 

as shown in 3T3-L1 cells [6, 26, 28, 29] or p110α knockout MEFs [30]. Contrasting results 

have been shown for p110β where, on one hand its activity was stimulated by insulin and its 

expression increased upon differentiation of 3T3-L1 cells [4], and on the other hand its 

selective inhibition had little impact on adipocyte differentiation [28, 29]. p110β may 

however contribute to sustained and long-term insulin signalling as mice expressing a kinase 

dead Pik3cb develop mild insulin resistance with age [5]. Class II PI3KC2α can be activated 

by insulin [8] in adipocytes and generate PtdIns3P and/or PtdIns(3,4)P2 depending on the cell 

type [31-33], the latter activating AKT [32, 34]. PI3KC2α kinase dead mice show increased 

adipogenesis [35]. The contribution of this enzyme in adipocyte function is however not clear 

at the molecular level [35, 36]. Most research on PI3K-mediated signal transduction has 

focused on events taking place at the plasma membrane. However, an elegant study using 

molecular tools to investigate the subcellular actions of Akt showed that Akt signalling, not 

only contributed to 3T3-L1 adipocyte differentiation at the plasma membrane, but also in the 

nucleus at different stages of the process [37]. In addition, previous studies have implied that 

PI3K translocates to the nucleus upon extracellular stimulation, which was accompanied by 

an increase of nuclear PtdIns(3,4,5)P3 [38, 39]. In more recent studies, PI3K enzymes have 

been shown to be present in the nucleus with PI3KC2 in nuclear speckles [40] and p110β in 

the nucleoplasm, chromatin-enriched fraction [41] or the nucleolus [42]. This was 

substantiated by the detection of their products PtdIns(3,4,5)P3, as well as PtdIns3P and 

PtdIns(3,4)P2 in the nucleus [43-46] and nucleoli [42] of different cell types. We therefore 

propose that the sub-cellular compartmentalisation of PI3K isoforms provides a mode of 

regulation mediating the myriad functions of the PI3K pathway downstream from insulin. 

Considering that the class I and II PI3K enzymes, p110β and PI3KC2α, can be activated by 
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insulin, we assessed their presence and activation in the nucleus upon adipocyte 

differentiation in 3T3-L1 cells.  

            Here, we have shown an increase in the presence of PtdIns(3,4) P2 and PtdIns(3,4,5)P3 

as well as active Akt in the nucleus following adipocyte differentiation. This was 

complemented by the presence of both p110β and PI3KC2α in distinct nuclear sites in these 

cells in addition to their cytoplasmic localisation. These results suggest that the spatial 

organisation of these enzymes and the local synthesis of their products contribute to the 

insulin actions in adipogenesis. 

 

Results 
Temporal and sub-cellular activation of the PI3K-Akt pathway upon adipocyte 

differentiation 

Considering that both p110α and p110β contribute to insulin responses, but that p110β 

has been reported to be localized in the nucleus in some cells and both nuclear and plasma 

membrane Akt activity are required for adipocyte differentiation, we first determined if the 

PI3K-Akt pathway was active in the nucleus as well as in the cytoplasm in 3T3-L1 cells upon 

stimulation of differentiation (Figure 1). α-Tubulin and lamin A/C were used as markers for 

the cytoplasmic and nuclear fractions respectively, calnexin was used as a marker for the 

endoplasmic reticulum. Both acute (Figure 1A) and long term stimulation (Figure 1B) were 

examined to assess the subcellular localization of active phosphorylated Akt on S473 (p-

S473-Akt) in cytoplasmic and nuclear fractions. We showed that the PI3K pathway was 

activated both in the cytoplasm and the nucleus in acute stimulation of up to 2 h. The 

appearance of active Akt was detected within 5 min in the cytoplasmic fraction but was 

delayed in the nucleus and appeared within 30 min. In the nucleus, p-S743-Akt was detected 

as a double band but only the upper band was sensitive to PI3K inhibition with LY294002 

(Figure 1C). In long-term stimulation (Figure 1B), the levels of pS473-Akt tended however to 

increase in D1, to be lower at D2 but to increase again slightly at D3 and D5 in the 

cytoplasmic fractions. In the nucleus, Akt is found in its active form at D1, D2 and D3 

compared to D0 and the levels decrease again at D5. Differentiation was monitored by 

demonstrating an increase in PPARγ1/2 levels in the nucleus overtime (Figure 1D) and oil red 

staining (not shown). Taken together, these results suggest that the PI3K-Akt pathway is 

found in its active form in the nucleus but at different time points compared to cytoplasmic 

events. 
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PtdIns(3,4)P2 and PtdIns(3,4,5)P3 levels increase in nuclear compartments 

Contrasting reports (reviewed in [47]) have shown that the occurrence of active Akt in 

the nucleus may be due to prior activation in the cytoplasm followed by its translocation [48] 

or by its activation directly within the nucleus [49]. Detection of p-S473-Akt may not be a 

direct indicator of active PI3K and of the local production of PtdIns(3,4,5)P3 in the nucleus. 

We have therefore adapted a method from Guillou et al. [50] to detect specifically the nuclear 

levels of both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 following nuclear isolation, lipid extraction 

and lipid overlay assays. To this end, we have used the specific PtdIns(3,4)P2 and 

PtdIns(3,4,5)P3 probes, an anti-PtdIns(3,4)P2 antibody and GST-GRP1-PH respectively [50, 

51], as demonstrated in Figure S1A-C. Acidic lipids were extracted from cell fractions 

obtained at different time points of stimulation and analysed by lipid overlay assay to detect 

PtdIns(3,4)P2 and PtdIns(3,4,5)P3 (Figure 2A-B). The levels of both PPIns were increased in 

the nuclear fractions within 60-120 min of stimulation and this was maintained at D1 (Figure 

2A-B). Consistently, an overall increase in PtdIns(3,4)P2 nuclear intensity was apparent by 

immunofluorescence staining within 30 min (Supplementary Figure S2) and at D1 (Figure 

2C). PtdIns(3,4)P2 staining was particularly pronounced in numerous foci within nuclei, 

reminiscent of nuclear speckles (Supplementary Figure S2 and Figure 4D). Using a specific 

anti- PtdIns(3,4,5)P3 antibody (Supplementary Figure S1D), PtdIns(3,4,5)P3 could be detected 

in the nucleoplasm at all time points. Overall, changes in the nuclear intensity of 

PtdIns(3,4,5)P3 were less apparent following stimulation (Supplementary Figure S3 and 

Figure 2D) but strong signals could be detected in nucleoli in some cells (Supplementary 

Figure S3 and Figure 4E-F), consistent with our previous study in the breast cancer cells 

AU565 [42]. In sum, we show an increase in the levels of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 

in distinct sub-nuclear sites upon adipocyte differentiation. 

 

Class I p110β and class II PI3KC2α are localized in different sub-nuclear sites of 3T3-L1 

Cells 

We have recently showed that 3T3-L1 cells express class IA p110α, β and δ 

throughout their differentiation program [28]. In addition, using selective pharmacological 

inhibition of each enzyme, we showed that p110α plays a dominant role in adipogenesis 

compared to the two other isoforms. Both p110β and δ had a small contribution but it was not 

clear at which stage of the differentiation program [28]. Considering that p110β is known to 

reside not only in the cytoplasm but also in the nucleus [41] and in particular in the nucleolus 

[42], this isoform could be hence responsible, in part, for the production of nuclear 
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PtdIns(3,4,5)P3. PtdIns(3,4)P2 can be produced by the class II PI3Ks [32, 33] and PI3KC2α 

has been reported to localise to nuclear speckles [40]. We hence determined the sub-cellular 

localisation of these two enzymes in 3T3-L1 cells by Western immunoblotting following 

nuclear fractionation and immunofluorescence staining (Figure 3). As shown in Figure 3A, 

p110α was detected in the cytoplasm but not in the nuclear fractions at all time-points. In 

addition, p110β was mainly distributed in the cytoplasmic fractions throughout adipogenesis 

and was hardly detectable in the nuclear fraction using two different anti-p110β antibodies 

(Figure 3B and Supplementary Figure S4). In contrast, PI3KC2α was found in both 

compartments at D0 but with two different migrating bands (Figure 3A), as shown in HeLa 

cells [40]. The levels of the top band decreased thereafter in the cytoplasm and could not be 

detected from D3, while both bands were present in nuclear fractions at variable levels 

throughout the time course. Using immunofluorescence staining, we were able to strongly 

detect p110β in the cytoplasm but weakly in the nucleoplasm. However, discrete p110β foci 

were apparent in the nucleoli together with the RNA polymerase I subunit RPA 194 (Figure 

3B). PI3KC2α was weakly detected in the cytoplasm but strongly in the nucleoplasm (Figure 

3C). Taken together, these results show the presence of PI3K enzymes in the same sub-

nuclear sites as their products. 

 

Identification of Topo IIα and nucleolin as potential PPIn-binding proteins 

Considering that we were able to map PtdIns(3,4)P2 and PtdIns(3,4,5)P3 as well as 

their metabolising enzymes to the nucleus, we attempted to identify binding proteins at time 

points when these PPIns are elevated. To this end, we applied a method we have previously 

developed to identify potential nuclear PPIn-binding protein in any cellular status [52]. We 

exploited the ability of PPIns to bind to the polybasic aminoglycoside neomycin [53] and 

predicted that neomycin would compete for binding to PPIns, therefore displacing PPIn-

interacting proteins. Incubation of intact nuclei with neomycin resulted in the displacement of 

many proteins from nuclei to supernatants. By combining quantitative mass spectrometry 

using SILAC (stable isotope labelling with amino acids in cell culture) and nuclear 

fractionation, we identified 168 nuclear proteins displaced specifically by neomycin [52]. 

Importantly, a subset of these proteins were shown to interact with PtdIns(4,5)P2. Similarly, 

by incubating 3T3-L1 nuclei with neomycin, we have identified several nuclear proteins 

displaced by neomycin only when nuclei were isolated from cells induced to differentiate for 

24 h (Fig 4A – Day 1). These proteins include Topo IIα, DNMT1 (DNA methyltransferase 1), 

HSP90α (Heat shock protein 90α) and nucleolin (Supplementary table S2), which were also 



 

8 
 

displaced by neomycin in another cell line in our previous study [52]. These results were 

validated by Western immunoblotting for Topo IIα and nucleolin (Figure 4B). While Topo IIα 

was displaced specifically by neomycin and not by retention buffer alone, less clear 

differences were observed for nucleolin (Figure 4C). This may indicate that PPIn may 

contribute differently in the nuclear retention of these two proteins. Considering that Topo IIα 

can bind to both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vitro (data not shown), we ascertained 

the localisation of Topo IIα at day 1 in relation to both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 by 

immunofluorescence staining. Topo IIα localised in the nucleoplasm and strongly in foci, 

consistently with our previous study [28], known as centric/pericentric heterochromatin 

(PCH) [54] (Figure 4D-E). Overall, partial colocalisation could be observed between Topo IIα 

and either PPIn in some of the foci highlighted by PtdIns(3,4)P2 (Figure 4D – white arrows) 

or in the nucleoplasm with PtdIns(3,4,5)P3 but not in the nucleolus where strong intensity of 

the lipid can be detected (Figure 4E). The nucleolar protein, nucleolin, was in contrast 

detected with strong overlaps with PtdIns(3,4,5)P3 (Figure 4F). We next determined the effect 

of p110β inhibition on neomycin-dependent displacement of these proteins (Figure 4G). The 

nuclear levels of these two proteins were affected differently by p110β inhibition with a 

decrease in Topo IIα but no change for nucleolin. In contrast both proteins were more 

displaced by neomycin following p110β inhibition. This may suggest that PtdIns(3,4,5)P3 

may affect the retention of nucleolin in the nucleolus and Topo IIα in the nucleoplasm. 

 

Discussion 
The PI3K pathway is essential in a myriad of cellular processes. The pathway is 

orchestrated by class I PI3K enzymes, which share the same enzymatic properties and 

generate the same lipid product, PtdIns(3,4,5)P3, which recruits effector proteins. Despite 

these common properties, different signalling inputs as well as outputs, in particular towards 

Akt, are coupled to the different PI3K isoforms, which may explain some of the pleiotropic 

roles of PI3K signalling at cellular and organismal level [10, 55, 56]. In the case of 

ubiquitously expressed p110α and p110β, different cellular functions have been attributed to 

each isoform in different cell types [6, 57-60]. However, the molecular mode of regulation 

coupled to each of the p110α and p110β isoforms remain unclear. Nevertheless, one 

distinguishing feature between p110α and p110β is that p110β is nuclear as well as 

cytoplasmic in different cells [41, 60]. This could be compatible with the idea that the PI3K 

pathway could operate also in the nucleus, from where other processes could be regulated. 
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Consistent with this notion, we have shown, in this study, the presence of an active PI3K 

pathway in the nucleus upon short and long term stimulation of differentiation of 3T3-L1 cells 

by the detection of increased levels of active AKT and of the product of PI3K enzymes, i.e. 

PtdIns(3,4)P2 and PtdIns(3,4,5)P3. The presence of active nuclear AKT is documented in 

various cell lines and upon different external cues [41, 48, 49]. However, whether this is due 

to the prior activation of Akt in the cytoplasm followed by its translocation to the nucleus or 

its local activation within the nucleus itself is controversial [47]. In this study, total AKT was 

observed in the nuclear fractions of non-stimulated cells (D0) and treatment with the pan-

PI3K inhibitor did not prevent the nuclear presence of AKT following stimulation. These 

observations may indicate the possibility of the local activation of AKT within the nuclear 

compartment upon insulin stimulation and reinforce the importance of a nuclear active pool of 

AKT in the differentiation program of 3T3-L1 cells [37]. Moreover, the increased detection of 

the AKT-binding PPIns, PtdIns(3,4)P2 and PtdIns(3,4,5)P3, in the nucleus prior to the increase 

in nuclear active AKT would support the idea that a similar mechanism to the cytoplasmic 

activation of AKT could operate in the nucleus. Interestingly, both PDK1 and mTORC2, 

which are known to be activated through interaction with PtdIns(3,4,5)P3 and lead to the 

phosphorylation of AKT on T308 and S473 respectively, have previously been detected in the 

nucleus [61-64], hence implying the same mechanism of AKT activation at the nuclear level. 

So far, the interaction of AKT with PtdIns(3,4,5)P3 in the nucleus has been implied in one 

study whereby PtdIns(3,4,5)P3 regulates the AKT/NPM/B23 association in the nucleoplasm 

[65].  

In this study, both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 were increased in the nuclear 

compartment upon stimulation. The kinases known to produce these two PPIns and that could 

act in the nucleus are the PI3Ks, PI3KC2α and p110β, respectively. These two enzymes were 

indeed found localised in the nucleus of 3T3-L1 cells at overlapping sites of their lipid 

products, i.e. in the nucleolus for p110β and in foci resembling nuclear speckles for PI3KC2α. 

The nucleolar localisation of both p110β and PtdIns(3,4,5)P3 in 3T3-L1 cells is consistent 

with our previous study in the breast cancer cell line AU565 using the same antibody [42], 

thus further indicating a general role for p110β in nucleolar processes. p110β could however 

only be detected in the nuclear fraction by immunofluorescence staining and not by Western 

immunoblotting. This may be due to low levels only found in the nucleolus and with very 

little signal in the rest of the nucleus in 3T3-L1 cells, as shown by immunostaining. In 

contrast, PtdIns(3,4,5)P3 was detected diffusely in the nucleoplasm of these cells where p110β 

was hardly detectable. This would suggest that PtdIns(3,4,5)P3 is generated by other 
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PtdIns(3,4,5)P3-generating enzyme in the nucleoplasm. We have indeed observed that the 

nuclear increase in PtdIns(3,4,5)P3 was not blocked by the PI3K inhibitor, LY294002 (data 

not shown), hence further supporting the notion that the synthesis of PtdIns(3,4,5)P3 in the 

nucleoplasm may be due to PI3K activity that is insensitive to class I PI3K inhibitors. Inositol 

polyphosphate kinase (IPMK), initially discovered as an inositol (1,4,5) triphosphate (IP3) 

kinase, acts also as a nuclear PI3K by phosphorylating PtdIns(4,5)P2 to PtdIns(3,4,5)P3 and is 

insensitive to PI3K inhibitors [66, 67]. Immunofluorescence cellular imaging of the 

endogenous kinase, shows IPMK in the nucleoplasm in a punctate pattern [66] in different 

cell types (http://www.proteinatlas.org/ENSG00000151151-IPMK/cell, [68]) and excluded 

from nucleoli. Altogether, the nuclear synthesis of PtdIns(3,4,5)P3 may arise from IPMK in 

the nucleoplasm and from p110β in nucleoli in 3T3-L1 cells. Nucleolar activity and especially 

that of ribosomal RNA transcription is decreased in cells undergoing differentiation, including 

during adipogenesis [69]. This could be consistent with the seemingly lower level of p110β in 

nucleoli of 3T3-L1 cells compared to the more active cancer cells AU565 cells. As for IPMK, 

it has recently been shown to contribute to myogenic differentiation in concert with the 

phospholipase Cβ1 [70]. A role for this kinase in the context of adipogenesis remains to be 

discovered. 

The cytoplasmic fraction of PI3KC2α diminished greatly within 24 h of insulin 

stimulation while the nuclear fraction remained unchanged. The nuclear localisation in 3T3-

L1 cells was reminiscent of that of HeLa cells as reported by Didichenko et al. in nuclear 

speckles [40]. One of the two possible PPIn product of this enzyme, PtdIns(3,4)P2, localises 

seemingly at the same foci and this could hence suggest an enzymatic link. However, the 

exact product hydrolysed in the nucleus by PI3KC2α, PtdIns(4)P and/or PtdIns(3,4)P2 

remains to be demonstrated. Another possibility is the de-phosphorylation of PtdIns(3,4,5)P3 

to PtdIns(3,4)P2 by SHIP2. Interestingly, a phosphorylated form of SHIP2 on S132 has 

previously been reported to be nuclear and in particular at nuclear speckles [71]. This nuclear 

pool of PtdIns(3,4,5)P3, particularly in the nucleoplasm, could be used as a substrate by 

SHIP2. Consistently, Resnick et al. have demonstrated that PtdIns(3,4,5)P3 synthesised by 

IPMK is indeed a substrate of SHIP2 [66]. Altogether, this would imply that the distinct 

nuclear localisation of IPMK and p110β could allow the synthesis of different pools of 

PtdIns(3,4,5)P3, which can be remodelled due to the actions of different PtdIns(3,4,5)P3 

phosphatases. Hence, further studies characterising the regulation and activity of IPMK and 

SHIP2 in the nucleus upon differentiation is warranted.  
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To understand how the production of these two different PPIns could contribute to the 

response of pre-adipocytes to the induction of differentiation, we have attempted to identify 

nuclear effector proteins for these lipids. We have found Topo IIα and nucleolin as potential 

nuclear PPIn-effector proteins in 3T3-L1 cells. These two proteins show differential overlaps 

with PtdIns(3,4,5)P3 at different sites of the nucleus in the nucleoplasm for Topo IIα and the 

nucleolus for nucleolin. Hence the production of PtdIns(3,4,5)P3 at different sites in the 

nucleus permits the potential regulation of different effector proteins. The differential 

remodelling of this lipid in a spatial manner has also the potential to add an extra layer of 

regulation. Inhibition of p110β led to an increase in the displacement of both proteins by 

neomycin. Considering that both proteins can bind to nucleic acids, it may be conceivable that 

PPIn interaction may compete electrostatically or regulate allosterically the interaction of 

these proteins with nucleic acids. Consistently, a few studies have demonstrated these 

possible modes of regulations. For example, the HIV-1 viral protein Gag interacts both with 

PtdIns(4,5)P2 and RNA via the same highly basic region, which offer distinct mode of 

regulation of the association of the protein with the plasma membrane [72]. In addition, ALY 

(alias THO complex subunit 4), a protein regulating mRNA export, binds PtdIns(3,4,5)P3 via 

basic residues [73] and this interaction contributes to ALY-mediated recognition of specific 

mRNA transcripts for their nuclear export [74]. Similarly to the PPIn-effector protein EBP1 

[42], Topo IIα and nucleolin harbour basic-rich motifs, seven and one respectively, that could 

be relevant for their interaction with PPIn and nucleic acids and the regulation of their 

functions. 

In conclusion, this study suggests that nuclear PPIn provide an additional mode of 

regulation mediating the myriad functions of the PI3K pathway downstream from insulin. We 

have indeed shown the synthesis of the PPIns, PtdIns(3,4)P2 and PtdIns(3,4,5)P3, distinct sub-

nuclear localisation, in the nucleoplasm, nuclear speckles as well as nucleoli, upon the 

induction of differentiation. This implies that these lipids contribute in different nuclear 

processes by affecting the function of distinct effector proteins at these sites. Further studies 

to clarify the nuclear roles of PPIn and their metabolising enzymes in adipogenesis are under 

way. 
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Materials and methods 

Reagents and antibodies 

Antibodies used in Western immunoblotting and immunostaining are listed in Supplementary 

Table S1.  

 

Cell Culture and differentiation of 3T3-L1 cells 

3T3-L1 fibroblasts were kindly provided by Ass. Professor Lise Madsen (University of 

Copenhagen, Denmark). 3T3-L1 cells were grown and differentiated as previously reported 

for up to a maximum of 7 days [28]. 

 

Cell fractionation 

Cell fractionation was adapted from a method by O’Caroll et al. [75]. All steps were done on 

ice. Cells, grown in 10 cm dishes, were washed twice with PBS and quickly rinsed with a 

hypotonic buffer (10 mM Tris-HCl pH 7.8 with 1 % Igepal. Cells were scrapped into 500 µL 

of hypotonic buffer containing 1 mM DTT, 5 mM NaF, 2 mM Na3VO4 and 1x Protease 

Inhibitor Cocktail and incubated for 3 min on ice. 500 µL milliQ H2O was added and the cells 

were incubated for 3 more min before they were subjected to 8 passages through a 23-gauge 

needle. The lysates were centrifuged at 400 g for 5-10 min at 4 °C. The supernatant, 

containing the cytoplasmic fraction, was spun again at 600 g for 5-8 min to avoid nuclear 

contamination. Isolated nuclei were washed in 1 mL wash buffer (10 mM Tris-HCl pH 7.5 

and 2 mM MgCl2) and spun at 600 g for 4-8 min, this wash step was then repeated. Nuclei 

were then used for neomycin extraction, for lipid extraction. Alternatively, nuclei were lysed 

in RIPA buffer (50 mM Tris pH 8.0, 0.5 % deoxycholic acid, 150 mM NaCl, 1 % Igepal, 0.1 

% SDS) supplemented with 5 mM NaF, 2 mM Na3VO4 and 1x Protease Inhibitor Cocktail 

and sonicated in an ultrasonic bath for 1-2 min before being centrifuged at 13000 rpm. Protein 

concentration was then determined using BCA reagent (Pierce) on supernatants.  

 

Neomycin extraction 

Nuclei were isolated as described above but using an igepal-free hypotonic buffer was used. 

Nuclei were washed in retention buffer (20 mM Tris pH 7.5, 70 mM NaCl, 20 mM KCl, 5 

mM MgCl2, 3 mM CaCl2) and centrifuged at 1300 g for 5 mins. Nuclei were then incubated in 

retention buffer containing 5 mM neomycin (Neomycin trisulfate salt, Sigma-Aldrich) for 30 

min at room temperature in an eppendorf mixer at 700 rpm before being centrifuged at 13000 
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rpm for 5 mins and the supernatants collected (neomycin extracts). Neomycin extracts were 

dialysed using Slide-A-Lyser Mini dialysis units (Thermo Fisher) for 1 h at room temperature 

then overnight at 40C in 900 ml dialysis buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM 

EDTA, 0.1 % IGEPAL). Protein concentration was then determined using BCA reagent 

(Thermo Fisher).  

 

SDS-PAGE and Western Immunoblotting 

Equal amount of proteins obtained from neomycin extraction samples or cytoplasmic and 

nuclear fractions were resolved by SDS-PAGE. Proteins were then transferred to 

nitrocellulose membranes which were then blocked in 7% fat-free milk in TBS-T (50 mM 

Tris pH 7.5, 150 mM NaCl, 0.1 % Tween-20) or PBS-T (PBS pH 7.4, 0.05 % Tween-20) for 

1 h at room temperature or 40C overnight. Primary antibodies (c.f. Supplementary Table S1) 

were incubated overnight at 40C and secondary antibodies conjugated to HRP for 1 h at room 

temperature. To strip the membranes, membranes were first incubated for 20 min at RT in 

RestoreTM Western Blot Stripping Buffer (Thermo Fisher), before being blocked again and if 

required probed with the corresponding secondary antibody to detect any remaining signal 

prior to further immunoblotting. Equal protein loading and fraction purity were confirmed by 

immunodetection of α-tubulin and/or lamin A/C (incubated 1 h at room temperature). Bands 

were visualised using BioRad ChemiDocTM Xrs+ with enhanced chemiluminescence (ECL) 

with SuperSignal West Pico or Femto Chemiluminescent Substrate (Pierce). Band densities 

were assessed using ImageJ.  

 

Lipid Extraction from nuclear fractions 

Cells were seeded in 15 cm dishes and cell fractionation was performed as above (with 2.5 x 

the volume used for 10 cm dishes). The protein concentration was determined for each 

nuclear preparation and lipid extraction was performed from fractions with equal protein 

amount. Lipids were extracted from nuclear fractions using a method adapted from Gray et al. 

[76]. Nuclei were resuspended in 1 mL of MeOH/CHCl3 (2:1, v:v) to extract neutral lipids 

and incubated for 10 min at room temperature with shaking at 1200 rpm with 3-4 vortexing. 

The samples were centrifuged at 3000 g for 5 min at 4 °C, the supernatant discarded and the 

same procedure was repeated. The acidic lipids were then extracted with 0.75 mL of 

MeOH/CHCl3/concentrated HCl (80:40:1, v:v:v) and incubated for 15 min at room 

temperature with shaking at 1200 rpm and vortexed 4 times during the incubation 0.25 mL 

CHCl3 and 0.45 mL 0.1 M HCl were added and the samples were vortexed and centrifuged at 
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3000 g for 5 min at 4 °C and a phase split between the organic and aqueous phases was 

apparent. The organic phase (lower phase) was collected in conical glass tubes and dried at 

600C under N2 gas and stored at -20°C until further use. Lipids were resuspended with 3 µl of 

MeOH/CHCl3/H2O 2:1:0,8, vortexed for 30 seconds before being sonicated in an ice bath for 

5 min and vortexed again for 30 sec.  

 

Lipid Overlay Assay 

Lipids were spotted on Hybond-CExtra membranes (Amersham Biosciences), 3 µl at a time. 

The membranes were left to dry for 1 h at room temperature protected from light. The 

membranes were next blocked for 1 h at room temperature with the appropriate blocking 

buffer (1% fat-free milk in PBS for PtdIns(3,4,5)P3 and 3 % FAF BSA in PBS-T (0.1%) pH 

7.4 for PtdINs(3,4)P2) and further incubated with 0.5 µg/mL GST-GRP1-PH (for 

PtdIns(3,4,5)P3 detection) or anti-PtdIns(3,4)P2 antibody (1:2000) in the same buffer 

overnight at 4°C protected from light. GST-GRP1-PH was expressed and purified as 

described previously [52]. The membranes were washed 6 x 5 min in PBS or PBS-T and then 

incubated with anti-GST-HRP (1:80,000) or anti-mouse IgG conjugated to HRP (1:20,000) in 

blocking buffer for 1 h at room temperature. The blots were washed 6 x 5 min with PBS or 

PBS-T. Revelation was performed by ECL using the SuperSignal West Pico 

Chemiluminescent Substrate (Pierce) or with SuperSignal West Femto Maximum Sensitivity 

Substrate and detected with a BioRad ChemiDocTM Xrs+. Lipid spot densitometry was 

quantified using ImageJ. 

 

Proteomics sample preparation for MALDI-TOF analyses 

50 μg of dialysed neomycin extracts were run on long 5-15 % gradient gel and stained using 

imperial protein stain (Thermo Fisher). Gel bands were cut out and washed twice in 25 mM 

ammonium bicarbonate (Ambic) in 50% acetonitrile (ACN) and dried in a rotavapor.  

Cysteins were reduced by addition of 10 mM DTT in 100 mM Ambic for 45 mins at 56 oC 

and then alkylated using 55 mM iodoacetamide (IAA) in 100 mM Ambic incubated 30 mins 

in the dark at room temperature and then washed twice and dried. In gel protein digestion was 

done using 40 μl of 5 ng/μl porcine trypsin (Promega) in digestion buffer (50 mM Ambic) and 

rehydrated on ice for 30 mins before a further 16 h at 37 oC with additional digestion buffer. 

After cooling and spinning down supernatant was removed. Remaining gel pieces were 

incubated for 20 mins at room temperature with 50 μl 1 % trifluoroacetic acid (TFA) in an 

eppendorf mixer and supernatant pooled with the first. Gel pieces were then incubated with 50 
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μl 60 % ACN 0.1 % TFA for 20 mins room temperature in an eppendorf mixer and 

supernatant pooled with the previous two. Supernatant pool was then vacuum dried until 10-

15 μl remained and frozen -20 0C until further use. A Stage Tip (STop And Go Extraction 

Tip) column with Empore nC18 3M extraction disk (Varian) was prepared and washed 3 times 

with methanol and then wetted with 60 % ACN/0.1 % TFA and conditioned with 0.1 % TFA. 

Samples were then bound and washed in 0.1 % TFA before being dried. Peptides were eluted 

in alpha cyano-4-hydroxycinnamic acid (CHCA) matrix (6 mg/ml CHCA, 60 % ACN, 15% 

methanol, 0.1 % TFA) and analysed by MALDI-TOF/TOF (Ultraflex, Bruker Daltonics). 

Raw files were searched with MASCOT against a mus musculus database from 

Uniprot/Swissprot. The following search parameters were used; carbamidomethyl (Cys) as 

fixed modification and oxidation (Met) as a variable modification, peptide tolerance of 50 

ppm were allowed for precursors. 

 

Immunofluorescence staining 

Immunofluorescence staining was performed according to our previous study [28] and images 

were acquired by confocal microscopy with a Leica TCS SP5 confocal laser scanning 

microscope equipped with a 63x/1.4 oil immersion lens and using 488nm and 633 nm laser 

lines. Images were processed with the Leica application suite version 4.4 and Photoshop. 
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Figures legends 
Figure 1. Active Akt levels increase in both cytoplasm and the nucleus upon adipocyte 

differentiation 

Two days post-confluent (D0) 3T3-L1 preadipocytes were incubated with the differentiation 

cocktail for (A) 5 to 120 min, (C) 30 or 60 min in the absence (-) or presence (+) of 20 μM 

LY294002 or (B-D) induced to differentiate for up to 7 days (D7). Cells were fractionated 

into cytoplasmic and nuclear fractions and equal protein amounts were resolved by SDS-

PAGE and analysed by Western immunobloting with the indicated antibodies. α-tubulin, 

calnexin (ER marker) and lamin A/C were used as loading and fractionation controls. 

Densitometric analyses of three different experiments + SDs are shown as fold increase of the 

pS473-Akt/Akt ratios compared to D0.  

 

Figure 2. Increased levels of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in the nucleus  

(A-B) Acidic lipids were extracted from 3T3-L1 nuclear cell fractions, spotted on 

nitrocellulose membrane and probed with anti-PtdIns(3,4)P2 antibody (A) and GST-GRP1-PH 

(B) by lipid overlay assay. (C). Confocal images of immunostained 3T3-L1 cells fixed at day 

0 (D0) and day 1 (D1) with anti-PtdIns(3,4)P2 and PtdIns(3,4,5)P3 antibodies and 

counterstained with TO-PRO-3. Scale bar indicates 10 μm (63x). 

 

Figure 3. Sub-cellular compartmentalisation of PI3Ks 

(A) Two days post-confluent (D0) 3T3-L1 preadipocytes were incubated with the 

differentiation cocktail for 1 day (D1) and up to 7 days (D7) and cells were fractionated into 

cytoplasmic and nuclear fractions. Equal protein amounts of cytoplasmic extracts (40 μg) and 

nuclear extracts (60-70 μg) were resolved by SDS-PAGE and analysed by Western 

immunobloting using the indicated antibodies. α-tubulin, calnexin and lamin A/C were used 

as loading and fractionation controls. (B-C) Confocal images of immunostained 3T3-L1 cells 

fixed at day 0 (D0) and day 1 (D1) with anti-p110β and the RNA polymerase I subunit A1 

(RPA194) (B) or PI3KC2α (C) and counterstained with TO-PRO-3. Scale bar indicates 10 μm 

(63x). 

 

Figure 4. Displacement of Topo IIα and nucleolin by neomycin from nuclei 

A-B) Nuclei were fractionated in the absence of detergent from 3T3-L1 cells obtained at day 

0 (D0) or 60 min, 120 min or 1 day (D1) after the addition of the differentiation cocktail and 
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were incubated with 5 mM neomycin in retention buffer. 50 μg (A) of collected supernatants 

were resolved on a long 5-15% gradient SDS-polyacrylamide gel and stained with imperial 

protein stain. Protein bands apparent in D1 were cut out and identified by MALDI-TOF as 

DNA methyl transferase 1 (DNMT1), DNA Topoisomerase IIα (Topo IIα) and nucleolin. 5 μg 

(B) were resolved by SDS-PAGE and Western immunoblotted to detect candidate proteins 

identified from the gel in A as well as lamin A/C. (C) Day 1 nuclei were incubated in 

retention buffer with (+) or without (-) 5 mM neomycin. 2 μg were resolved by SDS-PAGE 

and Western immunoblotted to detect Topo IIα, nucleolin and lamin A/C. (D-E) Confocal 

images of 3T3-L1 cells fixed at day 1 immunostained with anti-Topo IIα and anti-

PtdIns(3,4)P2 (D) or PtdIns(3,4,5)P3 (E). scale bar indicate 10 μm (63x). (F) Confocal images 

of 3T3-L1 cells fixed at day 1 immunostained with anti-nucleolin and anti-PtdIns(3,4,5)P3 

antibodies. Scale bar indicates 5 μm (63x). (G) Nuclei were obtained from D0, or D1 pre-

incubated with vehicle (DMSO) or 10 µM KIN-193 (p110β inhibitor) and split in two for 

either neomycin extraction or direct lysis (inputs) prior to SDS-PAGE (2 μg and 20 μg 

resolved respectively) and Western immunoblotting. 
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Supplementary data 
Supplementary Table S1 

List of antibodies used in Western immunoblotting and immunostaining 

Name Manufacturer Cat. 
number 

WB Immunostaining 

Akt Cell Signaling 2920 1:2000  
p-S473-Akt Cell Signaling 9271 1:1000  
Calnexin Abcam ab22595 1:1000  
Topo IIα Abcam Ab52934 1:5000  
GST-HRP Abcam ab3416 1:30,000 

(lipid blot) 
 

Lamin A/C Santa Cruz sc-
376248 

1:10,000  

Nucleolin Cell Signaling 14574 1:5000 1:1000 
p110α Cell Signaling 4249 1:1000 / 

3000 
  

p110β (IgM) Santa Cruz Sc-
376492 

1:1000  

p110β Abcam 151549  1:50 
PI3KC2α Santa Cruz sc-67306 1:1000  
PtdIns(3,4)P2 Echelon Z-P034 1:2000  
PtdIns(3,4,5)P3 Echelon Z-P345b   
PPARγ Invitrogen 419300 1:5000  
α-tubulin Sigma T5168 1:10,000 / 

4000 
 

anti-rabbit-
Alexa 488 

Life 
Technologies 

A11008  1:200 

anti-mouse-
Alexa 594  

Life 
Technologies 

A11005  1:200 

anti-rabbit-HRP Life 
Technologies 

G21234 1:10,000  

anti-mouse-
HRP 

Life 
Technologies 

G21040 1:10,000 
(1:20,000 
LE9) 

 

anti-mouse IgM 
HRP 

Abcam ab5930 1:10,000   

 

 

 

 

 

 



 ii 

Supplementary Table S2 

MALDI-TOF fingerprinting results 

Uniprot 
ID 

Gene 
name 

Protein Name Number 
of  

matches 

Mascot  
score 

P13864 DNMT1 DNA Methyltransferase 1 15 83 
Q01320 TOP2A DNA Topoisomerase IIα 14 87 
P09405 NUCL Nucleolin 12 89 
P07901 HS90A Heat shock protein HSP90-

α 
19 73 
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Supplementary figure legends 
Figure S1. Validation of specificty of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 

probes by lipid overlay assays using PIP strips and arrays 

A) PIP strip (left) and PIP array schemes from Echelon spotted with 100 

picomol of different phospholipids (strip) or a gradiant of all phosphoinositides 

(array). B-C) PIP strip (left) and array (right) incubated with 1:2000 of anti-

PtdIns(3,4)P2 antibody (B) or 0.2 mg/mL (strip) or 0.5 mg/mL (array) of GST-

GRP1-PH (C). D) PIP Array incubated with 1:10.000 of anti-PtdIns(3,4,5)P3 

antibody. Signal detection was carried out with anti-mouse IgG-HRP 

(1:10,000) for antibodies and anti-GST-HRP (1:50,000) followed by enhanced 

chemluminescence. 
 

Figure S2. PtdIns(3,4)P2 immunostaining 

3T3-L1 cells grew confluent on cover slips. 2 days post-confluence, 

adipogenesis was induced by incubating the cells with a differentiation cocktail 

for 5, 30 and 60 min. The slips were incubated with antibody raised against 

PtdIns(3,4)P2 and stained with DAPI before they were imaged by fluorescence 

microscopy at 40 x magnification, exposure time 445 ms, gain 2.7. 

Magnification of selected cells to demonstrate speckle-like localization of 

PtdIns(3,4)P2. The images are representative of experiments performed three 

times.  
 

Figure S3. PtdIns(3,4,5)P3 immunostaining  

3T3-L1 cells grew confluent on cover slips. 2 days post-confluence the cells 

were treated with a differentiation cocktail for 5, 30 and 60 min. The slips were 

incubated with antibody raised against PIP3 and stained with DAPI before 

imaging by fluorescence microscopy at 40 x magnification, exposure time 589 

ms, gain 4.5. Magnification of selected cells to demonstrate nucleolus-like 

staining. The images are representative for experiments performed three times.  
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Figure S4. Detection of p110β in cytoplasmic and nuclear fractions  

3T3-L1 cells were induced to differentiate with a differentiation cocktail and 

fractionated at time-points indicated. Proteins were detected by Western-

immunoblotting. α-Tubulin and Lamin A/C were used as loading and purity 

controls. Detection of the kinase p110β was done with an anti-p110β antibody 

from abcam (ab151549).  
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