
Information Processing Letters 183 (2024) 106427
Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

Learning from positive and negative examples: New proof for

binary alphabets

Jonas Lingg a, Mateus de Oliveira Oliveira b,c,∗, Petra Wolf b,d,∗
a Eberhard Karls Universität Tübingen, Germany
b University of Bergen, Norway
c Stockholm University, Sweden
d Universität Trier, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 June 2022
Received in revised form 18 June 2023
Accepted 27 June 2023
Available online 3 July 2023

Keywords:
Learning automata
Computational complexity
Finite samples

One of the most fundamental problems in computational learning theory is the problem of
learning a finite automaton A consistent with a finite set P of positive examples and with
a finite set N of negative examples. By consistency, we mean that A accepts all strings
in P and rejects all strings in N . It is well known that this problem is NP-complete. In
the literature, it is stated that NP-hardness holds even in the case of a binary alphabet.
As a standard reference for this theorem, the work of Gold from 1978 is either cited or
adapted. Nevertheless, the results in Gold’s work are stated in terms of Mealy machines,
and not in terms of deterministic finite automata (DFAs) as most commonly defined. As
Mealy machines are equipped with an output function, they can be more compact than
DFAs which accept the same language. We show that the adaptations of Gold’s construction
for Mealy machines stated in the literature have some issues, and provide a correct proof
for the fact that the DFA-consistency problem for binary alphabets is NP-complete.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the DFA-consistency problem (DFA-Con) we are given a pair of disjoint sets of strings P , N ⊆ �∗ and a positive integer k.
The goal is to determine whether there is a deterministic finite automaton (DFA) A with at most k states that accepts all
strings in P and rejects all strings in N . Even though [1] showed that the problem cannot be approximated within any
polynomial factor, DFA-Con has become one of the most central problems in computational learning theory (see [2–6])
with applications that span several subfields of artificial intelligence and related areas, such as automated synthesis of
controllers [7], model checking [8,9], optimization [10–13], neural networks [14–17], multi-agent systems [18], and others
[19–21].

The DFA-Con problem has been studied for at least five decades, including parameterized analysis by [22], and it was
stated multiple times that the NP-completeness of the DFA-Con problem also holds in the case of binary alphabets, see [3,
21,22]. In [3], the work of [4] is cited for this fact and in [21] and [22] adaptations of the construction from [4] are given. The
issue is that NP-hardness results for variants of DFA-Con considered in [4] are actually stated in terms of Mealy machines,
and do not translate directly to the most usual notion of DFAs in the case of binary alphabets. By taking a closer look on
the preliminaries, [3] is also considering Mealy machines. For the adaptations in [21] and [22], both of them follow the

* Corresponding authors.
E-mail addresses: j.lingg@mailbox.org (J. Lingg), oliveira@dsv.su.se (M. de Oliveira Oliveira), mail@wolfp.net (P. Wolf).
https://doi.org/10.1016/j.ipl.2023.106427
0020-0190/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.ipl.2023.106427
https://www.sciencedirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2023.106427&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:j.lingg@mailbox.org
mailto:oliveira@dsv.su.se
mailto:mail@wolfp.net
https://doi.org/10.1016/j.ipl.2023.106427
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J. Lingg, M. de Oliveira Oliveira and P. Wolf Information Processing Letters 183 (2024) 106427
same approach, and both contain inaccuracies that invalidate the proofs. They have in common that they are adaptations of
the construction by Gold for the consistency problem of Mealy machines [4], but as the Mealy machines considered in [4]
(mapping �∗ → �, |�| = 2) can be more compact (when interpreted as language acceptors) than DFAs recognizing the same
language, the difference in number of states causes the adaptations to fail.

We solve this issue by giving a new construction for the claim that the DFA-Con problem is NP-complete when restricted
to binary alphabets.

This work is structured as follows. After giving necessary definitions, we present our main result, a new construction for
the NP-hardness of DFA-Con restricted to binary alphabets. Then, we discuss in more detail why the reductions in [21,22]
fail and why the construction of Gold does not directly transfer to the setting of DFAs.

We thank an anonymous reviewer of LearnAut 2022 for suggesting a simpler construction than we had initially.

2. Preliminaries

For a finite alphabet �, we call �∗ the set of all words over �. We denote the empty word with ε , |ε| = 0. For a regular
expression r and a fixed number k, we denote k concatenations of r with rk . A deterministic finite automaton (DFA) is a tuple
A = (Q , �, δ, s0, F) where Q is a finite set of states, � a finite alphabet, δ : Q × � → Q a total transition function, s0 the
initial state and F ⊆ Q the set of final states. We call A a complete DFA if we want to highlight that δ is a total function. If δ
is partial, we call A a partial DFA. We generalize δ to words by setting δ(q, ε) = q for q ∈ Q , and δ(q, aw) = δ(δ(q, a), w) for
q ∈ Q , a ∈ �, w ∈ �∗ . We further generalize δ to sets of input letters � ⊆ � by δ(q, �) = ⋃

γ ∈�{δ(q, γ)}. A DFA A accepts a
word w ∈ �∗ if and only if δ(s0, w) ∈ F . We let L(A) denote the language of A, i.e., the set of all words accepted by A. The
DFA-Con problem is formally defined as follows.

Definition 1 (DFA-Con).

Input: Finite sets of words P , N ⊆ �∗ with P ∩ N = ∅, and integer k.
Question: Is there a DFA A = (Q , �, δ, s0, F) with |Q | ≤ k, P ⊆L(A), and L(A) ∩ N = ∅?

3. Main result

As our main result, we present an adaptation for DFAs of the reduction by Gold.

Theorem 2. Restricted to binary alphabets, DFA-Con is NP-complete.

DFA-Con is clearly in NP. The proof of NP-hardness will use the following variant of SAT, which is known to be NP-
complete (see page 314 of [4] for a proof).

Definition 3 (All-pos-neg SAT). Given a Boolean formula in conjunctive normal form where all literals in a clause are either all positive
or all negative. Is there a variable assignment satisfying the formula?

We show that there is a reduction from All-pos-neg SAT to DFA-Con mapping each instance of All-pos-neg SAT with
n ≥ 1 variables and m ≥ 1 clauses to an instance of DFA-Con with k = n + m, |�| = 2, |P | =O(m), and |N| =O(m2 + nm) in
time nO(1) .

Let φ be a Boolean formula in 3CNF with n ≥ 1 variables

V = {x0, x1, . . . , xn−1}
and m ≥ 1 clauses C = {C0, C1, . . . , Cm−1}, where each clause contains either only positive literals or only negative literals.
Given φ, we let k = n + m and

P ={ε,ak} ∪ {aibb | i ∈ [0, . . . ,m − 1], Ci positive}
N ={ai | 0 < i < k}

∪ {aibb | i ∈ [0, . . . ,m − 1], Ci negative}
∪ {aibak−r | (0 ≤ i ≤ m − 1) ∧ (0 ≤ r < k) ∧ (r < m ∨ xr−m /∈ Ci)}

be the corresponding instance of DFA-Con.
We show that there exists a satisfying variable assignment

β : V → {false,true}
if and only if there exists a DFA with at most k states that is consistent with P and N .
2

J. Lingg, M. de Oliveira Oliveira and P. Wolf Information Processing Letters 183 (2024) 106427
start

clauses variables

a a a a a

b bb

b

a,b

b

Fig. 1. Automaton for φ = ¬x0 ∧ x1 ∧ x2.

We start with a remark on the structure of a DFA A with at most k states accepting {ε, ak} and rejecting {ai | 0 < i < k}.
Let si be the state of A reached after reading ai . For each two distinct i and j in {0, 1, . . . , k − 1}, A accepts after reading
ak−i from si , but rejects after reading ak− j from si . Therefore, the states s0, . . . , sk−1 are pairwise distinct. This implies that
sk = s0, and that A consists of a loop of k states s0, s1, . . . , sk−1 where s0 is the sole initial and the sole accepting state, and
for each i ∈ {0, 1, . . . , k − 1}, si transitions to si+1 mod k when reading letter a (see Fig. 1).

The intuition is that the first m states, s0, s1, sm−1, correspond to the clauses C0, C2, . . . , Cm−1 and the n last states,
sm, sm+1, . . . , sm+n−1, correspond to the variables x0, x1, . . . , xn−1.

We start by showing that if φ is satisfiable, then there exists a DFA A with k states consistent with P and N . Let
β : V → {false, true} be a satisfying variable assignment. We let A = ({s0, s1, . . . , sk−1}, {a, b}, δ, s0, {s0}). For each i ∈
{0, 1, . . . , k − 1}, we let δ(si, a) = si+1 mod k . The transitions corresponding to letter b depend on the satisfying assignment
β . For each i ∈ {0, 1, . . . , m − 1}, let x j be a variable in Ci such that its assignment under β satisfies Ci . Note that since β
is a satisfying assignment, such variable always exists. We set δ(si , b) = sm+ j . Intuitively, if the automaton is at the state
si corresponding to clause Ci , then after reading symbol b it transitions to the state sm+ j corresponding to variable x j . For
each j ∈ {0, 1, . . . , n − 1}, if β(x j) = true, then we set δ(sm+ j, b) = s0. Otherwise, we set δ(sm+ j, b) = sm+ j . Intuitively, if
the automaton is at the state sm+ j corresponding to variable x j , then after reading symbol b, it transitions to the accepting
state s0 if x j is set to true and to the state sm+ j otherwise (note that sm+ j is a rejecting state). See Fig. 1 for an example.

Now, we show that A accepts all words in P and rejects all words in N . By construction, A accepts {ε, ak} and rejects
{ai | 0 < i < k}. Let aibb ∈ {aibb | i ∈ [0, . . . , m − 1], Ci positive}. After reading ai , A transitions to state si corresponding to
the positive clause Ci . By construction, reading b from si leads to the state sm+ j corresponding to a variable x j contained in
Ci such that β(x j) = true. Therefore, δ(δ(si, b), b) = s0 and A accepts aibb. Similarly, A rejects all the words in {aibb | i ∈
[0, . . . , m − 1], Ci negative}. Finally, A rejects all the words in the set

{aibak−r | (0 ≤ i ≤ m − 1) ∧ (0 ≤ r < k) ∧ (r < m ∨ xr−m /∈ Ci)}. (1)

To see this, note that for each i ∈ {0, . . . , m − 1}, the state reached by the string aib is the state sm+ j corresponding to some
variable x j in Ci . Therefore, given r ∈ {0, 1, . . . , k − 1}, the string aibak−r is accepted if and only if r = m + j. So, none of the
word in (1) are accepted by A since the words aibak−r in (1) satisfy r < m, or m ≤ r < k and xr−m /∈ Ci .

For the converse, suppose that there exists a DFA A with at most k states consistent with P and N . As we saw already,
A has exactly k states s0, s1, . . . , sk−1 that form a loop with the letter a, and s0 is both the initial state and the unique
accepting state. For each i ∈ {0, 1, . . . , m − 1}, the negative samples in (1) ensure that the transition with b from state si
points to the state sm+ j corresponding to a variable x j contained in Ci , since if this were not the case, some string in the set
(1) would have been accepted by A. Now, we define an assignment β of variables depending on the transitions labeled with
b. For each j ∈ {0, 1, . . . , n − 1}, if the transition labeled by b going from state sm+ j points to the accepting state s0, then
we set β(x j) = true. Otherwise, we set β(x j) = false. Let i ∈ {0, 1, . . . , m − 1}, assume Ci is a positive clause in φ. By
consistency, A accepts the word aibb. Note that after reading the string ai , A reaches the state si corresponding to Ci , and
then, by reading b the automaton transitions to the state sm+ j corresponding to some variable x j contained in Ci . Finally,
after reading the last b the automaton transitions to the unique accepting state s0. Therefore, by construction, β(x j) = true
and the assignment of x j satisfies Ci . A similar argument works if Ci is a negative clause. Therefore β satisfies φ. �

4. Counterexamples regarding DFA-CON with |�| = 2

In the literature, as far as we know, two proofs for the NP-hardness of DFA-Con for fixed alphabet size of |�| = 2 have
appeared. We give in the following a counterexample which contradicts the proofs in [22] and in [21]. We further discuss
in this section why the claim does not follow directly from the construction in [4].

Counterexample ([22, Lemma 15]) We first give the construction from Lemma 15 in [22] adapted to our notation: The reduc-
tion is from All-pos-neg SAT. Let φ be a Boolean formula in CNF with n ≥ 1 variables V = {x1, x2, . . . , xn} and m ≥ 1 clauses
C = {C1, C2, . . . , Cm}.
3

J. Lingg, M. de Oliveira Oliveira and P. Wolf Information Processing Letters 183 (2024) 106427
tstart xy yz vx x̄z̄ v̄ ȳ x̄ ȳ x y

z

v

f

b

a a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

ba

a

a,b

b

b

Fig. 2. Automaton corresponding to φ.

Let C P denote the set of clauses containing only positive literals and let CN denote the rest of the clauses, with C =
C P ∪ CN . A DFA-Con instance with alphabet � = {a, b}, k = m + n + 2, and the following sets P and N is constructed,
starting with P = N = ∅.

1. Add ε, b, am+n+2, am+n+1b to P .
2. Add a j to N , for 1 ≤ j ≤ m + n + 1
3. Add aib, aiba to N and aibbb to P, for 1 ≤ i ≤ m.
4. Add aibb to P , for every Ci ∈ C P .
5. Add aibb to N and aibba to P , for Ci ∈ CN .

This completes the construction of the DFA-Con instance. Now we continue with a counterexample.
We give a Boolean formula that is unsatisfiable and shows that the construction used in the proof of Lemma 15 in [22]

allows us to construct an automaton that is consistent with P and N . Consider the unsatisfiable formula

φ = (x ∨ y) ∧ (y ∨ z) ∧ (v ∨ x) ∧ (¬x ∨ ¬z) ∧ (¬v ∨ ¬y) ∧ (¬x ∨ ¬y)

with n = 4 variables and m = 6 clauses. We index the clauses from left to right in the formula above, starting with i = 1.
We construct the DFA-Con instance P , N ⊆ {a, b}∗ , k = m + n + 2 = 12 according to the construction presented in the proof
of Lemma 15 in [22]:

P ={ε,b,a12,a11b} ∪ {aibbb | 1 ≤ i ≤ 6} ∪ {aibb | 1 ≤ i ≤ 3}
∪ {aibba | 4 ≤ i ≤ 6},

N ={ak | 1 ≤ k ≤ 11} ∪ {aib,aiba | 1 ≤ i ≤ 6} ∪ {aibb | 4 ≤ i ≤ 6}.
Fig. 2 shows a DFA with 12 states over {a, b} that is consistent with P and N despite the formula φ being unsatisfiable.

This refutes Lemma 15 in [22].

Counterexample ([21]) Next, we give the construction from Theorem 6.2.1 in [21], page 120, adapted to our notation: The
reduction is from a constrained version of SAT where in each instance, the number of variables equals the number of
clauses and where each clause is either purely positive (all literals are positive) or purely negative (all literals are negative).
Let V = {x1, x2, . . . , xn} be a set of variables and C = {C1, C2, . . . , Cn} be a set of pure clauses. Let C P denote the set of
clauses containing only positive literals and let CN , with C = C P ∪ CN . A DFA-Con instance with alphabet � = {a, b} and the
sets P and N is constructed as follows.

• an ∈ P ,
• ∀	 : 1 ≤ 	 < n, a	 ∈ N, an+	 ∈ N ,
• ∀Ci ∈ C P , ai−1banb ∈ P and ∀x j /∈ Ci, ai−1ban− j+1 ∈ N ,
• ∀Ci ∈ CN , ai−1banb ∈ N and ∀¬x j /∈ Ci, ai−1ban− j+1 ∈ N .
4

J. Lingg, M. de Oliveira Oliveira and P. Wolf Information Processing Letters 183 (2024) 106427
1start 2 3 4 5 6 7 8
a

b

a

b

a

b

a

b

a

b

a

b

a

b

a,b

a,b

Fig. 3. Automaton with n + 1 = 9 states corresponding to the set containing clauses {¬x2, ¬x3, ¬x5}, {¬x8}, {x1, x4, x8}, {x1, x6, x8}, {x6, x7, x8}, {¬x4, ¬x6},
{¬x1, ¬x6}, {¬x1, ¬x7}.

We continue by discussing a counterexample. The set of clauses

C = {{¬x2,¬x3,¬x5}1, {¬x8}2, {x1, x4, x8}3, {x1, x6, x8}4, {x6, x7, x8}5,

{¬x4,¬x6}6, {¬x1,¬x6}7, {¬x1,¬x7}8}
represents an unsatisfiable Boolean formula φ with n = 8 variables and m = 8 where each clause is either purely positive or
purely negative. The index imposes an ordering on the clauses. The variable-set

V = {x1, x2, x3, x4, x5, x6, x7, x8}
is also ordered. In accordance with the construction in the proof of Theorem 6.2.1 in [21], page 120, we define the sets

P ={a8} ∪ {ai−1ba8b | i ∈ {3,4,5}},
N ={ak,a8+k | 1 ≤ k < 8} ∪ {ai−1ba8b | i ∈ {1,2,6,7,8}}

∪ {ai−1ba8− j+1 | i ∈ {3,4,5}, x j /∈ Ci}
∪ {ai−1ba8− j+1 | i ∈ {1,2,6,7,8},¬x j /∈ Ci},

using the two orderings that are implicit in the proof for Theorem 6.2.1 in the textbook. Claim 1 in the proof of Theorem
6.2.1 claims that every DFA consistent with P and N has at least n +1 states. In contrast, Claim 3 speaks about the existence
of an n-state DFA. The precise state-bound of the constructed instance in the proof of Theorem 6.2.1 is not explicitly given.
We show that the construction with the state-bound given in Claim 1 cannot be correct by giving an (n + 1)-state DFA
in Fig. 3, which is consistent with the sets P and N obtained from an unsatisfiable formula. Also for a bound of exact n
states, this proof is not correct, as the example discussed with respect to Gold’s construction below in this section is also
a counterexample for the construction of Theorem 6.2.1 in [21]. Consider the formula ϕ = ¬x1 ∧ x2 ∧ x3 with clause set
{{¬x1}, {x2}, {x3}} and variable set {x1, x2, x3} implicitly ordered from left to right. Here, m = 3 and n = 3. This formula
is clearly satisfiable and has pure clauses, but there is no DFA with 3 states that can separate the two sets of words of
the de la Higuera construction properly. Let’s call the three states q1, q2, q3. Since a3 ∈ P and {a1, a2, a4, a5} ⊆ N we get
for a: δ(q1, a) = q2, δ(q2, a) = q3, δ(q3, a) = q1 and q1 must be an accepting state. Now, consider the transition with b for
the state q2. Since the second clause {x2} (i = 2) is positive we have by the third item of the construction ai−1banb ∈ P ,
hence a1ba3b ∈ P . By the second condition of this item we have for x3 /∈ {x2} : ai−1ban− j+1 ∈ N , hence a1ba1 ∈ N . From
this point we also get for x1 /∈ {x2} : a1ba3 ∈ N . These three words now lead to a contradiction concerning δ(q2, b). We
cannot have δ(q2, b) = q3 since then δ(q1, aba) = q1, which contradicts aba ∈ N . We cannot have δ(q2, b) = q1 since then
δ(q1, abaaa) = q1, which contradicts abaaa ∈ N . Hence, we must have δ(q2, b) = q2. But then, δ(q1, a1ba3b) = q2, which
contradicts abaaab ∈ P . Hence, we cannot find a three-state DFA consistent with the construction.

General issue Both of the constructions ([22] and [21]) rely on the construction in the proof of Theorem 2 in [4] where
a reduction from the ‘Satisfiability Question’ to the problem ‘Is there a finite automaton with states reachable by T which
agrees with D?’ is given. Here, T is a finite set of words representing states, i.e., the words in T are elements of the
equivalence classes representing states of the sought automaton; moreover no two elements of T are in the same class. The
finite set D (set of data) consists of pairs of words over the input alphabet and single output letters. The key point is that
in [4] the term automaton refers to ‘Mealy model finite state automaton’ and hence, the automata do not include a set of
5

J. Lingg, M. de Oliveira Oliveira and P. Wolf Information Processing Letters 183 (2024) 106427
final states, instead they are enhanced with an output function, which can be interpreted as indicating the acceptance or
rejection of a word. For a binary output alphabet, these two models are equivalent considering the class of recognizable
languages, but the number of states needed to recognize a language may differ. For instance, the language {0, 1}∗0 can
be accepted with a one-state Mealy automaton but for DFAs it can only be accepted by a two-state DFA. Coming back to
the consistency problem for DFAs, one is tempted to think that a proof for the NP-hardness for DFA-Con is hidden in the
corollary following Theorem 2 in [4] (‘Q min(D, n) is NP-complete for Card(U) = Card(Y) = 2’; U is the input alphabet and
Y the output alphabet and Q min(D, n) asks, given data D and positive integer n, is there a finite automaton with n states
which agrees with D?) but with the arguments above, this is not the case. For instance, we can give a counterexample
to this claim. Consider the satisfiable formula ϕ1 = ¬x1 ∧ x2 ∧ x3 with n = 3 and implicit variable order x1 < x2 < x3 as
well as clause order {¬x1} < {x2} < {x3}. Following the construction in Theorem 2 in [4], one can verify that there is a
three-state Mealy machine recognizing the words in the state characterization matrix correctly, but there is no three-state
DFA consistent with the data. Another counterexample is the satisfiable formula ϕ2 = x1 ∧ x3 ∧ ¬x2 with variable order
x1 < x3 < x2 and clause order {x1} < {x3} < {¬x2}.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Mateus de Oliveira Oliveira reports financial support was provided by Research Council of Norway, Petra
Wolf reports financial support was provided by German Research Foundation.

Data availability

No data was used for the research described in the article.

Acknowledgements

Petra Wolf was supported by DFG project FE 560/9-1, and Mateus de Oliveira Oliveira by the RCN projects 288761 and
326537. We thank an anonymous reviewer of LearnAut 2022 for suggesting a simpler construction than we had initially.

References

[1] L. Pitt, M.K. Warmuth, The minimum consistent DFA problem cannot be approximated within any polynomial, J. ACM 40 (1) (1993) 95–142.
[2] E.M. Gold, Language identification in the limit, Inf. Control 10 (5) (1967) 447–474.
[3] D. Angluin, On the complexity of minimum inference of regular sets, Inf. Control 39 (3) (1978) 337–350.
[4] E.M. Gold, Complexity of automaton identification from given data, Inf. Control 37 (3) (1978) 302–320.
[5] L. Pitt, Inductive inference, DFAs, and computational complexity, in: K.P. Jantke (Ed.), Analogical and Inductive Inference, International Workshop AII

1989, in: Lecture Notes in Computer Science, vol. 397, Springer, 1989, pp. 18–44.
[6] R. Parekh, V. Honavar, Learning DFA from simple examples, Mach. Learn. 44 (1) (2001) 9–35.
[7] P.J. Ramadge, W.M. Wonham, Supervisory control of a class of discrete event processes, SIAM J. Control Optim. 25 (1) (1987) 206–230.
[8] A. Groce, D.A. Peled, M. Yannakakis, Adaptive model checking, in: J. Katoen, P. Stevens (Eds.), Tools and Algorithms for the Construction and Analysis

of Systems, 8th International Conference, TACAS 2002, Held as Part of the Joint European Conference on Theory and Practice of Software, ETAPS 2002,
Proceedings, in: Lecture Notes in Computer Science, vol. 2280, Springer, 2002, pp. 357–370.

[9] H. Mao, Y. Chen, M. Jaeger, T.D. Nielsen, K.G. Larsen, B. Nielsen, Learning deterministic probabilistic automata from a model checking perspective, Mach.
Learn. 105 (2) (2016) 255–299.

[10] K. Najim, L. Pibouleau, M. Le Lann, Optimization technique based on learning automata, J. Optim. Theory Appl. 64 (2) (1990) 331–347.
[11] A. Yazidi, N. Bouhmala, M. Goodwin, A team of pursuit learning automata for solving deterministic optimization problems, Appl. Intell. 50 (9) (2020)

2916–2931.
[12] N. Bouhmala, A multilevel learning automata for MAX-SAT, Int. J. Mach. Learn. Cybern. 6 (6) (2015) 911–921.
[13] F. Coste, G. Kerbellec, Learning automata on protein sequences, in: JOBIM, 2006, pp. 199–210.
[14] M.R. Meybodi, H. Beigy, New learning automata based algorithms for adaptation of backpropagation algorithm parameters, Int. J. Neural Syst. 12 (01)

(2002) 45–67.
[15] M. Hasanzadeh-Mofrad, A. Rezvanian, Learning automata clustering, J. Comput. Sci. 24 (2018) 379–388.
[16] F. Mayr, S. Yovine, Regular inference on artificial neural networks, in: A. Holzinger, P. Kieseberg, A.M. Tjoa, E.R. Weippl (Eds.), Machine Learning and

Knowledge Extraction - Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2018, Proceedings, in:
Lecture Notes in Computer Science, vol. 11015, Springer, 2018, pp. 350–369.

[17] H. Guo, S. Wang, J. Fan, S. Li, Learning automata based incremental learning method for deep neural networks, IEEE Access 7 (2019) 41164–41171.
[18] A. Nowé, K. Verbeeck, M. Peeters, Learning automata as a basis for multi agent reinforcement learning, in: K. Tuyls, P.J. Hoen, K. Verbeeck, S. Sen (Eds.),

Learning and Adaption in Multi-Agent Systems, First International Workshop, LAMAS 2005, in: Lecture Notes in Computer Science, vol. 3898, Springer,
2005, pp. 71–85.

[19] A. Rezvanian, A.M. Saghiri, S.M. Vahidipour, M. Esnaashari, M.R. Meybodi, Recent Advances in Learning Automata, Studies in Computational Intelligence,
vol. 754, Springer, 2018.

[20] K. Najim, A.S. Poznyak, Learning Automata: Theory and Applications, Elsevier, 2014.
[21] C. de la Higuera, Grammatical Inference: Learning Automata and Grammars, Cambridge University Press, 2010.
[22] H. Fernau, P. Heggernes, Y. Villanger, A multi-parameter analysis of hard problems on deterministic finite automata, J. Comput. Syst. Sci. 81 (4) (2015)

747–765.
6

http://refhub.elsevier.com/S0020-0190(23)00070-4/bib9558DC2FE9C333B3E3DB16891C6448ECs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibC254D15283C4AF870B15AC67F25BCE61s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibB461E010F0AF245480ABF8B29AF0EBEEs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib0775347808C149830AA0B9E655E0F749s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibCA081D7308EC7AAAD57304196EDE51E5s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibCA081D7308EC7AAAD57304196EDE51E5s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib209FA554896C9E108AA399A796F6B244s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibE9B7633D44949FECAD4A027D77D8F925s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib8AB788FED00A95F6B1495A2A00EA0788s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib8AB788FED00A95F6B1495A2A00EA0788s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib8AB788FED00A95F6B1495A2A00EA0788s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibE9E4078AEBB8029705C946AD86296988s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibE9E4078AEBB8029705C946AD86296988s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib6F143766D54B06CD633F2B8A606EF594s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib07941E7E076F85D40FB985B78E57CB1Es1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib07941E7E076F85D40FB985B78E57CB1Es1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibA36C446A009C672B28CA3B98942967E4s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib5DC1D633A1F102AF73E2A534F39B8D37s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib8E89B1365E4D1514CDAFE8B889701ECFs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib8E89B1365E4D1514CDAFE8B889701ECFs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib21ECB94238F2277A35B69A178DA2E1A3s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibAD2BAB8DB8B57DE4F78C8776C4ABAB35s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibAD2BAB8DB8B57DE4F78C8776C4ABAB35s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibAD2BAB8DB8B57DE4F78C8776C4ABAB35s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bib2E3931C056AB0D0C05854022019A0E0As1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibC8A749ADE526C89EE21AA922089777EEs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibC8A749ADE526C89EE21AA922089777EEs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibC8A749ADE526C89EE21AA922089777EEs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibA70B1122270A6B80AFBB3E0E1B305184s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibA70B1122270A6B80AFBB3E0E1B305184s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibA1DD452C6ACE1778FEEFFB63B895EE0Cs1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibECCCDFDEA4A39A4C858D961DF665DE4Es1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibD58C059864F4CA2433A065C504EC3B44s1
http://refhub.elsevier.com/S0020-0190(23)00070-4/bibD58C059864F4CA2433A065C504EC3B44s1

	Learning from positive and negative examples: New proof for binary alphabets
	1 Introduction
	2 Preliminaries
	3 Main result
	4 Counterexamples regarding DFA-CON with |Σ|=2
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

