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One of the most fundamental problems in computational learning theory is the problem of 
learning a finite automaton A consistent with a finite set P of positive examples and with 
a finite set N of negative examples. By consistency, we mean that A accepts all strings 
in P and rejects all strings in N . It is well known that this problem is NP-complete. In 
the literature, it is stated that NP-hardness holds even in the case of a binary alphabet. 
As a standard reference for this theorem, the work of Gold from 1978 is either cited or 
adapted. Nevertheless, the results in Gold’s work are stated in terms of Mealy machines, 
and not in terms of deterministic finite automata (DFAs) as most commonly defined. As 
Mealy machines are equipped with an output function, they can be more compact than 
DFAs which accept the same language. We show that the adaptations of Gold’s construction 
for Mealy machines stated in the literature have some issues, and provide a correct proof 
for the fact that the DFA-consistency problem for binary alphabets is NP-complete.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the DFA-consistency problem (DFA-Con) we are given a pair of disjoint sets of strings P , N ⊆ �∗ and a positive integer k. 
The goal is to determine whether there is a deterministic finite automaton (DFA) A with at most k states that accepts all 
strings in P and rejects all strings in N . Even though [1] showed that the problem cannot be approximated within any 
polynomial factor, DFA-Con has become one of the most central problems in computational learning theory (see [2–6]) 
with applications that span several subfields of artificial intelligence and related areas, such as automated synthesis of 
controllers [7], model checking [8,9], optimization [10–13], neural networks [14–17], multi-agent systems [18], and others 
[19–21].

The DFA-Con problem has been studied for at least five decades, including parameterized analysis by [22], and it was 
stated multiple times that the NP-completeness of the DFA-Con problem also holds in the case of binary alphabets, see [3,
21,22]. In [3], the work of [4] is cited for this fact and in [21] and [22] adaptations of the construction from [4] are given. The 
issue is that NP-hardness results for variants of DFA-Con considered in [4] are actually stated in terms of Mealy machines, 
and do not translate directly to the most usual notion of DFAs in the case of binary alphabets. By taking a closer look on 
the preliminaries, [3] is also considering Mealy machines. For the adaptations in [21] and [22], both of them follow the 
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same approach, and both contain inaccuracies that invalidate the proofs. They have in common that they are adaptations of 
the construction by Gold for the consistency problem of Mealy machines [4], but as the Mealy machines considered in [4]
(mapping �∗ → �, |�| = 2) can be more compact (when interpreted as language acceptors) than DFAs recognizing the same 
language, the difference in number of states causes the adaptations to fail.

We solve this issue by giving a new construction for the claim that the DFA-Con problem is NP-complete when restricted 
to binary alphabets.

This work is structured as follows. After giving necessary definitions, we present our main result, a new construction for 
the NP-hardness of DFA-Con restricted to binary alphabets. Then, we discuss in more detail why the reductions in [21,22]
fail and why the construction of Gold does not directly transfer to the setting of DFAs.

We thank an anonymous reviewer of LearnAut 2022 for suggesting a simpler construction than we had initially.

2. Preliminaries

For a finite alphabet �, we call �∗ the set of all words over �. We denote the empty word with ε , |ε| = 0. For a regular 
expression r and a fixed number k, we denote k concatenations of r with rk . A deterministic finite automaton (DFA) is a tuple 
A = (Q , �, δ, s0, F ) where Q is a finite set of states, � a finite alphabet, δ : Q × � → Q a total transition function, s0 the 
initial state and F ⊆ Q the set of final states. We call A a complete DFA if we want to highlight that δ is a total function. If δ
is partial, we call A a partial DFA. We generalize δ to words by setting δ(q, ε) = q for q ∈ Q , and δ(q, aw) = δ(δ(q, a), w) for 
q ∈ Q , a ∈ �, w ∈ �∗ . We further generalize δ to sets of input letters � ⊆ � by δ(q, �) = ⋃

γ ∈�{δ(q, γ )}. A DFA A accepts a 
word w ∈ �∗ if and only if δ(s0, w) ∈ F . We let L(A) denote the language of A, i.e., the set of all words accepted by A. The
DFA-Con problem is formally defined as follows.

Definition 1 (DFA-Con).

Input: Finite sets of words P , N ⊆ �∗ with P ∩ N = ∅, and integer k.
Question: Is there a DFA A = (Q , �, δ, s0, F ) with |Q | ≤ k, P ⊆L(A), and L(A) ∩ N = ∅?

3. Main result

As our main result, we present an adaptation for DFAs of the reduction by Gold.

Theorem 2. Restricted to binary alphabets, DFA-Con is NP-complete.

DFA-Con is clearly in NP. The proof of NP-hardness will use the following variant of SAT, which is known to be NP-
complete (see page 314 of [4] for a proof).

Definition 3 (All-pos-neg SAT). Given a Boolean formula in conjunctive normal form where all literals in a clause are either all positive 
or all negative. Is there a variable assignment satisfying the formula?

We show that there is a reduction from All-pos-neg SAT to DFA-Con mapping each instance of All-pos-neg SAT with 
n ≥ 1 variables and m ≥ 1 clauses to an instance of DFA-Con with k = n + m, |�| = 2, |P | =O(m), and |N| =O(m2 + nm) in 
time nO(1) .

Let φ be a Boolean formula in 3CNF with n ≥ 1 variables

V = {x0, x1, . . . , xn−1}
and m ≥ 1 clauses C = {C0, C1, . . . , Cm−1}, where each clause contains either only positive literals or only negative literals. 
Given φ, we let k = n + m and

P ={ε,ak} ∪ {aibb | i ∈ [0, . . . ,m − 1], Ci positive}
N ={ai | 0 < i < k}

∪ {aibb | i ∈ [0, . . . ,m − 1], Ci negative}
∪ {aibak−r | (0 ≤ i ≤ m − 1) ∧ (0 ≤ r < k) ∧ (r < m ∨ xr−m /∈ Ci)}

be the corresponding instance of DFA-Con.
We show that there exists a satisfying variable assignment

β : V → {false,true}
if and only if there exists a DFA with at most k states that is consistent with P and N .
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Fig. 1. Automaton for φ = ¬x0 ∧ x1 ∧ x2.

We start with a remark on the structure of a DFA A with at most k states accepting {ε, ak} and rejecting {ai | 0 < i < k}. 
Let si be the state of A reached after reading ai . For each two distinct i and j in {0, 1, . . . , k − 1}, A accepts after reading 
ak−i from si , but rejects after reading ak− j from si . Therefore, the states s0, . . . , sk−1 are pairwise distinct. This implies that 
sk = s0, and that A consists of a loop of k states s0, s1, . . . , sk−1 where s0 is the sole initial and the sole accepting state, and 
for each i ∈ {0, 1, . . . , k − 1}, si transitions to si+1 mod k when reading letter a (see Fig. 1).

The intuition is that the first m states, s0, s1, sm−1, correspond to the clauses C0, C2, . . . , Cm−1 and the n last states, 
sm, sm+1, . . . , sm+n−1, correspond to the variables x0, x1, . . . , xn−1.

We start by showing that if φ is satisfiable, then there exists a DFA A with k states consistent with P and N . Let 
β : V → {false, true} be a satisfying variable assignment. We let A = ({s0, s1, . . . , sk−1}, {a, b}, δ, s0, {s0}). For each i ∈
{0, 1, . . . , k − 1}, we let δ(si, a) = si+1 mod k . The transitions corresponding to letter b depend on the satisfying assignment 
β . For each i ∈ {0, 1, . . . , m − 1}, let x j be a variable in Ci such that its assignment under β satisfies Ci . Note that since β
is a satisfying assignment, such variable always exists. We set δ(si , b) = sm+ j . Intuitively, if the automaton is at the state 
si corresponding to clause Ci , then after reading symbol b it transitions to the state sm+ j corresponding to variable x j . For 
each j ∈ {0, 1, . . . , n − 1}, if β(x j) = true, then we set δ(sm+ j, b) = s0. Otherwise, we set δ(sm+ j, b) = sm+ j . Intuitively, if 
the automaton is at the state sm+ j corresponding to variable x j , then after reading symbol b, it transitions to the accepting 
state s0 if x j is set to true and to the state sm+ j otherwise (note that sm+ j is a rejecting state). See Fig. 1 for an example.

Now, we show that A accepts all words in P and rejects all words in N . By construction, A accepts {ε, ak} and rejects 
{ai | 0 < i < k}. Let aibb ∈ {aibb | i ∈ [0, . . . , m − 1], Ci positive}. After reading ai , A transitions to state si corresponding to 
the positive clause Ci . By construction, reading b from si leads to the state sm+ j corresponding to a variable x j contained in 
Ci such that β(x j) = true. Therefore, δ(δ(si, b), b) = s0 and A accepts aibb. Similarly, A rejects all the words in {aibb | i ∈
[0, . . . , m − 1], Ci negative}. Finally, A rejects all the words in the set

{aibak−r | (0 ≤ i ≤ m − 1) ∧ (0 ≤ r < k) ∧ (r < m ∨ xr−m /∈ Ci)}. (1)

To see this, note that for each i ∈ {0, . . . , m − 1}, the state reached by the string aib is the state sm+ j corresponding to some 
variable x j in Ci . Therefore, given r ∈ {0, 1, . . . , k − 1}, the string aibak−r is accepted if and only if r = m + j. So, none of the 
word in (1) are accepted by A since the words aibak−r in (1) satisfy r < m, or m ≤ r < k and xr−m /∈ Ci .

For the converse, suppose that there exists a DFA A with at most k states consistent with P and N . As we saw already, 
A has exactly k states s0, s1, . . . , sk−1 that form a loop with the letter a, and s0 is both the initial state and the unique 
accepting state. For each i ∈ {0, 1, . . . , m − 1}, the negative samples in (1) ensure that the transition with b from state si
points to the state sm+ j corresponding to a variable x j contained in Ci , since if this were not the case, some string in the set
(1) would have been accepted by A. Now, we define an assignment β of variables depending on the transitions labeled with 
b. For each j ∈ {0, 1, . . . , n − 1}, if the transition labeled by b going from state sm+ j points to the accepting state s0, then 
we set β(x j) = true. Otherwise, we set β(x j) = false. Let i ∈ {0, 1, . . . , m − 1}, assume Ci is a positive clause in φ. By 
consistency, A accepts the word aibb. Note that after reading the string ai , A reaches the state si corresponding to Ci , and 
then, by reading b the automaton transitions to the state sm+ j corresponding to some variable x j contained in Ci . Finally, 
after reading the last b the automaton transitions to the unique accepting state s0. Therefore, by construction, β(x j) = true
and the assignment of x j satisfies Ci . A similar argument works if Ci is a negative clause. Therefore β satisfies φ. �

4. Counterexamples regarding DFA-CON with |�| = 2

In the literature, as far as we know, two proofs for the NP-hardness of DFA-Con for fixed alphabet size of |�| = 2 have 
appeared. We give in the following a counterexample which contradicts the proofs in [22] and in [21]. We further discuss 
in this section why the claim does not follow directly from the construction in [4].

Counterexample ([22, Lemma 15]) We first give the construction from Lemma 15 in [22] adapted to our notation: The reduc-
tion is from All-pos-neg SAT. Let φ be a Boolean formula in CNF with n ≥ 1 variables V = {x1, x2, . . . , xn} and m ≥ 1 clauses 
C = {C1, C2, . . . , Cm}.
3
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Fig. 2. Automaton corresponding to φ.

Let C P denote the set of clauses containing only positive literals and let CN denote the rest of the clauses, with C =
C P ∪ CN . A DFA-Con instance with alphabet � = {a, b}, k = m + n + 2, and the following sets P and N is constructed, 
starting with P = N = ∅.

1. Add ε, b, am+n+2, am+n+1b to P .
2. Add a j to N , for 1 ≤ j ≤ m + n + 1
3. Add aib, aiba to N and aibbb to P, for 1 ≤ i ≤ m.
4. Add aibb to P , for every Ci ∈ C P .
5. Add aibb to N and aibba to P , for Ci ∈ CN .

This completes the construction of the DFA-Con instance. Now we continue with a counterexample.
We give a Boolean formula that is unsatisfiable and shows that the construction used in the proof of Lemma 15 in [22]

allows us to construct an automaton that is consistent with P and N . Consider the unsatisfiable formula

φ = (x ∨ y) ∧ (y ∨ z) ∧ (v ∨ x) ∧ (¬x ∨ ¬z) ∧ (¬v ∨ ¬y) ∧ (¬x ∨ ¬y)

with n = 4 variables and m = 6 clauses. We index the clauses from left to right in the formula above, starting with i = 1. 
We construct the DFA-Con instance P , N ⊆ {a, b}∗ , k = m + n + 2 = 12 according to the construction presented in the proof 
of Lemma 15 in [22]:

P ={ε,b,a12,a11b} ∪ {aibbb | 1 ≤ i ≤ 6} ∪ {aibb | 1 ≤ i ≤ 3}
∪ {aibba | 4 ≤ i ≤ 6},

N ={ak | 1 ≤ k ≤ 11} ∪ {aib,aiba | 1 ≤ i ≤ 6} ∪ {aibb | 4 ≤ i ≤ 6}.
Fig. 2 shows a DFA with 12 states over {a, b} that is consistent with P and N despite the formula φ being unsatisfiable. 

This refutes Lemma 15 in [22].

Counterexample ([21]) Next, we give the construction from Theorem 6.2.1 in [21], page 120, adapted to our notation: The 
reduction is from a constrained version of SAT where in each instance, the number of variables equals the number of 
clauses and where each clause is either purely positive (all literals are positive) or purely negative (all literals are negative). 
Let V = {x1, x2, . . . , xn} be a set of variables and C = {C1, C2, . . . , Cn} be a set of pure clauses. Let C P denote the set of 
clauses containing only positive literals and let CN , with C = C P ∪ CN . A DFA-Con instance with alphabet � = {a, b} and the 
sets P and N is constructed as follows.

• an ∈ P ,
• ∀	 : 1 ≤ 	 < n, a	 ∈ N, an+	 ∈ N ,
• ∀Ci ∈ C P , ai−1banb ∈ P and ∀x j /∈ Ci, ai−1ban− j+1 ∈ N ,
• ∀Ci ∈ CN , ai−1banb ∈ N and ∀¬x j /∈ Ci, ai−1ban− j+1 ∈ N .
4
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Fig. 3. Automaton with n + 1 = 9 states corresponding to the set containing clauses {¬x2, ¬x3, ¬x5}, {¬x8}, {x1, x4, x8}, {x1, x6, x8}, {x6, x7, x8}, {¬x4, ¬x6}, 
{¬x1, ¬x6}, {¬x1, ¬x7}.

We continue by discussing a counterexample. The set of clauses

C = {{¬x2,¬x3,¬x5}1, {¬x8}2, {x1, x4, x8}3, {x1, x6, x8}4, {x6, x7, x8}5,

{¬x4,¬x6}6, {¬x1,¬x6}7, {¬x1,¬x7}8}
represents an unsatisfiable Boolean formula φ with n = 8 variables and m = 8 where each clause is either purely positive or 
purely negative. The index imposes an ordering on the clauses. The variable-set

V = {x1, x2, x3, x4, x5, x6, x7, x8}
is also ordered. In accordance with the construction in the proof of Theorem 6.2.1 in [21], page 120, we define the sets

P ={a8} ∪ {ai−1ba8b | i ∈ {3,4,5}},
N ={ak,a8+k | 1 ≤ k < 8} ∪ {ai−1ba8b | i ∈ {1,2,6,7,8}}

∪ {ai−1ba8− j+1 | i ∈ {3,4,5}, x j /∈ Ci}
∪ {ai−1ba8− j+1 | i ∈ {1,2,6,7,8},¬x j /∈ Ci},

using the two orderings that are implicit in the proof for Theorem 6.2.1 in the textbook. Claim 1 in the proof of Theorem 
6.2.1 claims that every DFA consistent with P and N has at least n +1 states. In contrast, Claim 3 speaks about the existence 
of an n-state DFA. The precise state-bound of the constructed instance in the proof of Theorem 6.2.1 is not explicitly given. 
We show that the construction with the state-bound given in Claim 1 cannot be correct by giving an (n + 1)-state DFA 
in Fig. 3, which is consistent with the sets P and N obtained from an unsatisfiable formula. Also for a bound of exact n
states, this proof is not correct, as the example discussed with respect to Gold’s construction below in this section is also 
a counterexample for the construction of Theorem 6.2.1 in [21]. Consider the formula ϕ = ¬x1 ∧ x2 ∧ x3 with clause set 
{{¬x1}, {x2}, {x3}} and variable set {x1, x2, x3} implicitly ordered from left to right. Here, m = 3 and n = 3. This formula 
is clearly satisfiable and has pure clauses, but there is no DFA with 3 states that can separate the two sets of words of 
the de la Higuera construction properly. Let’s call the three states q1, q2, q3. Since a3 ∈ P and {a1, a2, a4, a5} ⊆ N we get 
for a: δ(q1, a) = q2, δ(q2, a) = q3, δ(q3, a) = q1 and q1 must be an accepting state. Now, consider the transition with b for 
the state q2. Since the second clause {x2} (i = 2) is positive we have by the third item of the construction ai−1banb ∈ P , 
hence a1ba3b ∈ P . By the second condition of this item we have for x3 /∈ {x2} : ai−1ban− j+1 ∈ N , hence a1ba1 ∈ N . From 
this point we also get for x1 /∈ {x2} : a1ba3 ∈ N . These three words now lead to a contradiction concerning δ(q2, b). We 
cannot have δ(q2, b) = q3 since then δ(q1, aba) = q1, which contradicts aba ∈ N . We cannot have δ(q2, b) = q1 since then 
δ(q1, abaaa) = q1, which contradicts abaaa ∈ N . Hence, we must have δ(q2, b) = q2. But then, δ(q1, a1ba3b) = q2, which 
contradicts abaaab ∈ P . Hence, we cannot find a three-state DFA consistent with the construction.

General issue Both of the constructions ([22] and [21]) rely on the construction in the proof of Theorem 2 in [4] where 
a reduction from the ‘Satisfiability Question’ to the problem ‘Is there a finite automaton with states reachable by T which 
agrees with D?’ is given. Here, T is a finite set of words representing states, i.e., the words in T are elements of the 
equivalence classes representing states of the sought automaton; moreover no two elements of T are in the same class. The 
finite set D (set of data) consists of pairs of words over the input alphabet and single output letters. The key point is that 
in [4] the term automaton refers to ‘Mealy model finite state automaton’ and hence, the automata do not include a set of 
5
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final states, instead they are enhanced with an output function, which can be interpreted as indicating the acceptance or 
rejection of a word. For a binary output alphabet, these two models are equivalent considering the class of recognizable 
languages, but the number of states needed to recognize a language may differ. For instance, the language {0, 1}∗0 can 
be accepted with a one-state Mealy automaton but for DFAs it can only be accepted by a two-state DFA. Coming back to 
the consistency problem for DFAs, one is tempted to think that a proof for the NP-hardness for DFA-Con is hidden in the 
corollary following Theorem 2 in [4] (‘Q min(D, n) is NP-complete for Card(U ) = Card(Y ) = 2’; U is the input alphabet and 
Y the output alphabet and Q min(D, n) asks, given data D and positive integer n, is there a finite automaton with n states 
which agrees with D?) but with the arguments above, this is not the case. For instance, we can give a counterexample 
to this claim. Consider the satisfiable formula ϕ1 = ¬x1 ∧ x2 ∧ x3 with n = 3 and implicit variable order x1 < x2 < x3 as 
well as clause order {¬x1} < {x2} < {x3}. Following the construction in Theorem 2 in [4], one can verify that there is a 
three-state Mealy machine recognizing the words in the state characterization matrix correctly, but there is no three-state 
DFA consistent with the data. Another counterexample is the satisfiable formula ϕ2 = x1 ∧ x3 ∧ ¬x2 with variable order 
x1 < x3 < x2 and clause order {x1} < {x3} < {¬x2}.
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