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Abstract

Previous studies on robustness have argued that
there is a tradeoff between accuracy and adversar-
ial accuracy. The tradeoff can be inevitable even
when we neglect generalization. We argue that
the tradeoff is inherent to the commonly used def-
inition of adversarial accuracy, which uses an ad-
versary that can construct adversarial points con-
strained by ϵ-balls around data points. As ϵ gets
large, the adversary may use real data points from
other classes as adversarial examples. We propose
a Voronoi-epsilon adversary which is constrained
both by Voronoi cells and by ϵ-balls. This adver-
sary balances two notions of perturbation. As a re-
sult, adversarial accuracy based on this adversary
avoids a tradeoff between accuracy and adversar-
ial accuracy on training data even when ϵ is large.
Finally, we show that a nearest neighbor classifier
is the maximally robust classifier against the pro-
posed adversary on the training data.

1 Introduction

By applying a carefully crafted, but imperceptible
perturbation to input images, so-called adversarial
examples can be constructed that cause classifiers
to misclassify the perturbed inputs [Szegedy et al.,
2014]. Defense methods like adversarial training
[Madry et al., 2018] and certified defenses [Wong
and Kolter, 2018] against adversarial examples have
often resulted in decreased accuracies on clean sam-
ples [Tsipras et al., 2019]. Previous studies have
argued that the tradeoff between accuracy and ad-
versarial accuracy may be inevitable in classifiers

∗Corresponding Author: hjk92g@gmail.com

[Tsipras et al., 2019, Dohmatob, 2019, Zhang et al.,
2019].

1.1 Problem Settings

Problem setting. Let X ⊂ Rdim be a nonempty
input space and Y be a set of possible classes. Data
points x ∈ X and corresponding classes cx ∈ Y
are sampled from a joint distribution D. The dis-
tribution D should satisfy the condition that cx is
unique for all x. The set of the data points is a
finite, nonempty set X. A classifier f assigns a
class label from Y for each point x ∈ X . l(y1, y2)
is a classification loss function for y1, y2 ∈ Y and
it satisfies the necessary condition:

∀y1, y2, y3, y4 ∈ Y,

l(y1, y2) ≤ l(y3, y4) =⇒1(y1 = y2) ≥ 1(y3 = y4).

L(x, y) is a classification loss based on the classifier
f provided an input x ∈ X and a label y ∈ Y.
Mathematically, L(x, y) := l(f(x), y).

To simplify the analysis, we do not consider gen-
eralization.

1.2 Adversarial Accuracy (AA)

For a classifier, (natural) accuracy a is the expecta-
tion of a correct classification of data sampled from
the data distribution. Mathematically, it is defined
as:

a = E(x,cx)∼D [1 (f(x) = cx)] .

Adversarial accuracy is a commonly used mea-
sure of adversarial robustness of classifiers [Madry
et al., 2018, Tsipras et al., 2019]. It is defined by
an adversary region R(x) ⊂ X , which is an allowed
region of the perturbations for a data point x.
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Definition 1 (Adversarial accuracy). Given an
adversary that is constrained to an adversary region
R(x), adversarial accuracy a is defined as:

a = E(x,cx)∼D [1 (f(x∗) = cx)] ,

where x∗ = argmax
x′∈R(x)

L(x′, cx).

The choice of R(x) will determine the adversarial
accuracy that we are measuring. Commonly con-
sidered adversary region is B(x, ϵ), which is a ϵ-ball
around a data point x based on a distance metric
d [Biggio et al., 2013, Madry et al., 2018, Tsipras
et al., 2019, Zhang et al., 2019].

Definition 2 (Standard adversarial accu-
racy). When the adversary region is B(x, ϵ), we
refer to the adversarial accuracy a as standard ad-
versarial accuracy (SAA) astd(ϵ). For SAA, we de-
note R(x) as Rstd(ϵ;x).

astd(ϵ) = E(x,cx)∼D [1 (f(x∗) = cx)] ,

where x∗ = argmax
x′∈Rstd(ϵ;x)

L(x′, cx).

This adversary region B(x, ϵ) is based on an
implicit assumption that there might be an ade-
quate single epsilon ϵ that perturbed samples do
not change their classes. However, this assumption
has some limitations. We explain that in the next
section.

1.3 The Tradeoff Between Accuracy
and Standard Adversarial Accu-
racy

The usage of ϵ-ball-based adversary can cause the
tradeoff between accuracy and adversarial accu-
racy. When the two clean samples x1 and x2 with
d(x1, x2) ≤ ϵ have different classes, achieving lo-
cal SAA higher than 0 on these two points implies
misclassification. We illustrate this with a toy ex-
ample.

1.3.1 Toy Example

Let us consider an example visualized in Figure 1a.
The input space is R2. There are only two classes
A and B, i.e., Y = {A,B}. We use the l2 norm as
a distance metric in this example.
Let us consider a situation when ϵ = 1.0 (see

Figure 1c). In this case, clean samples can also be

considered as adversarial examples. For example,
the point (2, 1) can be considered as an adversarial
example originating from the point (1, 1). If one
choose a robust model based on SAA, one might
choose a model with excessive invariance. For ex-
ample, one might choose a model that predicts
points belong to B((1, 1), 1) (including the point
(2, 1)) have class A. Or, one can choose a model
that predicts points belong to B((2, 1), 1) (includ-
ing the point (1, 1)) have class B. In either case,
the accuracy of the chosen model is smaller than 1.
This situation explains the tradeoff between accu-
racy and standard adversarial accuracy when large
ϵ is used. It originates from the overlapping adver-
sary regions from the samples with different classes.

To avoid the tradeoff between accuracy and ad-
versarial accuracy, one can use small ϵ values. Ac-
tually, a previous study has argued that commonly
used ϵ values are small enough to avoid the trade-
off [Yang et al., 2020b]. However, when small ϵ
values are used, we can only analyze local robust-
ness, and we need to ignore robustness beyond the
chosen ϵ. For instance, let us consider our example
when ϵ = 0.5 (see Figure 1b). In this case, we ig-
nore robustness on B((−2, 1), 1.0)−B((−2, 1), 0.5).
Models with local but without global robustness
enable attackers to use large ϵ values to fool the
models. Ghiasi et al. [2019] have experimentally
shown that even models with certified local robust-
ness can be attacked by attacks with large ϵ val-
ues. Note that their attack applies little semantic
perturbations even though the perturbation norms
measured by lp norms are large.
These limitations motivate us to find an alterna-

tive way to measure robustness. The contribu-
tions of this paper are as follows.

• We propose Voronoi-epsilon adversarial accu-
racy (VAA) that avoids the tradeoff between
accuracy and adversarial accuracy. This allows
the adversary regions to scale to cover most of
the input space without incurring a tradeoff.
To our best knowledge, this is the first work to
achieve this without an external classifier.

• We explain the connection between SAA and
VAA. We define global Voronoi-epsilon robust-
ness as a limit of the Voronoi-epsilon adversar-
ial accuracy. We show that a nearest neighbor
(1-NN) classifier maximizes global Voronoi-
epsilon robustness.
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(a)

(b)

(c)

Figure 1: (a): Plot of the two-dimensional toy
example. Data points are colored based on their
classes (class A: red and class B: blue). (b): Vi-
sualization of the adversary regions for SAA when
ϵ = 0.5. The regions are colored differently depend-
ing on their classes (class A: magenta and class B:
cyan). The decision boundary of a single nearest
neighbor classifier is shown as a dashed black curve.
(c): Visualization of the adversary regions for SAA
when ϵ = 1.0. The overlapping adversary regions
from the samples with different classes are colored
in purple.

2 Voronoi-Epsilon Adversar-
ial Accuracy (VAA)

Our approach restricts the allowed region of the
perturbations to avoid the tradeoff originating from
the definition of standard adversarial accuracy.
This is achieved without limiting the magnitude of
ϵ and without using an external model. We want to
have the following property to avoid the tradeoff.

∀xi, xj ∈ X, xi ̸= xj =⇒ R(xi) ∩R(xj) = ∅ (1)

When Property (1) holds for the adversary re-
gion, we no longer have the tradeoff as xi /∈ R(xj)
for xi ̸= xj . In other words, a clean sample
cannot be an adversarial example originating from
another clean sample. We propose a new adversary
called a Voronoi-epsilon adversary that combines
the Voronoi-adversary introduced by Khoury and
Hadfield-Menell [2019] with an ϵ-ball-based adver-
sary. This adversary is constrained to an adversary
region V or(x)∩B(x, ϵ) where V or(x) is the (open)
Voronoi cell around a data point x ∈ X. V or(x)
consists of every point in X that is closer than
any xclean ∈ X − {x}. Mathematically, V or(x) =
{x′ ∈ X |d(x, x′) < d(xclean, x

′),∀xclean ∈ X − {x}}.
Then, Property (1) holds as V or(xi)∩V or(xj) = ∅
for xi ̸= xj .
Based on a Voronoi-epsilon adversary, we define

Voronoi-epsilon adversarial accuracy (VAA).

Definition 3 (Voronoi-epsilon adversarial ac-
curacy). When a Voronoi-epsilon adversary is
used for the adversary, we refer to the adversar-
ial accuracy as Voronoi-epsilon adversarial accu-
racy (VAA) aV or(ϵ). For VAA, we denote R(x) as
RV or(ϵ;x), i.e., RV or(ϵ;x) = V or(x) ∩ B(x, ϵ).

aV or(ϵ) = E(x,cx)∼D [1 (f(x∗) = cx)]
1

where x∗ = argmax
x′∈RV or(ϵ;x)

L(x′, cx).

Figure 2 shows the adversary regions for VAA
with varying ϵ values. When ϵ = 0.5, the re-
gions are same with SAA except for the points
(1.5, 1), (1.5,−1) and (2,−1.5). Even when ϵ is
large (ϵ > 0.5), there is no overlapping adversary

1Using the expectation here is a slight abuse of notation,
since aV or(·) is defined on a finite set. We retain it for
consistency with previous definitions, and understand it to
mean the empirical average.
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region, which was a source of the tradeoff in SAA.
Therefore, when we choose a robust model based on
VAA, we can get a model that is both accurate and
robust. Figure 2c shows the single nearest neighbor
(1-NN) classifier would maximize VAA. The adver-
sary regions cover most of the points in R2 for large
ϵ.

Observation 1. Let dmin be the nearest dis-
tance of the data point pairs, i.e., dmin =

min
xi,xj∈X,xi ̸=xj

d(xi, xj). Then, the following equiv-

alence holds.

aV or(ϵ) = astd(ϵ), (2)

when ϵ < 1
2dmin.

Observation 1 shows that VAA is equivalent to
SAA for sufficiently small ϵ values. This indicates
that VAA is an extension of SAA that avoids the
tradeoff when ϵ is large. The proof of the observa-
tion is in Appendix A.1. We point out that equiv-
alent findings were also mentioned in Yang et al.
[2020a,b], Khoury and Hadfield-Menell [2019].

As explained in Section 1.3.1, studying the local
robustness of classifiers has a limitation. Attack-
ers can attack models with only local robustness
by using large ϵ values. The absence of a tradeoff
between accuracy and VAA enables us to increase
ϵ values and to study global robustness. We define
a measure for global robustness using VAA.

Definition 4 (Global Voronoi-epsilon robust-
ness). Global Voronoi-epsilon robustness aglobal is
defined as:

aglobal = lim
ϵ→∞

aV or(ϵ).

Global Voronoi-epsilon robustness considers the
robustness of classifiers for most points in X (all
points except for Voronoi boundary V B(X), which
is the complement set of the unions of Voronoi
cells.). We derive the following theorem from global
Voronoi-epsilon robustness.

Theorem 1. A single nearest neighbor (1-NN)
classifier maximizes global Voronoi-epsilon robust-
ness aglobal on training data. 1-NN classifier is
a unique classifier that satisfies this except for
Voronoi boundary V B(X).

(a)

(b)

(c)

Figure 2: Visualization of the adversary regions for
VAA with varying ϵ values. The data points and
regions are colored as in Figure 1. (a): When ϵ =
0.5. (b): When ϵ = 1.0. (c): When ϵ = 3.5.
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When lp norm with 1 < p < ∞ is used as a
distance metric, a data point will almost never lie
on the Voronoi boundary V B(X) in practical sit-
uations with only finite number of available train-
ing data points. Note that Theorem 1 only holds
for exactly the same data under the exclusive class
condition as mentioned in the problem settings 1.1.
It does not take into account generalization. The
proof of the theorem is in A.2.

3 Discussion

In this work, we address the tradeoff between ac-
curacy and adversarial robustness by introducing
the Voronoi-epsilon adversary. Another way to ad-
dress this tradeoff is to use a Bayes optimal clas-
sifier [Suggala et al., 2019, Kim and Wang, 2020].
Since this is not available in practice, a reference
model must be used as an approximation. In that
case, the meaning of adversarial robustness is de-
pendent on the choice of the reference model. VAA
removes the need for a reference model by using
the data point set X and the distance metric d to
construct adversary. This is in contrast to Khoury
and Hadfield-Menell [2019] who used Voronoi cell-
based constraints (without ϵ-balls) for an adversar-
ial training purpose, but not for measuring adver-
sarial robustness.

By avoiding the tradeoff with VAA, we can ex-
tend the study of local robustness to global robust-
ness. Also, Theorem 1 implies that VAA is a mea-
sure of agreement with the 1-NN classifier. For suf-
ficiently small ϵ values, SAA is also a measure of
agreement with the 1-NN classifier because SAA is
equivalent to VAA as in Observation 1. This im-
plies that many adversarial defenses [Goodfellow
et al., 2015, Madry et al., 2018, Zhang et al., 2019,
Wong and Kolter, 2018, Cohen et al., 2019] with
small ϵ values unknowingly try to make locally the
same predictions with a 1-NN classifier.

In our analysis, we do not take into account gen-
eralization, and robust models are known to often
generalize poorly [Raghunathan et al., 2020]. Many
defense models use softmax classifiers and the final
classifications of softmax classifiers are done on the
trained feature representations. The close relation-
ship between adversarially robust models and the
1-NN classifier revealed by Observation 1 and The-
orem 1 indicates that feature representations are

affected by the distance relationship in the input
space. It will be worth exploring if that can ex-
plain the reduced discriminative power [Wu et al.,
2021] of robust models and their decreased gener-
alization power.
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A Appendix

A.1 Proof of Observation 1

To prove Observation 1, we introduce the following
lemma.

Lemma 1. When N is the number of data points,
let x2, · · · , xN ∈ X − {x} be the sorted neigh-
bors of a data point x ∈ X. Mathematically,
d(x, x2) ≤ d(x, x3) ≤ · · · ≤ d(x, xN ). Then, when
ϵ < 1

2d(x, x2), the following equation holds.

RV or(ϵ;x) = B(x, ϵ). (3)

Proof. Lemma 1
We only consider when ϵ < 1

2d(x, x2).
Let x′ ∈ B(x, ϵ). Then, d(x, x′) ≤ ϵ.
1
2d(x, x2) ≤ 1

2d(x, xclean),∀xclean ∈ X − {x}.
Due to the triangle inequality, 1

2d(x, xclean) ≤
1
2d(x, x

′) + 1
2d(x

′, xclean).
When we combine the above inequalities,
d(x, x′) ≤ ϵ < 1

2d(x, x2) ≤ 1
2d(x, xclean) ≤

1
2d(x, x

′) + 1
2d(x

′, xclean),∀xclean ∈ X − {x}.
Then, 1

2d(x, x
′) < 1

2d(x
′, xclean) =

1
2d(xclean, x

′),∀xclean ∈ X − {x}. Thus,
x′ ∈ V or(x).
Hence, B(x, ϵ) ⊂ V or(x) and RV or(ϵ;x) =
B(x, ϵ) ∩ V or(x) = B(x, ϵ).

Now, we prove Observation 1.

Proof. Observation 1
dmin ≤ d(x, xi), ∀x, xi ∈ X,x ̸= xi.
When ϵ < 1

2dmin, ϵ <
1
2dmin ≤ 1

2d(x, xi), ∀x, xi ∈
X,x ̸= xi. Thus, RV or(ϵ;x) = B(x, ϵ), ∀x ∈ X due
to the equation (3) in Lemma 1.
Then, aV or(ϵ) is same with astd(ϵ) as RV or(ϵ;x) =
B(x, ϵ) = Rstd(ϵ;x),∀x ∈ X.

A.2 Proof of Theorem 1

To prove Theorem 1, we introduce the following
lemma.

Lemma 2. By changing ϵ and x ∈ X, x′ that satis-
fies x′ ∈ RV or(ϵ;x) can fill up X except for Voronoi
boundary V B(X). In other words, V B(X)c =

X − V B(X) ⊂
⋃
ϵ≥0

( ⋃
x∈X

RV or(ϵ;x)

)
.

Proof. Lemma 2
Let x′ ∈ V B(X)c.
Note that mathematically, V B(X) =( ⋃

x∈X

V or(x)

)c

.

Hence, V B(X)c =

(( ⋃
x∈X

V or(x)

)c)c

=⋃
x∈X

V or(x).

∃x ∈ X such that x′ ∈ V or(x).
Let ϵ∗ = d(x, x′). Then, d(x, x′) ≤ ϵ∗ and
x′ ∈ V or(x).
x′ ∈ B(x, ϵ∗) ∩ V or(x) = RV or(ϵ

∗;x) ⊂⋃
ϵ≥0

( ⋃
x∈X

RV or(ϵ;x)

)
.

We proved V B(X)c ⊂
⋃
ϵ≥0

( ⋃
x∈X

RV or(ϵ;x)

)
.

Now, we prove Theorem 1.

Proof. Part 1
First, we prove that a 1-NN classifier maximizes
global Voronoi-epsilon robustness. We denote the
1-NN classifier as f1−NN and calculate its global
Voronoi-epsilon robustness.
For a data point x ∈ X, let x′ ∈ RV or(ϵ;x) =
B(x, ϵ) ∩ V or(x).
x′ ∈ V or(x) ⇐⇒ d(x, x′) < d(xclean, x

′),∀xclean ∈
X − {x}.
As x′ ∈ RV or(ϵ;x) ⊂ V or(x), x is unique nearest
data point in X and thus f1−NN (x′) = cx.
When x∗ = argmax

x′∈RV or(ϵ;x)

L(x′, cx),

aV or(ϵ) = E(x,cx)∼D [1 (f1−NN (x∗) = cx)] =
E(x,cx)∼D [1] = 1.
aglobal = lim

ϵ→∞
aV or(ϵ) = lim

ϵ→∞
1 = 1. Thus, f1−NN

takes the maximum global Voronoi-epsilon robust-
ness 1.

Part 2
Now, we prove that if f∗ maximizes global Voronoi-
epsilon robustness, then f∗ becomes the 1-NN
classifier except for Voronoi boundary V B(X).
Let f∗1 be a function that maximizes global
Voronoi-epsilon robustness.
From the last part of the part 1, when we calculate
global Voronoi-epsilon robustness of f∗1, it should
satisfy the equation aglobal = 1.
For a data point x ∈ X and ϵ1 < ϵ2, RV or(ϵ1;x) =
B(x, ϵ1)∩V or(x) ⊂ B(x, ϵ2)∩V or(x) = RV or(ϵ2;x).
Thus, for a data point x ∈ X and ϵ1 < ϵ2,
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L(x∗1, cx) ≤ L(x∗2, cx) where x∗1 =
argmax

x′∈RV or(ϵ1;x)

L(x′, cx) and x∗2 =

argmax
x′∈RV or(ϵ2;x)

L(x′, cx). From the definition of L,

l(f∗1(x∗1), cx) ≤ l(f∗1(x∗2), cx). From the neces-
sary condition of classification loss l, we obtain the
inequality 1

(
f∗1(x∗1) = cx

)
≥ 1

(
f∗1(x∗2) = cx

)
.

aV or(ϵ1) = E(x,cx)∼D
[
1
(
f∗1(x∗1) = cx

)]
≥

E(x,cx)∼D
[
1
(
f∗1(x∗2) = cx

)]
= aV or(ϵ2) for

ϵ1 < ϵ2. In other words, aV or(ϵ) is a monotonically
decreasing (non-increasing) function.
aV or(ϵ) = 1, ∀ϵ ≥ 0 (∵ If aV or(ϵ

∗) < 1 for an
ϵ∗ > 0, then it is a contradictory to aglobal = 1 as
aV or(ϵ) is a monotonically decreasing function.)
1 = aV or(ϵ) = E(x,cx)∼D

[
1
(
f∗1(x∗) = cx

)]
where

x∗ = argmax
x′∈RV or(ϵ;x)

L(x′, cx).

As the calculation is based on the finite set X,
f∗1(x∗) = cx (∵ 1

(
f∗1(x∗) = cx

)
= 1) where

x∗ = argmax
x′∈RV or(ϵ;x)

L(x′, cx).

As x∗ are the worst case adversarially perturbed
samples, i.e., samples that output mostly differ-
ent from cx, f∗1(x′) = cx = f1−NN (x′) where
x′ ∈ RV or(ϵ;x).
By changing ϵ and x ∈ X, x′ that satisfies
x′ ∈ RV or(ϵ;x) can fill up X except for V B(X)
(∵ Lemma 2). Hence, f∗1 is equivalent to f1−NN

except for Voronoi boundary V B(X).
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