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This paper presents a novel theoretical framework in the Hamiltonian theory of nonlinear
surface gravity waves. The envelope of surface elevation and the velocity potential on the
free water surface are introduced in the framework, which are shown to be a new pair of
canonical variables. Using the two envelopes as the main unknowns, coupled envelope
evolution equations (CEEEs) are derived based on a perturbation expansion. Similar to
the high-order spectral method, the CEEEs can be derived up to arbitrary order in wave
steepness. In contrast, they have a temporal scale as slow as the rate of change of a wave
spectrum and allow for the wave fields prescribed on a computational (spatial) domain
with a much larger size and with spacing longer than the characteristic wavelength at no
expense of accuracy and numerical efficiency. The energy balance equation is derived
based on the CEEEs. The nonlinear terms in the CEEEs are in a form of the separation of
wave harmonics, due to which an individual term is shown to have clear physical meanings
in terms of whether or not it is able to force free waves that obey the dispersion relation.
Both the nonlinear terms that can only lead to the forcing of bound waves and those that are
capable of forcing free waves are demonstrated, in the case of the latter through the analysis
of the quartet and quintet resonant interactions of linear waves. The relations between
the CEEEs and two other existing theoretical frameworks are established, including the
theory for a train of Stokes waves up to second order in wave steepness (Fenton, ASCE
J. Waterway Port Coastal Ocean Engng, vol. 111, issue 2, 1985, pp. 216–234) and a
semi-analytical framework for three-dimensional weakly nonlinear surface waves with
arbitrary bandwidth and large directional spreading by Li & Li (Phys. Fluids, vol. 33,
issue 7, 2021, 076609).
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1. Introduction

For the description of non-breaking surface water waves in the open ocean and coastal
waters, there are many available approaches in the framework of potential flow. The
high-order spectral (HOS) method (Dommermuth & Yue 1987; West et al. 1987),
Boussinesq-type formulations (Wei et al. 1995; Agnon, Madsen & Schäffer 1999),
volumetric methods (Engsig-Karup, Bingham & Lindberg 2009; Bihs et al. 2020) and
the fast computational method developed by Clamond & Grue (2001) are a few examples
of these that can account for waves up to arbitrary order in wave steepness. In terms of
the numerical efficiency for a given level of accuracy, it is without doubt that the HOS
method is the preferred choice compared with the aforementioned alternatives (Klahn,
Madsen & Fuhrman 2020). Two aspects have especially contributed to its high efficiency:
(i) it permits an explicit method for the time integration and vertical velocity on the free
water surface, and (ii) it takes advantage of spectral methods for numerical computations
(Dommermuth & Yue 1987; Ducrozet et al. 2016).

In cases for the evolution of weakly nonlinear waves, a nonlinear Schrödinger (NLS)
equation-based model (Benney & Newell 1967; Zakharov 1968; Chu & Mei 1971; Davey
& Stewartson 1974; Dysthe 1979; Trulsen & Dysthe 1996; Trulsen et al. 2000; Li 2021) as
well as the Hasselmann/Zakharov integral equation (Hasselmann 1962; Zakharov 1968;
Janssen 1983; Stiassnie & Shemer 1984; Krasitskii 1994) have been widely known as
a powerful analytical tool. The NLS equation-based model is especially superior to the
HOS method in the sense of the computational efficiency, arising from the fact that it
describes the evolution of an envelope that varies slowly in time and depends on a long
length scale compared with the rapidly varying wave phase with a short length scale. A
NLS equation, e.g. those by Trulsen et al. (2000), Gramstad & Trulsen (2011) and Li
(2021), can efficiently resolve the phase of free waves in a large computational domain
while it well captures the wave energy transfers due to quartet interactions of waves within
a narrow bandwidth. However, approximations in addition to a perturbation expansion
are necessary throughout the derivations of a NLS equation, having limited its wide
validity (see, e.g. p.202 by Janssen 2004). This especially indicates that their capability
of accounting for the physics due to moderately nonlinear and steeper waves is likely
compromised.

Similar to a NLS-based equation, the reduced Zakharov equation has been widely
used for elucidating the nonlinear physical properties of water waves; see, e.g. Crawford,
Saffman & Yuen (1980), Janssen & Onorato (2007), Stiassnie & Gramstad (2009) and
Gramstad (2014) among others. It produces explicit expressions for the interaction of
a number of up to five waves and its numerical and theoretical potential has been
extensively explored in recent years (Annenkov & Shrira 2001, 2006, 2009; Dyachenko
& Zakharov 2011; Dyachenko, Kachulin & Zakharov 2017). One distinctive feature of the
reduced Zakharov equation and its compact form is that they describe the evolution of a
complex function that is defined using the Hamiltonian structure of physical variables
for eliminating non-resonant interaction terms. This means other wave fields such as
the surface elevation and velocity are evaluated at an additional cost. Nevertheless,
existing wave-averaged equations of ocean mean flows commonly rely on the input of the
wave-induced (Eulerian or Lagrangian) velocity and surface elevation (see, e.g. Sullivan
& McWilliams (2010); Suzuki & Fox-Kemper (2016) and references therein). In such a
context, the use of the new complex function may not necessarily introduce the advantage
of the possible elimination of the nonlinear non-resonant terms for surface waves in a
non-conservative system as they are expected to play a role. Thus, the Zakharov equation
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CEEEs for nonlinear surface gravity waves

and its compact and numerical versions are not seemingly ideal as a wave-phase resolved
coupled model in large-scale physical processes in the open ocean, either.

The superior features of a NLS equation-based model to the HOS method are especially
important in the study of the roles of surface waves in the dynamics of the upper ocean,
e.g. vertical mixing and the circulation of submesoscale currents, attributing to two
aspects. Firstly, various important physical processes, e.g. the exchange of the momentum
and energy flux between surface waves and a submesoscale flow, occur in a temporal
and length scale at a magnitude significantly larger than that of surface waves, as has
been especially found in wave-averaged equations for the dynamics of the upper ocean
flows (McWilliams, Restrepo & Lane 2004; Sullivan & McWilliams 2010; Suzuki &
Fox-Kemper 2016). This suggests the need for capturing the long-term energy evolution
of waves described on an extremely large domain. Secondly, recent studies find that wave
phases play an important role in distorting turbulence with a scale smaller than the surface
waves (Teixeira & Belcher 2002; Thorpe et al. 2004; D’asaro 2014) and the generation of
turbulence by non-breaking surface waves (Babanin 2006; Benilov 2012), addressing the
additional need for resolving wave phases for important physical mechanisms with a small
scale.

Indeed, a NLS equation-based model has been included in the framework of a regional
ocean modelling system (ROMS) based on McWilliams et al. (2004), despite the fact
that a few important nonlinear wave physics such as the Benjamin–Feir instability
(Benjamin & Feir 1967; Longuet-Higgins 1978; Janssen & Herbers 2009) and quartet
resonant interaction of waves (Phillips 1960) have not been considered yet. Moreover,
due to the multiple scales involving a few orders of magnitude, the understanding of
the coupled effects between small-scale turbulence, middle-scale surface waves and
large-scale submesoscale currents have been extremely limited. To make a difference, the
author believes that it relies on an accurate and efficient model of surface waves, which
should have the potential of bridging the connections between the smaller and larger scale
physical processes with the scale in the middle being characterized by surface waves. To
this end, neither the HOS method nor a NLS equation-based model is seemingly ideal,
the former of which due to the relatively low numerical efficiency for wave parameters
required on an extremely large domain and the latter of which due to the restricted accuracy
and validity.

Following the above discussion, an obvious question is whether it is possible to
derive a framework that combines the advantages of both the HOS method and a NLS
equation-based model, with the potential of being applied in more general works that
directly bridge the coupled physical processes of ocean surface waves with small-scale
turbulence and submesoscale current. It means that such a framework should be as accurate
as the HOS method while permitting the main numerical features of a NLS equation-based
model. Specifically, it is desired to include the computational efficiency that allows for a
large and coarse computation domain on which both the amplitude and wave phase can
be well resolved. Addressing this question defines the primary objective of this paper. It
aims to present a new framework originally inspired by a NLS equation-based model in the
manner that envelopes are introduced as the starting point. The coupled envelope evolution
equations that can be derived accurate to arbitrary order in wave steepness are presented in
the Hamiltonian theory. It should be noted that the idea of the envelope equations, which
takes the advantages of both Fourier transforms and a newly defined linear operator, is
different from that of the localized Zakharov equation (LZE). The idea of LZE deals with
wave field dynamics in a manner of multiple interacting wave packets, posing challenges
in its mathematical implementations (Rasmussen & Stiassnie 1999; Gramstad, Agnon &
Stiassnie 2011). With a need for extension, the newly derived framework is expected to
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have especially wide applicability in terms of coupling the surface wave driven processes
with regional oceanic dynamics in the upper ocean.

This paper is laid out as follows. The statement of the problem is presented in § 2,
followed by a review of the HOS method (§ 3.1) and a traditional perturbation method
(§ 3.2) in § 3. A new proposed framework is presented in § 4. In § 4.1 the (slowly
spatial-temporal varying) envelope of both surface elevation and velocity potential on the
free water surface – which are firstly introduced in this paper – are shown to be a new
pair of canonical variables. The detailed derivations for the coupled envelope evolution
equations (CEEEs) are presented in §§ 4.2–4.4. A few important features of the CEEEs
are explored in § 5 and § 6. Three aspects of the newly derived CEEEs are discussed in § 5.
How to apply an exponential integrator with the CEEEs is presented in § 5.1, together with
the numerical implementation of the CEEEs that leads to the accurate description of linear
waves. It is shown in § 5.2 that the CEEEs can lead to the energy balance equation. In the
limiting cases where wave nonlinearity can be neglected, the energy balance equation is
shown to naturally conserve the energy, implying no exchange of energy between linear
waves as it should be. The nonlinear forcing terms in the CEEEs have clear physical
meanings that are discussed in § 5.3, including those that can only contribute to the
forcing of bound waves and those that are capable of forcing free waves arising from
the quartet and quintet resonant interactions of waves. The CEEEs are compared with a
traditional perturbation method in § 6.1, where the relations between the two methods are
analytically shown for the evolution of a train of both Stokes waves (Fenton 1985) and
three-dimensional waves with arbitrary bandwidth and with large directional spreading
(Li & Li 2021). The comparisons between the CEEEs and the HOS method are discussed
in § 6.2 in numerical computations for a limiting case and the numerical performances
illustrated through a few numerical algorithms used for numerical implementations. The
main conclusions are presented in § 7.

2. Mathematical formulation

2.1. Problem definition
We consider ocean surface waves propagating on waters of a finite depth in the framework
of potential flow theory, thereby assuming incompressible inviscid flows and irrotational
fluid motions, and negligible effects of surface tension. A Cartesian coordinate system is
chosen with the undisturbed water surface located at z = 0. A list of the main symbol
notations used in this work is given in table 1. The system can be described as a boundary
value problem governed by the Laplace equation

∇2
3Φ = 0 for − h < z < ζ(x, t), (2.1)

where Φ(x, z, t) denotes the velocity potential, ζ(x, t) is the free surface elevation, x is
the position vector in the horizontal plane, h is the water depth assumed to be constant,
t is the time and ∇3 = (∇, ∂z) with ∇ = (∂x, ∂y) denoting the gradient in the horizontal
plane. Equation (2.1) should be solved subject to the nonlinear kinematic and dynamic
boundary conditions (cf. Davey & Stewartson 1974) on the free water surface z = ζ(x, t),
respectively,

∂tζ + ∇Φ · ∇ζ − ∂zΦ = 0 and ∂tΦ + gζ + 1
2 (∇3Φ)

2 = 0, (2.2a,b)

where g denotes the gravitational acceleration; a seabed boundary condition

∂zΦ = 0 for z = −h, (2.3)
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CEEEs for nonlinear surface gravity waves

(x, z) (Position vector in the horizontal space, vertical axis)
t Time
ρ Water density
g Gravitational acceleration
h Water depth
k0 (k0 = |k0|) and ω0 Characteristic wave vector (wavenumber) and angular frequency
ks The wavenumber of the shortest wave that can be represented
fs The frequency of the shortest wave that can be represented
�t The time interval
α, β Non-negative dimensionless parameters
M The truncated order of accuracy in wave steepness
Ns The total number of discrete points used in a computational domain
ε Dimensionless wave steepness used in the HOS method and CEEEs
ε0 Non-dimensional wave steepness defined in § 3.2
εt = fs�t Dimensionless time interval
εf = ( fs − βMf0)/fs Dimensionless frequency bandwidth
εk = (ks − αMk0)/ks Dimensionless wavenumber bandwidth
ζ(x, z, t) Surface elevation
ψ(x, t) Velocity potential on the free water surface
W(x, t) Vertical velocity on the free water surface
Φ(x, z, t) Velocity potential
w(x, z, t) Vertical velocity
A(x, t) The envelope of the surface elevation ζ
Bs(x, t) ≡ B0 ≡ B(11)

0 The envelope of the velocity potential (ψ) on the free water surface
B(x, z, t) ≡ B(11) The envelope of the velocity potential Φ
w̄(x, z, t) The envelope of the vertical component of velocity w
W̄(x, t) The envelope of the vertical velocity on the free water surface W
subscript ‘0’ The evaluation at the still water surface z = 0
subscript ‘M’ The truncated order of accuracy in wave steepness
subscripts ‘mj’ The j-th harmonic in the m-th order in wave steepness ε0
superscripts ‘(m)’ The m-th order in wave steepness ε
superscripts ‘(mj)’ The j-th harmonic in the m-th order in wave steepness ε
W(x, t) and T (x, t) The nonlinear forcing term defined in the kinematic and dynamic boundary

conditions on the free water surface, respectively
NA(x, t) and NB(x, t) The nonlinear forcing terms newly introduced in the CEEEs
̂(· · · ) The Fourier transform of an arbitrary parameter (· · · ) with respect to the

horizontal position vector into the Fourier k space
the prime (’) The fields only used in a traditional method presented in § 3.2

Table 1. Nomenclature.

where a constant uniform water depth h, is assumed. It should be noted that the extension
of the new envelope equations presented in § 4 to permit a slowly varying water depth with
the horizontal position would be straightforward following Dommermuth & Yue (1987)
and the detailed derivations in this paper.

2.2. Boundary conditions on the free water surface
Following Zakharov (1968) and Krasitskii (1994), we introduce the potential (ψ) and
vertical velocity (W) defined on the unknown free water surface z = ζ(x, t) as

ψ(x, t) = Φ(x, ζ(x, t), t) and W(x, t) = ∂zΦ(x, z, t), for z = ζ(x, t). (2.4a,b)

Inserting the definition of ψ and W into (2.2a,b) leads to the boundary conditions on
the free water surface expressed as equations for unknowns ψ(x, t), W(x, t) and ζ(x, t),
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given by

∂tζ − W = −∇ψ · ∇ζ + W(∇ζ )2 and ∂tψ + gζ = −1
2
(∇ψ)2 + 1

2
W2
[
1 + (∇ζ )2

]
.

(2.5a,b)

The system described by the equations composed of (2.1), (2.3) and (2.5a,b) is known
as the fully nonlinear (potential flow) boundary value problem in a Hamiltonian theory
(see, e.g. West et al. 1987). An approximate solution to this problem can be obtained by
using various methods as noted in the introduction, e.g. a HOS method (Dommermuth &
Yue 1987; West et al. 1987), Hasselmmann/Zakharov integral equation (Hasselmann 1962;
Zakharov 1968; Krasitskii 1994) and the CEEEs that are derived for the first time in § 4.

2.3. Velocity potential
We seek the solution for the unknown potential (Φ(x, z, t)) of the Laplace equation and the
seabed boundary condition given by (2.1) and (2.3), respectively, in the form of a power
series in wave steepness denoted by ε that stands for a small non-dimensional scaling
parameter

Φ(x, z, t) =
M∑

m=1

εmΦ(m)(x, z, t), (2.6)

where the terms are kept up to the Mth order in wave steepness and the superscript ‘(m)’
denotes O(εm), and the unknown (real) potential at the mth order in wave steepness is
given by (see, e.g. Dommermuth & Yue 1987)

Φ(m)(x, z, t) =
∫ ∞

−∞
Φ̂
(m)
0 (k, t)

cosh |k|(z + h)
cosh |k|h eik·x dk, (2.7)

where Φ̂(m)0 (k, t) = Φ̂(m)(k, 0, t) denotes the mth order velocity potential evaluated at z =
0 in the Fourier k plane; the subscript ’0’ is used to denote the evaluation at a still water
surface z = 0.

2.4. Definition of two operators
For later reference and simplicity, we introduce a characteristic wave vector and angular
wave frequency, denoted by k0 = (k0, 0) and ω0, respectively, with the magnitude k0 =
|k0|. It is highlighted that the positive x direction is chosen along the direction of the
wave vector k0, which also accords to the main direction of wave propagation. The
characteristic wave vector and frequency obey the linear dispersion relation ω0 = ω(k0, h)
with ω(k, h) = √

g|k| tanh |k|h.
We introduce two operators that are demonstrated by an arbitrary temporal-spatial

function, χ(x, t), including a Fourier transform with respect to the horizontal position
vector x and a new operator referred to as the envelope transform, given by, respectively,

χ̂ (k, t) = 1
4π2

∫ ∞

−∞
χ(x, t)e−ik·x dx, (2.8a)

χ
[j]
+ (x, t;α, β) = eijβω0t

∫ ∞

−∞
2Θ[(k + jαk0) · k0]χ̂ (k + αk0, t)eik·x dk, (2.8b)

in which the hat denotes a parameter transformed to the Fourier k plane; α, β and j
are arbitrary non-negative constants that can be freely chosen to facilitate the numerical
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O 1.5k0–1.5k0 k

O k0–k0 k

|2χ̂(k, t)| for k > 0

|χ̂+
[1](k, t)|

|2χ̂(k, t)| for k < 0

|χ̂+
[1]∗(–k, t)|

|2χ̂(k, t)| for k > 0

|χ̂+
[1](k, t)|

|2χ̂(k, t)| for k < 0

|χ̂+
[1]∗(–k, t)|

(a)

(b)

Figure 1. Diagram of the operators in the Fourier wavenumber space in two dimensions; for the envelope
transform, (a) α = 1 and (b) α = 1.5.

computations as will be shown in the following; a combination of the subscript ‘+’ and
superscript ‘[j]’ are used to denote the envelop transform; Θ denotes the Heaviside step
function. The relationship between the two operators defined in (2.8b) is shown in figure 1.
It is seen from figure 1 that the envelope transform is composed of three consecutive
procedures. Firstly, it collects the components of 2χ̂ (k) in the wavenumber region for
k0 · k > 0. Subsequently, it employs the translation operator defined as exp[−ij(αk0 ·
x − βω0t)] in the Fourier plane. Thirdly, it operates an inverse Fourier transform given
by (2.8a). For α = 0 = β or j = 0, it is understood that the envelope transform simply
recovers the inverse Fourier transform with respect to 2χ̂ in the positive wavenumber
plane where k · k0 > 0.

Due to the symmetrical properties of a Fourier transform and the definition of the
envelope transform, we readily obtain

χ(x, t) = 1
2χ

[j]
+ exp (ij(αk0 · x − βω0t))+ c.c., (2.9)

where c.c. denotes the complex conjugates, and

χ̂
[j]
+ (k, t) = 2Θ[(k + jαk0) · k0]χ̂ (k + jαk0, t)eijβω0t. (2.10)

It is understood that χ̂ [j]
+ varies with the different combinations of the constants (α, β, j),

as shown in figure 1 where two special cases with α = 1 and α = 1.5 are shown. With
j = 1, the envelope transform leads to the definition of the envelope of the wave elevation
and potential at the free water surface, which will be used in § 4,

A(x, t;α, β) = ζ
[1]
+ and Bs(x, t;α, β) = ψ

[1]
+ , (2.11a,b)

thereby

ζ = 1
2 A exp (i(αk0 · x − βω0t))+ c.c. and ψ = 1

2 Bs exp (i(αk0 · x − βω0t))+ c.c.
(2.12a,b)
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The main intention of allowing for an arbitrary choice of (α, β, j) is to facilitate
numerical implementations and, therefore, improve the numerical efficiency. For example,
with the choice of α = 0 and β = 1, we will show in § 6 that the computational efficiency
of a HOS method can be improved. With α = β = 1 and additional assumptions required,
the CEEEs would be reduced to a third-order accurate NLS equation-based model that has
been demonstrated with an excellent performance.

3. A review of two methods

In this section we review two methods for the description of non-breaking surface waves,
which are the HOS method presented in § 3.1 and a so-called traditional perturbation
method in § 3.2. Both methods rely on an unknown velocity potential being expressed
in the form of a perturbation expansion and Fourier transform, as explained in § 2.3. Their
distinctive difference lies in the fact that they seek different approaches for the unknowns:
surface elevation, potential and vertical velocity on the free water surface.

3.1. The HOS method
The HOS method proposes to solve the fully nonlinear (potential flow) boundary value
problem in a Hamiltonian theory, as introduced in § 2.2, for two main unknowns that are
the surface elevation (ζ ) and potential (ψ) on the free water surface. It consists of two
procedures. It firstly seeks to express the unknowns including the velocity potential (Φ)
and the vertical velocity (W(x, t)) on the free water surface in the form of a function of ζ
andψ , which will be presented in § 3.1.1. Secondly, through using the boundary conditions
(2.5a,b) it leads to the evolution equations that can be numerically solved for the two main
unknowns, as presented in § 3.1.2.

3.1.1. Solution structure for a finite uniform depth
We proceed to explain how the velocity potential and vertical velocity can be expressed in
the form of functions of both ζ and ψ . Following Dommermuth & Yue (1987) and West
et al. (1987), the HOS method proposes to letting

Φ(1)(x, 0, t) = ψ(x, t) ≡ Φ(x, ζ(x, t), t), (3.1)

which, due to the perturbation expansion (2.6), leads to the velocity potential on the free
water surface given by

Φ(x, ζ, t) =
M∑

m=1

Φ(m)(x, z, t) for z = ζ . (3.2)

An expression for Φ(m) for m > 1 can be obtained through the subsequent procedures:
Taylor expanding the terms on the right-hand side of (3.2) about z = 0, inserting (3.1) and
collecting the same orders in wave steepness. Hence, Φ(m) is expressed as functions of the
lower-order parameters as

Φ
(m)
0 (x, t) = −

m−1∑
k=1

1
k!
ζ k∂k

zΦ
(m−k)(x, z, t) for z = 0 and m ∈ {2, 3, . . .M}, (3.3)

where, as noted, the subscript ‘0’ denotes the parameters evaluated at a still water surface,
z = 0; i.e. Φ(m)0 ≡ Φ(m)(x, 0, t). The expression (3.3) suggests that if ψ and ζ are given,
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Φ(m) for m > 1 will be obtained in sequence from the lowest to higher orders. Similarly,
the vertical velocity (W) on the unknown free water surface can be obtained from Taylor
expanding its definition given by (2.4b) about z = 0 and inserting the expression for Φ(m)0
to give

W(x, t) =
M∑

m=1

εmW(m)(x, t), with (3.4a)

W(m)(x, t) =
m−1∑
k=0

ζ k

k!
∂k+1

z Φ(m−k)(x, z, t) for z = 0 and m ∈ {1, 2, . . . ,M}. (3.4b)

Therefore, W(m) can be obtained in sequence from the lowest order m = 1 to higher orders
due to (2.7) for Φ(m)(x, z, t), (3.3) for Φ(m)0 (x, t) and (3.4), with ψ and ζ as input.

3.1.2. The Mth order accurate equations in the HOS method
Inserting the perturbed solution (3.1) forψ and (3.4a,b) for W into the boundary conditions
(2.5a,b) and keeping the terms up to order M gives rise to

∂tζ − ∂zΦ
(1) = WM(x, t) and ∂tψ + gζ = TM(x, t), for z = 0, (3.5a,b)

where the subscript ‘M’ denotes the truncated order of accuracy in wave steepness,

WM(x, t) =
M∑

m=1

W(m)(x, t) and TM(x, t) =
M∑

m=1

T (m)(x, t), (3.6a,b)

where W1 ≡ W(1) = 0 and T1 ≡ W(1) = 0, and the nonlinear forcing terms, W(m)(x, t)
with m ≥ 2, are non-vanishing and given by

W(2) = W(2) − ∇ψ · ∇ζ, (3.7a)

W(3) = W(3) + W(1)(∇ζ )2, (3.7b)

W(4) = W(4) + W(2)(∇ζ )2 and (3.7c)

W(5) = W(5) + W(3)(∇ζ )2, (3.7d)

which are explicitly expressed up to the fifth order in wave steepness; similarly, T (m)(x, t)
are

T (2) = 1
2 (W

(1))2 − 1
2(∇ψ)2, (3.8a)

T (3) = W(1)W(2), (3.8b)

T (4) = 1
2 (W

(2))2 + W(1)W(3) + 1
2 (W

(1))2(∇ζ )2, (3.8c)

T (5) = W(2)W(3) + W(1)W(4) + (W(1)W(2))(∇ζ )2. (3.8d)

We can summarize that the HOS method has derived the Mth order accurate equations
(3.5a,b) that can be numerically solved for ζ and ψ , with Φ(m) and W(m) obtained from
(3.3) and (3.4), respectively, in sequence from the lowest order to higher orders (West et al.
1987). The nonlinear terms on the right-hand side of (3.5a,b) are given by (3.7) and (3.8).
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3.2. Traditional perturbation method
Note that the derivations presented in this section will only be used in § 6.1 for comparison
and completeness. Different from the methods based on the boundary conditions given by
(2.5a,b) in § 2.2, reference is made to one of these methods that have the following features
as a traditional perturbation method. It primarily seeks the approximate solution to the
boundary value problem described by (2.1), (2.2a,b) and (2.3). The boundary conditions
(2.2a,b) on the free water surface are especially expanded about the still water surface
z = 0 for all z-dependent parameters, in contrast to the boundary conditions given by
(3.5a,b) where only the vertical velocity is expanded about z = 0. The primary unknowns
are the velocity potential on a still water surface and the surface elevation that are
expressed in the form of a power series in wave steepness. Substituting these approximate
expressions into the boundary value problem given by (2.1), (2.2a,b) expanded about
z = 0, and (2.3), and collecting the same orders in wave steepness will lead to the boundary
value problems at different order in wave steepness. These boundary value problems are
solved in sequence from the first to the Mth order in wave steepness. A few examples
that are based on a traditional perturbation method are Chu & Mei (1971), § 13 by Mei,
Stiassnie & Yue (2005); a NLS equation-based model like Davey & Stewartson (1974),
Dysthe (1979), Trulsen et al. (2000), Slunyaev (2005) and Li (2021); the fifth-order Stokes
waves by Fenton (1985) and the second-order broadband framework by Li & Li (2021).

The main derivations needed in a traditional perturbation method are explained in the
following, for which the leading-order approximations are kept only to the second order
in wave steepness for simplicity. In order to indicate the differences with the main results
presented in most chapters of this paper, a prime is added to denote the parameters used
in a traditional expansion method and subscripts are used to denote the different orders in
wave steepness and wave harmonics. An approximate form for both the unknown velocity
potential and elevation are assumed, to the second order in wave steepness ε0,

Φ = ε0Φ
′
11 + ε2

0 (Φ
′
22 +Φ ′

20)︸ ︷︷ ︸
≡Φ ′

2(x,z,t)

and ζ = ε0ζ
′
11 + ε2

0 (ζ
′
22 + ζ ′

20)︸ ︷︷ ︸
≡ζ ′

2(x,t)

, (3.9a,b)

where ε0 denotes the dimensionless steepness of linear waves that obeys O(ε0) ∼ O(k0ζ
′
11)

to primarily distinguish it from ε defined in § 2.3; the subscript ‘mj’ denotes O(εm
0 ) and

the jth wave harmonic; ζ ′
mj = ζ ′

mj(x, t) and Φ ′
mj = Φ ′

mj(x, z, t). The potential and vertical
velocity on the free water surface are given in the form of a Taylor expansion about z = 0,
to the second order in wave steepness ε0,

ψ = ε0Φ
′
11 + ε2

0ζ
′
11∂zΦ

′
11 and W = ε0∂zΦ

′
11 + ε2

0ζ
′
11∂zzΦ

′
11, for z = 0. (3.10a,b)

Inserting (3.9a,b) for the unknown potential and elevation, respectively, into the surface
boundary conditions (2.2a,b), expanding the equations about z = 0, collecting the terms
at second order in ε0 leads to

∂tζ
′
2 − ∂zΦ

′
2 = ζ ′

11∂zzΦ
′
11 − ∇ζ ′

11 · ∇Φ ′
11, (3.11a)

∂tΦ
′
2 + gζ ′

2 = ζ ′
11∂tzΦ

′
11 − 1

2(∇3Φ
′
11)

2, (3.11b)

which are used to solve for the unknowns (i.e. ζ2 and Φ2) at second order with the
linear parameters obtained from the linearized equations of (2.1), (2.2a,b) and (2.3); see,
e.g. § 13 by Mei et al. (2005). With the forcing terms on the right-hand side of (3.11)
being separated according to the wave harmonics, the unknown fields with the subscript
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‘mj = 22’ and ‘mj = 20’ can be obtained due to the second-order superharmonic and
subharmonic waves, respectively (Li et al. 2021).

A different but equivalent framework to (3.11) has been proposed by Li & Li (2021)
where envelopes have been introduced, which are the primary unknowns for the waves
of different harmonics up to the second order in wave steepness, ε0. The elevation and
potential are in particular given by

ζ = 1
2ε0A′

11 exp(i(k0 · x − iω0t))+ c.c.

+ ε2
0

(
1
2 A′

22 exp(2i(k0 · x − iω0t))+ 1
2 A′

20 + c.c.
)
, (3.12a)

Φ = 1
2ε0B′

11 exp(i(k0 · x − iω0t))+ c.c.

+ ε2
0

(
1
2 B′

22 exp(2i(k0 · x − iω0t))+ 1
2 B′

20 + c.c.
)
, (3.12b)

where the (complex) envelopes A′
mj(x, t) and B′

mj(x, z, t) are the main unknowns. With the
second-order elevation and potential, the envelopes obey

A′
mj(x, t) =

[
ζ ′

mj

][j]

+
and B′

mj(x, z, t) =
[
Φ ′

mj

][j]

+
, (3.12c)

for ‘mj = 11’, ‘mj = 20’ and ‘mj = 22’. Due to the Laplace equation and the seabed
boundary condition, the vertical structure of the envelope B′

mj is obtained and given by

B′
mj(x, z, t) =

∫ ∞

−∞
B̂′

mj(k, t)
cosh |k + jk0|(z + h)

cosh |k + jk0|h eik·x dk, (3.12d)

where B̂′
mj(k, t) denotes the envelope B′

mj(x, z, t) at z = 0 transformed to the Fourier space.
Similarly, inserting (3.12a,b) into (2.2a,b), expanding the z-dependent wave parameters
about z = 0, collecting the terms at the second order and separating the wave harmonics
leads to the boundary conditions for the second-order superharmonic waves on a still water
surface, z = 0,

(∂t − 2iω0)A′
22 − ∂zB′

22 = 1
2 A′

11∂zzB′
11 − 1

2(∇ + ik0)A′
11 · (∇ + ik0)B′

11, (3.13a)

(∂t − 2iω0)B′
22 + gA′

22 = 1
2 A′

11∂tzB′
11 − 1

2 [(∇ + ik0)B′
11]2 − 1

2 (∂zB′
11)

2; (3.13b)

the boundary conditions for the second-order subharmonic waves on a still water surface
are

∂tA′
20 − ∂zB′

20 =
[
R
(

1
2 A

′∗
11∂zzB′

22 − 1
2(∇ − ik0)A

′∗
11 · (∇ + ik0)B′

11

)](0)
+
, (3.14a)

∂tB′
20 + gA′

20 =
[
R
(

1
2 A

′∗
11∂tzB′

22 − 1
2 |(∇ + ik0)B′

11|2 − 1
2 |∂zB′

11|2
)](0)

+
, (3.14b)

where R denotes the real component. With the linear envelope A′
11 and B′

11 solved from
the linearized problem, the second-order envelopes can be obtained from (3.13) and (3.14)
for the superharmonic and subharmonic waves, respectively. Both the envelope equations,
(3.13) and (3.14), for the envelopes as well as the equations, (3.11), for the second-order
elevation and potential will be used in § 6.1 for a comparison with the CEEEs derived in
§ 4, showing how the CEEEs can recover to these equations if waves are considered only
up to the second order in wave steepness, ε0.
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4. Coupled envelope evolution equations in a Hamiltonian theory

In this section we derive the new equations, referred to as the CEEEs, in a Hamiltonian
theory for numerical solutions, which are the main results of this paper. To this end, the
starting point is a new pair of canonical variables shown in § 4.1. In contrast to the HOS,
the new canonical variables become our primary unknowns that can be numerically solved
for. In particular, the wave parameters (velocity potential and vertical velocity) at different
orders in wave steepness will be obtained through harmonic separations, as shown in §§ 4.2
and 4.3. The CEEEs describing the evolution of the new canonical variables are presented
in § 4.4. Similar to the HOS method, the CEEEs can be derived up to an arbitrary order in
wave steepness, with the general expressions presented in Appendix A.

4.1. A new pair of canonical variables
It is understood that ζ and ψ is a pair of canonical variables (Zakharov 1968; Krasitskii
1994). Due to the definition of the envelopes, we proceed to show that A and Bs are a
new pair of canonical variables. It is understood that, due to the properties of a Fourier
transform, the following identities hold:

ζ̂ (k) = ζ̂ ∗(−k), ζ̂ (−k) = ζ̂ ∗(k), ψ̂(k) = ψ̂∗(−k), and ψ̂(−k) = ψ̂∗(k).
(4.1a–d)

Here the asterisk ‘*’ denotes the complex conjugates. Let H′ be the Hamiltonian for ζ̂ and
ψ̂ , suggesting that

∂tζ̂ = δH′

δψ̂∗ and ∂tψ̂ = −δH
′

δζ̂ ∗ , (4.2a,b)

where the Hamiltonian H′ = H′(ζ̂, ζ̂ ∗, ψ̂, ψ̂∗) and δ denotes the functional derivative.
By definition we obtain ζ̂ (k + αk0) = Â(k, t) exp (−iβω0t) and ψ̂(k + αk0) =
B̂(k, t) exp (−iβω0t), and by inserting these into the Hamiltonian H′, we obtain

H′(ζ̂, ψ̂, ζ̂ ∗, ψ̂∗) ≡ H(Â, B̂s, Â∗, B̂∗
s ), (4.3)

where H denotes the new Hamiltonian obtained through replacing the elevation and
potential with their envelopes in H′. Next, we perform the following functional derivatives
based on (4.3) and obtain

δ
ψ̂∗H′ = exp (−iβω0t)δB∗H and δ

ζ̂ ∗H′ = exp (−iβω0t)δA∗H. (4.4a,b)

Inserting (4.4a,b) into the right-hand sides of (4.2a,b), replacing the elevation and
potential with their envelopes on the left-hand sides of (4.2a,b) and eliminating the factor
exp (−iβω0t), we obtain

∂tÂ − iω0Â = δB∗
s H and − ∂tB̂s + iω0B̂s = δA∗H. (4.5a,b)

Multiplying (4.5a,b) by B̂∗
s and Â∗, respectively, leads to

B̂∗∂tÂ − iω0B̂∗
s Â = B̂∗

s δB∗
s H′ and − Â∗∂tB̂s + iω0Â∗B̂s = Â∗δA∗H′, (4.6a,b)

based on which we introduce a new Hamiltonian defined as

HAB(Â, B̂s, Â∗, B̂∗
s ) =

∫
H′ + iω0

[
B̂∗

s Â − Â∗B̂s

]
dk. (4.7)
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Performing the following functional derivatives on the new Hamiltonian HAB leads to

δB∗
s HAB = δB̂∗

s
H′ + iω0Â and δA∗HAB = δÂ∗H′ − iω0B̂s. (4.8a,b)

Inserting (4.8a,b) for δB∗H′ and δA∗H′ into the right-hand sides of (4.5a,b), respectively,
leads to

∂tÂ = δH′
AB

δB̂∗
s

and ∂tB̂s = −δH
′
AB

δÂ∗ , (4.9a,b)

meaning that Â and B̂s are a pair of canonical variables. As noted in Krasitskii (1994),
due to the fact that the inverse Fourier transform is a canonical one, (4.9a,b) therefore also
imply that envelope A and Bs are a pair of canonical variables.

4.2. Three different methods for the evaluation of a quadratic term
In this paper we take advantage of the symmetrical properties of a Fourier transform. The
separation of wave harmonics presented in § 4.3 builds upon two key features. Firstly, it is
understood that nonlinear terms (e.g. W(3) and T (4)) at orders higher than the second can
always be written in a form of the linear superposition of the product of two parameters.
We use T (4) described by (3.8c) as an example. We define

W(1)
sq = (W(2))2 and ζ (2)x = (∇ζ )2. (4.10a,b)

Inserting (4.10a,b) into (3.8c) leads to

T (4)
0 = 1

2(W
(2))2 + W(1)W(3) + 1

2 W(1)
sq ζ

(2)
x , (4.11)

which is in a form of the linear superposition of quadratic terms but it is obvious that it
is not at second order in wave steepness. Second, by virtue of the symmetrical properties
of a Fourier transform, we next consider a function of two arbitrary real parameters χ(x)
and ξ(x) defined as f (x) = ∇χ(x)ξ(x). Assuming the Fourier transform of both χ(x) and
ξ(x) exist, f (x) can also be expressed in the form of an inverse Fourier transform

f (x) =
∫ ∞

−∞
ik1χ̂1ξ̂2ei(k1+k2)·x dk1 dk2 or (4.12a)

f (x) =
[∫ ∞

−∞
ik1χ̂1eik2·x dk1

]
×
[∫ ∞

−∞
ξ̂2eik2·x dk2

]
, (4.12b)

where χ̂1 = χ̂ (k1) and ξ̂2 = ξ̂(k2). Due to the symmetrical property of a Fourier transform
(i.e. χ̂ (−k) = χ̂∗(k)) and decomposing the entire integral region of the integrals in (4.12a)
into four equal quarters leads to

f (x) =
[

exp (2i(αk0 · x − βω0t))
∫
Γ1+

∫
Γ2+

ik1χ̂1ξ̂2

exp (i(k1 − αk0 + k2 − αk0) · x + 2iβω0t) dk1 dk2 + c.c.
]

+
[∫

Γ1+

∫
Γ2+

ik1χ̂1ξ̂
∗
2 exp (i(k1 − αk0) · x − i(k2 − αk0) · x) dk1 dk2 + c.c.

]
,

(4.13)
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in which Γj+ for j = 1 and j = 2 defines the region where kj · k0 > 0. Replacing the terms
that correspond to the definition of the envelope transform in (4.13) leads to

f (x) =
[

1
4
(∇ + iαk0)χ

[1]
+ ξ

[1]
+ exp (2i(αk0 · x − βω0t))+ c.c.

]
+
[

1
4
(∇ + iαk0)χ

[1]
+
(
ξ

[1]
+
)∗ + c.c.

]
. (4.14)

The above discussion suggests that the evaluation of f (x) admits at least three different
forms, which lead to the main differences between different methods for the description
of water waves as explained in the following. The HOS method relies on (4.12b) that is
typically used when the derivatives with respect to x or y of a parameter are involved based
on a pseudo-spectral method. The Hasselmann/Zakharov integral equation (Hasselmann
1962; Zakharov 1968; Stiassnie & Shemer 1984; Krasitskii 1994) uses (4.12a) for the
evaluation of f (x). The CEEEs proposed in this paper rely on (4.14) instead, which is in
principle the so-called separation of wave harmonics and does not rely on the narrowband
assumption. In contrast to the HOS and Zakharov equations, we will obtain the equations
for unknown envelopes in the following sections for the CEEEs in a manner similar to a
NLS-based model but at no cost of the accuracy.

4.3. Separation of wave harmonics
We proceed to seek a different but equating expression for the description of wave fields,
especially the potential and vertical velocity, in the form of functions of unknown envelope
A(x, t) and Bs(x, t) through the separation of harmonics presented in § 4.2. Doing so will
permit us to take advantage of a pseudo-spectral Fourier method in a more coarse and
larger grid at a little additional cost to the numerical computations but not at the expense
of the accuracy, as compared with the HOS method. Based on the solution structure for
both the potential and velocity presented in § 3.1.1, we start with § 4.3.1 for the velocity
potential (Φ(m)) in the form of a function of A and Bs up to second order in wave steepness.
For simplicity, an example of M up to M = 4 for both the potential and vertical velocity is
presented in § 4.3.2 with the forcing terms derived in § 4.3.3. The general procedures for
the derivations up to an arbitrary order are presented in Appendix A. The new framework
presented in this section can be made numerically feasible with a varying parameter of M,
similar to the HOS method.

4.3.1. Methodology illustration
We proceed to explain the fundamental methodology of the new envelope framework using
the velocity potential in the first- and second-order approximations as examples. For later
reference, we define

B0(x, t) = Bs(x, t) and B(11)(x, z, t) = B(x, z, t). (4.15a,b)

Due to the definitionsΦ(1)0 = ψ and also (2.12b) for the potential on the free water surface,
we propose to let B(x, z, t) = [Φ(1)(x, z, t)][1]

+ and, therefore,

Φ(1)(x, z, t) = 1
2

B(x, z, t) exp (i(αk0 · x − βω0t))+ c.c., (4.16a)
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where the relation B̂0(k, t) = B̂s(k, t) holds by definition, and the Laplace equation and
seabed boundary condition require

B(x, z, t) =
∫ ∞

−∞
B̂0(k, t)

cosh |k + αk0|(z + h)
cosh |k + αk0|h eik·x dk. (4.16b)

The expression (4.16a) for Φ(1) is in a new form we intend to obtain at the first order
in wave steepness. We next proceed to m = 2 for the velocity potential Φ(2). Inserting
(2.12a,b) and (4.16a) into (3.3) for Φ(2), we obtain

Φ
(2)
0 = Φ

(20)
0 (x, t)+Φ

(22)
0 (x, t) and, thus, Φ(2) = Φ(20)(x, z, t)+Φ(22)(x, z, t),

(4.17a,b)

where the superscript in a form of ‘(mj)’ denotes O(εm) and the jth wave harmonic.
Especially the superscripts ‘20’ and ‘22’ denote the potential for the second-order
subharmonic and superharmonic bound waves, respectively, which are obtained through
the separation of harmonics given by

Φ
(20)
0 = −1

4 A∗∂zB + c.c. and Φ
(22)
0 = −1

4 A∂zBe2i(αk0·x−βω0t) + c.c., for z = 0.
(4.18a,b)

We next define the envelope of the two potentials as

B(2j)(x, z, t) =
[
Φ(2j)

][j]

+
and B(2j)

0 (x, t) =
[
Φ
(2j)
0

][j]

+
, for j = 0 and j = 2,

(4.19a,b)

which show the relations between the envelope and potential due to the second-order
superharmonic ( j = 2) and subharmonic ( j = 0) waves. As the second-order subharmonic
envelopes based on (4.19a,b) and (4.18a) depend only on slowly varying envelopes A and
B, they are used in the new framework. Nevertheless, the envelopes of the waves with
a second harmonic given by (4.19a,b) and (4.18b) have the same temporal and spatial
variation as the second-order velocity potential used in the HOS method, and thereby do
not introduce merits in the efficiency in numerical implementations compared with using
the HOS method. To make a difference, the second-order superharmonic envelope in the
form

B(22)
0 = −1

2 A∂zB for z = 0 (4.20)

is used instead, which depends only on the slowly varying envelopes. Due to the definition
of the second-order envelopes B(2j), the second-order potentials can also be given by

Φ(2j) = 1
2 B(2j)(x, z, t) exp(ij(k0 · x − ω0t))+ c.c., for j = 0 and j = 2. (4.21)

The Laplace equation for Φ(2j) and the seabed boundary condition lead to

B(2j)(x, z, t) =
∫ ∞

−∞
B̂(2j)

0 (k, t)
cosh |k + jαk0|(z + h)

cosh |k + jαk0|h eik·x dk, (4.22)

where j = 0 and j = 2 for the subharmonic and superharmonic envelopes, respectively;
as noted, the subscript ‘0’ denotes the evaluation at z = 0 and the hat added denotes the
Fourier transform.
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4.3.2. Velocity potential and vertical velocity
At second order, we have obtained an equating form for the second-order potential that
is in a form of the linear superposition of different wave harmonics and envelopes. All
second-order envelopes are functions of slowly varying envelopes in the lower order
in wave steepness. Following the methodology presented in § 4.3.1, the envelope of an
individual field can be obtained to arbitrary order in wave steepness, which has been
given explicitly here up to the fourth order and the general expressions up to arbitrary
order are derived in Appendix A. In particular, we propose to obtain a new expression
for the potential at different orders in wave steepness based on the Laplace equation for
an individual potential, the seabed condition, and the perturbation expansion (3.3). They
have a general form as follows:

Φ(m) =
j=m∑
j=0

Φ(mj)(x, z, t), with Φ(mj) ≡ 1
2

B(mj)(x, z, t) exp (ij(αk0 · x − βω0t))+ c.c..

(4.23a,b)
Therefore,

Φ
(m)
0 =

j=m∑
j=0

Φ
(mj)
0 (x, t), with (4.24a)

Φ
(mj)
0 ≡ 1

2 B(mj)
0 (x, t) exp (ij(αk0 · x − βω0t))+ c.c. (4.24b)

≡ 1
2Φ̄

(mj)
0 (x, t) exp (ij(αk0 · x − βω0t))+ c.c., (4.24c)

where the velocity potential of the jth harmonic in the mth order in wave steepness in the
form of (4.24b) is used in the new framework. The differences between the envelope B(mj)

0

and Φ̄(mj)
0 lie in the fact that the latter is obtained based on (3.3) that corresponds to the

factor in front of the jth harmonic due to exp[ij(αk0 · x − βω0t)], and thereby B(mj)
0 =

Φ̄
(mj)
0 only if m = j. The envelopes are

B(mj)(x, z, t) =
(
Φ(mj)

)[j]

+
and B(mj)

0 (x, t) =
(
Φ
(mj)
0

)[j]

+
, (4.25a,b)

which hold by definition. Due to the Laplace equation and the seabed condition, we arrive
at

B(mj)(x, z, t) =
∫ ∞

−∞
B̂(mj)

0 (k, t)
cosh |k + jαk0|(z + h)

cosh |k + jαk0|h eik·x dk. (4.26)

Thereby, if B(mj)
0 (x, t) is given, Φ(m) and Φ(mj) will be explicitly obtained from (4.23a,b),

respectively. Next we only have to explain how to obtain the envelope on the still water
surface, B(mj)

0 (x, t), and their Fourier transform having appeared in the integrand of the
integral given by (4.26) in practice, following the same procedures as for m = 2 presented
in § 4.3.1. Inserting (2.12a) and (2.12b) for the surface elevation and the potential on the
free water surface, respectively, into (3.3), we obtain in sequence up to the fourth order in

960 A33-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.205


CEEEs for nonlinear surface gravity waves

wave steepness

Φ
(2)
0 (x, t) = Φ

(22)
0 (x, t)+Φ

(20)
0 (x, t), (4.27a)

Φ
(3)
0 (x, t) = Φ

(31)
0 (x, t)+Φ

(33)
0 (x, t), (4.27b)

Φ
(4)
0 (x, t) = Φ

(40)
0 (x, t)+Φ

(42)
0 (x, t)+Φ

(44)
0 (x, t), (4.27c)

where Φ(mj)
0 is the (real) potential of the jth harmonic at O(εm) and

Φ
(mj)
0 = 0, for mj ∈ {21, 30, 32, 41, 43}. (4.28)

The new framework aims to express the non-vanishing potentials Φ(mj)
0 in the form of

(4.24b), relying on the middle step for Φ(mj)
0 given by (4.24c) that depends on the explicit

expression for Φ̄(mj)
0 . Thereby, as noted, Φ̄(mj)

0 are obtained from (3.3) through collecting
the jth harmonics at an individual order in wave steepness from the lowest to higher orders
in sequence; explicitly, for z = 0,

Φ̄
(20)
0 = −1

2 A∗∂zB, (4.29a)

Φ̄
(22)
0 = −1

2 A∂zB, (4.29b)

Φ̄
(31)
0 = −1

2

(
∂zB(22)A∗ + 2R(∂zB(20))A + 1

2 |A|2∂zzB + 1
4 A2∂zzB∗

)
, (4.29c)

Φ̄
(33)
0 = −1

8 A2∂zzB − 1
2 A∂zB(22), (4.29d)

Φ̄
(40)
0 = −1

2

(
∂zB(31)A∗ + 1

2

(
∂zzB(20)

)
|A|2 + 1

4∂zzB(22)(A2)∗ + 1
8 |A|2A∗∂zzzB

)
,

(4.29e)

Φ̄
(42)
0 = −1

2∂zB(31)A − 1
2∂zB(33)A∗ − 1

4∂zzB(22)|A|2 − 1
4R
(
∂zzB(20)

)
A2

− 1
16 |A|2A∂zzzB − 1

48 A3∂zzzB∗,

Φ̄
(44)
0 = − 1

48 A3∂zzzB − 1
8 A2∂zzB(22) − 1

2 A2∂zB(33), (4.29f )

where it is clear that Φ̄(mj)
0 depends only on the slowly varying envelopes. The envelopes

of the velocity potential B(mj) rely on their values at the still water surface, B(mj)
0 , due to

their explicit form given by (4.25). To this end, the envelopes at the still water surface B(mj)
0

are obtained through their relation with Φ̄(mj)
0 due to (4.24b,c). As noted, B(mj)

0 = Φ̄
(mj)
0 for

m = j leads to

B(22)
0 = Φ̄

(22)
0 ≡ −1

2 A∂zB, (4.30a)

B(33)
0 = Φ̄

(33)
0 ≡ −1

8 A2∂zzB − 1
2 A∂zB(22), (4.30b)

B(44)
0 = Φ̄

(44)
0 ≡ − 1

48 A3∂zzzB − 1
8 A2∂zzB(22) − 1

2 A2∂zB(33). (4.30c)

The other non-vanishing B(mj)
0 are obtained through combining the relation with Φ̄(mj)

0
given by (4.24b,c) and their definitions by (4.25b). Using in addition the properties of
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Fourier transforms, they can be especially obtained through an inverse Fourier transform
as follows:

B̂(mj)
0 (k + jαk0, t) exp (−ijβω0t) = Θ[(k + jαk0) · k0]

{ ˆ̄Φ(mj)(k + jαk0, t) exp (−ijβω0t)

+
[ ˆ̄Φ(mj)(−k − jαk0, t) exp (−ijβω0t)

]∗}
. (4.31)

Here ˆ̄Φ(mj)
0 (k, t) is the Fourier transform of Φ̄(mj)

0 (x, t).
It should be noted that the use of (4.30a–c) and (4.31) for the envelopes, B(mm) and B̂(mj)

with m /= j, respectively, contribute to the improvement of the computational efficiency,
compared with using the original definition of the envelopes given by (4.25b). It is by
virtue of the fact that Φ̄(mj) always have the same spatial (long) scale as envelope A and
Bs. However, due to the linear translation operator indicated by the independent variable
k + jαk0 in (4.31), great care is needed in the numerical implementation when using a
(inverse) fast Fourier transform (FFT).

It is now understood that potential Φ(m)0 at a nonlinear order in wave steepness admits
three equating forms, which are in a form given by (3.3) and

Φ
(m)
0 ≡

m∑
j=0

[
1
2 B(mj)

0 exp (ij(αk0 · x − βω0t))+ c.c.
]

≡
m∑

j=0

[
1
2Φ̄

(mj)
0 exp (ij(αk0 · x − βω0t))+ c.c.

]
. (4.32)

Inserting the expression of Φ(m) and Φ(m)0 given by (4.23a) and (4.24a), respectively, into
(3.4) leads to the vertical velocity given by

w(1) = 1
2∂zB exp (i(αk0 · x − βω0t))+ c.c., W(1) = w(1)0 , (4.33a)

and

W(m) =
j=m∑
j=0

[
1
2 W̄(mj)(x, t) exp (ij(αk0 · x − βω0t))+ c.c.

]
for m = 2, 3, . . . (4.33b)

w(m) =
j=m∑
j=0

1
2∂zB(mj)(x, z, t) exp (ij(αk0 · x − βω0t))+ c.c. for m = 2, 3, . . . (4.33c)

where the non-vanishing terms are expressed as

W̄(20) = ∂zB(20) + 1
2 A∗∂zzB, (4.33d)

W̄(22) = ∂zB(22) + 1
2 A∂zzB, (4.33e)
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W̄(31) = ∂zB(31) + 1
2 A∗∂zzB(22) + AR

(
∂zzB(20)

)
+ 1

8 A2∂zzzB∗ + 1
4 |A|2∂zzzB, (4.33f )

W̄(33) = ∂zB(33) + 1
2 A∂zzB(22) + 1

8 A2∂zzzB, (4.33g)

W̄(40) = ∂zB(40) + 1
2 A∗∂zzB(31) + 1

4 |A|2
(
∂zzzB(20)

)
+ 1

8 (A
∗)2∂zzzB(22)

+ 1
16 |A|2A∗∂zzzzB, (4.33h)

W̄(42) = ∂zB(42) + 1
2∂zzB(31)A + 1

2∂zzB(33)A∗ + 1
4 |A|2∂zzzB(22) + 1

4 A2R
(
∂zzzB(20)

)
+ 1

16 |A|2A∂zzzzB + 1
48 A3∂zzzzB∗, (4.33i)

W̄(44) = ∂zB(44) + 1
2 A∂zzB(33) + 1

8 A2∂zzzB(22) + 1
48 A3∂zzzzB, (4.33j)

for z = 0, which depend only on the slowly varying envelopes.

4.3.3. The nonlinear forcing terms on a still water surface
The forcing terms at different orders in wave steepness, described by (3.7a–e) and
(3.8a–e), can also be expressed in the form of a function of envelope A and Bs (bearing in
mind that Bs = B0). Based on (3.7a–e) and (3.8a–e), we obtain

W(m)(x, t) =
j=m∑
j=0

[
1
2W̄

(mj)(x, t) exp (ij(αk0 · x − βω0t))+ c.c.
]

︸ ︷︷ ︸
≡W(mj)(x,t)

and (4.34a)

T (m)(x, t) =
j=m∑
j=0

[
1
2 T̄

(mj)(x, t) exp (ij(αk0 · x − βω0t))+ c.c.
]

︸ ︷︷ ︸
≡T (mj)(x,t)

, (4.34b)

where both W(mj)(x, t) and T (mj)(x, t) are introduced by definition and they are real
functions, with their non-zero complex envelopes W̄(mj) given by

W̄(20) = W̄(20) − 1
2 (∇Bs + ik0Bs)

∗ · (∇ + ik0)A, (4.35a)

W̄(22) = W̄(22) − 1
2 (∇ + ik0)Bs · (∇ + ik0)A, (4.35b)

W̄(31) = W̄(31) + 1
4∂zB∗ [(∇ + ik0)A]2 + 1

2∂zB |(∇ + ik0)A|2 , (4.35c)

W̄(33) = W̄(33) + 1
4∂zB [(∇ + ik0)A]2 , (4.35d)

W̄(40) = W̄(40) + 1
2 W̄(20) |(∇ + ik0)A|2 + 1

4 W̄(22) [(∇A + ik0A)∗
]2
, (4.35e)

W̄(42) = W̄(42) + 1
2R
[
W̄(20)

]
(∇A + ik0A)2 + 1

2 W̄(22) |(∇ + ik0)A|2 , (4.35f )

W̄(44) = W̄(44) + 1
4 W̄(22)(∇A + ik0A)2, (4.35g)
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for z = 0, and the non-zero T̄ (mj) given by

T̄ (20) = −1
4 |(∇ + ik0)B|2 + 1

4 |∂zB|2, (4.36a)

T̄ (22) = −1
4 [(∇ + ik0)B]2 + 1

4(∂zB)2, (4.36b)

T̄ (31) = 1
2 W̄(22)∂zB∗ + R

(
W(20)

)
∂zB, (4.36c)

T̄ (33) = 1
2 W̄(22)∂zB, (4.36d)

T̄ (40) = 1
2R(W̄

(20))2 + 1
4 |W̄(22)|2 + 1

2 W̄(1)(W̄(31))∗ + 1
8 |W̄(1)|2|(∇ + ik0)A|2

+ 1
16 (W̄

(1))2[(∇A + ik0A)∗]2, (4.36e)

T̄ (42) = R
[
W̄(20)

]
W̄(22) + 1

2 W̄(1)W̄(31) + 1
2(W̄

(1))∗W̄(33)

+1
8 |W̄(1)|2 [(∇ + ik0)A]2 + 1

8 (W̄
(1))2|∇A + ik0A|2, (4.36f )

T̄ (44) = 1
4(W̄

(22))2 + 1
2 W̄(1)W̄(33) + 1

16(W̄
(1))2(∇A + ik0A)2, (4.36g)

for z = 0. Using envelope A and Bs as input, envelopes B(mj)
0 , W̄(mj), W̄(mj) and T̄ (mj) are

obtained in sequence from the lowest to higher orders in wave steepness, which will be
directly used in the CEEEs derived in the following section.

4.4. The CEEEs
The Mth order accurate (in wave steepness) CEEEs are obtained through the following
sequential procedures: (i) inserting wave parameters and forcing terms in a form of the
separation of wave harmonics presented in § 4.3 into the evolution equations (3.5a,b), (ii)
keeping the components in the Fourier wavenumber region where k · k0 > 0, and (iii)
multiplying all terms by a factor of exp(−iαk0 · x + iβω0t). Hence, the CEEEs obtained
are

(∂t − iβω0)A − ∂zB = NA,M and (∂t − iβω0)Bs + gA = NB,M, (4.37a,b)

with the terms for the complex conjugates removed, and the nonlinear forcing terms on
the right-hand side of the equations given by

NA,M(x, t) =
m=M∑
m=1

N (m)
A ≡

m=M∑
m=1

j=m∑
j=0

N (mj)
A exp(i( j − 1)(αk0 · x − βω0t)) and

(4.38a)

NB,M(x, t) =
m=M∑
m=1

Nm)
B ≡

m=M∑
m=1

j=m∑
j=0

N (ij)
B exp(i( j − 1)(αk0 · x − βω0t)), (4.38b)

where N (mj)
A = 0 and N (ij)

B = 0 for ij = 10 and ij = 11, and the other non-vanishing
components are expressed as

N (mj)
A =

[
W(mj)

][j]

+
and N (mj)

B =
[
T (mj)

][j]

+
, (4.39a,b)
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where, with m = j, the relations

N (mm)
A = W̄(mm) and N (mm)

B = T̄ (mm) (4.40a,b)

hold, attributing to the fact that both W̄(mj) and T̄ (mj) with m = j are the product of the
terms that are only non-zero in the half wavenumber plane where (k + jk0) · k0 > 0 by
definition, e.g. B̂(22)(k, t) and B̂(33)(k, t). We will see in § 5.3.2 that the waves forced by the
nonlinear terms with m = j can not be free. The exploration of the newly derived CEEEs
given by (4.37a,b) in this paper are presented in §§ 5 and 6.

5. Discussion of the CEEEs

The CEEEs given by (4.37a,b) have a few key features which cannot be fully explored in
this paper. In this section, three aspects are especially highlighted. The first is associated
with their potential of high numerical efficiency through using an exponential integrator,
as examined in § 5.1 and also § 6.2.2. Secondly, due to that the two main unknowns in the
CEEEs are a pair of canonical variables, it is shown in § 5.2 that the CEEEs can lead to
the nonlinear evolution equation of the wave action. The third illustrates the clear physical
meanings of the nonlinear forcing terms (i.e. N (mj)

A and N (mj)
B ) of different harmonics in

§ 5.3 in their capability in the nonlinear forcing of different waves.

5.1. Analytical solution and numerical implementation using an exponential integrator
For the solution of the CEEEs, there are many applicable time integration methods. In this
paper we propose to using an exponential integrator; see, e.g. Hochbruck & Ostermann
(2010) for details. This choice is made due to two aspects: (i) the terms involved in the
CEEEs can be highly oscillatory, and (ii) we can easily identify the terms with a highly
oscillatory nature from those that are slowly varying. Preforming a Fourier transform on
both sides of the CEEEs gives rise to⎡⎣ ˙̂A

˙̂Bs

⎤⎦ =
[

iβω0 |k + k0| tanh |k + k0|h
−g iβω0

] [
Â
B̂s

]
+
[
N̂A,M(k, τ )

N̂B,M(k, τ )

]
, (5.1)

in which the dot denotes the derivative with respect to time. Following an exponential
integrator, the analytical solution of (5.1) can be expressed in the form

[
Â(k, t)
B̂s(k, t)

]
= EEE((t − t0)Ω)

[
Â(k, t0)
B̂s(k, t0)

]
+

m=M∑
m=1

j=m∑
j=0

[
I(mj)

A (k, t)

I(mj)
B (k, t)

]
, (5.2a)

where the initial value problem is considered at the initial time instant t0 when the
envelopes are given, EEE denotes a matrix exponential given by

EEE((t − t0)Ω) = exp(iβω0(t − t0))

⎡⎢⎣ cos ((t − t0)Ω)
Ω

g
sin ((t − t0)Ω)

− g
Ω

sin ((t − t0)Ω) cos ((t − t0)Ω)

⎤⎥⎦ , (5.2b)
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with Ω = ω(k + αk0, h), and

[
I(mj)

A (k, t)

I(mj)
B (k, t)

]
=
∫ t

t0
EEE((t − τ)Ω) exp(−i( j − 1)βω0τ)

[
N̂ (mj)

A (k + ( j − 1)αk0, τ )

N̂ (mj)
B (k + ( j − 1)αk0, τ )

]
dτ.

(5.2c)

Similar to a NLS equation-based model, the analytical solution of the envelope evolution
equations in the form of (5.2a) consists of two terms: a linear and nonlinear term
corresponding to the first term and the term of double sums on the right-hand side
of (5.2a), respectively. Equation (5.2a) is obviously accurate for the evolution of linear
surface waves. Owing to the fact that the integrand of the integrals in (5.2c) depends on
the time-dependent envelopes, i.e. in an implicit form, the computation of (5.2a) requires a
time integration method for the temporal-spatial evolution of nonlinear waves. To this end,
there are many available approaches, e.g. the mid-point or the fourth-order Runge–Kutta
method. We note that a leading-order scale of both N̂ (mj)

A and N̂ (mj)
B is O(ε2) and their time

derivative ∂tN̂ (mj)
A and ∂tN̂ (mj)

B have the scale O(ε2εf), where εf denotes the dimensionless
frequency bandwidth. The aforementioned scale of analysis can be clearly demonstrated
in § 6.1.1. Therefore, for updating (5.2c) for one time step in the time interval [tn, tn +�t]
with tn a time instant when Â(k, tn) and B̂(k, tn) were computed and �t a small time
interval, a numerical algorithm for time integration is required. The forward Euler method
that is first-order accurate in the temporal interval leads to

[
I(mj)

A (k, t)

I(mj)
B (k, t)

]
= In(tn+1)

[
N̂ (mj)

A (k + ( j − 1)αk0, tn)

N̂ (mj)
B (k + ( j − 1)αk0, tn)

]
+ O(ε2εfεtω0�t), (5.3)

where tn+1 = tn +�t, εt ∼ 1/(ω0�t) � 1 such that the approximation to the time
integration given by (5.3) numerically converges, and the rapidly varying integral matrix
In is defined as, and thereby given by,

In(tn+1) ≡
∫ tn+1

tn
EEE((tn+1 − τ)Ω) exp(−i( j − 1)βω0τ) dτ (5.4a)

= −1
2

i exp(−i( j − 1)βω0tn+1)

⎧⎪⎨⎪⎩1 − exp(i[ω0 + ( j − 1)βω0 +Ω]�t)
ω0 + ( j − 1)βω0 +Ω

⎡⎢⎣ 1
Ω

g
− g
Ω

1

⎤⎥⎦

+ 1 − exp(i[ω0 + ( j − 1)βω0 −Ω]�t)
ω0 + ( j − 1)βω0 −Ω

⎡⎢⎣ 1 −i
Ω

g
i

g
Ω

1

⎤⎥⎦
⎫⎪⎬⎪⎭ . (5.4b)

It is worth noting that a numerical algorithm more accurate than the forward Euler in the
sense of time integration can be used to evaluate (5.2c). An exponential integrator can also
be used for the HOS method following similar procedures in this section.
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CEEEs for nonlinear surface gravity waves

Therefore, through an exponential integrator and the forward Euler method, we obtain[
Â(k, tn+1)

B̂s(k, tn+1)

]
= EEE((tn+1 − t0)Ω)

[
Â(k, t0)
B̂s(k, t0)

]

+
m=M∑
m=1

j=m∑
j=0

In(tn+1)

[
N̂ (mj)

A (k + ( j − 1)αk0, tn)

N̂ (mj)
B (k + ( j − 1)αk0, tn)

]
+ O(ε2εtω0�t), (5.5)

which needs to be updated step by step from the initial instant t = t0 with given initial
conditions. Compared with the HOS method implemented by Ducrozet et al. (2016) where
the time interval depends on the shortest wave period, (5.5) permits a time interval that
admits ω0�t ∼ O(1/(ε2εf)) for numerical stability and convergence and thereby a much
larger value without compromising the numerical efficiency with a careful choice of the
value for β, as explained in § 6.2.2.

5.2. The energy balance equation
Based on the CEEEs in the Fourier plane expressed as (5.1), it is straightforward to derive
the energy balance equation. To this end, the parameter

â =
√

g
2Ω

Â + i

√
Ω

2g
B̂ (5.6)

is introduced, which is a function of the same (slow) time as envelope Â and B̂s. The
following sequential procedures are used: (i) multiplying the first and second (sub-)
equation of (5.1) by

√
g/(2Ω) and i

√
Ω/(2g), respectively, (ii) adding up the two resulting

equations, (iii) replacing the terms that correspond to the definition of the new variable â.
Thereby, we obtain

∂tâ + i(Ω − βω0)â =
√

g
2Ω

N̂A +
√
Ω

2g
N̂B. (5.7)

Multiplying (5.7) and its complex conjugates by â∗ and â, respectively, and adding up the
resulting equations leads to

∂t(ââ∗) = g
2Ω

(N̂ ∗
B,Mâ + N̂B,Mâ∗)+ Ω

2g
(N̂ ∗

B,Mâ + N̂B,Mâ∗), (5.8a)

in which ââ∗ denotes the wave action similar to that defined in an extensive body
of literature, e.g. Zakharov (1968), Stiassnie & Shemer (1984), Krasitskii (1994),
Annenkov & Shrira (2009) and Gramstad (2014). Equation (5.8a) is known as the energy
balance equation or the wave action equation. With the nonlinear effects neglected, the
conservation of linear wave actions is evident,

∂t(ââ∗) = 0, (5.8b)

which suggests that the transfer of wave actions does not occur between linear waves, as it
should be.
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5.3. Nonlinear forcing of waves
Due to the nonlinear effects that lead to the forcing terms on the right-hand side of the
CEEEs described by (4.37a,b), it is understood that both free and bound (locked) waves,
which do and do not obey the dispersion relation, respectively, can be forced. The former
can arise from resonant and instability conditions that are the result of a combination of
bandwidth and nonlinearity, as studied by numerous works, noticeably Phillips (1960),
Hasselmann (1962), Benjamin & Feir (1967), Zakharov (1968), Longuet-Higgins (1978)
and McLean (1982a,b). We show in this section how the nonlinear terms of different
wave harmonics on the right-hand side of CEEEs lead to the forcing of bound waves and
resonant free waves.

For later reference, we introduce the dimensionless wave vector en = kn/k0 and wave
frequency σn = ω(|kn|h)/

√
gk0, which are given by, respectively,

en = (1 + pn, qn) and σn =
√

tanh(k0|en|h) for n ∈ {1, 2, 3, . . .}, (5.9a,b)

where n denotes the nth free wave and en · e0 > 0 with e0 = (1, 0) and pn > −1 and
qn an arbitrarily chosen parameter. For an infinitesimal wave steepness, the resulting
dimensionless wave vector, eN , and angular frequency, σN , due to the nonlinear forcing
terms N (mj)

A exp(i( j − 1)(αk0 · x − βω0t)) and N (mj)
B exp(i( j − 1)(αk0 · x − βω0t)), can

be obtained through the analysis in the Fourier plane and the superposition of linear
waves. Especially, they are obtained by inserting the linear approximations of the unknown
envelopes

Â(k, t) ≈ Â(k, t0) exp[ik · x − i(Ω − βω0)(t − t0)] and (5.10a)

B̂s(k, t) ≈ B̂s(k, t0) exp[ik · x − i(Ω − βω0)(t − t0)], (5.10b)

into the envelopes of the potential and vertical velocity and thereafter the nonlinear forcing
term of the jth harmonic at O(εm); explicitly, we arrive at

eN − αe0 = ( j − 1)αe0 +
m∑

n=1

±(en − αe0), (5.11a)

σN − βσ0 = ( j − 1)βσ0 +
m∑

n=1

±(σn − βσ0), (5.11b)

where σ0 = √
tanh k0h, eN · e0 > 0 holds for non-vanishing Â and B̂s by definition, and

N = m + 1 denotes the number of waves involved in the interaction. As to which sign
to choose between ‘±’ depends on j; for j = m, the ‘+’ sign needs to be taken for all n
values whereas it is not permitted to choose the ‘−’ sign for all n values as it will lead to
the inequality eN · e0 < 0 where Â and B̂s vanish. We note that N = 3, N = 4 and N = 5
correspond to triad, quartet and quintet wave interactions, which occur at the second, third
and fourth order in wave steepness, respectively. With α = 0 and β = 0, one can readily
see that (5.11a,b) are simply the kernels arising from the N-wave interaction based on the
Zakharov integral equation (Stiassnie & Shemer 1984; Shrira, Badulin & Kharif 1996;
Janssen 2003), as it should be.
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Physically, the resonant condition for N waves interaction means that the resulting wave
vector and frequency obey the dimensionless linear dispersion relation

σN −
√

tanh(k0|eN |h) = 0, (5.12)

which can be used in the analysis of the nonlinear forcing of free waves arising from the
interaction between linear waves. Mathematically, it corresponds to the particular terms
(i.e. the nonlinear forcing terms) of the non-homogeneous CEEEs that have components
that coincide with the eigenvalues of the homogeneous CEEEs in frequency, leading to
a linear growth in time similar to the discussion by Hasselmann (1962). This point in
principle determines whether the nonlinear forcing of waves are free or bound, which are
discussed in §§ 5.3.1 and 5.3.2, respectively.

5.3.1. Forcing of free waves due to resonant effects
The nonlinear forcing of free waves due to the class I resonant condition occurs at third
order in wave steepness for waves of the first harmonic and corresponds to the effects of
the nonlinear forcing terms with m = 3 and j = 1 in the CEEEs. Following the previous
works, e.g. Stiassnie & Shemer (1984), the class I resonant condition due to quartet (linear)
wave interaction in the CEEEs is given by

e4 = e1 + e2 − e3 and σ4 = σ1 + σ2 − σ3, (5.13a,b)

where e1 = (1 + p, q), e2 = (|1 − p|,−q), e3 = e4 ≡ (1, 1) and σ4 = σ0. Similarly, the
class II resonant condition due to quintet wave interaction occurs due to the nonlinear
forcing terms with m = 4 and j = 2 in the CEEEs where

e5 = e1 + e2 + e3 − e4 and σ5 = σ1 + σ2 + σ3 − σ4, (5.14a,b)

with e5 = (1, 0), σ5 = σ0. The effect of wave nonlinearity on the dispersion relation
is neglected in (5.14a,b). In order to account for this, the ‘Stokes-corrected’ nonlinear
dispersion relation, which can be obtained from (2.21c) by Stiassnie & Shemer (1984),
should be used for σn with n ∈ {1, 2, 3, 4, 5}.

5.3.2. Bound waves
With j = m for m ≥ 2, the inequality en · e0 > 0 holds for all wave vectors in (5.11a,b) due
to the definition of the envelope transform and the expression of B(nn) and A. This can be
demonstrated by a simple example. To this end, we choose the third term in (4.33g). It is
understood that

1
8 A2∂zzzB exp(2i(αk0 · x − βω0t)) ≡

∫
Â(k1, t)Â(k2, t)|k3 + k0|3 tanh(|k3 + k0|h)

×B̂s(k3, t) exp(i(k1 + k2 + k3 + 2αk0 − 2βω0t) · x) dk1 dk2 dk3, (5.15)

where kn + k0 = k0en and (kn + k0) · k0 > 0 for non-vanishing Â(kn, t) and B̂s(kn, t) by
definition for n = 1, 2 and n = 3. The frequency superposition can be obtained through
the linear approximation to the CEEEs,

[Â(kn, t), B̂s(kn, t)] = [Â(kn, t0), B̂s(kn, t0)] exp(−i(ωn − βω0)(t − t0))+ O(ε2),
(5.16)

where ωn = ω(kn + αk0, h). Inserting (5.16) into (5.15) and taking the frequency
superposition readily leads to the frequency combination on the right-hand side of (5.11b).
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The last step is to multiply the factor exp[i(αk0 · x − βω0t)] on both sides of the resulting
equation and, hence, we arrive at

1
8 A2∂zzzB exp (3i(αk0 · x − βω0t)) ≡

∫
Â(κκκ1 − αk0, t0)Â(κκκ2 − αk0, t0)B̂s(κκκ3 − αk0, t0)

×|κκκ3|3 tanh(|κκκ3|h) exp

(
i

3∑
n=1

[
κκκn · x −

√
g|κκκn| tanh(|κκκn|h)(t − t0)

])
dκκκ1 dκκκ2 dκκκ3,

(5.17)

where the relation κκκn = kn + αk0 was used for the change of the integral variables. It
becomes evident that the non-vanishing integrand in (5.17) leads to the resulting waves
whose dimensionless wave vector and frequency are given by

e4 =
3∑

n=1

κκκn/k0 and σ4 =
3∑

n=1

√
g|κκκn| tanh(|κκκn|h)/ω0, with κκκn · k0 > 0, (5.18)

which can be written in a form similar to (5.13a,b), except that the third wave on the
right-hand side needs to take the positive sign instead. Due to this, the resonant quartet
wave condition cannot be satisfied. Thereby, the nonlinear term chosen as an example can
only lead to the forcing of bound waves that do not obey the linear dispersion relation.
Similar analysis can be carried out for the other remaining components of the nonlinear
forcing terms with m = j. The third and fourth wave given by the quintet and quartet
resonant condition in (5.13) and (5.14), respectively, needs to take a negative sign. In
contrast, all waves in the nonlinear terms on the right-hand of the CEEEs with m = j can
only take the positive sign as the inequality en · e0 > 0 should hold as noted. Therefore, it
can be readily inferred that only bound waves can be forced by the nonlinear terms in the
CEEEs with m = j.

The discussions above did not cover the forcing of either free or bound waves arising
from the nonlinear forcing terms in the CEEEs for j = 0 and m ≥ 2 that only appear in the
even orders in wave steepness and that are often responsible for the forcing of mean flows
(or waves with a low or vanishing frequency). These nonlinear forcing terms j = 0 cannot
force free waves since their resulting wave vectors and wave frequencies do not obey the
resonant conditions presented in § 5.3.1 for the interaction of infinitesimal waves. They are
also associated with the singular terms in the Zakharov’s kernel functions, as clearly stated
in the introduction of Gramstad (2014). Evidently, nonlinearity effects on the dispersion
relation have been neglected in this section, and thereby how they affect the forcing of
mean flows has not been explored. At the second order with ‘mj = 20’, we understand
that subharmonic bound waves can be forced, as is well known; see, e.g. Phillips (1960)
and Hasselmann (1962). The author conjectures that novel physics may be elucidated
through the exploration of these terms (which can force nonlinear mean flows) with the
consideration of higher-order nonlinearity. As it is not the main focus of this paper, this
aspect will be left for future explorations.

6. Comparisons with two other methods

For further demonstrating the potential, the CEEEs are firstly compared with a traditional
perturbation expansion for the evolution of a train of Stokes waves (§ 6.1.1) and irregular
waves with an arbitrary bandwidth and directional spreading (§ 6.1.2). Next, we proceed
to comparisons with the HOS method in § 6.2 of the nonlinear forcing terms in a limiting
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CEEEs for nonlinear surface gravity waves

case (§ 6.2.1) and of the computational complexity (§ 6.2.2) to especially demonstrate the
numerical efficiency of the CEEEs.

6.1. Relation with a traditional perturbation expansion
Using an example of both a train of Stokes waves in § 6.1.1 and the more general weakly
nonlinear three-dimensional waves in § 6.1.2, we show in this section how to establish the
relation between a traditional perturbation method and the CEEEs. The analytical analysis
in the section has a twofold sub-goal. It firstly demonstrates that the CEEEs are correctly
derived. Secondly, it shows the first few steps that are essential to more general derivations
for bridging the relations between the CEEEs and other higher-order frameworks, e.g. the
different versions of third-order NLS equations. For example, if both the third orders in
ε0 and a narrow bandwidth are additionally considered in § 6.1.1, the classic third-order
accurate NLS equation would be recovered based on the CEEEs. Or if the Stokes waves
are considered up to the fifth order in ε0 in § 6.1.1, one would deduce the framework by
Fenton (1985) starting from the CEEEs.

6.1.1. A train of Stokes waves
A train of Stokes waves is considered to have a wave vector of k0 and phase of θ0 and we
choose α = 1 and β = 1 for the implementation of the CEEEs. In a traditional perturbation
method as noted in § 3.2, it is typical of solving for the wave-perturbed parameters on a
still water surface, in contrast to the CEEEs method where the primary unknowns are those
defined on the free water surface. In the CEEEs, envelope A = A(x, t) and Bs = Bs(x, t)
depend on both time and the horizontal position vector. They can be expressed in the form
of a power series of the wave steepness ε0, up to the second order,

A = ε0A1 + ε2
0A2 exp (i(k0 · x − ω0t + θ0)) and

Bs = ε0Bs,1 + ε2
0Bs,2 exp (i(k0 · x − ω0t + θ0)) , (6.1a,b)

where the constant mean of both the envelope and the potential are neglected for simplicity
but can be additionally considered; ε0 denotes the small dimensionless wave steepness
in a traditional perturbation method as noted in § 3.2; subscript ‘1’ and ‘2’ denotes the
envelopes at first and second order in wave steepness, ε0, respectively; A1 = A1(ε

2
0 t) and

Bs,1 = Bs,1(ε
2
0 t) are a real and imaginary time-dependent amplitude of the linear elevation

and the potential on a still water surface in a traditional perturbation method, respectively
(see, e.g. Fenton 1985). Similarly, a leading-order approximation to envelope W̄(1) is, to
O(ε2

0),

W̄(1) = k0

(
ε0 tanh(k0h)Bs,1 + 2ε2

0 tanh 2k0hBs,2 exp (i(k0 · x − ω0t + θ0))
)
, (6.2)

where the factor of 2 arises from the derivative with respect to the vertical axis due to
the second-order superharmonic waves. Inserting (6.1a,b) and (6.2) into the elevation, the
potential on the free water surface and the velocity potential at an arbitrary depth in the
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framework of the CEEEs leads to, up to second order in wave steepness ε0,

ζ(x, t) = 1
2ε0A1 exp (i(k0 · x − ω0t + θ0))+ 1

2ε
2
0A2 exp (2i(k0 · x − ω0t + θ0))+ c.c.,

(6.3a)

ψ(x, t) = 1
2ε0Bs,1 exp (i(k0 · x − ω0t + θ0))+ 1

2ε
2
0Bs,2 exp (2i(k0 · x − ω0t + θ0))+ c.c.,

(6.3b)

Φ(x, z, t) = 1
2
ε0Bs,1

cosh k0(z + h)
cosh k0h

exp (i(k0 · x − ω0t + θ0))

+1
2
ε2

0

(
Bs,2 − 1

2
k0 tanh k0hA1Bs,1

)
cosh 2k0(z + h)

cosh 2k0h
exp (2i(k0 · x − ω0t + θ0)) .

(6.3c)

Therefore, the CEEEs for the evolution of a train of Stokes waves can be much simplified
to

(∂t − iω0)A − W̄(1) = NA,2 and (∂t − iω0)Bs + gA = NB,2, (6.4a,b)
where

NA,2 = N (22)
A exp (i(k0 · x − ω0t + θ0)) and NB,2 = N (22)

B exp (i(k0 · x − ω0t + θ0)) ,

(6.5a,b)
and

N (22)
A = 1

2 (1 − 2 tanh k0h tanh 2k0h) k2
0A1Bs,1, (6.6a)

N (22)
B = 1

4 k2
0(1 + tanh2 k0h)B2

s,1. (6.6b)

Inserting A1 = A1(ε
2
0 t) and Bs,1 = Bs,1(ε

2
0 t) into (6.6a,b) and performing the analysis of

scales gives rise to

O
(
N (22)

A ,N (22)
B

)
∼ O(A1Bs,1) ∼ ε2

0 and (6.7a)

O
(
∂tN (22)

A , ∂tN (22)
B

)
∼ O(ε0∂tA1) ∼ O(ε0∂tBs,1) ∼ ε4

0 , (6.7b)

and therefore, N (mj)
A = N (mj)

A (ε2
0 t) and N (mj)

B = N (mj)
B (ε2

0 t), which suggests εf = ε2
0 as

is well known for the temporal evolution of the amplitude of a train of Stokes waves
(Zakharov 1968; Fenton 1985), e.g. A1 ≡ A1(ε

2
0 t) = A1(εft) as noted. A traditional

perturbation method proposes to solve the equations in sequence from the first to higher
orders in wave steepness ε0 and thereby we obtain

O(ε0) : −iω0A1 − k0 tanh k0hBs,1 = 0 and − iω0Bs,1 − gA1 = 0, (6.8a,b)

which are well known for the linear evolution of monochromatic waves; at O(ε2
0),

A2 exp (i(k0 · x − ω0t + θ0))− ik0 tanh 2k0h
ω0

Bs,2 exp (i(k0 · x − ω0t + θ0))

= i
2ω0

N (22)
A exp (i(k0 · x − ω0t + θ0)) , (6.9a)

2iω0Bs,2 exp (i(k0 · x − ω0t + θ0))+ gA2 exp (i(k0 · x − ω0t + θ0))

= −N (22)
B exp (i(k0 · x − ω0t + θ0)) , (6.9b)

where, despite the fact that it can be eliminated, the factor exp (i(k0 · x − ω0t + θ0)) was
kept with the intention to demonstrate clearly that the numerical solution of (6.9a,b)
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for the unknown parts of envelope A and Bs, i.e. A2 exp (i(k0 · x − ω0t + θ0)) and
Bs,2 exp (i(k0 · x − ω0t + θ0)), depends only on the temporal scale of the forcing terms
N (22)

A and N (22)
B . Especially in the limiting case of second-order Stokes waves, the solution

of (6.9a,b) obtained numerically predicts no mathematical truncation error (Atkinson
2008, § 1.3) as the unknown envelopes are approximately constants, and, therefore, the
numerical solution can return the same results as the analytical solution from trivial
algebras. Comparing the expressions given by (6.3a–c) in the CEEEs and those by
(3.12a,b) for the same parameter, the following relations hold:

A′
mm = Am, B′

11 = Bs,1, and B′
22 = Bs,2 − 1

2 k0 tanh k0hA1Bs,1. (6.10a–c)

Here m = 1 and m = 2. Replacing the parameters in (6.9a,b) with those used in a
traditional perturbation method through the relations (6.10a–c), eliminating the factor
exp (i(k0 · x − ω0t + θ0)) and using the relation (∂t − iω0)A′

11 = ∂zB′
11 readily leads to

the envelope equations given by (3.13). Hence, the relation between the CEEEs and a
traditional perturbation method for the evolution of a train of weakly nonlinear Stokes
waves has been established.

6.1.2. The semi-analytical framework for directionally spread broadband waves
Similar to § 6.1.1, the main focus of this section is to show how the CEEEs lead to the
framework by Li & Li (2021) for the evolution of three-dimensional broadband waves
with large directional spreading. Again, we start from envelope A and Bs in the CEEEs in
the form of a power series in ε0 up to the second order in ε0,

A = ε0A11 + ε2
0A20 exp (−i(αk0 · x − βω0t))+ ε2

0A22 exp (i(αk0 · x − βω0t)) , (6.11a)

Bs = ε0Bs,11 + ε2
0Bs,20 exp (−i(αk0 · x − βω0t))+ ε2

0Bs,22 exp (i(αk0 · x − βω0t)) ,
(6.11b)

where Amj = Amj(x, t) and Bs,mj = Bs,mj(x, t). The relationship between (6.11b) and the
envelope of the potential and vertical velocity on the free water surface leads to

B(x, z, t) = ε0B11(x, z, t)+ ε2
0B20 exp (−i(αk0 · x − βω0t))

+ε2
0B22 exp (i(αk0 · x − βω0t)) (6.12a)

W̄(1)(x, t) = ε0W̄(1)
11 (x, 0, t)+ ε2

0W̄(1)
20 (x, 0, t)e−i(αk0·x−βω0t)

+ε2
0W̄(1)

22 (x, 0, t) exp (i(αk0 · x − βω0t)) , (6.12b)

with Bs,mj(x, t) = Bmj(x, 0, t) and

Bmj =
∫ ∞

−∞
B̂s,mj

cosh |k + jαk0|(z + h)
cosh |k + jαk0|h eik·x dk, (6.12c)

W̄(1)
mj (x, z, t) = ∂zBmj ≡

∫ ∞

−∞
|k + jαk0|B̂s,mj

sinh |k + jαk0|(z + h)
cosh |k + jαk0|h eik·x dk. (6.12d)

We next derive the parameters needed at second order in wave steepness in the CEEEs.
Substituting the envelopes on the still water surface given by (6.11a,b) and (6.12a,b)
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into the envelopes of the approximate wave fields at the second order in wave steepness
presented in § 4.3.2, and keep the terms up to O(ε2

0) gives rise to

B(20)
0 = −ε2

0

[
R
(

1
2 A∗

11Bs,11

)][0]

+
, (6.13a)

B(22)
0 = −1

2ε
2
0A11Bs,11, (6.13b)

W̄(22) = ε2
0

∫ ∞

−∞
|2(k0 + k)|B̂(22)

0
sinh |(2αk0 + k)(z + h)|

cosh |2(k0 + k)h| eik·x dk + 1
2
ε2

0A11∂zW̄
(1)
11 ,

(6.13c)

W̄(20) = ε2
0

∫ ∞

−∞
|k|B̂(20)

0
sinh |k|(z + h)

cosh |k|h eik·x dk + ε2
0R
(

1
2

A∗
11∂zW̄

(1)
11

)
. (6.13d)

Similarly, inserting the resulting expressions for the envelopes in the first and second
orders in this section into the nonlinear forcing terms in the second order in the CEEEs
leads to

N (22)
A = ε2

0

∫ ∞

−∞
|2(k0 + k)|B̂(22)

0
sinh |(2αk0 + k)(z + h)|

cosh |2(k0 + k)h| eik·x dk

+ ε2
0

[
1
2

A11∂zW̄
(1)
11 − 1

2
(∇ + ik0)A11 · (∇ + ik0)Bs,11

]
, (6.14a)

N (20)
A = ε2

0

∫ ∞

−∞
|k|B̂(20)

0
sinh |k|(z + h)

cosh |k|h eik·x dk,

+ ε2
0

[
R
(

1
2

A∗
11∂zW̄

(1)
11 − 1

2
(∇ − ik0)A∗

11 · (∇ + ik0)Bs,11

)][0]

+
, (6.14b)

N (22)
B = 1

4

[
−(∇Bs,1 + ik0Bs,1)

2 + (W̄(1)
11 )

2
]
, (6.14c)

N (20)
B = 1

4

[
−|∇Bs,1 + ik0Bs,1|2 + |W̄(1)

11 |2
][0]

+
. (6.14d)

Inserting the parameters in the form of a power series of ε0 back to the CEEEs, collecting
the terms in the second order in ε0 and separating the wave harmonics leads to the
evolution equations for the second-order super-harmonic waves

(∂t − 2iβω0)A22 − W̄(1)
22 = N (22)

A and (∂t − 2iβω0)Bs,22 + gA22 = N (22)
B ,

(6.15a,b)

with the factor exp (i(αk0 · x − βω0t)) eliminated on both sides of the equation, and the
equations for the subharmonic waves

∂tA20 − W̄(1)
20 = N (20)

A and ∂tBs,20 + gA20 = N (20)
B , (6.16a,b)

with the factor exp [−i(αk0 · x − βω0t)] eliminated. The next step is to establish the
relationship between Bs,22 and W̄(1)

22 and the corresponding parameter given by Li & Li
(2021), respectively. Comparing (6.11a) for the envelope of the elevation in the CEEEs
and that given by (3.12c) in the framework by Li & Li (2021), it is evidently understood
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CEEEs for nonlinear surface gravity waves

that Amj = A′
mj and

B′
11(x, 0, t) = B11(x, 0, t) = Bs,11, (6.17a)

B′
22(x, 0, t) = Bs,22 − 1

2 A′
11∂zB′

11, (6.17b)

B′
20(x, 0, t) = Bs,20 −

[
R
(

1
2 A

′∗
11B′

11

)][0]

+
, (6.17c)

∂zB′
22(x, 0, t) = W̄(1)

22 + ∂zB(22)(x, 0, t), (6.17d)

∂zB′
20(x, 0, t) = W̄(1)

20 + ∂zB(20)(x, 0, t). (6.17e)

Replacing the terms in the CEEEs with those by Li & Li (2021) through the connections
given by (6.17a–e) leads to the envelope equations of Li & Li (2021) given by (3.12), for
which the identity (∂t − iω0)A′

11 = ∂zB′
11 from the linearized kinematic condition on a still

water surface was used.
Based on (6.17a–e) and the relations

ζ ′
2(x, t) = 1

2 A′
22 exp (2i(αk0 · x − βω0t))+ 1

2 A′
20 + c.c., (6.18a)

Φ ′
2(x, z, t) = 1

2 B′
22 exp (2i(αk0 · x − βω0t))+ 1

2 B′
20 + c.c., (6.18b)

the evolution equations for the second-order elevation ζ ′
2 and potential Φ ′

2(x, 0, t) can be
derived, which conform with (3.11).

Again, (6.15a,b) and (6.16a,b) in the framework of CEEEs suggest that the
computational accuracy and efficiency for numerical solutions relies only on the spatial
and temporal scales of the nonlinear forcing terms N (mj)

A and N (mj)
B , in a way similar to the

numerical implementation of (3.13a,b) and (3.14a,b) by Li & Li (2021). In particular, Li &
Li (2021) have demonstrated that the (second-order accurate) envelope framework due to
(3.13a,b) and (3.14a,b) permits a significant improvement in the numerical efficiency at no
cost to the accuracy for weakly nonlinear waves, compared with the numerical simulations
based on the HOS method (Dommermuth & Yue 1987; West et al. 1987) and the Fourier
kernels (Hasselmann 1962; Zakharov 1968; Dalzell 1999). Therefore, it can be conjectured
that the CEEEs should have the same numerical advantage, at least up to second order in
wave steepness due to the same numerical features from comparing (6.15a,b) and (6.16a,b)
from the CEEEs with (3.13a,b) and (3.14a,b) by Li & Li (2021), respectively.

6.2. Comparisons with the HOS method
The CEEEs are next compared with the HOS method in the perspective of the numerical
implementation of the nonlinear forcing terms (§ 6.2.1) in a limiting case and of the
computational efficiency for the same level of accuracy (§ 6.2.2). It is especially noted
that the relation between the HOS method and the Zakharov integral equation has been
shown in Onorato, Osborne & Serio (2007) and thereby the relation between the CEEEs
and the Zakharov integral equation can be established through the HOS method.

6.2.1. Comparisons of the nonlinear forcing terms
As noted above, the differences between the CEEEs and the HOS method mainly arise
from the different choices of the main unknowns that are solved for numerically. They
should in principle return exactly the same numerical results if the initial conditions are
the same. As the detailed derivations in § 4 have analytically demonstrated this point, we
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choose to keep the numerical validation to a minimum to avoid unnecessary repetition. In
particular, we focus on the fact that the nonlinear forcing terms given by (3.7) and (3.8)
should be identical to (4.34a) and (4.34b) at different orders (i.e. different values of m)
in wave steepness. The HOS method and the CEEEs shall require different parameters
as input, the former of which uses ζ(x, t) and ψ(x, t) whereas the latter A and Bs. The
relation given by (2.11a) between ζ (or ψ) and A (or Bs) should hold for all the times if
both methods are used for the computation of the same case.

A case of a right-propagating (i.e. in the positive x direction) focused wave group in two
dimensions was chosen to show the comparisons between the two methods. In particular,
the parameters for the HOS method at a time instant were prescribed according to

ζ = R
[

Ap

∫ |ζ̂ (ωg)|√
m0

E(x, t) dωg

]
and ψ = R

[
Ap

∫ −ig|ζ̂ (ωg)|
ωg

√
m0

E(x, t) dω

]
,

(6.19a,b)

where the factor E(x, t) = exp{i[k(x − xf)− ωg(t − tf)+ θf]}, with Ap, xf, tf and θf the
prescribed peak (real) amplitude, position, time and phase for the wave group at linear
focus, respectively; k and ωg denote the wavenumber and angular frequency of a train
of a right-propagating monochromatic wave, respectively, obeying the linear relationship
ωg = ω(k, h) as defined in § 2.4; m0 denotes the zeroth moment of a JONSWAP power
energy spectrum S(ωg) used with the enhancement peak factor γ of 3.3, and |ζ̂ (ωg)| =√

2S(ωg)�ωg denotes the amplitude evaluated based on the JONSWAP with the interval
between two adjacent frequencies prescribed on a numerical grid. It is highlighted that
the initial conditions given by (6.19a,b) for the initial time instant t = t0 are not an exact
solution to the fully nonlinear potential flow boundary value problem but are the exact
solution of the linearised problem. These conditions will not affect the comparisons of the
nonlinear forcing terms WM and TM presented in this section between the HOS method
and CEEEs as long as the initial conditions are consistent. A detailed procedure for the
initialization of nonlinear waves for the solutions of an initial-value problem can be found
in works of, for example, Dommermuth (2000) and Slunyaev, Sergeeva & Didenkulova
(2016) among others.

Similarly, envelope A and Bs are expressed as, respectively,

A = Ap

∫ |ζ̂ (ωg)|√
m0

Ec(x, t) dωg and Bs = Ap

∫ −ig|ζ̂ (ωg)|
ω

√
m0

Ec(x, t) dωg, (6.20a,b)

with Ec(x, t) = exp{i[(k − kp)(x − xf)− ωg(t − tf)+ ωpt + θf]}, which suggest that the
following values were chosen for different parameters in the implementation of the CEEEs:
k0 = kp and ω0 = ωp with kp = 0.045 m−1 and ωp = ω(kph) the peak wavenumber and
frequency of the JONSWAP spectrum, respectively, α = β = 1 and kph = 1.395. We note
that the elevation ζ (potential ψ) given by (6.19a) (6.19b) and the elevation envelope A (the
potential envelope Bs) given by (6.20a) (6.20b) should obey the equation (2.11a) (2.11b)
as it indeed does. A comparison of the nonlinear forcing terms at second, third and fourth
order in wave steepness is shown in figures 2 and 3 for two different time instants using two
different values for the dimensional depth, kph. The computations from the HOS method
were obtained from inserting (6.19a,b) for the elevation and potential into (3.7) and (3.8)
and the results based on the CEEEs were through substituting (6.20a,b) for the envelopes
into (4.34a) and (4.34b). In the case implemented in figures 2 and 3, an unrealistically high
value of 0.8 for the dimensionless wave steepness ε = kpAp was used with the intention
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CEEEs for nonlinear surface gravity waves

of demonstrating the possible differences between the two methods, if any. Figures 2 and
3 show evidently good agreement of the nonlinear terms in all orders (in wave steepness)
between the HOS method and CEEEs. In particular, the panels in the lowest two bottom
rows of figures 2 and 3 suggest that the absolute differences of the predictions between
the two methods are a few orders of magnitude smaller than the individual predictions in
the highest order in wave steepness (e.g. compared with the nonlinear forcing terms in the
fourth order in wave steepness). The results shown in figures 2 and 3 are in accordance
with the theoretical derivations presented in § 4.

6.2.2. Computational complexity
We compare the numerical performances between the HOS method and CEEEs for which
both are based on FFTs for the evaluation of the nonlinear terms in the evolution equations.
It should be noted that the comparison is not to seek the optimal numerical methods
for computations. Instead, it aims to examine three main aspects essential to numerical
efficiency for achieving the same level of accuracy: (i) the number of FFTs (including
inverse FFTs) needed for advancing one time step; (ii) the criterion for the choice of the
domain spacing and size and the time interval for numerical convergence and instability;
(iii) the mathematical truncation error; see, e.g. Atkinson (2008, § 1.3), which indicates
the numerical accuracy that can be achieved. The comparisons of these aspects are shown
in table 2.

A total number of FFTs (including inverse FFTs) needed for updating one time step
depends on a specific numerical algorithm for time integration. Therefore, in order to make
the comparisons as fair as possible for the HOS method, three widely known numerical
algorithms are chosen to this end, including the first-, second- and fourth-order accurate
forward Euler (‘FE1’), mid-point (‘MP2’) and Runge–Kutta (explicit, ‘RK4’) methods,
respectively. The main difference between the use of an exponential integrator and the
previous three algorithms lie in the fact that a numerical algorithm for the former and the
latter for time integration is carried out in the Fourier k and physical plane, respectively,
due to which the former leads to an accurate evaluation of the temporal evolution
arising from the linear terms in equations. How to apply an exponential integrator for
implementing the CEEEs is presented in § 5.1. Similar procedures can also be taken
for the HOS method. An exponential integrator is used in table 2 for both the HOS
method and the CEEEs. An exponential integrator together with a first-order accurate
numerical algorithm to approximate the time integral in the Fourier k space (‘ExpInt1’)
is sufficient to demonstrate the numerical features of the CEEEs, as shown in table 2,
whereas additional second- (‘ExpInt2’) and third-order (‘ExpInt3’) accurate algorithms
are listed for the HOS method. How to optimize the numerical implementation of the
CEEEs is not the main focus of this paper and is open for studies in future works.

We introduce a few parameters for the discussion about numerical performances. Let
Ls, fs and ks be the wavelength, frequency and wavenumber of the shortest wave that can
be represented numerically to a sufficiently good level of accuracy with ksLs = 2π. The
use of FFTs and inverse FFTs requires an evenly spaced computational domain that has a
characteristic length of L and the spacing of |�xn| between two adjacent discrete points.
The following dimensionless parameters are defined:

εt = fs�tn, εf = fs − βMf0
fs

, and εk = ks − αMk0

ks
. (6.21a–c)

Here εt denotes the dimensionless time interval for indicating the mathematical truncation
error for computing the time integration, f0 = ω0/(2π) and�tn the time interval. It should
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Figure 2. Comparisons of the nonlinear forcing terms (panels (a– f, i–vi)) at different orders in wave steepness,
and the differences of the nonlinear forcing terms WM and TM for M = 4 (panels (g,h, vii, viii)), between the
HOS method (blue dashed) and the CEEEs-based model (red dot-dashed) based on the equations presented
in §§ 3.1.1 and 4.3.3, respectively. Results are shown for (a–h) t = −15 × Tp and (i–viii) t = 0 × Tp for the
wavepacket at the linear focus, with Tp, cg,p and λp the period, group velocity and wavelength of the spectral
peak wave of a JONSWAP spectrum, respectively; kpAf = 0.8 and kph = 1.5 were used, where kp = 2π/λp,
h is the water depth and Af is the amplitude of the focus wave at linear focus; R(χ) denotes the absolute
differences of an arbitrary field χ obtained from CEEEs and the HOS method.
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Figure 3. Caption is the same as figure 2 but kph = 3.

be noted that fs � βMf0 and ks � αMk0 are assumed and should hold in most practical
situations as the range 0 ≤ α � 2 and 0 ≤ β � 2 are recommended. Thus, the inequalities
0 � εf ≤ 1 and 0 � εk ≤ 1 hold.

Examining the algorithms that implement the HOS method in table 2, we find that an
exponential integrator together with a numerical algorithm for the time integration seems
to have advantages in the numerical performances against using the other three methods.
It is shown in table 2 that the first-order accurate forward Euler algorithm requires the time
interval to be extremely small for achieving a sufficient level of accuracy. As a result, the
additional computational cost needed due to a larger number of time steps would not be
made up by the computational efficiency saved from a smaller number of FFTs required
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per step, compared with the other three methods. For weakly nonlinear waves where the
wave steepness ε → 0+ and εt � 1 for convergent numerical results, and, therefore, the
assumption of the scales O(ε) ∼ O(εt) can be made, the computational efficiency of an
exponential integrator (i.e. ‘ExpInt1’ and ‘ExpInt2’) is superior to the mid-point method
(‘MP2’) due to either a lesser number of FFTs or a higher accuracy when the other
aspects are kept the same. For steeper waves where the wave steepness can be one order of
magnitude larger compared with weakly nonlinear waves, and, thus, O(ε) ∼ O(

√
εt) can

be assumed, the same conclusion can be drawn for a second-order accurate exponential
integrator (‘ExpInt2’) as it leads to obviously a higher level of accuracy despite a slightly
increased cost arising from a larger number of FFTs. Compared with the Runge–Kutta
algorithm (‘RK4’), the third-order accurate exponential integrator (‘ExpInt3’) shows a
slightly better performance due to a smaller number of FFTs required for achieving the
same level of accuracy with O(ε) ∼ O(εt).

Due to the above discussion about the HOS method examined in table 2, the comparison
between the CEEEs and the HOS method will focus only on their implementation through
using an exponential integrator that has been demonstrated to have favoured features for
the HOS method. The numerical performances of the CEEEs shown in table 2 especially
depend on the choice of the values for α and β. Thereby, discussions are made based on
the categories of the choices listed in the following, starting from the least advantageous
category for the CEEEs.

(a) α = β = 0 and, therefore, εf = εk ≡ 1. It suggests that the CEEEs are simply
the HOS but with the newly introduced envelope transform for the evaluation of
the nonlinear forcing terms and wave parameters. The newly proposed evaluation
through the envelope transform is at the expense of an increased number of FFTs and,
therefore, an additional computational cost with all the other parameters the same
as the HOS method (‘ExpInt1’), as clearly seen in table 2. As a result, this category
of the value for α and β should be dropped out if the CEEEs will be implemented
for numerical computations as it does not introduce additional advantages compared
with the HOS method.

(b) α = 0 and 0 < β and, thus, εk = 1 and 0 � εf < 1, respectively. This suggests
that a (small) dimensionless bandwidth parameter (i.e. εf) in wave frequency has
been introduced. The characteristic wave frequency, ω0, can be chosen as the
angular frequency of either a carrier wave or the peak wave of a wave spectrum.
A specific value for β can be selected that permits εf ∼ εt in practice. For instance,
β = 1 has been used in § 6.1.1 that has led to εf ∼ ε2. Table 2 indicates that the
first-order accurate exponential integrator (‘ExpInt1’) for the CEEEs can reach the
same accuracy as a second-order accurate exponential integrator (‘ExpInt2’) for the
HOS method but with a slightly smaller number of FFTs required. Moreover, the
CEEEs can allow for a much larger time interval, e.g. εt ∼ O(1), for numerical
convergence as long as the inequality εfεt � 1 holds. Physically, a larger time
interval (e.g. 1/fs � �tn) achieved by the CEEEs attributes to the fact that it
depends on the rate of change of a wave spectrum that has a much slower temporal
scale relative to that (i.e. 1/fs) of the phase of the fastest wave. This feature is
especially similar to a NLS equation-based model by using a split-step method as
explained in Lo & Mei (1985).

(c) α > 0 and β > 0 and thereby 0 � εk < 1 and 0 � εf < 1, respectively. Compared
with category (b), additional advantageous features are introduced due to a small
value permitted for εk that denotes the bandwidth in wavenumber. In contrast to
εk = 1, the parameter εk of a small value for the CEEEs suggests that a much larger
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domain with a length of L ∼ Nk|�xn|/εk can be achieved at no expense to the
computational efficiency and accuracy if the same number, Nk, of Fourier modes
are used. This is regardless of the choice of the time-dependent parameters (e.g. εf
and εt). Compared with a second-order accurate exponential integrator (‘ExpInt2’)
for the HOS method, a first-order accurate exponential integrator (‘ExpInt1’)
implementing the CEEEs has the following three features. Firstly, it has a slightly
smaller computational cost examining the number of FFTs needed. Secondly, it
permits a much larger temporal scale for computational instability and convergence.
Thirdly, with the same Fourier modes chosen for computations, a much larger
domain can be allowed. It should be highlighted that the introduction of bandwidth
parameters, εk and εf, is similar to a NLS equation-based model where evolution of
a slowly varying envelope is described and where the linear terms of the equation
can be accurately solved with a split step together with a pseudo-spectral method (Li
2021). Both the CEEEs and a NLS equation-based model permit a relatively coarse
spatial domain and larger time interval for numerics while allowing for resolving of
the wave phase on a prescribed computational domain.

Recall that the primary objective of this paper is to propose a new framework that can
combine the advantages of both the HOS method and a NLS equation-based model, in the
sense that the new framework can reach the same accuracy as the HOS method and, similar
to a NLS equation-based method, it permits for both a larger spatial domain and slower
temporal scale but at no expense to the computational efficiency. The choice of values for
α and β indicated by category (c) has demonstrated that the newly derived CEEEs can
indeed reach this objective.

7. Conclusions

This paper deals with the description of surface gravity waves on a finite water depth in
the framework of potential flow theory. The main objective of this paper is to propose a
framework that combines the merits of both the HOS method (Dommermuth & Yue 1987;
West et al. 1987) and a NLS equation-based model (Zakharov 1968; Davey & Stewartson
1974; Dysthe 1979). In particular, it can be as accurate as the HOS method at no additional
cost of numerical efficiency on the one hand. Similar to a NLS equation-based model,
it shall be capable of describing the slow temporal evolution of a wave spectrum but at
no expense of accuracy, permitting a coarse and large computational domain compared
with the characteristic length of the wave phase, on the other hand. To this end, a
novel theoretical framework has been presented in the Hamiltonian theory based on a
perturbation expansion, which leads to the CEEEs given by (4.37a,b). The CEEEs can be
derived up to arbitrary order in wave steepness and have a much slower temporal and larger
spatial scale compared with the characteristic time and wavelength of the wave phase,
respectively. In the new theoretical framework, the envelope of both surface elevation and
the potential on the free water surface are introduced, which are shown to be a pair of
canonical variables for the first time. The two envelopes are used for expressing wave
fields and thereby are the main unknowns solved for numerically from the CEEEs.

A few main features of the CEEEs are explored in this paper. Firstly, based on the
CEEEs, the energy balance equation for the evolution of wave actions is derived. Secondly,
due to the fact that the CEEEs are composed of both linear and nonlinear terms in wave
steepness, it is proposed to solve the CEEEs by using an exponential integrator that leads
to the analytical description of linear wave fields. Furthermore, the nonlinear terms are
expressed in a form of the separation of different wave harmonics, due to which they
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can be especially split into two categories: one which can only force bound waves that
do not obey the dispersion relation and the other that is capable of the forcing of free
waves if particular conditions are met. Analytical derivations are presented showing how
the forcing of free waves can arise from quartet and quintet resonant interactions of linear
waves. Much more physical implications remain to be explored in future works.

The newly derived framework has been compared with three different methods.
Analytical relations between the CEEEs and two traditional perturbation methods are
established, including the theory for the evolution of a train of Stokes waves up to
second order by Fenton (1985) and the second-order semi-analytical framework for
three-dimensional surface waves with arbitrary bandwidth and large directional spreading
by Li & Li (2021). One would find that the relations established can be extended for more
general cases. For example, proceeding to an order higher the CEEEs would be shown to
recover a third-order accurate NLS equation in the limiting case of narrow-band waves
(Trulsen et al. 2000) or of the removal of secular terms at the third order in wave steepness
(Li 2021). From examining numerically the case of the evolution of a nonlinear focus wave
group, the nonlinear terms from the second to fourth order based on the CEEEs are shown
to be identical to those based on the HOS method. Compared with the HOS method for the
same level of accuracy, the CEEEs do not require a larger number of FFTs for computations
but allow for a much larger time interval and computational domain with both a larger size
and spacing.

This new framework has potential for applicability in more general cases that account
for the interaction between surface waves and their ambient environments with different
scales, e.g. sub-mesoscale currents and small-scale turbulence. Despite the fact that
surface tension and the slowly varying water depth are neglected in the framework,
an extension to additionally consider these features would be straightforward. The new
framework is in principle a spectral method and thereby it would suffer from the drawbacks
due to the use of a FFT in a way similar to the HOS method.
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Appendix A. The CEEEs to arbitrary order in wave steepness

A.1. Velocity potential and vertical velocity
As noted and similar to the HOS method, the CEEEs can be derived up to arbitrary order
in wave steepness. This in principle relies on separating the wave harmonics in different
orders in wave steepness. Recall an approximation to the wave fields given by

Φ(x, z, t) ≡
M∑

m=1

Φ(m)(x, z, t) and w(x, z, t) =
M∑

m=1

w(m)(x, z, t), (A1a,b)
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where the approximate forms in different orders in wave steepness admit

Φ(m)(x, z, t) ≡
m∑

j=0

(
1
2 B(mj)Ξ j + c.c.

)
, (A2a)

w(m)(x, z, t) ≡ ∂zΦ
(m) =

m∑
j=0

(
1
2∂zB(mj)Ξ j + c.c.

)
, (A2b)

where Ξ(x, t;α, β) = exp[i(αk0 · x − βω0t)], an arbitrary wave field with superscript
‘(10)’ vanishes by definition, e.g. B(10) = 0. Due to the Laplace equation for the velocity
potential in different orders in wave steepness and the seabed boundary condition, we
obtain

B(mj)(x, z, t) =
∫ ∞

−∞
B̂(mj)

0 (k, t)
cosh

[|k + jαk0|(z + h)
]

cosh (|k + jαk0|h) eik·x dk, (A3)

where B̂(mj)
0 denotes the envelope of the mth order velocity potential of the jth harmonic

evaluated at the still water surface, B(mj)
0 ≡ B(mj)(x, 0, t), transformed to the Fourier k

space, whose explicit expression remains to be derived in the following. Recall the mth
order velocity potential at the still water admits three equating forms; explicitly,

Φ
(m)
0 = −

m−1∑
n=1

1
n!
ζ n∂n

zΦ
(m−n), (A4a)

Φ
(m)
0 ≡

m∑
j=0

(
1
2
Φ̄
(mj)
0 Ξ j + c.c.

)
(A4b)

≡
m∑

j=0

(
1
2

B(mj)
0 Ξ j + c.c.

)
, (A4c)

which include both the expressions used in the HOS method and CEEEs. The detailed
procedures for the latter are especially explained here. This relies on the explicit expression
for Φ̄(mj)

0 . It is straightforward to find that the following identities hold:

ζ n ≡
(

1
2

AΞ j + c.c.
)n

=
n∑

2q≥n

(
n!

q!(n − q)!
1
2n Aq(A∗)n−qΞ(2q−n) + c.c.

)
, (A5a)

∂n
zΦ

( p) =
j=p∑
j=0

(
1
2
∂n

z B( pj)Ξ j + c.c.
)
. (A5b)

Here q ∈ {0, 1, 2, . . .} and p ≡ m − n ∈ {1, 2, . . .}. Inserting (A5a,b) for ζ n and ∂n
zΦ

( p),
respectively, into (A4a) and collecting the terms with the same power j of Ξ leads to the

960 A33-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.205


CEEEs for nonlinear surface gravity waves

expression for Φ̄(mj)
0 (x, t),

Φ̄
(mj)
0 = −

m−1∑
n=1

q=n∑
2q≥n

m−n∑
r=0

{
1

q!(n − q)!
1
2n

[
Aq(A∗)n−q

×
(
δ2q−n−r,j

(
∂n

z B( pr)
)∗ + sgn( j)δ2q−n+r,j∂

n
z B( pr)

)
+ sgn( j(2q − n))δr−2q+n,j(A∗)qAn−q∂n

z B( pr)
]}
, (A6)

where δi,j is the Kronecker delta function that returns unity for i = j or zero otherwise;
sgn(z) denotes the signum function. Based on (A6), one wound find that the velocity
potential given by (A6) vanishes for mj = {21, 41, 43, . . .} arising from the definition of
vanishing envelopes for mj = 10. The envelopes B(mj)

0 are then obtained based on Φ̄(mj)
0

through the identity given by (4.31) for m /= j and by (4.30) for m = j.
Similarly, the vertical velocity on the free water surface is given by

W(x, t) =
M∑

m=1

W(m)(x, t), with (A7a)

W(m)(x, t) =
m−1∑
n=0

1
n!
ζ n∂n+1

z Φ(m−n), (A7b)

≡
m∑

j=0

(
1
2 W̄(mj)Ξ j + c.c.

)
, (A7c)

where W̄(mj) is the envelope of the mth order vertical velocity at the free water surface of
the jth harmonic, obtained from inserting the envelopes of the velocity potential at the still
water surface into (A7b) and collecting the same power j of Ξ ; explicitly,

W̄(mj) =
m−1∑
n=0

q=n∑
2q≥n

m−n∑
r=0

1
q!(n − q)!

1
2n

[
Aq(A∗)n−q

× (δ2q−n−r,j

(
∂n+1

z B( pr)
)∗ + sgn( j)δ2q−n+r,j∂

n+1
z B( pr)

)
+ sgn( j(2q − n))δr−2q+n,j(A∗)qAn−q∂n+1

z B( pr)
]
. (A8)

A.2. Nonlinear forcing terms
Recall that the definition of the nonlinear forcing terms in the HOS method is given by

WM =
M∑

m=1

W(m) and TM =
M∑

m=1

T (m), (A9a,b)
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where

W(m) ≡ H(m − 1.5)W(m) − δm,2∇ψ · ∇ζ + H(m − 2.5)W(m−2)(∇ζ )2, (A10a)

T (m) ≡ −1
2δm,2(∇ψ)2 + 1

2H(m − 1.5)
m−1∑
n=1

W(n)W(m−n)

+1
2H(m − 3.5)(∇ζ )2

m−3∑
n=1

W(n)W(m−n), (A10b)

where H denotes the Heaviside step function. In contrast, the CEEEs propose to use the
nonlinear forcing terms in different orders in wave steepness given by

W(m) =
j=m∑
j=0

(
1
2W̄

(mj)Ξ j + c.c.
)

and T (m) =
j=m∑
j=0

(
1
2 T̄

(mj)Ξ j + c.c.
)
. (A11a,b)

Equating the two different expressions of the nonlinear forcing terms in the mth order in
wave steepness leads to

W̄(mj) = H(m − 1.5)W̄(mj) − 1
2δm,2δj,2(∇ + iαk0)B · (∇ + iαk0)A

− 1
2δm,2δj,0(∇ + iαk0)

∗B∗ · (∇ + iαk0)A

+ 1
2H(m − 2.5)H(r − 1.5 − j)|(∇ + iαk0)A|2W̄(rj)

+ 1
4H(m − 2.5)H( j − 2.5)

(
[(∇ + iαk0)A]2

)
W̄(rγ ), (A12a)

where r = m − 2 and γ = j − 2 for j ≥ 3; and

T̄ (mj) = 1
4
δm,2δj,2 [(∇ + iαk0)B]2 + 1

4
δm,2δj,0 |(∇ + iαk0)B|2 + 1

4
H(m − 1.5)

×
m−1∑
n=1

n∑
p=0

m−n∑
γ=0

[
δp+γ,jW̄(np)W̄(qγ ) + δp−γ,jW̄(np)W̄(qγ )∗ + δp−γ,−jW̄(np)∗W̄(qγ )

]
+ 1

16
H(m − 3.5)H( j − 2.5) [(∇ + iαk0)A]2

×
m−3∑
n=1

n∑
p=0

m−n−2∑
γ=0

[
δp+γ,j−2W̄(np)W̄(νγ ) + δp−γ,j−2W̄(np)W̄(νγ )∗ + δp−γ,−( j−2)W̄(np)∗W̄(νγ )

]
+ 1

16
H(m − 3.5)|(∇ + iαk0)A|2

×
m−3∑
n=1

n∑
p=0

m−n∑
γ=0

[
δp+γ,jW̄(np)W̄(νγ ) + δp−γ,jW̄(np)W̄(νγ )∗ + δp−γ,−jW̄(np)∗W̄(νγ )

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A12b)

where p = m − n is noted and ν = m − n − 2. Inserting (A12a) and (A12b) into (4.34a,b),
and thereby the nonlinear forcing terms on the right-hand side of the CEEEs presented in
§ 4.4, the CEEEs up to arbitrary order in wave steepness are therefore obtained. It shall be
noted that, despite the cumbersome expressions presented in § A.1, many involved terms
would vanish and there are only a very few terms that contribute to the CEEEs, especially
these correct to the lowest orders in wave steepness as shown in § 4.
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