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Abstract

The behavior and patterns of the particle trajectories in the wave motion in shallow
water have been examined by many researchers for decades, especially the investi-
gation of the properties of flows beneath the surface waves in shallow water have
been studied out of curiosity to know more about the features of long waves using
mathematical models. In this thesis, the focus is on particle trajectories beneath the
surface wave profile in shallow water. A different mathematical model which repre-
sents different cases has been developed to describe some properties of the waves
under consideration.

In paper A, the regularized version of the Korteweg-de Vries (KdV) equation
called the Benjamin-Bona-Mahony (BBM) equation has been used as a model equa-
tion for long waves in shallow water. This model is used to study the behavior of
the waves at the surface of the inviscid fluid. Here, the particle paths are computed
numerically with the aid of the velocity fields found in connection with the exact so-
lutions of the BBM equation. In line with this concept, we examine the solitary wave
and the periodic traveling wave solutions. For comparison purposes, we compute the
closed-form solutions of the particle trajectories analytically.

In paper B, the work is centered on the numerical examination of particle tra-
jectories associated with the propagation of long water waves of small but finite
amplitude on a background shear flow over a flat bottom. Taking into considera-
tion the assumption that the nonlinear and dispersive effects are small and of the
same magnitude, the Boussinesq-type equations for two-dimensional water waves on
a background flow with constant vorticity are derived. Restricting attention to waves
propagating in a single direction, we find a new version of the BBM equation which
takes into account the effect of vorticity. To investigate the particle trajectories of
the flow, an approximate velocity field associated with the derivation of the BBM
equation over a shear flow is obtained. Several cases of particle paths under surface
wave profiles such as solitary waves and periodic traveling waves are examined.

In paper C, the KdV equation is used to model the interfacial waves in the two-
layer fluid of different densities. For the numerical computation, the three equations
representing the Boussinesq-type system which is later reduced to the two equations
were derived. The KdV equation is derived as a result of investigating the waves
going in only one direction in the two-layer fluids. The study of the particle paths of
the flow led to the derivation of the velocity field connected to the exact solutions of
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the KdV equation. In this context, the particle trajectories of flows that correspond
to the solitary waves were studied.

In paper D, we focus on the numerical evaluation of the particle trajectories
associated with the solitary-wave solution of the Gardner equation as a model for
water waves at the surface of an inviscid fluid. A secondary objective is to obtain
the highest solitary wave which does not feature wave breaking. The Gardner equa-
tion is derived from a Boussinesq-type system for surface water waves. By focusing
on the one-directional waves, the Gardner equation which is sometimes called the
extended Korteweg-de Vries (eKdV) equation is obtained. The derivation also yield
expressions for the horizontal and vertical velocity components which can be used
to understand particle trajectories and wave-breaking properties in connection with
the exact solitary-wave solution.



Abstrakt

Atferden og mgnstrene til partikkelbaner i bglgebevegelser i grunt vann har blitt
studert av forskere i flere tiar, spesielt har egenskapene til stremmer under over-
flatebglger i grunt vann blitt studert ved bruk av matematiske modeller ut fra et
¢nske om & leere mer om egenskapene til lange bglger.

I denne avhandlingen er fokuset pa partikkelbaner under profilene til over-
flatebglger pa grunt vann. En ny matematisk modell som representerer ulike sce-
narioer har blitt utviklet for & beskrive noen av egenskapene til bglgene vi studerer
her.

I artikkel A brukte vi den regulariserte versjonen av Korteweg-de Vries (KdV)-
ligningen, kalt Benjamin-Bona-Mahony (BBM)-ligningen, for &4 modellere lange
bglger pa grunt vann. Denne modellen ble brukt for a studere atferden til bglger
pa overflaten av et fluid uten viskositet. Her beregnet vi partikkelbanene numerisk
ved hjelp av hastighetsfelt funnet under arbeid med eksakte lgsninger for BBM-
ligningen. I trad med dette utgangspunktet beregnet vi lgsninger pa lukket form for
partikkelbanene analytisk.

I artikkel B er arbeidet sentrert rundt numeriske undersgkelser av partikkel-
baner assosiert med forflytningsbevegelsen til lange bglger i vann over en flat bunn,
der amplituden er liten men avgrenset, og vi har en skjeerstrgm i bakgrunnen. Ved
a ta i betraktning antagelsen om at ikke-linesere og dispersive effekter er sma og
omtrent i samme stgrrelsesorden, utledet vi ligninger av Boussinesq-type for todi-
mensjonale bglger i vann med en bakgrunnsstrgm der vortisiteten er konstant. Ved
videre & avgrense fokuset til bglger som beveger seg kun i en bestemt retning, fant
vi en ny versjon av BBM-ligningen som inkluderer vortisitet. For 4 undersgke par-
tikkelbanene i strgmningen utledet vi en approksimativ tilnserming til uttrykkene for
fluidhastighetene som dukker opp i forbindelse med utledningen av BBM-ligningen
nar vortisitetseffekter inkluderes. Flere scenarioer for partikkelbaner under over-
flatebglger ble undersgkt, blant annet under solitzerbglger og under periodiske bglger.

I artikkel C brukte vi KdV-ligningen til & modellere bglger i grensesnittet mel-
lom to ulike lag med forskjellig tetthet i et todelt fluid. For den numeriske bereg-
ningen utledet vi de tre ligningene som representerer systemet av Boussinesq-type,
og senere reduseres til to ligninger. KdV-ligningen ble utledet som et resultat av
a studere bglgene, som beveger seg utelukkende i en retning i det todelte fluidet.
Granskningen av partikkelbanene i strgmningen ferte til utledningen av ligninger
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for fluidhastighetsfeltet for de eksakte lgsningene til KdV-ligningen. I dette arbeidet
studerte vi partikkelbanene i strgmninger assosiert med solitzerbglger.

I artikkel D konsentrerte vi oss om numeriske lgsninger for partikkelbaner i
sammenheng med soliteerbglge-lgsningen til Gardner-ligningen, der ligningen er en
modell for overflatebglger i vann der vi ser vekk fra viskositet. Et sekundaert mal
var a finne den maksimale hgyden en soliteerbglge kan ha uten at bglgebryting
oppstar. Gardner-ligningen utledes fra et ligningssystem av Boussinesq-type for over-
flatebplger. Ved a fokusere kun pa bglger som beveger seg i en retning, finner
man Gardner-ligningen. Denne ligningen kalles ogsa noen ganger for den utvid-
ede Korteweg-de Vries (eKdV)-ligningen. Utledningen resulterer ogsa i uttrykk for
de horisontale og vertikale hastighetskomponentene, som kan brukes for a forsta
partikkelbaner og egenskaper ved bglgebryting i sammenheng med den analytiske
soliteerbglgelgsningen.



Outline

This thesis is organized into two parts. Part I contains general background informa-
tion, an introduction, and preliminary concepts of fluid mechanics. Part II presents
the papers contributing to this thesis.

In part I, chapter 1 contains the general introduction in which the background of
the study is presented. The motivation as well as the preliminary concepts were also
included. Chapter 2 presents the computations of linear and nonlinear wave theory.
Chapter 3 features the methodology which comprises the particle trajectories in the
BBM equation, particle trajectories in the nonlinear waves on a uniform shear flow,
fluid transport induced by internal waves, and particle trajectories and wave breaking
in the Gardner equation. Chapter 4 gives an overview of the included papers.

Part II contains the scientific research work. The contribution to the thesis consists
of the following scientific papers:
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Chapter 1

Introduction

The study of particle paths beneath a surface wave can be traced to the late nine-
teenth century [43]. A standard first-order approximation proposed that all particle
trajectories are closed in linear wave theory [19, 38, 49]. However, Stokes [50] proved
that particle paths are not closed for periodic waves. In fact, the motion of a pe-
riodic surface wave is associated with particle trajectories that are not closed and
lead to net mass transport in the direction of the wave. This discovery is known
today as the Stokes drift. Stokes drift in channels of finite depth was reviewed by
Ursell [54]. Constantin [15] gave a mathematical proof that the particle paths are
not closed. Other effects, such as infragravity wave motion and inertia, may also af-
fect the particle motion [2, 6]. Munk considered particle motion under waves in the
surf zone and applied a backward current in order to describe nearly closed particle
paths that were observed under some conditions [42]. Moreover, Borluk and Kalisch
examined the behaviors of particle paths underneath the waves at the surface. Their
study consists of numerical computation of solitary wave solution, periodic traveling
waves solution, and the two-soliton solutions [8]. It is established that the particle
paths are nearly closed for the cnoidal waves.

The incorporation of the vorticity to the shallow-water theory was first consid-
ered by Burns [11], who modified the shallow-water theory by including the effects
of the vorticity and examined the range of wave speeds for general velocity pro-
files. Following the publication of [52], constant background shear has been used in
many works (see for example, [1, 13, 29, 53, 55, 56]). In addition, the discovery of
internal solitary waves has led to groundbreaking research in applied mathematics
and physics. In [12], the authors performed experiments in the laboratory to study
the internal solitary wave in the waters covered by ice. The study is based on the
propagation of internal solitary waves within a stable stratified two-layer fluid. In
the experiments, the upper boundary condition has changed to ice from open wa-
ter, and the ice is moved horizontally by the internal solitary wave-induced current,
and the speed of the movement of long ice floes depends linearly on the length of
the floe in connection to the range of parameter used.
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In addition, the construction of a Boussinesq system of interfacial waves, which
targeted two-way propagation is studied in [44]. When the interfacial waves have
rigid boundaries in the full Euler equations set-up, the configuration bounds the
central core amplitude. When dealing with solitary waves, if the speed of the wave
advances to a critical value, the maximum amplitude is attained by the solution
while continuing to be wider indefinitely; such waves are referred to as ‘table-top’
waves. The wave becomes a front when the width of the central core reaches infi-
nite [20]. An extended Korteweg-de Vries (eKdV) equation [24, 26] is usually used
to model this action. It is important to know that the KdV-type models can only
express the propagation of waves in one direction, while the Boussinesq-type sys-
tems can describe the propagation of the two-way wave.

However, Choi and Camassa [14] established the general models in the configura-
tion of both shallow and deep water. The two-layer form of the Green-Naghdi model
is used in the case of shallow water. Their equations have been extended to handle
the configuration of free-surface [3]. In the two-layer flows, the numerical compu-
tation of solitary waves solutions to the full incompressible Euler equations, which
feature an interface has been studied by many researchers (for example [37]). More-
over, Dias and Vanden-Broeck [20, 21] have computed fronts.

Moreover, we considered the eKdV equation, sometimes called the Gardner equa-
tion. This equation is able to describe larger amplitude waves than the KdV equation.
For such models to be useful in practical situations in coastal engineering, certain
wave effects such as wave breaking and fluid transport should be considered [8, 10].

Wave breaking is known in connection with stagnation at the free surface [5, 23].
At the free surface, this happens when the particle’s horizontal velocity at the wave-
crest approaches the same value as the phase velocity. The accuracy of the kinematic
breaking criterion in the prediction of wave-breaking onset has been given much con-
sideration. Several studies argue that in some practical circumstances that concern
the onset of breaking, the kinematic criterion can be useful [27, 32, 34, 58] but if
the kinematic criterion is to be used in a practical situation, estimates of phase
or crest velocity have to be provided [45, 46] which may be difficult, especially in
three-dimensional situations. Some works suggest that simpler criteria may be more
expedient [28, 40]. In [47], a convective breaking criterion is used to find the in-
ception of wave breaking in solitary and periodic traveling waves using the KdV
equation on a flow with constant vorticity.

The investigation of particle trajectories in the long wave models has been the
center of attraction in this thesis. The behavior of the particle paths at the surface
of the fluid using the BBM equations was examined. The interesting results moti-
vated the idea of extending the findings to other areas of interest. In this chapter,
the general introduction, background of the study, motivation, aim and objectives,
and the preliminary concepts are presented.
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1.1 General Introduction

D.J. Korteweg and G. de Vries collaborated to derive the well-known Korteweg-de
Vries (KdV) equation. The KdV equation is proposed as a description of the prop-
agation of shallow water waves. The model formulated subsequently comes to the
limelight to become a paradigm on which the nonlinear partial differential equations
feature soliton solutions. The formulated KdV model is given as

Nt + Mz + MMz + Neze = 0. (1'1)

However, Benjamin, Bona, and Mahony developed another equation named the
Benjamin-Bona-Mahony (BBM) equation, which is also known as the regularized
long-wave model, and it is given in the form of the partial differential equation

Nt + Nz + MMa = Naar = 0. (1.2)

The equation (1.2) is studied as an improvement of the KdV equation (1.1). It is
used for modeling long surface gravity waves of small amplitude propagating in only
one direction in 141 dimensions. The establishment of the stability and uniqueness
of solutions to the BBM equation is highlighted in [4]. This contradicts the theory
of the KdV equation, which is unstable in its high wavenumber components.

1.2 Background of the study

The experiments conducted by John Scott Russell in 1834 led to the discovery of the
KdV equation. The claims postulated by John Scott Russell were later investigated
and introduced by Lord Rayleigh and Boussinesq in 1877 [9], and this was later re-
discovered by D. J. Korteweg and G. de Vries in 1895 [18]. The KdV model was
originally derived under the assumption of small wave amplitude and large wave-
length for water waves, and it is justifiable as a model for long waves in many other
physical systems [4]. Much attention was not given to the KdV equation after its
discovery until 1986, when Zabusky and Kruskal’s numerical discovery shows that
its solutions appeared to decompose at large times into a collection of “solitons”
[60]. Furthermore, the solitons seem to be almost unaffected in shape when passing
through each other (though this could cause a change in their position).

In the field of applied mathematics and physics, the use of the KdV equation
has great significance, especially its application in modeling waves on shallow water
surfaces. However, it is indisputably that this model has some exceptional properties
embedded in it [22], but not appropriate in some applications. This led to a need
for improvement in order to cater for some of its limitations, for example, the non-
physical unbounded dispersion relation, coupled with the previous aforementioned
and other defects. Because of this, in 1972, Benjamin, Bona, and Mahony developed
another model named the BBM equation, which is given in relation (1.2) as an
alternative model to the KdV equation (1.1).
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1.3 Motivation

In science and engineering, the common practice is to express real-life problems as
nonlinear differential equations since most of the daily activities are nonlinear.

The previous results which are in accordance with the present study were ob-
tained by Borluk and Kalisch [8], they found the velocity fields which are associated
with the exact solutions of the KdV equation and constructed the particle paths
beneath the surface. Solutions that include solitary waves and periodic traveling
waves were considered. However, we are motivated to extend their findings using the
KdV-type and BBM-type approximation to investigate how the particle trajectories
behave in the fluid.

1.4 Aim and Objectives

1.4.1 Aim

The main aim of this thesis is to explore the various properties embedded in the
KdV-type and BBM-type models, most especially the numerical computation of
how the particle trajectories behave in the fluid flow.

1.4.2 Objectives

The specific objectives to achieve our aim are
e To derive the Boussinesq system associated with the given problem.

e To obtain the KdV-type and the BBM-type equation from the associated
Boussinesq system.

e To derive the horizontal and vertical velocity components associated with the
KdV and BBM model under consideration.

e To incorporate the horizontal and vertical velocity components into the given
formula of the particle trajectory which are associated with the exact solutions
of the model.

1.5 Preliminary Concepts

In this section, the background principle of the surface water waves will be presented.
We are starting with the conservation of mass, followed by the conservation of mo-
mentum. The surface wave problem will be developed through various assumptions
and boundary conditions. We will concentrate more on the principles and theories
presented in [36] and [49].
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1.5.1 Conservation of mass

Consider a fluid of density p(x,t) within a material control volume V (¢), the mass
contained within it is defined as
/ pdv,
V()

where the position x = (z,y,2) at time t. An assumption that the mass of the
material volume does not change with time yields the formula

d

— dav =0.

at ), °
In the control volume V, the rate of change of mass inside the volume is equal to
the rate of mass flux crossing out of the boundary surface A. This is given as

4 pdV:—/pu~ndA,
A

dt Jy
where the outward normal vector to the surface A is denoted as n. The representation
of the velocities in the (z,y, z) directions are given as the fluid velocity vector in the
components u(x, t) = (uq,ug, us), respectively. Next, the differential form is obtained
by changing the surface integral on the right-hand side to a volume integral. However,
by applying the Leibniz rule and the divergence theorem, the resulting expression is

[ ]2 59 ] ar o

This expression is valid for any volume, it is possible only if the integrand vanishes
at every point. Since the volume boundaries can be chosen arbitrarily, the above

given as

expression gives
dp
—+ V- =0.
5 TV (pw)

This expression is called the continuity equation and represents the differential form

of the conservation of mass principle.
D 0
Noting that V-(pu) = pV-u+u-Vp, and the material derivative — = —+u-V.

o ) ) Dt Ot
Hence, the continuity equation gives

1 Dp

;E+V~u:0.

In incompressible fluid, if the density remains constant, the material derivative of
the density will become zero, and the above equation yields

V-u=0. (1.3)

This is known as the continuity equation at constant density.
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1.5.2 Conservation of momentum

Newton’s second law is used to establish the law of conservation of momentum. The
law states that in a control volume V', the rate of change of momentum is equal to
the sum of the external forces acting on the volume, this is written in integral form

as
Du

D
E— - — = F A-
Dt/VpUdV Vth av /Vpng—&-/A d

This equation can be rewritten as

/g(pu) dV+/pu(u-n) dA:/png—!—/FdA.
v ot A % A

The rate of change of momentum in volume V and the momentum flux across the
surface A are represented on the left-hand side, while on the right-hand side, the
external forces are split into a surface force F per unit area acting on the volume
boundary and a body force g. Note that the vector force F is defined as F = n; - 05,
where the stress tensor is denoted as o;; and the normal vector is given as n;.
Furthermore, the stress tensor o;; is divided into a normal stress —pd;; and shear
stress 7;;, where the fluid pressure and the identity matrix are represented as p
and d;;, respectively. However, after using the Gauss theorem, the surface integral
is transformed into a volume integral, then the equation for the conservation of
momentum gives

/v [aat(/)u) +V- (puu)] dv = /V g+ V - (—pdi; + 7)) dV. (1.4)

Ju;
In the Newtonian fluid, the stress tensor 7;; is a linear function of —. Therefore,
Ly

Ou;  Ouy
Tij =24 Yi 4 2% ) The left hand is expressed as follows
8xj 8{1,‘2

/V[gt(pu)Jrv.(puu)} dV:/V[p‘z‘; +u[g§+v'(pu)]+(pu)-Vu] oV

Du
= [ p— dV.
v Dt

Using these relations, (1.4) becomes
D
/ p22 v = / [pg — Vp + +puV2u] dv.
v Dt v

Thus, the integrand must vanish at every point (x,t) since it holds for any volume
to obtain

u
— =pg-V Viu.
Py =P8~ VPt +uViu

In the incompressible Newtonian fluid, this equation is known as the Navier-Stokes
equation.
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1.5.3 Potential Flow and Boundary Conditions

The surface gravity waves propagating at an air-water interface where the force of
gravity is the main reinstating force is considered. The fluid volume is acted upon by
the gravitational field, which is assumed to be constant, and it is the only available
body force acting on the fluid volume. The gravity force is conservative and can be
expressed as follows

g=Vo,

where ¢ represents the potential function. By considering the positive z—axis, @ is
given as —gz, where g is the acceleration due to gravity. Using the assumption that
the flow is inviscid and incompressible, the Euler equation is used to represent the
conservation of mass and linear momentum, as given below

V.-u=0, (1.5)
Ou

1
a—k(u-V)u——;Vp—gk, (1.6)

where k represents the z—direction’s unit vector. For an irrotational flow, curl u = 0,
the velocity vector of the flow can be written as a potential vector, that is, u = V¢.
Substituting u = V¢ into (1.5), we have

Ap = 0.

This expression is called the Laplace’s equation. Integrating expression (1.6) with
respect to x, and follow the principles in [49, 57] yields the Bernoulli’s law

D — Do

bt 3 (Vo) + 2200 4 gz = 0, (L.7)
where pg is an arbitrary constant and C(¢) is a constant of integration which is
independent of x.

Let the interface of air-water be defined as f(x,y,2,t) = 0 and let z = n(z,y, t)
defined the free surface, where the vertical elevation of the free surface is represented
by n(x,y,t). With the assumption that the fluid cannot leave the interface, the
surface boundary condition is given as

(1’1 . u)Z:n =n- Uinterfa067

where Ujpterface Tepresents the interface velocity and n denotes the surface normal.
The velocity of the interface is assumed to be

Uinterface - ntk

At the free surface, the second boundary condition, that is, the dynamic boundary
condition can be derived by assuming no mass at the interface. It means there is equal
force in the fluids above and beneath the surface. This is equivalent to saying that
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on both sides of the boundary, the pressure must be equal. We neglected the effect
of the surface tension in this case. The air motion will cause a change in pressure.
However, the changes are negligible due to how small they are. Hence, the constant
po is considered to be the atmospheric pressure. At the bottom, the third boundary
condition, that is, the solid fixed boundary, can be derived. The undisturbed water
surface is at z = 0, and the distance to the sea bed is given as h(z,t). Since no fluid
can cross the boundary, we have n - u = 0. Finally, the three boundary conditions
are given as

N + Patlz + ¢y77y = ¢, at z = 77(96, Y, t)7 (1'8)
¢t+%(¢§+¢§+¢§)+gn=0 at  z=n(z,y,t), (1.9)
G2 + dzhy + Oyhy =0 at z=—h(z,y). (1.10)

1.5.4 Shallow water waves

The shallow water theory leads to the hyperbolic equations [17], and it is fit to
investigate the non-dispersive long waves. The shorter waves and the waves with
more dominant dispersion effects can be studied using the Boussinesq theory [57].

In shallow water, the wavelength A is presumed to be far larger than the undis-
turbed water depth hg in the theory of nonlinear long waves by using the assumption
in [36, 49] which stated that a wave is considered a shallow-water wave if

A
Ao
ho =

2
This can be written in terms of the wave number k = TW as khg — 0. By applying

this assumption to the dispersion relation ¢ = ,/%tanh(k‘ho) (derived in (2.16) in

connection to the linear wave theory) yields

c=/ghg.

This expression demonstrated that the waves are non-dispersive. According to [33,
49], the nonlinear theory can be combined with the assumption of long wave to arrive
at the propagation speed as

c=+/g(ho+mn),

where the elevation of the free surface is denoted by n(z,t).

The shallow water equation is derived using the two-dimensional flows over a
constant depth. Without any assumption, the Euler equations given in (1.5) and
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(1.6) can be expanded as

Uy +w, =0,

Du P

Dr = Uup + Uy + WU, = ——,

Dw P

Dt :wt—|—uwx—|—wwzz——z—g,

where u(z, z,t) and w(z, z,t) represent the velocity components, p(z, z, t) represents
the pressure, and g denotes the gravitational constant. The shallow-water approx-
imation requires the assumption that the vertical acceleration is smaller than the
horizontal acceleration. Hence, we neglected the material derivative of w, and the

vertical component of the momentum gives
P g=0.
p

The integration of this equation with respect to z from the limit z to n gives the
hydrostatic law as

p—po=pg(n— =) (1.11)

This is in agreement with the free surface dynamic boundary condition. Differen-

tiating equation (1.11) with respect to x and substituting it into the horizontal
momentum equation gives the system of equations

Uy +w, =0, (1.12)

Uy + Uty + wu, + gn, = 0. (1.13)

We can derive the Benney equations from equation (1.12) and (1.13) using the free

surface boundary condition [25]. At water equilibrium location z = 0, there exists a
constant depth hg. The boundary condition at the surface is given by

(1’1 . u)z:n =n- Uinterface-

The air-water interface is defined as f(z, z,t) = n(x, t)—z, where the surface elevation
is denoted as n(z,t). At z = n(z,t), the boundary condition can be written as

w =N+ NgU.

To obtain the first Benney equation, use the boundary condition we just defined and
the integration of equation (1.12) with respect to z over the water depth from —hg

to n(zx,t), we have
o [
77,54——/ u dz = 0.
al’ —ho

The second Benney equation is represented by equation (1.13). The third Benney
equation can be derived by combining the bottom boundary condition and the in-
tegration of equation (1.12) with respect to z from the limit —hg to z, that is,

/ (ug +w;) dz = 0.

—ho
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The vertical velocity component is equal to zero at z = —hg, and the integral equa-

z
w = 7/ Uy dz.
—ho

It is worth mentioning that these Benney equations are also referred to as the
shallow water models for shear flows due to the dependency of velocity components
on both x and z. The Benney equations reduce to the classical shallow water equa-
tions using the assumption that the horizontal velocity is not dependent on z. The

tion gives

resulting equations are

ne + [u(n + ho)le =0,
up + Uty + gne = 0.



Chapter 2

Linear and nonlinear wave theory

2.1 Linear wave theory

The problem presented in the subsection 1.5.3 can be linearized to obtain a solution
to the problem and to obtain the dispersion relation for propagating water waves
with small amplitude. The assumption for this theory is that the amplitude a of the
wave must be far smaller than the wavelength A. In addition, the velocity components
quantities, the surface elevation n(x, z,t), and their respective derivatives should be
smaller.

2.1.1 Linear waves model

The task here is to investigate the two dimensional waves, (z, z), propagating in the
linear wave model. The interesting case considered is when the waves propagate in
one direction only (that is, in the x direction) as seen in Figure 2.1. The displacement

n(x,t).
’,--'-——--..\
T ——— 1

h(]

Figure 2.1: Surface wave profile with elevation n(z,t) and the constant water depth ho.

at the free surface is denoted by 7(z,t). The velocity potential ¢(z,z,t) for an
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irrotational flow (7 x u =0, where u = (u(z, z,t),v(x, 2,t))) is defined by

99 _ 09
e V=g (2.1)

u =

In connection with the continuity equation

ou Ov

—+—=0 2.2
ox + 0z ’ (2:2)
the Laplace equation is obtain as
¢ 0%
92 T2 = 0, forzeR, —hy<z<n(x,t). (2.3)

The kinematic boundary condition at the bottom is given as a zero normal vector
so that the particles may not penetrate the bottom, that is

_9% _

=5, = 0, at z=—hg. (2.4)

v

The simplified kinematic boundary condition at the surface is given by

(). (3)

The right-hand side is expanded around z = 0, and the higher-order terms are
neglected, so we are left with the linearized form of the kinematic boundary condition

99 _ 9In
= =L t =0. 2.6
0z ot U 7 (2:6)
The linearized Bernoulli equation from the linearized momentum balance equation
is given as
d¢ P
-+ — =0 2.7
o T, ter=0 (2.7)

where P is the pressure and p is the density of water. From the dynamic condition,
the pressure just below the free surface is always equal to the ambient pressure.
Using the assumption that the ambient pressure is zero, we have

P=0 at z=m. (2.8)

Using (2.8), simplifying the linearized Bernoulli equation at the surface z = 7 yields

0 B B
a+gn—0 at z=mn. (2.9)

The expansion around z = 0 gives

d9 B
o= 9 at z=0. (2.10)
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2.1.2 Solution to the linear problem

The form of n(x,t) is assumed in order to make use of the boundary conditions
given. A sinusoidal component which is consider as a simplest case is considered and
it is given as

n(z,t) = acos(kx — wt). (2.11)

Since 7 described a cosine function which depends on the phase (kz — wt), then
the solution to Laplace’s equation must be a sine function of the phase (kx — wt).
However, a solution is assumed and simplified as

oz, z,t) = (Aekz + Be*kz) sin(kx — wt). (2.12)

Using the no-flow condition, kinematic boundary condition, and taking some as-
sumptions into consideration, the velocity potential is obtained as

aw cosh(k(z + ho))

t) = in(kz — wt). 2.1
Oz, 2,1) = — () sin(kx — wt) (2.13)
From expression (2.13), the velocities in the z- and z- direction are obtained respec-

tively as
" 99 _ awcosh(k(z + ho))
Ox sinh(khy)
Y 99 _ awsinh(k(z + ho))
0z sinh(khg)

cos(kx — wt),

(2.14)
sin(kx — wt).
Substituting (2.11) and (2.13) into the free surface dynamic condition (2.10) yields

the dispersion relation
w = y/gk tanh(khg). (2.15)

The phase velocity ¢ at arbitrary depth is obtained by the formula ¢ = %, which is

c=4/ %tanh(kho), (2.16)

2
where k = Tﬂ In deep water approximation, as khy — oo, relation (2.16) becomes

given as

C =

9

=

In shallow water approximation, as khg — 0, relation (2.16) becomes
¢ = +/gho,

this demonstrates that under shallow water approximation, the waves are non-
dispersive.
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Gy +8.2,+0)

Figure 2.2: Orbit of a fluid particle with an average position of (zo, z0) and the displace-

ment (§(t), C(t))-

2.1.3 Particle paths

The investigation of the particle orbits required the use of Lagrangian coordinates.
As shown in Figure 2.2, the fluid particle at rest (that is, at ¢ = 0) is positioned at
(20, 20) and its coordinates are represented as (xo + &, zo + ¢) [36].

The particle paths is identified by (xg, 20) which represent the center of the orbit,
and the path is denoted by the Lagrangian form &(zo, 29,t) and (o, 20,t). Then
the velocity components are given in the form of differential equations

23
E = u(g(t)v C(t)v t)a

o
R GURSOIE

When the small-amplitude waves are considered, the smaller particle excursion (¢, ¢)
is recorded, and at that instant, the velocity of a particle along its path is almost
equal to the velocity of the fluid at the mean position (zg,z29). Now, the velocity

(2.17)

0
components are evaluated by a—f = u(xg, 20,t) and i v(z0, 20, t). Substituting
expression (2.14) into relation (2.17), and integration in time gives

&= _aCOS};i(I]f}(lz("(;;;)hO)) sin(kxg — wt),
Sinh(k‘(Zo + ho))

sinh(khg)

(2.18)
(=a cos(kxg — wt).

Adding the square of the expressions in (2.18) together, after the simplification, the
term (ko — wt) is eliminated and we are left with the equation which can be use to

describe an ellipse

& S
s+ — s =1 (2.19)
cosh(k(zo + ho)) sinh(k(zo + ho))
sinh(kho) sinh(kho)

Hence, the numerical experimentation shows that the particle path computed is not
a closed loop.
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2.2 Nonlinear wave theory

The linear wave theory ceases to be valid when the wave becomes too steep or when
the wave propagates toward shore into shallow water. In this case, the high-order
wave theories are needed to describe the wave behaviors. Note that several theories
have been applied to examine the properties embedded in nonlinear waves. In this
subsection, the procedure used to obtain the nonlinear theory used in this thesis is
presented.

2.2.1 Nonlinear waves model

The background of this study can be traced back to Whitham [57]. Derivation of
the KAV equation required the assumption of fluid been incompressible and inviscid
in a constant gravitational field as well as assuming small amplitude shallow water.
Let the vertical surface be denoted as z = 4+ hg, note that z represents the distance
measured from the horizontal bottom. Then the velocity potential ¢ satisfies the
Laplace equation

Pzz + P2z = 0, (2.20)
with
¢.,=0 on z=0, (2.21)
and the surface boundary conditions
Nt + Gufe — G2 = 0,
b1+ %(dﬁ v rgm=of O 77 (e, t). (2.22)

For the shallow water theory and the small total depth, we have an expansion

o= 2" fulz,1). (2.23)
n=0

2.2.2 Derivation of the Boussinesq system

Substituting relation (2.23) into Laplace’s equation (2.20) and the boundary condi-
tion given in (2.21) yields

> »2m anf
= 1™ 2.24
m=0
where f = fo. Next, the expansion is substituted into the boundary conditions on the
free surface. For convenience, normalizing the variables from the start is considered
by using the following parameters
i’ , glag’

! !
J?:l.f, Z:hOZ, t= , n=am, ()b: )
Co Co
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where a and ¢y are the amplitude and the phase velocity, respectively. The primed
variables are normalized variables, while the ones without primed are original vari-
ables. In normalized form, equation (2.20), (2.21) and boundary conditions yield

B + & =0, 0<2 <1+an, (2.25)
¢, =0, =0, (2.26)
1

My + adlm, — B(blz, =0, (2.27)

n/+¢;,+1¢/2+77 /2:O at Z/=1+Oé’l7/

2 2 ﬁ ) )

h2
where o = h— and § = 1—20. Hence, the expression (2.24) becomes
0
0 l2m ame

o= S (225)

=0

Using equation (2.28) in the boundary conditions at the free surface resulting to

e + {(1 + O‘n/)fx’}m/ - {é(l + an/)Sfx’x’x’ac’ + %O‘(l + 0577/)277;’.)[9:’1%’ } B+ 0(62) =
(2.29)

1 1
77/ + ft/ + §af3, — 5(1 4 a’f]/)2 {fz/z't/ + afz’fz’z’z/ — afi;x/}ﬁ + 0(62) =0. (230)

If the terms in the first power of 5 are retained, but the term of O(«3) are dropped
and differentiating equation (2.30) with respect to z’, we obtain

1
o+ AU+ Y, — GBuvararas + OB, 67) =0, (231)
1
Wy + QW + 1k — gﬁwz/x/t/ +0(aB, %) =0, w= fo. (2.32)

Equations (2.31) and (2.32) are variants of Boussinesq’s equations. However, the
velocity ¢!, is derived as

12

¢l =w — ﬁ%wx/x/ +0(B?).
The value averaged over the depth is

- 1 2

U =w = gfwerar +0(af, 67,
inverting this expression yields

1
w=1u-+ éﬁﬂL’J,’ + 0(066762)'
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2.2.3 Derivation of the KdV equation

The Korteweg-de Vries (KdV) equation can be derived from any of these equations
by focusing on the wave moving to the right only. If the terms of order « and 8 are
neglected from equations (2.31) and (2.32), we have

w=1', ny+ny =0.
The aim is to obtain a solution in the form which is to the first order in o and (3 as
w=1n"+aA+ B+ 0(a” + %),
where functions of 7" and its ' derivatives are represented by A and B. Substituting

this in equations (2.31) and (2.32) gives

1
N+l +a{Ay + 2010} + B <Bz’ — 677;@@/) +0(*+ 4% =0, (2.33)

1
Ny + 1 +a{Ay +n'nl} + 8 (Bt/ - 2’7;’1’1“> +0(a? + %) =0. (2.34)
After dropping the terms of o and 3, we have
7712' = _77;;’ + O(O&,,B)

Equations (2.33) and (2.34) are consistent if

1 1
A=—-n? B= -0l
477? 3”7:Ea:

Substituting A and B into equations (2.33) and (2.34) gives

3 1
772/ + 77;/ + 50[7]/77;/ + Eﬁ'r];/x/x/ + O(OZ2 + ﬁ2) = 07 (235)
1 1
w=rn — Zan@ + ggn;,x, +0(a? + 2), (2.36)

Equation (2.36) is similar to Riemann invariant and expression (2.35) is the normal-
ized form of the KdV equation. Using the parameters defined earlier, the normalized
variables is change into the original variables, and the terms a and 8 are dropped
to obtain

1, 1
w=n= 70"+ 30, (2.37)

and the KdV equation in the form [§]

1
—¢

+eofte + o Lo +
com. 4 S0
Tt 07z ) hO Nz
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2.2.4 Derivation of the BBM equation

The BBM equation is derived by neglecting the nonlinear and higher order terms in
the KdV equation (2.38) to yields

1
Ne = —— M-
Co

Using this expression in the last term of equation (2.38) gives

1

thnm =0. (2.39)

+ conz + 3% -
Tt 07z 2h07777m

Equation (2.39) is the associated BBM equation to the KdV equation (2.38). The
non-dimensional form of the BBM equation is given as

3 1
e+ 0w+ 51— gt = 0. (2.40)

2.2.5 Solitary wave solution of the BBM equation

The solitary wave solution of BBM equation

3 1
Nt + Nz + 57777:8 - énzcact =0, (241)

is derived as follows. Let’s make use of the traveling wave solution as the solution to
equation (2.41)

n(z,t) = f(§) = flz —ct), (2.42)
that is,
7€) = fla - ct), (2.43)
By differentiating equation (2.43) with respect to ¢, we get

Again, differentiating equation (2.43) with respect to x twice, then with respect to
t, we obtain

df d*f df

= digv fzx = d7£27 fwmt = _Cdié.?)- (245)

Jo

Substituting equation (2.43), (2.44) and (2.45) into equation (2.41), we obtain

df df  3.,df  cdf
"% Tae T 2tae Teagr T
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this is written as
df 3 .df cdf

l-c)=+zf—=+

Integrating directly since the resulting equation is total derivative, we obtain

3 cd’f
1— 2y 22 L 2.4
(L=)f + 37+ Ggez = v (2.47)
where k; is the constant of integration. Our focus is to obtain a first order differential
d
equation for function f, to achieve this, multiply equation (2.47) by d—é, we have
df cd’fdf i df

3 ,df
(1_C)fd*§+1f d7£+6d7§2d7§_ ldf’

this can be written as

3 cd*f
1— Z g2 — =L df =
integrating both side with respect to f yields
1-c 1 c (df 2
%f2+1f3+ﬁ <d€> =kif + ko, (2.48)

where ks is the constant of integration. To obtain the value of constant k; and ko,
we have to consider the condition that f(£) — 0 when £ — 400, then we will have

2
f—=0, ﬁ%O, )

de d—gao.

Using these conditions, we obtain k; = 0 and ko = 0. Hence, equation (2.48) becomes
< (df>2 — _Mﬂ _ 1f3
12 \ d¢ 2 477
therefore,
2
(%) = Bree-v-1.
By separation of variable

dof
f/2Re-1) -1

c

= d¢, (2.49)

integrate both sides of equation (2.49)

[
0 6(c—1)_§w o
C C

(2.50)
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In order to proceed, we have to do the transformation of left hand side of Equation
(2.50) by
6(c—1)

m = - §Sech2p = 2(0 — l)SeCh2p. (25]‘)
c c

Here ¢ will play the role of m i.e ¢» = m. Let us use this to simplify the denominator
of equation (2.50), we have

6(c—1 3 6(c—1 3 6(c—1
ble=1) _ “tp = fle=l) 3 [2(c — 1)sech®p] = (c=1) [1 — sech’p] .
c c c c c
Recall that tanh? p = 1 — sech?p, therefore
-1 -1
ble=1) _ §w = ble=1) tanh? p. (2.52)

c c
In addition, differentiate equation (2.51) with respect to p, we obtain

@ _
dp_

inh
—A(c—1) sinh p

: 2.53
cosh® p ( )

Next, we transform the upper integration limit of LHS of equation (2.50), i.e.
f =2(c — 1)sech?p,

making p the subject of the relation

p=sech™! (2.54)

2(c—1)°

Substituting equations (2.52), (2.53), and (2.54) into equation (2.50) gives

f : 3
/ L (_4(0_1> S p )dp— / dr.
0 6(c—1) 5 cosh” p 0
C

2(c — 1)sech?p tanh® p

After simplification, we have

2
- p=E
6(c—1)
c
Since p = sech™? 2(cf— 0 in equation (2.54), we have
2 -1 f
————sech =¢.
6(c—1) 2(c—1)
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By making f the subject of the relation, we have

V1 [6(c—1)
a0

C

f(€) = 2(c — 1)sech? (

By using equation (2.42), we finally obtain

Cc

n(z,t) = 2(c — 1)sech? (; fle=1),_ ct)) (2.55)

From equation (2.55),

n(x,t) = 2(c — 1)sech? (; @(m —xo — ct)) = nosech? (%1 / %(w —x0 — ct)) ,

(2.56)

where 79 is the amplitude, x is the initial point of the wave crest, and the phase
velocity c is given by

c=1+=2, (2.57)
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Chapter 3

Methodology

3.1 Particle trajectories in the BBM approximation

After the derivation of the Boussinesq system and the BBM model in section 2.2, to
investigate the particle paths, the following considerations follow

3.1.1 Horizontal and vertical velocity

Differentiating equation (2.28) with respect to 2’, the horizontal velocity is expressed
as

12

u(@,z8) = dur = w = wwaf+ OF). (3.1)
Similarly, the vertical velocity can be written as
v(z, 2,t) = o = —2'we B+ O(F). (3.2)

Dropping the prime and S in equations (3.1) and (3.2), the expression for the
horizontal velocity of the fluid particle is given in non-dimensional variable as

22

u(z,z,t) =w — 5 Wea, (3.3)
which is improved to read
1, 1 22
=n—- - — — - 4
u(z, z,t) =1 477 + (3 D) ) N (3.4)

Similarly, the vertical velocity is given as

v(z, 2, t) = —zw,. (3.5)
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3.1.2 Particle paths

Let the functions £(¢) and ((t) denote the z-coordinate and z-coordinate, respec-
tively, of a particle initially positioned at the point (z,2z) = (£,{o). Then, the
particle movement is given by the differential equations

9 ¢ _
ap = ule(®),¢(t): 1), o =v(E(t),C1). 1), (3.6)

with the initial conditions £(0) = &y and {(0) = (p. The solutions to these equations
is obtained numerically using fourth-order Runge-Kutta method.

3.1.3 Particle trajectories in solitary-wave solutions

Here, the focus is centered on the particle trajectories in the fluid due to the pas-
sage of a solitary wave at the surface. The exact solution of the BBM equation in
connection to the solitary-wave is given by

1
n(x,t) = nosech? (2\/ 2?370 (x — o — ct)> ; (3.7)

where 7y represents the amplitude, zy denotes the initial point of the wave crest,

and the phase velocity c is given by

c=14+1 (3.8)
2
Substituting the solitary-wave solution of the BBM equation given in (3.7) into

the relation (2.37), then we got the expression

w = nosech?(A)S 1 — @sechQ(A) S—/l [3sech2 (A)—2] ¢, (3.9)
4 2419
. . 1 /[ 6no .
for the horizontal velocity, where the argument A = CR " (z — ct). Using equa-
0

tions (3.4) and (3.5) in connection to the relations (3.7) and (3.9), the velocity com-
ponents, that is, the horizontal and vertical velocities at an arbitrary point (z, z) in
the fluid, and at a given time ¢ are computed as

_ 2 _To 2 3o I i 2 _
u(z, z,t) = nosech (A){l Zsech (A) 5 (3 2) [3sech?(A) — 2] }7

(3.10)

vz, z,t) = e &sechg(fl) tanh(A){ — 2 + ngsech?(A)
2V24mn

4no 2
o " (3sech®(A) — 1) } (3.11)
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Figure 3.1: The wave profile is shown at ¢t = 0 (light-gray), ¢ = 2 (dark-gray) and ¢t = 4
(black) as indicated in the figure. The particle trajectory originally located on the surface
at (5, 1.02) is denoted by the dashed curve.

The surface profile and the particle trajectories throughout the propagation of
the solitary wave with amplitude 1y = 0.3 are shown in figures 3.1 and 3.2. Figure
3.1 reveals the time evolution of the fluid particle at the surface of the fluid, and the
wave profile is displayed at ¢t = 0 (light-gray), t = 2 (dark-gray) and ¢t = 4 (black).
Different color is used to denotes the position of the particle on the wave profile; the
light-gray spot shows the particle location at time ¢ = 0, while the dark-gray spot
and the black spot show the particle position at time ¢ = 4 and ¢t = 6 respectively. It
worth noting from these figures that if the fluid particles are positioned to the right
side of the crest, they tend to go towards the right and upwards as shown in figure 3.1,
while the fluid particles go towards the right and downwards if they are positioned
to the left of the crest. This concurred with the discoveries of Borluk and Kalisch
[8] and Constantin and Escher [16]. Figure 3.2 demonstrates the particle trajectories
during one complete wave cycle. It is evident that the particles which are closer to
the bed produce a smaller total excursion. It is regarded that the vertical excursion
is smaller when compared to its horizontal displacement and decreases quickly with
the depth of the trajectory beneath the free surface. Hence, the particles near the
bottom possess a smaller amplitude and the path becomes more or less a straight line
at the bottom since the vertical motion of the particle is zero, and just a horizontal
displacement remains in existence. These results are in agreement with the results
obtained by Khorsand [35] as well as Borluk and Kalisch [8].
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Figure 3.2: The wave profile is shown at t = 0, t = 5, t = 10 and ¢t = 15. The paths
of the fluid particles shown were initially located at (8, 0.8),(8, 0.5),(8, 0.2) (8, 0.01). The
light-gray dots describe the particle positions at time ¢t = 0, and the black dots describe
the particle positions at time t = 6. The curves indicate the paths traced out by particles
during the transition from the left to the right.

3.1.4 Particle trajectories in periodic waves
In [22], the periodic wavetrains of KdV approximation are defined by exact solutions

of which are expressed as cnoidal functions. The same concept is used here for BBM
approximation. The periodic solutions of BBM equation (2.40) are given by

n=fa+ (fi — fo)en*(B), (3.12)

where the constants fi, fo and f3 which are given in the order f3 < f2 < f1
are used to described the solution. The argument of equation (3.12) is given by

1 6 . . s
B(z,t) = 5 /m(fl — f3)/2(x — ct), cn is one of the Jacobian elliptic

functions defined by the incomplete elliptic integral of the first kind [8, 39], and

the modulus m of this Jacobian elliptic function is given by m = jzl — ;2. The
1—J3
phase speed and the wavelength of the wave are given by ¢ = 1 + W

2 — 1

MK (m)ﬁ respectively, where K (m) is the complete
1— 3

elliptic integral of the first kind.

and A\ =4

Upon substituting (3.12) into relation (2.37), the horizontal velocity in terms of
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the Jacobian elliptic functions is given as

w=fie B4 (- p) (18 )@

1 2.4 !
— g e’ (B) = o s

{ — sn?(B)dn?(B) + cn®(B)dn%(B) — m sn2(3)cn2(3)}.

(f1 = f2)(f1 — f3)x

Hence, for the periodic-wave solutions of the BBM equation, the horizontal and ver-
tical velocities at an arbitrary point (z, z) in the fluid, and at a time ¢ are computed

as
o) = fa = 13+ (= £ (1 ) (B
1 1
- Z(fl — f2)?en*(B) — m(fl = f2)(f1 — f3)x

{ — sn?(B)dn?*(B) 4 cn?(B)dn*(B) — m SHQ(B)CHQ(B>}

] - - P2 )
L ax(hop\r 8 1= f2 2
(ecn?(B)dn?(B) — sn?(B)dn?*(B) — m sn?(B)cn?(B))
+ (f1 — f2)*(ecn*(B)dn®(B) — 3sn?(B)cn?(B)dn?(B)
4
m(fl - f2) (i = f3)> x

[(en?(B)dn?(B) — sn?(B)dn?(B) — m sn?(B)en?(B))[dn?(B)

—m sn?(B)en(B)) + <

+m cn?(B) — m sn?(B)] — 6m SDZ(B)CHQ(B)dHQ(B)]}, (3.13)
vgczt:—g 6 — f3)2sn(B)cn(B)dn(B) x
(7 >) 9 2+(f1*f3)(f1 fd) ( ) ( ) ( )

—(f1 = f2)(2 = f2) + (f1 — f2)*en*(B)

_|_/—’H

4 2
m(.ﬁ — f2)(fi = f3)(dn*(B)
+m cng(B) —m SHQ(B))}, (3.14)

Some of the results obtained are presented below

In Figure 3.3, the particle trajectories (&, () for periodic waves for one complete
cycle using the fourth-order Runge-Kutta method are shown. The closeup in the
lower panel shows the importance of periodicity. It is seen that the particle accom-
plishes a small elliptic cycle prior to its up turning and riding into the next wave.
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Figure 3.3: The upper panel shows a periodic wave with wavelength 7.3208, period 7.6980
and phase speed ¢ = 0.9510 at time ¢ = 0 (light-gray), ¢t = 5 (dark-gray) and ¢ = 10 (black).
The motion of the surface is indicated by the solid part which is kept constant in the curve.
The path of a particle originated from (z,z) = (4,1) is shown. A close-up of the lower
turning point is shown in the lower panel.

In Figure 3.4, a train of cnoidal waves is presented. The vertical speed and the
total vertical excursion of the particles closer to the bed are smaller compared to oth-
ers. This is pretty much the same as the results obtained for the particle trajectories
below the solitary waves.
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Figure 3.4: The figure shows a periodic wave with wavelength 7.3208, period 7.6980 and
phase speed ¢ = 0.9510 at time ¢ = 0 (light-gray) and ¢ = 24 (black). The motion of the
surface is indicated by the solid part which is kept constant in the curve. The paths of
particles originally located at (4, 0.8), (4, 0.5) and (4, 0.2) are shown.

3.2 Particle trajectories in nonlinear waves on a uni-
form Shear Flow

3.2.1 The given model

The water-wave problem concerning waves at the surface of an inviscid, incompress-
ible Newtonian fluid is given by the Euler equations with no-penetration conditions
at the bed and kinematic and dynamic boundary conditions at the free surface. The
sea floor is assumed to be flat. We denote the spatial coordinates by (z, z) where the
r—axis coincides with the undisturbed free surface, and assume long-crested waves
which are uniform in the transverse direction. The gravitational acceleration in the
negative z—direction is denoted by g, the undisturbed depth is hg, and n(z,t) de-
notes the departure of the free surface from the rest position. The decisive feature in
the present work is the existence of a uniform shear flow with a free surface as shown
in Fig. 3.5. In this case, the vorticity is given by a predescribed constant I', and the
background distribution of the original velocity component before the arrival of the
waves is given by

V = 0.

For I > 0, we have a shear flow in the direction opposite to the wave propagation.
For T" < 0, the background flow is in the favorable direction, that is, in the direction
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of wave propagation. In most cases, we assume Uy = 0. Assuming a is a typical
amplitude, and [ is a typical wavelength of the waves to be described, the parameter
a = a/hg represents the amplitude to depth ratio, and the parameter 3 = h2/I?
represents the water depth to wavelength ratio.

In the case of a linear shear flow such as delineated in (3.15), the vorticity is
constant. For later reference, we define the unit vectors in the z, y and z directions as
e;, e, and e, respectively. The vorticity is then given by w = (U,—V,)e, = —T'e,. In
general, one may use Kelvin’s circulation theorem together with Stokes theorem and
the incompressibility condition to understand that constant vorticity is conserved
in inviscid, incompressible flow. In consequence, the flow can be split into a shear
flow with uniform vorticity and a pure potential flow. For a uniform shear flow, the
perturbation velocity is given in terms of the potential ¢(x, z,t), with v = ¢, and
v = ¢,. The complete velocity field is given by

U=¢,+Uy— (2+ ho)T,
V=0..

Indeed, if we define a three-dimensional velocity field U = (U, 0, V) for notational
convenience, the vorticity is w = curl(U), and it can be checked that the above
definition satisfies the vorticity equation

w+ (U Vw=w-VvU. (3.16)

Using the incompressibility condition V-U = 0 also shows that the velocity potential
satisfies Laplace’s equation. We can then rewrite the Euler equation

1
Ut+§V|U|2—wa+gez:O

in terms of the potential ¢ to obtain

1
V{¢t+§|U|2+gz} = UXuw,

zA

Figure 3.5: Wave propagation over a background shear flow. In this figure, the vorticity
I" is negative.
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As the left-hand side is obviously a gradient, the term U x w must also be the
gradient of a function. Following [59] it becomes plain that u x w = VG, where the
function G is given by

z ]_'\2
G=-T q&mderFUozf?(erho)Q.
—ho

The complete problem is written as follows:

Ap=0 in  —ho <z<n(zt), (3.17)
¢:=0 on z= —hyg, (3.18)
ne+Un. =V =0,
ul? on z=mn(z,t). 3.19
V(o + M+ GHgn) =0, nte.1) (3.19)

3.2.2 Derivation of Boussinesq system

The next goal is to derive a Boussinesq system approximating the wave motion
described by (3.17)-(3.19). Here, we follow the development explained in [59]. For
starters, the variables are non-dimensionalized using the following scaling

-~ Vghot = 'k ~ h
F=2 = F=MIO0 P 20 g T g (3.20)
l ho l Vgho a alv/ghgo
The non-dimensional potential QNS is expressed in powers of (1 + 2) as
é=> (1+2)"¢n. (3.21)
n=0
Therefore, we obtain
B £)2 j S\4 3
¢ = o 2 (1+2) ¢oz5 + 21 (14 2) ¢0zzzz + O(B°). (3.22)

To find a closed system of two evolution equations, we substitute the asymptotic
expression for q~5 in the associated boundary conditions, and collect all terms of zeroth
and first-order in a and (. Then we differentiate dynamic bottom boundary with
respect to T and expressed the boundary conditions in terms of the non-dimensional
horizontal velocity at the bottom ¢g; = w. This procedure yields the system of
equations

g )
e + Wi = Lz — al'iils + a(fd); — czzz = O(aB, 57),

Wy + Tz + abig — gwm + grwm = 0(afB, ).

(3.23)
It is not difficult to derive the following expression as an asymptotic formula for w
in terms of @?:

W =0’ + Z0%0, + O(ap, B?). (3.24)
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Substituting this representation into the system (3.23), this yields the Boussinesq
system

3.2.3 Derivation of BBM equation

We now concentrate on unidirectional waves. In the lowest order, the Boussinesq
equation is the linear system

i
Ratisey

fi; + 08 —Tiz =0, @f +7z =0. (3.26)

Hence, after numerous computations we obtained

L G (3+T2) __ G +D )
£ % — Mz < Niizs = , , 2
fl; + C4+7lz + ara) M +B3(1+02+)n O(ap,B7),  (3.27)
¥ =—cp 76*4_1: 52 ¢y +T Ny A P 2
W = ety +/3<3(1+5i) = ) s+ 008,87, (329

where c; = - + \/% and c. = 5 — \/%2 + 1. Expression (3.27) is the

KdV equation with constant vorticity, while Eq. (3.28) denotes the non-dimensional
horizontal velocity at the bottom.

It will be convenient to define non-dimensional variables adapted to the problem

at hand. In particular, a new non-dimensionalization adapted to the numerical study

is defined by

& = hox, 2 = hoz, n = hon, t — %t, u = /ghou, w = \/ghow, and I' — r MhZhO‘
(3.29)
The Eq. (3.27) can be rewritten in terms of new variables as
cy(3+17?) cy +T
+ iz + z + wze = 0. 3.30

This equation was also found in [47, 51]. By neglecting the nonlinear term as well
as the higher order term, the resulting equation is given as 1 + c4+n, = 0, Upon

differentiating both sides, we have 7)., = ——1m..+. Hence, this yields the BBM
C+
system
cr(34712) cy +T

+ I _|_ - - e —— ] = 0, 3.31
Mt +Nz (1 + c%r) x 3C+(1 + c%r)nmct ( )

0 co+T cy +T c— c— o
= —¢c_ px — —Now + —0" Nz 3.32
T L Trare b L A (3:32)
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3.2.4 Horizontal and vertical velocity

From Eq. (3.22), the non-dimensional horizontal velocity and the non-dimensional
vertical velocity at the bottom become

ﬁ:@f§u+¢fwﬁ+0w%7 (3.33)
b= _/8(1 + 2)’[135;5 + O(ﬁ2)

From Eq. (3.24) and Eq. (3.33), the non-dimensional horizontal velocity and the

non-dimensional vertical velocity at a non-dimensional height zZg = —1 + 0(an + 1)
become
a:wﬂMQ#—u+%ﬁw%+Ow%
2 (3.34)
b= —B(1+ Z)b§ + O(?)

The expressions for the horizontal and vertical velocities of a fluid particle at a height
z=—1460(n+1) are given in new variables (3.29) as

— o? EQ— 2)?) w?
u(w,z,8) = w’(@,t) + 3 (67 = (1+2)°) wll,., (3.35)

vz, z,t) = —(1 4 2)w?.

3.2.5 Particle paths

The functions £(t) and ((t) are taken to represent the z-coordinate and z-coordinate,
respectively, of a particle, initially located at the point (z,z) = (£, o), then the
dynamical system is recast in the form

% =u(&(t),C(t),t) + Uo — (1 + )T,
o 3.36
a *U(g(t)vg(t)vt% ( )

(£(0),¢(0)) = (%0, Co)s

where the effect of an underlying shear-flow has been added. Finally, the particle
trajectories are found by numerically integrating the dynamical system (3.36) using
the fourth-order Runge-Kutta method.

3.2.6 Particle trajectories in solitary-wave solutions

The exact solitary-wave solution of the BBM equation (3.31) is derived as

o 2 3C+(1 + C2 )(3 + Fz)no
n(x,t) = no sech <\/4(C+ Y ++Ci) TG (x—z0— ct)) ;o (3.37)
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where 79 is the initial amplitude, xg is the initial location of the wave crest and the
phase velocity is defined as

cr (3417
c=c,+ +( 2)770
3(1+c2)

There is an assumption that when ¢ = 0, the wave crest is located at x = 0 so that
zo = 0. Hence, the argument is defined as

_ 3er (1+c3)B+T%)n
Al = \/4<c+ OB )+ G+

Using equation (3.37), then equation (3.32) yields

c

_+7T
w? = g sech?(A) {—c + mno sech?(A)
3cp(1+c2)(B+T?)n ( ey +0 e oo 2) 2 }
—— + —40 4 — 6sech®(A)) p .
e T DBAT ) 1B+ 30+ &) 6 ' 2 (4= Gsech™(A))
(3.38)
The derivatives of Eqn (3.38) are given as
0 3c+(1+ci)(3+F2)7]0 9 2(c_ +7T) )
Wy = 770\/4(ch TDBAT )+ B+ ) sech”(A) tanh(A) {26_ - Wno sech”(A)
6es (1+c3)B+T2)no ( N e 2) B 2 }
G DBATE) TG \3a+@) 6 20 )FLrsse )y,
2 2\,.2
wl, = Ser(1+c3)(B+1)m sech?(A) {—4c_ + 6c_ sech®(A)

4(cy +D)[3(1 + ) + (34 T2)no]

124 (1+c2)(34+T)no ( cy +T c— oo 2) n 8(c— + 1)
(cr +D)BA+A)+(B+T2)m) \3(1+c3) 6 2 (1+c3)

90c+ (14 c2)(3+T)no ( ct +T e e 2) 2
- ~ =1 h? (A
G+ DBA+ )+ B+ \30+2) 6 20 )% A
IO(C_+F) 4
_ it no sech™ (A)
90ct (14 1) (3 +T%)no ( ey +T c- ¢
3

(e DBA )+ B+ B0+ &) 6 50 )sech (A)},

no sech?(A)

(3.39)

Therefore, using Eqgs. (3.32) and (3.37), the relation (3.35) gives the horizon-
tal and vertical velocities (u(z,z,t) and v(z,z,t), respectively) of the fluid at
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(z,z=—1+6(n+1)) in the fluid, at a time ¢ as

2 2
u:nosech2(A){—c,+ Sex(1+¢3)(3+ 1 )m (3c++F _ C;)

(cr +D)[BA+A)+(B+T?2)no] \3(1+c2) 6
7(1+z)2 3(1+2)3+T1?) o
(cr + DB+ cZ) + (3+T2)no] 2
9 c-+T 3 3ci(14+c3)(3+T12) cy +T c—
o sech (A){ ) ST F BT (B0 T
3,412 3(1+3)(3+1?)
ety <c++r>[3<1+ci>+<3+r2>m]}
1, o e +T 3ci(142)(34+T2) 5 )

1

(4 — 5sech®(A)) — — (92 -1+ z)2) 9t (14 1)’ +T2)nd

(cr +T2BI+ )+ B+ T

cy +T c— | C— 9 2 4
-+ = - h® A — h
(3(1 )76 + 20)( 8 + 60 sech” A — 60 sec A)},

o= — 5 3/2 Ber(1+c3)(B+1?) sech? an o —

= ~(1+2)m) \/4(c+ OB+ )+ (34 [2)] ot (A) tanh(4) {2e-
20c- +1) 5 6ci(1+c3)B+THno ey +T o e
(15 c2) Tosech W+ T Ea ++02+) + (B +T2)n] (3(1 T2 6 2l )

x(—1+ 3sech®(A))} .
(3.40)

Figure 3.6 show particle trajectories during the propagation of a solitary wave
with an amplitude of 0.2 (that is, 79 = 0.2).The value of 6 used throughout is 0.6. It
illustrates particle paths during one complete solitary wave cycle, (though the extent
of the solitary wave is infinite). It can be seen that the fluid particles closer to the
bottom have smaller vertical excursions but nearly the same horizontal extent. Right
near the bottom, the particle trajectories become straight lines as the vertical motion
becomes zero. The polarity of I' has a strong influence on the shapes of the particle
paths. Indeed, it is apparent from Figure 3.6 (lower panels) that the particles in the
center of the fluid column move further to the right when I' < 0, while particles in
the lower half of the fluid column move further to the right when I > 0.

3.2.7 Particle trajectories in periodic-wave solutions

The BBM equation (3.31) admits the following solution in terms of the three con-
stants f1, f2, and f3 which are arranged as f3 < fa < f1, and in terms of cnoidal
functions:

_ —£)en2 Ber(14c1)(B3+17) Y2 (g — g —
1 ferhe g <\/ T OB+ D) + B I ] e “)’
(3.41)
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Figure 3.6: The waves are shown at time ¢ = 0 (light-gray), t = 5 (dark-gray), t = 10
(black). The wave crest is initially located at = 0. The path of the fluid particles (£(¢),
¢(t)) in Eq. (3.36) (v and v corresponds to the Eq. (3.40)) initially located at (6, -0.97),
(6, -0.8), (6, -0.5) and (6, 0.01) are shown for different cases (a) I' =0 ; (b) I' = —0.5 ;
(¢) T'=0.5. The particle locations at three instances, where the wave profile is shown, are
color-coded. The light-gray dot indicates the particle positions at time ¢ = 0. The dark-
gray dot indicates the particle positions at time ¢ = 5. The black dot indicates the particle
positions at time ¢ = 10. The blue circles indicate the sense of rotation.

where f; and f5 represent the crest and the trough of the wave, respectively. With
zo = 0, the argument is defined as

_ 3¢ (14 c2)(3+T2) T
B= \/4(C+ FDBA+E)+ B+ (f1 — f3)] (fi = fs) /" (z = ct).

Here, cn is one of the Jacobian elliptic functions defined by the incomplete elliptic
integral of the first kind [39], where its modulus is defined as m = (f1 — f2)/(f1 — f3)-
The phase speed and the wavelength of the wave is given as

cy(3+12)

30+ ) (fr+ f2+ f3),

c=cy+
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and

e +D)BA A+ %) + B+ T2)(fi — f3)] m 1
)\_4\/ 3cr(14+¢3)(3+T12) K )m7

respectively, where K (m) is the complete elliptic integral of the first kind.
Using equation (3.41), then equation (3.32) yields

4T
w’ = —c_(f2+ (fi = f2)en*(B)) + szii)
3 (1+c2)(3+T?)

ct +T
R Py T ey oy ) KA LS f3>{3(1 -y

-=+ %‘92}{%2(5)@2(3) — en2(B)dn?(B) + m sn2(B)cn2(B)}. (3.42)

(fo + (fr = fo)en?(B))?

Using Eq. (3.42) in the relations (3.35), the horizontal and vertical velocities may
be written in terms of the Jacobian elliptic functions cn, sn and dn as

e (ot (fr = e (B) + 5 (= fo)en (B)?
Bey(1+2)(3+17) = ) — ) f ce L
(c++F)[3(1+C+)+(3+F2)(f1 =) 30+

— L + 792}{311 —en®(B)dn*(B) +m sn2(B)cn2(B)}

3c+(1 +c3)(3+T2)
8(ct +T)[B(1 +c3) + B +T2)(f1 — f3)]

c—(fi — f2) (en®(B)dn®(B) — sn*(B)dn*(B) — msn®(B)en®(B)) +
f2(f1 — f2) (SHQ(B)dHQ(B) —cn®(B)dn*(B) + msn2(3)cn2(8))

— i(f1 — f2)? (—msn2 (B)en*(B) + en* (B)dn®(B) — 3sn®(B)cn? (B)an(B))
(1+ C+)

+ (02— (1+2)%)

(fr—fa)

c_+T «
+e)

6ey (1+c3)(3+1?) cy +T c; o B B
e DB+ ) + BT — f)] (3(1—1—01) * 9>(f1 F2)(f1 = f3)x

(—9msn2(B) 2(B)dn*(B) — m25n2(B)cn (B) + men® (B)dn?(B)
+m?sn*(B)en® (B) 4+ msn® (B)dn® (B) + cn®(B)dn*(B) — an(B)dn4(B))} ,
_ z Scs(1+c3)3+17) — f3)"%sn(B)cn n
(” )\/4<c+ PR+ ) + @+ (s - gy 1 7 Ben BB

c_ +T c—+7T 2 2
c—(f1 — fa) — ( )fz(fl f2) — m(fl—fz) en”(B)+

( cy +T c_  c_ o
X

i+f9> by (1+c3)(3+1?)
3(1+c}) 6 2 (c+ +D)BA+ )+ B+T2)(f1 — f5
(fmsn2 (B) + mCHQ(B) + dnz(B))} .

)] (fl _fQ)(fl _f3)

(3.43)

Fig. 3.7 features the particle trajectory during the propagation of the cnoidal
wave over three periods, the three instances considered are shown for amplitude 0.4
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Figure 3.7: The upper panel shows the periodic wave with amplitude 0.4 wavelength
8.9389, period 9.5834, phase speed 0.9327, and I' = 0 at ¢t = 0 (light-gray) and ¢ = 28.7501
(black). The left lower panel shows the periodic wave with amplitude 0.4, wavelength 8.3541,
period 8.4016, phase speed 0.9943, and I"' = —0.12 at ¢ = 0 (light-gray) and t = 25.2047
(black). The right lower panel shows the periodic wave with amplitude 0.4, wavelength
10.3072, period 12.8613, phase speed 0.8014, and ' = 0.28 at ¢ = 0 (light-gray) and
t = 38.5840 (black). The initial particle locations are shown in light-gray curve.

xm4‘§%

with vorticity I' = 0, —0.12. and 0.28. We observe that in the upper and lower panels
of Fig. 3.7, for the particles closer to the bottom, the wave effect diminishes, and
therefore the effect due to the vorticity can become dominant.

3.3 Fluid transport induced by internal waves

3.3.1 The given model

In the models formulation, two-layer fluids are under consideration, and the waves
at the interface between them are the ultimate focus of this study. There is an
assumption that the bottom and the upper boundary are flat and rigid.

Moreover, the flows under consideration are assumed to be irrotational in addi-
tion to inviscid and incompressible properties. Since the potential flows are the center
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of attraction, we start by introducing the velocity potentials ¢* = ¢*((x*, 2*),t*) in
Q- and ¢* = qﬁ*l((x*, 2*),t*) in ., the associated velocity vectors v* and v* are
described by

v =Vo¢", (3.44)
v = Ver. (3.45)
The continuity equation in the lower and upper layer is given as
Qrie T Py =0 for —h < 2% <n*(a™,t%), (3.46)
Gl + G =0 for n* (z*, %) < 2* < 1. (3.47)
The boundary of the given domain {4+, .} consist of two segments, namely, the

flat bottom z* = —h and the flat roof z* = h'. These rigid boundaries with the
impermeability conditions along them yield

@i =0 at 2" = —h, (3.48)
¢t =0 at z* =h'. (3.49)
Along the interface, the kinematic conditions are give as
mho= 95— dimh at 2t = n* (2, t), (3.50)
M= ¢l —oi s at 2t =727, 17). (3.51)

On the fluids interface, the dynamic boundary condition which is the continuity of
pressure because the effects of surface tension are considered to be negligible is given
as

8¢* 1 *2 * 7 8¢*/ l "2 * * ok * gk
p<8t* +2|V¢>\ —l—gz)—p <8t* +2|V¢ |+ gz at 2" =n"(x",t"), (3.52)

where g is the gravitational acceleration.

3.3.2 Derivation of Boussinesq system

The derivation of the Boussinesq system of interfacial waves follows the derivation in
[7] for just one layer. Consider the waves with a smaller amplitude, A, compared to
the bottom layer depth h, and with a larger wavelength [, compared to the bottom
layer depth. In relation to these three parameters (that is, amplitude A, bottom
layer depth h, and wavelength [), the non-dimensional numbers are given as

A h? a Al?

a=—=<1, =— <1, St=-="=1,

h g 12 I} h?
where St is defined as the Stokes number. The density ratio r and the depth ratio
H in dimensionless form are introduced as
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For convenience, it is important to scale the dependent variables in the problem
in such away that they are all of first order. For this purpose, the following scaled
dimensionless variables were introduced

It Al / Alg'
I*:l$, Z*:h(271), n*:Ana t*:77 ¢*:g ¢7 d)* :g ¢a
Co Co Co
where the speed ¢y = +/gh. By substituting the newly defined variables into the
equations (3.46) — (3.52), they transformed to the following equations after the eval-

uation

ﬁ¢xw + ¢zz =0 Im0<z<1+ aft), (353)

¢.=0 onz=0, (3.54)
1

Tt + a¢mnz - B(bz =0 onz=1+ arn, (355)

Be, +d.. =0 inl+an<z<l1+H, (3.56)

#.=0 onz=1+H, (3.57)
1

e+ Qe — qu; =0 onz=1+an, (3.58)

(77+¢t+ a¢2+25¢2) —T<n+¢t+ a¢>’2+ 25 ’2> on z =1+ an.

(3.59)

Note that these equations were rearranged after the evaluation.
The potential ¢ is denoted as a formal expansion given below

t) = Z Fm(x, t)2™

Hence, after simplification, the potential ¢ yields
L ()R E( )

¢(($,Z),t) = | 2k
P (2k)! Ox
By expanding the above expression, we have
_ s ﬁ2 . B 4

Likewise, the potential ¢’ is represented as a formal expansion given as
oo
= fnlet)(l+H=2)"
m=0

Representing the velocity potential on the roof z =1+ H as F'(z,t) = f}(z,t) and
going through the computation as before yields
_1)kﬂk ancF/(aj t)

o (2.0 = > T e s h - o
k=0
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Expansion of above expression gives

2 3
F((2,2),0) = F'= S L (o H 2 S Bl (o H=2) = Dol (14 H=2)0 4 O(5)
(3.60)
N . . . OF (z,t)
By substituting these into the given problem and using w = o and z = 14+amn,
4

we obtain

1 ., G

1206 Wezzze + O(B%) = 0. (3.61)

OF (@)
ox

1 1
Nt + Wy + a(wn)y — gﬂwzmx - iaﬂ(nwm)m +

Similarly, on the upper layer and using w’ = and z = 1 4 an, we obtain

1
(3.62)

Therefore, substituting the expressions ¢ and ¢’ derived into the given dynamic
condition and differentiate with respect to x gives

1
_Hw/m—'_a(w/n) BH?) xxm_iaﬂHz(nwlxz)fb_

1
(1 = 7r)ne + we — rwy — §ﬂ(wxa¢t — rHWhyt) + a(ww, — rw'wh) — aB(wer)e — aBrH(nwh) .

1
+ ﬂﬂQ(wmmt — rH4wlmmt) — §aﬂ(wwm — T‘HQIU/’LU;I)x + aB(wpWes — THQw;w;z)

+0(8*) = 0. (3.63)
Th relationships between w, w?, w’, and w'? are given as
1
w=w’+ 750210;0“6 + 35294 ¥ e +O(B%). (3.64)
w' =w" + 59’2 + 529’4 wlf .+ O(B). (3.65)

However, substituting the equatlons (3.64) and (3.65) into equations (3.61), (3.62),and
(3.63) and neglecting the terms of order o, 42, and af3 yield

1 1
m—|—w —|—a(w Mz + ﬂ(GQ—f)wzm:O,

— Huwl! + a(wn). — %BH (9’2 - %H2> wl, =0,

(1 —7)ne +w! —rw? + %ﬁ [(6’2 —Dw’ —r(0? - Hz)w'e] + a(w’w? — ruw’w?) = 0.
xxt

(3.66)

The systems (3.66) are not suitable for numerical experimentation. However, the
system is reduce to a system of two evolution equations and neglecting the nonlinear
and higher-order terms to yield

9 H? —

H
ntJrrinJra w?o

zxT 0,

r 1 H2S  1H(1+rH)
(r+H)( n)a +5( S+ HE 3 (r+H)? >

2 1. H
W+ (1 =7 +a W0W9 + ﬁ S me

(r+ H)?
(3.67)
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3.3.3 Derivation of the KdV equation

The attention is shifted to the unidirectional waves. Neglecting the nonlinear terms
and higher-order derivatives, we have the lowest order of the Boussinesq systems
(3.67) given as a linear system

H
oy,
Ryl (3.68)
W?+ (1 —7r)m, =0.
The horizontal velocities at the lower and upper layer respectively are given as
9 H

o 0 0 __ -1 0
wf = WL OE), W= W+ O(8). (3.69)

Hence, the simplification yields

H(l—7) 1—7") 1 [H3(+rH)?(1—7) _
+Vm \/ 7777w+6\/ (r + H)? Noaz = 0,

(3.70)
0 _ (1=r) 1 [(H*=7r)(1=7) ,
we__\/H(r+H)n+4\/ o+ a1

1 HS?>(1—7) 1 [HA+rH)*(1—r)

- Sl ez (3.71

2(\/ (r+H)3 T3 (r+H)3 ez, (371)
where (3.70) and (3.71) is the dimensionless form of the KdV equation and the
horizontal velocity, respectively.

3.3.4 Horizontal and vertical velocity

From (3.60), let F., = w’, the respective non-dimensional horizontal and vertical
velocity at the bottom is given as

e, 50) = 6 = — 51+ H =2, + O,

V' (2, 2,t) = ¢, = B(1+ H — z)w), + O(B?).

(3.72)

After scaling back to the physical variable, we have

2
W (o) = W' — (= 082,

2 h (3.73)

*

o (@, 2,8) = h(H = S )wli + O(2).

The expressions for the non-dimensional horizontal and vertical velocity become

W (z, 2, t) = w — %(H - 2)’wi, + O(8?), (3.74)

’Ul('razvt) = (H - Z)w/w + O(ﬁQ)v
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and after incorporating Eq. (3.65), we have

u' (2, 2,t) = w’ + (9/2 (H — 2)*)wiy, + O(8%),
v (z,2,t) = (H — z)wf + O(ﬂz).

(3.75)

3.3.5 Particle paths

The z- and z-coordinates of a particle are denoted by the functions £'(t) and ¢'(¢)
respectively. The particle is originally positioned at the point (z, z) = (&}, (). There-
fore, the motion of the particle is represented by the differential equations
85/ / ! !
= = 1), C'(1), 1),
N ORIOR)
aC/ / ! !
— = t t),t).
S = (€, 0),1)
Hence, the system (3.76) is integrated numerically to compute the associated particle
paths.

(3.76)

3.3.6 Particle trajectories in internal solitary-wave solutions

The KdV equation derived in the previous section is used to illustrate the particle
paths in the two-layers fluid due to the motion of an internal solitary wave. The
exact solution of the internal solitary wave of the KAV equation (3.70) is derived as

n(x,t) = 1o sech? (; SUOIM(JL‘ — o — ct)) , (3.77)

where the initial amplitude and the initial position of the wave crest are denoted by
no and x, respectively. The phase velocity is represented as

H(l-r)
r—l—H \/ 7“+H

2(1—r1)
For computational purpose, let argument of (3.77) be represented by

(H? — 1)

1
= — 3 _—
A A+ H)

5 (x — 20 — ct).

Substituting (3.77) into expression (3.71) yields
0 2 . (1-7) Tlo (HZ—T)Q(l—T) 2
w" = 1o sech (A){ \/H(rJrH) + \/ 0 + HY? sech”(A)

3 (H*—-r) |1 HS?*(1—7r) 1 [HA+rH)*1—r)
Py |2\ rrmp 3 1 H)

[3sech?(A) — 2] }

(3.78)
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The derivatives of (3.78) are given as

’ (H® =) 1-r7) 1-r 9
wzﬂ =N04/3M0 =5 H2(1+rH) ech A) tanh(A {« [ Ho T H) \/ﬁsech
B ey [i ( s \/ e )] [3sech®(4) - 1] }
L e G-n 9[-0 .
o= ] W 3 me

(H*—7r) |1 HS*(1—r) (1+rH)?*(1—7)
+9n0H2(1+rH)[2((r+H)3\/ (r+ H)? )]

135 (H*-7) |1 HS?*(1—7) 1 [HA+rH)?*1-r) 9
T2 H1+rH) [2 (¢ (r+H)3 +3\/ (r+H)? )} sech’(4)

Zno T30 + H)? sech4(.A)
135 (H*—-7) |1 HS*(1—r) 1 [HA+rH?*(1—7)\| 4
T O ) [2 (\/ (r+ H)? +3\/ (r+ H)3 )] sech (A)}'

(3.79)

Finally, the horizontal velocity w'(x, z,t) and the vertical velocity v'(z, z,t) of the
particle paths in the upper layer of the fluid are obtained using the expressions (3.78)
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and (3.79) in Eq. (3.75) as
r_ . 2 (1—7") o (HQ—T)Q(l—T) . 2
u’ = 1o sech (A){_\/H(T+H)+4\/ Ho(r + H)? sech”(A)
3 (H*-r) |1 HS*(1—7r) 1 [HOA4rH)*(1—7) 2
2™ H(1 4 rH) [2 (¢ (r+ H)? +3\/ (r+ H)3 )] (Bsech™(A) - 2)

(6'2—(1+H—z))noM{ e

1 HSZ(l—r)+1 H14rH)*(1—7) N 9 [ (1-r)
2 (r+ H)3 3 (r+H)3 2\ Hir+ H)

N

+

(H? —r)*(1 1)
H3(r + H)?

135 (H*—7r) |1 HS*(1-7) 1 1+ rH)*(1 —7) 9
27701{2(14—7"]{)[2( (T+H)a+3\/ (r + )3 )]}S“‘h(f‘)

+{ 15 J(H=r)*(1—1)

+ 37]0

1™\ TTH G+ H)?

135 (H*—7r) |1 HSQ(l—r) (14 rH)*(1 —7) 4
+ 2 nOHQ(l—I-TH) [2 ( (r+H)3 \/ (r+ H)3 )] }wCh (A)}}

(3.80)
— (14 H 2o 3nomsech2(A)tanh(A){ %_
m %smﬁmn
A
(3.81)

The choice of H and 7 is based on the acceptable value of 79 as shown in the table
3.1

Table 3.1: The choice of H and r.

H?>—r>0| 0<n<H
H?2—r<0|-1<n<0

It is noted that the solitary waves are of elevation for the upper layer (H? > r),
while for the bottom layers (H? < r), the solitary waves are of depression. In Figs.
3.8 and 3.9, the solitary wave profiles are shown with an amplitude 1y = 0.2 and
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Figure 3.8: The elevation representation of the solitary wave solution propagating in the

right direction at different time. This is a given internal solitary wave solution (3.77) to the
KdV equation (3.70), with the parameters 1o = 0.2, H = 1.1, and r = 0.9.

1o = —0.2, respectively. As expected, the figures show the right propagation in both
cases, that is, for the positive and negative amplitude. In Fig. 3.8, we used H = 1.1
and 7 = 0.9, while H = 0.6 and r = 0.85 in Fig. 3.9. The plots in upper, middle,
and lower panels correspond to the time at ¢ = Os, ¢ = 100s, t = 200s, t = 300s,
t = 400s and t = 500s, respectively. The right propagation of the solitary waves is
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Figure 3.9: The depression representation of the solitary wave solution propagating in the
right direction at different time. This is a given internal solitary wave solution (3.77) to the
KdV equation (3.70), with the parameters o = —0.2, H = 0.6, and r = 0.85.

evident at time ¢ = 500s. It is important to mention that the values assigned for r
are between 0 and 1. Using r = 0 leads to the case that corresponds to water waves,
while taking r closer to 1 (that is, r ~ 1) leads to the case that corresponds to
the situation where two fluids have approximately the same density. The results of
the numerical computations of particle paths during the propagation of the internal
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Figure 3.10: The wave profiles are shown beneath the particle trajectories at time t = 0
(light-gray), ¢ = 50 (dark-gray), and ¢ = 100 (black). In the left upper panel, the particle
paths were located at (8.0,0.0), (8.0,0.1), and (8.0,0.2) with the parameter 1o = —0.065,
h = 2.0, ' = 0.4. The right upper panel were located at (8.0,0.0), (8.0,0.2), (8.0,0.35), and
(8.0,0.45) with the parameter 179 = —0.165, h = 2.0, A’ = 0.9, while the lower panel were
located at (8.0,0.0), (8.0,0.3), (8.0,0.5), and (8.0,0.675) with the parameter no = —0.165,
h=2.0, K’ =0.9. In all the instances, p = 1.1 and p’ = 1.0.

solitary waves are presented in Fig. 3.10. The wave profiles are shown beneath the
particle trajectories at time ¢ = 0 (light-gray), ¢ = 50 (dark-gray), and ¢t = 100
(black). The particle motion given in expression (3.76) with the help of the horizontal
and vertical velocities given in relations (3.80) and (3.81), respectively, is denoted by
the black-solid curve at a different depth as shown in the Figures. Three instances
are investigated in the two-layers fluid. In all three demonstrations, the depth ratio
H varies due to different combinations of the lower fluid depth h and the upper fluid
depth A'.
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3.4 Particle trajectories in the Gardner equation

3.4.1 The given model

Based on the domain ; = {(z,2) € R x R, —hg < z < n(z, )}, the two-dimensional
Euler equations are given as

w+ (u-Viu+Vp=g,
V-u=0,

where u = (u,v) represents the velocity field, g = (0, —g) denotes the body force
gravitational acceleration, and p(z,t, z) represents the pressure.

Moreover, the flows under consideration are also assumed to be irrotational in
addition to inviscid and incompressible properties. Since the potential flows are the
center of attraction, we start by introducing the velocity potentials ¢ = ¢((x, 2),t)
in ; which satisfies the Laplace’s equation in the given domain as

Guz + @2, =0 for — hy < z < n(z,t). (3.82)

The boundary of the given domain €2; consists the flat bottom z = —hg. This rigid
boundary, with the impermeability conditions, along them yield

¢. =0 at z = —ho. (3.83)
The kinematic conditions are given as

e = . — %% at z = 77(33at)- (384)

The dynamic boundary condition is given as
1
o + §|V¢>|2 +g92=0 at z =n(x,t), (3.85)

where g is the acceleration due to gravity.

3.4.2 Derivation of Bussinesq system

The next task is to compute the Boussinesq system, which follows the derivation in
[7, 57]. The waves with a smaller amplitude, a, the bottom layer depth hg, and a
larger wavelength [ is under consideration. However, the non-dimensional numbers

are given as
a h? a al?
a=— <1, = «l, St=-=—=~1,
ho p 12 B k3
where St is defined as the Stokes number.
For convenience, it is important to scale the dependent variables in the problem
in such a way that they are all of the first order. For this purpose, the following

scaled dimensionless variables were introduced

T z4+hy -~ ct _ m -
) t:77 W:aa d):iqs

i‘zf 2:

1’ ho
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where the speed ¢y = v/gho. By substituting the newly defined variables into the
equations (3.82) — (3.85), they are transformed to the following equations after the
evaluation

Bzs +dz=:=0 in0<2<1+ai, (3.86)

$:=0 on z =0, (3.87)
- 1 -

ﬁngoai)iﬁffEd)g:O on zZ =1+ af, (3.88)

1 sy lae ) .

i+ g+ 500 + 5562 =0 on Z=1+ai (3:89)

The potential ¢ is represented as a formal expansion given as
oo
O((,2),8) = > fml(,8)2™
m=0

Using the same procedure as before and using ¢ and other assumptions together
with Eq. (3.88), and dynamic condition (3.89) and differentiate with respect to Z,

F(2,t
and using w = % and Z = 1 + an, we obtain
T
L B 2
iy + Wz + a(fw)z — G Weae = O(apB, 5),
3 (3.90)
Wy + Nz + awwz — 5155;5{ = 0(ap, 5?)

To be able to choose the fluid levels, we need to introduce 6 to the horizontal velocity.
Denoting the @Y as the non-dimensional velocity with 0 < § < 1, and using Taylor’s
formula and other transformation, we have

4 Dl + 0. 7). (3.91)

Substituting the expression (3.91) into (3.90) yields the system
(3.92)

Hence, the Boussinesq system is represented by the system (3.92), which is correct
to first order in o and S.

3.4.3 Derivation of the Gardner equation

Neglecting the nonlinear terms and higher-order derivatives, we have the lowest order
of the Boussinesq systems (3.92) given as a linear system
i+ 0l =0,

B0 =0 (3.93)
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Further simplification yields

3 1 3
M+ e+ S+ S — §77277x =0, (3.94)
1 1 62 1.
o _ 1.2 -7 —3
o == g+ (3 ) et g (3.95)

where (3.94) and (3.95) are the dimensionless form of the eKdV equation and the
horizontal velocity, respectively.

3.4.4 Horizontal and vertical velocity components

The expressions for the non-dimensional horizontal and vertical velocities become

u(z, z,t) = ¢p = w’ + %(92 -1+ Z)Q)wzx, (3.96)

v(z, 2,t) = ¢, = —(1 4+ 2)w’.

Substituting Eqn. (3.95) into the horizontal and vertical velocity obtained in Eqn.
(3.96) yields

1, (1 (1+42)? 1,
t)=n— = S S22
u(z,z,t) =n i (3 5 Moz + 570 (3.97)

v(x, z,t) = = (1 4 2)n,.

3.4.5 Particle paths

The 2- and z-coordinates of a particle are denoted by the functions &(t) and ((#)
respectively. The particle is originally positioned at the point (z,z) = (&g, (o). There-
fore, the motion of the particle is represented by the differential equations

23
o¢ |
& —wiew. .0

Hence, Eqn. (3.98) is integrated numerically to compute the associated particle
paths.

3.4.6 Particle trajectories in solitary-wave solutions

The goal of this section is to compute the particle trajectories in the fluid. The area
of interest is to consider the passage of a solitary wave at the surface of the fluid.
The solitary wave solution of the eKdV equation (3.94) is derived as

A
b+ (1= b) cosh®(k(z — ct))’

n(x,t) = (3.99)
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where
_1.1 A? A A?
A=4[1-V2—c], k=27232Vc—1, b= 6(c—1) cf1+5——. (3.100)
Here, A is the amplitude, k is wave-number, c is the phase velocity, and b is a

constant. The argument is represented as B = k(z — ct).

Using equation (3.97) and the solitary wave solution (3.99), the velocity fields,
that is, the horizontal and the vertical velocities, respectively, at an arbitrary point
(z,2) in the fluid, and at a time ¢ are derived as

" A L1 A L1 A?
b+ (1 — b) cosh?(B) 4 [b+ (1 —b)cosh?*(B)] 8 [b+(1—0) coshQ(B)]Q

1 (1+2)?
().
2k*(1 = b) [[b — 3(1 — b) cosh?(B)] sinh*(B) + (1 — b) cosh*(B) + bcosh?(B)] (3.101)
[b+ (1 —b) cosh®(8)]* T

s 2kA(1 — b) cosh(B) sinh(B)

=+ [b+ (1 b)cosh?(B)]”

(3.102)

In Figure 3.11, the particle trajectories of the eKdV equation during the solitary
wave propagation with an amplitude of 0.2243 were shown. Using the motion of the
particle, which is represented by the differential equations (3.98) with the velocity
components (3.101) and (3.102), the particle trajectories below the solitary waves
were constructed.

Considering the fluid at different depths, it is observed that the fluid particles
have smaller vertical excursions as they approach the flat bottom compared to its
associated horizontal displacement. The rapid decrease of fluid particles is evident
with every depth of the trajectory underneath the free surface. Consequently, the
particle path very close to the bottom becomes a nearly straight line since there exists
a horizontal displacement as the vertical propagation becomes zero. In addition, it
is important to note that in Fig. 3.11, the fluid particles propagate to the right and
upwards if their position is towards the right of the crest, and particles positioned
on the left of the crest propagates to the right and downwards.

3.4.7 The maximum wave-height of the solitary waves

Next, the derivation of the maximum analytical height of the solitary wave using
the conducive breaking criterion is considered. The conductive breaking criterion
implies that the wave breaks if the horizontal particle velocity at the top of the
leading wave exceeds the wave’s local phase speed. Using the horizontal velocity
component derived in Eqn. (3.97), the horizontal particle velocity at the top of the
leading wave for the eKdV equation when z = 7 is given by

1 1 1 (1+n)?
v=n-q+ g+ (3-S5 (3.103)
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Figure 3.11: Here, the waves’ surface profiles are shown at time ¢t = 0 (light-gray), t =5
(dark-gray), t = 10 (black). As before, the wave crest is initially located at x = 0. The
particle path (£(¢), ¢(¢)) given in Eqn. (3.98), where u and v are expressed in Eqns. (3.101)
and (3.102) is represented by the curve, and it is initially located at (6, -0.97), (6, -0.8), (6,
-0.5), and (6, 0.01). The color-coded is used to indicate the particle positions at the three
instances where the wave surface profile is shown. The particle position at time ¢ = 0 is
represented by the light-gray dot, while the particle positions at time t = 5 and t = 10 are
indicated by the dark-gray dot and black dot, respectively.

The breaking criterion is given as
U > cphases (3.104)

where ¢ppqse is the phase speed. Eqns. (3.103) and (3.104) yields

1, 1 1 (1+n)?
n-— 1772 + §773 + (3 - (2)> Naz = Cphase- (3.105)

The second derivative of the solitary wave solution (3.99) is given as

B 2Ak2(1 —b) [[b —3(1-0) cosh2(B)} Sinh2(6) +(1-0b) cosh4(l’>’) + bcoshQ(B)}
e = [b+ (1 —b) cosh®(B)]” '
(3.106)
The shape of a solitary wave is constant, this means that the wave will have the
same height as the initial height at all times ¢. Hence, we evaluated the solitary wave

(3.99) and its second derivative (3.106) at (x,t) = (0,0), to get

k (84% —24%). (3.107)

n » and 7 16
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Substituting the phase speed derived in Eqn. (3.100) and Eqn. (3.107) into expression
(3.105) gives

1 1 3 /1 (1+A4):? A A2

A— A2y -3 = (- — L A2 243 > 14+ = — —. 1

4 + 8 16 (3 2 (8 ) =t 2 16 (3.108)
The inequality is set to equality to compute the critical value of the wave-height,
and after evaluating and rearranging the terms, the result is obtained as fifth-order
polynomial

P(A) =3A° — 6A* —254% — A? —8A +16=0. (3.109)

One of the roots of this polynomial is 0.7078, and it can be inferred that the
solitary wave of that waveheight starts breaking. We thus find that the maximum
possible waveheight for the solitary wave is

Apag = 0.7078. (3.110)

This is in contrast to the value 0.6879 in the KdV equation found in [10], and we
see that the value for the eKdV (Gardner) equation is closer to the theoretical value
of 0.78 [40, 41].



Chapter 4

Overview of the papers

In this chapter, an overview of the research papers which contribute to this thesis is
presented. The overview shows how the methods presented in the papers are related.

4.1 PAPER A

Particle trajectories in the BBM approximation.

In paper A, a systematic asymptotic derivation of the BBM equation which is the
regularized version of the KdV equation is used as a model equation for long waves in
shallow water. The behavior of the waves at the surface of the fluid is studied using
this model. The horizontal and vertical velocity field components are reconstructed
during the derivation, and they were used to compute the particle trajectories numer-
ically using the exact solutions of the BBM equation. However, using this concept,
the solutions of the solitary wave and the periodic traveling wave were considered.
The approximate analytical solutions of the particle trajectories were also computed
for comparison purposes.

4.2 PAPER B

Particle trajectories in a weakly nonlinear long-wave model on shear
flow.

In paper B, we proposed a BBM model in shallow water waves regime to study the
particle trajectories associated with the propagation of nonlinear water waves on lin-
ear shear flow over a flat bottom. The Boussinesq-type system for two-dimensional
water waves with constant vorticity is derived using the assumption that the dis-
persive and nonlinear terms are small and of the same magnitude. Focusing on the
waves going in one direction, the KdV equation in the presence of a shear flow is
derived. However, further computation led to the derivation of the BBM equation
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with the coefficients that depend on the vorticity. Furthermore, we derived the ap-
proximate velocity field associated with the exact solutions of the BBM equation
over a shear flow to study the particle trajectories of the flow. However, the parti-
cle trajectories of the solitary waves and periodic traveling waves were studied using
numerical computation.

4.3 PAPERC

Fluid transport induced by internal waves.

In paper C, the investigation is based on the interfacial waves in the two-layer fluid of
different densities using the KdV equation. Originally, three equations representing
the Boussinesg-type system were derived. For numerical suitability, it is reduced
to the two systems of equation. However, the KdV equation is derived as a result
of the waves propagating in one direction within the two-layer fluids. The velocity
field associated with the exact solutions of the KdV equation is derived to study the
particle trajectories of the flow. The study is centered on the solitary wave solution.

4.4 PAPERD

Particle trajectories and wave breaking in the Gardner equation

In paper D, we considered the numerical computation of the particle paths of the
solitary wave solution of the eKdV equation. We paid attention to the one-directional
waves to derive the eKdV equation (also known as the Gardner equation) from
the Boussinesg-type model derived earlier for water waves. This model is used to
study the particle paths of the flows. In addition, the velocity components (i.e., the
horizontal and vertical velocity) were derived. Furthermore, a solitary wave solution
of the Gardner equation is obtained, and it is used in connection to the velocity
components to study the particle paths of the flow. In addition, the maximum height
of the solitary wave solution of the eKdV equation is computed.
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BBM equation

1. Introduction

Boussinesq-type equations are widely used for the simulation of ocean waves in the nearshore zone, where both non-
linear and dispersive effects influence the wave evolution. While these simplified model equations are most often derived
in the context of irrotational flow, in coastal waters, the presence of vorticity may also be an important factor. Indeed, a
variety of currents exists in the coastal zone, such as for example tidal currents and currents due to river discharge (see
[26] for example). In this situation, using the assumption that the flows are irrotational when gravity waves travel on the
surface of shear flows is no longer valid [4]. The inclusion of the vorticity to the shallow-water theory was first considered
by Burns [7], who modified the shallow-water theory by incorporating the effects of the vorticity and studied the range
of wave speeds for general velocity profiles. Following the publication of [37], constant background shear has been used
in many works (see for example, [1,11,17,23,38,40,41] and the references therein). A linear shear flow avoids many of the
mathematical complications of more general current profiles and may be seen as a first approximation to more general
shear currents, especially in the case of long wavelength.

Recently, more general shear profiles have been used for the description of flow properties associated with surface
waves (see [9,21,31] for example) in steady form. Other examples of surface waves interacting with vorticity include the
case of compactly supported vorticity, such as vortex patches [35] and point vortices [16,18]. One recent work addresses
the problem of vorticity creation by the waves itself in the transient case [8], though the resulting mathematical model is
rather complex.
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In the present work, the goal is to use a simple model equation in order to describe particle trajectories associated
with surface wave patterns in the presence of constant vorticity. A series of derivations is carried out, resulting in a BBM-
type equation that is valid in the presence of background constant vorticity. The BBM model will be examined in the non-
dimensional form

(34712 ct+T
Ne+Cpnx + x — Nxxt =0,
(1+¢2) 3cr(1+c2)
where n(x, t) is the surface profile, I is the prescribed vorticity, and the constants ¢y and c_ are given by c; = ’Tr +

+/ %2 +1andc_ = —Tr -/ %Z + 1. Except for the coefficients, this equation is similar to the standard BBM equation and can

be reduced to a first-order equation for both solitary and periodic (cnoidal) traveling waves in terms of surface elevation.
Furthermore, as will be shown presently, a rigorous review of the derivation of the BBM equation as a surface water-
wave model in the presence of a background shear flow reveals that the reconstruction of an approximate fluid velocity
field below the free surface is possible. This process yields expressions for the horizontal and vertical velocity components
in terms of the principal unknown variable 7, which represents the deflection of the free surface from the equilibrium
position.

To the first order in the perturbation parameter, it is observed that the horizontal velocity is not connected to its
measuring depth, and we have u = —c_n. However, considering the fact that the BBM equation is accurate to the second
order, this term is revised to an expression that holds to the second-order as given below

M= —c_n4 c_+T 2, c++ T [ )
T ara T\sarad) s )™

In (1), the horizontal velocity at the flat bottom is denoted by u. It is also possible to obtain an equation for this horizontal
velocity at an arbitrary depth in the fluid column. This theory will be presented in the next section. After establishing the
velocity field connected to the surface wave, a great number of the dynamic features of the flow can be exploited, especially
the construction of the approximate representations of the trajectories mapped out by the particles of the fluid beneath the
surface.

The investigation of particle paths underneath a surface wave can be traced back to the late nineteenth century [30].
In linear wave theory, a standard first-order approximation suggests that all particle paths are closed [19,27,33]. However,
Stokes [34] showed that particle trajectories are not closed for periodic waves (see also [10,15]). Indeed, the movement of
a periodic surface wave is associated with particle trajectories that are not closed and lead to net mass transport in the
direction of the wave. This result is known today as the Stokes drift. Stokes drift in channels of finite depth was reviewed
by Ursell [39]. Constantin [12] gave firm mathematical proof that the particle paths are not closed. Other effects, such as
infragravity wave motion and inertia, may also affect the particle motion [2,6]. We finally mention the work of Munk who
considered particle motion under waves in the surf zone and applied a backward current in order to describe nearly closed
particle paths which were observed under some conditions [29].

The first work which made use of Lagrangian coordinates for the examination of periodic surface gravity waves with finite
vorticity was Gerstner [20]. In the Gerstner wave, particles travel in circles, and the surface curve is of trochoidal form. The
mathematical approach used in [22] shows that Gerstner’s flow is dynamically possible: the particles never collide despite
moving in a circle and occupy the whole region beneath the surface wave. Later, Constantin and Strauss [14] showed that a
closed particle path in the presence of current is possible. There have also been numerical studies of several orbit patterns.
Indeed, Nachbin and Ribeiro-Junior [30] investigated a case of a closed orbit when a stokes wave propagates in the presence
of an adverse current. Particle paths in shear flow have been studied in various situations using the full Euler equations in a
steady formulation [9,21,31]. More recently, physical phenomena such as wave breaking, and undular bores were considered
in this context [25,32].

The present study focuses on providing a clear qualitative view of the particle paths throughout the fluid domain of
the nonlinear water waves on the shear flows. The article is organized as follows: a thorough review of the derivation
of the Boussinesq system that features shear flow is presented in Section 2. Afterward, we sketch the derivation of the
BBM equation and its corresponding approximate velocity field in terms of the free surface » and constant vorticity I'. In
Section 3, we study the surface solitary wave. Here, the velocity field expressions derived in Section 2 in connection with
the exact solutions of the BBM equation are used to examine the particle trajectories numerically by considering different
values of vorticity. Similarly, Section 4 is dedicated to the numerical investigation of the particle trajectories in connection
to the propagation of the periodic wave. Lastly, Section 5 is devoted to the conclusion.

2. Formulation of the mathematical problem
The water-wave problem concerning waves at the surface of an inviscid, incompressible Newtonian fluid is given by

the Euler equations with no-penetration conditions at the bed and kinematic and dynamic boundary conditions at the free
surface. The sea floor is assumed to be flat. We denote the spatial coordinates by (x, z) where the x-axis coincides with the
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zA

Fig. 1. Wave propagation over a background shear flow. In this figure, the vorticity I is negative.

undisturbed free surface, and assume long-crested waves which are uniform in the transverse direction. The gravitational

acceleration in the negative z-direction is denoted by g, the undisturbed depth is ho, and 7(x, t) denotes the departure of

the free surface from the rest position. The decisive feature in the present work is the existence of a uniform shear flow

with a free surface as shown in Fig. 1. In this case, the vorticity is given by a predescribed constant I', and the background

distribution of the original velocity component before the arrival of the waves is given by
U = Uy—(z+hoT, }

vV = 0. (2)

For I' > 0, we have a shear flow in the direction opposite to the wave propagation. For I" < 0, the background flow is in
the favorable direction, that is, in the direction of wave propagation. Without loss of generality, we may assume Uy = 0.
Assuming a is a typical amplitude, and I is a typical wavelength of the waves to be described, the parameter o =a/hg
represents the amplitude to depth ratio, and the parameter 8 = h%/l2 represents the water depth to wavelength ratio.

In the case of a linear shear flow such as delineated in (2), the vorticity is constant. For later reference, we define the unit
vectors in the x, y and z directions as ey, e, and e, respectively. The vorticity is then given by w = (U, — Vy)e, = —Tey.
In general, one may use Kelvin’s circulation theorem together with Stokes theorem and the incompressibility condition to
understand that constant vorticity is conserved in inviscid, incompressible flow. In consequence, the flow can be split into a
shear flow with uniform vorticity and a pure potential flow. For a uniform shear flow, the perturbation velocity is given in
terms of the potential ¢ (x, z,t), with u = ¢ and v = ¢,. The complete velocity field is given by

U=¢x—(z+ho)T, ]
V =¢,.
Indeed if we define a three-dimensional velocity field U= (U, 0, V) for notational convenience, the vorticity is @ = curl(U),
and it can be checked that the above definition satisfies the vorticity equation
w+U-VYo=w-VU. 3)

Using the incompressibility condition v - U =0 also shows that the velocity potential satisfies Laplace’s equation. We can
then rewrite the Euler equations

1
U[+§V|U|27U><w+gez=0
with the help of the velocity potential ¢ to obtain
1
v{q&, +5IuP +gz} —Uxo.

As the left-hand side is obviously a gradient, the term U x @ must also be the gradient of a function. Following [42] it
becomes plain that U x w = VG, where the function G is given by

z 1—~2
G=-T / dxdz + 7(z+ho)2.
“ho
The complete problem is written as follows:
Ap=0 in —hg <z <n(x,t), (4)
¢,=0 on z=—ho, (5)

m+U77x—V=0,]
on z=n(x,t). 6
e+ 102 —G+gn=0, n(x.t) (6)
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The next goal is to derive a Boussinesq system approximating the wave motion described by (4)-(6). To this end, we
follow the development explained in [42]. For starters, the variables are non-dimensionalized using the following scaling:

),2_)( 5— z P ghot Po Tho i (5_ ho P
U T T e T T aen,
Then we get the equation
Bbw+¢=0 —1<Z<ai, 7

and at the bottom z = —1, we have the following boundary condition

¢;=0. (8)
At the free surface z = &7, the non-dimensional kinematic condition is
B i+ [~ + @i + gy s} = . (9)
The non-dimensional dynamic condition may be expressed as
B r : 2 B
- ap | -~ oar-
i+ 2 g — (1 +aii —[~]——c=o, 10
Bl +i)+ = [% ot +an)} 5| ag (10)
The non-dimensional potential ¢ is expressed in powers of (1+ 2) as
o0
6= (1+2"¢n. (1)
n=0
Using Eq. (7), Eq. (11) and Eq. (8), we have
7 _ B 512 B 54 3
¢ =do— - (14+2)"bozz + - (1+2) dozzzz + O(B7). (12)

24
To find a closed system of two evolution equations, we substitute the asymptotic expression for ¢ in the boundary
conditions Eq. (9) and Eq. (10) and collect all terms of zeroth and first-order in & and 8. Then we differentiate the dynamic

bottom boundary with respect to X and expressed the boundary conditions in terms of the non-dimensional horizontal
velocity at the bottom ¢o3z = w. This procedure yields the system of equations

2

O = S . B
g+ wg — I'ijg — al'iijy + e (qw)x — § Wi = O(ap. B2,
P P (13)

Wi+ 15+ Wz — 2 Wiz + 3 T Wi = O@, Y.
Next, a family of Boussinesq systems is derived using the standard technique of describing the horizontal velocity component
at different heights in the fluid column. If we let W’ be the non-dimensional velocity at a non-dimensional height Zy =
—1+6(ai + 1), with 0 <6 <1, then Taylor’s formula shows that

w=w— §<1 +2p)° Wiz + OB =W — 20% +0@B, .

By applying the standard techniques of inversion, it is not difficult to derive the following expression as an asymptotic
formula for W in terms of W?:

W=W9+§02W§i+(’)(o¢ﬂ,ﬁ2). (14)
Substituting this representation into the system (13), this yields
g + WG = Pils — P + 0 )z + g(az — Wi = O@p. ).
P ) (15)
Wl + iz +aw’ Wl + 5(92 - Wi+ gl*v”v%& = 0B, B2).

For any real A and p, the above system is a special case of the more general system

4
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i+ Wg = (L i+ @)z + 2 67 = Hiiv = 567 = H = Dilgg
B =
+5<92 =D = Wiz = O@p, ).
Wl + g +aw’wl + E(1 —0%) il — E(1 — 01— wywl. + Brwe = 0B, %)
itz XT3 MMz 2 )W s 3 x T ’ .

The concentration is now on the unidirectional waves. In the lowest order, the Boussinesq equation is the linear system
a9 ma _g =
g+ wg —Iig=0, w; +iz=0. (16)

The system can be diagonalized by introducing characteristic coordinates. Introduce new variables r and s defined by (r, s) =
P17, w’) where

p_ 1 &1
TIEEZ\-1 &)

with ¢4 = _2[.‘ ++/ ; + 1. A simple calculation shows that

T, ¢ 0 Ty
(2)+(5 ) ()0 ()

where ¢_ = ’Tf —/ %2 + 1 is the conjugate of ¢. The solutions of system (17) are

r=ro(x —Cyt) and s =so(x — C_t).

The solution to Eq. (16) is, therefore,

_ 1 . . N - . - - o~ .
W (x, t) = e [c+n0(x7c+t) + Wh(x —E4b) 7c+n0(x7c,t)+ciwg(x7c,t)],
T

- 1 2 - - L - - - - L~ -
n(x,t) = =2 [Czﬂlo(x —C4t) FE W (X — Ty t) + Tlo(x — E_t) — E4 Wh(X — c,t)] .
+
The unidirectional KdV equation is derived from the system (15) by specializing to waves moving to the right with speed
Cy.
W’ = —E_f+aA+ BB+ OB, ),
where A and B are functions of 77 and its X derivatives. Then the system (15) becomes
T + €47z + (=28 7jilx — Dilflz + Ay) + B(By — 58— (6% — Piln) = OB, B2,
i + Co Tz + @ (E4. Ap — E-Tilg) + BC4 By + 302 — Dijzg + Silaz0) = O(@p, B2).

Since 7j; = —Cy 7z, all derivatives in the first order terms may be replaced by —c, times the x derivatives. Then the two
equations are consistent if

E+1 T L A
pe T g g (T B E
20+8&) 31+¢8) 6 ' 2

Hence, we have

_ _ E_4T g+ & _
W= —tii+a ~ 2 e~ =+ 207 ) i+ OB B2,
200+) 31+&) 6 2 8
L BG4y 41 ,
i+ Cifz+o - 2+ —— iz = O(aB, B2).
ﬂt +Nx (1+Ci) nnx /33(1+C3r)r/xxx ( ﬂ /3)

From Eq. (14), the non-dimensional horizontal velocity at the bottom is

. Lo i+T ty+0 . . B. 5
W=—C_N+uo + % — C——=Nw + OB, . 19
n 20+ 8 n 53(1+6+)77xx Gﬂxx (aB, B) (19)

From Eq. (12), the non-dimensional horizontal velocity and the non-dimensional vertical velocity at the bottom become

5
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i

i=w-2a +2)? Wiz + O(BY),

(20)
V= =B+ )Wy + OB,

From Eq. (14) and Eq. (20), the non-dimensional horizontal velocity and the non-dimensional vertical velocity at a non-

dimensional height Zy = —1 4 6(«#) + 1) become

B (.2 = 2\ 50 2
5(0 —(1+2g))w;o-(+0(ﬂ ),

V=—p0+29)W) +O(B).
From Eq. (19) and Eq. (20), we have

a:‘}'v()+

o i+T oL+0
= fita I ni,;fc,é
20+ 31+22) 6

V= BE_fiz(1+2) + OB, B2).

After neglecting the second-order term, the dimensional form of the velocities is given by

il
2

(1427 + O(@p. B2,

=

% +C—

c_ c_ z
h(ZJVIxx - Ehozﬂxx + 7}16(1 + %)Zﬂxx s

ue [E] ; 4+l | &G+l
- - 20+&)ho " 3(1+E)

(21)
v =+/ghoC_ nx (1 + hi>
0

In the following, it will be convenient to define non-dimensional variables adapted to the problem at hand. In particular, a
new non-dimensionalization adapted to the numerical study is defined by

h r'y/gh
x— hox, z— hoz, n— hon, t > BTN Vghou, w — /ghow, andI' — %.
0 0

Vgho

Then Eq. (21) can be rewritten in terms of new variables as

U= —c 4 -+ 5 ct+T c_ +C,(1+Z)2
ST e Trare)™ T e T e
v=c_nx(1+2).

The coefficients are given as ¢y = ’TF +4/ %2 +1and c_ = ’Tr -/ %2 + 1. The Eq. (18) can be rewritten in terms of new
variables as

c+(3+T?) ct+T
. 7 Mkt - 2
(T+c¢3) 3(1+c3)

This equation was also found in [32,36]. By neglecting the nonlinear term as well as the higher-order term, the resulting

Ne+C4nx + Nx = 0. (22)

equation is given as 7 + c+nx = 0. Upon differentiating both sides, we have nyy = 7inm. Using this in equation (22)

yields the BBM equation with vorticity

3 +T?) ¢y +T
(1+c2) 3,1+ %)

This equation is the main model used in this article. The expressions for the horizontal and vertical velocities of a fluid
particle at a height z=—1+6(n + 1) are given in new variables as

Nt +CyNx + Nxxt = 0. (23)

1
uGz 0= w0+ (07 = (14+2?) wh,

(24)
v(x,z,t):—(1+z)wf,
where
9 c+I 5 c++T c_ [
w’=—c_n+ — — N+ —0 . 25
n 2(1+C«2+)n 3(1+Ci)ﬂxx 677xx P Nxx (25)

The functions &(t) and ¢(t) are taken to represent the x-coordinate and z-coordinate, respectively, of a particle, initially
located at the point (x, z) = (o, o), then the dynamical system is recast in the form

6
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0§
Frie u@E®,c®,0—-a+9r,
il (26)

at =v(EW®. 2,0,

(£(0), £(0)) = (%0, ¢0)-
where the effect of an underlying shear-flow has been added. Finally, the particle trajectories are found by numerically
integrating the dynamical system (26) using the fourth-order Runge-Kutta method. As explained in [5], for all values of 0,

the outcomes will be qualitatively the same in as much as waves are in the validity of the Boussinesq scaling. To get more
accurate results in particular cases, Eq. (24) can be used.

3. Particle trajectories in solitary-wave solutions

In this section, we aim to describe the particle trajectories in the fluid owing to the passage of a solitary wave at the
surface. The exact solitary-wave solution of the BBM equation (23) is given by

_ 2 | Ber(+chGHm o
7(x, t) = no sech (\/4<c++r)[3<1+ci>+<3+r2)mﬂ(X Y- ). 7

where 1 is the initial amplitude, xp is the initial location of the wave crest, and the phase velocity is defined as
B+
3(1+¢%)

In this study, there is an assumption that when t = 0, the wave crest is located at x =0 so that xo = 0. Hence, the argument
is defined as

A(x, t) :\/ o +C§.);3+F2)?70
Acy + DB +2) + B+ T2)]
Therefore, using Egs. (25) and (27), the relation (24) gives the horizontal and vertical velocities (u(x, z,t) and v(x, z,t),
respectively) of the fluid at (x,z=—146(n+ 1)) in the fluid, at a time t as
3c:(1+c)B+T2)n0 ch+T
€+ + DB +2) + G+ T2l (3(1 +2) F)
31+c2)3+T2) 1o
(cr +D)BA+E) + G+l 2
c.+I' 3 3c;(1+c3)(3+T?) ct+T0 o
20+c2) 2 (cq +DIB(1+2) + G+ )] <3<1 +ad) ?)
3143+
(c+ +DIBA+c) + G+ T2l }
c_+T 3 (1+c2)(3+T?)
2(1+¢%) (4 + DBA +c2) + 3+ )]
_11_6 (02 -1+ 2)2) 9&2(1 - Cgr)zz(3 - FZ)zné 2
(c+ +D)?[3(1 +cf) + B+ T?)nol
( cp+T c- -

— = + =67 (-8 +60sech’? A — 60sech* 4) } ,
31+c¢%) 6 2 )( )

c=cy+

(x —ct).

u=no sechZ(A) {—c, +

—(142)>2

+19 sech?(A) {

ety
4

+% (92 —a +z)2) 1 sech?(A)(4 — 5sech?(4)) (28)

4y +DBA+2) + G+ M)l a+c)

2 2
6c+(1+c+)2(3+f‘ )Mo Al & Cp (—1+3sech?(A)) } .
€+ +DBA+2) + G+ )l 2

2 2
v=—(1+ z)(n0)3/2\/ 3erd+c)B+1I7) sech?(A) tanh(A) {ZC, _He+4D)

nosech?(A) +

30+c2) 6

Figs. 2, 3, and 4 show particle trajectories during the propagation of a solitary wave with an amplitude of 0.2 (that is,
No = 0.2). The value of 6 used throughout this study is 0.6. The particle paths beneath the solitary waves were obtained

7
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Fig. 2. The waves are shown at time t = 0 (light-gray), t = 2 (dark-gray), t =4 (black). The wave crest is initially located at x =0. The path of the fluid
particles (£(t), ¢(t)) of Eq. (26) (u and v corresponds to the Eq. (28)) initially located at (5, 0.01) for different cases of vorticity '=0; '=-0.3; ' =0.3
are shown. The particle locations at three instances where the wave profile is shown are color coded. The light-gray curve indicates the particle positions
at time t = 0. The dark-gray curve indicates the particle positions at time t = 2. The black curve indicates the particle positions at time t = 4. The blue
circles indicate the sense of rotation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

with the dynamical system (26) where the vector field is given in Eq. (28). In these figures the fluid particle location at the
three instances where the wave profile is shown is color-coded: the initial position is indicated by the light-gray dot, the
dark-gray dot shows its middle position while the black dot shows its final position. A circle with an arrowhead indicating
the sense of rotation of the background shear flow is placed at the bottom of each figure.

Fig. 2 shows the time evolution of a fluid particle located to the right of the crest in the surface for three different
vorticity values (a) '=0; (b) ' =—0.3; (c) I' = 0.3. The particle path given by equation (26) is represented by the dashed
curve. In the case of favorable vorticity (I" < 0), it can be seen that the fluid particles move to the right and upwards if they
are located to the right of the crest, while the fluid particle moves to the left and upwards for the case of vorticity I" > 0.
This is in agreement with the results of [5,13,24] in the absence of shear flow.

Fig. 3 illustrates particle paths associated to the passage of a solitary wave. It can be seen that the fluid particles closer
to the bottom have smaller vertical excursions but nearly the same horizontal extent. Right near the bottom, the particle
trajectories become straight lines as the vertical motion becomes zero. The polarity of I' has a strong influence on the
shapes of the particle paths. Indeed, it is apparent from Fig. 3 (lower panels) that the particles in the center of the fluid
column move further to the right when I' < 0, while particles in the lower half of the fluid column move further to the
right when I' > 0.

In the upper and left lower panels of Fig. 4, for I' <0, fluid particles move to the right and upwards if they are located
to the right of the crest and particles located on the left of the crest move to the right and downwards. In the right lower
panel of Fig. 4, for I > 0, fluid particles move to the left and upwards if they are located to the right of the crest and
particles located on the left of the crest move to the left and downwards. But as can be seen in the right lower panel of
Fig. 4, the particles closer to the bottom move to the right and upwards if they are located to the right of the crest and
particles located on the left of the crest move to the right and downwards for the case I' > 0. It is clear that for particles
deeper into the fluid channel, the wave effect diminishes, and therefore the effect due the vorticity can become dominant.
Through the numerical simulations, it is apparent that the closer the particle is to the free surface, the stronger it feels the
wave effect.
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Fig. 3. The waves are shown at time t =0 (light-gray), t =5 (dark-gray), t = 10 (black). The wave crest is initially located at x = 0. The path of the fluid
particles (£(t), ¢(t)) in Eq. (26) (u and v corresponds to the Eq. (28)) initially located at (6, -0.97), (6, -0.8), (6, -0.5) and (6, 0.01) are shown for different
cases (a) '=0; (b) I'=—0.5; (c) I' =0.5. The particle locations at three instances, where the wave profile is shown, are color-coded. The light-gray dot
indicates the particle positions at time t = 0. The dark-gray dot indicates the particle positions at time t = 5. The black dot indicates the particle positions
at time ¢t = 10. The blue circles indicate the sense of rotation.

One interesting feature of the present work is that it appears to capture the existence of closed particle orbits in solitary
waves such as observed in a field campaign conducted by the Beach Erosion Board on a beach in New Jersey, USA on a
gently sloping beach [3]. This finding partially motivated the work of [29], where a solitary wave was coupled with an
offshore current in order to capture this phenomenon which is thought to be due to an undertoe. However, an undertoe
would more likely be a sheared flow that loses strength in the upper half of the fluid column. If such a flow is introduced
in the equation (2), then the resulting flow look like in Fig. 5, where strong beachward transport is seen near the surface,
and closed particle orbits exist near the bottom.

4. Particle trajectories in periodic-wave solutions
The focus is now on the particle paths in the fluid flow as a result of the propagation of periodic traveling waves at

the surface. The BBM equation (23) admits the following solution in terms of the three constants fq, f2, and f3 which are
arranged as f3 < f, < f1, and in terms of cnoidal functions:

A(c+D)BA+c3)+G+I2) (fi—f3)]

n=fa+ (fi — f2)en? (/ e (14 G+ (fi = f)V2(x—x0 — Cf)) , (29)

where f; and f, represent the crest and the trough of the wave, respectively. With xo = 0, the argument is defined as

2 2
=\'/ 3c,(14+c¢4)3+T?) (f1 = f)2(x = cb).

4t +DBA+3) +B+TH(fi — f3)]

Here, cn is one of the Jacobian elliptic functions defined by the incomplete elliptic integral of the first kind [28], where its
modulus is defined as m = (f1 — f2)/(f1 — f3). The phase speed and the wavelength of the wave are given as
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Fig. 4. The waves are shown at time t =0 (light-gray), t =5 (dark-gray), t = 10 (black). The wave crest is initially located at x =0. The path of the fluid
particles (£(t), ¢(t)) in (26) (u and v corresponds to the Eq. (28)) initially located at (-0.8, -0.3), (1.8, -0.3) and (5, -0.3), also (-0.8, -0.9), (1.8, -0.9) and
(5, -0.9) are shown for different cases (a) ' =0; (b) I' = —0.5; (c) ' =0.5. The particle locations at three instances, where the wave profile is shown, are
color-coded. The light-gray curve indicates the particle positions at time t = 0. The dark-gray curve indicates the particle positions at time t = 5. The black
curve indicates the particle positions at time t = 10. The blue circles indicate the sense of rotation.
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Fig. 5. Solitary-wave solution and particle paths in a shear current. The waves are shown at time t =0 (light-gray), t =5 (dark-gray), t = 10 (black). The
parameter values are a =0.2, ' = —0.5, Up = —0.2, ¢ = 1.3859, X9 = 6. A closed path is visible near the bottom, and a close-up is shown in the right panel.

c+(3+T?)
C:C++3(Tcz+)(f1+fz+f3),
and
2 2 —
4 (c++r‘)[3(l+c+);—(3+r)(f1 fs)]K(m) 1 ’
3c (14+c2)3+T12) fi—1s
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respectively, where K(m) is the complete elliptic integral of the first kind. Using Egs. (25) and (29) in the relations (24), the
horizontal and vertical velocities may be written in terms of the Jacobian elliptic functions cn, sn, and dn as

=—c_(f2+ (/i - e’ B) + ———— > ( -~ (fz + (fi — f)en?(B))?
3c;(1+c3)E+T1?) et +T
TG DBA+ D+ G+ — TPV Wsate 31+c2)

- E_ + 7‘9 }[sn (B)dn? (B) — cn?(B)dn2(B) +m snz(B)cnz(B)}

3c,(1+2)3+T?)
8(cy + DB +c) + B +T2)(f1 - f3)]

+<92—(1+z)2) (fi—F)

7+I‘

{2c,(f17 fz)(an(B)dnz(B)7sn2(B)dn2(B)7msn2(B)cn2(B))+ i

f2(f1 = f2) (s0?(Bydn (B) — en? B)dn (B) + msn® Byen? (5) )
St r

T (- f)? (—msnz(B)cn4(B) + en*(B)dn?(B) — 3sn? (B)cnz(B)dnz(B))
(1 +c2)

(30)

6c4(1+c2)(3+T?) G +T o,
+ -—=+=0 - -
4 +DBA+2)+ G+ (1 — f5)] 5 (fi = ([ = fa)x

31+c%) 6
(—9msn2(B)cn2 (B)dn?(B) — m?sn?(B)cn*(B) + men*(B)dn? (B)

+m2sn*(B)cn?(B) + msn*(B)dn? (B) + cn? (B)dn*(B) — sn?(B)dn* (B))} ,

3c;(1+c3)(3+T2) 12
=-a - Byen(B)dn(B) (2¢_(f; —
( +Z)\/4<c++r>[3(1+c2+>+(3+r2><f1—fa)l(f‘ Ry snB)en(Byin(B) {2e-th — f2)
peotr _p T reny 4 [ ST g
(1+ 2)f2(f1 f2) (fl f2)%en (B)+<3(]+Cb 5T 29 )x

6c(1+c2)(3+ 1‘2)
(c++DBA+A)+B+T2)(f1 — f3)]

The particle paths shown in Figs. 6 - 9 are numerical approximations of solutions of Eq. (26) where the vector field is
given in Eq. (30). The cnoidal wave of the BBM equations can be specified by fixing the values of the parameters f1, f2, and
f3. Of particular interest is the case of an adverse current, and researchers [14,30] predicted the existence of a closed orbit.
Fig. 6 illustrates the particle path during one complete periodic cnoidal wave cycle with m =0.99 and H = f; — f, = 0.3 for
different values of vorticity ' =0, —0.1 and 0.1. The crest of the wave is centered at x =0, and depths z=—0.9, —0.4 and
—0.078. The particle paths are nearly elliptic but not closed in the presence of the vorticity I' < 0. For the case of positive
vorticity I" > 0, the particle paths are orbit loops.

Next, we present a train of the cnoidal wave for different values of vorticity I' =0, —0.4, and 0.6. A close-up of particle
paths initially located at the surface is shown in Fig. 7. The particle path during the propagation of the cnoidal wave over
4 periods at the three cases are shown, and the initial particle locations are shown in light-gray dots. In the upper and left
lower panels of Fig. 7, for I' <0, fluid particles move to the right and upwards. As can be seen in the right lower panel of
Fig. 7, the particles move to the left and upwards for the case I" > 0.

In Figs. 8 and 9, the particle paths with different vorticity values are shown for different depths. In Fig. 8, the particle
path during the propagation of the cnoidal wave over one period at the three instances are shown for amplitude 0.2
with different values of vorticity I' = 0, —0.4, and 0.6, all particles are initially at xo = wavelength/2 — 0.001, and depth
zp = —0.1,—0.5 and — 0.9. Fig. 9 features the particle trajectory during the propagation of the cnoidal wave over three
periods. The three instances considered are shown for amplitude 0.4 with vorticity I' =0, —0.12, and 0.28. We observe that
in the upper and lower panels of Fig. 9, for the particles closer to the bottom, the wave effect diminishes, and therefore the
effect due to the vorticity can become dominant.

(fi=f)(f1=f3) (—msnz(B) +men?(B) + dnz(B))} .

5. Conclusion

This study has focused on the motion of particles in the body of the fluid excited by the combination of wave motion
at the free surface and a pre-existing linear shear flow. The waves were assumed to be long and of small amplitude when

11
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Fig. 6. The upper panel shows the periodic wave with amplitude 0.3, wavelength 16.6372, period 16.1830, phase speed 1.0281 and I' =0 at t = 0 (light-
gray) and t = 16.18 (black). The left lower panel shows the periodic wave with amplitude 0.3, wavelength 15.7511, period 14.5928, phase speed 1.0794
and I'=—0.1 at t =0 (light-gray) and t = 14.59 (black). The right lower panel shows the periodic wave with amplitude 0.3, wavelength 17.5221, period
17.8910, phase speed 0.9794 and I' = 0.1 at t = 0 (light-gray) and t = 17.89 (black). The paths of fluid particles are located at (x,z), where the initial
x-coordinate are x = —7,0 and wavelength/2 — 0.001, and depth are z= —0.9, —0.4 and —0.078. The blue circles indicate the sense of rotation.
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Fig. 7. The upper panel shows the periodic wave with amplitude 0.1968, wavelength 6.7430, period 8.1566, phase speed 0.8267 and I' =0 at t =0 (light-
gray) and t = 4periods (black), (these values of t are used in all the three cases. This means that the final value of ¢t varies). The left lower panel shows the
periodic wave with amplitude 0.1968, wavelength 5.3077, period 5.0997, phase speed 1.0408, and I' = —0.4. The right lower panel shows the periodic wave
with amplitude 0.1968, wavelength 8.9134, period 15.9709, phase speed 0.5581, and I" = 0.6. The initial particle locations at the three cases are shown in
light-gray curve. All particles are initially at xo = wavelength/2 — 0.001 and depth zp = —0.1. The blue circles indicate the sense of rotation.
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Fig. 8. The upper panel shows the periodic wave with amplitude 0.2, wavelength 6.7264, period 8.1470, phase speed 0.8256, and I'=0 at t = 0 (light-
gray) and t = 8.1470 (black). The left lower panel shows the periodic wave with amplitude 0.2, wavelength 5.2941, period 5.0919, phase speed 1.0397,
and I'=—0.4 at t =0 (light-gray) and t = 5.0919 (black). The right lower panel shows the periodic wave with amplitude 0.2, wavelength 8.8940, period
15.9686, phase speed 0.5570, and I' = 0.6 at t =0 (light-gray) and t = 15.9686 (black). The initial particle locations in the three cases are shown in the
light-gray curve. All particles are initially at xo = wavelength/2 — 0.001, and depth zp = —0.1, —0.5 and —0.9.
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Fig. 9. The upper panel shows the periodic wave with amplitude 0.4 wavelength 8.9389, period 9.5834, phase speed 0.9327, and I' =0 at t = 0 (light-gray)
and t = 28.7501 (black). The left lower panel shows the periodic wave with amplitude 0.4, wavelength 8.3541, period 8.4016, phase speed 0.9943, and
I'=—0.12 at t =0 (light-gray) and t = 25.2047 (black). The right lower panel shows the periodic wave with amplitude 0.4, wavelength 10.3072, period
12.8613, phase speed 0.8014, and I' =0.28 at t = 0 (light-gray) and t = 38.5840 (black). The initial particle locations are shown in light-gray curve.
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compared to the depth of the fluid, so that a weakly nonlinear long-wave equation could be used to describe the wave
motion. To this end, a new BBM equation has been derived in the presence of a background shear flow, and expressions for
the velocity field of the fluid have been deduced from the derivation. Using the description of the particle paths in terms
of a two-by-two system of ordinary differential equations and appropriate discretization techniques, close approximations
of particle motions were found for both solitary waves and periodic traveling waves. The influence of the background shear
flow on the particle motion was considered, and it was found that the polarity of the associated vorticity has a major effect
on the shapes of the trajectories.

We would like to point out that in [21], using a fully nonlinear model, it has been established that the behavior of the
particle paths in the presence of background vorticity is associated with the existence of stagnation points in the flow. We
have experimented with various parameters, but could not find the existence of internal stagnation points in this weakly
nonlinear model equation. However, we were able to find situations with closed particle orbits associated with solitary
waves, such as observed in field measurements [29].
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