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Summary

BACKGROUND: Little is known about the dynamics of nutritional-related blood
biomarkers and metabolite concentrations during the postprandial and fasting states.
OBJECTIVE: To explore the dynamics of blood concentrations of amino acids, one-
carbon metabolites, vitamins, lipids, ketones, and acylcarnitines during 24 hours
following dietary intake.

METHODS: In Paper I, we used cross-sectional data from the HUSK study, and
included 2960 middle-aged and 2874 elderly adults. Blood samples were collected
once from each participant, and the number of hours was categorized from 0 to 7 hours
after a meal. Marginal gMean (95% gCls) concentrations of amino acids, one-carbon
metabolites, lipids, and markers of vitamin status were estimated from a linear
regression model adjusted for sex, age group, and BMI and presented as a function of
time since the last meal. Papers II and III were based on the interventional PoMet
study, which included 34 participants aged 20-30 years. Participants were served a
standardized breakfast meal and consumed only water for the next 24 hours. Blood
samples were taken at baseline and at 13 standardized time points from 15 minutes to
24 hours after the meal. gMean (95% gCI) concentrations of amino acids, one-carbon
metabolites, and B-vitamin biomarkers (Paper II) and lipids, ketones, and
acylcarnitines (Paper III) were plotted as a function of time since the breakfast meal.
RESULTS: Considerable changes in concentrations were found for nearly all amino
acids and one-carbon metabolites, several vitamin biomarkers including thiamine,
TMP, FMN, cobalamin, folate, and phylloquinone, ketones, free carnitine, and short-
and medium-chain acylcarnitines. Modest changes were also found for triglycerides,
LDL- and HDL cholesterol in the hours after dietary intake.

CONCLUSION AND IMPLICATIONS: Our findings suggest that it is not sufficient
to merely distinguish between non-fasting and fasting blood samples when using
nutritional-related biomarkers and metabolites in clinical settings and epidemiological
studies. Accounting for prandial status should be done by evaluating the exact time

since the last meal.



Sammendrag

BAKGRUNN: Vi vet lite om hvordan ernaringsrelaterte biomarkerer og metabolitter
endrer seg i blodet i postprandiell og fastende tilstand.

MAL: A undersoke hvordan konsentrasjonen av aminosyrer, en-karbon metabolitter,
biomarkererer for vitaminstatus, lipider, ketoner, og acylkarnitiner endrer seg i timene
etter matinntak, med fokus pa de forste 24 timene.

METODE: I Artikkel I brukte vi tverrsnittsdata fra HUSK-studien, og inkluderte
2960 middelaldrende og 2874 eldre voksne. Blodprever ble tatt en gang fra hver
deltaker, og tid siden siste méaltid ble kategorisert i timeskategorier fra 0-7 timer.
Marginale geometriske gjennomsnitt (95% geometrisk konfidensintervall) av
konsentrasjonen av aminosyrer, en-karbon metabolitter, lipider, og biomarkerer for
vitaminstatus ble estimert fra en linezr regresjonsmodell justert for aldersgruppe, kjonn
og kroppsmasseindeks, og presentert som en funksjon av tid siden siste maltid.
Artikkel II og III var basert pa intervensjonsstudien PoMet, som inkluderte 34
deltakere i alderen 20-30 ar. Deltakerne spiste en standardisert frokost og inntok
deretter kun vann i de neste 24 timene. Blodprever ble tatt ved baseline og pé 13
standardiserte tidspunkt fra 15 minutter til 24 timer etter maltidet. Geometrisk
gjennomsnittlig (95% konfidensintervall) konsentrasjon av aminosyrer, en-karbon
metabolitter, og B-vitamin biomarkerer (Artikkel II), og lipider, ketoner, og
acylkarnitiner (Artikkel III) ble plottet som en funksjon av tid siden frokostmaltidet.
RESULTAT: Betydelige endringer i konsentrasjon ble observert for nesten alle
aminosyrer, en-karbon metabolitter, flere biomarkerer for vitaminstatus, inkludert
tiamin, TMP, FMN, kobalamin, folat og fyllokinon, ketonene, fritt karnitin, og de
korte- og middelkjedete acylkarnitinene. Det ble ogsd funnet moderate endringer i
konsentrasjonen av triglyserider, LDL- og HDL kolesterol i timene etter matinntak.
KONKLUSJON: Vare funn tyder pa at det ikke er tilstrekkelig & bare skille mellom
ikke-fastende og fastende blodprever nar man bruker ernaringsrelaterte biomarkerer
og metabolitter i klinikk og i forskningssammenheng. Man ber ta hayde for prandiell

status ved & ta hensyn til den neyaktige tiden siden siste méltid ved blodpravetaking.
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1. Introduction

Today, thousands of metabolites in humans are identified, with many utilized as
biomarkers. Biomarkers, short for biological markers, have been used in clinical care
for decades, serving various critical purposes, including assessing health status,
gauging disease, and monitoring treatment responses. Biomarkers and metabolites are
also used extensively in both interventional research and observational epidemiological
studies. However, the concentrations of biomarkers and metabolites in the blood may
vary during the day, and changes in energy metabolism are one of several factors that
influence biomarker and metabolite concentrations. In this section, an introduction to
the field of biomarkers and metabolites will be given, followed by a description of

human energy metabolism.

1.1 Biomarkers and metabolites

The term metabolome was first used by Oliver et al. in 1998 (1) and can be defined as
the quantitative complement of all the low-molecular-weight molecules, known as
metabolites, present in cells in a particular physiological or developmental state (2). As
of 2022, a total of 217,920 metabolites were identified in the Human Metabolome
Database (3), and the number continues to increase. Metabolites may provide crucial
information about an underlying biological state, and thus, research investigating the
use of metabolites as biomarkers to assess health and disease status and predict future
health outcomes has grown exponentially over the last three decades, a trend that is

expected to continue (4, 5).

The definition of a “biomarker” has been subject to considerable ambiguity,
with multiple interpretations prevailing. This issue became apparent at a joint
leadership conference of the U.S. Food and Drug Administration and the National
Institutes of Health in 2015, where it became evident that the leaders of these federal
agencies had different conceptions of the appropriate definitions of biomarkers in

different contexts of use (6). Consequently, recognizing the need for a standardized
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definition, a dedicated task force was established to provide a unified understanding of
biomarkers through the “Biomarkers, Endpoints, and Other Tools” (BEST) resource.
The first version of the glossary in the BEST resource was published in 2016 and
defines a biomarker as “a defined characteristic that is measured as an indicator of
normal biological processes, pathogenic processes, or responses to an exposure or
intervention” (7). Importantly, in contrast to medical symptoms, which are perceived
by the patients themselves, biomarkers are objective measurements and do not

necessarily correspond to the individual’s own experience of health and well-being (8).

Biomarkers may be broadly categorized into three groups: Physical or genetic
traits (such as blood pressure or metabolic gene polymorphisms), chemical or
biological agents in the biological system (such as serum triglycerides), and measurable
physiological functions (such as a test of night vision or cognitive assessment) of future
risk (9). This thesis focuses on biological biomarkers and metabolites measured in

blood, specifically focusing on nutritional-related biomarkers and metabolites.

1.1.1 Nutritional-related biomarkers and metabolites

Nutritional-related biomarkers and metabolites reflect nutrient intakes and metabolism
(10), and utilizing nutritional-related biomarkers and metabolites in blood offers
several notable advantages. First, blood stands as a readily available source of fluid. It
can be obtained in the routine care of patients, with minimally invasive procedures
associated with little to no health risks to the patient. Furthermore, blood is considered
homogenous compared to other biofluids, such as saliva or urine, which are influenced
by the collection volume (11). One of the main advantages of utilizing biomarkers and
metabolites in blood is that they are relatively cheap and easy to measure (12). The
following section will introduce selected nutritional-related biomarkers and

metabolites relevant to this thesis.

Glucose

Blood glucose concentrations are routinely measured in the clinic as an established
biomarker for diabetes risk. It is well documented that glucose concentrations in blood

are influenced by dietary intake; following food consumption, glucose concentrations
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increase, resulting in insulin secretion from the pancreas, subsequently reducing blood
glucose levels. Given the profound impact of dietary intake on blood glucose
concentrations, it is common to distinguish between fasting and postprandial glucose
concentrations, with fasting typically defined as no caloric intake within the last 8
hours. According to the American Diabetes Association, fasting (> 8 h) plasma glucose
> 7.0 mmol/L or plasma glucose concentrations > 11.1 mmol/L two hours after an oral

glucose tolerance test are diagnostic criteria for diabetes (13).

Amino acids

While more than 300 amino acids are found in nature, the human body relies on only
20 amino acids to form all the different proteins found in humans. These amino acids
share a common structural framework, with an amino group and a carboxylic acid
functional group, often referred to as the carbon skeleton. This distinctive carbon

skeleton determines the unique property of each amino acid (14).

Beyond their functions as energy sources and components of proteins, amino
acids are increasingly acknowledged for being involved in vital metabolic processes in
the human body. These encompass the regulation of gene expression, cell signaling,
antioxidative responses, immunity, and neurological and immunological functions
(15). Given the amino acids’ integral roles in central pathways, the concentrations of
amino acids in blood may change as a response to pathologic conditions (16-18).
Consequently, plasma and serum amino acid profiles have received growing interest as
potential biomarkers for a range of diseases, including various types of cancer (19),
Alzheimer's disease (20), fatty liver disease (21), and diabetes (22). Notably, plasma
levels of the branched-chain amino acids (BCAAs; leucine, isoleucine, and valine)
have emerged as particularly promising candidates for biomarkers for conditions and
diseases such as diabetes, insulin resistance, cardiovascular disease, obesity, and
metabolic syndrome (23). Nevertheless, despite the potential of amino acid profiles as
biomarkers, their clinical implementation remains pending, with several unanswered
questions needing resolution before they can be established as valid biomarkers in

clinical practice (23-25).
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One-carbon metabolites

The one-carbon metabolism comprises a series of interconnected metabolic pathways,
including the folate cycle, the methionine-homocysteine cycle, the transsulfuration
pathway, and the choline oxidation pathway. Transmethylation is a key reaction in one-
carbon metabolism, wherein a one-carbon unit is transferred from a methyl donor to a
methyl acceptor. These one-carbon units play a fundamental role in numerous cellular
processes and are involved in both the synthesis and modification of various molecules
(26, 27). Central one-carbon metabolites, some of them amino acids, include serine,
glycine, methionine, methionine sulfoxide homocysteine, cystathionine, cysteine,

dimethylglycine, sarcosine, choline, and betaine (28).

Perturbations in the one-carbon metabolism have been linked to various
diseases, such as cardiovascular disease and cancer (28, 29). Consequently, the
potential of one-carbon metabolites in blood as biomarkers has received attention. For
instance, hyperhomocysteinemia is an established biomarker for various diseases,
including cardiovascular disease, cancer, and diseases of the central nervous system,
as well as impaired status of folate, vitamin B6, and cobalamin (30). Furthermore,
increased serum and plasma levels of sarcosine have been suggested as a potential
biomarker for prostate cancer (31, 32), while high levels of choline and low levels of
betaine in plasma have emerged as potential biomarkers of risk of cardiovascular
disease (33, 34). In patients with heart disease, elevated levels of dimethylglycine and
cystathionine in plasma have been associated with an increased risk of acute
myocardial infarction and mortality (35-38), while glycine and serine have received
attention for their roles in cancer metabolism (29). However, apart from homocysteine,

none of the other one-carbon metabolites are established biomarkers in the clinic.

Vitamin status

Vitamins are a group of organic compounds that must be obtained from the diet as they
cannot be synthesized by the body, either as such or in sufficient amounts. They serve
a diverse array of functions, and both deficiencies and excess of vitamins can adversely

affect an individual’s health (39). However, vitamin intake is not a valid proxy for
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vitamin status, and vitamin status may not always correlate directly with the biological
effects or functions of that nutrient. Thus, suitable biomarkers are essential for

accurately assessing vitamin status (9).

The B-vitamins are a group of eight essential water-soluble nutrients, with one
of the main functions being coenzymes for several enzymatic processes involved in
energy metabolism and one-carbon metabolism (40). Assessment of status differs
across the different B-vitamins, and both direct and functional biomarkers exist. To
assess thiamine (vitamin Bj) status, most laboratories measure blood thiamine
concentrations directly (41). Although erythrocyte transketolase activity is considered
the most reliable method for assessing thiamine deficiency, this test is not widely
accessible outside research settings. The plasma concentration of thiamine
monophosphate (TMP) has also been suggested as a biomarker for thiamine status (42).
For assessing riboflavin (vitamin B») status, erythrocyte glutathione reductase is
considered a functional biomarker of insufficient riboflavin intake, while plasma
riboflavin concentrations tend to reflect recent dietary intake (41). The concentration
of plasma flavin mononucleotide (FMN) is also suggested to be an indicator of
riboflavin status (43). Niacin status (vitamin B3) can be assessed by measuring urinary
N-methylnicotinamide or erythrocyte NAD:NADP ratio; however, these tests are not
widely available (41). For pyridoxine (vitamin Bg), the plasma level of pyridoxal-5’-
phosphate (PLP) is most used to assess status (41, 44), while plasma levels of pyridoxal
and 4’ -pyridoxic acid are also suggested as indicators of status (44). Folate (vitamin
Bo) status is usually assessed by measuring serum folate, while high homocysteine
concentrations may also indicate impaired folate status (45). However, high
homocysteine concentrations are not specific to folate deficiency, as homocysteine is
also increased in the case of cobalamin (vitamin Bi2) deficiency, among others.
Cobalamin status is usually assessed by measuring a combination of biomarkers,

including serum cobalamin, homocysteine, and methylmalonic acid (MMA) (46, 47).

The fat-soluble vitamins include the vitamins A, D, E, and K, each with essential
functions in the body. Some examples of functions include that vitamin A is vital for

vision (48), vitamin D is essential for bone health (49), and vitamin E has important
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antioxidant properties (50). Vitamin K is found naturally as two vitamers: Vitamin K1
(known as phylloquinone) and K2 (known as menaquinone), both of which have major
roles in coagulation pathways (51). Serum retinol is commonly used as the primary
biomarker for vitamin A status. However, serum retinol concentrations are affected by
infection and inflammation. Its concentrations are homeostatically regulated and do not
correlate with liver stores of vitamin A unless vitamin A stores in the liver are depleted.
Serum retinol-binding protein can be used as a proxy for serum retinol in the
identification of vitamin A deficiency (48). For evaluating vitamin D status, serum
levels of 25-hydroxyvitamin D concentrations are considered the most reliable
indicator (49), while serum o-tocopherol levels usually assess vitamin E status.
However, for patients with hyperlipidemia, a-tocopherol does not accurately reflect
tissue vitamin levels and vitamin E status is estimated by the ratio between a-
tocopherol and total blood lipids (50). Finally, assessing vitamin K status depends on
the patient’s clinical signs and symptoms. Coagulation tests like prothrombin time or
international normalized ratio are often used for bleeding patients, while vitamin K
status can also be determined indirectly by measuring vitamin K-dependent factors
such as prothrombin or coagulation factors. Phylloquinone levels can also be measured

directly; however, this is impractical for clinical use (51).
Lipids

Dyslipidaemia is an established risk factor for cardiovascular disease. It is
characterized by high blood levels of triglycerides, total- and low-density lipoprotein
(LDL) cholesterol, and low levels of high-density lipoprotein (HDL) cholesterol (52).
Lipid profile is widely measured in clinical care for cardiovascular risk assessment
(53). Triglycerides, and total- and HDL cholesterol can be measured directly in blood,
while LDL cholesterol can be either measured directly or calculated. As there is a lack
of standardization across laboratories for measuring LDL cholesterol directly, the
Friedewald equation has traditionally been used in clinical practice and trials for
calculating LDL cholesterol. However, the Martin/Hopkins and Sampson equations
have recently been suggested as alternative approaches for estimating LDL cholesterol

(54).
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Traditionally, lipid profiles have been obtained from fasting blood samples,
where individuals refrain from caloric intake for a minimum of 8 hours before testing.
This fasting period was implemented due to concerns that triglyceride concentrations
increase in response to dietary intake, potentially influencing lipid profile results.
However, emerging evidence has raised questions about the necessity of fasting for
lipid profile assessment in cardiovascular risk evaluation. As a result, several clinical
guidelines and expert consensus statements now open for non-fasting lipid testing for

most clinical evaluations (53, 55).

Ketones

Ketones, or ketone bodies, refer to the molecules acetoacetate, [-hydroxybutyrate
(BHB), and acetone (56). Ketones are synthesized mainly from acetyl coenzyme A
(acetyl-CoA) generated by the -oxidation of fatty acids, but some also originate from
oxidation of the ketogenic amino acids (57). The major determinant for the production
of ketones is the availability of fatty acids for oxidation. Mildly to moderately elevated
levels of serum ketones are present in response to fasting, prolonged exercise, or when
following a ketogenic diet low in carbohydrates and high in fats. Furthermore, elevated
circulating serum ketone levels are frequently seen in newborn infants and during
pregnancy (56). However, large increases in ketone levels can also be caused by
pathological processes, such as diabetic ketoacidosis. In the clinic, ketone levels can
be measured in blood, urine, and breath and are used as biomarkers for diabetic
ketoacidosis (58). Moreover, elevated levels of plasma ketones have recently been

explored as biomarkers for other conditions, such as heart failure (59).

Acylcarnitines

Acylcarnitines are esters formed through the conjugation of fatty acids with carnitine,
and their primary role is to transport fatty acids across the mitochondrial membrane for
B-oxidation. Acylcarnitines can be broadly classified into four groups based on the
number of carbon atoms in the acyl-chain: Short-chain (C2-CS5), medium-chain (C6-
C12), long-chain (C13-C20), and very long-chain (>C21) acylcarnitines. Long-chain

acylcarnitines are measured in newborn screening to identify fatty acid oxidation
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disorders. Additionally, blood levels of acylcarnitines have been associated with a
range of diseases, such as cardiovascular disease, diabetes, depression, neurological
disorders, and cancer (60). However, despite their potential as biomarkers for various
diseases, the routine measurement of acylcarnitines in clinical practice extends
primarily to newborn screening. Further robust translational work is imperative to fully
utilize the potential of acylcarnitines as biomarkers (61). This research should delve
into aspects such as the natural variability in acylcarnitine concentrations under normal

physiological conditions (62).

1.1.2 Measurement considerations

When a blood biomarker or metabolite is measured in the laboratory, the results are
always under the influence of uncertainty. Measuring a biomarker or metabolite
repeatedly would likely lead to different results for the repeated measures, although the
individual's health status is the same. Sources of test result variation may be broadly

categorized into preanalytical, analytical, and within-person biological variation (63).

Preanalytical variation

The preanalytical process encompasses the preparation before blood sampling,
collection of the blood sample, and handling, transport, and storage of the blood sample
before measurement (64). While this process is commonly described as the “easy part”
of laboratory testing, small variations in preanalytical procedures may affect the blood
sample quality (65). For example, it has been shown that the duration of tourniquet
application may introduce variability in the measurement of several metabolites in
plasma (66) and that prolonged exposure of whole blood to room temperature before
centrifugation affects certain metabolites such as amino acids (67). Moreover, storage
of whole blood with ice for up to 48 hours before processing has been shown to
introduce variations in several B-vitamers and amino acids in plasma (68, 69) and
serum (69). The choice of sample matrix may also influence biomarker and metabolite
assessment. For instance, serum samples usually exhibit higher levels of most
metabolites compared to plasma samples (70-74). In addition, the type of anticoagulant

added to obtain plasma samples (e.g. Ethylenediaminetetraacetic acid [EDTA],
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heparin, citrate) has been shown to introduce variations in several amino acids, ketones,

and some one-carbon metabolites (75).

Analytical variation

Every analytical technique has some intrinsic sources of variability which cannot be
eliminated. The analytical variation is of two types: Random and systematic variation.
Random variation refers to the closeness of agreement between independent results of
a measurement. Random variation can arise from sources such as fluctuations in
temperature, changes in the environment, variability in the volume of a sample, and
inconsistent handling of a material. If a method has good precision, its random variation
is low, and the results obtained with this method will not change much over time due
to analytical influences. The random variation of an analytical technique can be

quantified by the standard deviation (SD) and the coefficient of variation (CV), which
is calculated as (SD /mean % 100) and expressed as % (64).

Systematic variation is also referred to as bias and is the difference between the
observed result and the estimate of the true value of the biomarker or metabolite. Bias
can be caused by factors such as issues related to the calibration or validation of
analytical methods or if individuals perform tasks consistently but differently from
others during the analysis. If bias is present, there will be a consistent over- or
underestimation of the true value of a measurement. Constant bias itself will not
contribute to variation in the laboratory results over time. However, if major changes
are made to instruments or methodology to reduce bias, and if samples from an
individual are compared before and after such changes, differences in bias may result

in increased variability in the test results over time (64).

Biological variation

In theory, if one could remove all sources of variations in the pre-analytical and
analytical phases, repeated measures of a biomarker or metabolite would still vary
within an individual. This is because the human blood metabolome is highly variable
and influenced by internal and external factors (5, 76, 77). First, biomarker and

metabolite concentrations may fluctuate randomly around a homeostatic setting point
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within an individual. This is termed within-subject biological variation. Further, this
homeostatic setting point varies between individuals, referred to as between-subject

biological variation (64).

However, biomarkers and metabolites in blood may also vary in non-random
ways. These non-random variations may be due to internal factors such as growth,
aging, pregnancy, menopause, or health and disease status (78). Information on the
biological changes that occur throughout life can be used to stratify reference values,
for instance, according to age (79). Biological variability may also be related to
predictable cyclic variations. Knowledge of the predictable biological cyclic rhythms
within individuals is paramount when interpreting the results of a laboratory
measurement (79-81). These cyclic variations can be seasonal, such as for 25-
hydroxyvitamin D, where population concentrations in countries far from the equator
tend to reflect changes in ultraviolet 3 radiation from the sun (82). Certain biomarkers
and metabolites may also exhibit daily variations, such as those governed by diurnal
rhythm. One example is the stress hormone cortisol, which follows a circadian rhythm
with peak levels just before waking up in the morning and the lowest levels during

sleep around midnight (83).

The metabolic response to dietary intake and fasting is a source of short-term
biological variations in biomarkers. Following food consumption, biomarker
concentrations can rapidly change, necessitating considerations of prandial status when
evaluating certain biomarkers. For example, to improve the sensitivity and specificity
of glucose as a biomarker of diabetes, different cutoff values are established for glucose
levels depending on whether measurements were taken from fasting or non-fasting
blood samples (13). Furthermore, prandial status is also acknowledged when
measuring blood lipid profiles (53, 55). However, in contrast to glucose, less is known
about how the concentrations of other nutritional-related biomarkers may change

during the metabolic response to dietary intake and fasting.
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1.2 Human energy metabolism

Energy metabolism refers to the process of generating energy in the form of adenosine
triphosphate (ATP) from nutrients. A simplified overview of the main pathways of
energy metabolism and the connection with selected nutritional-related biomarkers and
metabolites relevant to this thesis is provided in Figure 1. In the period after a meal,
known as the postprandial state, the energy is generated from the macronutrients
obtained from the food. In contrast, the energy must be released from the body’s
internal stores during fasting. This section will describe the postprandial and fasting

energy metabolism.

1.2.1 Postprandial energy metabolism

The postprandial state represents the metabolic response to a meal (84) and embodies
the digestion and absorption of nutrients. As the dietary pattern in the Western world
usually involves several meals during a day, it is estimated that healthy individuals in
Western countries spend most of their awake time (~18 hours a day) in the postprandial
state. Following is a description of the metabolism of the macronutrients carbohydrates,

protein, and fat.
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Carbohydrates

Carbohydrate metabolism centers around glucose, and glycolysis and glycogen
synthesis are the dominating metabolic pathways involving glucose metabolism after
a meal. Carbohydrate digestion results in the breakdown into the monosaccharides
glucose, fructose, and galactose, which are subsequently absorbed in the small intestine
and transported via the portal vein to the liver (85, 86). Here, galactose and fructose
are metabolized and converted to glucose (87), and once within the hepatocyte, glucose
is rapidly phosphorylated to form glucose-6-phosphate (88). Glucose-6-phosphate has
three fates: It may enter the pathway of glycolysis to form pyruvate, form glycogen
through the pathway of glycogen synthesis, or enter the pentose phosphate pathway for
synthesis of nucleotides, among others (89). In the postprandial state, when glucose is
abundant, insulin is secreted and stimulates glycolysis. The end-product of glycolysis
is pyruvate, which is further converted to acetyl-CoA. Acetyl-CoA can enter the
tricarboxylic acid (TCA) cycle and oxidative phosphorylation in the electron transport
chain or be used to synthesize fatty acids through lipogenesis (88). Furthermore, insulin
also activates the storage of glucose as glycogen, which provides an immediately
available reserve of glucose to maintain blood glucose concentrations (90). Finally,
glucose-6-phosphate may be metabolized via the pentose phosphate pathway, where
ribose-5-phosphate is generated to be used for the synthesis of nucleotides, as well as
nicotinamide adenine dinucleotide phosphate (NADPH), which is used for biosynthesis
of fatty acids and cholesterol, among other. The pentose phosphate pathway is a

metabolic parallel to glycolysis; however, it has a much lower flux than glycolysis (91).

The primary function of carbohydrate metabolism is to maintain glucose
concentrations in blood in a tight physiological range close to 5 mmol/L, as both low
(<3 mmol/L) and consistently elevated (>11 mmol/L) concentrations may have harmful
effects (89, 90). After a meal containing carbohydrates, glucose concentrations increase
and usually peak at 7-8 mmol/L around 30-60 minutes after the meal in healthy
individuals. The liver is often described as acting like a buffer for glucose: It takes up

glucose and stores it as glycogen when the portal concentration of glucose is high, such
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as after ingesting a meal, and releases glucose when it is required elsewhere in the body

(89).
Fats

Dietary fat is almost entirely in the form of triglycerides, which are incorporated in
chylomicrons within the enterocytes and enter the plasma via the lymphatic system
(92). Most of the triglycerides are readily removed from the chylomicrons in adipose
tissue, skeletal muscle, and the heart. These tissues contain lipoprotein lipase (LPL),
which hydrolyses the triglycerides into glycerol and free fatty acids. Insulin, which
increases after a meal, stimulates the activity of LPL. In adipose tissue, LPL hydrolyses
triglycerides to form free fatty acids, which enter the adipocytes and are re-esterified
to form new triglycerides for storage. However, in cardiac and skeletal muscles, the

free fatty acids generated by LPL are mostly oxidized through B-oxidation (89).

The process of absorption of triglycerides is slower than the absorption of
glucose. Thus, plasma triglyceride usually peaks around three to five hours after a fatty
meal. While an overnight-fasted plasma triglyceride concentration may be around 1
mmol/L, the concentrations may rise to ~2 mmol/L after a particularly fatty meal (89).
The postprandial peak triglyceride concentrations are affected by several factors,
including meal size and composition. A normal meal, containing typically 30-40 grams
of fat, is sufficient to raise the plasma triglyceride concentrations. Furthermore,
consecutive meals containing fat appear to enhance this peak, known as the second
meal effect (93). Thus, the typical dietary pattern of consumption in the Western world,
involving frequent meals and snacks between meals, might be expected to maintain

circulating triglyceride levels above fasting concentrations for much of the day (92).
Protein

After protein ingestion, proteins are hydrolyzed to free amino acids, dipeptides, and
tripeptides for absorption. Amino acids are mostly actively absorbed by sodium-linked
carriers, while some di- and tripeptides are absorbed intact by peptide transporters.

Inside the enterocyte, peptidases cleave the peptides into amino acids, which are
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transported to the liver via the portal vein. In a typical Western diet, one eats
approximately 100 grams of protein daily. As the total amount of protein in the body
is steady from day to day in healthy individuals, one must dispose of an equal amount
of protein, mainly by oxidation of amino acids. Although there is a net overall protein
synthesis after a meal, and some amino acids are used for protein synthesis or enter the
systemic circulation, most of the amino acids ingested are ultimately oxidized in the
liver to yield energy (94). Amino acids contain an amino group that must be removed
before amino acids can produce energy. The removal of the amino group is called
deamination and produces ammonia (NH3) and the carbon skeleton of the amino acids.
Ammonia is toxic and must be excreted by the urine or converted to non-toxic urea in
the urea cycle, while the carbon skeleton can be used for energy production.
Deamination is achieved by two reactions: Transamination and oxidative deamination.
In the transamination reaction, the amino group from an amino acid is transferred to an
acceptor ketoacid, generating the corresponding amino acid and a new ketoacid. Most
amino acids donate their amino group to the keto acid a-ketoglutarate, generating
glutamate and a new keto acid. The new keto acid undergoes metabolism and ultimately
produces energy by a route depending on its structure; the carbon skeletons of the
glucogenic amino acids are metabolized to TCA intermediates, while the carbon
skeletons of the ketogenic amino acids are metabolized to acetyl-CoA. Glutamate,
formed during transamination, undergoes oxidative deamination, producing ammonia

and regenerating a-ketoglutarate (89).

Although most amino acids are ultimately oxidized in the liver after a meal,
some amino acids also enter the systemic circulation. Thus, plasma concentrations of
amino acids usually increase after a meal (95). However, while the amino acids in the
portal vein largely reflect the amino acid composition of the meal, the amino acids
leaving the hepatic vein show different proportions. For instance, the BCAAs leucine,
isoleucine, and valine constitute about 20% of the dietary protein; however, they
represent about 70% of the amino acids leaving the liver after a meal (89). Furthermore,
plasma amino acid concentrations reflect the balance between several processes,

including amino acid release from tissues, synthesis of new amino acids, loss of amino
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acids by incorporation into proteins, amino acid oxidation, and conversion to other
metabolites. Therefore, plasma amino acid concentrations after a meal cannot be used

to quantify the amount of exogenous amino acids absorbed (96, 97).

1.2.2 The metabolic transition between the postprandial and fasting state

The duration of the postprandial state is not precisely defined, as it varies depending
on several factors, including meal size and composition, as well as energy expenditure,
which is further influenced by body mass and -composition and physical activity levels
(89). For instance, for meals high in glucose, the postprandial period would be around
2-3 hours, whereas for meals high in fats, the postprandial period could be up to eight
hours (98). The literature also reflects this variability in the definition of the
postprandial state, with different timeframes used to define the postprandial period. For
example, the term “postprandial period” has been applied to durations ranging from 90
minutes to 6 hours (99-103). Furthermore, the postprandial and fasting states are often
referred to as clearly separated metabolic states. However, the transition between the
postprandial and fasting states occurs gradually, with a gradual metabolic transition
from using glucose as the primary energy substrate in the postprandial state towards
fatty acids becoming the main source in the fasting state. Given the variability in the
duration of the postprandial period and the gradual transition between the postprandial
and the fasting states, it is crucial to note that there is no clear or universally agreed-
upon precise moment for when one leaves the postprandial state and enters the fasting

state.

1.2.3 Fasting energy metabolism

As the dietary pattern in the Western world typically involves several meals during the
day, healthy individuals usually enter the fasting state only after an overnight fast
before breakfast is consumed (89). The fasting state may also be called the
postabsorptive state and implies the state in which the last meal has been digested and
absorbed from the intestinal tract. In this state, the body is mobilizing stored energy
reserves. This section will provide a brief overview of the energy metabolism in the

body during the fasting state.
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Glucose

In the overnight fasted state, glucose typically supplies about one-third of the body’s
energy requirements. In this state, glucose enters the blood almost exclusively from the
liver, originating mainly from glycogen breakdown and gluconeogenesis (94). It is
estimated that about half of the glucose originates from glycogen breakdown and the
other half from gluconeogenesis, however, with large variations depending on
glycogen storage, which in turn depends on previous diet and exercise. Furthermore,
the longer the fast continues, the more glucose will originate from gluconeogenesis.
Both glycogen breakdown and gluconeogenesis are stimulated by decreased levels of
insulin and increased levels of glucagon (89, 104). The main substrates for
gluconeogenesis are lactate, alanine from muscles, and glycerol from adipose tissue

lipolysis (89).
Lipids

Lipids are the main supply of energy to the body after an overnight fast. When insulin
levels are low, the enzyme hormone-sensitive lipase is activated and stimulates
lipolysis of triglycerides in adipose tissue, releasing glycerol and free fatty acids.
Glycerol is used as a substrate for gluconeogenesis in the liver, while the free fatty
acids are taken up predominantly by the liver and skeletal muscle, where they are
oxidized through -oxidation. Acetyl-CoA generated from the -oxidation may either
generate energy through the TCA cycle or enter the ketogenesis pathway (89).

Amino acids

As opposed to the postprandial period, wherein there is an overall net protein synthesis,
there is a net breakdown of protein after an overnight fast. Oxidation of amino acids
contributes to about 10-15% of energy production after fasting overnight (94).
Furthermore, when glycogen stores are depleted, the glucogenic amino acids are
important substrates for gluconeogenesis to provide glucose needed by the brain, renal
medulla, and erythrocytes. During longer-term fasting, the ketogenic amino acids are

also used to synthesize ketones (89).
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Ketones

During prolonged fasting, when glucose is not readily available, ketones become an
important alternative source of energy. Ketones are distributed via the blood to tissues,
most importantly by the brain, where they are metabolized to be used for energy (105).
Most of the ketone levels are in the form of BHB, which is typically present in blood
about five times the concentration of acetoacetate (106). During a typical day, their
concentrations in blood are relatively low, usually ~100-250 pmol/L for PHB and
acetoacetate combined (57, 89). However, after 24 hours of fasting, their
concentrations rise to about 1000 umol/L (57) and contribute to about 2-6% of the
body’s energy requirements (56).

1.3 The dynamics of biomarkers and metabolites during the

postprandial and fasting states

The metabolic response to dietary intake and fasting can introduce variations in blood
biomarkers and metabolites. Apart from well-established nutritional-related
biomarkers such as glucose, there is limited knowledge of the dynamics of circulating
concentrations of other nutritional-related biomarkers and metabolites during the
postprandial and fasting states. However, a few studies have investigated the dynamics
in blood biomarkers and metabolite concentrations related to glucose-, lipid-, and

amino acid metabolism.

1.3.1 The postprandial state

In 2021, LaBarre and colleagues published a review on the effect of a mixed-
macronutrient challenge on metabolites related to the amino acid-, glucose-, and lipid
metabolism, and ketones up to 8 hours after the challenge (95). In this review, including
26 articles, they reported that the blood concentrations of amino acids tended to peak
60-90 minutes after the test meal, returning to baseline values at later time points,
except for glutamate and aspartate, which decreased shortly after the meal. They also

reported a consistent decrease in levels of free fatty acids and other lipid classes
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between baseline and 120 minutes after the meal, parallel with reduced concentrations
in ketones right after the meal (95). In addition, they reported that the medium- and
long-chain acylcarnitines decreased, while propionylcarnitine and valerylcarnitine

increased in response to the mixed-macronutrient challenge.

1.3.2 The fasting state

The fasting state also poses changes in the human metabolism, which may affect
circulating biomarker concentrations, and a few studies have characterized the
dynamics in biomarker concentrations during the fasting state. In 2011, Rubio-Aliaga
and colleagues (107) reported an analysis of the “human fasting metabolome”. In this
study, three males and seven females fasted for 36 hours, and blood samples were taken
at 12 and 36 hours of fasting. They observed that most amino acids decreased from 12
to 36 hours of fasting, with methionine showing the most pronounced change (50%
decrease). On the contrary, the BCAAs increased in this period. They also observed
changes in acylcarnitine concentrations, with most acylcarnitines (70%) increasing
while free carnitine decreasing from 12 to 36 hours. In 2012, Krug and colleagues (108)
investigated biomarker changes in response to 36 hours of fasting in 15 healthy males.
In this study, participants were served a standardized evening meal at 7 p.m. and
thereafter fasted for 36 hours. Blood samples were drawn at 8 a.m. the next morning,
and then every other hour until midnight (29 hours fasting), with a last blood sample
after 36 hours of fasting. Like Rubio-Aliaga (107), Kriig et al. also reported that the
BCAAs and most acylcarnitines, except for the short-chain acylcarnitines, increased
until 36 hours of fasting, while free carnitine decreased. In a small study of four
participants, Teruya and colleagues (109) quantified blood biomarkers after 10, 34, and
58 hours of fasting. Like the aforementioned studies, they reported that the BCAAs and

several acylcarnitines increased during fasting.
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2. Knowledge gaps and rationale for this thesis

Dietary intake and fasting induce major metabolic changes in human energy
metabolism, which can be a source of variations in nutritional-related blood biomarkers
and metabolites. Consequently, to account for prandial status, it is common in clinical
practice and research settings to distinguish between non-fasting and fasting blood
samples by applying a given cut-off, usually 8 hours since the last caloric intake. While
this approach may be convenient, it does not account for the gradual transition between
the two states, which exists on a continuum without a clear cutoff point. Furthermore,
the blood metabolome is dynamic within both the postprandial and fasting states and
blood biomarker and metabolite concentrations can fluctuate within the two states. It
is likely that categorizing blood samples as non-fasting or fasting does not fully capture
the potentially dynamic nature of blood biomarkers and metabolite concentrations and
may lead to measurement error and misclassification due to within-person biological
variation. Therefore, knowing how biomarker concentrations may change dynamically

during the postprandial and fasting states is imperative.

The dynamics in biomarker and metabolite concentrations related to glucose-,
lipid-, and amino acid metabolism have been explored to some extent previously.
However, beyond well-established nutritional-related biomarkers such as glucose,
there is still limited knowledge about the dynamics of circulating concentrations of
other nutritional-related biomarkers and metabolites after dietary intake and during
fasting. Unraveling how the concentration of these biomarkers and metabolites may
change during the postprandial and fasting states, and whether these changes are
influenced by factors such as age and sex, can enhance our ability to interpret and

utilize these biomarkers and metabolites effectively in both clinical care and research.
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3. Objectives

The overall objective of this thesis was to investigate the dynamics of nutritional-
related blood biomarker and metabolite concentrations in the hours following dietary
intake and during the adaptation to the fasting state, focusing on the first 24 hours after
a meal. Furthermore, the aim was to explore potential age and sex differences in the

change in biomarker concentrations.

3.1 Specific study objectives

Paper I: To provide a descriptive overview of the concentrations of plasma
amino acids, one-carbon metabolites, biomarkers of vitamin status, and serum
lipids in the first 7 hours after habitual dietary intake in middle-aged and elderly

adults, and to explore potential age- and sex differences.

Paper II: To investigate the changes in serum concentrations of amino acids,
one-carbon metabolites, and B-vitamin biomarkers during 24 hours after a
standardized meal in healthy, young individuals, and the potential influence of

SEX.

Paper I11: To investigate the changes in serum concentrations of lipids, ketones,
and acylcarnitines during 24 hours after a standardized meal in healthy, young

individuals, and the potential influence of sex.
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4. Materials and methods

4.1 Study populations, design, and data collection

To meet the aims of this thesis, two distinct data sources were used: Cross-sectional
data from the Hordaland Health Study (hereafter referred to as “HUSK”) and time
series data from the interventional Postprandial Metabolism (PoMet) study. An
overview of the key characteristics of the papers included in this thesis is provided in

Table 1.

Table 1. An overview of the key characteristics of the included papers

Paper 1 Papers II and II1
Project HUSK PoMet
Sample size n=>5835 n=34
Ages 46-49 and 70-74 20-30 years
years

Biomarker and metabolite data Cross-sectional Time series

N blood sampling timepoints 1 14
Sample matrix EDTA plasma and Serum

serum (lipids only)

Duration 7 hours after meal 24 hours after meal
Meal prior to blood sampling Not standardized Standardized
Time of day at blood sampling Not standardized Standardized

Abbreviations: EDTA, Ethylenediaminetetraacetic acid; HUSK, Hordaland Health Study;

PoMet, Postprandial Metabolism Study
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3.1.1 Paper I: The Hordaland Health Study

Paper I was based on data from the first visit (baseline data) from the observational

community-based HUSK study (https:/husk.w.uib.no/), wherein the baseline

measurements were conducted in 1997-99 in Bergen, Norway. The data collection in
the HUSK study was conducted as a collaboration between the National Health
Screening Service (now the Norwegian Institute of Public Health), the University of
Bergen, and local health services. The cohort consisted of individuals aged 46-49 years
(born in 1950-51, referred to as the “middle-aged group”, n = 3090) and individuals
aged 70-74 years at baseline (born in 1925-27, referred to as the “elderly group”, n =
2969) who were living in the city of Bergen or neighboring suburban municipalities.

The study design and methodology have been described in more detail elsewhere (110).

Study participants

A flowchart illustrating the inclusion and exclusion process of participants is shown in
Figure 2. We excluded participants with missing information on time since the last
meal and participants with > 7 hours since the last meal. This left us with a total of
5834 participants: 2960 participants in the middle-aged group, and 2874 participants
in the elderly group.
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Figure 2. Flowchart illustrating the inclusion and exclusion process of participants in

the two age cohorts in the Hordaland Health Study 1997-1999

Blood sampling and handling of the blood samples

Blood sampling was conducted at the first visit, which was held between 8 a.m. and 6
p.m. Blood samples were collected only once from each participant, and the
participants attended the first visit and provided blood samples with a different number
of hours since the last meal. The number of hours since the last meal was registered at
the time of blood sampling and categorized into hourly categories. The time categories
were given as: (1) 0 — <1 hour, (2) 1 — <2 hours, (3) 2 - <3 hours, (4) 3 - <4 hours,
(5) 4 - <5 hours, (6) 5 - <6 hours, and (7) 6 - <7 hours after a meal.

Serum was obtained by collecting blood into Vacutainer Tubes with no additive.
Blood was allowed to clot at room temperature for 30 minutes before isolation of the
serum fraction. Plasma samples were collected into evacuated tubes containing EDTA,
chilled at 4-5°C within 15-30 minutes, and then centrifuged at 4000 x g at 10°C for 10
minutes within one to three hours. Aliquots of serum and plasma were stored at -80°C

until analysis.
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3.1.2 Papers Il and III: The Postprandial Metabolism (PoMet) study

Papers II and III were based on data from the PoMet study, which was an intervention
study carried out in Bergen, Norway, during the autumn of 2021. During the study visit,
participants were served a standardized breakfast meal, and blood samples were taken
before and at 13 standardized time points from 15 minutes to 24 hours after the
breakfast meal. In these 24 hours, participants were not allowed to consume anything

other than water.

Sample size calculation

The sample size calculation for the PoMet study was performed using an accuracy-in-
parameter-estimation (AIPE) approach, as recommended when the main purpose is to
accurately estimate the parameters of interest (20, 21). For the main analysis, we aimed
to achieve a multiplicative margin-of-error (gSE1.96) < 1.10, corresponding to a
geometric standard error (gSE) < 1.05 for at least 80% of the measurements. Using
freely available data on 132 metabolites across 56 timepoints (7392 estimates) across
different metabolic challenges from the HuMet study (108) (available from
http://metabolomics.helmholtz-muenchen.de/humet/), the observed median (80th

percentile) geometric standard deviation (gSD) was 1.24 (1.32). Rearranging equation
1 above, and solving for n with a gSD = 1.32, it was estimated that we needed a sample
size of 32 to achieve the desired precision level. Precision curves as a function of
sample size are provided in Figure 3A. The expected distribution of multiplicative
margin-of-errors with a sample size of 32 is illustrated in Figure 3B, based on repeated
resampling with replacement from HuMet (50 replications, 369 600 simulated
estimates). Due to previous experience with similar studies using a venous catheter to
draw repeated blood samples, we expected a drop out of up to 10% due to adverse
events following fasting blood sampling or difficulties drawing blood from a venous
catheter. Therefore, to achieve our goal of collecting complete data for 32 participants,

we aimed to recruit a total of 36 participants (18 males and 18 females).
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Figure 3. A) Precision curves as a function of sample size, using the observed median (20th-
80th percentile) geometric standard deviations from the HuMet study (available from
http://metabolomics.helmholtz-muenchen.de/humet/). B) The expected distribution of
multiplicative margin-of-errors for the measurements of different metabolites at different time
points, with n = 32. We expected to be able to estimate the geometric mean concentrations
within a multiplicative margin-of-error of 1.10 for at least 80% of all measurements.

Abbreviations: gSD, geometric standard deviation
Recruitment

Participants for the PoMet study were recruited through social media channels,
snowball sampling, and posters in the nearby area. In short, the aim was to recruit a
homogenous group of healthy participants similar in age, body mass index (BMI), and
health status. Inclusion criteria for participation were aged 20-30 years (birth years
1991 —2001) and a BMI between 22-27 kg/m?. Individuals were excluded if they had
experienced acute or chronic disease such as diabetes, thyroid diseases, cancer,
cardiovascular disease, or inflammatory bowel disease during the last three years; had
celiac disease or other food allergies interfering with the standardized breakfast meal;
used any prescription medications except for contraceptives; smoked or used other

nicotine-containing products such as “snuff” regularly; were pregnant or had breastfed
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during the last three months before the study visit; or had experienced significant

weight change (> 5%) during the last three months before the study visit.
Study participants

A flowchart depicting the inclusion of participants is illustrated in Figure 4. Initially,
18 males and 18 females were enrolled in the study. Two females withdrew from the
study due to difficulties in blood sampling and were excluded from all analyses. One
female completed the first two hours of blood sampling and withdrew thereafter due to
difficulties with blood sampling. This participant was included in the analyses. In total,
33 participants completed the study, while data from 34 participants (18 males and 16

females) were included in the analyses.

Individuals pre-
screened over phone
n=49

Not included, n= 2
|—> « BMI<22,n=1

Breastfed the last three months, n=1

Included after pre-
screening
n=47

Not included, n =11
|—> + Notavailable study datesn=3

Withdrew before study visitn = 8

Included in the study
n=36

Dropped out at baseline, n = 2

Difficulties blood sampling, n = 2

Included in analyses
n=34

Completed the study
n=33

Completed first 2 hours
n=1

Figure 4. Flowchart of the inclusion process for participants in the Postprandial

Metabolism Study
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The study visit

The course of the study visit is illustrated in Figure 5. At the study visit, participants
received a standardized breakfast meal, similar to a “standard Norwegian breakfast”.
The breakfast consisted of three slices of bread with butter, cheese, jam, and a glass of
orange juice and contained ~500 kcal, 20 grams fat (36E%), 60 grams carbohydrates
(46E%), 5 grams dietary fiber (2E%), and 20 grams protein (16 E%). The participants
were instructed to consume the breakfast in precisely 15 minutes. Blood samples were
taken of the participants before the breakfast and at 15, 30, 45, 60, 90, and 120 minutes,
3 hours, 4 hours, and thereafter every other hour until 12 hours after the meal. After the
12-hour blood sample, the participants left the study center overnight and returned the
following day for the last blood sample taken 24 hours after the breakfast meal. During
these 24 hours, the participants were instructed to consume nothing but water and to

avoid strenuous activity and the use of nicotine-containing products.

( Study visit \

Location On site Home
Breakfasﬁ_m
Anthropometry  ® R i M I e T R RRR RSN e e e 1
Body weight @ R R T i A rrrrmnneeensenseesn e B o
Body compositon [N e et st o
Morning urine @ b AR AT SR e 2 S S AR
Blood sample @ seee o o (] [ ] . ™ ° ° .
1 1 1 1 1 1 ] ] L] L] I 1 1 T T
Baseline Oh 2h 4h 6h 8h 10h 12h 24h

K ke === Time after completion of standardized breakfast == w= = == - - - J/

Figure 5. The course of the study visit in the Postprandial Metabolism Study

Blood sampling and handling of the blood samples

The first 12 blood samples were drawn through a venous catheter in the elbow cavity,
while the last two were standard venous blood samples. At each time point, a total of
11.5 ml of blood was drawn and distributed into serum tubes (8.5 ml, BD Vacutainer®
SST™ 11 Advance; Beckton, Dickinson, and Company; United Kingdom) and EDTA
tubes (3ml, Vacuette® K2EDTA). At baseline and at the 24-hour timepoint, an



42

additional 6 ml and 3 ml EDTA blood was collected, respectively, for measurement of

hematology and routine clinical markers.

After the blood sampling, the serum tubes were stored at room temperature for
30-60 minutes and then centrifuged at 2200xG for 10 minutes at 20°C. The serum tubes
were temporarily stored in a freezer at -20°C and transferred to -80°C at the end of the
day. Additionally, one aliquot of serum from each time point was stored in the
refrigerator at +4°C and transported to the laboratory daily for analysis of blood lipids,
folate, cobalamin, and routine clinical markers (liver and kidney function biomarkers,
albumin, C-reactive protein, erythrocytes, hemoglobin, hemoglobin Alc (HbAlc),
insulin, mean corpuscular hemoglobin, mean corpuscular volume, mean platelet

volume, thrombocytes, thyroid stimulating hormone, and 25-hydroxyvitamin D).

4.2 Quantification of outcome biomarkers and metabolites

An overview of the outcome metabolites in the three papers, together with the

analytical method and sample matrix, is provided in Table 2.

Table 2. Overview of the outcome metabolites, sample matrix, and the analytical

methods across the papers!

Biomarker Paper I Paper I1 Paper 111

Amino acids Plasma Serum -
Alanine GC-MS/MS GC-MS/MS -
Arginine GC-MS/MS LC-MS/MS -
Asparagine GC-MS/MS GC-MS/MS -
Aspartic acid GC-MS/MS GC-MS/MS -
Glutamic acid GC-MS/MS GC-MS/MS -

Glutamine GC-MS/MS GC-MS/MS -
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Biomarker Paper 1 Paper 11 Paper 111
Histidine GC-MS/MS GC-MS/MS -
Isoleucine GC-MS/MS GC-MS/MS -
Leucine GC-MS/MS GC-MS/MS -
Lysine GC-MS/MS GC-MS/MS -
Phenylalanine GC-MS/MS GC-MS/MS -
Proline GC-MS/MS GC-MS/MS -
Threonine GC-MS/MS GC-MS/MS -
Tryptophan GC-MS/MS GC-MS/MS -
Tyrosine GC-MS/MS GC-MS/MS -
Valine GC-MS/MS GC-MS/MS -

One-carbon metabolites Plasma Serum -
Betaine LC-MS/MS LC-MS/MS -
Choline LC-MS/MS LC-MS/MS -
Cystathionine GC-MS/MS GC-MS/MS -
Cysteine GC-MS/MS GC-MS/MS -
Dimethylglycine LC-MS/MS LC-MS/MS -
Glycine GC-MS/MS GC-MS/MS -
Homocysteine GC-MS/MS GC-MS/MS -
Methionine GC-MS/MS GC-MS/MS -
Methionine sulfoxide - LC-MS/MS -
Sarcosine - GC-MS/MS -
Serine GC-MS/MS GC-MS/MS -

B-vitamin biomarkers Plasma Serum -
Thiamine LC-MS/MS LC-MS/MS -
TMP LC-MS/MS LC-MS/MS -
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Biomarker Paper I Paper 11 Paper 111
Riboflavin LC-MS/MS LC-MS/MS -
FMN LC-MS/MS LC-MS/MS -
NAM LC-MS/MS LC-MS/MS -
mNAM LC-MS/MS LC-MS/MS -
Pyridoxal LC-MS/MS LC-MS/MS -

PLP LC-MS/MS LC-MS/MS -
PA LC-MS/MS LC-MS/MS -
Folate Microbiological assay Immunoassay? -
Cobalamin Microbiological assay Immunoassay? -
MMA GC-MS/MS GC-MS/MS -

E;g,f;ﬁt’rl;le vitamin Plasma ) )
Retinol LC-MS/MS - -
25-OH-vitamin D LC-MS/MS - -
a-tocopherol LC-MS/MS - -
Phylloquinone LC-MS/MS - -

Lipids Serum - Serum
HDL-C Direi:gﬁite)rilti})llrll;latic i Photometry?
LDL-C Martin/Hopkins equation - Photometry?
Total cholesterol Enzymatic method? - -
Triglycerides Enzymatic method? - Photometry?

Ketones
Acetoacetate - - GC-MS/MS
B-hydroxybutyrate - - GC-MS/MS
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Biomarker Paper 1 Paper 11 Paper 111
- - Serum
Acylcarnitines
Free carnitine LC-MS/MS
Short-chain acylcarnitines
Acetylcarnitine (C2) - - LC-MS/MS
Propionylcarnitine (C3) - - LC-MS/MS
Butyrylcarnitine (C4) - - LC-MS/MS
Isovalerylcarnitine (iC5) - - LC-MS/MS
Glutarylcarnitine (C5- LC-MS/MS
DC)
Medium-chain acylcarnitines
Hexanoylcarnitine (C6) - - LC-MS/MS
Octanoylcarnitine (C8) - - LC-MS/MS
Decanoylcarnitine (C10) - - LC-MS/MS
Dodecanoylcarnitine i ) LC-MS/MS
(C12)

'All metabolites were quantified at Bevital AS (https:/bevital.no/) unless otherwise

indicated. 2Quantified at the Department of Medical Biochemistry and Pharmacology
at Haukeland University Hospital. *Quantified at the Department of Clinical
Chemistry, Oslo University Hospital, Ullevil. Abbreviations: DC, Dicarboxylic;

FMN, Flavin mononucleotide; GC-MS/MS, Gas chromatography-tandem mass
spectrometry; HDL-C, High-density lipoprotein cholesterol; LC-MS/MS, Liquid

chromatography-tandem mass

spectrometry;

LDL-C, Low-density lipoprotein

cholesterol; NAM, Nicotinamide; MMA, methyl-malonic acid; mNAM, NI1'-
methylnicotinamide; PA, 4’-pyridoxic acid; PLP, Pyridoxal-5"-phosphate; TMP,

thiamine monophosphate
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4.2.1 Paperl

Serum samples of total cholesterol, HDL cholesterol, glucose, and triglycerides were
analyzed within 7 days at the Department of Clinical Chemistry, Oslo University
Hospital, Ulleval, with reagents from Boehringer Mannheim (Roche) as adapted to a
Hitachi 911 analyzer. Cholesterol and triglycerides were measured by enzymatic
methods, while HDL cholesterol was measured by a direct, enzymatic inhibition
method. LDL cholesterol was calculated using the Martin/Hopkins equation as
described by Martin et al. (111). Non-HDL cholesterol was calculated as total
cholesterol minus HDL cholesterol. Analyses of amino acids, one-carbon metabolites,
and B-vitamin biomarkers were conducted at Bevital AS (Bergen, Norway,
http://bevital.no/). All amino acids, including the one-carbon metabolites
cystathionine, cysteine, glycine, homocysteine, methionine, and serine, in addition to
MMA, were measured in plasma using gas chromatography-tandem mass spectrometry
(GC-MS/MS) (112). Plasma betaine, choline, and dimethylglycine, as well as the B-
vitamin biomarkers thiamine, TMP, riboflavin, FMN, nicotinamide, N1’'-
methylnicotinamide (mNAM), pyridoxal, PLP, and 4’-pyridoxic acid were measured
using liquid chromatography-tandem mass spectrometry (LC-MS/MS) (113, 114).
Plasma folate and cobalamin were measured by a microbiological assay (115, 116),
while the lipid-soluble vitamins retinol, 25-hydroxyvitamin D, a-tocopherol, and

phylloquinone were measured in plasma using LC-MS/MS (112).

4.2.2 Paper II

All metabolites, except for cobalamin and folate, were analyzed at Bevital AS (Bergen,
Norway) in samples that had been frozen and stored at -80°C. The amino acids and
one-carbon metabolites were analyzed in serum at Bevital AS (Bergen, Norway).
Alanine, asparagine, aspartate, cystathionine, cysteine, glutamate, glutamine, glycine,
histidine, total homocysteine, isoleucine, leucine, lysine, methionine, phenylalanine,
proline, sarcosine, serine, threonine, tryptophan, tyrosine, and valine were analyzed
using GS-MS/MS, while arginine, betaine, choline, dimethylglycine, and methionine

sulfoxide were analyzed using LC-MS/MS. FMN, mNAM, nicotinamide, pyridoxal,
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PLP, 4’-pyridoxic acid, riboflavin, thiamine, and TMP were analyzed using LC-
MS/MS, while MMA was analyzed using GC-MS/MS. Serum cobalamin and total
serum folate (i.e. the sum of 5-methyltetrahydrofolate, S-formyltetrahydrofolate, and
pteroylglutamic acid) at the Department of Medical Biochemistry and Pharmacology
at Haukeland University Hospital (Bergen, Norway, certified NS-EN ISO 15189:2012)
using immunoassay, in samples that had been chilled to +4°C and stored for up to 24

hours before analysis.
4.2.3 Paper 111

Serum HDL cholesterol, LDL cholesterol, and triglycerides were analyzed at the
Department of Medical Biochemistry and Pharmacology at Haukeland University
Hospital (Bergen, Norway) using photometry in samples that had been chilled to
+4°C and stored for up to 24 hours before analysis. Free carnitine, acylcarnitines, and
ketones were analyzed in serum samples frozen to -80°C until analysis. Free carnitine
and all acylcarnitines were analyzed using LC-MS/MS, while acetoacetate and fHB

were analyzed using GC-MS/MS at Bevital AS (Bergen, Norway).

4.3 Statistical analyses

The statistical analyses in the included papers were performed using R version 4.1.3
(the R Foundation for Statistical Computing, Vienna, Austria, https://www.r-
project.org/) and the packages within the tidyverse (117), irrICC, and emmeans.

4.3.1 Paperl

For descriptive statistics, continuous variables were reported as geometric mean
(gMean [95% prediction interval, PI]) and categorical variables as counts
(percentages). The 95% PI provides the limits of the interval defined by (gMean +
gSD?,gMean x gSD?). The marginal gMean (95% geometric confidence interval
[gCI]) metabolite concentration was estimated for each time category from a linear

regression model adjusted for sex, age group, and BMI and presented visually as a
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function of time since the last meal. The 95% gCl is constructed as the interval defined
by (gMean + gSE?, gMean X gSE?). Unadjusted gMean metabolite concentrations
with 95% gClI at each timepoint were also plotted as a function of time since the last
meal for the two age cohorts and for males and females separately. To explore the
potential effects of sex and age, product terms for time*sex and time*age groups were

included in the model.
4.3.2 Papers I and III

In Paper I1, descriptive statistics were presented as gMeans (gSD) for continuous
variables and counts (percentages) for categorical variables and supplemented with
ranges (min-max). In both Papers II and III, all metabolite concentrations were log-
transformed before statistical analysis and described using the back-transformed
gMean and gSD as recommended (118, 119). Inferential statistics were accompanied
by 95% gCl as a measure of uncertainty. The main objective was presented visually by
plotting the raw metabolite concentrations as a function of time with the mean time-
course indicated by superimposing the gMean concentrations (95% gCI) on top of the
individual data. Relative changes in metabolite concentrations were calculated for each
individual, with each pre-breakfast blood sample utilized as an individual reference
value. These individual percentage changes were subsequently combined to calculate

the gMean percentage change across the study cohort and presented visually.

4.4 FEthics

Paper 1

The HUSK study was carried out in accordance with the Declaration of Helsinki. It
was approved by the Regional Committee for Medical and Health Research Ethics
(REK, REK No. 2009/825) and the Norwegian Data Inspectorate. All participants
provided written informed consent. The analyses presented in the paper were approved

by REK (REK No. 184165).
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Papers Il and 111

The PoMet study was conducted according to the guidelines laid down in the
Declaration of Helsinki, and all procedures involving human subjects were approved
by REK (REK No. 236654). Written informed consent was obtained from all subjects.
Participants received the consent form by email before the study visit to allow adequate
time to read and understand the protocol and to familiarize themselves with the risks,
burdens, and benefits of participation in the study. In addition, one of the researchers
went through the consent form orally with the participants, and participants were
explicitly allowed to ask additional questions before signing the consent form.
Participants who communicated great discomfort orally or by body language (syncope,
etc.) during the study visit were excluded from the study. Participants were also

excluded if there were difficulties with blood sampling from the venous catheter.
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5. Summary of main results

In this section, a summary of the main results will be presented across metabolite

groups.

5.1 Amino acids

In the middle-aged and elderly adults in Paper I, we observed a consistent pattern for
most plasma amino acids the first 7 hours after a meal (Paper I, Figure 3); the levels
were highest in samples collected within the first 2 hours after a meal, and lowest in
samples collected at 5-7 hours after a meal. This pattern was evident for plasma alanine,
arginine, asparagine, aspartic acid, histidine, isoleucine, leucine, lysine, phenylalanine,
proline, threonine, tryptophan, tyrosine, and valine. The largest relative differences
between the highest and the lowest values were found for alanine (27%), isoleucine
(25%), and proline (25%). Similar findings were observed in the younger adults in
Paper I1, in which these amino acids in serum, except for aspartic acid, peaked within
the first 3 hours after the standardized breakfast meal and thereafter decreased (Paper
I1, Figure 4). The largest relative increases from baseline values were found for serum
proline (56% increase), alanine (42%), tyrosine (29%), and isoleucine (28%) (Paper
I1, Table 4). Furthermore, the concentrations of the serum BCAAs increased from 6
and 8 hours to 24 hours after the meal, while serum proline decreased from 6 to 24
hours after the meal (Paper 1I, Figure 4). In the young, middle-aged, and elderly
groups, male participants tended to have higher absolute concentrations of the amino
acids; however, the patterns in amino acid concentrations after the meal were

comparable between sexes.

5.2 One-carbon metabolites

In the middle-aged and elderly adults in Paper I, the concentrations of plasma betaine,
choline, cystathionine, dimethylglycine, glycine, methionine, and serine were highest

in samples collected the first 2 hours after a meal, while the lowest concentrations were
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observed in samples collected at 5-7 hours after a meal (Paper I, Figure 5). The largest
relative differences between the lowest and the highest values were found for
methionine (29%) and cystathionine (26%). Similar results were also found in the
young adults in Paper I1, where these one-carbon metabolites in serum, in addition to
sarcosine, increased and peaked within the first 3 hours after the meal (Paper II,
Figure 5). As with the middle-aged and elderly adults, the largest relative increases
were also found for cystathionine (38%) and methionine (29%) in the young cohort.
The concentrations of these serum metabolites were thereafter relatively stable until 24
hours, except for cystathionine, which decreased until 12 hours (Paper II, Table 4).
Notably, a distinct but similar pattern was observed for homocysteine and cysteine in
all age groups; these one-carbon metabolites were lowest shortly after dietary intake,
with increasing concentrations observed with increasing time since the last meal
(Figure 5 in Papers I and II). The observed patterns were largely consistent in males
and females and across the age cohorts. However, for serum methionine sulfoxide,
which was only explored in the younger adults, we observed that females had a higher
peak in concentrations than males (+88% at 90 hours after the meal for females; +67%

at 2 hours for males) (Paper II, Table 5).

5.3 Biomarkers for B-vitamin status

The biomarkers for B-vitamin status are presented in Figure 7 in Paper I and Figure
6 in Paper I1. Both in the young adults (Paper II) and in the middle-aged and elderly
adults (Paper I), the concentrations of thiamine were highest shortly after dietary
intake (+24% increase from baseline values in Paper II) and thereafter decreased with
increasing time since the meal. A similar pattern was also found for TMP in all age
groups; however, the concentrations fluctuated in the first hours after the meal in the
young group before decreasing. Opposite patterns were found for riboflavin and FMN,
where concentrations tended to be lowest after dietary intake and thereafter increase
with increasing time since the last meal in all cohorts (+90% and +34% increase at 24
hours for FMN and riboflavin in Paper II, respectively). Notably, we observed

different patterns for folate and cobalamin between the young and the middle-aged and
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elderly adults; in the young group (Paper II, Table 4), we observed no considerable
changes the first hours after the meal, except for a small peak in serum folate
concentrations. Thereafter, serum cobalamin and folate concentrations steadily
increased from 3 hours, peaking at 24 hours after the meal (+14% increase for
cobalamin and +57% increase for folate). In the middle-aged and elderly groups (Paper

I, Table 2), no clear patterns were observed for either plasma cobalamin or folate.

The results were largely similar between the sexes, except for the change in
serum concentrations of mNAM and nicotinamide in the young adults (Paper II, Table
5). Concentrations of both mNAM and nicotinamide slightly increased the first hour
after the meal in females and thereafter tended to decrease and remained lowered until
12 hours after the meal. In males, however, these metabolites increased after the meal
and thereafter fluctuated but remained elevated or at baseline levels the first 8 hours
after the meal before decreasing. However, these sex-based differences were not found

for these plasma metabolites in Paper L.

5.4 Biomarkers for lipid-soluble vitamin status

The lipid-soluble vitamin biomarkers were explored only in the middle-aged and
elderly adults and presented in Paper I, Figure 6. We observed no clear patterns for
plasma retinol, 25-hydroxyvitamin D, or a-tocopherol. For plasma phylloquinone, the
concentrations were highest in samples collected within the first hour after dietary
intake, and thereafter, concentrations decreased with increasing time since the last
meal, with lowest values in samples collected 6-7 hours after dietary intake. The

observations for phylloquinone were observed in both age cohorts and in both sexes.

5.5 Lipids

The concentrations of serum lipids were explored both in the middle-aged and elderly
adults and in young adults, and we observed slight differences between the two cohorts.

In the young adults (Paper III, Figure 1), serum triglyceride concentrations increased
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and peaked at 3 hours after the standardized meal (+28% increase from baseline
values). Thereafter, concentrations decreased until 10 hours (-17% from baseline
values) before increasing until 24 hours after the meal. However, in the middle-aged
and elderly adults (Paper I, Figure 4), serum triglyceride concentrations were highest
in samples collected 0-1 hours after dietary intake. Thereafter, concentrations
decreased and reached the lowest values in samples collected 6-7 hours after dietary

intake, with a mean difference of 15% between the highest and the lowest values.

In the young adults (Paper III, Figure 1), we observed that serum HDL- and
LDL cholesterol concentrations slightly decreased shortly after the meal (-4.1% and -
4.3% decrease from baseline values, respectively), followed by an increase peaking at
12 hours (HDL cholesterol; +6.0% increase from baseline values) and 24 hours (LDL
cholesterol; +6.9% increase). In the middle-aged and elderly adults (Paper I, Figure
4), we also observed that concentrations of these serum lipids were lowest in samples
collected 0-1 hours after a meal. However, while LDL cholesterol increased with
increasing time since dietary intake and the highest values were observed in samples
collected at 6-7 hours, the highest HDL cholesterol levels were observed in samples

collected at 4-5 hours, however, with considerable uncertainty at the latest time points.

5.6 Ketones

Serum concentrations of the ketones acetoacetate and BHB were explored only in the
young adults and presented in Paper II1, Figure 2. We observed that concentrations
decreased shortly after the meal; acetoacetate reached its lowest levels at 15 minutes (-
36% decrease), while BHB reached its lowest levels at 90 minutes (-63% decrease).
Starting 3 hours after the meal, concentrations steadily increased and reached the
highest values at 24 hours, with an average increase of +433% for acetoacetate and
+633% for BHB compared to baseline levels. Concentration patterns were similar for

both sexes (Paper 111, Table 2).
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5.7 Acylcarnitines

The concentrations of serum acylcarnitines were explored only in the young adults and
presented in Paper III, Figure 3. We observed that acetylcarnitine and the medium-
chain acylcarnitines decreased shortly after the meal, reaching their lowest values the
first hours after the meal, with decreases ranging from —40% (acetylcarnitine and
hexanoylcarnitine) to —70% (octanoylcarnitine). Subsequently, concentrations steadily
increased, reaching the highest values at 24 hours, with increases ranging from +63%
(acetylcarnitine) to +120% (dodecanoylcarnitine). Conversely, free carnitine and the
short-chain acylcarnitines propionylcarnitine and isovalerylcarnitine increased and
peaked 2 hours after the meal (17%, 19% and 15% increase, respectively).
Concentrations thereafter decreased and remained lowered until 12 hours before
returning to baseline values at 24 hours. Female participants tended to have lower
concentrations of free carnitine and acylcarnitines compared to male participants.
However, we observed no notable differences between sexes in the relative changes

after the meal (Paper 111, Table 2).
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6. Discussion

The focus of this thesis was to explore biomarker concentrations in the hours following
ameal and during the adaptation to the fasting state. Overall, we observed clear patterns
in the concentrations of several biomarkers, both in middle-aged and elderly adults and
in young adults. Further, these patterns were not confined to the immediate period after
dietary intake but persisted for several hours after dietary intake. The subsequent
section will delve into the methodological aspects of the two distinct projects employed
in this thesis. Following that, a discussion of the main findings will be provided before

the implications of our findings will be discussed.

6.1 Methodological considerations

6.1.1 Study designs

In this thesis, we utilized cross-sectional biomarker data from the observational HUSK
study for Paper I and time series biomarker data from the interventional PoMet study
for Papers II and III, which have important implications for the interpretation of the
findings. As biomarkers were measured only once for each participant in HUSK, the
biomarker concentrations at each timepoint represent the gMean value across all
participants with a similar self-reported duration of time since their last meal. Since
biomarker concentrations may have remained stable within individuals during the
hours following a meal, yet varied between individuals, the observed patterns in Paper
I only reflect group-level patterns. Therefore, the patterns observed should be
interpreted within the context of group-level trends and cannot be extrapolated to hold

true at the individual level.

Conversely, in the PoMet study, biomarkers were measured at a total of 14 time
points during a 24-hour period, which allowed us to detect biomarker changes after the
meal within each individual. When patterns are consistent between individuals, it

strengthens the theory that these observed patterns are not merely a result of chance but
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are more likely to signify a causal relationship. Furthermore, it has been stated that it
is rare to find time series metabolomics data with more than 3-10 time points (120).
The 14 sampling time points, particularly frequent the first 2 hours after the meal, serve
as a notable strength as it allowed us to capture even small fluctuations in biomarker

concentrations.

Instructions before the study visit

While no preparatory instructions were given to the participants in HUSK before the
baseline visit, the participants in the PoMet study received instructions on physical
activity, the use of dietary supplements, alcohol consumption, and the use of nicotine-
containing products before the study visit. Additionally, they were instructed to
consume a semi-standardized meal 12 hours before attending the study visit, as
recommended (95). These instructions were given to reduce interindividual differences
in the metabolome. However, these instructions also reduce the external validity of the
results and the generalizability to a real-world setting where no such preparatory

instructions before blood sampling are provided.
The meal before blood sampling

In HUSK, specific details regarding the meal consumed before blood sampling are
unknown. The meal may have been breakfast, lunch, dinner, or a snack, meaning that
the meal composition may have varied considerably. Furthermore, no information was
available regarding whether this meal was the participants’ first, second, or third meal
of the day. However, there is no reason to believe there were systematic differences in
the meals consumed across the time categories. Thus, the absence of a standardized
meal is likely to have introduced variability to the results rather than bias. Also, the
lack of a standardized meal increases the study's external validity by reflecting a real-
world scenario where participants or patients do not receive preparatory instructions

on meal choices before blood sampling.

Conversely, in the PoMet study, participants were provided a standardized meal

before blood sampling to minimize potential variations in metabolite concentrations
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that could arise from participants consuming different meals. To ensure the same
nutrient intake for all participants, the same meal was given to all participants,
regardless of their sex or body mass composition. However, providing the same meal
to all participants could have introduced variability to the results, as we observed large
variations in body size and composition and resting metabolic rate between
participants. Thus, the meal may have been digested, and the nutrients metabolized at
different rates between the participants (121). Furthermore, while efforts were made to
compose the breakfast to resemble a typical Norwegian breakfast in terms of food items
and macronutrient composition, the findings from the PoMet study may not necessarily

apply to other breakfast meals, potentially limiting the generalizability of the results.

6.1.2 Bias

Bias is a major threat to the internal validity of a study, which is the characteristic of a
study to produce valid results. Bias encompasses all factors that lead to a systematic
deviation between the observations from a study and the actual truth and can occur at
all stages of the research process. Many different sources of bias have been identified

and can be broadly categorized into selection bias and information bias (122).
Selection bias

Selection bias refers to systematic differences between those who participate in a study
and the source population, and is an inherent challenge when recruiting volunteers for
research (122). The source population in the PoMet study comprised healthy, young
individuals with BMIs between 22-27 kg/m?, and we applied strict inclusion- and
exclusion criteria for participation that resulted in a relatively homogenous group of
participants. However, as we did not try to recruit a representative sample, 35 out of
the 36 participants initially included in the study were of Caucasian ethnicity. This
ethnic homogeneity could potentially introduce selection bias, as there may be
differences in the blood metabolome between ethnicities (123, 124). It has also been
shown that people willing to participate in research tend to be more health-conscious
than those who do not. This phenomenon is commonly referred to as the healthy

volunteer effect (125). Furthermore, it has been shown that invitees who decline to
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participate in research are often overrepresented by individuals of lower socioeconomic
status, poor self-reported health and an unhealthy lifestyle, receivers of disability
benefits, and immigrants (126). Therefore, it is plausible to assume that both the PoMet
and HUSK study participants were healthier overall than their respective source
populations. However, whether this has introduced selection bias depends on whether
the changes in biomarker concentrations after a meal differ between healthy and less
healthy individuals. As the energy metabolism is well characterized, there is no reason
to believe that the results would have been substantially different in less healthy

populations.
Information bias

Information bias occurs during data collection if there is misclassification of binary or
categorical variables or mismeasurement of continuous variables (127). It is a major
threat to the internal validity of a study (122). In the present thesis, particular attention
will be given to the measurement of the exposure and outcome variables, namely, time

since the last meal and the various outcome biomarkers and metabolites.

Time since the last meal

In PoMet, we rigorously controlled the timing of the last meal in relation to blood
sampling, particularly the first 12 hours after the meal. We recorded the completion
time of the breakfast meal and, based on this information, determined the time of blood
sampling. Moreover, we aimed to collect all blood samples within a £2-minute window
of the designated time point, which was achieved for most time points, with few
exceptions. Notably, the 24-hour blood sample may be subject to greater uncertainty
due to some participants returning to the study visit slightly earlier or later for

convenience.

Conversely, in the HUSK study, information on time since the last meal relied
on self-reporting. Unless participants adhered to strict eating schedules, it might have
been challenging to recall the exact timing of their dietary intake earlier in the day,
potentially introducing recall bias. Moreover, it is reasonable to assume that

participants who had consumed their last meal several hours prior were more
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susceptible to recall bias, as it can be more challenging to accurately remember the
exact timing of meals consumed several hours ago compared to more recent meals
consumed just before the study visit (128). However, since time was categorized into
hourly intervals, minor errors in the recall of time since the last meal is unlikely to have
a major impact on the results as most participants were probably included in the correct
hourly category. Nonetheless, some participants may have been misclassified into the
wrong category. Furthermore, categorizing time into hourly categories also presents a
limitation. Time is inherently a continuous variable, and categorizing continuous
variables is generally discouraged as it may lead to information loss and spurious
results (129). However, given that participants were likely evenly distributed within
each time category with regard to time since the last meal, the categorization of time is

more likely to have increased variability in the results rather than introduce bias.

Outcome biomarkers and metabolites

Inadequate procedures in the preanalytical process can result in changes in numerous
metabolites (68, 130). Consequently, several measures were undertaken in both the
HUSK and the PoMet studies to ensure the collection of high-quality blood samples.
First, the blood sampling in both projects was performed by qualified personnel, with
strict adherence to protocols to ensure that procedures were carried out similarly for all
blood samples. Second, as prolonged exposure of whole blood to room temperature
may have a pronounced effect on the sample quality (65), stringent guidelines were
followed to centrifuge, separate, and cool the samples within specified timeframes.
Moreover, any samples not analyzed during the first days after blood sampling were
stored at -80°C, a widely accepted optimal storage condition. However, there were
substantial differences in the storage duration of blood samples in the two projects. In
the PoMet study, blood samples for analysis of all biomarkers and metabolites, except
for serum lipids, folate, and cobalamin, were stored for up to 9 months without
undergoing a freeze-thaw cycle before analysis. In contrast, in the HUSK study, the
samples for analysis of amino acids, one-carbon metabolites, and vitamin biomarkers
were stored from collection time in 1997-99 and underwent a few freeze-thaw cycles

before being analyzed in 2010 and 2017. Storage at -80°C over several years may affect
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the stability of plasma samples (131). Any potential effect of the long-term storage or
repeated freeze-thaw cycles will have impacted all the samples similarly, which may
have introduced bias, as the absolute metabolite concentrations may have been
systematically increased or decreased. However, as these factors were independent of
time since the last meal, this potential bias is not likely to have impacted our overall
observed patterns for the HUSK study. Additionally, it is important to highlight that
most of the measured metabolites have been demonstrated to be relatively stable in
EDTA plasma, irrespective of repeated freeze-thaw cycles, as tested by Bevital

(https://bevital.no/stability-curves/).

The amino acids, one-carbon metabolites, acylcarnitines, and most vitamin
biomarkers explored in this thesis were analyzed at Bevital AS using mass
spectrometry-based methods to ensure accurate and precise quantification of the
analytes (112). Another noteworthy strength is that the overlapping amino acids, one-
carbon metabolites, and B-vitamin biomarkers in Papers I and 11, except for folate and
cobalamin, were analyzed at the same laboratory using consistent methods, enhancing
the comparability between the papers. It should be noted that plasma was utilized in
the middle-aged and elderly adults in the HUSK study, while serum was used in the
young adults in the PoMet study. Previous studies have shown that serum samples often
exhibit higher levels of most metabolites than plasma samples (70-74). However, this
systematic difference is not believed to affect the observed changes in biomarker
concentration. It is also worth mentioning that in Paper I, LDL cholesterol was
calculated using the Martin/Hopkins equation instead of direct measurement as done
in Paper III. The Martin/Hopkins equation has been shown to have the highest
accuracy for estimating LDL cholesterol compared with other available equations.
Nevertheless, direct measurement of LDL cholesterol is a more precise method than

estimation (132).
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6.1.3 Statistical methods and presentation of results

Given the explorative nature of the three papers, we opted for a descriptive approach
with exploratory analyses when presenting the main results. Exploratory data analysis
is a term coined by John W. Tukey to describe the act of looking at data to see what it
seems to say (133). Rather than formal hypothesis testing to compare biomarker
concentrations at specific time points, we emphasized visualizing the data when
conveying our findings. This approach aligned with the primary aim of the studies,
which was to explore the dynamics of biomarker concentrations, as opposed to
determine at which timepoints biomarker concentrations deviated from each other.
Additionally, formally testing time points against each other would introduce the
challenge of multiple comparisons, which relates to the increased risk of obtaining false
positive results when testing many associations (134). However, we did compare time
points by reporting the relative difference between two time points (Paper I) and the
relative changes from baseline values (Papers II and III). This was done to offer a
more in-depth description of the observed patterns, such as describing the magnitude
of the peak or highlighting biomarkers that appeared to have the largest changes after
dietary intake. Moreover, merely observing patterns may not capture changes that

could be of clinical importance.

When summarizing data, it is common to provide measures of central tendency,
typically the mean, and the variability of the data, often represented as the SD.
However, biological measurements, as utilized in the three papers, generally do not
conform to a normal distribution, and tend to exhibit right-skewness, resembling a log-
normal distribution (118). In log-normal distributions, most observations fall below the
mean, and arithmetic measures to describe variability will often contain negative
values. Since negative values are not possible for biological measurements, the log-
normal variation is most appropriately characterized by the geometric mean (gMean)
and the geometric standard deviation (gSD) (118). When describing the variation using
the geometric measures, the gMean is divided and multiplied with the gSD, generating
an asymmetrical interval containing all positive values. Therefore, we chose to

represent baseline characteristics and metabolite concentrations using the gMean. In
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Paper I, we opted to describe the distribution in baseline characteristics using 95% PI.
It’s worth noting that gSD and 95% PI represent similar measures, as the 95% PI can
be defined by (gMean =+ gSD?, gMean x gSD?). However, 95% PI might be more
intuitive for interpretation than gSD. In Paper 11, we instead extended the descriptive
statistics with ranges (minimum-maximum) and therefore reported gSD as is. The
utilization of the range as a measure of distribution was deemed appropriate due to the

homogeneity of the study population in PoMet.

In Papers II and 111, we calculated the intraclass correlation coefficients (ICCs)
for the various biomarkers and metabolites. The ICC is an index to assess the
consistency of measurements taken from the same subjects and is indicated with a value
between 0 and 1. It has been suggested that ICC values less than 0.5 indicate poor
reliability, values between 0.5 and 0.75 indicate moderate reliability, and values
between 0.75 and 0.9 indicate good reliability, while values greater than 0.9 indicate
excellent reliability (135). In the context of the PoMet study, higher ICCs would imply
more stable biomarker concentrations across the measurement time points. Various
forms of ICC exist, and the different ICCs may produce different results when applied
to the same data set. For Papers II and I11, the ICCs were calculated based on a single-
rater, absolute-agreement, two-way random-effects model as described by Koo and Li
(135). The selection of the two-way random effects model was motivated by applying
the same time points for the different participants, in contrast to the one-way random-
effects model, which would have been the best choice if different time points were
applied to the different participants. Furthermore, the time points were chosen as a
random selection of several potential time points, and we planned to generalize our
results to other time points with similar characteristics. The two-way mixed-effects
model would have been a better choice if the time points chosen were the only time
points of interest and the results could not be generalized to other time points. For the
“definition” selection, we chose the absolute agreement as we were interested in the
agreement between the time points, not the agreement between the participants at the
different time points. If the latter was the case, the consistency definition would have

been a better choice of definition. Finally, the single-rater type was chosen, although
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we had 14 different time points, as the single time points were of interest rather than
the mean of multiple time points. In the latter case, the mean of k raters would have

been a better choice of type (135).

6.2 Discussion of main results across papers

Overall, we observed that several of the biomarkers explored in this thesis
demonstrated clear patterns in the hours after dietary intake and during the adaptation
to the fasting state. While these observed patterns may be attributed to time since the
last meal, the observed patterns may also have occurred by chance or due to other
factors such as time of day, seasonality, or meal composition. However, the probability
of chance or other factors as the sole explanation is diminished by the remarkable
consistency of these patterns between the HUSK study and the PoMet study, despite
differences in study designs, study populations, and the number of blood samples
collected in the two projects. The likelihood that the observed patterns are due to
chance or other factors is further mitigated if underlying mechanisms that can provide

a plausible explanation for the observed trends exist.

In the upcoming sections, an in-depth discussion of the main findings for the
various biomarkers and metabolites explored both in the HUSK study and the PoMet
study will be provided. A specific focus will be given to elucidating potential
underlying mechanisms that could account for these observed patterns. Biomarkers and
metabolites presented only in one of the papers (the lipid-soluble vitamins in Paper I

and carnitine, acylcarnitines, and ketones in Paper III) are discussed therein.

6.2.1 Amino acids

Our findings for the amino acids, with peak concentrations after a meal, align with
previous literature (95). Interestingly, we observed both in Papers I and II that proline
and alanine seemed to elicit the largest postprandial response, as also observed by
Badoud and colleagues (97). Additionally, we observed only small responses for

glutamic acid in both Papers I and II, differing from the observed patterns of other



64

amino acids, despite glutamic acid being one of the most abundant amino acids in
dietary protein (136). It has been suggested that glutamic acid is metabolized to various
amino acids in the enterocyte during absorption, mainly to alanine, but also proline
(136), offering a potential explanation for our observations. This finding underscores
that the amino acid concentrations in blood after a meal cannot be used to quantify the
amount of amino acids absorbed from a meal (96, 97). Furthermore, it highlights that
consistent patterns were observed between projects, indicating that the meal consumed

may be less important for the observed biomarker patterns.

In addition to the peak concentrations after the meal, we observed in Paper 11
that the BCAAs increased from 6 and 8 hours and reached the highest levels at 24
hours, which has also been observed by others during 36 hours of fasting (107, 108). It
has been suggested that the increased concentrations during fasting are related to
increased proteolysis in muscles (137), as the primary source of BCAAs in blood
during fasting is protein degradation (138), predominantly derived from skeletal

muscle (139).

In both Papers I and II, we observed that male participants tended to have, on
average, consistently higher concentrations of most amino acids compared to female
participants, which has also been observed previously (140, 141). However, we
observed no noteworthy differences between males and females in concentration

changes after dietary intake.
6.2.2 One-carbon metabolites

Both in Papers I and II, methionine and cystathionine appeared to be the one-carbon
metabolites most responsive to dietary intake, with peak concentrations during the first
hours after dietary intake. Methionine can be obtained from the diet, and unfortunately,
we lack precise information on the methionine content in the meals before blood
sampling for both papers. However, methionine is commonly found in foods regularly
consumed in Western diets, such as meat, milk, cheese, nuts, beans, and whole grains
(142), and was likely present in the meals before blood sampling in both studies. Thus,

the methionine content in meals before blood sampling may explain the peak
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concentrations after the meal. Methionine may be converted to cystathionine in the
transsulfuration pathway (143), and it has previously been shown that cystathionine
concentrations increase after the intake of methionine (144). In both Papers I and II,
methionine concentrations peaked one hour before cystathionine, and this temporal
pattern is consistent with methionine being released from protein in the food, followed
by an increase in cystathionine. Moreover, the increased concentrations of
cystathionine shortly after the meal may suggest an increased conversion of
homocysteine to cystathionine through the transsulfuration pathway. This is supported
by the observation of the lowest concentrations of both cysteine and homocysteine the
first hours after the meal, both in Papers I and II, which has also been observed by
others (145). The low concentrations of homocysteine and cysteine shortly after the
meal may also be attributed to increased availability of choline and betaine that
facilitate the remethylation of homocysteine to methionine in the homocysteine-

methionine cycle.

In both Papers I and I, we observed peak concentrations of betaine, choline,
dimethylglycine, glycine, sarcosine (only measured in Paper II), and serine in the first
hours after dietary intake. These metabolites are involved in the choline oxidation
pathway and are converted from choline and betaine. While the betaine and choline
content in the meal before blood sampling in Paper I is unknown, the standardized
breakfast meal in Paper II contained approximately 113 mg betaine and 25 mg choline
as estimated by the United States Department of Agriculture (USDA) food database
(142). Betaine and choline in the food may explain the increased concentrations of the

metabolites in the choline oxidation pathway.

We observed both in Papers I and II that male participants tended to have, on
average, consistently higher concentrations of most one-carbon metabolites, as
expected (141). Furthermore, for methionine sulfoxide (Paper II), we observed higher
peaks in females than in males. Methionine sulfoxide is formed by the oxidation of
methionine and is suggested to be a marker of oxidative stress (146). While we have

not identified any studies investigating the postprandial change in methionine
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sulfoxide, higher concentrations of methionine sulfoxide among females have been

previously reported (28, 147).
6.2.3 B-vitamin biomarkers

Our results for thiamine in Papers I and II, with peak concentrations shortly after
dietary intake, is in line with previous findings (148). Peak concentrations of TMP after
dietary intake was also observed in Paper I and to a smaller extent in Paper II. The
peaks in both thiamine and TMP during the first 2 hours after a meal are likely
attributable to thiamine content in the food, as both free thiamine and TMP enter the
blood stream during absorption of thiamine (149). Our observation on FMN, with the
lowest concentrations observed directly after dietary intake, is also comparable to
previous findings (145, 148). As FMN serves as a cofactor in the electron transport
chain, decreased concentrations may indicate increased utilization of this metabolite as
a cofactor. In Paper II, we observed increased FMN- and riboflavin concentrations
from 4 to 24 hours. To our knowledge, no studies have previously reported changes in
FMN- or riboflavin concentrations in the fasting state. As the increase in both FMN-
and riboflavin concentrations started around 4 hours after the meal, it is unlikely that
the increase was due to the riboflavin content of the meal, and these findings require

further investigations.

While no clear patterns for folate and cobalamin were found in Paper I, we
observed increasing concentrations of these biomarkers from 3 hours after the meal in
Paper I1. It is possible that this potential change was not sufficiently captured in Paper
I, where we only had data on the first 7 hours after dietary intake, and with greater
uncertainty in the observations from 5-7 hours after dietary intake. Nonetheless, our
finding for cobalamin in Paper II is not in line with previous findings. Orton and
colleagues used cross-sectional data and reported that cobalamin concentrations
decreased in males with increasing time since the last meal, up to 17 hours (150). The
potential change in cobalamin concentrations after a meal warrants further
investigation. For folate, a doubling in concentrations at 36 hours of fasting compared

to shortly after a meal has previously been reported, similar to our findings. It has been
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suggested that this increase may be explained by reduced excretion of folate in bile

during fasting (151).

For most biomarkers of B-vitamin status, we did not observe any clear sex-based
differences in the concentration patterns after dietary intake. Exceptions were for
nicotinamide and mNAM in the young adults in Paper II; however, these sex-based
differences were not noted in Paper I, suggesting a need for further investigations to

elucidate potential variations.
6.2.4 Lipids

In both Papers I and III, triglyceride concentrations peaked after dietary intake.
However, the highest concentrations were observed at 0-1 hour in the middle-aged and
elderly adults in Paper I and at 3 hours in the young adults in Paper III. This observed
difference might be age-related, as it has been demonstrated that there are age-related
differences in postprandial triglyceride concentrations (152-154). Nonetheless, the
peak in triglyceride concentrations during the first hour after dietary intake in the
middle-aged and elderly adults differs from established knowledge on lipid
metabolism, where triglyceride concentrations usually peak 3-5 hours after a meal (89).
This observation might be explained by the participants included in Paper I were not
asked to fast before their last reported meal, which is common in experimental studies,
such as in the PoMet study in Paper III. Thus, the second meal effect may explain why
we observed a different pattern in Paper I than in Paper I1I and the general literature
(92, 93). Comparable to our findings, Mikkelsen and colleagues (155) used cross-
sectional data from the Tromse Study and observed that triglyceride concentrations

were highest at 1 - 4 hours after a meal in individuals aged > 40 years.

In both Papers I and III, we observed the lowest concentrations of HDL- and
LDL cholesterol shortly after dietary intake, which aligns with previous findings
reported in the literature (153, 156-158). Langsted and colleagues suggested that the
observed drop in concentrations could be caused by a hemodilution effect from fluid
intake in relation to the meal (158); however, it has been argued that mechanisms other

than hemodilution must be involved (159, 160). The observed concentration drop in
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HDL cholesterol may be explained by augmented cholesterol ester transfer from HDL
particles to very-low-density lipoproteins (VLDLs) and chylomicrons, facilitated by
cholesteryl ester transfer protein (CETP) and LPL. This phenomenon is suggested to
arise due to an influx of triglyceride—rich lipoproteins from the intestine (156, 157),
which stimulates the activity of CETP and LPL. Additionally, the LDL cholesterol
concentrations may be decreased due to enhanced triglyceride hydrolysis in
chylomicrons catalyzed by LPL after the meal, as this process may inhibit the
formation of LDL particles from VLDLs because VLDLs and chylomicrons compete
for LPL (153, 161).

6.2.5 The metabolic mechanisms underlying the observations across biomarker

and metabolite classes

While the distinct biomarker and metabolite classes have been presented separately in
the various articles and within this thesis, the different biomarkers and metabolites are
metabolically interconnected within a comprehensive network, as illustrated in a
simplified overview in Figure 1. When reviewing the results across the different
cohorts, we observe a remarkable consistency in metabolite patterns. Furthermore, the
observed metabolite patterns are biologically plausible and fit current knowledge
regarding the metabolic needs in the postprandial and fasting states. Together, this

strengthens the robustness of our observations.

For instance, glucose was presented in Papers I and II to validate the other
findings. The glucose results indicated that glucose was the preferred energy fuel after
dietary intake, as expected. As glucose concentrations stabilized, our observations in
Paper III revealed a concurrent decrease in the concentrations of free carnitine and
increases in the medium-chain acylcarnitines. These observations suggest an increased
need for free carnitine inside the cell to form acylcarnitine to facilitate B—oxidation of
fatty acids to be used for energy. The coherence of these findings is further supported
by the observed increases in the ketone levels in Paper III, which are products of
acetyl-CoA generated through the B—oxidation of fatty acids, in the same period.
Moreover, we observed in Paper 111 that the concentration of propionylcarnitine and

isovalerylcarnitine followed a similar pattern to the BCAAs, both the first hours after
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the meal in Papers I and II, as well as during fasting in Paper II. These specific
acylcarnitines are byproducts of the BCAAs, and their concentrations increase when
BCAA metabolism accelerates (61), providing a plausible explanation for the observed
correlation. The increased concentrations of the BCAAs during fasting indicate
increased protein degradation from skeletal muscle and release from liver to be used
for energy. In summary, the examination of findings across the metabolite classes,
when viewed in the context of established knowledge on human energy metabolism,
underscores the consistency and coherence of our observations, marking a considerable

strength in the present project.

6.2.6 Inter- and intraindividual variations

It should be noted that the reported patterns in this thesis are patterns described at the
group level. However, despite the relative homogeneity of the PoMet cohort, we
observed interindividual variations in concentration patterns. These interindividual
differences may be attributed to several factors, including, but not limited to,
differences in body composition, previous dietary intake, or variations in hormone
levels among participants. Moreover, there is reason to believe that there may be
intraindividual variations in the biomarker and metabolite concentrations, for instance,
during the different phases of the menstrual cycle among females. Thus, the patterns
observed at the group level in the PoMet study may not hold true for all individuals in
the cohort, nor in all situations. The unique biomarker and metabolite profile for each

participant underscores the necessity for tailored approaches in healthcare.

6.3 Implications

When using biomarkers and metabolites in clinical care and epidemiological studies,
prandial status is usually accounted for by distinguishing between non-fasting and
fasting blood samples. This is commonly done by applying a cutoff at a specific time
since the last meal or by exclusively utilizing fasting samples taken more than 8 hours
since the last caloric intake. However, the findings in this thesis, as well as previously

published data, demonstrate that the concentrations of several biomarkers and
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metabolites change dynamically within both the fasting and non-fasting categories.
These findings challenge the prevailing practice, which traditionally relies on the
binary fasting/non-fasting classification and may have important implications for

clinical care and epidemiological studies utilizing biomarker- and metabolite data.

6.3.1 Biomarkers in clinical care

In clinical care, biomarkers are often measured on a single occasion. An implicit
assumption is that the concentration measured at a single time point is representative
of the longer-term exposure. This is not a reasonable assumption, and time since food
intake is a major factor that must be considered. One of the most common applications
of biomarkers in clinical care is their use as diagnostic biomarkers. In such situations,
time since the last meal of blood sampling could be of importance in determining
whether a patient receives a diagnosis. For example, in Paper 11, 6 participants (17%)
crossed the established cutoff for folate deficiency at 10 nmol/L (162). Thus, in a
clinical setting, these participants would have been classified as folate deficient if their
blood sample was taken before or during the first hours after the meal but not at later
time points. This raises the concern that the diagnosis and treatment of patients may

vary depending on the time since the last meal of blood sampling.

Therefore, it may be important to evaluate the potential impact of time since the
last meal at the time of blood sampling. This could be done by developing and applying
correction factors to the measured concentrations to estimate the concentrations at a
time point consistent with the cutoffs. Another option is establishing different
diagnostic cutoff values for biomarker concentrations based on the timing of blood
sample collection, potentially improving the sensitivity and specificity of diagnostic
biomarkers in clinical settings. The sensitivity of a biomarker applies to its ability to
correctly identify patients with the condition (true positives), while specificity denotes
its ability to correctly identify patients without the condition (true negatives). An ideal
biomarker would possess 100% sensitivity and specificity, meaning it would flawlessly
discriminate between individuals with and without a condition. However, due to

individual differences, biomarker levels often overlap between these groups in practice
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(163). Consequently, the sensitivity and specificity of a test are intrinsically linked to
the choice of diagnostic cut-off, as depicted in Figure 6A. For instance, if the
diagnostic cut-off was set at the line “a” in Figure 6A, the biomarker measurement
would correctly classify all true positives as having the condition, achieving 100%
sensitivity. However, it would fail to accurately classify true negatives as not having
the condition, resulting in poor specificity. Conversely, a diagnostic cut-off at line “b”
in Figure 6A would correctly identify all true negatives as not having the condition
(100% specificity) but fall short of correctly classifying true positives as having the
condition, yielding poor sensitivity. Consequently, sensitivity and specificity are
inversely related, and defining an acceptable rate of false negatives and false positives

typically guides the selection of a diagnostic cut-off (77, 163).

An illustration of how different cutoff values for samples taken at different time
points could improve the biomarker’s sensitivity and specificity is illustrated in Figure
6B. Using homocysteine as an example, we observed that the concentrations were
lowest shortly after a meal and increased thereafter. Assuming this concentration
profile is similar in individuals with and without a disease, homocysteine measured in
samples taken 1 hour after a meal will systematically be lower than samples taken 8
hours after a meal. Thus, if a single diagnostic cutoff is applied to homocysteine
without considering the time since the last meal, its diagnostic performance may be
compromised. For instance, if homocysteine exhibits good sensitivity and specificity
in samples taken 1 hour after a meal, applying the same cutoff to samples taken 8 hours
after a meal could result in poor specificity and a higher proportion of false positives,
as depicted in Figure 6B. Thus, to optimize the diagnostic performance of biomarkers,
considering different diagnostic cutoffs for samples taken at varied time points could
be a strategy. For example, setting a distinct diagnostic cutoff for homocysteine, such
as line “c” in Figure 6B, for samples taken 8 hours after a meal could be a strategic
approach. This tailored approach acknowledges the dynamic nature of biomarker

concentrations over time.
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Some biomarkers in clinical care are also used in contexts other than diagnostic
biomarkers, for instance as monitoring biomarkers, to monitor the risk of a disease or
the effect of treatment (7). In these situations, a biomarker is measured repeatedly.
Thus, it may be essential that blood sampling is consistently conducted at the same
time in relation to the time since the last meal for each measurement. For example,
although the relative changes were modest, we observed that LDL cholesterol changed
in the hours after dietary intake. If using LDL cholesterol as a monitoring biomarker to
evaluate the effect of cholesterol-lowering drugs, the timing of blood sampling in
relation to time since the last meal could be important: Changes in LDL cholesterol,
which in reality are due to differences in sampling time points, may be wrongfully

attributed to other factors such as the effect of cholesterol-lowering drugs.

6.3.2 Biomarkers and metabolites in epidemiological studies

The major role of epidemiological studies is to explore the association between an
exposure and an outcome, often focusing on disease or mortality. In this context,
metabolites are often modeled as the exposure, to investigate their role as potential
biomarkers of disease. Furthermore, biomarkers may be modeled as confounders or
outcomes of associations. When biomarkers are modeled as outcomes, they typically
serve as a surrogate endpoint for the disease of interest. For example, if investigating
the association between saturated fat intake and risk of cardiovascular disease,
increased LDL cholesterol concentrations can be used as a surrogate endpoint for
increased risk of cardiovascular events (7). If blood samples for biomarker or
metabolite measurements are not drawn systematically with regard to time since the
last meal between subjects in epidemiological studies, or if blood samples are
categorized only into non-fasting and fasting blood samples, measurement error in the
biomarker or metabolite may be introduced. The effect of this measurement error
depends on the type of measurement error, and how the biomarker or metabolite is

handled during data analysis (164).

Non-differential measurement error of an exposure occurs when the

measurement error does not depend on another variable. If a biomarker or metabolite
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is modeled as an exposure on a continuous scale, non-differential measurement error
is, on average, expected to attenuate the observed associations due to regression
dilution bias (127). However, as there is always a possibility that the measurement
error may be unequally distributed by chance, attenuation of an association due to non-
differential measurement error cannot automatically be assumed in single studies (165).
Further, if the concentration of biomarker or metabolite is grouped into categories, such
as quintiles, one cannot automatically assume an attenuation of the association, and the
bias may be away from null for some of the exposure categories (166). If a biomarker
or metabolite is modeled as a confounder, non-differential measurement error results
in incomplete control for the confounder, and the effect estimate will be biased in the
direction of the original confounding (127). Finally, if a biomarker or metabolite is
modeled as the outcome of an association, non-differential measurement error in the
outcome will decrease the precision of the estimate and thus require a larger sample

size (167, 168).

Another problem arises if there is differential measurement error of the
biomarker or metabolite. This occurs if the measurement error of the biomarker or
metabolite depends on another variable, typically the outcome. This could occur if a
biomarker or metabolite is measured at systematically different time points across
individuals with different baseline risks, which is a particular concern in case-control
studies (164). For instance, if blood sampling is conducted after an overnight fast for
high-risk or diseased individuals but within a few hours after a meal for low-risk or
healthy individuals, differential measurement error may be introduced. Differential
measurement error could have different effects on the association: It could bias the
associations towards the null, but also bias the association away from the null or even
reverse the true association (e.g. a biomarker or metabolite may appear as protective
when it is in fact increasing the risk). Thus, differential measurement error in biomarker
or metabolite concentrations could lead to the wrong conclusion and completely
invalidate a study, highlighting the importance of standardizing sampling procedures
(164).
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Therefore, to reduce measurement error in biomarkers and metabolites and
increase the validity of epidemiological studies utilizing biomarker and metabolite
data, we suggest that accounting for prandial status should be done by adjusting for the
exact time since the last meal at the time of blood sampling. Using existing
epidemiological data, researchers should consider adjusting for the exact number of
hours since the last meal rather than distinguishing between non-fasting and fasting
blood samples. In future epidemiological studies, researchers should strive to
standardize the time of blood sampling as much as possible with regard to time since

dietary intake.
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7. Conclusions

Overall, the findings from this thesis indicate that the concentrations of several
nutritional-related biomarkers and metabolites change in the hours after dietary intake.
Considerable changes were found for nearly all amino acids and one-carbon
metabolites, several vitamin biomarkers including thiamine, TMP, FMN, cobalamin,
folate, and phylloquinone, the ketones, free carnitine, and short- and medium-chain
acylcarnitines. Modest changes were also found for triglycerides, LDL- and HDL
cholesterol in the hours after dietary intake. The concentration patterns were largely

consistent in males and females and across different age-groups.

Our findings challenge the current, imprecise practice of distinguishing between
non-fasting and fasting blood samples in clinical care and epidemiological research. To
account for prandial status, the exact time since the last meal should be considered
when interpreting blood samples. This could improve patient care when using
biomarkers in the clinic and improve the validity of epidemiological studies utilizing

biomarker and metabolite data.
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8. Future perspectives

In the present thesis, we investigated how biomarker and metabolite concentrations
change in the hours after habitual dietary intake. However, the observed changes in
biomarker and metabolite concentrations should be confirmed in well-designed studies
that investigate biomarker and metabolite concentrations in the hours following a
habitual meal and meals with various nutrient compositions such as high-fat, low-fat,
or low-carb meals. These studies should ideally include repeated blood samples within
the same individuals. Further, as biomarker and metabolite concentrations may vary
throughout the day, future research should explore patterns after meals at different
times of the day to investigate the potential impact of circadian rhythms. The results
from this thesis primarily pertain to a European population, and changes in biomarker
and metabolite concentrations should be examined in populations of various ethnicities
to determine if there are differences or common patterns across different ethnic groups.
Finally, investigating biomarker patterns not only after the first meal of the day, but
also after the second or third meal is valuable. One approach could involve mimicking
real-world settings with several different meals during a day to examine the dynamics
of biomarker concentrations throughout a 24-hour period. By addressing these areas,
future research could contribute to a more comprehensive understanding of how
biomarkers and metabolites change in the hours following dietary intake. This would
provide the basis for improving the utilization of biomarkers and metabolites in clinical

care and research settings.
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Abstract

Purpose Dietary intake may have pronounced effects on circulating biomarker concentrations. Therefore, the aim was to
provide a descriptive overview of serum metabolite concentrations in relation to time since last meal, focusing on amino
acids, lipids, one-carbon metabolites, and biomarkers of vitamin status.

Methods We used baseline data from the observational community-based Hordaland Health Study, including 2960 partici-
pants aged 46—49 years and 2874 participants aged 70-74 years. A single blood draw was taken from each participant, and
time since last meal varied. Estimated marginal geometric mean metabolite concentrations were plotted as a function of time
since last meal, up to 7 h, adjusted for age, sex, and BMI.

Results We observed a common pattern for nearly all amino acids and one-carbon metabolites with highest concentrations
during the first 3 h after dietary intake. Homocysteine and cysteine were lowest the 1st hour after a meal, while no patterns
were observed for glutamate and glutamic acid. The concentrations of phylloquinone and triglycerides were highest 1 h after
dietary intake. Thiamine and thiamine monophosphate concentrations were highest, while flavin mononucleotide concentra-
tions were lowest within the first 2 h after a meal. No clear patterns emerged for the other fat-soluble vitamins, blood lipids,
or B-vitamin biomarkers.

Conclusion Our findings suggest that distinguishing between “fasting” and “non-fasting” blood samples may be inadequate,
and a more granular approach is warranted. This may have implications for how to account for dietary intake when blood
sampling in both clinical and research settings.

Keywords Biomarkers - Metabolites - Categorization - Fasting - Postprandial - Epidemiology

Introduction
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regression dilution bias, and if it is modeled as a confounder,
this may lead to residual confounding. Differential measure-
ment error could bias the risk association in any direction and
lead to incorrect conclusions from the study [1].

Dietary intake can affect blood metabolite concentra-
tions, and marked metabolic and hormonal changes occur
in the postprandial state [2—7]. Thus, the European Federa-
tion of Clinical Chemistry and Laboratory Medicine and the
Latin America Confederation of Clinical Biochemistry have
recommended that blood sampling should be conducted in
subjects who have not eaten in the past 12 h [8]. Further,
most epidemiological studies primarily utilize fasting blood
samples taken at least 6 or 8 h since last dietary intake. How-
ever, healthy individuals in Western countries spend most of
their awake time in the postprandial state (~ 18 h a day), and
most people only enter the fasting state during an overnight
sleep [9]. Thus, measuring circulating metabolites in fasting
samples may not accurately measure the true exposure. For
instance, recent findings suggest that a non-fasting lipid pro-
file is superior to fasting for predicting cardiovascular risk,
and several clinical guidelines and expert consensus state-
ments now recommend non-fasting lipid testing for most
clinical evaluations [10, 11]. Further, in epidemiological
studies, collecting blood samples in participants 12 h fast-
ing may be demanding for participants and is not always
feasible.

As collecting blood samples in the hours following a
meal is more convenient and may more accurately measure
the true exposure, it is crucial to understand how specific
metabolite concentrations may change during the postpran-
dial state. If patterns in concentrations following a habitual
meal could be identified, one could more precisely account
for dietary intake and time since last meal in epidemiologi-
cal studies. This could improve the internal and external
validity of epidemiological studies utilizing metabolomic
data. Thus, the main objective of the present study was to
provide a descriptive overview of metabolite and biomarker
concentrations in blood in the hours after dietary intake in
community-dwelling middle-aged and elderly individuals
from the Hordaland Health Study. This research question has
previously been explored regarding homocysteine concentra-
tions in the same cohort [12], but herein we aim to provide
a more comprehensive overview and explore amino acids,
lipids, metabolites related to the one-carbon metabolism,
and biomarkers of vitamin status.

Methods
Study population

The study population included participants from the obser-
vational community-based Hordaland Health Study, where

@ Springer

the baseline measurements were conducted during 1997-99
in Bergen, Norway. The cohort consisted of individuals aged
4649 years (born 1950-51, referred to as the “middle-aged
group,” n=3089), and individuals aged 70-74 years at base-
line (born in 1925-27, referred to as the “elderly group,”
n=2969) who were living in the city of Bergen or neigh-
boring suburban municipalities. The data collection was
conducted as a collaboration between the National Health
Screening Service (now the Norwegian Institute of Public
Health), the University of Bergen, and local health services.
The study design and methodology have been described in
more detail elsewhere [13].

A flowchart illustrating the inclusion and exclusion pro-
cess of participants is shown in Fig. 1. In short, we excluded
participants with missing information on time since last meal
and participants with > 7 h since last meal. This left us with
a total of 5834 participants: 2960 participants in the middle-
aged group and 2874 participants in the elderly group.

Data collection

The collection of demographics, clinical, and biochemical
characteristics has been described in more detail elsewhere
[13, 14]. In short, sociodemographic data were obtained by
self-administered questionnaires. Participants underwent
brief health examinations including measurements of height,
weight, waist and hip circumferences, and blood pressure.
Hypertension was defined as the use of medication for hyper-
tension or the mean of at least two consecutive measure-
ments of systolic blood pressure > 140 mm Hg or diastolic
blood pressure > 90 mm Hg. Participants were classified as
diabetic based on self-reported questionnaires (previous or
current diabetes), as well as a blood glucose > 11.1 mmol/L
within 2 h after dietary intake, or blood glucose >7 mmol/L
more than 2 h after dietary intake. Information on nicotine
exposure was collected by self-reported questionnaires and
was verified by plasma cotinine (self-reported non-smokers
with plasma cotinine levels > 85 nmol/L were classified as
smokers) [15].

Blood sampling and biochemical analyses

Blood samples were collected at the first visit (between 8
a.m. and 6 p.m.), and the number of hours since last meal
before blood sampling was recorded. Blood samples were
only collected once from each participant, and all partici-
pants attended the first visit and provided blood samples
with a different number of hours since last meal. There were
a low number of participants who reported that their last
meal was more than 7 h previously, so we only included
participants with <7 h after the meal. The time categories
were given as follows: (1) 0—<1h, (2) 1-<2h, (3) 2-<3h,
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Fig. 1 Flowchart illustrating the inclusion and exclusion process of participants in the two age cohorts in the Hordaland Health Study 1997-1999

(4)3-<4h,(5)4-<5h,(6) 5-<6 h, and (7) 6-<7 h after
a meal.

Serum was obtained by collecting blood into Vacutainer
tubes with no additive. Blood was allowed to clot at room
temperature for 30 min before isolation of the serum frac-
tion. Plasma samples were collected into evacuated tubes
containing EDTA, chilled at 4-5 °C within 15-30 min, and
then centrifuged at 4000xg at 10 °C for 10 min within 1-3 h.
Aliquots of serum and plasma were stored at — 80 °C until
analysis. Serum samples of total cholesterol, high-density
lipoprotein (HDL) cholesterol, glucose, and triglycerides
were analyzed within 7 days at the Department of Clinical
Chemistry, Oslo University Hospital, Ulleval, with reagents
from Boehringer Mannheim (Roche) as adapted to a Hitachi
911 analyzer. Cholesterol and triglycerides were measured
by enzymatic methods, while HDL cholesterol was meas-
ured by a direct, enzymatic inhibition method. Low-density
lipoprotein (LDL) cholesterol was calculated using the Mar-
tin/Hopkins equation as described by Martin et al. [16]. This
method has been shown to have better accuracy than the
Friedewald equation for estimating LDL cholesterol and is
the preferred method for estimating LDL cholesterol [17].
Non-HDL cholesterol was calculated as total cholesterol
minus HDL cholesterol. Analyses of amino acids, one-car-
bon metabolites, and B-vitamin biomarkers were conducted
at the Bevital A/S Laboratory, Bergen, Norway (http://bevit

al.no/). All amino acids, including the one-carbon metabo-
lites cystathionine, cysteine, glycine, homocysteine, methio-
nine, and serine, in addition to methylmalonic acid (MMA)
were measured in plasma using gas chromatography—tan-
dem mass spectrometry [18]. Plasma betaine, choline, and
dimethylglycine, as well as the B-vitamin biomarkers thia-
mine, thiamine monophosphate (TMP), riboflavin, flavin
mononucleotide (FMN), nicotinamide, methyl-nicotinamide,
pyridoxal, pyridoxal-5’-phosphate (PLP), and 4-pyridoxic
acid were measured using liquid chromatography—tandem
mass spectrometry (LC-MS/MS) [19, 20]. Plasma folate and
cobalamin were measured by a microbiological assay [21,
22], while the lipid-soluble vitamins retinol, 25-hydroxyvi-
tamin D, a-tocopherol, and phylloquinone were measured in
plasma using LC-MS/MS [18]. More comprehensive infor-
mation on the analytical platforms that were used to analyze
the amino acids, one-carbon metabolites, and vitamin bio-
markers is provided in Supplementary Table 1.

Statistical analyses and presentation of the results

All statistical analyses were performed using R, version
1.4.1717 (The R Foundation for Statistical Computing,
Vienna, Austria), including the packages within the tidyverse
(tidyr, dplyr, broom, and ggplot2) [23], ggtext, and emmeans.
Continuous variables are reported as geometric means (95%
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prediction intervals, PI) and categorical variables as counts
(percentages). The marginal geometric mean (95% geomet-
ric CI) concentration was estimated for each time category
from a linear regression model adjusted for sex, age group,
and BMI and presented visually as a function of time since
last meal. The p-value for time since last meal is presented
on the figures. Unadjusted geometric mean metabolite con-
centrations with 95% geometric Cls at each timepoint were
also plotted as a function of time since last meal for the
two age cohorts and for males and females separately. To
explore the potential effects of sex and age, product terms for
time*sex, and time*age groups, were included in the model,
and the p-values added to the figures.

Ethics

The Hordaland Health Study was carried out in accordance
with the Declaration of Helsinki and was approved by the
Regional Committee for Medical and Health Research Eth-
ics (REK, REK No. 2009/825) and the Norwegian Data
Inspectorate. All participants provided written informed
consent. The analyses presented here were approved by REK
(REK No. 184165).

Results
Characteristics of the study participants

A total of 5834 participants were included in the statisti-
cal analyses. The main characteristics of the study par-
ticipants are presented in Table 1. The middle-aged cohort
(aged 46-49 years, n=2960) consisted of 42.5% male
participants, while the elderly cohort (aged 70-74 years,
n=2874) consisted of 44.6% male participants. The average
BMI was slightly lower in the middle-aged cohort (25.1 kg/
m?) compared to the elderly cohort (25.8 kg/m?). A total

of 279 participants (9.4%) had hypertension in the middle-
aged cohort, of which 130 participants were classified as
hypertensive based on the use of blood pressure medica-
tions, while 149 participants were classified based on blood
pressure measurements. Further, 39 participants (1.3%) were
classified as diabetic, of which 23 participants were previ-
ously diagnosed with diabetes, while 16 participants were
classified as having diabetes based on blood glucose levels
observed during initial study sampling. In the elderly cohort,
1023 participants (35.6%) had hypertension, of which 805
used blood pressure medications. Further, 252 participants
(8.8%) were diabetic, of which 184 participants had an exist-
ing diagnosis of diabetes.

Metabolite concentrations as a function of time
since last meal

The estimated marginal geometric mean metabolite concen-
trations in the seven different time categories are provided
in Table 2. Results for the two age cohorts are presented in
Supplementary Table 2, and results for males and females
separately are presented in Supplementary Table 3. The
number of missing values of the metabolite concentrations at
each timepoint is provided in Supplementary Table 4 (total
cohort) and Supplementary Table 5 (missing values for the
two age groups, and males and females separately).

Glucose

The results for glucose concentrations as a function of
time since last meal are presented in Fig. 2 and Table 2. As
expected, we observed the highest concentrations of glu-
cose during the 1st hour (5.99 mmol/L), with concentrations
decreasing and reaching the lowest values at 4-5 h after the
meal (4.99 mmol/L) and thereafter stabilizing. We observed
no considerable differences in the two age groups (Supple-
mentary Fig. 1) or between sexes (Supplementary Fig. 2).

Table 1 Main characteristics
of the 5834 study participants

Middle-aged group Elderly group

in the Hordaland Health Study 5142;;968/ cars). ’(172;784; Z cars).

1997-1999
Age, years 47 (46, 49) 72 (70, 74)
Male, n (%) 1258 (42.5%) 1283 (44.6%)
Waist circumference, cm 84.7 (64.7, 111) 88.4 (67.7, 116)
Hip circumference, cm 101 (88.0, 115) 100 (87.0, 116)
Body mass index, kg/m? 25.1(18.9,33.3) 25.8 (19.2, 34.6)
Current smokers, n (%) 1071 (36.2%) 513 (17.8%)
Former smokers, n (%) 782 (26.4%) 1086 (37.8%)
Diabetes mellitus (type 1 or 2), n (%) 39 (1.3%) 252 (8.8%)
Hypertension, n (%) 279 (9.4%) 1023 (35.6%)

Continuous variables are presented as geometric means (95% prediction interval) and categorical variables

as counts (%)
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Table 2 Estimated marginal geometric mean metabolite concentrations during the first 7 h after dietary intake in 5834 participants in the Horda-
land Health Study 1997-1999

Hours since last  0-<1 1-<2 2-<3 3-<4 4-<5 5-<6 6-<7

meal

n participants® 537 1628 1533 1121 701 234 81

Serum glucose  5.99 (5.89, 5.46 (5.41, 5.28 (5.23, 5.03 (4.97, 4.99 (4.92, 5.06 (4.94, 5.01 (4.81,5.23)
6.09) 55.1) 5.33) 5.09) 5.06) 5.19)

Amino acids
Plasma alanine,
umol/L
Plasma argi-
nine, pumol/L
Plasma aspara-
gine, umol/L
Plasma aspartic
acid, pmol/L
Plasma glu-
tamic acid,
umol/L
Plasma
glutamine,
umol/L
Plasma histi-
dine, umol/L
Plasma isoleu-
cine, pmol/L
Plasma leucine,
umol/L
Plasma lysine,
umol/L
Plasma phe-
nylalanine,
umol/L
Plasma proline,
umol/L
Plasma threo-
nine, pumol/L
Plasma trypto-
phan, umol/L
Plasma tyros-
ine, umol/L
Plasma valine,
umol/L
Lipids
Serum total
cholesterol,
mmol/L
Serum LDL
cholesterol,
mmol/L
Serum HDL
cholesterol,
mmol/L
Serum tri-
glycerides,
mmol/L

404 (396, 411)

48.2 (47.2,
49.3)

50.2 (49.3,
51.0)

8.66 (8.47,
8.86)

95.0 (92.1,
97.9)

522 (514, 530)

82.5 (8.6,
83.4)

77.5 (757,
79.4)

139 (136, 142)
183 (180, 186)

65.4 (64.5,
66.4)

220 (215, 225)
127 (125, 130)

69.3 (68.1,
70.5)

67.8 (66.4,
69.2)

263 (259, 267)
5.78 (5.69,
5.87)

3.70 (3.62,
3.78)

1.25 (1.22,
1.28)

1.64 (1.58,
1.70)

422 (417, 426)

50.5 (49.9,
51.2)

50.7 (50.2,
51.2)

8.93 (8.82,
9.05)

93.7 (92.1,
95.3)

527 (522, 531)

83.4 (82.8,
83.9)

77.9 (76.8,
78.9)

140 (138, 142)
191 (189, 193)

66.5 (66.0,
67.1)

226 (223, 229)

132 (130, 133)

71.7 (71.0,
72.4)

70.3 (69.5,
71.1)

265 (263, 268)

5.84 (5.78,

5.89)

3.74 (3.69,
3.78)

1.27 (1.26,
1.29)

1.61 (1.8,
1.65)

393 (389, 397)

48.3 (47.7,
48.9)

47.8 (473,
48.3)

8.64 (8.52,
8.76)

92.8 (91.2,
94.5)

517 (513, 522)

80.8 (80.3,
81.4)

73.1(72.1,
74.1)

132 (130, 134)
183 (181, 185)

632 (627,
63.8)

216 (214, 219)

126 (125, 128)

68.6 (67.9,
69.3)

66.9 (66.1,
67.7)

259 (256, 261)

5.88(5.83,

5.94)

3.80 (3.75,
3.84)

1.26 (1.25,
1.28)

1.57 (1.54,
1.61)

359 (355, 364)

44.9 (44.3,
45.6)

44.7 (44.1,
45.2)

8.15 (8.03,
8.28)

90.0 (81.1,
91.9)

506 (501, 512)

77.3 (767,
77.9)

66.5 (65.5,
67.6)

122 (120, 123)
171 (169, 173)

58.6 (58.0,
59.2)

198 (195, 201)
119 (118, 121)
63.4 (62.7,

64.2)

63.3 (62.4,
64.2)

244 (241, 247)

5.93 (5.86, 5.99

3.84 (3.78,
3.89)

1.30 (1.28,
1.32)

1.55 (1.51,
1.59)

347 (341, 352)

439 (43.1,
44.7)

44.5 (438,
45.2)

7.84 (7.69,
8.00)

89.0 (86.7,
91.4)

516 (510, 523)

779 (77.2,
78.7)

66.9 (65.5,
68.2)

122 (120, 124)
168 (166, 171)

58.0 (57.2,
58.7)

190 (186, 194)

119 (117, 121)

61.9 (61.0,
62.8)

60.7 (57.9,
61.8)

245 (241, 248)

5.92(5.84,

6.00)

3.83 (3.76,
3.90)

1.30 (1.27,
1.32)

1.48 (1.43,
1.53)

333 (324, 342)

41.6 (40.3,
43.0)

432 (42.1,
44.4)

7.80 (7.54,
8.07)

89.9 (85.9,
94.0)

512 (501, 523)

754 (74.2,
76.7)

65.3 (63.1,
67.7)

120 (116, 123)
160 (156, 164)

56.1 (54.9,
57.3)

181 (175, 187)
116 (112, 119)

60.0 (58.5,
61.6)

59.5 (578,
61.4)

238 (233, 244)
5.88 (5.75,
6.02)

3.81 (3.70,
3.93)

1.27 (1.23,
1.31)

1.48 (1.40,
1.57)

332 (317, 349)

42.6 (40.3, 45.0)

42.5 (40.6,44.4)

7.81(7.37, 8.27)

91.9 (85.0, 99.3)

513 (494, 532)

74.8 (72.8, 76.9)

62.2 (58.6, 66.1)

116 (110, 123)

156 (149, 163)

57.8 (55.7, 60.0)

182 (172, 193)

116 (111, 123)

60.5 (57.9, 63.2)

57.9 (55.0,61.0)

232 (222, 242)

5.96 (5.73, 6.20)

3.95 (3.74, 4.16)

1.25(1.19, 1.32)

1.43 (1.29, 1.58)
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Table 2 (continued)

Hours since last  0-<1 1-<2 2-<3 3-<4 4-<5 5-<6 6-<7
meal
One-carbon metabolites
Plasma betaine, 38.8 (37.9, 39.6 (39.0, 39.5(39.0, 37.5(36.9, 37.1 (364, 34.9(33.7, 36.3 (34.2,38.5)
umol/L 39.7) 40.1) 40.1) 38.1) 37.9) 36.1)
Plasma choline, 9.99 (9.81, 10.1 (10.0, 9.75 (9.65, 9.58 (9.46, 9.22 (9.07, 8.76 (8.53,9.0) 8.86 (8.46, 9.30)
umol/L 10.2) 10.2) 9.90) 9.70) 9.40)
Plasma cys- 0.22 (0.21, 0.23 (0.23, 0.24 (0.23, 0.22 (0.21, 0.22 (0.21, 0.19 (0.18, 0.19 (0.17,0.21)
tathionine, 0.23) 0.24) 0.24) 0.23) 0.23) 0.20)
umol/L
Plasma 303 (299, 307) 298 (296,300) 302 (299,304) 303 (300,306) 308 (304,311) 313 (307,320) 316 (305, 327)
cysteine,
umol/L
Plasma dimeth- 4.48 (4.38, 4.60 (4.54, 4.52 (4.46, 4.45 (4.38, 4.39 (4.30, 4.24 (4.09, 4.38 (4.14, 4.65)
ylglycine, 4.59) 4.66) 4.58) 4.52) 4.48) 4.38)
umol/L
Plasma glycine, 250 (245,256) 254 (251,257) 251 (248,254) 245(242,249) 239(234,243) 242 (234,250) 236 (224, 250)
umol/L
Plasma homo-  10.8 (10.5, 10.9 (10.7, 11.1(10.9, 11.0 (10.8, 114 (11.2, 11.6(11.2, 12.2(11.5,13.0)
cysteine, 11.0) 11.0) 11.2) 11.1) 11.6) 12.1)
umol/L
Plasma methio- 24.8 (24.2, 25.8 (25.4, 23.8 (23.5, 21.3 (21.0, 20.9 (20.5, 20.0 (19.2, 20.2 (19.0, 21.6)
nine, umol/L 25.4) 26.2) 24.2) 21.7) 21.4) 20.7)

Plasma serine, 117 (115, 119)

umol/L
Lipid-soluble vitamins

Plasma retinol, 2.11 (2.07,
umol/L 2.15)

Plasma 25-OH  63.5 (61.9,
vitD, nmol/L 65.1)

Plasma 36.2 (35.4,
a-tocopherol, 37.0)
umol/L

Plasma phyl- 1.71 (1.64,
loquinone, 1.80)
nmol/L

B-vitamin biomarkers

Plasma thia- 3.34 (3.16,
mine, nmol/L 3.52)

Plasma TMP, 7.52 (7.27,
nmol/L 7.79)

Plasma ribofla-  15.2 (14.2,
vin, nmol/L 16.3)

Plasma FMN, 12.6 (12.2,

nmol/L 13.1)
Plasma 367 (352, 382)
nicotinamide,
nmol/L
Plasma methyl- 85.8 (81.6,
nicotinamide, 90.2)
nmol/L

Plasma pyri- 14.1 (13.4,
doxal, nmol/L 14.8)

Plasma PLP, 54.8 (52.2,
nmol/L 57.7)

118 (117, 119)

2.16 (2.14,
2.19)

64.6 (637,
65.6)

35.8 (354,
36.2)

1.69 (1.64,
1.73)

3.42 (3.31,
3.53)

7.69 (7.54,
7.85)

15.0 (14.4,
15.6)

12.1 (11.8,
12.3)

383 (375, 392)

94.0 (91.3,
96.8)

14.1 (13.7,
14.6)

56.3 (547,
57.9)

114 (113, 115)

2.18 (2.15,
2.20)

64.6 (637,
65.6)

36.0 (35.5,
36.4)

1.62 (1.57,
1.66)

3.18 (3.08,
3.28)

7.23 (7.08,
7.38)

14.3 (137,
14.8)

12.4 (122,
12.7)

388 (379, 397)

87.6 (85.0,
90.3)

132 (12.8,
13.6)

53.6 (52.0,
55.2)

109 (108, 110)

2.19 (2.16,
2.22)

65.5 (64.4,
66.7)

36.8 (36.3,
37.4)

1.51 (1.47,
1.56)

3.03 (2.92,
3.15)

6.84 (6.68,
7.01)

14.2 (13.6,
14.9)

13.5 (13.2,
13.8)

400 (388, 411)

90.0 (86.9,
93.3)

12.8 (12.4,
13.3)

51.8 (50.1,
53.7)

109 (108, 111)

2.17 (2.14,
2.21)

65.8 (64.3,
67.3)

36.3 (35.6,
37.0)

1.53 (1.46,
1.58)

2.86 (2.72,
3.00)

6.90 (6.69,
7.11)

14.2 (134,
15.1)

14.4 (14.0,
14.8)

374 (361, 388)

85.2 (81.5,
89.0)

12.6 (12.1,
13.2)

51.3 (49.1,
53.6)

110 (107, 113)

2.14 (2.08,
2.20)

63.5 (61.6,
66.0)

37.1 (35.9,
38.3)

1.50 (1.39,
1.61)

2.65 (2.44,
2.87)

6.58 (6.24,
6.93)

14.4 (13.1,
16.0)

14.9 (14.2,
15.7)

409 (385, 435)

86.7 (80.3,
93.6)

12.7 (117,
13.7)

51.1 (474,
55.1)

108 (104, 113)

2.19 (2.08,2.29)

65.5 (61.3, 69.9)

36.7 (34.7, 38.7)

1.28 (1.13, 1.45)

2.60 (2.34, 3.09)

6.34 (5.80, 6.93)

16.2 (13.7,19.2)

15.2 (13.9, 16.6)

401 (362, 445)

87.3(76.7,99.3)

13.2 (11.6, 15.0)

51.0 (44.9, 58.0)
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Table 2 (continued)

Hours since last  0-<1 1-<2 2-<3 3-<4 4-<5 5-<6 6-<7
meal
Plasma 4-pyri-  27.5 (25.9, 27.6 (26.7, 26.5 (25.6, 27.2 (26.1, 264 (25.1, 25.8 (23.6, 25.8 (22.2,30.0)
doxic acid, 29.1) 28.5) 27.5) 28.3) 27.8) 28.2)
nmol/L
Plasma folate,  7.13 (6.82, 7.03 (6.85, 6.86 (6.68, 7.00 (6.78, 6.91 (6.64, 6.99 (6.53, 6.52 (5.80, 7.32)
nmol/L 7.46) 7.22) 7.05) 7.23) 7.19) 7.48)
Plasma cobala- 352 (341, 3.64) 352(346,359) 351 (344,357) 355(347,363) 352(342,362) 370 (353,389) 344 (316,374)
min, pmol/L
Plasma MMA,  0.20 (0.19, 0.20 (0.20, 0.19 (0.19, 0.19 (0.19, 0.19 (0.18, 0.18 (0.18, 0.20 (0.18,0.21)
umol/L 0.20) 0.20) 0.20) 0.19) 0.19) 0.19)

All values are presented as estimated marginal geometric means (95% confidence intervals), adjusted for age cohort, sex, and body mass index

FMN flavin mononucleotide, HDL high-density lipoprotein, LDL low-density lipoprotein, MMA methylmalonic acid, PLP pyridoxal 5’-phos-

phate, TMP thiamine monophosphate

*An overview of missing observations at each timepoint for each of the metabolites is found in Supplementary Table 4

Amino acids

Among the amino acids, we observed a common pattern for
alanine, arginine, asparagine, aspartic acid, histidine, iso-
leucine, leucine, lysine, phenylalanine, proline, threonine,
tryptophan, tyrosine, and valine (Fig. 3, Table 2). The con-
centrations of these amino acids were highest 1-2 h after
a meal, with the lowest concentrations observed at 5-7 h.
The difference between the highest and the lowest values
was > 10% for all these amino acids, with the largest dif-
ferences found for alanine (90 umol/L, 27%), isoleucine
(15.7 pmol/L, 25.2%), and proline (45 umol/L, 24.9%). Find-
ings were consistent in both age cohorts (Supplementary
Fig. 3) and both sexes (Supplementary Fig. 4). No consistent
patterns were observed for glutamic acid or glutamine.

Lipids

For the lipids (Fig. 4, Table 2), we observed that the con-
centrations of total cholesterol and LDL cholesterol in the
total cohort were lowest in the first 2 h after a meal (5.78 and
3.70 mmol/L, respectively) and highest 6-7 h after a meal
(5.96 and 3.95 mmol/L). The maximum mean difference
between the lowest and the highest values was 0.18 mmol/L
(3.1%) for total cholesterol and 0.25 mmol/L (6.8%) for LDL
cholesterol. We observed some age differences, with concen-
trations being highest at 6-7 h after a meal in the middle-
aged group, while in the elderly group, the concentrations
were highest at 3-5 h after a meal (Supplementary Fig. 5).
Further, HDL cholesterol concentrations were highest at
4-5 h after a meal (1.30 mmol/L) and lowest at 1-2 and
6-7 h after food intake (1.25 mmol/L). For the triglycerides,
we observed the highest concentrations the first 2 h after
a meal (1.64 mmol/L) and lower concentrations thereafter
(2-7 h), with the lowest concentrations observed at 67 h

after a meal (1.43 mmol/L), a difference of 0.21 mmol/L
(14.7%). We observed no considerable sex or age differences
for HDL or the triglycerides (Supplementary Fig. 5 and Sup-
plementary Fig. 6).

One-carbon metabolites

For the one-carbon metabolites (Fig. 5, Table 2), we
observed that the levels of homocysteine and cysteine were
lowest during the 1st hours after a meal (10.8 umol/L and
298 umol/L, respectively), with concentrations peaking at
6—7 h (12.2 ymol/L and 316 umol/L). For betaine, choline,
cystathionine, dimethylglycine, glycine, methionine, and
serine, we observed a pattern with the highest concentra-
tions 1-2 h after a meal, and the lowest concentrations usu-
ally observed at 5-7 h after a meal. The relative difference
between the highest and the lowest values was lowest for
cysteine (18 umol/L, 6.0%), glycine (18 umol/L, 7.6%), and
dimethylglycine (0.36 pmol/L, 8.5%) and highest for methio-
nine (5.8 pmol/L, 29.0%) and cystathionine (0.05 pmol/L,
26.3%). We observed no noteworthy age or sex differences
in the concentrations of any of the one-carbon metabolites
as a function of time since last meal (Supplementary Figs. 7
and 8, respectively).

Lipid-soluble vitamins

Among the lipid-soluble vitamins (Fig. 6, Table 2), no clear
patterns were observed for retinol, 25-hydroxyvitamin D,
or a-tocopherol. For phylloquinone, we observed peak con-
centrations in the 1st hour after a meal (1.71 nmol/L) and
lower concentrations thereafter (2—7 h), with the lowest
values observed at 6-7 h after a meal (1.28 nmol/L), giv-
ing a maximum mean difference of 0.43 nmol/L (33.6%).
These observations were also observed in both age cohorts
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Fig.2 The concentration of glucose as a function of time since last
meal using cross-sectional data from 5834 participants in the Horda-
land Health Study 1997-1999. The solid line indicates estimated
marginal geometric means (from a linear regression model adjusted
for age cohort, sex, and BMI), while the shaded area represents 95%

(Supplementary Fig. 9) and both sexes (Supplementary
Fig. 10).

B-vitamin status

Results for the B-vitamin markers are given in Fig. 7
and Table 2. We observed that the concentrations of

@ Springer

4
Hours since last meal

geometric confidence intervals. The p-value indicated in the figure is
for time since last dietary intake. Note, the origin of the y-axis # 0.
An overview of the number of observations at each timepoint, and the
number of missing observations for each metabolite at each timepoint
is provided in Supplementary Table 4

thiamine and TMP were highest in the first 2 h after a
meal (3.42 nmol/L and 7.69 nmol/L, respectively), before
steadily declining to their lowest concentrations at 67 h
(2.60 nmol/L and 6.34 nmol/L), giving a difference
between the highest and the lowest values of 31.5% for
thiamine and 21.3% for TMP. For FMN, the opposite was
true, with the lowest concentration observed during the
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Fig.3 The concentration of amino acids as a function of time since
last meal using cross-sectional data from 5834 participants in the
Hordaland Health Study 1997-1999. The solid line indicates esti-
mated marginal geometric means (from a linear regression model
adjusted for age cohort, sex, and BMI), while the shaded area rep-
resents 95% geometric confidence intervals. The p-value indicated

first 2 h after a meal (12.1 nmol/L), and higher concentra-
tions being observed with increasing time since dietary
intake, with the highest concentrations observed at 6-7 h
after dietary intake (15.2 nmol/L). No clear patterns
emerged for the other B-vitamin biomarkers, including
riboflavin, nicotinamide, methyl nicotinamide, pyridoxal,

in the figure is for time since last dietary intake. Note, the origin of
the y-axis # 0, and the y-axes are scaled to be compatible with the
metabolite concentration ranges. An overview of the number of
observations at each timepoint, and the number of missing observa-
tions for each metabolite at each timepoint is provided in Supplemen-
tary Table 4

PLP, 4-pyridoxic acid, folate, cobalamin, or MMA. Find-
ings were consistent in both age groups (Supplementary
Fig. 11) and both sexes (Supplementary Fig. 12).

@ Springer



3088 European Journal of Nutrition (2023) 62:3079-3095
Serum cholesterol, mmol/L Serum HDL cholesterol, mmol/L
6.2/ Pime = 0.001 Ptime = 0.016
6.11 1.30
6.01
1.26
5.91
5.81 1.22
[
R
® 57
=
QCJ Serum LDL cholesterol, mmol/L Serum triglycerides, mmol/L
8 Pime < 0.001 17 Pime < 0.001
[e]
O 4
1.6
4.01
3.91 1.5
3.81
1.4
3.74
1.3
36 2 3 4 5 6 7 i 2 3 P 5 6 7

Hours since last meal

Fig.4 The concentration of blood lipids as a function of time since
last meal using cross-sectional data from 5834 participants in the
Hordaland Health Study 1997-1999. The solid line indicates esti-
mated marginal geometric means (from a linear regression model
adjusted for age cohort, sex, and BMI), while the shaded area rep-
resents 95% geometric confidence intervals. The p-value indicated in

Discussion

In this study, using cross-sectional data from a large Nor-
wegian cohort including two distinct age groups of commu-
nity-dwelling adults, we investigated circulating metabolite
concentrations as a function of time since last meal. For

@ Springer

the figure is for time since last dietary intake. Note, the origin of the
y-axis # 0, and the y-axes are scaled to be compatible with the metab-
olite concentration ranges. An overview of the number of observa-
tions at each timepoint, and the number of missing observations
for each metabolite at each timepoint is provided in Supplementary
Table 4. HDL high-density lipoprotein, LDL low-density lipoprotein

most amino acids, we observed highest concentrations dur-
ing the first 3 h after a meal, which was also observed for
the one-carbon metabolites betaine, choline, cystathionine,
dimethylglycine, glycine, methionine, and serine. Among
the lipids, we observed the lowest concentrations of total
and LDL cholesterol and the highest concentrations of
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Fig.5 The concentration of one-carbon metabolites as a function of
time since last meal using cross-sectional data from 5834 participants
in the Hordaland Health Study 1997-1999. The solid line indicates
estimated marginal geometric means (from a linear regression model
adjusted for age cohort, sex, and BMI), while the shaded area rep-
resents 95% geometric confidence intervals. The p-value indicated

triglycerides the first 2 h after a meal. Lastly, we observed
the lowest concentrations of FMN and the highest concentra-
tions of thiamine, TMP, and phylloquinone during the first
2 h after the last meal.

Our findings for glucose are consistent with what is
already known from the previous literature, with peak

in the figure is for time since last dietary intake. Note, the origin of
the y-axis # 0, and the y-axes are scaled to be compatible with the
metabolite concentration ranges. An overview of the number of
observations at each timepoint, and the number of missing observa-
tions for each metabolite at each timepoint is provided in Supplemen-
tary Table 4

glucose concentrations ~ 1 h after the start of a meal, return-
ing to preprandial levels within a few hours [24]. Thus,
the results for glucose may be used as a validation marker
for the other results. Further, our amino acid observations
are consistent with findings reported elsewhere. However,
most of these studies reported concentrations following the
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Fig.6 The concentration of lipid-soluble vitamins as a function of
time since last meal using cross-sectional data from 5834 participants
in the Hordaland Health Study 1997-1999. The solid line indicates
estimated marginal geometric means (from a linear regression model
adjusted for age cohort, sex, and BMI), while the shaded area rep-
resents 95% geometric confidence intervals. The p-value indicated

ingestion of specific foods or nutrients, for instance, dairy
products [25], or comparing different types or amounts of
protein [26-29]. The results from the present study indicate
that circulating amino acid concentrations likely change
after a habitual meal. In light of established knowledge
about protein metabolism, wherein proteins are cleaved into
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in the figure is for time since last dietary intake. Note, the origin of
the y-axis # 0, and the y-axes are scaled to be compatible with the
metabolite concentration ranges. An overview of the number of
observations at each timepoint, and the number of missing observa-
tions for each metabolite at each timepoint is provided in Supplemen-
tary Table 4

amino acids which are transported in blood after absorption,
these findings are arguably, as expected [30]. Our observa-
tions concerning the B-vitamin biomarkers are also in line
with previously published reports. In an intervention study,
comparing circulating B-vitamin concentrations 5 h after
two different meals, Sharma et al. [31] reported that the
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Fig.7 The concentration of B-vitamin biomarkers as a function of
time since last meal using cross-sectional data from 5834 participants
in the Hordaland Health Study 1997-1999. The solid line indicates
estimated marginal geometric means (from a linear regression model
adjusted for age cohort, sex, and BMI), while the shaded area rep-
resents 95% geometric confidence intervals. The p-value indicated

concentrations of thiamine were the lowest right after an
overnight fast, with the concentrations peaking in the first
2 h after a meal and decreasing thereafter until 5 h after a
meal, which was also observed in the present study. The
peak in both thiamine and TMP during the first 2 h after a
meal, as observed in the present study, is likely attributable

6
Hours since last meal

in the figure is for time since last dietary intake. Note, the origin of
the y-axis # 0, and the y-axes are scaled to be compatible with the
metabolite concentration ranges. An overview of the number of
observations at each timepoint, and the number of missing observa-
tions for each metabolite at each timepoint is provided in Supplemen-
tary Table 4

to thiamine content in the food, as both free thiamine and
TMP enter the bloodstream during absorption of thiamine
[32]. For FMN, Sharma et al. reported the highest concentra-
tions immediately before a meal, decreased concentrations
immediately after meal ingestion, and increased concentra-
tions thereafter, comparable to the present findings. FMN
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serves as a cofactor in the electron transport chain, and the
lower concentrations during the 1st hour after a meal may
indicate increased utilization of FMN as a cofactor. Com-
parable to the present study, Sharma et al. also observed
relatively stable concentrations of the Vitamin B6 vitamers
(pyridoxal, PLP, and pyridoxic acid) [31]. For postprandial
lipid concentrations, most studies have investigated the
response to high-fat meals [33-36]. However, some stud-
ies have investigated blood lipid profiles following non-
standardized meals. Using cross-sectional data from 33.391
participants in the Copenhagen General Population Study,
Langsted et al. [37] reported the highest concentrations of
triglycerides during the 1st hours after a meal, with a maxi-
mum mean difference of 0.3 mmol/L, which is comparable
to the present findings (0.21 mmol/L). Peak concentrations
directly after a meal are likely attributable to fat intake from
the meal [37, 38]. Lower concentrations of total and LDL
cholesterol the 1st hours after a meal, as observed in the pre-
sent study, have also been reported by others [37, 39]. Lang-
sted et al. suggested that the observed drop in concentrations
could be caused by a hemodilution effect from fluid intake
in relation to the meal [37]; however, it has been argued that
mechanisms other than hemodilution must be involved [39,
40]. One possible explanation may be attributed to increased
hydrolyzation of triglycerides in chylomicrons after a meal,
catalyzed by the enzyme lipoprotein lipase (LPL), which
subsequently inhibits the formation of LDL from very low-
density lipoproteins (VLDLs), as VLDL and chylomicrons
compete for LPL [41, 42].

It is crucial to mention that although the findings from
the present study indicate that the concentrations of several
metabolites change the first 7 h after a meal, these potential
changes are not necessarily good, bad, or abnormal. Metab-
olite concentrations are not static but fluctuate during the
day, e.g., after dietary intake, reflecting normal biological
variations. With that said, knowing how metabolite con-
centrations change after a meal is crucial when interpreting
metabolite data. In this study, we observed a maximum mean
difference of 0.18 mmol/L for total cholesterol, 0.25 mmol/L
for LDL cholesterol, and 0.21 mmol/L for triglycerides.
These differences are evaluated to be clinically insignifi-
cant, as stated by the joint consensus statement from the
European Atherosclerosis Society and the European Fed-
eration of Clinical Chemistry and Laboratory Medicine in
2016 [10]. However, it is common in clinical practice today
to use cutoffs to diagnose or initiate a treatment, and even
small changes in concentrations may cause a patient to cross
the given cutoff. Thus, if relying on a single measurement, a
patient may risk being classified as diseased or non-diseased
or given treatment depending on the time since last meal at
the time of blood sampling.

Further, the information obtained from this study may be
of importance in research settings, where biomarkers may be
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used to evaluate the effect of a supplement or a treatment, or
in epidemiological studies, where metabolites may be mod-
eled as exposures, outcomes, or confounders of associations.
In these situations, even modest differences in metabolite
concentrations could be of importance. For instance, we
observed consistently higher values of plasma homocysteine
with increasing time since last dietary intake, with a maxi-
mum mean difference of 1.07 umol/L (13%). Homocysteine
has been extensively investigated in epidemiological studies
as a risk factor or a marker of a variety of diseases includ-
ing cardiovascular disease [43] and dementia [44], among
others. Similarly, results from epidemiological studies sug-
gest that the branched chained amino acids (BCAAs; leu-
cine, isoleucine, and valine) are biomarkers for increased
risk of diabetes [45]. In this study, we observed a maximum
difference in leucine of 24 umol/L (20.7%), isoleucine of
15.7 pmol/L (25.2%), and valine of 33 umol/L (14.2%). In
existing epidemiological studies on the association between
the BCAAs and diabetes, information on prandial status at
the time of blood sampling is rarely reported [45]. Here, we
argue that blood sampling at random hours after a meal may
give rise to uncertainty in the results when investigating the
association between several metabolites in associations with
diseases. Also, when the metabolite concentration changes
in the hours after food intake, and the timing of blood col-
lection relative to food intake differs systematically across
baseline risk (i.e., blood samples from higher-risk individu-
als being collected shorter or longer after the last meal), this
could attenuate or accentuate the observed association. It
is common in epidemiological studies today to distinguish
between blood samples taken in the so-called “non-fasting”
and “fasting” states, usually based on a cutoff at 6, 8, or 12 h
since last meal. In many studies, only metabolites measured
in blood samples taken more than 6 or 8 h since last dietary
intake are included. However, using cutoffs to categorize
an underlying continuous variable assumes homogene-
ity within the categories, with a sharp discontinuity at the
cutoff [46]. Kriig et al. [47] have previously demonstrated
that several metabolites change during prolonged fasting.
Our findings indicate that many metabolite concentrations
change considerably within the first 7 h after dietary intake,
which would usually be classified as the “non-fasting” state,
among them many metabolites regarded as risk factors for
non-communicable diseases. Thus, our findings suggest that
it may not be sufficient only to account for dietary intake by
distinguishing between the fasting and the non-fasting state
but should be done by accounting for the exact time since
last meal. As stated, measuring metabolites in the postpran-
dial state could be a better measure of true exposure when
using metabolites data in epidemiological studies. When
using existing epidemiological data, researchers could,
if the information is available, consider adjusting for the
exact number of hours since the last meal when modeling



European Journal of Nutrition (2023) 62:3079-3095

3093

metabolites as an exposure or an outcome. This could reduce
the excess variation introduced by collecting blood samples
at different time since last meal. When collecting data in the
future epidemiological studies, the time of blood sampling
should be standardized as much as possible with regard to
the time of day and time after dietary intake, and preferably
after a standardized meal, to reduce external influence on
metabolite concentrations. Should standardization not be
possible, then accurate recording of time since last meal for
all participants is imperative.

The major strength of this study is the large sample size,
including nearly 6000 participants. Further, the narrow
age range in the two age cohorts (46—49 and 70-74 years)
is considered a strength in this study, as age may affect
metabolite concentrations, and thus contributes to vari-
ability in the results. The importance of including differ-
ent age groups is also supported by the observation of,
on average, different concentrations according to age for
some of the metabolites. The inclusion of both males and
females may also be considered a strength of the present
study in terms of generalizability. However, usually, there
are sex differences in absolute energy and nutrient intakes,
which may have driven some of the differences between
males and females that we observed for some metabolites.
An evident limitation of the study is the cross-sectional
design with only a single blood sample from each par-
ticipant which did not allow for investigation of within-
individual changes in metabolite concentrations. Thus, the
results must be interpreted as patterns, rather than changes
in metabolite concentrations in the postprandial period.
Prior to blood sampling, no preparatory instructions were
given to the participants on what or when to eat. Thus, the
blood samples were taken after meals of varying composi-
tion, and no information concerning what the participants
ate before the blood sampling was available. The lack of a
standardized meal prior to blood sampling may have intro-
duced variability to the results [48]. However, the absence
of a standardized meal in the present study could also be
interpreted as a strength as it represents a “real-world”
setting where blood sampling is usually conducted without
any preparatory instructions to the patient or participants
on what to eat. The blood sampling was conducted at dif-
ferent times of day and during different seasons of the
year. It has been reported that some metabolites exhibit
a circadian rhythm, with lipids and amino acids as the
most frequently observed rhythmic metabolites [49]. It is
also well-known that in populations living far from the
Earth’s equator, like Norway, the population concentra-
tions of 25-hydroxyvitamin D, tend to change during
seasons [50]. However, there is no reason to believe that
there are systematic differences in time of day or season of
blood sampling distributed across the time since last meal
categories. Thus, we may assume that these are sources

of random error and give rise to natural variability in the
results. Lastly, the number of observations in the different
time categories varied, with a lower number of observa-
tions 5-7 h after a meal, making the results at these time-
points subject to greater uncertainty.

Conclusion

In this study of community-dwelling Norwegian middle-
aged and elderly adults, we observed patterns among most
amino acids and one-carbon metabolites with peak con-
centrations occurring in the 1st hours after a meal. Con-
centrations of homocysteine and cysteine were lowest
right after the meal, peaking at 67 h. The concentrations
of phylloquinone and triglycerides were highest 1 h after
dietary intake. Thiamine and TMP concentrations were
highest, while the concentration of FMN was lowest within
the first 2 h after a meal. No clear patterns emerged for
the other fat-soluble vitamins, blood lipids, or B-vitamin
biomarkers. Our findings indicate that many metabolites
and biomarkers change during the first 7 h after a habitual
meal, and suggest that the current practice of broadly dis-
tinguishing between fasting and non-fasting blood sam-
ples in clinical and research settings may be imprecise and
inadequate. If confirmed in the future studies, this may
have implications for how to account for dietary intake and
time since last meal when using existing data, and for the
collection of blood samples in the future studies.
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Supplementary Table 2. The geometric means of metabolite concentrations at each
timepoint in middle-aged (M, n = 2960) and elderly (E, n = 2874) adults in the Hordaland
Health Study 1997-1999!

Hours after meal 0-<1 1-<2 2-<3 3-<4 4-<5 5-<6 6-<7

n participants Mm? 369 916 731 514 276 113 41
E? 168 712 803 606 425 121 40

Serum glucose, mmol/L M 5.67 5.19 5.04 4.88 4.87 4.99 5.03
E 6.38 5.73 5.50 5.17 5.15 5.14 5.00

Amino acids

390 406 374 347 334 324 326

Plasma alani 1L
asma alanine, pmol/ 412 | 434 | 408 | 367 | 359 | 342 | 338

474 50.3 473 43.7 43.0 40.2 43.4

Pl ini 1L
asma arginine, pmo 481 | 505 | 489 | 456 | 443 | 429 | 418

51.1 51.9 48.4 453 453 44.1 43.0

Pl i 1L
asma asparagine, pmol/ 492 | 495 | 472 | 439 | 433 | 422 | 419

8.84 9.06 8.75 8.27 7.95 8.35 7.70

Plasma aspartic acid, umol/L 834 | 873 | 839 | 789 | 766 | 728 | 791

88.8 87.6 87.0 85.3 82.5 84.7 82.9

Plasma glutamic acid, pmol/L 99.9 | 983 | 960 | 920 | 949 | 949 | 102

517 520 508 496 505 496 498

Plasma glutamine, pmol/L s21 | 533 | s24 | 514 | s22 | s26 | s28

84.6 86.1 82.5 79.4 79.8 77.2 75.3

Plasma histidine, pmol/L 802 | 803 | 786 | 747 | 756 | 736 | 744

75.7 76.0 70.1 65.3 65.9 65.5 60.6

Plasma isoleucine, umol/L 779 | 784 | 741 | 659 | 673 | 649 | 63.9

138 138 128 121 122 121 115

Plasma leucine, pmol/L 138 139 132 119 121 117 | 118

179 188 176 168 164 157 150

Plasma lysine, pmol/L 186 | 191 188 173 172 162 | 162

63.3 64.6 61.3 57.4 56.6 552 56.6

Plasma phenylalanine, pmol/L 67.8 68.2 647 504 503 570 591

212 217 210 191 181 179 169

Plasma proline, pmol/L 22 | 232 | 218 198 196 181 195

132 137 128 123 124 120 124

Plasma threonine, umol/L 122 | 127 | 124 | 115 | 114 | 111 109

70.4 73.3 69.1 64.6 62.1 61.9 63.5

Plasma tryptophan, pmol/L 674 | 694 | 670 | 613 | 608 | 581 | 576

Zlm lw fw £l Elw flm Zlw Zw Zlw Zlw Zlwm 5w £lm || L

Plasma tyrosine, pmol/L 64.0 67.0 63.6 60.5 58.2 56.6 55.6




E 725 | 734 | 701 | 660 | 637 | 627 | 604
M 257 | 259 | 250 | 241 | 241 | 238 | 227
Plasma valine, umol/L E 266 | 268 | 262 | 242 | 248 | 238 | 237
Blood lipis
M 557 | 561 | 563 | 568 | 566 | 568 | 579
Serum total cholesterol, mmol/L E 5.08 6.09 6.19 624 623 6.11 6.14
M 353 | 354 | 357 | 366 | 362 | 3.65 | 383
Serum LDL-cholesterol, mmol/L E 3.86 | 395 | 405 | 404 | 408 | 399 | 4.06
M 125 | 129 | 127 | 128 | 128 | 122 | 125
Serum HDL-cholesterol, mmol/L E 128 | 128 | 130 | 137 | 133 | 131 | 126
M 154 | 149 | 146 | 148 | 140 | 144 | 129
Serum triglycerides, mmol/L E 171 | 171 | 164 | 158 | 159 | 152 | 158
One-carbon metabolites
M 364 | 375 | 374 | 344 | 355 | 342 | 359
Plasma betaine, pmol/L E 404 | 409 | 403 | 387 | 37.6 | 351 | 365
M 946 | 958 | 920 | 901 | 866 | 848 | 824
Plasma choline, umol/L E 104 | 106 | 102 | 999 | 970 | 9.03 | 9.52
M 288 | 281 | 285 | 285 | 295 | 294 | 293
Plasma cysteine, umol/L E 316 | 316 | 318 | 321 | 323 | 335 | 341
M 018 | 019 | 020 | 018 | 0.18 | 0.16 | 0.5
Plasma cystathionine, umol/L E 026 | 028 | 027 | 026 | 027 | 023 | 022
M 439 | 452 | 447 | 433 | 434 | 431 | 437
Plasma dimethylglycine, umol/L E 455 | 463 | 450 | 446 | 438 | 415 | 439
M 255 | 258 | 254 | 249 | 241 | 237 | 244
Plasma glycine, pmol/L E 248 | 254 | 254 | 248 | 238 | 248 | 228
M 973 | 972 | 992 | 977 | 103 | 105 | 108
Plasma homocysteine, pmol/L E 17 | 120 | 121 | 120 | 125 | 1290 | 137
M 247 | 259 | 234 | 211 | 210 | 201 | 205
Plasma methionine, pmol/L E 247 | 254 | 238 | 211 | 206 | 198 | 200
M 120 | 121 | 116 | 112 | 113 | 113 | 115
Plasma serine, pmol/L E 15 | 116 | 13 | 108 | 106 | 108 | 102
Lipid-solube vitamins
M 208 | 213 | 215 | 215 | 211 | 211 | 212
Plasma retinol, pmol/L E 210 | 217 | 216 | 219 | 220 | 216 | 226
M 613 | 625 | 626 | 644 | 647 | 622 | 606
Plasma 25-OH-vitD, nmol/L E 663 | 669 | 668 | 668 | 666 | 647 | 707
M 344 | 340 | 342 | 351 | 347 | 348 | 349
Plasma a-tocopherol, mol/L E 384 | 378 | 383 | 392 | 385 | 397 | 386
M 164 | 1.62 | 158 | 146 | 148 | 153 | 132

Plasma phylloquinone, nmol/L




E | 1.78 ‘ 1.74 ‘ 1.62 ‘ 1.54 ‘ 1.55 ‘ 1.47 ‘ 1.24

B-vitamin biomarkers

3.12 3.21 3.00 2.94 2.65 2.30 2.39

Plasma thiamine, nmol/L 369 | 372 | 352 | 330 | 3.17 | 3.08 | 3.04

7.74 8.01 7.40 7.04 6.96 6.66 6.47

Plasma TMP, nmol/L 744 | 749 | 729 | 691 | 690 | 656 | 622

14.2 13.5 12.9 13.2 12.6 12.4 14.2

Plasma riboflavin, nmol/L 163 | 169 | 163 | 159 | 164 | 170 | 186

13.0 12.5 13.1 14.2 14.7 15.4 16.3

Plasma FMN, nmol/L 125 | 117 | 119 | 129 | 140 | 145 | 142

395 390 403 421 394 402 382

Plasma nicotinamide, nmol/L 328 380 374 382 361 415 491

82.4 87.4 83.2 86.0 79.9 75.8 64.0
88.8 103 94.9 97.8 93.2 99.7 103

Plasma methyl nicotinamide,
nmol/L

13.1 133 12.5 12.1 11.9 11.8 11.0

Plasma pyridoxal, nmol/L 155 | 152 | 142 | 137 | 135 | 137 | 158

55.1 57.5 53.7 529 511 515 46.7

Plasma PLP, nmol/L ss1 | 550 | 537 | s12 | 513 | 508 | 559

23.1 235 22.9 23.7 229 21.1 19.2

Plasma 4-pyridoxic acid, nmol/L 335 16 313 318 310 314 35.0

7.23 7.02 6.84 7.01 6.78 6.64 6.62

Plasma folate, nmol/L 701 | 712 | 705 | 721 | 7.09 | 739 | 6.42

353 355 355 363 355 381 367

Plasma cobalamin, pmol/L 358 | 350 | 348 | 349 | 350 | 361 322

Zlm £lw flw Zlw Zlw Zlw 2w i w 2w @ Elm K

0.18 0.18 0.18 0.17 0.17 0.16 0.17

Plasma MMA, pmol/L E 022 | 022 | 022 | 022 | 021 021 | 023

'All values are presented as geometric means. An overview of missing observations at each timepoint for each of
the metabolites can be found in Supplementary Table 4. 2Middle-aged group (aged 46-49 years) / Elderly group
(aged 70-74 years). Abbreviations: FMN, flavin mononucleotide; HDL, High-density lipoprotein; LDL, Low-
density lipoprotein; MMA, methyl-malonic acid; PLP, pyridoxal 5’-phosphate; TMP, thiamine monophosphate



Supplementary Table 3. The geometric means of metabolite concentrations the first seven

hours after a meal in males (n =2541) and females (n = 3293) in the Hordaland Health Study

1997-1999!
Hours after meal 0-<1 1-<2 2-<3 3-<4 4-<5 5-<6 6-<7
n participants M? 235 743 647 452 313 111 40
F? 302 885 886 668 388 123 41
Serum glucose, mmol/L M 5.98 5.65 5.39 5.17 5.05 5.01 4.94
F 581 | 523 | 519 | 494 | 502 | 512 | 5.08
Amino acids
M 410 | 435 | 409 | 377 | 361 | 347 | 328
Plasma alanine, pmol/L F 387 | 405 | 379 | 346 | 339 | 321 | 335
M 501 | 518 | 493 | 463 | 445 | 437 | 436
Plasma arginine, umol/L F 461 | 492 | 473 | 437 | 433 | 397 | 416
M 508 | 509 | 478 | 445 | 444 | 431 | 421
Plasma asparagine, pmol/L F 502 | 507 | 477 | 445 | 439 | 431 | 428
M 9.14 | 941 | 900 | 852 | 832 | 843 | 795
Plasma aspartic acid, pmol/L F 835 | 852 | 825 | 778 | 737 | 724 | 767
M 105 | 102 | 101 | 996 | 986 | 102 | 968
Plasma glutamic acid, pmol/L F 836 | 847 | 852 | 825 | 834 | 805 | 872
M 524 | 534 | 523 | 510 | 520 | 515 | 524
Plasma glutamine, umol/L F 513 | 518 | 512 | 503 | 512 | s08 | 497
M 848 | 85.1 | 824 | 786 | 790 | 777 | 756
Plasma histidine, pmol/L F 820 | 822 | 790 | 757 | 759 | 732 | 742
M 835 | 855 | 791 | 715 | 718 | 726 | 656
Plasma isoleucine, kmol/L F 714 | 708 | 67.5 | 620 | 629 | 593 | 59.0
M 151 | 154 | 143 | 131 | 131 | 132 | 122
Plasma leucine, pmol/L F 128 | 128 | 122 | 13 | 114 | 109 | 111
M 187 197 188 176 174 165 157
Plasma lysine, pmol/L F 177 | 184 | 178 | 167 | 165 | 156 | 155
M 664 | 683 | 650 | 596 | 597 | 575 | 382
Plasma phenylalanine, umol/L F 633 | 644 | 616 | 578 | 57.1 | 549 | 575
M 232 | 241 | 234 | 215 | 207 | 207 | 197
Plasma proline, umol/L F 203 | 209 | 200 | 183 | 177 | 160 | 169
M 120 | 134 | 128 | 121 | 119 | 119 | 121
Plasma threonine, umol/L F 129 | 131 125 | 17 | 7 | o2 | 13
M 739 | 746 | 714 | 665 | 645 | 648 | 618
Plasma tryptophan, pmol/L F 663 | 69.1 | 656 | 604 | 589 | 558 | 593
M 685 | 714 | 677 | 640 | 619 | 604 | 58.1

Plasma tyrosine, pmol/L




F 650 | 684 | 663 | 631 | 61.1 | 590 | 57.8
M 279 | 285 | 275 | 260 | 261 | 257 | 240
Plasma valine, umol/L F 246 | 247 | 243 | 230 | 232 | 222 | 224
Blood lipis
M 560 | 573 | 576 | 579 | 582 | 582 | 589
Serum total cholesterol, mmol/L F 578 5.88 6.03 6.10 6.15 5.97 6.04
M 360 | 373 | 376 | 376 | 385 | 387 | 3.89
Serum LDL-cholesterol, mmol/L F 365 370 3.85 3.03 3.03 379 4.00
M 113 | 114 | 114 | 118 | 116 | 111 | 122
Serum HDL-cholesterol, mmol/L F 137 | 142 | 141 | 143 | 143 | 144 | 129
M 176 | 179 | 175 | 1.69 | 160 | 1.66 | 149
Serum triglycerides, mmol/L F 147 | 142 | 142 | 143 | 144 | 134 | 137
One-carbon metabolites
M 441 | 448 | 444 | 422 | 420 | 403 | 436
Plasma betaine, pmol/L F 332 | 346 | 353 | 333 | 331 | 303 | 302
M 102 | 106 | 103 | 102 | 992 | 932 | 939
Plasma choline, umol/L F 940 | 052 | 931 | 013 | 880 | 829 | 835
M 302 | 302 | 307 | 308 | 315 | 310 | 318
Plasma cysteine, umol/L F 292 | 289 | 208 | 300 | 309 | 317 | 313
M 023 | 025 | 026 | 024 | 025 | 021 | 0.19
Plasma cystathionine, umol/L F 019 | 020 | 022 | 020 | 021 | 017 | o018
M 471 | 488 | 477 | 465 | 464 | 465 | 46l
Plasma dimethylglycine, umol/L F 424 | 433 | 428 | 424 | 416 | 388 | 417
M 233 | 234 | 232 | 226 | 222 | 219 | 219
Plasma glycine, pmol/L F 260 | 276 | 271 265 | 254 | 266 | 254
M 113 | 116 | 119 | 118 | 132 | 128 | 127
Plasma homocysteine, pmol/L F 957 | 991 | 104 | 104 | 110 | 107 | 117
M 265 | 276 | 253 | 225 | 218 | 210 | 205
Plasma methionine, pmol/L F 233 | 242 | 224 | 202 | 200 | 189 | 200
M 114 | 114 | 111 | 105 | 105 | 108 | 107
Plasma serine, pmol/L F 122 122 118 112 112 112 109
Lipid-solube vitamins
M 221 | 230 | 230 | 232 | 230 | 225 | 225
Plasma retinol, pmol/L F 200 | 203 | 206 | 207 | 207 | 204 | 2.3
M 60.8 | 64.1 | 644 | 654 | 68.1 | 623 | 643
Plasma 25-OH-vitD, nmol/L F 644 | 647 | 651 | 658 | 641 | 646 | 665
M 345 | 343 | 348 | 354 | 353 | 357 | 354
Plasma a-tocopherol, mol/L F 366 | 368 | 374 | 386 | 383 | 387 | 380
M 175 | 182 | 172 | 16l | 1.62 | 161 | 131

Plasma phylloquinone, nmol/L




F | 1.64 ‘ 1.56 ‘ 1.52 ‘ 1.43 ‘ 1.45 ‘ 1.41 ‘ 1.26 ‘

B-vitamin biomarkers

2.76 2.97 2.86 2.69 2.53 2.30 2.29
3.77 3.85 3.60 3.46 3.34 3.06 3.15
6.80 7.01 6.55 6.21 6.24 6.06 5.85
8.36 8.47 7.97 7.50 7.53 7.12 6.87
13.0 13.8 14.0 12.5 13.0 11.9 13.9
16.3 15.8 15.0 16.2 16.4 17.5 18.8
12.8 12.0 12.3 12.7 13.5 14.0 14.4
12.9 12.2 12.6 14.0 15.0 15.8 16.1
366 377 383 392 367 423 395
377 392 391 404 379 396 408
71.6 85.2 81.8 82.5 80.9 80.3 79.1
90.0 102 94.8 99.2 93.5 94.4 96.1
13.5 13.8 13.1 12.4 12.2 12.0 12.2
14.1 143 13.5 133 133 13.4 14.2
54.0 54.8 52.7 51.6 50.3 50.1 49.3
56.0 57.7 54.4 52.2 51.9 52.1 52.8
24.8 25.6 26.2 26.9 26.3 254 23.4
27.0 28.5 27.5 28.4 28.5 26.5 28.4
6.34 6.61 6.52 6.40 6.40 5.88 6.43
7.87 7.48 7.29 7.64 7.46 8.24 6.61
354 343 347 351 343 349 345
354 362 355 359 359 391 343
0.18 0.20 0.20 0.20 0.19 0.20 0.20
F 0.19 0.20 0.20 0.19 0.19 0.17 0.19

Plasma thiamine, nmol/L

Plasma TMP, nmol/L

Plasma riboflavin, nmol/L

Plasma FMN, nmol/L

Plasma nicotinamide, nmol/L

Plasma methyl nicotinamide,
nmol/L

Plasma pyridoxal, nmol/L

Plasma PLP, nmol/L

Plasma 4-pyridoxic acid, nmol/L

Plasma folate, nmol/L

Plasma cobalamin, pmol/L

- B R e - - - - e I - - <

Plasma MMA, umol/L

'All values are presented as geometric means. An overview of missing observations at each timepoint
for each of the metabolites can be found in Supplementary Table 4. 2Males/females Abbreviations:
FMN, flavin mononucleotide; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; MMA,
methyl-malonic acid; PLP, pyridoxal 5’-phosphate; TMP, thiamine monophosphate



Supplementary Table 4. The number of missing values for each metabolite at each timepoint in the

Hordaland Health Study 1997-1999

Hours after meal, h 1 2 3 4 5 6 7
n 537 1628 1533 1120 701 234 81
Serum glucose, mmol/L 0 0 0 0 0 0 0
Amino acids
Plasma alanine, pmol/L 13 23 27 20 13 1 2
Plasma arginine, pmol/L 1 1 2 2 0 0 0
Plasma asparagine, pmol/L 13 27 29 27 18 2 2
Plasma aspartic acid, pmol/L 13 23 27 19 23 1 2
Plasma glutamic acid, pmol/L 13 23 27 19 23 1 2
Plasma glutamine, pmol/L 13 23 28 25 15 2 2
Plasma histidine, pmol/L 13 23 27 20 13 1 2
Plasma isoleucine, pmol/L 13 23 27 20 13 1 2
Plasma leucine, pmol/L 13 23 27 20 13 1 2
Plasma lysine, pumol/L 13 23 27 20 13 1 2
Plasma phenylalanine, pmol/L 14 23 28 25 15 2 2
Plasma proline, pmol/L 14 28 30 24 15 1 2
Plasma threonine, pmol/L 14 24 28 25 15 2 2
Plasma tryptophan, umol/L 6 9 16 11 4 2 0
Plasma tyrosine, pmol/L 13 23 28 25 15 2 2
Plasma valine, pmol/L 13 23 27 20 13 1 2
Blood lipids
Serum total cholesterol, mmol/L 0 0 0 0 0 0 0
Serum LDL-cholesterol, mmol/L 0 0 0 0 0 0 0
Serum HDL-cholesterol, mmol/L 0 0 0 0 0 0 0
Serum triglycerides, mmol/L 0 0 0 0 0 0 0
One-carbon metabolites
Plasma betaine, pmol/L 1 1 2 2 0 0 0
Plasma choline, pmol/L 1 1 2 2 0 0 0
Plasma cysteine, pmol/L 5 17 17 13 8 3 1
Plasma cystathionine, pmol/L 1 1 2 2 0 1 0
Plasma dimethylglycine, pmol/L 1 1 2 2 0 0 0
Plasma glycine, pmol/L 13 23 27 20 13 1 2
Plasma homocysteine, pmol/L 1 1 2 2 0 0 0
Plasma methionine, pmol/L 1 1 2 2 0 0 0
Plasma serine, pmol/L 13 23 27 20 13 1 2
Lipid-soluble vitamins
Plasma retinol, pmol/L 13 23 30 20 13 1 2
Plasma 25-OH-vitD, nmol/L 13 31 31 21 14 2 2
Plasma a-tocopherol, pmol/L 13 23 30 20 13 1 2
Plasma phylloquinone, nmol/L 48 144 147 121 95 31 16
B-vitamin biomarkers
Plasma thiamine, nmol/L 13 45 59 49 25 7 2
Plasma TMP, nmol/L 13 45 60 49 25 7 2
Plasma riboflavin, nmol/L 6 9 16 11 6 3 1




Plasma FMN, nmol/L

Plasma nicotinamide, nmol/L
Plasma methyl nicotinamide, nmol/L
Plasma pyridoxal, nmol/L

Plasma PLP, nmol/L

Plasma 4-pyridoxic acid, nmol/L
Plasma folate, nmol/L

Plasma cobalamin, pmol/L

Plasma MMA, pmol/L

—
w

S = NN

28

16
59
60
16
16
16
4
2
56

11
50
49
11
11
11

3
40

O © O N NN oo o W

N O O OO O NN~

Abbreviations: HDL, High density lipoprotein; LDL, Low-density lipoprotein
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= Elderly = Middle-aged

PTimerage = 0.001

6.5

6.0

Concentration

5.5

5.0

i 2 3 i
Hours since last meal

Supplementary Figure 1. The concentration of glucose as a function of time since the last meal in the
middle-aged (n = 2960) and the elderly group (n = 2874) in the Hordaland Health Study 1997-1999.
The solid line represents the geometric mean, while the colored shaded area represents the 95%
geometric confidence intervals. Note that the origin of the y-axis # 0. An overview of the number of

observations at each timepoint is provided in Supplementary Table 4 and 5.
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Supplementary Figure 2. The concentration of glucose as a function of time since the last meal in
males (n =2541) and females (» = 3293) in the Hordaland Health Study 1997-1999. The solid line
represents the geometric mean, while the colored shaded area represents the 95% geometric
confidence intervals. Note that the origin of the y-axis # 0. An overview of the number of observations

at each timepoint is provided in Supplementary Table 4 and 5.
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Supplementary Figure 3. The concentration of amino acids as a function of time since the last meal
in the middle-aged (n = 2960) and the elderly group (n = 2874) in the Hordaland Health Study 1997-
1999. The solid line represents the geometric mean, while the colored shaded area represents the 95%
geometric confidence intervals. Note that the origin of the y-axis # 0, and the y-axes are scales to be
compatible with the metabolite concentration ranges. An overview of the number of observations at

each timepoint is provided in Supplementary Table 4 and 5.
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Supplementary Figure 4. The concentration of amino acids as a function of time since the last meal
in males (n = 2541) and females (n = 3293) in the Hordaland Health Study 1997-1999. The solid line
represents the geometric mean, while the colored shaded area represent the 95% geometric confidence
intervals. Note that the origin of the y-axis # 0, and the y-axes are scales to be compatible with the
metabolite concentration ranges. An overview of the number of observations at each timepoint is

provided in Supplementary Table 4 and 5
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Supplementary Figure 5. The concentration of blood lipids as a function of time since the last meal

in the middle-aged (n = 2960) and the elderly group (n = 2874) in the Hordaland Health Study 1997-

1999. The solid line represents the geometric mean, while the colored shaded area represent the 95%

geometric confidence intervals. Note that the origin of the y-axis # 0, and the y-axes are scales to be

compatible with the metabolite concentration ranges. An overview of the number of observations at

each timepoint is provided in Supplementary Table 4 and 5. Abbreviations: HDL, High density

lipoprotein; LDL, low density lipoprotein.
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Supplementary Figure 6. The concentration of blood lipids as a function of time since the last meal
in males (n = 2541) and females (n = 3293) in the Hordaland Health Study 1997-1999. The solid line
represents the geometric mean, while the colored shaded area represent the 95% geometric confidence
intervals. Note that the origin of the y-axis # 0, and the y-axes are scales to be compatible with the
metabolite concentration ranges. An overview of the number of observations at each timepoint is
provided in Supplementary Table 4 and 5. Abbreviations: HDL, High density lipoprotein; LDL, low

density lipoprotein
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Supplementary Figure 7. The concentration of one-carbon metabolites as a function of time since the
last meal in the middle-aged (n = 2960) and the elderly group (n = 2874) in the Hordaland Health
Study 1997-1999. The solid line represents the geometric mean, while the colored shaded area
represent the 95% geometric confidence intervals. Note that the origin of the y-axis # 0, and the y-axes
are scales to be compatible with the metabolite concentration ranges. An overview of the number of

observations at each timepoint is provided in Supplementary Table 4 and 5.
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Supplementary Figure 8. The concentration of one-carbon metabolites as a function of time since the
last meal in males (n = 2541) and females (n = 3293) in the Hordaland Health Study 1997-1999. The
solid line represents the geometric mean, while the colored shaded area represent the 95% geometric
confidence intervals. Note that the origin of the y-axis # 0, and the y-axes are scales to be compatible
with the metabolite concentration ranges. An overview of the number of observations at each

timepoint is provided in Supplementary Table 4 and 5.
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Supplementary Figure 9. The concentration of lipid-soluble vitamins as a function of time since the
last meal in the middle-aged (n = 2960) and the elderly group (n = 2874) in the Hordaland Health
Study 1997-1999. The solid line represents the geometric mean, while the colored shaded area
represents the 95% geometric confidence intervals. Note that the origin of the y-axis # 0, and the y-
axes are scales to be compatible with the metabolite concentration ranges. An overview of the number

of observations at each timepoint is provided in Supplementary Table 4 and 5.
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Supplementary Figure 10. The concentration of lipid-soluble vitamins as a function of time since the

last meal in males (n = 2541) and females (n = 3293) in the Hordaland Health Study 1997-1999. The

solid line represents the geometric mean, while the colored shaded area represent the 95% geometric

confidence intervals. Note that the origin of the y-axis # 0, and the y-axes are scales to be compatible

with the metabolite concentration ranges. An overview of the number of observations at each

timepoint is provided in Supplementary Table 4 and 5.
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Supplementary Figure 11. The concentration of B-vitamin biomarkers as a function of time since the
last meal in the middle-aged (n = 2960) and the elderly group (n = 2874) in the Hordaland Health
Study 1997-1999. The solid line represents the geometric mean, while the colored shaded area
represent the 95% geometric confidence intervals. Note that the origin of the y-axis # 0, and the y-axes
are scales to be compatible with the metabolite concentration ranges. An overview of the number of

observations at each timepoint is provided in Supplementary Table 4 and 5.
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last meal in males (n = 2541) and females (n = 3293) in the Hordaland Health Study 1997-1999. The
solid line represents the geometric mean, while the colored shaded area represent the 95% geometric
confidence intervals. Note that the origin of the y-axis # 0, and the y-axes are scales to be compatible
with the metabolite concentration ranges. An overview of the number of observations at each

timepoint is provided in Supplementary Table 4 and 5.
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Abstract

Metabolomics has been utilised in epidemiological studies to investigate biomarkers of nutritional status and metabolism in relation to non-
communicable diseases. However, little is known about the effect of prandial status on several biomarker concentrations. Therefore, the aim of
this intervention study was to investigate the effect of a standardised breakfast meal followed by food abstinence for 24 h on serum
concentrations of amino acids, one-carbon metabolites and B-vitamin biomarkers. Thirty-four healthy subjects (eighteen males and sixteen
females) aged 20-30 years were served a breakfast meal (~500 kcal) after which they consumed only water for 24 h. Blood samples were drawn
before and at thirteen standardised timepoints after the meal. Circulating concentrations of most amino acids and metabolites linked to one-
carbon metabolism peaked within the first 3 h after the meal. The branched-chain amino acids steadily increased from 6 or 8 hours after the meal,
while proline decreased in the same period. Homocysteine and cysteine concentrations immediately decreased after the meal but steadily
increased from 3 and 4 hours until 24 h. FMN and riboflavin fluctuated immediately after the meal but increased from 6 h, while folate increased
immediately after the meal and remained elevated during the 24 h. Our findings indicate that accurate reporting of time since last meal is crucial
when investigating concentrations of certain amino acids and one-carbon metabolites. Our results suggest a need for caution when interpretating
studies, which utilise such biomarkers, but do not strictly control for time since the last meal.

Keywords: Postprandial Response: Fasting: Metabolism: Metabolites: Metabolomics: Biomarkers: Epidemiology

The metabolome is dynamic and constantly changing in
response to external stimuli. Dietary intake is one such external
factor triggering notable metabolic and hormonal changes in the
hours following food intake. For instance, postprandial concen-
trations of glucose and insulin change in response to the intake
of specific food or nutrients-?. Consequently, prandial status at
the time of blood sampling is accounted for when defining the
normal ranges of glucose and insulin®. The metabolome
undergoes dynamic changes not only immediately after dietary
intake but also during prolonged fasting. In 2011, Rubio-Aliaga
and colleagues™® reported an analysis of the ‘human fasting

metabolome’. In their study, ten healthy volunteers fasted for
36 h, and blood samples were taken at 12 and 36 h after the last
meal. They observed that over 70 % of circulating amino acid
concentrations changed during prolonged fasting, with notable
decreases in methionine and tryptophan and increases in the
branched-chain amino acids (BCAA). In 2012, Krug et al.®
investigated metabolite changes in response to several metabolic
challenges, including 36 h of fasting in fifteen healthy males. Like
Rubio-Aliaga et al., they reported that the BCAA and NEFA
concentrations increased during 36 h of fasting. Teruya et al.®”)
investigated a range of metabolites during 58 h of fasting in a

Abbreviations: BCAA, branched-chain amino acid; gSE, geometric standard error; ICC, intra-class correlation coefficient; PA, pyridoxic acid; TMP, thiamine

monophosphate.
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small study of four participants. Similarly, they also reported
increased concentrations of BCAA in addition to changes in
butyrates, and other
amino acids.

acylcarnitines, some co-enzymes

Circulating metabolite concentrations are frequently inves-
tigated in epidemiological studies as predictors or mediators of
health and disease outcomes. For instance, homocysteine
concentrations have been extensively investigated as a risk
factor for a variety of diseases including CVD and dementia®.
High concentrations of the BCAA are also reported as
biomarkers for increased risk of diabetes”. However, there
are several potential sources of measurement error that should
be considered when evaluating blood biomarker concentrations
in epidemiological studies. Such measurement errors are not
limited to sample processing and laboratory analyses but may
also arise from the within-person variability of the biomarker. As
the concentrations of blood metabolites may fluctuate within
subjects in response to dietary intake and prandial status, a single
measurement of the biomarker may be a poor measure of the
10 To limit the impact of prandial
status, it is common in epidemiological studies to apply a distinct
cut-off to distinguish between the postprandial and the fasting
state. This may be convenient, but the transition between the two
states exists on a continuum with no clear cut-off for being in one
state or the other. Further, the duration of the postprandial state is
influenced by factors such as meal size and composition. Smaller
meals high in simple carbohydrates are typically digested and
absorbed more rapidly, resulting in a postprandial period of
approximately 2-3 h. On the other hand, larger meals that are
rich in fats can extend the postprandial period up to 8 12, In
the literature, some use 90 min*®, 2 h9, 3 {49, 4 h9© or 6 h'7
to define the postprandial state. It is evident that the duration of
the postprandial period is challenging to define precisely due to
its variability, and that applying a cut-off at a certain time after a
meal may not sufficiently account for the fluctuating nature of the
metabolome in response to dietary intake and fasting.

Although previous studies have demonstrated metabolic
changes linked to the postprandial and fasting states, most
studies tend to commence blood sampling after overnight
fast“ or only during the first few hours after a meal™®. Data on
the metabolic changes during the adaption from the postprandial
to the fasting state are missing. Therefore, the aim of this study
was to investigate how serum concentrations of amino acids,
one-carbon metabolites and B-vitamin biomarkers change
during the 24 h after a standardised breakfast meal in healthy,
young individuals.

true aetiologic exposure

Methods
Recruitment and pre-screening

Information about the study was spread through social media
channels and posters in the nearby area of Bergen, Norway
during the summer of 2021. Individuals who were interested in
participating in the study were contacted and pre-screened over
the phone, and individuals eligible for inclusion were invited to
the main screening and to attend the study visit. Overall, the aim
was to recruit young, healthy participants. The inclusion criteria

Table 1. Inclusion and exclusion criteria for participation in the
Postprandial Metabolism Study

Inclusion criteria Exclusion criteria

* Acute or chronic disease such as
diabetes, thyroid diseases, cancer, CV
or inflammatory bowel disease during the
last 3 years

* Celiac disease or other food allergies
interfering with the standardised break-
fast meal

* Use of any prescription medications
except contraceptives

* Smoking or regular use of other nicotine-
containing products, such as ‘snuff’

* Pregnancy of breast-feeding the last 3
months before the study visit

« Significant weight change (> 5 %) during
the last 3 months before the study visit

* Aged 20-30 years (birth
years 1991-2001)

* Self-reported BMI
22-27 kg/m? at phone
screening

were: (1) aged 20-30 years (born 1991-2001); (2) self-reported
BMI 22-27 kg/m? at phone screening, while subjects were
excluded if they (1) had experienced acute or chronic disease
such as diabetes, thyroid diseases, cancer, CVD or inflammatory
bowel disease during the last 3 years; (2) had celiac disease or
other food allergies interfering with the standardised breakfast
meal; (3) used any prescription medications except for contra-
ceptives; (4) smoked or used other nicotine-containing products
such as ‘snuff’ regularly; (5) had been pregnant or breastfed the
last 3 months before study visit and (6) had experienced weight
change > 5 % during the last 3 months before the study visit. The
inclusion and exclusion criteria for participation in the study are
summarised in Table 1.

Instructions before the study visit

To standardise physiological and metabolic conditions, all
individuals were instructed to (1) not use dietary supplements
the last 7 d before the visit; (2) abstain from smoking and use of
nicotine-containing products such as ‘snuff’ the last 7 d before
the visit; (3) abstain from alcohol and avoid any strenuous
activity the last 24 h before the visit; (4) consume an evening
meal consisting of three slices of bread with cheese and jam, and
a glass of juice at 20.00 the evening before the study visit; (5) not
consume anything other than water after the evening meal
before the study visit and (6) drink enough water and to stay
hydrated to facilitate blood sampling and the insertion of a
venous catheter.

Study visits

The course of the study visits in this intervention study is
illustrated in Fig. 1. The study was conducted at the Research
Unit for Health Surveys, the University of Bergen, Norway. On
the morning (between 07.30 and 08.00 hours) at the attendance
of the study visit, all individuals had their height and body weight
measured to calculate their BMI for screening purposes. The
measurements were conducted by the same researcher at all
study visits to ensure similar measurements. Height was
measured to the nearest 0-1 cm using a Seca 217 stadiometer,
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Figure 1. Sampling times in the Postprandial Metabolism Study.

with individuals standing without shoes and in light clothing, feet
gathered and the head positioned in the Frankfurt horizontal plane.
Body weight was measured and rounded to the nearest 0-1 kg using
a Seca 877 flat scale, measured without shoes and in light clothing.
Due to variation between scales (home v. study centre), clothing
and hydration status when measuring body weight, some deviations
from the BMI criteria (self-reported BMI between 22 and 27 kg/m?)
at study entry were accepted. Participants who fulfilled all inclusion
and exclusion criteria according to Table 1 were included in the
study. Adherence to the instructions before the study visit was
controlled by self-reported questionnaires, but participants were not
excluded if they deviated from the instructions.

Blood sampling and preanalytical handling of blood
samples

A venous catheter was placed in the elbow cavity. Ten minutes
after the insertion of the catheter, a venous blood sample and
capillary blood glucose (Hemocue® Glucose 201 RT Analyzer)
were taken. Thereafter, the standardised breakfast meal was
served. After consumption of the meal, a total of thirteen blood
samples were drawn as shown in Fig. 1. Blood samples were
drawn particularly frequently during the first 4 h (timepoints
15 min, 30 min, 45 min, 60 min, 90 min, 2 h, 3 h and 4 h after the
meal), and then every other hour until 12 h after the meal. After
the 12-h blood sample, the participants left the study centre
overnight and came back the next morning for the last blood
sample taken 24 h after the breakfast meal (Fig. 1). Capillary
blood glucose was also measured at each timepoint before the
venous blood sampling. After the 10-h blood sample, the
venous catheter was removed to facilitate the body composition
analysis. Therefore, the 12- and 24-h blood samples were taken
as normal venous blood samples. At each timepoint, a total of
11-5 ml of blood was drawn and distributed into serum tubes
(8-5 ml, BD Vacutainer® SST™ II Advance; Becton, Dickinson,
and Company) and EDTA tubes (3 ml, Vacuette® K2EDTA). At
baseline and at the 24-h timepoint, an additional 6 ml and 3 ml
EDTA blood was collected, respectively, for measurement of
haematology and safety biomarkers (aminotransferases, creati-
nine, C-reactive protein, erythrocytes, gamma-glutamyltransfer-
ase, Hb, hBAlc, mean corpuscular Hb, mean corpuscular
volume, mean platelet volume, thrombocytes, thyroid stimulat-
ing hormone and 25-hydroxyvitamin D).

After the blood sampling, the serum tubes were stored at
room temperature for 30-60 min and then centrifuged at 2200 Xg
for 10 min at 20°C. EDTA tubes were centrifuged within 15 min
after collection, at 2200xg for 10 min at 4°C. Three aliquots of
serum and one aliquot of plasma per timepoint were temporarily
stored in a freezer at —20°C and transferred to —80°C at the end of
the day. Additionally, one aliquot of serum from each time point
was stored in the refrigerator at +4°C and transported to the
laboratory daily, together with the additional EDTA blood
collected at baseline and the 24 h timepoint.

Breakfast meal

The breakfast meal consisted of wholegrain wheat bread with
butter, strawberry jam, low-fat cheese (16 % fat), cacumber and a
glass of orange juice. The amounts and nutrient composition of
the breakfast meal are given in Table 2. The breakfast meal was
composed to mimic a normal Norwegian breakfast and provided
20-24 % of the daily energy needs, which are estimated to be
2600 keals and 2150 kcal per day for inactive males and females,
respectively!. All participants were instructed to consume the
breakfast in precisely 15 min, and the minute the last bite was
consumed was set to timepoint zero. After the breakfast meal
was consumed, the participants were instructed not to consume
anything other than water (no chewing gum, sparkling water,
diet soda, etc.) for the next 24 h.

Body composition analysis

After the 10-h blood sample, body composition was analysed
using a BodPod (COSMED, version 5.4.6). To standardise
measurements, the analysis was conducted by the same
researcher at all study visits, and all participants were instructed
not to consume any water for the last 2 h before the
measurement. The analysis was carried out with participants
wearing swimwear or underwear of synthetic material and a
swimming cap, and wearing no jewellery or piercings.

Laboratory analyses

The measurement of capillary glucose was performed using a
handheld device (Hemocue® Glucose 201 RT Analyzer). All
amino acids and one-carbon metabolites were analysed in
serum at Bevital AS. Alanine, asparagine, aspartic acid,

ssa1d Ausianun aBpuquied Aq auljuo paysiiand 06vZ00£Z57 L L2000S/£L0L°0L/61010p//:s5dny



British Journal of Nutrition

4 A. M. Anfinsen et al.

Table 2. The breakfast meal in the Postprandial Metabolism Study*

Food item Wheat bred Butter Low-fat cheese Strawberry jam Orange juice Cucumber Total
Grams 90 15 40 20 200 36 401g
Energy (kcal) 213 81 107 26 82 4 513 kcal
Macronutrients
Fat (g) 47 9 6-4 0 0-4 0 20-5 g (359 E%)
Carbohydrate (g) 345 01 0 62 182 04 59-4 g (46-3 E%)
Dietary fibre (g) 4.0 0 0 0-3 0-2 0-3 489 (19 E%)
Protein (g) 62 0-1 124 0-1 14 03 20-5 g (160 E%)
B-vitaminst
Thiamine (mg) 0-27 0 01 0 0-16 0-01 0-54 mg
Riboflavin (mg) 0-07 0 0-1 0 0-04 0-01 0-22 mg
Niacin (mg) 2 0 08 0 04 01 33mg
Vitamin Bg (Mg) 0-09 0 0-02 0-01 0-1 0-01 0-23 mg
Folate (ng) 29 0 17 3 56 4 109 pg
Vitamin By (ng) 0 0 1 0 0 0 1pg

* The same breakfast was provided to all participants irrespective of body weight or sex.

1 The B-vitamins were estimated using ‘Matvaretabellen’ (www.matvaretabellen.no), a tool developed by the Norwegian Food Safety Authority and the Norwegian Directorate of

Health.

cystathionine, cysteine, glutamic acid, glutamine, glycine,
histidine, total homocysteine, isoleucine, leucine, lysine,
methionine, phenylalanine, proline, sarcosine, serine, threo-
nine, tryptophan, tyrosine and valine were analysed using a
gas-chromatography mass spectrometry (GS-MS/MS), while
arginine, betaine, choline, dimethylglycine and methionine
sulfoxide were analysed using a liquid-chromatography mass
spectrometry (LC-MS/MS). Among the B-vitamin biomarkers,
serum cobalamin and total serum folate (i.e. the sum of
5-methyltetrahydrofolate, 5-formyltetrahydrofolate and pter-
oylglutamic acid) were analysed at the Department of Medical
Biochemistry and Pharmacology at Haukeland University
Hospital, Bergen, Norway (certified NS-EN ISO 15189:2012) using
immunoassay. FMN, N1 "-methylnicotinamide, nicotinamide, pyri-
doxal, pyridoxal-5-phosphate, 4™-pyridoxic acid, riboflavin, thi-
amine and thiamine monophosphate (TMP) were analysed at
Bevital AS using an LC-MS/MS, while methylmalonic acid was
analysed using a GC-MS/MS. An overview of the metabolites and
safety markers measured, and their analytical methods are found in
online Supplementary Table 1.

Quality assurance

Standardised operating procedures were developed and fol-
lowed throughout the study to ensure accurate and similar
measurements. Qualified personnel conducted the blood
sampling, and efforts were made to have the same staff member
carry out data collection on the same participant to avoid
systematic differences in data collection.

Statistical analyses

All statistical analyses were performed using R version 4.1.3
(R Foundation for Statistical Computing, https://www.r-project.
org/) and the packages within the tidyverse and irrICC.
Negative values are not possible with biological data. Further,
most biomarkers are skewed with a longer tail towards higher
values. Therefore, all metabolite concentrations were log-
transformed before statistical analysis and described using
the back-transformed gMean and gSD as recommended@®?V.

Descriptive statistics are supplemented with ranges (min—max).
Inferential statistics are accompanied by 95% geometric
compatibility (confidence) intervals (gCD as a measure of
uncertainty, calculated using the geometric standard error (gSE)
and formulas 1-3:

SE = gSDV7 1)
M >
95% CT lower limit = S0l ©)
gSEl-‘)()
95% CI upper limit = gMean x gSE!'% (3)

The main objective is presented visually, by plotting the raw
metabolite concentrations as a function of time, with the mean
time-course indicated by superimposing the geometric mean
concentrations (95 % gCD on top of the individual data. Relative
changes in metabolite concentrations were calculated for each
individual, with each pre-breakfast blood sample utilised as an
individual reference value. These individual percentage changes
were subsequently combined to calculate the gMean percentage
change across the study cohort. To evaluate the degree to which
the different biomarkers are affected during the postprandial
period, the within-person reproducibility was quantified by
calculating intra-class correlation coefficients (ICC) on log-
transformed data. The ICC were calculated on the basis of a two-
way random-effects model for absolute agreement, using the
irrlCC package and the function icc2.nointer.fn()*>.

Sample size calculation

The sample size calculation was performed using an accuracy-
in-parameter-estimation approach, as recommended when the
main purpose is to accurately estimate the parameters of
interest?>?. For the main analysis, we aimed to achieve a
multiplicative margin-of-error (gSE1-96) < 1-10, corresponding
to a gSE < 1-05, for at least 80 % of the measurements. Using
freely available data on 132 metabolites across fifty-six time-
points (7392 estimates) across different metabolic challenges
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from the HuMet study'® (available from http://metabolomic-
s.helmholtz-muenchen.de/humet/), the observed median (80th
percentile) gSD was 1-24 (1-32). Rearranging equation 1 above,
and solving for 7 with a gSD = 1-32, we needed a sample size of
32 to achieve the desired precision level. Precision curves as a
function of sample size are provided in online Supplementary
Fig. 1(a). The expected distribution of multiplicative margin-of-
errors with a sample size of 32 is illustrated in online
Supplementary Fig. 1(b), based on repeated resampling with
replacement from HuMet (50 replications, 369 600 simulated
estimates). We expected a dropout of up to 10 % due to adverse
events following fasting blood sampling or difficulties drawing
blood from a venous catheter. Therefore, to achieve our goal of
collecting complete data for thirty-two participants, we aimed to
recruit a total of thirty-six participants (eighteen males and
eighteen females).

Ethics and safety

The study was registered at ClinicalTrials.gov (NCT number
04989478). The study was conducted according to the guidelines
laid down in the Declaration of Helsinki, and all procedures
involving human subjects were approved by The Regional
Committee for Health Research Ethics (REK 236654). Written
informed consent was obtained from all subjects. Participants
received the consent form by email before the study visit to allow
adequate time to read and understand the protocol and to
familiarise themselves with the risk, burdens and benefits of
participation in the study. In addition, one of the researchers
went through the consent form in oral with the participants, and
participants were explicitly allowed to ask additional questions
before signing the consent form. Participants who communi-
cated great discomfort, either orally or by body language
(syncope, etc.), during the study visit were excluded from the
study. Participants were also excluded if there were difficulties
with blood sampling from the venous catheter (72 2).

Results
Study participants

A flow chart depicting the inclusion of participants is illustrated in
Fig. 2. A total of forty-nine individuals completed the web-based
questionnaire and were contacted by phone for a pre-screening.
Of these, forty-seven individuals fulfilled the inclusion and
exclusion criteria. For three of the subjects, an agreed date for
participation could not be found, while eight subjects withdrew
before the study visit. Therefore, a total of thirty-six individuals
were included in the study. Two participants (both female)
withdrew from the study right after the breakfast meal due to
difficulties with blood sampling and were excluded from all
analyses. Additionally, one participant completed the first 2 h
(eight blood collection timepoints) before withdrawing due to
difficulties with blood sampling. This participant was included in
the analyses. In total, thirty-three participants completed the
whole study, while data from thirty-four participants are
included in the analyses.

Participant characteristics

Complete participant characteristics are provided in Table 3. A
total of eighteen males and sixteen females were included in the
analyses. The age ranged from 20 to 30 years old, and thirty-three
out of thirty-four participants were of Caucasian ethnicity, with
one participant of Asian ethnicity. Of the female participants,
thirteen participants (81 %) used some form of contraceptive,
with the most common being combined oral contraceptives
(n 6), followed by contraceptive implant (72 3), hormonal intra-
uterine device (1 2), copper intra-uterine device (z 1) and
progestin-only pill (7z 1). On average, male participants had
slightly higher BMI, waist circumference and RMR but a lower
percentage of fat mass compared with female participants. All
participants were considered healthy as evaluated by self-
reported questionnaires and routine clinical measurements
(online Supplementary Table 1).

Change in metabolite concentrations during 24 h after the
meal

The relative change in concentrations of the metabolites
investigated, accompanied with the ICC, is presented in
Table 4 (total population) and Table 5 (males and females
separately). Further, the absolute metabolite concentrations at
all timepoints are presented in online Supplementary Table 2
(total population) and online Supplementary Table 3 (males
and females separately). Figures illustrating the relative
change in biomarker concentrations for the total population
can be found in online Supplementary Figures 2-5.

Glucose and insulin

Glucose concentrations (Fig. 3(a)) increased immediately after
the meal, peaking at 15 min (+41-8 % increase), before returning
to baseline values at 90 min after the meal. Concentrations
decreased slightly thereafter, falling to their lowest values at 24 h
(~14-0 % decrease from baseline levels). For insulin (Fig. 3(b)),
we observed a similar pattern, with concentrations peaking at 30
min (+827 % increase) and thereafter decreasing, falling to their
lowest values at 10 h (-56-4 % decrease from baseline values).
The results were comparable between the sexes (Table 5).

Amino acids

We observed a consistent pattern for nearly all amino acids, with
increased concentrations right after the meal. This pattern was
observed for alanine, arginine, asparagine, histidine, isoleucine,
leucine, lysine, phenylalanine, proline, threonine, tyrosine and
valine (Fig. 4(a)—(p)). The largest relative increases in serum
concentrations were observed for proline (Fig. 4(1), +55-5%
increase from baseline values), alanine (Fig. 4(a), +42-4 %) and
tyrosine (Fig. 4(0), +29-2%). The concentrations of the BCAA
(Fig. 4(h), (), (p)) increased from 6 (isoleucine and leucine) or 8
(valine) h to 24 h, with peak concentrations observed at 24 h after
the meal (isoleucine: +28:0 %, leucine: +37-2 %, valine: +14-4 %
increase from baseline values). In contrast, the concentrations of
proline (Fig. 4(1)) decreased from the 6- to the 24-h timepoint,
reaching the lowest values at 24 h (-19-3% decrease from
baseline values). The levels of aspartic acid (Fig. 4(d)) fluctuated
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Figure 2. Flow chart of the inclusion process for participants in the Postprandial Metabolism Study.

Table 3. The main characteristics of the participants (n 34) included in the Postprandial Metabolism Study

Total population n 34 Males n 18 Females n 16
gMean gSD Min—-max gMean gSD Min—-max gMean gSD Min—-max
Age, years 25.3 113 20-30 261 112 20-30 24.5 113 20-29
Caucasian ethnicity
n 33 - 18 - 15 -
% 97 % 100 % 937 %
Height, cm 176-3 1.06 152.5-194.7 1842 1.03 173.2-194.7 167-8 1.05 152-5-180-9
Weight, kg 733 115 57.2-98-3 809 110 64.7-98-3 652 1-09 57.2-76-6
BMI, kg/m? 235 1.07 202-26-9 238 1.07 21.2-26-9 231 1.07 20-2-25:5
Waist circumference, cm 815 111 67-3-100 881 1.08 80-100 74-6 1.06 67-3-80-0
Fat mass percentage* 224 143 10-5-41-9 183 1-41 10-5-39-1 286 119 21.6-41.9
RMR* 1508 121 1053-2200 1740 110 1433-2200 1269 112 1053-1552
Use of contraceptives
n 13 - - 13 -
% 382% 81.3%

* Estimated using BodPod (COSMED).

immediately after the meal but stabilised around baseline levels at
3 h, while the levels of glutamic acid (Fig. 4(e)) fluctuated during
the first hour after the meal before remaining decreased from 90
min onwards, with the lowest values observed at 24 h (=156 %
decrease from baseline values). For glutamine (Fig. 4(f), the
concentrations appeared to be slightly elevated during the first 12
h, before returning to baseline values 24 h after the meal. The ICC
for the amino acids ranged from 0-49 to 0-56. Male participants
had, on average, slightly higher concentrations of nearly all amino

acids except for aspartic acid, in which females had higher
concentrations. However, the relative changes in concentrations
after the meal were comparable between sexes for all amino acids
(Table 5).

One-carbon metabolites

For the one-carbon metabolites, we observed similar results to
those observed for the amino acids; the concentrations of
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(a) (b)
Glucose, mmol/l Insulin, mIU/L

0
1234 6 8 10 12 24 1234 6 8 10 12 24
Hours after completion of standardized breakfast

Figure 3. The concentrations of glucose and insulin as a function of time since completion of the standardised breakfast meal in participants in the Postprandial
Metabolism Study (n= 34). The solid black line represents the geometric mean, while the grey shaded area represents the 95% geometric confidence intervals. The blue
and red lines represent the male and female participants, respectively. The leftmost vertical line indicates the time of the standardised breakfast meal, while the rightmost
vertical line indicates time spent outside the study centre.
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Figure 4. The concentrations of amino acids as a function of time since completion of the standardised breakfast meal in participants in the Postprandial Metabolism
Study (n= 34). The solid black line represents the geometric mean, while the grey shaded area represents the 95% geometric confidence intervals. The blue and red lines
represent the male and female participants, respectively. The leftmost vertical line indicates the time of the standardised breakfast meal, while the rightmost vertical line
indicates time spent outside the study centre.

betaine, choline, dimethylglycine and the amino acids cysta- cystathionine (Fig. 5(c), +-38-3 % increase from baseline values),
thionine, glycine, methionine, sarcosine and serine increased methionine (Fig. 5(h), +-29:2 %) and betaine (Fig. 5(a), +25-1 %).
and peaked within the first 3 h after completion of the meal The concentrations were thereafter relatively stable until 24 h

(Fig. 5). The largest relative increase was observed for after the meal, except for cystathionine, which decreased to its
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Figure 5. The concentrations of one-carbon metabolites as a function of time since completion of the standardised breakfast meal in participants in the Postprandial
Metabolism Study (n = 34). The solid black line represents the geometric mean, while the grey shaded area represents the 95% geometric confidence intervals. The blue
and red lines represent the male and female participants, respectively. The leftmost vertical line indicates the time of the standardised breakfast meal, while the rightmost

vertical line indicates time spent outside the study centre.

lowest values at 12 h (-29-0% decrease from baseline values).
For cysteine and homocysteine (Fig. 5(d) and (g)), the opposite
was observed, with slightly decreased concentrations immedi-
ately after the meal followed by increased concentrations
peaking at 24 h (+11:6% and 11-4% increase, respectively).
The ICC for the one-carbon metabolites ranged from 0-25
(methionine sulfoxide) to 0-82 (dimethylglycine). As with the
amino acids, the males had on average slightly higher
concentrations of all one-carbon metabolites except for
methionine sulfoxide and serine in which the females had
slightly higher concentrations. Further, we observed that the
females had a higher peak in concentrations of methionine
sulfoxide than males (488-1 % at 90 minutes after the meal for
females; +67-3 % at 2 h for males). The relative changes for the
other one-carbon metabolites were comparable between the
sexes (Table 5).

B-vitamin biomarkers

For cobalamin and folate (Fig. 6(a) and (¢)), we observed no
considerable changes in concentrations immediately after the
meal, except for a small peak in folate concentrations in the
first hour after the meal (+13-:0% increase). However, the
concentrations of both cobalamin and folate steadily
increased from 3 h, peaking at 24 h after the meal (+13-5%
increase for cobalamin and +56-8 % increase for folate). A
similar pattern was observed for FMN and riboflavin (Fig. 6(b)
and (j)), with the highest concentrations at 24 h (+89-9 % and

+33-8 % increase for FMN and riboflavin, respectively). For
the vitamin By vitamers (Fig. 6(g)—(1), a slight increase in
pyridoxal concentrations was observed right after the meal,
peaking at 45 min (+13-7% increase), with concentrations
returning to baseline at 3 h and thereafter slightly decreasing
until 24 h. Pyridoxal-5-phosphate concentrations decreased in
the hours after the meal, with the lowest values observed at 12 h
(-=19:6% decrease). The concentration of 4 -pyridoxic acid
decreased right after the meal with the lowest values observed
at 2 h (=266 % decrease) and remained decreased until 12 h but
thereafter increased and returned to baseline values at 24 h. The
concentrations of N1”-methylnicotinamide, thiamine and TMP
(Fig. 6(d), (k), (1) increased right after the meal, peaking within
the first hour (N1™-methylnicotinamide: +20-7% increase,
thiamine: +23-8% increase, TMP: +11-4% increase). The
concentrations thereafter decreased, with N1 -methylnicotina-
mide reaching the lowest values at 12 h (-28-0 % decrease from
baseline values) and thiamine and TMP reaching the lowest
values at 24 h (thiamine: —=19-8 % decrease, TMP: —=12-5 %). The
concentrations of methylmalonic acid (Fig. 6(e)) slightly
increased the first 3 h after the meal but thereafter decreased,
reaching the lowest levels at 10 h (-18-4% decrease from
baseline values). The ICC for the B-vitamin biomarkers ranged
from 0-53 (FMN) to 0-88 (TMP). The results were largely similar
between the sexes, except for the change in concentrations of
N1"-methylnicotinamide and nicotinamide (Table 5). For N1°-
methylnicotinamide, we observed that concentrations immedi-
ately increased at 15 min in females but thereafter steadily
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Figure 6. The concentrations of B-vitamin biomarkers as a function of time since completion of the standardised breakfast meal in participants in the Postprandial
Metabolism Study (n = 34). The solid black line represents the geometric mean, while the grey shaded area represents the 95% geometric confidence intervals. The blue
and red lines represent the male and female participants, respectively. The leftmost vertical line indicates the time of the standardised breakfast meal, while the rightmost

vertical line indicates time spent outside the study centre.

decreased until 12 h after the meal. In males, the concentrations
increased and remained elevated until 8 h after the meal before
decreasing. For nicotinamide, the concentrations slightly
increased the first hour after the meal in females, and thereafter
decreased and remained lowered until 12 h after the meal. In
males, the concentrations increased and remained elevated or
at baseline levels the first 8 h after the meal before thereafter
decreasing.

Discussion

In this study of thirty-four healthy participants, we observed
changes in circulating concentrations of a number of serum
biomarkers and metabolites after the consumption of a stand-
ardised breakfast meal followed by food abstinence for 24 h.

Potential mechanisms and comparison with other studies

Amino acids. Consistent with previous studies, we observed
that males generally exhibited higher concentrations of most
serum amino acids compared with females®>??. However, the
relative changes in amino acids were comparable between sexes.
Further, our findings on amino acids are consistent with several
previous studies. In a review by LaBarre and colleagues®”, they
reported that the blood concentrations of amino acids tended to
peak at 60-90 min after a mixed macronutrient challenge and
return to baseline values 4 h after the meal. However, while most
of the studies included in the LaBarre review examined the effect

of specific foods or comparisons like cod v. beef, or rye bread v.
wheat bread, our study demonstrates that amino acid concen-
trations follow this pattern even after a regular breakfast meal. The
amino acid profile probably reflects the digestion and
absorption of proteins, wherein proteins are cleaved into
dipeptides, tripeptides and amino acids®®. Yet, the meal
amino acid composition might not fully predict the post-
prandial blood response. Similar to the present study, Badoud
et al.*” reported the largest relative increase in concen-
trations postprandially for proline and alanine after a high-
energy breakfast. Intriguingly, the most abundant amino
acids in the high-energy breakfast were leucine, glutamic acid
and proline, indicating that the amino acid postprandial
response cannot entirely be explained by the abundance of
the amino acids eaten. Further, glutamic acid is one of the
most abundant amino acids found in dietary protein®®, but in
the present study, we observed only small changes in
glutamic acid after the meal compared with most other
amino acids, which has also been observed by others®®”. It
has been suggested that glutamic acid is metabolised to
various amino acids in the enterocyte, mainly alanine but also
proline®®, which may explain the observations in the present
study. Similarly to our observations at 24 h, Kriig et al.’> and
Rubio-Aliaga et al.‘ reported increased concentrations of the
BCAA during 36 h of fasting. The BCAA cannot be synthesised
de novo and must be obtained from the diet or by proteolysis.
During fasting, the main source of BCAA in the blood is
protein degradation®”, predominantly derived from skeletal
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muscle®?. It has been suggested that increased serum
concentrations of BCAA during fasting are related to
decreased glycolysis and increased fatty acid oxidation and
proteolysis in muscles®®?,

One-carbon metabolites. Among the one-carbon metabolites,
serum concentrations of cystathionine and methionine were
most responsive to food intake and subsequent fasting. It is well
known that methionine levels increase and peak 1 h after a
methionine loading test®?. Although the methionine content of
the breakfast meal in the present study was lower than that
typically ingested in a methionine loading test, the breakfast
meal (including cheese and whole grains) likely caused the
observed increase in methionine, which peaked at 2 h after the
meal. Methionine can be converted to homocysteine through the
methionine-homocysteine cycle, which may further be con-
verted to cystathionine in the transsulphuration pathway®®. It
has previously been shown that cystathionine concentrations
increase after the intake of methionine®. In the present study,
the temporal pattern is consistent with methionine being
released from protein in the food, followed by an increase in
cystathionine, peaking at 3 h after the meal. We also observed
increased concentrations of betaine, choline, dimethylglycine,
glycine and sarcosine in the first hours after the meal. All these
metabolites are involved in the choline oxidation pathway.
Calculations using data from the USDA food database®®® suggest
that the betaine and choline content in the breakfast was
approximately 113 and 25 mg, respectively, which may explain
the increased concentrations of the metabolites in the choline
oxidation pathway. Interestingly, we observed slightly decreased
concentrations of homocysteine and cysteine after the meal,
contrary to the findings for the other one-carbon metabolites. This
has been reported previously at 1 and 2 h after a meal™® and may
have several possible explanations. First, increased availability of
choline and betaine may facilitate the remethylation of homo-
cysteine to methionine using betaine or 5-methyltetrahydrofolate
as a methyl donor. Second, the decreased concentrations of
homocysteine and cysteine, accompanied by increased concen-
trations of cystathionine immediately after the meal, may indicate
an increased conversion of homocysteine to cystathionine
through the transsulfuration pathway.

B-vitamin biomarkers. In this study, we observed a sharp
increase in thiamine and TMP concentrations immediately after
the meal, consistent with our previous findings using cross-
sectional data®”. Both free thiamine and TMP enter the blood-
stream during the absorption of thiamine®®, and the observed
peak might be attributable to the thiamine content from the meal,
which is estimated to be about 0-54 mg (Table 2). Further, we
observed a sharp decrease in FMN concentrations, reaching the
lowest value (=30-0 % decrease) at 1 h after the meal, similar to
what has been reported previously'®33 EMN serves as a
cofactor in the electron transport chain, and the sharp decrease
may indicate increased utilisation as a cofactor in the first hour
after a meal. We observed increases in FMN and riboflavin
concentrations from 4 to 24 h. To our knowledge, no studies have
previously reported changes in FMN or riboflavin concentrations
in the fasting state. As the increase in both FMN and riboflavin

concentrations started around 4 h after the meal, it is unlikely the
increase was due to the riboflavin content of the meal. We
observed a similar pattern for folate, which was 56-8 % higher at 24
h compared with baseline values. Similar observations have been
reported previously, with a doubling in folate concentrations
following 36 h of fasting compared with immediately after a meal.
It has been suggested that this increase may be explained by
reduced excretion of folate in bile during fasting“.

Implications

We have demonstrated that several metabolites and biomarkers
change dynamically after a habitual meal in healthy, young
adults. This could have implications in the clinic, where specific
cut-offs in circulating biomarker concentrations are used to
diagnose a disease or condition or to monitor or initiate
treatment. For example, we observed that folate concentrations
increased on average by 56-8 % from baseline values to 24 h. A
total of six participants (17 %) had folate concentrations below
the established cut-off at 10 nmol/1 set by the WHO“" at baseline
or during the first hours after the meal. However, at later
timepoints, all these subjects had folate concentrations above
this cut-off, meaning in a clinical setting they would have been
classified as folate deficient if their blood sample was taken
before or during the first hours after the meal. Our findings
indicate that clinically it is important to accurately account for
prandial status and time since last meal when evaluating certain
serum biomarkers. This can be done by standardising the blood
sampling timepoint, by utilising data on the dynamics of
postprandial metabolism or by applying different cut-offs
according to the time since food intake. Further, our findings
could have implications for observational research where the
time of blood sampling is rarely standardised to account for
dietary intake and time since last meal. Not standardising the
time of blood sampling but only distinguishing between ‘fasting’
and ‘non-fasting’ states when investigating metabolite concen-
trations in research may introduce measurement error. When the
metabolite concentration is modelled as the independent variable,
non-differential measurement error is, on average, expected to
attenuate the observed associations due to regression dilution
bias“"?. However, attenuation cannot be automatically assumed
in individual studies, as the measurement error may be unequally
distributed by chance?, or if the concentration is grouped into
categories, such as quantile groups“?. Further, if the biomarker is
modelled as a confounder, non-differential measurement error may
result in residual confounding, biasing the association in the same
direction as the original confounding?. In this context, non-
differential measurement error may result from blood samples
collected at random timepoints after food intake. Differential
measurement error of the biomarker, potentially arising from
systematically collecting the blood samples at timepoints associated
with peak or through metabolite concentration, could bias the risk
association in any direction and give rise to wrong conclusions from
the study'”. We suggest that in future epidemiological studies,
blood sampling in relation to time since last meal should be
standardised to limit the impact of prandial status on circulating
biomarker concentrations. When the biomarker concentration is
the outcome of interest, it is crucial that sampling procedures are
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comparable across participants and across timepoints when
repeated measurements are taken within the same individual.

Strengths and limitations

This study has several strengths. First, we obtained data on a
wide range of metabolites from thirty-four participants, including
both males and females. Similar studies have usually had fewer
participants™® or only included male subjects®. In addition, to
increase the internal validity of the study, we recruited a
homogenous group of participants, reducing potential variability
in metabolite concentrations linked to age, health status and
body composition and all participants remained inactive during
the study visit. Unfortunately, this reduces the generalisability
of our findings. Results for glucose and insulin were highly
consistent with the a priori expectations>> and can be used as a
compliance measure. Despite the homogeneity of the cohort,
there were large inter-individual differences in RMR (ranging
from 1053 to 2200 kcal/d) and body composition (fat mass
percentage ranging from 10-5 to 41-2) between the participants.
It is well known that body composition may affect postprandial
responses“?; thus, it is likely that the meal was metabolised at
different rates, which introduces a source of variability in the
results.

Conclusion

We observed that the circulating concentration of several
metabolites changed considerably after the consumption of a
standardised breakfast meal. The changes were not limited only
to the hours immediately after the meal, with several metabolites
changing considerably during fasting for 24 h. Our findings
challenge the current, imprecise, practice of distinguishing
between fasting and non-fasting blood samples and have
implications for using metabolites in clinical practice and in
research.
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Time-Resolved Metabolite Concentrations during the Postprandial and Fasting State: The
Postprandial Metabolism in Healthy Young Adults (PoMet) study. Aslaug Matre Anfinsen
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Supplementary Figure 1. A) Precision curves as a function of sample size, using the observed
median (20th-80th percentile) geometric standard deviations from the HuMet study (available
from http://metabolomics.helmholtz-muenchen.de/humet/). B) The expected distribution of
multiplicative margin-of-errors for the measurements of different metabolites at different time
points, with n = 32. We expected to be able to estimate the geometric mean concentrations
within a multiplicative margin-of-error of 1.10 for at least 80% of all measurements.

Abbreviations: gSD, geometric standard deviation
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Supplementary Figure 2. The relative change in glucose- and insulin concentrations (%
change from reference values) as a function of time since completion of the standardized
breakfast meal in participants in the Postprandial Metabolism Study (n = 34). The solid black
line represents the geometric mean, while the grey shaded area represents the 95% geometric
confidence intervals. The leftmost vertical line indicates the time of the standardized breakfast

meal, while the rightmost vertical line indicates time spent outside the study center.
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Supplementary Figure 3. The relative change in amino acid concentrations (% change from
reference values) as a function of time since completion of the standardized breakfast meal in
participants in the Postprandial Metabolism Study (n = 34). The solid black line represents the
geometric mean, while the grey shaded area represents the 95% geometric confidence
intervals. The leftmost vertical line indicates the time of the standardized breakfast meal,

while the rightmost vertical line indicates time spent outside the study center.
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Supplementary Figure 4. The relative change in one-carbon metabolite concentrations (%

change from reference values) as a function of time since completion of the standardized

breakfast meal in participants in the Postprandial Metabolism Study (n = 34). The solid black

line represents the geometric mean, while the grey shaded area represents the 95% geometric

confidence intervals. The leftmost vertical line indicates the time of the standardized breakfast

meal, while the rightmost vertical line indicates time spent outside the study center.
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Supplementary Figure 5. The relative change in B-vitamin biomarker concentrations (%
change from reference values) as a function of time since completion of the standardized
breakfast meal in participants in the Postprandial Metabolism Study (n = 34). The solid black
line represents the geometric mean, while the grey shaded area represents the 95% geometric
confidence intervals. The leftmost vertical line indicates the time of the standardized breakfast
meal, while the rightmost vertical line indicates time spent outside the study center.
Abbreviations: FMN, Flavin mononucleotide; MMA, methylmalonic acid; PA, 4"-pyridoxic
acid; PL, Pyridoxal; PLP, Pyridoxal-5"-phosphate









ISBN: 9788230842188 (print)
9788230856598 (PDF)

s,
T,
Sy uofseyiunwiwoy saudiy :3utld / gif) ‘UoIsIAIQ UONEdIUNWLIO) :ubisap d1ydels “/////N



	112365 Åslaug Matre Anfinsen_v1.1_Elektronisk
	112365 Åslaug Matre Anfinsen_korrekturfil
	112365 Åslaug Matre Anfinsen_v1.1_innmat
	112365 Åslaug Matre Anfinsen_v1.1Elektronsk_bakside
	112365 Åslaug Matre AnfinsenElektronsk_bakside

