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ABSTRACT
Apopular way to estimate the parameters of a hiddenMarkovmodel
(HMM) is direct numericalmaximization (DNM) of the (log-)likelihood
function. The advantages of employing the TMB [Kristensen K,
Nielsen A, Berg C, et al. TMB: automatic differentiation and Laplace
approximation. J Stat Softw Articles. 2016;70(5):1–21] framework in
R for this purpose were illustrated recently [Bacri T, Berentsen GD,
Bulla J, et al. A gentle tutorial on accelerated parameter and confi-
dence interval estimation for hidden Markov models using template
model builder. Biom J. 2022 Oct;64(7):1260–1288]. In this paper, we
present extensions of these results in twodirections. First, wepresent
a practical way to obtain uncertainty estimates in form of confidence
intervals (CIs) for the so-called smoothing probabilities at moderate
computational and programming effort via TMB. Our approach thus
permits to avoid computer-intensive bootstrap methods. By means
of several examples, we illustrate patterns present for the derived
CIs. Secondly, we investigate the performance of popular optimizers
available inRwhen estimatingHMMs via DNM. Hereby, our focus lies
on thepotential benefits of employingTMB. Investigated criteria via a
number of simulation studies are convergence speed, accuracy, and
the impact of (poor) initial values. Our findings suggest that all opti-
mizers considered benefit in terms of speed from using the gradient
supplied by TMB. When supplying both gradient and Hessian from
TMB, the number of iterations reduces, suggesting a more efficient
convergence to the maximum of the log-likelihood. Last, we briefly
point out potential advantages of a hybrid approach.
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1. Introduction

Hidden Markov models (HMMs) are a well-studied and popular class of models in many
areas. While they have been used for speech recognition historically [see, e.g. 1–5], these
models also became important in many other fields due to their flexibility. These are, to
name only a few, biology and bioinformatics [6–8], finance [9], ecology [10], stochastic
weather modelling [11,12], and engineering [13]. In short, HMMs are a class of models
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where the given data is assumed to follow varying distributions according to an underly-
ing unknown Markov chain. Parameter estimation for HMMs is typically achieved either
by the Baum-Welch (BW) algorithm [3,14–17] – an Expectation–Maximization(EM)-type
algorithm–or in a quite straightforward fashion by direct numericalmaximization (DNM)
of the (log-)likelihood function [see, e.g. 18,19]. A discussion of both approaches can be
found in [20, p. 358]. Furthermore, [21] points out that it is challenging to fit complex
models with the BW algorithm, [22, pp. 77–78] advises using DNM with HMMs due
to the ease of fitting complex models, and [18,23] report a greater speed of DNM com-
pared to the BW algorithm. The arguments of [24] point in a similar direction, underlining
the often increased amount of mathematical and programming labor required by the EM
algorithm, in particular for non-standard models. Nevertheless, the BW is highly accepted
and finds widespread application. However, we will only use DNM in the following due to
the possibility of accelerating the estimation via the R-package TMB [25,26].

In this paper, we present a straightforward procedure to calculate uncertainty estimates
of the smoothing probabilities through appropriate use of TMB. Hence, we quantify the
uncertainty of the state classifications of the observations at a low computational cost. To
the best of our knowledge, such results on confidence intervals for the aforementioned
probabilities are not available in the literature. Furthermore, the chosen optimization rou-
tine for DNM plays an important role in parameter estimation. While e.g. [22] focuses on
the unconstrained optimizernlm, alternatives include the popularnlminb [27] andmany
others, such as those provided by the optim function [28]. In this context, [29] compare
different estimation routines for two-state HMMs: a Newton-Type algorithm [30,31], the
Nelder–Mead algorithm [32], BW, and a hybrid algorithm successively executing BW and
DNM. To complement these studies, we investigate the speed of several optimization algo-
rithms, many of which allow the gradient and Hessian of the objective function as input.
Particular focus lies on the ability of the TMB framework, which allows for easy retrieval
of the exact gradient and Hessian (up to machine precision). This enriches the existing
literature on parameter estimation for HMMs. Among others, Zucchini et al. [22] report
that ‘Depending on the starting values, it can easily happen that the algorithm (i.e. DNM)
identifies a local, but not the global, maximum’. The literature on how to tackle this prob-
lem is rich, and includes among others: the use of artificial neural networks to guess the
initial values [33], model induction [34], genetic algorithms in combination with HMMs
[35], hybridizing both the BW and the DNM algorithms [21,29,36], specific assumptions
on the parameters [37], educated guesses [22, p. 53], and short EM-runs with 10 itera-
tions or (model-based) clustering [38]. We investigate how stable the various considered
optimization routines are towards poor initial values. Again, this part takes under consid-
eration the special features of TMB, which have not been investigated yet. In this context, it
is noteworthy that the recently developed R-package hmmTMB [see 39] provides a frame-
work for working with HMMs and TMB. This package offers the choice between various
optimization routines with the Nelder-Mead algorithm as default. Hence, our results may
also provide guidance for users of hmmTMB.

The paper is organized as follows. In Section 2, we provide a brief overview of parameter
estimation for HMMs, including inference for CIs. In Section 3 we show how uncertainty
estimates of the smoothing probabilities can be computed via TMB. Then, we apply our
results to a couple of data sets with different characteristics. We perform simulation stud-
ies in Section 4 to compare measures of performance and accuracy of various optimizers.
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In Section 5, we check how well these optimizers perform in the presence of poor initial
values. Section 6 provides some concluding remarks. All code necessary to reproduce our
results is available in the supporting information.

2. Basics on hiddenMarkovmodels

The HMMs considered here are fit on observed time series {Xt : t = 1, . . . ,T} where t
denotes the (time) index ranging fromone toT. In this setting, amixture of conditional dis-
tributions is assumed to be driven by an unobserved (hidden) homogeneousMarkov chain,
whose states will be denoted as {Ct : t = 1, . . . ,T}. We will use different conditional distri-
butions in the paper. First, we specify an m-state Poisson HMM, i.e. with the conditional
distribution

pi(x) = P(Xt = x|Ct = i) = e−λiλxi
x!

with parameters λi, i = 1, . . . ,m. Secondly, we consider Gaussian HMMswith conditional
distribution specified by

pi(x) = P(Xt = x|Ct = i) = 1
σ
√
2π

e−
1
2

(
x−μi

σi

)2
,

with parameters (μi, σi), i = 1, . . . ,m. In addition, � = {γij}, i, j = 1, . . . ,m denotes the
transition probability matrix (TPM) of the HMM’s underlying Markov chain, and δ is a
vector of lengthm collecting the corresponding stationary distribution.We assume that the
Markov chains underlying our HMMs are irreducible and aperiodic. This ensures the exis-
tence anduniqueness of a stationary distribution as the limiting distribution [40].However,
these results are of limited relevance for most estimation algorithms, because the elements
of � are generally strictly positive. Nevertheless, one should be careful when manually
fixing selected elements of � to zero.

The basis for our estimation procedure is the (log-)likelihood function. We denote the
‘history’ of observations xt and the observed process Xt up to time t by x(t) = {x1, . . . , xt}
and X(t) = {X1, . . . ,Xt}, respectively. In addition, let θ be the vector of model parame-
ters. As explained, e.g. by Zucchini et al. [22, p. 37], the likelihood function can then be
represented as a product of matrices:

L(θ) = P(X(T) = x(T)) = δP(x1)�P(x2)�P(x3) . . .�P(xT)1′, (1)

where them conditional probability density functions evaluated at x (we use this term for
discrete support as well) are collected in the diagonal matrix

P(x) =

⎛⎜⎜⎜⎝
p1(x) 0

p2(x)
. . .

0 pm(x)

⎞⎟⎟⎟⎠ ,

and 1′ and δ denote a transposed vector of ones and the stationary distribution, respec-
tively. That is, we assume that the initial distribution corresponds to δ. The likelihood
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function given in Equation (1) can be efficiently evaluated by a so-called forward pass
through the observations, as illustrated inAppendix 1. Consequently, it is possible to obtain
θ̂ , theML estimates of θ , by – in our case - unconstrainedDNM. Since several of our param-
eters are constrained, we rely on known re-parametrization procedures (see Appendix 2 for
details).

Confidence intervals (CIs) for the estimated parameters of HMMs can be derived
via various approaches. The most common ones are Wald-type, profile likelihood, and
bootstrap-based CIs. Bacri et al. [26] shows that TMB can yield valid Wald-type CIs in a
fraction of the time required by classical bootstrap-based methods as investigated e.g. by
Bulla and Berzel [29] and Zucchini et al. [22]. Furthermore, the likelihood profile method
may fail to provide CIs [26]. Therefore, we rely onWald-type confidence intervals derived
via TMB. For details, see Appendix 3.

3. Uncertainty of smoothing probabilities

When interpreting the estimation results of an HMM, the so-called smoothing probabil-
ities often play an important role. These quantities, denoted by pit(θ) in the following,
correspond to the probability of being in state i at time t given the observations, i.e.

pit(θ) = Pθ (Ct = i|X(T) = x(T)) = αt(i)βt(i)
L(θ)

,

and can be calculated for i = 1, . . . ,m and t = 1, . . . ,T [see, e.g. 22, p. 87]. The involved
quantities αt(i) and βt(i), which also depend on θ , result directly from the forward- and
backward algorithm, respectively, as illustrated in Appendix 1. Estimates of pit(θ) are
obtained by pit(θ̂) where θ̂ is the ML estimate of θ .

An important feature of TMB is that it not only permits obtaining standard errors for θ̂
(and CIs for θ), but in principle also for any other quantity depending on the parameters.
This is achieved by combining the deltamethodwith automatic differentiation (see Section
A.1 in Appendix 3 for details). A minor requirement for deriving standard deviations for
pit(θ̂) via theADREPORT function provided by TMB consists in implementing the function
pit(θ) = g(ψ) inC++. Then, this part has to be integrated into the scripts necessary for the
parameter estimation procedure. It is noteworthy that, once implemented, the procedures
related to inference of the smoothing probabilities do not need to change when the HMM
considered changes, because the input vector for pit(θ) remains the same. The C++ code
in the supporting information illustrates how to complete these tasks. Note that population
value we are interested in constructing a CI for is pit(θ), which should not be confused with
EX(T) (Pθ̂(X(T))

(Ct = i | X(T))). That is, we treat pit(θ) as the probability of the event Ct = i
conditional on X(T) being equal to the particular sequence of observations x(T). After all,
it is this sequence and the corresponding smoothing probabilities which are of interest to
the researcher.

Quantifying the uncertainty in the estimated smoothing probabilities can be of interest
in multiple fields because the underlying states are often linked to certain events of interest
(e.g. the state of an economy or the behaviour of a customer). In the following, we illustrate
the results of our approach through a couple of examples.
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Figure 1. Plot of a two-state Poisson HMM fitted to the TYT data (of size 87), with a fitted two-state
Poisson HMM. The coloured dots correspond to the conditional mean of the inferred state at each time.
Table A1 displays the corresponding parameter estimates.

3.1. Track Your Tinnitus

The ‘Track Your Tinnitus’ (TYT)mobile application gathered a large data set, a description
of which is detailed in [41] and [42]. The data plotted in Figure 1 shows the so-called
‘arousal’ variable reported for an individual over 87 consecutive days. This variable takes
high values when a high level of excitement is achieved and low values when the individual
is in a calm emotional state. The values are measured on a discrete scale; we refer to [43,44]
for details.

We estimated Poisson HMMs with varying number of states by nlminb with TMB’s
gradient and Hessian functions passed as arguments (this approach was chosen for all esti-
matedmodels in our examples). The preferredHMMin terms ofAIC andBIC is a two-state
model, see Table A1 in Appendix 4.

Figure 2 displays the corresponding smoothing probabilities with 95% Wald-type CIs,
constructed using the standard error provided by TMB. Intuitively, one might expect the
uncertainty to be low when a smoothing probability takes values close to zero or one,
whereas higher uncertainty should be inherent to smoothing probabilities further away
from these bounds. The CIs illustrated in Figure 2 follow this pattern. However, as pointed
out by Bacri et al. [26], this data set is atypically short for fitting HMMs. As we will see in
the following, different patterns will emerge for longer sequences of observations.

3.2. Soap

In the following, we consider a data set of weekly sales of a soap in a supermar-
ket. The data were provided by the Kilts Center for Marketing, Graduate School
of Business of the University of Chicago and are available in the database at
https://research.chicagobooth.edu/kilts/marketing-databases/dominicks. The data are dis-
played in Figure 3. Similarly to the previous section, we fittedmultiple PoissonHMMs, and
the preferred HMM in terms of AIC and BIC is a two-state model as well (see Table A1
in Appendix 4). Figure 4 displays the smoothing probabilities resulting from this model.
The patterns of the CIs described in the previous section are, in principle, also present
here. Nevertheless, an exception is highlighted in the bottom panel of Figure 4: at t = 152,

https://research.chicagobooth.edu/kilts/marketing-databases/dominicks
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Figure 2. Smoothing probabilities and confidence intervals of a two-state Poisson HMM fitted to the
TYT data set. The solid line shows the smoothing probability estimates and the 95% CIs are represented
by vertical lines. The lower graph displays smoothing probabilities for themost likely state estimated for
each data point. The vertical confidence interval lines are coloured differently per hidden state. Further
details on parameter estimates are available in Table A1.

the smoothing probability of State 2 is closer to the upper boundary of one than the
corresponding probability at t = 147. Yet, the uncertainty is higher at t = 152.

3.3. Weekly returns

The data set considered in this section are 2230 weekly log-returns based on the adjusted
closing share price of the S&P 500 stock market index retrieved from Yahoo Finance,
between January 1st 1980 and September 30th 2022. The returns are expressed in per cent
to facilitate reading and interpreting the estimates. As shown, e.g. by Rydén et al. [45],
Gaussian HMMs reproduce well certain stylized facts of financial returns. We thus esti-
mated such models with varying number of states. A three-state model is preferred by
the BIC, whereas the AIC is almost identical for three and four states (see Table A1
in Appendix 4). The estimates show a decrease in conditional standard deviation with
increasing conditional mean. This is a well-known property of many financial returns (see,
e.g.[46–48]) related to the behaviour of market participants in crisis and calm periods.
Figure 5 shows the first 200 data points plotted along with conditional means from the
preferred model.
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Figure 3. Plot of the soap data (of size 242), with a fitted two-state PoissonHMM. The coloured dots cor-
respond to the conditional mean of the inferred state at each time. Table A1 displays the corresponding
parameter estimates.

Figure 4. Smoothing probabilities and confidence intervals of a two-state Poisson HMM fitted to the
soap data set. The solid line shows the smoothing probability estimates and the 95%CIs are represented
by vertical lines. The lower graph displays smoothing probabilities for themost likely state estimated for
each data point. The vertical confidence interval lines are coloured differently per hidden state. Further
details on the parameter estimates are available in Table A1.
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Figure 5. Plot of the weekly returns data (of size 2230), with a fitted three-state Gaussian HMM. The
coloured dots correspond to the conditional mean of the inferred state at each time, with a fitted three-
state Gaussian HMM. Table A1 displays the corresponding parameter estimates. For readability, only the
first 200 data are plotted.

The subsequent Figure 6 shows inferred smoothing probabilities together with their
CIs. In addition to the previous applications, where smoothing probabilities close to the
boundary seemed to be linked to lower uncertainty, this data set shows also some clear
exceptions from this pattern. For example, the smoothing probabilities of State 3 inferred
at t = 30 and t = 83 take the relatively close values 0.51 and 0.53, respectively. However,
the associated uncertainty at t = 30 is visibly higher than the corresponding uncertainty
at t = 83 (the estimated standard errors are 0.205 and 0.045). This may be explained by
the fact that the inferred states closely around t = 30 oscillated between State 2 and 3, thus
indicating a high uncertainty of the state classification during this period. On the contrary,
around t = 83 a quick and persistent change from State 2 to 3 takes place.

3.4. Hospital

Basis for our last example is a data set issued by the hospital ‘Hôpital Lariboisière’ from
Assistance Publique – Hôpitaux de Paris (a french hospital trust). This data set consists of
the hourly number of patient arrivals to the emergency ward during a period of roughly
10 years. A subset of the data (over one week) is displayed in Figure 7. We examine this
due to several reasons. First, with 87648 observations, this data set is much larger than the
ones examined previously. Secondly, themedical staff noticed differences between the rates
of patient arrivals at day and night, respectively, which motivates the use of, e.g. an HMM.
Last, a PoissonHMMis a natural candidate for the observed count-type data. The preferred
model by both AIC and BIC has five states (see Table A2 in Appendix 4) and confirms the
impression of the hospital employees: State 5 is mainly visited during core operating hours
during day time. The fourth and third states mainly occur late afternoon, early evening,
and early morning. Last, State 1 and 2 correspond to night time observations.

Even for a data set of this size, the smoothing probabilities and corresponding CIs can be
derivedwithmoderate computational effort and time: Figure 8 displays the results. Overall,
the inferred CIs are relatively small, in particular in comparison with those obtained for
the stock return data discussed in the previous example. The low uncertainty in the state
classification may most likely result from the clear, close to periodic transition patterns.
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Figure 6. Smoothing probabilities and confidence intervals of a three-state Gaussian HMMfitted to the
weekly returns data set. The solid line shows the smoothing probability estimates and the 95% CIs are
represented by vertical lines. The lower-right graph displays smoothing probabilities for the most likely
state estimated for each data point. The vertical confidence interval lines are coloured differently per
hidden state. For readability, only the first 200 out of the 2230 values are shown for readability purposes.
Further details on the parameter estimates are available in Table A1.

Figure 7. Plot of the hospital data (of size 87,648), with a fitted five-state Poisson HMM. The coloured
dots correspond to the conditional mean of the inferred state at each time. Table A2 displays the cor-
responding parameter estimates. For readability, only the first week starting on Monday (from Monday
January 4th 2010 at 00:00 to Sunday January 10th 2010 at 23:59) is plotted instead of the entire 10 years.
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Figure 8. Smoothing probabilities and confidence intervals of a five-state Poisson HMM fitted to the
hospital data set. The solid line shows the smoothing probability estimates and the 95% CIs are repre-
sented by vertical lines. The lower-right graph displays smoothing probabilities for the most likely state
estimated for each data point. The vertical confidence interval lines are coloured differently per hidden
state. For readability, only the first week starting on Monday (from Monday January 4th 2010 at 00:00
to Sunday January 10th 2010 at 23:59) is plotted instead of the entire 10 years. Further details on the
parameter estimates are available in Table A2.

3.5. Simulated data

In contrast to the previous examples, we consider two simulated settings with data sets con-
sisting of 500 observations each in this section. For both data sets, the underlying Gaussian
HMM possesses three states with conditional mean vector μ = (−2, 0, 2). The difference
lies in the conditional standard deviations. These equal σ = (1, 3, 5) and σ = (5, 6.5, 8)
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Figure 9. Plot of the first simulated data set (of size 500) with low overlap, with a fitted three-state
Gaussian HMM. The vertical dotted lines separate the true states of the data indicated by text, and the
coloured dots correspond to the conditional mean of the inferred state at each time. Table A3 displays
the corresponding parameter estimates.

Figure 10. Plot of the second simulated data set (of size 500) with high overlap, with a fitted three-state
Gaussian HMM. The vertical dotted lines separate the true states of the data indicated by text, and the
coloured dots correspond to the conditional mean of the inferred state at each time. Table A3 displays
the corresponding parameter estimates.

for the first and second data set, respectively. Thus, the two settings differ substantially
w.r.t. the overlap of their conditional distributions. To facilitate comparability, we did not
simulate state sequences from a pre-defined TPM, but generated identical state sequences
in each setting: the states are visited in the order 1-2-3-2-1 with sojourns of length 100 in
each state. Figures 9 and 10 show the observations along with the true sequence of states
and their inferred conditional means for the setting with low and high overlap, respec-
tively. Noteworthy is that μ̂3 deviates quite a bit from the true value in the setting with
high overlap. This may most likely result from the high conditional variance in the third
state.

Furthermore, Figure 11 displays the inferred smoothing probabilities togetherwith their
CIs for the first setting. For these well-separated conditional distributions, the inferred
state sequence is in high accordance with the true states. Furthermore, the width of the
CIs is generally low with a slight increase around periods of state changes. In contrast,
Figure 12 corresponding to the second setting with high overlap paints a different picture.
First, the width of the CIs is substantially higher than in the first setting. Secondly, the
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Figure 11. Smoothing probabilities and confidence intervals of a three-state Gaussian HMM fitted to
the first simulated data set with low overlap. The solid line shows the smoothing probability estimates
and the 95%CIs are represented by vertical lines. The lower-right graph displays smoothing probabilities
for themost likely state estimated for each data point. The vertical confidence interval lines are coloured
differently per hidden state. Further details on the parameter estimates are available in Table A3.

inferred state sequence partly deviates substantially from the true state sequence, in par-
ticular from t = 300 until approximately t = 350. During this period, the inferred state
sequence remains in State 3, although state change to the second state has already hap-
pened. Along with this misclassification come comparably wide CIs, considering that the
smoothing probabilities take values mostly above 90%.

4. Performance and accuracy of different optimizers

This section compares the speed and accuracy of different optimizers in R using TMB in an
HMM estimation setting with DNM by several simulation studies with different settings.

In the first setting, we simulate time series consisting of 87 observations from a two-
state Poisson HMM fitted to the TYT data, as we want to examine the different optimizers
performance on data sets with relatively few observations. In the second setting, we simu-
late time series of length 200 from a two-state Poisson HMM, and in the third setting, time
series of length 200 from a two-state Gaussian HMM are simulated. The specific choice of
parameters is described in more detail in the forthcoming sections.

The comparisons that focus on computational speed and iterations of the different opti-
mizers, are based on 200 replications from the different models, while the studies focusing
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Figure 12. Smoothing probabilities and confidence intervals of a three-state Gaussian HMM fitted to
the second simulated data set with high overlap. The solid line shows the smoothing probability esti-
mates and the 95% CIs are represented by vertical lines. The lower-right graph displays smoothing
probabilities for themost likely state estimated for each data point. The vertical confidence interval lines
are coloured differently per hidden state. Further details on the parameter estimates are available in
Table A3.

on the accuracy of the optimizers are based on 1000 replications from the different models.
Hence, the Monte-Carlo simulation setup in this paper closely resembles the setup of [26].

4.1. Computational setup

The results presented in this paper required installing and using theR-packageTMB and the
software Rtools, where the latter is needed to compile C++ code. Scripts were coded in
the interpreted programming language R [49] using its eponymous software environment
RStudio. For the purpose of making our results reproducible, the generation of random
numbers is handled with the function set.seed under R version number 3.6.0. A seed
is set multiple times in our scripts, ensuring that smaller parts can be easily duplicated
without executing lengthy prior code. A workstation with 4 Intel(R) Xeon(R) Gold 6134
processors (3.7GHz) running under the Linux distribution Ubuntu 18.04.6 LTS (Bionic
Beaver) with 384 GB RAM was used to execute our scripts.

4.2. Selected optimizers and additional study design

There exist a large number of optimizers for use within the R ecosystem, see e.g. [50]. In a
preliminary phase, multiple optimization routines were attempted, and the ones failing to
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converge on a few selected test data sets from the designs mentioned above were excluded
(details available from the author upon request). Hence, the following optimizers were
selected for the simulation studies:

• optim from the stats package to test the BFGS [51–54], L-BFGS-B [55], CG [56],
and Nelder–Mead [32] algorithms.

• nlm [57] and nlminb [27] from the same package to test popular nonlinear uncon-
strained optimization algorithms.

• hjn from the optimr package [28] to test the so-called Hooke and Jeeves Pattern
Search Optimization [58].

• marqLevAlg from the marqLevAlg package [59] to test a general-purpose opti-
mization based on the Marquardt-Levenberg algorithm [60,61].

• BBoptim from the BB package [62] to test a spectral projected gradient method for
large scale optimization with simple constraints [63].

• newuoa from the minqa package [64] to test a large-scale nonlinear optimization
algorithm [65].

By also providing the Hessian and/or gradient to the optimizers that support such inputs,
22 optimization procedures are examined for each study design. For the study of the com-
putational speed and number of iterations, we applied the microbenchmark package
[66] that allows us to obtain precise durations for each of the simulated data sets. Further-
more, HMMML estimates were reordered by increasing Poisson rates or Gaussian means
to avoid a random order of the states.

It is important to note that we discarded all those samples for which the simulated state
sequence did not sojourn at least once in each state. This was to avoid identifiability and
convergence issues when trying to estimate am-state HMM on a data set where onlym−1
states are visited. Further, samples where at least one optimizer failed to converge were
also discarded to ensure comparability. For the same reason, we set the maximum number
of iterations to 104 whenever possible. Note that some optimizers (BFGS, CG, hjn,
L-BFGS-B, Nelder-Mead, newuoa) do not report a number of iterations and are
therefore missing from our comparisons of iterations. Finally, we use the true values as
initial parameters. For the TYT data, initial values are calculated asmedians from the fitted
models resulting from all optimizers listed above.

4.3. Results

In this section, we report the results from the simulation studies focusing on the perfor-
mance of different optimizers in terms of the computational speed and the lack or presence
of unreasonable estimates. This section uses R scripts that may be of interest to users inves-
tigating their own HMM settings, and are available in the supporting information. We
begin by reporting the speed of all optimization routines and thereafter the accuracy. The
routine names contain the optimizer names andmay be followed by either ‘_gr’ to indicate
that the routine uses TMB’s provided gradient function, ‘_he’ to indicate the use of TMB’s
providedHessian function, or ‘_grhe’ to indicate the use of both gradient andHessian func-
tions provided by TMB. Note that some optimizers cannot make use of these functions and
hence bear no extension at the end of their names.
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Figure 13. Median number of iterations and median duration (in milliseconds and ranked) together
with 2.5%- and 97.5%-quantile when fitting two-state Poisson HMMs to 200 replications in the first
setting. The horizontal axes are on a logarithmic scale (base 10). More detailed values are available at
Table A4.

4.3.1. Simulation study: TYT setting
Figure 13 shows the time required by each optimization routine, measured over the 200
replication. The number of iterations required by each optimization routine is also reported
where available. Times range from 1 to 1340 milliseconds. As shown by the large medians
and wide CIs, CG and CG_gr require substantially more time to estimate an HMM, com-
pared to the other optimizers. Furthermore, optimizers that take a long time to estimate
HMMs require a high amount of iterations as well, as expected. Notably, optimization rou-
tines almost always take longer when theHessian is passed. This likely results from a higher
computational burden due to handling and evaluating Hessian matrices via TMB.

Looking at the details, the optimizer BFGS_gr is among the fastest optimizers, and this
is partly explained by a relatively low number of iterations, and by the fact that it does not
make use of the Hessian. However, we note that nlm and nlmimb families of optimiz-
ers are slower when the gradient and Hessian are not passed as argument. The optimizer
BBoptim is comparatively slow, and nlminb_grhe fails to converge comparably often.

In addition to time durations, we investigate the accuracy of the optimizers, based on
another 1000 replications from the two-state Poisson HMM in the first setting. The main
conclusion from this simulation is that the medians and empirical quantiles calculated are
in fact almost identical across all optimizers, and very close to the true parameter values
used in the simulations. Results are reported in FigureA1 inAppendix 5. These result imply
that the different optimizers are equally accurate. Note, however, that the variation is quite
high for some of the estimated parameters and for the nll, which results most likely from
the limited number of observations.

4.3.2. Simulation study: two-state Poisson HMM
In this second simulation setting, the parameters of our two-state Poisson HMM are given
by
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Figure 14. Median number of iterations and median duration (in milliseconds and ranked) together
with 2.5%- and 97.5%-quantile when fitting two-state Poisson HMMs to 200 replications in the second
setting. The horizontal axes are on a logarithmic scale (base 10). More detailed values are available at
Table A5.

Figure 15. Median number of iterations and median duration (in milliseconds and ranked) together
with 2.5%- and 97.5%-quantile when fitting two-state Gaussian HMMs to 200 replications in the third
setting. The horizontal axes are on a logarithmic scale (base 10). More detailed values are available at
Table A6.

λ = (1, 7), � =
(
0.95 0.05
0.15 0.85

)
,

and the sample size is fixed at 200. Figure 14 illustrates our results, which are in line with
those obtained in the first setting. More precisely, BBoptim still dominates the num-
ber of iterations, and CG and CG_gr require more computational time than the others.
Overall, most optimizers need more time compared to the previous setting as there is
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more data to process, but the time increase for nlm_he and hjn is much more substan-
tial than for other optimizers. Moreover, although the data set is larger, some optimizers
(e.g. BBoptim and BFGS_gr) perform as fast as or faster than in the previous setting.
Furthermore, passing TMB’s Hessian to optimizers does not always slow down the opti-
mization. This can be seen, e.g. from nlminb_he which exhibits a lower median time
than nlminb. A last notable pattern concerns the popular nlm optimizer. When only
the Hessian but not the gradient is supplied from TMB, the computational time increases
substantially compared to nlm_gr and nlm_grhe. Interestingly, the equally popular
optimizer nlminb is not affected in the same way. Thus, one should be careful when
only supplying the Hessian from TMB while an optimizer carries out the gradient approx-
imation. In any case, the low number of iterations required by both nlminb_grhe
and nlm_grhe indicate a preferable convergence behaviour when supplying both
quantities.

In terms of accuracy of the parameter estimates and obtained nlls, our results are highly
similar to those described in the first setting (for details, see Figure A2 in Appendix 5).

4.3.3. Simulation study: two-state Gaussian HMM
In our third and last simulation setting, the parameters of a two-state Gaussian HMM are
given by

� =
(
0.95 0.05
0.15 0.85

)
, μ = (−5, 5), σ = (1, 5),

and the sample size is fixed at 200. In terms of computational time and the number of
iterations, the results observed for this setup are similar to the previously studied Poisson
HMMs (see Figure 15). Aminor aspect is an increase in both iterations and computational
time, which is not surprising given the higher number of parameters.

Regarding estimation accuracy of the parameter estimates and obtained nlls, our
results are again highly similar to those obtained in the previous two settings (illustrated
graphically by Figure A3 in Appendix 5).

5. Robustness to initial value selection

In this section, we examine the impact of initial values of the parameters – including poorly
selected ones – on the convergence behaviour and accuracy of different optimizers. We
investigate one real and several simulated data sets. In order to ‘challenge’ the optimizers,
all data sets are of comparable small size.

5.1. Study design

We again consider three settings in the following. In the first, we investigate the TYT data
set. In the second and third setting, we focus on simulated data from Poisson and Gaussian
HMMs, respectively. More specifically, for the Poisson HMMs we generate one data set of
sample size 200 for each of the HMMs considered. These HMMs are defined by all possible
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combinations of the following Poisson rates and TPMs:

λ ∈ {(1, 4), (5, 7)} and

� ∈
{(

0.9 0.1
0.2 0.8

)
,
(
0.7 0.3
0.8 0.2

)
,
(
0.1 0.9
0.8 0.2

)
,
(
0.55 0.45
0.45 0.55

)}
.

This setup leads to the generation of 2 × 4 data sets. For the Gaussian HMMs, we follow
the same approach, where the Gaussian means and standard deviations are selected from
the sets

μ ∈ {(−2, 2), (−1, 4)} and

σ ∈ {(1.5, 2.5), (0.5, 1.5)} .
This setting thus generates 2 × 2 × 4 data sets.

For each data set, we pass a large range of initial values to the same optimizers consid-
ered in the previous section. In this way, we investigate the resistance of each optimizer to
potentially poor initial valueswhen fittingHMMs. To generate sets of initial values, we con-
sider the following potential candidates for Poisson rates λ, Gaussian means μ, Gaussian
standard deviations σ , and TPMs �:

λ1, λ2 ∈ {M,M + 0.5,M + 1, 1.5, . . . , xmax} , where λ1 < λ2,

μ1,μ2 ∈ {xmin, xmin + 0.5, xmin + 1, . . . , xmax − 0.5, xmax} , where μ1 < μ2,

σ1, σ2 ∈
{
10 equidistant points going from

√
(xmax − xmin)2

2T
to

√
(xmax − μ̂)(μ̂ − xmin)

}
,

and � ∈
{(

0.1 0.9
0.9 0.1

)
,
(
0.1 0.9
0.8 0.2

)
, . . . ,

(
0.1 0.9
0.1 0.9

)
,(

0.2 0.8
0.9 0.1

)
,
(
0.2 0.8
0.8 0.2

)
, . . . ,

(
0.2 0.8
0.1 0.9

)
,

, . . .
(
0.9 0.1
0.1 0.9

)}
,

where xmin = min(x1, x2, . . . , xT), xmax = max(x1, x2, . . . , xT), μ̂ = 1
T
∑T

i=1 xi and M =
max(0.5, xmin). The motivation for this selection is as follows. First, Poisson means have
to be greater than zero, so we set their lower boundary to M. Secondly, the λ̂i’s have to
belong to the interval (xmin, xmax), cfr. [67]. This applies to the Gaussian means as well.
Thirdly, the upper and lower limit of σ1, σ2 is motivated by the Bhatia-Davis [68] and the
von Szokefalvi Nagy inequalities [69].

For the Poisson HMMs fitted, we consider all possible combination of the parameters
described above. For the Gaussian HMMs, however, we sample 12,500 initial parameters
for each of the 16 data sets to reduce computation time (the total amount reduces from
39,066,300 to 200,000). These sets of initial values are identical for all optimizers. As in the
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Table 1. Performance of multiple optimizers estimating
Poisson HMMs from the TYT data (first setting) over 7371
different sets of initial parameters.

Failures (%) Global maximum found (%)

BBoptim 0.00 72.11
BFGS 0.00 66.83
BFGS_gr 0.00 66.83
CG 4.90 71.48
CG_gr 4.91 71.49
hjn 0.00 97.40
L-BFGS-B 3.43 71.38
L-BFGS-B_gr 3.46 71.22
marqLevAlg 1.64 88.43
marqLevAlg_gr 1.99 88.64
marqLevAlg_grhe 1.94 88.60
marqLevAlg_he 1.64 88.43
Nelder-Mead 0.00 69.88
newuoa 0.00 71.67
nlm 0.00 65.19
nlm_gr 0.00 65.22
nlm_grhe 0.00 72.99
nlm_he 0.00 65.19
nlminb 0.00 74.96
nlminb_gr 0.00 74.94
nlminb_grhe 24.41 99.96
nlminb_he 0.00 74.96

Notes: The first column lists all optimizers. The second column shows
how often optimizers fail to converge successfully. The third col-
umn displays how often optimizers successfully found the global
maximum of the nll when converging.

previous Section 4, we limit the maximal number of iterations to 104 whenever possible.
Other settings were left as default.

To evaluate the performance of the optimizers considered, we rely on two criteria. First,
we register whether the optimizer converges (all errors are registered regardless of their
type). Secondly, when an optimizer converges, we also register if the nll is equal to the
‘true’ nll (with a gentle margin of ± 5%). We calculate this ‘true’ nll as the median of all
nlls derived with all optimizers initiated with the true parameter values.

5.2. Results

Table 1 shows the results for the two-state Poisson HMMs fitted to the TYT data. The four
marqLevAlg follow closely.We note that hjn has the best performance: it basically does
not fail and converges almost always. Moreover, nlminb_grhe fails to converge much
more often than other optimizers, but is the most likely to find the global maximum when
it converges. For the other optimizers, the failure rate is generally low (less than 5%) and
the global maximum is found in more than 65% of the cases.

Table 2 reports the results from the second setting, also with two-state Poisson HMMs.
The results show that all optimizers find the global maximum in the majority of cases
(> 96%) when converging. Moreover, the failure rates are relatively low for all optimizers
with the exception of CG, which stands out with comparably high failure rates.

Finally, Table 3 presents the results from the third setting with Gaussian HMMs. The
results regarding the failure rates point in the same direction as those from the Poisson
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Table 2. Performanceofmultiple optimizers estimatingPoissonHMMs from
the second setting over 194,481 different sets of initial parameters.

Failures (%) Global maximum found (%)

BBoptim 4.20 100.00
BFGS 0.00 96.68
BFGS_gr 0.00 96.68
CG 14.23 99.49
CG_gr 14.47 99.53
hjn 0.00 99.99
L-BFGS-B 0.30 100.00
L-BFGS-B_gr 0.29 100.00
marqLevAlg 3.19 99.98
marqLevAlg_gr 3.20 100.00
marqLevAlg_grhe 3.20 100.00
marqLevAlg_he 3.19 99.98
Nelder-Mead 0.00 99.91
newuoa 0.34 99.77
nlm 0.07 98.42
nlm_gr 0.02 98.42
nlm_grhe 0.00 99.50
nlm_he 0.07 98.42
nlminb 0.00 100.00
nlminb_gr 0.00 100.00
nlminb_grhe 4.62 100.00
nlminb_he 0.00 100.00

Notes: The first column lists all optimizers. The second column shows how often optimizers
fail to converge successfully. The third column displays how often optimizers successfully
found the global maximum of the nll when converging.

Table 3. Performance of multiple optimizers estimating Gaussian HMMs
from the third setting over 200,000 different sets of initial parameters ran-
domly drawn from 39,066,300 different candidate sets of initial values.

Failures (%) Global maximum found (%)

BBoptim 1.13 98.61
BFGS 0.00 84.24
BFGS_gr 0.00 84.24
CG 8.62 98.68
CG_gr 8.82 98.81
hjn 0.53 95.21
L-BFGS-B 6.58 94.40
L-BFGS-B_gr 6.75 94.45
marqLevAlg 2.55 98.18
marqLevAlg_gr 2.66 98.34
marqLevAlg_grhe 2.64 98.33
marqLevAlg_he 2.55 98.18
Nelder-Mead 0.03 80.55
newuoa 7.58 97.44
nlm 0.39 87.77
nlm_gr 0.11 87.73
nlm_grhe 0.32 97.21
nlm_he 0.39 87.77
nlminb 0.22 97.18
nlminb_gr 0.26 97.20
nlminb_grhe 5.69 97.97
nlminb_he 0.22 97.18

Notes: The first column lists all optimizers. The second column shows how often optimizers
fail to converge successfully. The third column displays how often optimizers successfully
found the global maximum of the nll when converging.
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Figure 16. Convergence counts of nlminb and a hybrid algorithm (first Nelder-Mead, then
nlminb). The hybrid algorithm uses 1, 10, 20, . . . iterations for the Nelder-Mead, then passes the
estimates to nlminb as initial values. We randomly picked 1000 sets of initial values out of 1,458,000
potential candidates.

HMMsetting:CG attains the highes failure rate, followed bynewuoa andL-BFGS-B. The
remaining optimizers perform satisfactorily. Note, however, that nlminb does not benefit
from being supplied with the gradient and Hessian from TMB. Regarding the global maxi-
mum found,many algorithms reach success rates of about 95%ormore.Notable exceptions
are Nelder-Mead and nlm when not both gradient and Hessian are provided by TMB.
As observed previously for the TYT data, nlm benefits strongly from the full use of TMB.

5.3. Hybrid algorithm

Last, we ran a small simulation study investigating a hybrid algorithm within the TMB
framework in the spirit of [29]. The hybrid algorithm starts with the Nelder-Mead opti-
mizer and switches to nlminb after a certain number of iterations. The idea is to benefit
from both Nelder-Mead’s rapid departure from poor initial values and from the high
convergence speed of nlminb. Our study is performed on 1000 random sets of initial val-
ues in a similar fashion to Section 5, using theweekly returns data set. For every set of initial
values, we sequentially increase the number of iterations carried out by Nelder-Mead by
ten (starting at one) until convergence or until 10,000 iterations has been reached, in which
case we classify the attempt as a failure. For comparison, we also run an optimization only
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with nlminb starting directly with the same sets of inital values. In both cases, nlminb
benefits from the gradient and Hessian provided by TMB.

Figure 16 reports the results of our study. The left most columns show that only
one iteration was required to converge in 827 of the 1000 sets of initial values with the
hybrid algorithm, while nlminb converges in only 698 out of these 827 sets. Further-
more, for 39 additional sets of initial values, the hybrid algorithm converges with 10
iterations carried out by the Nelder-Mead optimizer, whereas nlminb fails 26 times
on these sets. Increasing the number of initial iterations carried out by Nelder-Mead
for the hybrid algorithm leads to similar patterns. Finally, both optimization routines
fail to converge for 18 sets of initial values. Thus, in total, the hybrid algorithm with
one or more Nelder-Mead iterations failed in only 1.8% of the cases. In comparison,
direct use of nlminb failed in around 12% of the cases. This indicates that the hybrid
algorithm requires rather few iterations of Nelder-Mead to improve the convergence
rate substantially.

6. Concluding remarks

This paper addresses a couple of aspects concerning parameter estimation for HMMs via
TMB and R using direct numerical maximization (DNM) of the likelihood. The advan-
tage of TMB is that it permits to quantify the uncertainty of any quantity depending on
the estimated parameters. This is achieved by combining the delta method with auto-
matic differentiation.Moreover,TMB provides exact calculations of first- and second-order
derivatives of the (log-)likelihood of a model by automatic differentiation. This allows for
efficient gradient- and/or Hessian-based optimization of the likelihood. In the first part of
the paper, we propose a straightforward technique to quantify the uncertainty of smoothing
probabilities via the calculation of Wald-type CIs. The advantage of this approach is that
one avoids computationally intensive bootstrap methods. By means of several examples,
we illustrate how such CIs provide additional insight into the commonly used state classi-
fication via smoothing probabilities. For a practitioner working withHMMs, the presented
uncertainty quantification constitutes a new tool for obtaining a better understanding of
the dynamics of the hidden process.

Subsequently, we examine speed and accuracy of the different optimizers in three sim-
ulation settings. Our results show a slight variation in both number of iterations and
computational speed. In particular, the optimizers nlminb, nlm, marqLevAlg, and
BFGS usually possess the highest computational speed. The computing time required by
all optimizers reduces when using the gradient provided by TMB. The number of iterations
reduces in particular for nlminb and nlm when employing both gradient and Hessian
fromTMB. This suggests amore direct path towards the (global) likelihoodmaximumcom-
pared to optimizer-internal approximation routines. Regarding the accuracy, measured in
terms of attained negative log-likelihood and parameter estimates (and their variability)
the results show little variations across the different optimizers. This is indeed a positive
finding, indicating that the performance of the optimizers is relatively equal in terms of
accuracy – however, this statement only holds true when using the optimal initial value.
Then, we examine robustness towards initial values across different optimizers. In three
settings, we measure (a) how often optimizers fail to converge and (b) how often they suc-
cessfully reach the global maximum of the log-likelihood function when starting from a
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wide range of sets of initial values. In particular, nlm, nlminb, and hjn show an overall
good performance. Notably,nlm benefits strongly from employing both gradient andHes-
sian provided by TMB, which is not the case fornlminb. Altogether, we observe a trade-off
between failure rates and convergence to the global maximum. Nevertheless, none of the
optimizers shows an exceptionally bad performance.

Finally, we illustrate that a hybrid algorithm starting with the Nelder-Mead opti-
mizer and switching to nlminb after a certain number of iterations converges more often
than nlminb. Notably an effect is visible even with a single initial iteration carried out by
Nelder-Mead.

Concerning future research, initialization strategies and the hybrid algorithmmaymerit
further investigation. While our hybrid strategy is implemented easily and seems effective,
initial values considered are based on a simple random sampling process. More com-
plex approaches could be considered in case of unsatisfactory performance, which may
be expected, e.g. for models with a high number of parameters or high-dimensional data.
Then one may consider EM short-runs, (model-based) clustering, or other alternatives
[see 29, 38, and the references therein] – potentially at the expense of increasedmathemat-
ical and programming efforts. In our results concerning different optimization algorithms
in the context of TMB provide useful guidance when pre-selecting suitable candidates for
further analyses. Furthermore, smoothing probabilities play a key role for the model selec-
tion criterion ICL [70] through their contribution to the entropy term (roughly speaking,
ICL = BIC – 2· Entropy). Hence, it may be possible to develop a model selection criterion
which additionally takes the uncertainty of the smoothing probabilities into account. The
increasing width of the CIs during periods of wrongful state classification could serve as
additional input formodel selection on the one hand.On the other hand, it could constitute
itself an interesting measure for identifying misclassification.
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Appendices

Appendix 1. Forward algorithm and backward algorithm

The pass through observations can be efficiently computed piece by piece, from left (i.e. time s = 1)
to right (i.e. time s = t) or right to left by the so-called ‘forward algorithm’ and ‘backward algorithm’
respectively. With these two algorithms, the likelihood can be computed recursively. To formulate
the forward algorithm, let us define the vector αt for t = 1, 2, . . . ,T so that

αt = δP(x1)�P(x2)�P(x3) . . .�P(xt)

= δP(x1)
t∏

s=2
�P(xs)

= (αt(1), . . . ,αt(m))

for t = 1, 2, . . . ,T. The name of the algorithm comes from computing it via the recursion

α0 = δP(x1),

αt = αt−1�P(xt) for t = 1, 2, . . . ,T.

After passing through all observations until time T, the likelihood is derived from

L(θ) = αT1′.

The backward algorithm is very similar to the forward algorithm. The sole difference lies in starting
from the last instead of the first observation. To specify the backward algorithm, let us define the
vector βt for t = 1, 2, . . . ,T so that

β ′
t = �P(xt+1)�P(xt+2) . . .�P(xT) . . . 1′

=
( T∏
s=t+1

�P(xs)

)
1′

= (βt(1), . . . ,βt(m)) .

The name backward algorithm results from the way of recursively calculating β t by

βT = 1′

βt = �P(xt+1)β t+1 for t = T − 1,T − 2, . . . , 1.

As before, the likelihood can be obtained after a pass through all observations by

L(θ) = δβ1.

Usually, only the forward algorithm is used for parameter estimation. Nonetheless, either or both
algorithms may be necessary to derive certain quantities of interest, e.g. smoothing probabilities (as
we explore in Section 3) or forecast probabilities. For practical implementation, attention needs to
be paid to underflow errors which can quickly occur in both algorithms (due to the elements of the
TPM and / or conditional probabilties taking values in [0, 1]). Therefore, we implemented a scaled
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version of the forward algorithm as suggested by Zucchini et al. [22, p. 48]. This version directly
provides the negative log-likelihood (nll) as result.

Appendix 2. Reparameterization of the likelihood function

Along with the data, θ serves as input for calculating the likelihood by the previously illustrated
forward algorithms. Some constraints need to be imposed on θ :

(i) In the case of the Poisson HMM, the parameter vector λ = (λ1, . . . , λm) necessary for
computing the conditional distribution has to consist of strictly positive elements.

(ii) The elements γij of the TPM � must be non-negative, and each row of � needs to sum up to to
one.

Tacking these constraints bymeans of constrained optimization routines whenmaximizing the like-
lihood can lead to several difficulties. For example, constrained optimization routines may require a
significantly amount of fine-tuning. Moreover, the number of available optimization routines is sig-
nificantly reduced. A common alternative works by reparametrizing the log-likelihood as a function
of unconstrained, so-called ‘working’ parameters {T, η} = g−1(�,λ), as follows. One possibility to
reparametrize � is given by

τij = log

(
γij

1 −∑
k�=i γik

)
= log(γij/γii) for i �= j.

where τij ∈ R are m(m − 1) unconstrained elements of an m × m matrix T with missing diagonal
elements. The matching reverse transformation is

γij = exp(τij)
1 +∑

k�=i exp(τik)
for i �= j,

and the diagonal elements of � follow from
∑

j γij = 1, i = 1, . . . ,m (see [22], p. 51).
For a Poisson HMM, a simple method to reparametrize the conditional Poisson means λ into

η is given by ηi = log(λi) for i = 1, . . . ,m. Consequently, the constrained ‘natural’ parameters are
obtained via λi = exp(ηi). Estimation of the natural parameters {�,λ} can therefore be obtained
by maximization of the reparametrized likelihood with respect to {T, η} then by a transformation
of the estimated working parameters back to natural parameters via the above transformations, i.e.
{�̂, λ̂} = g(T̂, η̂). In general, the above procedure requires that the function g is one-to-one.

With a Gaussian HMM, the means are already unconstrained and do not require any trans-
formation. However, the standard deviations can be transformed similarly to the Poisson rates via
ηi = log(σi) for i = 1, . . . ,m, and the ‘natural’ parameters are then obtained via the corresponding
reverse transformation σi = exp(ηi).

Appendix 3. Confidence intervals

When handling statistical models, confidence intervals (CIs) for the estimated parameters can be
derived via various approaches. One common such approach bases on finite-difference approxima-
tions of the Hessian. However, as [71] points out, there are better alternatives when dealing with
most HMMs. Preferred are profile likelihood-based CIs or bootstrap-based CIs, where the latter are
now widely used despite the potentially large computational load [22,29]. With common Poisson
HMMs, [26] shows that TMB can yield valid Wald-type CIs in a fraction of the time required by
classical bootstrap-based methods.

In this section, we describe the Wald-type and the bootstrap-based approach. The likelihood
profile method frequently fails to yield CIs (see [26]) and is therefore not detailed.
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A.1.Wald-type confidence intervals

Evaluating the Hessian at the optimum found by numerical optimization procedures is basis for
Wald-tye CIs. As illustrated above, the optimized negative log-likelihood function of a HMM typi-
cally depends on the working parameters. However, drawing inference on the natural parameters is
by far more relevant than inference on the working parameters. To overcome this problem we can
take advantage of the delta method [see, e.g. 72, 73]. For applying the delta method in general, let
the d-dimensional vector ψ̂ be an estimate of ψ based on a sample of size n such that

√
n(ψ̂ − ψ)

D→ Nd(0,�),

whereNd(0,�) denotes the d-dimensional centred Normal distribution with covariance matrix�,
and D→ denotes convergence in distribution. Then, we have

√
n(g(ψ̂) − g(ψ))

D→ Ns
(
0,∇g(ψ) ·� · ∇g(ψ)′

)
for any function g : Rd → R

s with ∇g(ψ) denoting its Jacobian matrix.
In a general HMM setting, let η represent working parameters with a one-to-one correspon-

dence to a set of natural parameters λ in an arbitrary conditional distribution. Since the Hessian
∇2 log L({T̂, η̂}) relies on the working parameters {T̂, η̂}, an estimate of the covariance matrix of
{�̂, λ̂} can therefore be obtained via the delta method through



�̂,λ̂ = −∇g(T̂, η̂)

(
∇2 log L(T̂, η̂)

)−1 ∇g(T̂, η̂)′,

with {�̂, λ̂} = g(T̂, η̂) as defined in Appendix-2. However, note that the described mapping of λ to
η is specific for the Poisson case in Appendix-2. From this, TMB deduces the standard errors for the
working and natural parameters using automatic differentiation and the delta method (see [25] for
details), from which 95% CIs can be formed via λ̂± q0.975 · SE(λ̂) where q0.975 ≈ 1.96 is the 97.5th
percentile from the standard normal distribution, and SE(λ̂) denotes the standard error of λ̂.

Similarly, since g is a one-to-one function, the smoothing probabilities can be expressed as a func-
tion of the working parameters {T, η} through g∗({T, η}) := pit(g({T, η})), where pit(·) is defined
by the equation in Section 3 . Thus, the standard deviation of the estimated smoothing probabilities
can be obtained by:

SD(pit(θ̂)) = −∇g∗(T̂, η̂)
(
∇2 log L(T̂, η̂)

)−1 ∇g∗(T̂, η̂)′.

A.2. Bootstrap-based confidence intervals

The bootstrap method was described by Efron and Tibshirani [74] in their seminal article, and is
widely used by many practitioners. Many bootstrap techniques have been developed since then, and
have been extensively applied in the scientific literature. This paper will not review these techniques,
but will instead use one of them: the so-called parametric bootstrap. As [75] points out, the paramet-
ric bootstrap is suitable for time series, and hencemotivates this choice. For details on the parametric
bootstrap implementation in R, we refer to [22 Ch. 3.6.2, pp. 58-60].

At its heart, bootstrapping requires some form of re-sampling to be carried out. Then, the chosen
model is re-estimated on each new sample, and eventually some form of aggregation of the results
takes place.Wemake use of TMB to accelerate the re-estimation procedure, then look at the resulting
median along with the 2.5th and 97.5th empirical percentile to infer a 95% CI.
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Appendix 4. Estimatedmodels for real and simulated data sets

Table A1. Estimates and Wald-type 95% CIs for a two-state Poisson HMM fitted to the TYT data, a two-
state Poisson HMM fitted to the soap data, and a three-state Gaussian HMM fitted to the weekly returns
data.

TYT data set Soap data set Weekly returns data set

Par. Est. L. U. Par. Est. L. U. Par. Est. L. U.

λ1 1.64 1.09 2.18 λ1 4.02 3.66 4.38 μ1 −2.08 −4.3 0.14
λ2 5.53 4.91 6.16 λ2 11.37 9.94 12.80 μ2 0.06 −0.13 0.25
γ11 0.95 0.86 1.00 γ11 0.91 0.86 0.96 μ3 0.33 0.24 0.41
γ12 0.05 0 0.14 γ12 0.09 0.04 0.14 σ1 7.11 5.25 8.97
γ21 0.03 0 0.07 γ21 0.37 0.2 0.54 σ2 2.65 2.47 2.84
γ22 0.97 0.93 1.00 γ22 0.63 0.46 0.80 σ3 1.41 1.34 1.48
δ1 0.34 0 0.79 δ1 0.81 0.71 0.91 γ11 0.98 0.97 0.99
δ2 0.66 0.21 1.00 δ2 0.19 0.09 0.29 γ12 0 0 0.00

γ13 0.02 0.01 0.03
γ21 0 0 0.00
γ22 0.81 0.63 0.99
γ23 0.19 0.01 0.37
γ31 0.03 0.01 0.04
γ32 0.01 0 0.02
γ33 0.96 0.94 0.98
δ1 0.42 0.4 0.45
δ2 0.55 0.42 0.69
δ3 0.02 0 0.17

m AIC BIC m AIC BIC m AIC BIC

2 345 355 2 1245 1259 2 9563 9597
3 355 377 3 1239 1270 3 9476 9544

4 1241 1297 4 9475 9590

Notes: From left to right, the columns contain: the parameter name, parameter estimate, and lower (L.) and upper (U.) bound
of the corresponding 95% CI derived via the Hessian provided by TMB, repeated for the three HMMs. As standard devia-
tions and Poisson rates must be non-negative, the CIs are adjusted when necessary. Similarly, the TPM elements and the
stationary distribution must take values between 0 and 1 and the CIs are adjusted accordingly when necessary. AIC and
BIC scores are displayed under for correspondingmodels with two, three, four, and five states (when themodel estimation
converges). Parameter estimates arederivedbynlminbwithTMB’s gradient andHessian functionspassed as arguments.
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Table A2. Estimates and Wald-type 95% CIs for a five-state Poisson HMM fitted to the hospital data.

Hospital data set (1) Hospital data set (2)

Par. Est. L. U. Par. Est. L. U.

λ1 3.54 3.51 3.58 γ34 0 0 0
λ2 6.46 6.33 6.59 γ35 0 0 0
λ3 10.13 10.03 10.24 γ41 0 0 0
λ4 13.96 13.84 14.07 γ42 0 0 0
λ5 23.67 23.38 23.95 γ43 0.13 0.12 0.13
γ11 0.82 0.81 0.83 γ44 0.87 0.86 0.87
γ12 0 0 0 γ45 0.01 0.01 0.01
γ13 0.03 0.02 0.03 γ51 0 0 0
γ14 0.13 0.12 0.14 γ52 0 0 0
γ15 0.02 0.02 0.02 γ53 0 0 0
γ21 0.28 0.27 0.3 γ54 0.19 0.18 0.21
γ22 0.72 0.7 0.73 γ55 0.8 0.79 0.82
γ23 0 0 0 δ1 0.24 0.23 0.25
γ24 0 0 0 δ2 0.15 0.15 0.16
γ25 0 0 0 δ3 0.28 0.27 0.29
γ31 0 0 0 δ4 0.29 0.28 0.3
γ32 0.15 0.15 0.16 δ5 0.04 0.03 0.04
γ33 0.85 0.84 0.85

m AIC BIC

2 518598 518636
3 494824 494908
4 485206 485356
5 481627 481862

Notes: From left to right, the columns contain: the parameter name, parameter estimate, and lower (L.) and upper (U.) bound
of the corresponding 95% CI derived via the Hessian provided by TMB, repeated for the three HMMs. As standard devia-
tions and Poisson rates must be non-negative, the CIs are adjusted when necessary. Similarly, the TPM elements and the
stationary distribution must take values between 0 and 1 and the CIs are adjusted accordingly when necessary. AIC and
BIC scores are displayed under for correspondingmodels with two, three, four, and five states (when themodel estimation
converges). Parameter estimates arederivedbynlminbwithTMB’s gradient andHessian functionspassed as arguments.
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Table A3. Estimates and Wald-type 95% CIs for a three-state Gaussian HMM fitted to each simulated
data discussed in Section 3.5.

Simulated data Simulated data
Low overlap High overlap

Par. Value Est. L. U. Value Est. L. U.

μ1 −2 −1.96 −2.11 −1.82 −2 −1.74 −2.49 −0.99
μ2 0 0 −0.41 0.42 0 −0.8 −2.45 0.85
μ3 2 2.09 1.11 3.07 2 13.74 11.07 16.41
σ1 1 1.04 0.94 1.15 5 5.29 4.75 5.82
σ2 3 2.9 2.61 3.19 6.5 7.26 6.07 8.45
σ3 5 5.07 4.37 5.78 8 2.62 0.76 4.48
γ11 1 0.99 1 1 0.99 1
γ12 0 0 0.01 0 0 0
γ13 0 0 0 0 0 0.01
γ21 0.01 0 0.02 0.01 0 0.02
γ22 0.99 0.97 1 0.93 0.82 1
γ23 0 0 0.01 0.06 0 0.17
γ31 0 0 0 0 0 0
γ32 0.01 0 0.03 0.81 0.54 1
γ33 0.99 0.97 1 0.19 0 0.46
δ1 0.61 0.03 1 0.33 0 0.86
δ2 0.27 0 0.68 0.65 0.15 1
δ3 0.12 0 0.41 0.03 0 0.08

Notes: The left-most column displays the parameter name. Then, from left to right, the columns contain: the true parame-
ter value, parameter estimate, and lower (L.) and upper (U.) bound of the corresponding 95% CI derived via the Hessian
provided by TMB, repeated for the two HMMs. As standard deviations must be non-negative, the CIs are adjusted when
necessary. Similarly, the TPM elements and the stationary distribution must take values between 0 and 1 and the CIs are
adjusted accordingly when necessary. Parameter estimates are derived by nlminb with TMB’s gradient and Hessian
functions passed as arguments. Initial parameters passed to the optimizer nlminb are educated guesses instead of the
true parameter values. The state sequence is fixed, hence the TPM� and the stationary distribution δ have no predefined
values and are therefore missing from this table.
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Appendix 5. Performance and accuracy of different optimizers: additional
figures and results

Figures A1–A3 show the median of the parameter estimates and the nll, along with 95% CIs from
the three different simulation designs described in Section 4 across all optimizers studied, over 1000
realizations from the different models. All figures show that the different optimizers behave almost
identically in terms of accuracy. However, we restate that the initial values used here are equal to the
true parameter values.

Figure A1. Plots of estimates and NLL when estimating a two-state Poisson HMM on the TYT data set
(87 data), over 1000 realizations. The columns display in order the NLL, Poisson rates, TPM elements, and
the stationary distribution. The dots represent themedians, and the lines display the 95% percentile CIs.
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Figure A2. Plots of estimates and NLL when estimating a two-state Poisson HMM in the second study
design, with (200 observations), over 1000 realizations. The columns display in order the NLL, Poisson
rates, TPM elements, and the stationary distribution. The dots represent the medians, and the lines
display the 95% percentile CIs.
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Figure A3. Plots of estimates and NLL when estimating a two-state Poisson HMM in the third study
design, with (200 observations), over 1000 realizations. The columns display in order the NLL, Poisson
rates, TPM elements, and the stationary distribution. The dots represent the medians, and the lines
display the 95% percentile CIs.
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Additionally, Tables A4–A6 display the descriptive statistics shown graphically by Figure 13–15.

Table A4. Median duration (in milliseconds and ranked) together with 95% CI and number of iterations
required for fitting two-state Poisson HMMs to 200 replications in the first setting.

Optimizer Median time & CI Median iteration number & CI Median time rank

BBoptim 8.49 (5.64, 37.32) 49 (31, 227.2) 18
BFGS 2.22 (1.86, 3.84) 8
BFGS_gr 0.97 (0.81, 1.55) 1
CG 58.73 (23.69, 342.3) 22
CG_gr 30.05 (9.86, 171.94) 21
L-BFGS-B 5.29 (3.69, 8.33) 16
L-BFGS-B_gr 1.65 (1.18, 2.51) 3
Nelder-Mead 4.08 (2.42, 7.38) 15
hjn 10.47 (8.36, 16.63) 19
marqLevAlg 2.99 (2.39, 10.35) 4 (3, 10) 12
marqLevAlg_gr 2.55 (2.03, 9.43) 4 (3, 10) 10
marqLevAlg_grhe 2.41 (2.06, 8.3) 4 (3, 10) 9
marqLevAlg_he 3 (2.37, 10.33) 4 (3, 10) 13
newuoa 5.64 (3.11, 12.19) 17
nlm 2.84 (1.91, 4.27) 21 (13, 31) 11
nlm_gr 1.9 (1.47, 2.55) 21 (13, 31.03) 4
nlm_grhe 3.11 (2.81, 4.07) 4 (3, 7.03) 14
nlm_he 21.87 (14.96, 32.71) 21 (13, 31) 20
nlminb 2.08 (1.7, 2.82) 12 (9, 17) 6
nlminb_gr 1 (0.83, 1.37) 12 (9, 17) 2
nlminb_grhe 2.08 (1.94, 2.61) 4.5 (4, 7) 7
nlminb_he 2.07 (1.73, 2.72) 12 (9, 17) 5

Notes: The CIs are ofWald-type andbase on the standard error of themeanderived from200 replications. A graphical display
of these values is available at Figure 13.

Table A5. Median duration (in milliseconds and ranked) together with 95% CI and number of iterations
required for fitting two-state Poisson HMMs to 200 replications in the second setting.

Optimizer Median time & CI Median iteration number & CI Median time rank

BBoptim 10.3 (5.56, 24.81) 32 (22, 56.4) 18
BFGS 3.76 (3.08, 8.18) 6
BFGS_gr 1.81 (1.43, 3.89) 1
CG 38.1 (21.46, 94.9) 22
CG_gr 16.81 (8.94, 46.94) 20
L-BFGS-B 6.45 (4.44, 14.42) 16
L-BFGS-B_gr 2.19 (1.47, 4.69) 3
Nelder-Mead 7.17 (3.36, 17.43) 17
hjn 15.43 (10.68, 34.63) 19
marqLevAlg 4.37 (3.37, 9.31) 3 (3, 4) 13
marqLevAlg_gr 3.89 (3.07, 8.36) 3 (3, 4) 7
marqLevAlg_grhe 4.27 (3.6, 8.93) 3 (3, 4) 11
marqLevAlg_he 4.34 (3.4, 9.23) 3 (3, 4) 12
newuoa 6.06 (3.38, 14.03) 15
nlm 3.72 (2.72, 8.55) 16 (11, 19.03) 5
nlm_gr 2.8 (2.22, 6.35) 16 (11, 19) 4
nlm_grhe 5.78 (5.08, 12.73) 3 (2, 4) 14
nlm_he 37.04 (27.75, 83.15) 16 (11, 19.03) 21
nlminb 4.2 (2.94, 9.35) 15 (11, 19) 10
nlminb_gr 2.12 (1.51, 4.82) 15 (11, 19) 2
nlminb_grhe 3.91 (3.34, 8.6) 4 (3, 6) 8
nlminb_he 4.07 (3.05, 9.33) 15 (11, 19) 9

Notes: The CIs are ofWald-type andbase on the standard error of themeanderived from200 replications. A graphical display
of these values is available at Figure 14.
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Table A6. Median duration (in milliseconds and ranked) together with 95% CI and number of iterations
required for fitting two-state Gaussian HMMs to 200 replications in the third setting.

Optimizer Median time & CI Median iteration number & CI Median time rank

BBoptim 59.28 (19.84, 253.76) 84.5 (41, 368.3) 19
BFGS 15.28 (7.21, 19.03) 8
BFGS_gr 5.72 (2.66, 7.22) 1
CG 142.64 (54.48, 290.9) 21
CG_gr 52.84 (21.57, 115.05) 18
L-BFGS-B 34.07 (14.51, 53.75) 16
L-BFGS-B_gr 9.13 (4.07, 14.38) 5
Nelder-Mead 37.41 (13.06, 100.75) 17
hjn 63.68 (30.09, 87.85) 20
marqLevAlg 16.05 (7.49, 38.21) 4 (3, 7.03) 10
marqLevAlg_gr 14.18 (6.75, 35.54) 3 (3, 8) 7
marqLevAlg_grhe 8.64 (4, 29.05) 3 (3, 8) 3
marqLevAlg_he 15.83 (7.42, 35.43) 4 (3, 7.03) 9
newuoa 27.47 (11.32, 43.64) 14
nlm 17.23 (7.92, 22.92) 24 (17.98, 30) 11
nlm_gr 10.86 (5.08, 13.67) 24 (17.98, 30) 6
nlm_grhe 31.3 (14.53, 37.05) 3 (3, 5) 15
nlm_he 228.83 (104.83, 297.81) 24 (17.98, 30) 22
nlminb 18.4 (8.48, 24.52) 21.5 (17, 26) 12
nlminb_gr 7.85 (3.65, 10.17) 22 (17, 26.03) 2
nlminb_grhe 9 (4.21, 11.91) 4 (4, 6.03) 4
nlminb_he 18.4 (8.58, 24.82) 21.5 (17, 26) 13

Notes: The CIs are ofWald-type andbase on the standard error of themeanderived from200 replications. A graphical display
of these values is available at Figure 15.
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