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A B S T R A C T   

In silico methods are essential to the safety evaluation of chemicals. Computational risk assessment offers several 
approaches, with data science and knowledge-based methods becoming an increasingly important sub-group. 
One of the substantial attributes of data science is that it allows using existing data to find correlations, build 
strong hypotheses, and create new, valuable knowledge that may help to reduce the number of resource intensive 
experiments. 

In choosing a suitable method for toxicity prediction, the available data and desired toxicity endpoint are two 
essential factors to consider. The complexity of the endpoint can impact the success rate of the in silico models. 
For highly complex endpoints such as hepatotoxicity, it can be beneficial to decipher the toxic event from a more 
systemic point of view. 

We propose a data science-based modelling pipeline that uses compounds` connections to tissue-specific 
biological targets, interactome, and biological pathways as descriptors of compounds. Models trained on 
different combinations of the collected, compound-target, compound-interactor, and compound-pathway pro-
files, were used to predict the hepatotoxicity of drug-like compounds. Several tree-based models were trained, 
utilizing separate and combined target, interactome and pathway level variables. The model using combined 
descriptors of all levels and the random forest algorithm was further optimized. Descriptor importance for model 
performance was addressed and examined for a biological explanation to define which targets or pathways can 
have a crucial role in toxicity. Descriptors connected to cytochromes P450 enzymes, heme degradation and 
biological oxidation received high weights. Furthermore, the involvement of other, less discussed processes in 
connection with toxicity, such as the involvement of RHO GTPase effectors in hepatotoxicity, were marked as 
fundamental. The optimized combined model using only the selected descriptors yielded the best performance 
with an accuracy of 0.766. 

The same dataset using classical Morgan fingerprints for compound representation yielded models with similar 
performance measures, as well as the combination of systems biology-based descriptors and Morgan fingerprints. 
Consequently, adding the structural information of compounds did not enhance the predictive value of the 
models. The developed systems biology-based pipeline comprises a valuable tool in predicting toxicity, while 
providing novel insights about the possible mechanisms of the unwanted events.   

1. Introduction 

In silico methods have matured into key methods for the safety 
assessment of drugs. They can detect early on the possibility of an un-
desired event and, compared to animal testing, are less costly, more 
time-efficient, and free of ethical concerns Raies, Bajic (2016). Given 

their benefits, many methods are being developed in this area, sup-
porting different tasks of the safety assessment pipeline. 

Two critical factors to consider in choosing the most accurate 
method are the availability of the data and the endpoint of interest. For 
instance, for integrating and modelling mechanistic data, physiologi-
cally based pharmacokinetic (PBPK) modelling can be beneficial 
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(Lipscomb et al., 2012). Meanwhile, machine learning-based regression 
and classification models typically make use of the structural informa-
tion of chemical compounds. These models usually learn from the data 
via an algorithm to help classify compounds into binary groups. A 
desirable dataset for this purpose contains many data points of each 
class. The compounds` representation for the learning algorithms can be 
manifold. Typically, the possible descriptors of the compounds are 
molecular descriptors and/or physicochemical properties. 

In addition to data availability, the complexity of the endpoint can 
have a crucial impact on the success rate of the machine learning model. 
Predicting the inhibition of a single off-target, such as hERG, typically is 
a more straightforward task than predicting a complex endpoint such as 
hepatotoxicity (Minerali et al., 2020). Established machine learning 
methods based on algorithms such as random forest or support vector 
machine are frequently employed to predict toxicity of drugs with 
tree-based models being particularly useful for classification tasks 
(Mienye et al., 2019). Furthermore, also in the area of toxicity predic-
tion, deep learning approaches are becoming increasingly popular (Liu 
et al., 2022). 

In addressing complex endpoints, it is worth considering utilizing the 
broader effect of drugs on the human organism or tissue of interest. 
Systems biology can address the holistic aspects of interactions between 
compounds and organisms, by deciphering biological entities and 
mechanisms being involved. It integrates experimental data for creating 
novel insights. Systems biology is being used in toxicology, for example 
in the field of toxicogenomics, developing adverse outcome pathways or 
supporting network-based toxicology approaches (Bugrim et al., 2004). 

Here, a new approach is introduced, where the impact of compounds 
on target, interactome and pathways levels are being used for the rep-
resentation of drugs. This predictive modelling method employs drugs` 
systemic fingerprints as descriptors for the training of machine learning 
models. Three layers of interacting biological entities (target, inter-
actome, pathway) were included to estimate the effect of drugs on 
different biological complexity levels by using these events as unique 
descriptors for each compound. The machine learning pipeline was built 
in KNIME, utilizing native, tree based KNIME machine learning nodes. 

2. Methods 

2.1. Software tools 

KNIME analytics is a platform for creating data science workflows, 
whereas H2O.ai offers a wide range of AI solutions. Both platforms 
together created the KNIME H2O Driverless AI Extension, an integration 
of H2O Driverless AI in KNIME (Combining the power of KNIME and 
H2O.ai in a single integrated workflow [wen-document]). In addition to 
native KNIME nodes, nodes from H2O.ai, were used in our modelling 
pipeline. The H2O nodes enable the creation of flexible, mix-and-match 
automated machine learning pipelines, which are easy to understand 
and of high quality. 

2.2. Source of DILI data 

The base dataset for the model building was the Drug Induces Liver 
Injury (DILI) Rank dataset provided by the FDA (Chen et al., 2016). The 
dataset was processed as described in detail in a previous publication 
(Füzi et al., 2022). DILIRank is based on drug labelling (Chen et al., 
2011), the LiverTox database of the National Institute of Health (Hoof-
nagle et al., 2013), Drug-Induced Liver Injury-Network Studies (Fontana 
et al., 2009), and publications such as from Suzuki et al. (Suzuki et al., 
2010). There are 4 categories available in this dataset according to their 
abilities causing DILI – mostDILIL, lessDILI, ambiguousDILI and noDILI. 
The grouping process takes into consideration if there is a clear verifi-
cation available of the drug causing DILI. Our analysis was carried out 
with the mostDILI and noDILI groups. 

Ultimately, the toxic group consists of 180 compounds with high DILI 

concern and of 272 compounds without any DILI concern. 

2.3. Descriptors 

For validating if only based on information of the systemic effect of 
the drugs we can predict toxicity, structural properties of the compounds 
were not considered as descriptors for the ML models in the first eval-
uation of the method. Instead, a previously developed, openly available 
KNIME workflow (https://kni.me/w/Yf0V__0m1wm0Sw7O) (Füzi et al., 
2021) was utilized for creating target and pathway fingerprints for the 
compounds. In this context, targets are all proteins on which a com-
pound is active, and pathways are biological processes that result in a 
product (such as new molecules) or change (for example metabolic 
transformation) in the cell (Biological Pathways Fact Sheet 
[web-document]). 

Via the KNIME workflow, data in openly available repositories was 
retrieved, curated, and integrated. The repositories are summarized in  
Table 1. 

The output is a list of target proteins and biological pathways that 
can be connected to the compounds. Furthermore, the collected target 
list was filtered for liver-specific proteins using the Human Protein Atlas 
database (Thul and Lindskog, 2018) since the analysed compounds are 
part of a hepatotoxicity dataset and the aim was to predict hepatotox-
icity. The detailed process of creating target and pathway profiles of 
compounds is summarized visually in Fig. 1 and described in detail 
previously (Füzi et al., 2021). 

The created list of the compounds` connections to targets, tissue- 
specific targets and pathways were translated into binary matrices 
representing the connectivity between compound and biological entity. 
1 stands for an existing connection, while 0 means not existing/not 
known connections. 

For the machine learning project, the approach summarized in Fig. 1 
was complemented with predicted targets and interactome data. 

In addition to the protein targets retrieved from openly available, 
high quality databases (Fig. 1), additional predicted targets for the 
mostDILI and noDILI compounds were also retrieved using a validated 
similarity-based target prediction approach with a large target coverage 
Mathai, Kirchmair (2020) Reference data for the target prediction was 
curated from the ChEMBL database (version 27) to retrieve high quality 
bioactivity data. The ChEMBL compounds were standardized and 
unique compound-protein pairs with an activity value less than or equal 
to 10,000 nM were retained as the reference set for the target prediction 
(Mathai et al., 2021). Compounds were encoded using ECFP2 finger-
prints for the prediction model. The DILI compounds were standardized 
using the same pipeline as the reference set, the Tanimoto similarity 
between the compounds of interest and the reference compounds was 

Table 1 
Utilized repositories and their accessibility.  

Database Type of data 
used 

Accessibility Reference 

ChEMBL compound- 
target 

programmatic 
access 

(Davies et al., 2015) 

DrugBank compound- 
target 

download (Wishart et al. (2018)) 

IUPHAR compound- 
target 

programmatic 
access 

(Armstrong et al., 
2020) 

TTD compound- 
target 

download (Wang et al., 2020) 

PharmGKB compound- 
target 

download Whirl-Carrillo et al. 
(2012) 

UniProt protein 
identifiers 

programmatic 
access 

(Consortium, 2019) 

Human Protein 
Atlas 

tissue 
expression 

download (Uhlén et al., 2015) 

Reactome pathway programmatic 
access 

(Jassal et al., 2020)  
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calculated, and the compounds of interest were assigned the reference 
compounds’ targets when the similarity was 0.5 or greater. The pre-
dicted targets were added to the retrieved known target list, via trans-
lating the CHEMBL IDs to UniProt IDs and creating compound target 
pairs of each set of data. If the predicted interaction conflicted with 
known interactions, the latter was used. 

Furthermore, an additional interactome layer was established. The 
interactome workflow searches first-degree interactor proteins of the 
direct target proteins in the MINT (Chatr-aryamontri et al., 2007) and 
IntAct (Hermjakob et al., 2004) databases. The interactors are human, 
single-type proteins with an interaction score of 0.5 or above. The 
interaction scores are obtained from the respective databases - MINT or 
INtAct - and indicate the confidence in the protein-protein interaction. 
This workflow is now openly accessible (https://hub.knime.com/bar-
baraf/spaces/Public/latest/~7jbMNHvalhE2ZCtU/) and a use case for 
proteomics analysis is also available (Rodrigues et al., 2022). 

The output of the fingerprint creation consists of 4 binary matrices 
representing the connection between DILI compounds and different 
levels of biological entities and organizations: compound-target, com-
pound-target+predicted target, compound-interactome and compound- 
pathway. 

2.4. Machine learning models 

To evaluate the possible performance range of the approach and 
select the best algorithm for the task, 4 * 3 sub-workflows were created 
using four different types of fingerprints and three different model al-
gorithms. The fingerprints used were: compound-target, compound- 
target+predicted target, compound-interactome, and compound- 
pathway fingerprints, separately. For creating the models, the corre-
sponding compound connection table (supplementary files: DILI_work-
flow_targets, DILI_predicted_targets, DILI_interactome, DILI_pathways) 
was read into the workflow. Three different tree-based machine learning 
algorithms used were: random forest (RF) (Breiman, 2001), gradient 
boosted tree model (GBT) Friedman (2001), decision tree model (DT) 
(Myles et al., 2004). 

Since the workflow is repeated for all four datasets, here, only an 
overview is given based on the compound-target dataset. A matrix of 
compounds (rows) vs. targets (columns) was generated with either a 1, 
signifying an interaction between the compound and target, or a 0, 
indicating a non-interacting or unknown compound-target pair. 
Furthermore, the compound IDs were matched with the toxic and non- 
toxic compound lists, creating a new string class column, indicating if 
the compound is “toxic” or “non-toxic”. Model building was performed 
with the created table as the input, including 5-fold cross-validation 
using X-partitioner and Y-aggregator nodes. Three different classifica-
tion models, one per algorithm, were trained and tested to classify 

compounds as toxic or non-toxic. With the Scorer node, model perfor-
mance was evaluated by calculating the mean specificity, sensitivity, 
precision, accuracy, and the standard deviation (SD) of the accuracy of 
the models. Fig. 2. 

2.5. Combination 

Based on the results of the separate models, a combined model uti-
lizing the target, interactome, and pathway profiles was also established. 
The integrated table included those compounds which had data in all 
three profiles. This table has 2995 columns – 2993 descriptors-, and 295 
rows -compounds- (supplementary file: DILI_combined). The rest of the 
pipeline was carried out as described above. 

2.6. Descriptor importance 

The first models were built with 2993 descriptors, of which 387 were 
target, 1572 interactome and 1034 pathway-based. Use of highly 
correlated or irrelevant descriptors can weaken the robustness of a 
model (Skoraczyński et al., 2017). Therefore, an evaluation was per-
formed on the combined model to find the most significant descriptors. 
The data was fed into the H2O random forest node to utilize the variable 
importance measure possibility of the H2O framework. The feature 
importance was determined by calculating the relative and scaled in-
fluence of each variable. The deciding factors of the calculation are 
whether the variable was selected as a decision node of the decision tree 
and if yes how much the squared error decreased. The exact calculation 
process can be found in the H2O documentation (“Variable Importance 
— H2O 3.36.1.2 documentation”). 

All variables, proteins, and pathways were analysed simultaneously. 
The cut-off for the relative importance was set to 30 or above, corre-
lating to a scaled influence of at least 0.1, which indicates that the 
feature is to at least some extent important. Consequently, the models 
were retrained with 72 descriptors. 

2.7. Optimization 

Using the Parameter Optimization loop, variables for tree depth and 
number of trees were created, 10–40; 50–200 as the start -and stop 
values, 5 and 50 as step size, respectively. The search strategy was set to 
brute force (Ababneh et al., 2006); therefore, all possible parameter 
combinations were checked. The Parameter Optimization loop was 
combined with cross-validation to prevent overtraining. 

2.8. Morgan fingerprints 

To address the predictive value of the developed method, baseline 

Fig. 1. Graphical representation of building the target and pathway profiles of the compounds.  
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machine learning models using Morgan fingerprints, as well as models 
utilizing a fusion of both Morgan fingerprints and the introduced sys-
temic fingerprints were trained analogue to the models described above. 
To create Morgan fingerprints, first the UniChem API was queried to 
retrieve the corresponding InChI-keys for the ChEMBL IDs of the com-
pounds (Chambers et al., 2013). After that the InChI keys were trans-
ferred to RDKit molecules and in the next step Morgan fingerprints using 
RDKit fingerprint node were created. 

3. Results 

3.1. Compound dataset 

The initial DILI compound dataset would be to some extent imbal-
anced. However, target, interactome or pathway data could not be found 
for every compound. Table 1 presents the distribution of the actual input 
data after building the corresponding target, target + predicted target, 
interactome, pathway profiles, and the combination table. Table 2. 

Table 2 indicates that the base-datasets for the models are not 100% 
identical, due to limitations in data availability. However, the core of the 
datasets consists of the same compounds. 

3.2. Model performances 

Using different sets of the systemic descriptors, tree-based models 
were trained. 

This part of the Result section summarizes the statistical measure-
ments of the models created via the separated fingerprints. 387 target, 
357 predicted target, 1572 interactome and 1034 pathway type de-
scriptors were utilized for building the initial models without feature 

optimization. Table 3. 
The GBT algorithm slightly outperformed the other two models in 

three of four cases. The DT models had the lowest overall scores. 
Based on the results of the separated fingerprint models, one com-

bined model using the target, interactome and pathway profiles as a 
combined fingerprint was created. The predicted targets were not used 
for this part of the exercise since including them slightly worsened the 
performance compared to the target fingerprint-based model. Table 4. 

3.2.1. Combined fingerprint (target+interactome+pathway) 
This first evaluation showed that the models performed similarly, 

with sensitivity being the lowest performance attribute. 

3.3. Descriptor importance 

After evaluating the feature importance, 72 descriptors from the pool 
of all descriptors with a relative importance 30 or above, correlating to a 
scaled influence of at least 0.1 were selected via the H2O variable 
importance measures to retrain the model. The top-10 descriptors are 
reported in Table 5 whereas the full list is provided as supplement 
(supplementary file: top_descriptors). 

There are 21 target, 5 interactome, and 46 pathway related de-
scriptors among the most significant ones. Furthermore, the Indicator 
Value (INDVAL) was calculated, to provide an additional, informative 
relevance score (Dufrêne and Legendre, 1997). INDVAL implies, how 
relevant is a descriptor for a group (here group 1: non-toxic, group 2: 
toxic). For calculating the INDVAL, the R package “labdsv” was used. 
This scoring found once again biological oxidation, metabolism- and in 
addition specialized proresolving meadiators (SPMs) - related de-
scriptors the most relevant for the toxic class. The results of this are 
summarized in the supplementary file indval_results.csv, with a 0.05 
cut-off for the p-value to include statistically relevant findings, including 
frequencies showing how often the variable was present among samples 
(here rows). 

3.4. Retraining the model 

The performance statistics of the retrained model using only the 72 
selected features as descriptors and the two previously best-performing 
algorithms (RF and GBT) is summarized in Table 6. 

Fig. 2. Schematic representation of the Machine Learning pipeline.  

Table 2 
Number of compounds in the base datasets for the machine learning models.  

Descriptors Positive (DILI yes) Negative (DILI no) 

Target  150  176 
Target+Predicted target  163  195 
Interactome  143  155 
Pathway  148  175 
Combined  141  154 
Morgan Fingerprint  170  200 
Morgan Fingerprint + Combined  135  147  
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3.5. Optimization 

The best-performing model (72 combined descriptors, RF) was 
further optimized. Table 6 represents the results of parameter optimi-
zation combined with cross-validation, including the best parameter 
combinations. The variance across the folds was 0.055. Table 7. 

3.6. Morgan Fingerprint 

For comparing the predictive value of the developed method with 
traditional models based on standard chemical descriptors, additional 
models using classical fingerprints were trained. Based-on InChI-Keys 
170 DILI and 210 no DILI compounds were represented via Morgan 
fingerprints in a slightly imbalanced dataset for model training. The 
results of the model performance are presented in Table 8. 

The last set of models were trained with both Morgan fingerprints 
and the above introduced systemic descriptors, introducing a unique 
combination of representing molecules in a machine learning process. 
For 147 non-toxic and 135 toxic compounds also, systemic descriptors 

were available. Table 9. 
The RF model was further optimized, with variables tree depth and 

number of trees tested in combination via brute force.Table 10. 

4. Discussion 

Investigating and predicting liver toxicity is a complex task. In this 
work, a novel, systems biology-based approach was introduced, where 
the compound dataset was presented by target, interactome, and 
pathway profiles as descriptors. 

Using the H20 framework for descriptor selection 72 descriptors 
were selected based on their importance score for retraining the model 
(supplementary file: top_descriptors). To create hypotheses of likely 
mechanisms of toxicity, the top ranked descriptors (Table 4) were 
compared to literature for existing evidence and explanations of their 
possible role in hepatotoxicity: Fatty acid metabolism was linked to 
valproate acid-induced hepatotoxicity (Ji et al. (2010), arachidone acid 
metabolism can be connected to inflammation (Higgins and Lees, 1984), 
and of course, to anti-inflammatory drugs. The induction of heme 
oxygenase-1 expression has been shown to protect the liver from injuries 
induced by several xenobiotics (Origassa and Câmara, 2013). Oxidative 
stress-mediated hepatotoxicity is a known process where free radicals 
damage the components of the cell (Videla et al., 2003); therefore, the 
high ranking as a descriptor of the pathway Biological Oxidation is not 
unexpected. The Rho GTPase effectors are AGC-family serine/threonine 
kinases involved in a diverse range of cellular processes of cell survival 
(Clayton and Ridley, 2020). Finally, CYP Enzymes are well-known for 

Table 3 
Model performance of different descriptor sets in combination with different algorithms – means of results of 5-fold cross validation with 80/20 split.  

Descriptor Set Model Precision 
(Mean) 

Sensitivity 
(Mean) 

Specificity 
(Mean) 

Accuracy 
(Mean) 

Accuracy 
(SD) 

Target RF  0.659  0.535  0.779  0.675  0.053 
Target GBT  0.718  0.570  0.799  0.690  0.051 
Target DT  0.645  0.569  0.730  0.653  0.042 
TargetþPredicted Target RF  0.652  0.530  0.752  0.651  0.066 
Target+Predicted Target GBT  0.639  0.508  0.763  0.642  0.046 
Target+Predicted Target DT  0.606  0.556  0.701  0.640  0.069 
Interactome RF  0.67  0.418  0.809  0.617  0.069 
Interactome GBT  0.707  0.603  0.757  0.678  0.066 
Interactome DT  0.621  0.562  0.684  0.621  0.028 
Pathway RF  0.618  0.628  0.668  0.65  0.028 
Pathway GBT  0.688  0.615  0.759  0.694  0.039 
Pathway DT  0.593  0.570  0.678  0.625  0.021  

Table 4 
Combined model performances – means of results of 5-fold cross validation with 
80/20 split.  

Model Precision 
(Mean) 

Sensitivity 
(Mean) 

Specificity 
(Mean) 

Accuracy 
(Mean) 

Accuracy 
(SD) 

RF  0.668  0.632  0.71  0.675  0.066 
GBT  0.665  0.588  0.725  0.658  0.06 
DT  0.605  0.545  0.677  0.614  0.05  

Table 5 
Top 10 descriptors selected in the feature importance exercise.  

Descriptor Type 
Fatty acid metabolism pathway 
Arachidonic acid metabolism pathway 
Heme degradation pathway 
Biological oxidations pathway 
Metabolism of porphyrins pathway 
RHO GTPase Effectors pathway 
P11712 - Cytochrome P450 2C9 target 
O95870 - Phosphatidylserine lipase ABHD16A target 
Immune System pathway 
Phase II - Conjugation of compounds pathway  

Table 6 
Performance statistics,retrained models – means of results of 5-fold cross validation with 80/20 split.  

Model Precision (Mean) Sensitivity (Mean) Specificity (Mean) Accuracy (Mean) Accuracy (SD) Cohen`s Kppa 

RF  0.729  0.716  0.762  0.736  0.07  0.471 
GBT  0.71  0.607  0.776  0.695  0.062  0.377  

Table 7 
Performance after parameter optimization.  

Precision Sensitivity Specificity Accuracy treedepth numtrees 

0.769  0.730  0.799  0.766  30  190 
0.765  0.738  0.792  0.766  48  460  

Table 8 
Model performance with Morgan Fingerprints after 5-fold cross-validation.  

Model Precision 
(Mean) 

Sensitivity 
(Mean) 

Specificity 
(Mean) 

Accuracy 
(Mean) 

Accuracy 
(SD) 

RF  0.58  0.641  0.638  0.636  0.049 
GBT  0.672  0.641  0.749  0.703  0.039  
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their involvement in drug metabolism (Villeneuve and Pichette, 2004). 
In particular, Cytochrome P450 2C9 has been associated with hepato-
toxicity caused by valproic acid (Ho et al., 2003) (Zhao et al., 2017). 
Comparing our results with metabolism studies, possible mode of tox-
icities could be found, where the found descriptors can have a crucial 
role. For example changes in phospholipid metabolism Liu et al. (2022), 
disruption in long chain fatty acid mechanism (Ramirez et al., 2018). 
Cytochrome P450-metiated metabolism was categorized as obligatory 
for inducing hepatic toxicity by some substances (Pandit, 2012). It is 
inevitable that metabolism plays a crucial role in a huge portion of liver 
toxic events caused by drugs. 

Additionally, calculating the indicator value yielded the information 
that specialized proresolving mediators (SPMs) appear to be also rele-
vant in toxic events. These mediators have key roles in the metabolic 
homeostasis of the liver, and in avoiding inflammation (Musso et al., 
2018). All the findings serve as a base for understanding the involve-
ment of the biological entities in the event of hepatotoxicity and provide 
some information about the type of drugs causing liver injuries. 

The most important descriptors came mainly from the pathway 
category, less from the target category, and least from the interactome 
category. This underlines the importance of drugs` connections to not 
only direct targets but to biological pathways in estimating the effects of 
the compounds. 

Without the descriptor selection, the models were performing 
significantly lower, especially regarding their sensitivity. In general, this 
approach relies strongly on publicly available data, which is generally 
sparse. With adding predicted targets, the performance has dropped. 
This indicates that the signal for toxicity was lost in the huge number of 
descriptors, missing data and added noise. Therefore, it can be estimated 
that a denser matrix of experimentally proven values could yield better 
performance, and the predictive models would benefit from a set of 
complete or closely complete target, interactome, and pathway profiles. 

After utilizing novel descriptors, models with classical Morgan fin-
gerprints were trained. The GBT algorithm performed slightly better and 
the RF model slightly worse with these fingerprints, than the separated 
systemic models. Combining Morgan fingerprints with the 72 most 
important systemic descriptors yielded a better performing model than 
the one trained only with Morgen fingerprints, however still the sys-
temic model with the selected descriptors performed best. Optimizing 
both models by parameter optimization, similar accuracy could be 
achieved. With our descriptor selection pipeline, we aimed to have 
biological insights of the process of liver toxicity, as well as reducing the 
“black-box” characteristics of our machine learning models. Optimizing 
a machine learning model is an important step for achieving accurate 
predictions but also for using the computational resources wisely, 
however creating biological insight with these optimization steps is not 
straight-forward. 

Interestingly, the model’s performance was not enhanced by adding 

the structural information of the molecules to the matrix. However, 
combining the systemic information with other methods, such as 
expression networks or deep learning can be beneficial. However, it is 
important to mention that retrieving target and pathway information 
based on activity data is more complex, than using the compound`s 
molecular information. In toxicity prediction for novel compounds, 
where there is no openly available activity data in public repositories is 
available, it is advisable to use our pipeline in combination with 
similarity-based approaches. In that case, target, interactome and 
pathway profiles of similar compounds to the compound of interest can 
be retrieved and merged, based on Tanimoto similarity for instance, to 
create a unique profile for novel compounds and use it further in toxicity 
prediction. 

5. Conclusion 

This study demonstrates a different way of training predictive 
models by using systemic information, with robust performance mea-
sures. Additionally, investigating the most important biological entities 
and processes for the predictive models could yield a novel insight into 
possible mechanisms of hepatotoxic events. 
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