
Journal of Computer and System Sciences 137 (2023) 66–86
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

Detours in directed graphs ✩

Fedor V. Fomin a, Petr A. Golovach a,∗, William Lochet b, Danil Sagunov c,
Saket Saurabh a,d, Kirill Simonov e

a Department of Informatics, University of Bergen, Bergen, Norway
b LIRMM, Université Montpellier, CNRS, Montpellier, France
c St. Petersburg Department of V.A. Steklov Institute of Mathematics, Russia
d Institute of Mathematical Sciences, HBNI, Chennai, India
e Hasso Plattner Institute, University of Potsdam, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 September 2022
Received in revised form 4 May 2023
Accepted 12 May 2023
Available online 22 May 2023

Keywords:
Longest path
Longest detour
Diameter
Directed graphs
Parameterized complexity

We study two “above guarantee” versions of the classical Longest Path problem on
undirected and directed graphs and obtain the following results. In the first variant of
Longest Path that we study, called Longest Detour, the task is to decide whether a graph
has an (s, t)-path of length at least distG (s, t) + k. Bezáková et al. [7] proved that on
undirected graphs the problem is fixed-parameter tractable (FPT). Our first main result
establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths

on directed graphs. Using these new insights, we design a 2O(k) · nO(1) time algorithm
for the problem on directed planar graphs. Furthermore, the new approach yields a
significantly faster FPT algorithm on undirected graphs. In the second variant of Longest
Path, namely Longest Path above Diameter, the task is to decide whether the graph has a
path of length at least diam(G) +k. We obtain dichotomy results about Longest Path above
Diameter on undirected and directed graphs.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the Longest Path problem, we are given an n-vertex graph G and an integer k. (Graph G could be undirected or
directed.) The task is to decide whether G contains a path of length at least k. Longest Path is a fundamental algorithmic
problem that played one of the central roles in developing parameterized complexity [49,9,1,37,42,11,12,44,54,22,21,45,8]. To
further our algorithmic knowledge about the Longest Path problem, Bezáková et al. [7] introduced a novel “above guarantee”
parameterization for the problem. For a pair of vertices s, t of an n-vertex graph G , let distG(s, t) be the distance from s
to t , that is, the length of a shortest path from s to t . In this variant of Longest Path, the task is to decide whether a graph
has an (s, t)-path of length at least distG(s, t) + k. The difference with the “classical” parameterization is that instead of
parameterizing by the path length, the parameterization is by the offset k.

✩ A preliminary version of this paper appeared in the proceedings of STACS 2022. The research received funding from European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant no. 819416), the Swarnajayanti Fellowship grant DST/SJF/MSA-
01/2017-18, the Research Council of Norway via the project BWCA (grant no. 314528), and DFG Research Group ADYN via grant DFG 411362735.

* Corresponding author at: University of Bergen, PB 7803, N-5020, Bergen, Norway.
E-mail addresses: fedor.fomin@uib.no (F.V. Fomin), petr.golovach@uib.no (P.A. Golovach), william.lochet@gmail.com (W. Lochet), danilka.pro@gmail.com

(D. Sagunov), saket@imsc.res.in (S. Saurabh), kirillsimonov@gmail.com (K. Simonov).
https://doi.org/10.1016/j.jcss.2023.05.001
0022-0000/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jcss.2023.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2023.05.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:fedor.fomin@uib.no
mailto:petr.golovach@uib.no
mailto:william.lochet@gmail.com
mailto:danilka.pro@gmail.com
mailto:saket@imsc.res.in
mailto:kirillsimonov@gmail.com
https://doi.org/10.1016/j.jcss.2023.05.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Longest Detour Parameter: k
Input: A graph G , vertices s, t ∈ V (G), and an integer k.
Task: Decide whether there is an (s, t)-path in G of length at least distG(s, t) + k.

Since the length of a shortest path between s and t can be found in linear time, such a parameterization could provide
significantly better solutions than the parameterization by the path length. Bezáková et al. [7] proved that on undirected
graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2O(k) · n. Parameterized
complexity of Longest Detour on directed graphs was left as the main open problem in [7]. Our paper makes significant
step towards finding a solution to this open problem.

Our results. Our first main result establishes a connection between Longest Detour and another fundamental algorithmic
problem p-Disjoint Paths. Recall that the p-Disjoint Paths problem is to decide whether p pairs of terminal vertices (si, ti),
i ∈ {1, . . . , p}, in a (directed) graph G could be connected by pairwise internally vertex disjoint (si, ti)-paths. We prove (the
formal statement of our result is given in Theorem 1) that if C is a class of (directed) graphs such that p-Disjoint Paths

admits a polynomial time algorithm on C for p = 3, then Longest Detour is FPT on C . Moreover, the FPT algorithm for
Longest Detour on C is single-exponential in k (running in time 2O(k) · nO(1)).

Unfortunately, our result does not resolve the question about parameterized complexity of Longest Detour on directed
graphs. Indeed, Fortune, Hopcroft, and Wyllie [29] proved that p-Disjoint Paths is NP-complete on directed graphs for
every fixed p ≥ 2. However, the new insight helps to establish the tractability of Longest Detour on planar directed graphs,
whose complexity was also open. The theorem of Schrijver from [51] states that p-Disjoint Paths could be solved in time
nO(p) when the input is restricted to planar directed graphs. (This result was improved by Cygan et al. [17] who proved
that p-Disjoint Paths parameterized by p is FPT on planar directed graphs.) Pipelined with our theorem, this immediately
implies that Longest Detour is FPT on planar directed graphs.

Besides establishing parameterized complexity of Longest Detour on planar directed graphs our theorem has several
advantages over the previous work even on undirected graphs. By the seminal result of Robertson and Seymour [50],
p-Disjoint Paths is solvable in f (p) · n3 time on undirected graphs for some function f of p only. Therefore on undirected
graphs p-Disjoint Paths is solvable in polynomial time for every fixed p, and for p = 3 in particular. Later the result of
Robertson and Seymour was improved by Kawarabayashi, Kobayashi, and Reed [41] who gave an algorithm with quadratic
dependence on the input size. Pipelined with our result, this brings us to a Monte Carlo randomized algorithm solving
Longest Detour on undirected graphs in time 10.8k · nO(1) . Our algorithm can be derandomized, and the deterministic al-
gorithm runs in time 45.5k · nO(1) . While the algorithm of Bezáková et al. [7] for undirected graphs runs in time O(ck · n),
that is, is single-exponential in k, the constant c is huge. The reason is that their algorithm exploits the Win/Win approach
based on excluding graph minors. More precisely, Bezáková et al. proved that if a 2-connected graph G contains as a minor,
a graph obtained from the complete graph K4 by replacing each edge by a path with k edges, then G has an (s, t)-path of
length at least distG(s, t) + k. Otherwise, in the absence of such a graph as a minor, the treewidth of G is at most 32k + 46.
Combining this fact with an FPT 2-approximation algorithm [43] for treewidth, running in time 2O(k) · n, gives us a tree
decomposition of width at most 64k +O(1). Finally, solving Longest Detour on graphs of bounded treewidth by one of the
known single-exponential algorithms, see [16,10,23], will result in running time 364k ·nO(1) . Thus on undirected graphs, our
randomized algorithm reduces the constant c in the base of the exponent from 364 down to 10.8!

Our second set of results addresses the complexity of the problem strongly related to Longest Detour. The maximum
length of a shortest path between two vertices in a graph G is the diameter of G , denoted diam(G). Thus every graph G
has a path of length at least diam(G). But does it have a path of length longer than diam(G)? This leads to the following
parameterized problem.

Longest Path above Diameter Parameter: k
Input: A graph G and an integer k.
Task: Decide whether there is a path in G of length at least diam(G) + k.

As in Longest Detour, the parameterization is by the offset k. When (s, t) is a pair of diametral vertices in G , the length
of a shortest (s, t)-path in G is the diameter of G . However, this does not allow us to reduce Longest Path above Diameter

to Longest Detour— if there is a path of length diam(G) + k in G , it is not necessarily an (s, t)-path. Moreover, such a path
might connect two vertices with a much smaller distance between them than diam(G). In fact, our hardness results for
Longest Path above Diameter are based precisely on instances where the target path has this property: its length is very
close to diam(G), but much larger than the minimum distance between its endpoints. Thus, the lower bounds we obtain for
Longest Path above Diameter are not applicable to Longest Detour.

We obtain the following dichotomy results about Longest Path above Diameter on undirected and directed graphs. For
undirected graphs, Longest Path above Diameter is NP-complete even for k = 1. However, if the input undirected graph is
2-connected, that is, it remains connected after deleting any of its vertices, then the problem is FPT. For directed graphs,
the problem is also NP-complete even for k = 1. However, the situation is more complicated and interesting on 2-connected
directed graphs (a strongly connected digraph G is 2-connected or strongly 2-connected if for every vertex v ∈ V (G), graph
G − v remains strongly connected). In this case, we show that Longest Path above Diameter is solvable in polynomial time
for each k ∈ {1, . . . , 4} and is NP-complete for every k ≥ 5.
67

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Our approach. A natural way to approach Longest Detour on directed graphs would be to mimic the algorithm for undi-
rected graphs. By the result of Kawarabayashi and Kreutzer [40], every directed graph of sufficiently large directed treewidth
contains a sizable directed grid as a “butterfly minor”. However, as reported in [6], there are several obstacles to applying
the grid theorem of Kawarabayashi and Kreutzer for obtaining a Win/Win algorithm. After several unsuccessful attempts,
we switched to another strategy.

We start by checking whether G has an (s, t)-path of length distG(s, t) + � for k ≤ � < 2k. This can be done in time
2O(k) · nO(1) by calling the algorithm of Bezáková et al. [7] that finds an (s, t)-path in a directed G of length exactly
distG(s, t) + �. If such a path is not found, we conclude that if (G, k) is a yes-instance, then G contains an (s, t)-path of
length at least distG(s, t) + 2k.

Next, we check whether there exist two vertices v and w reachable from s such that distG(s, w) − distG(s, v) ≥ k and G
has pairwise disjoint (s, w)-, (w, v)-, and (v, t)-paths. If such a pair of vertices exists, we obtain a solution by concatenating
disjoint (s, w)-, (w, v)-, and (v, t)-paths. This is the place in our algorithm, where we require a subroutine solving 3-

Disjoint Paths.
When none of the above procedures finds a detour, we prove a combinatorial claim that allows reducing the search for

a solution to a significantly smaller region of the graph. This combinatorial claim is an essential part of our algorithm. More
precisely, we show that there are two vertices u and x, and a specific induced subgraph H of G (depending on u and x)
such that G has an (s, t)-path of length at least distG(s, t) + k if and only if H has an (u, x)-path of length at least � for a
specific � ≤ 2k (also depending on u and x). Moreover, given u, in polynomial time, we can find a feasible domain for vertex
x, and for each choice of x, we can also determine � and construct H in polynomial time. Then we apply the algorithm of
Fomin et al. [24] to check whether H has an (u, x)-path in H of length at least �.

Our strategy for Longest Path above Diameter is different. For undirected graphs, the solution turns out to be reasonably
simple. It is easy to show that Longest Path above Diameter is NP-complete for k = 1 by reducing Hamiltonian Path to
it. When an undirected graph G is 2-connected, and the diameter is larger than k + 1, then G always contains a path of
length at least diam(G) + k. If the diameter is at most k, it suffices to run a Longest Path algorithm to show that the
problem is FPT. For directed graphs, a similar reduction shows that the problem is NP-complete for k = 1. However, for
strongly 2-connected directed graphs, the situation is much more interesting. It is not too difficult to prove that when the
diameter of a strongly 2-connected digraph is sufficiently large, it always contains a path of length diam(G) + 1. With much
more careful arguments, it is possible to push this up to k = 4. Thus for each k ≤ 4, the problem is solvable in polynomial
time because the task boils down to computing the diameter and checking the existence of a path of constant length if the
diameter is small. For k = 5 we can construct a family of strongly 2-connected digraphs of arbitrarily large diameter that
do not have a path of length diam(G) + 5. These graphs become extremely useful as gadgets that we use to prove that the
problem is NP-complete for each k ≥ 5.

Related work. There is a vast literature in the field of parameterized complexity devoted to Longest Path [49,9,1,37,42,11,
12,44,54,22,8]. The surveys [21,45] and the textbook [18, Chapter 10] provide an overview of the advances in the area.

Longest Detour was introduced by Bezáková et al. in [7]. They gave an FPT algorithm for undirected graphs and posed
the question about detours in directed graphs. Even the existence of a polynomial time algorithm for Longest Detour with
k = 1, that is, deciding whether a directed graph has a path longer than a shortest (s, t)-path, is open for general graphs.
For the special case of planar digraphs and k = 1, it was shown by Wu and Wang [55] that the problem can be solved in
polynomial time. For the related Exact Detour problem, deciding whether there is a detour of length exactly distG(s, t) + k
is FPT both on directed and undirected graphs [7].

Another problem related to our work is Long (s, t)-Path. Here for vertices s and t of a graph G , and integer parameter
k, we have to decide whether there is an (s, t)-path in G of length at least k. A simple trick, see [18, Exercise 5.8], allows
us to use color-coding to show that Long (s, t)-Path is FPT on undirected graphs. For directed graphs, the situation is more
involved, and the first FPT algorithm for Long (s, t)-Path on directed graphs was obtained only recently [24]. The proof of
Theorem 1 uses some of the ideas developed in [24].

Both Longest Detour and Longest Path above Diameter fit into the research subarea of parameterized complexity called
“above guarantee” parameterization [47,2,15,31–35,46,48]. Besides the work of Bezáková et al. [6], several papers study the
parameterization of longest paths and cycles above different guarantees. Fomin et al. [26] designed parameterized algorithms
for computing paths and cycles longer than the girth of a graph. The same set of authors in [25] studied FPT algorithms
that find paths and cycles above degeneracy. Fomin et al. [28,27] developed FPT algorithms computing cycles of length
2δ + k and mad(G) + k, respectively, where δ is the minimum vertex degree and mad(G) is the maximum average degree
of the input graph. Jansen, Kozma, and Nederlof in [39] looked at parameterized complexity of Hamiltonicity below Dirac’s
conditions. Berger, Seymour, and Spirkl in [5], gave a polynomial time algorithm that, with an input graph G and two
vertices s, t of G , decides whether there is an induced (s, t)-path that is longer than a shortest (s, t)-path. This result was
recently improved by Chiu and Lu in [13]. All these algorithms for computing long paths and cycles above some guarantee
are for undirected graphs.

The remaining part of this paper is organized as follows. In Section 2, we give preliminaries. In Section 3, we prove our
first main result establishing connections between 3-Disjoint Paths and Longest Detour (Theorem 1). Section 4 is devoted
to Longest Path above Diameter. The concluding Section 5 provides open questions for further research.
68

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
2. Preliminaries

Parameterized Complexity. We refer to the recent books [18,20] for the detailed introduction to Parameterized Complex-
ity. Here we just remind that the computational complexity of an algorithm solving a parameterized problem is measured as
a function of the input size n of a problem and an integer parameter k associated with the input. A parameterized problem
is said to be fixed-parameter tractable (or FPT) if it can be solved in time f (k) · nO(1) for some function f (·).

Graphs. Recall that an undirected graph is a pair G = (V , E), where V is a set of vertices and E is a set of unordered pairs
{u, v} of distinct vertices called edges. A directed graph G = (V , A) is a pair, where V is a set of vertices and A is a set of
ordered pairs (u, v) of distinct vertices called arcs. Note that we do not allow loops and multiple edges or arcs. We use V (G)

and E(G) (A(G), respectively) to denote the set of vertices and the set of edges (set of arcs, respectively) of G . We write n
and m to denote the number of vertices and edges (arcs, respectively) if this does not create confusion. For a (directed) graph
G and a subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced by X . For a set of vertices S , G − S
denotes the (directed) graph obtained by deleting the vertices of S , that is, G − S = G[V (G) \ S]. We write P = v1 · · · vk to
denote a path with the vertices v1, . . . , vk and the edges {v1, v2}, . . . , {vk−1, vk} (arcs (v1, v2), . . . , (vk−1, vk), respectively);
v1 and vk are the end-vertices of P and the vertices v2, . . . , vk−1 are internal. We consider only simple paths, that is, the
vertices v1, . . . , vk are distinct. We say that P is an (v1, vk)-path. The length of P , denoted by length(P), is the number of
edges (arcs, respectively) in P . Two paths are disjoint if they have no common vertex and they are internally disjoint if no
internal vertex of one path is a vertex of the other. For a (u, v)-path P1 and a (v, w)-path P2 that are internally disjoint,
we denote by P1 ◦ P2 the concatenation of P1 and P2. A vertex v is reachable from a vertex u in a (directed) graph G if G
has a (u, v)-path. For u, v ∈ V (G), distG(u, v) denotes the distance between u and v in G , that is, the minimum number of
edges (arcs, respectively) in an (u, v)-path. An undirected graph G is connected if for every two vertices u and v , G has a
(u, v)-path. A directed graph G is strongly connected if for every two vertices u and v both u is reachable form v and v is
reachable from u. For a positive integer k, an undirected (directed, respectively) graph G is k-connected (k-strongly connected,
respectively) if |V (G)| ≥ k and G − S is connected (strongly connected, respectively) for every S ⊆ V (G) of size at most
k − 1. For a directed graph G , by Grev we denote the reverse of G , i.e. Grev is a directed graph defined on the same set of
vertices and the same set of arcs, but the direction of each arc in Grev is reversed.

We use several known parameterized algorithms for finding long paths. First of all, let us recall the currently fastest
deterministic algorithm for Longest Path on directed graphs due to Tsur [53].

Proposition 1 ([53]). There is a deterministic algorithm for Longest Path with running time 2.554k · nO(1) .

We also need the result of Fomin et al. [24] for the Long Directed (s, t)-Path problem. This problem asks, given a
directed graph G , two vertices s, t ∈ V (G), and an integer k ≥ 0, whether G has an (s, t)-path of length at least k.

Proposition 2 ([24]). Long Directed (s, t)-Path can be deterministically solved in time 4.884k · nO(1) .

Clearly, both results hold for the variant of the problem on undirected graphs.
Finally, we use the result of Bezáková et al. [7] for the variant of Longest Detour whose task is, given a (directed) graph

G , two vertices s, t ∈ V (G), and an integer k ≥ 0, decide whether G has an (s, t)-path of length exactly distG(s, t) + k.

Proposition 3 ([7]). There is a bounded-error randomized algorithm that solves Exact Detour on undirected graphs in time 2.746k ·
nO(1) and on directed graphs in time 4k · nO(1) . For both undirected and directed graphs, there is a deterministic algorithm that runs
in time 6.745k · nO(1) .

3. An FPT algorithm for finding detours

In this section, we show the first main result of our paper.

Theorem 1. Let C be a class of directed graphs such that 3-Disjoint Paths can be solved in f (n) time on C . Then Longest Detour can
be solved in 45.5k ·nO(1) +O(f (n)n2) time by a deterministic algorithm and in 23.86k ·nO(1) +O(f (n)n2) time by a bounded-error
randomized algorithm when the input is restricted to graphs from C .

Proof. Let (G, s, t, k) be an instance of Longest Detour with G ∈ C . For k = 0, the problem is trivial and we assume that
k ≥ 1. We also have that (G, s, t, k) is a trivial no-instance if t is not reachable from s. We assume from now that every
vertex of G is reachable from s. Otherwise, we set G := G[R], where R is the set of vertices of G reachable from s using the
straightforward property that every (s, t)-path in G is a path in G[R]. Clearly, R can be constructed in O(n + m) time by
the breadth-first search.

Using Proposition 3, we check in 6.7452k · nO(1) time by a deterministic algorithm (in 42k · nO(1) time by a randomized
algorithm, respectively) whether G has an (s, t)-path of length distG(s, t) + � for some k ≤ � ≤ 2k − 1 by trying all values of
69

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Fig. 1. The choice of the BFS-levels Lp and Lq , vertices u, v , and w , and the paths P1, P2, and P3.

� in this interval. We return a solution and stop if we discover such a path. Assume from now that this is not the case, that
is, if (G, s, t) is a yes-instance, then the length of every (s, t)-path of length at least distG(s, t) + k is at least distG(s, t) + 2k.

We perform the breadth-first search from s in G . For an integer i ≥ 0, denote by Li the set of vertices at distance i from
s. Let � be the maximum index such that L� �= ∅. Because every vertex of G is reachable from s, V (G) = ⋃�

i=0 Li . We call
L0, . . . , L� BFS-levels.

Our algorithm is based on structural properties of potential solutions. Suppose that (G, s, t, k) is a yes-instance and let a
path P be a solution of minimum length, that is, P is an (s, t)-path of length at least distG(s, t) + k and among such paths
the length of P is minimum. Denote by p ∈ {1, . . . , �} the minimum index such that L p contains at least two vertices of
G . Such an index exists because if |V (P) ∩ Li | ≤ 1 for all i ∈ {1, . . . , �}, then P is a shortest (s, t)-path by the definition of
L0, . . . , L� and the length of P is distG(s, t) < distG(s, t) + k as k ≥ 1. Let u be the first (in the path order) vertex of P in Lp
and let v �= u be the second vertex of P that occurs in Lp . Denote by P1, P2, and P3 the (s, u), (u, v), and (v, t)-subpath
of P , respectively. Clearly, P = P1 ◦ P2 ◦ P3. Let q ∈ {p, . . . , �} be the maximum index such that P2 contains a vertex of Lq .
Then denote by w the first vertex of P2 in Lq . See Fig. 1 for the illustration of the described configuration. We use this
notation for a (hypothetical) solution throughout the proof of the theorem. The following claim is crucial for us.

Claim 1. The length of P2 is at least k.

Proof of Claim 1. For the sake of contradiction, assume that the length of P2 is less than k. Let Q be a shortest (s, v)-path
in G . By the definition of BFS-levels, V (Q) ⊆ L0 ∪ · · · ∪ Lp and v is a unique vertex of Q in Lp . This implies that Q is
internally vertex disjoint with P3. Note that the length of Q is the same as the length of P1 because P1 contains exactly
one vertex from each of the BFS levels L1, . . . , Lp . Then P ′ = Q ◦ P3 is an (s, t)-path and

length(P ′) =length(Q) + length(P3) = length(P1) + length(P3)

=length(P) − length(P2) ≤ length(P) − k.

Recall that the length of every (s, t)-path of length at least distG(s, t) + k is at least distG(s, t) + 2k. This means that
length(P) ≥ distG(s, t) +2k and, therefore, the length of P ′ is at least distG(s, t) +k, that is, P ′ is a solution to the considered
instance. However, length(P ′) < length(P) because P2 contains at least one arc. This contradicts the choice of P as a solution
of minimum length. This completes the proof of the claim. �

By Claim 1, solving Longest Detour on (G, s, t, k) boils down to identifying internally disjoint P1, P2, and P3, where the
length of P2 is at least k.

First, we check whether we can find paths for q − p ≥ k − 1. Notice that if q − p ≥ k − 1, then for every internally disjoint
(s, w)-, (w, v)-, and (v, t)-paths R1, R2, and R3 respectively, their concatenation R1 ◦ R2 ◦ R3 is an (s, t)-path of length at
least distG(s, t) + k. Recall that G ∈ C and p-Disjoint Paths can be solved in polynomial time on this graph class for p = 3.
For every choice of two vertices w, v ∈ V (G), we solve p-Disjoint Paths on the instance (G, (s, w), (w, v), (v, s)). Then if
there are paths R1, R2, and R3 forming a solution to this instance, we check whether length(R1) + length(R2) + length(R3) ≥
distG(s, t) +k. If this holds, we conclude that the path R1 ◦ R2 ◦ R3 is a solution to the instance (G, s, t, k) of Longest Detour

and return it. Assume from now that this is not the case, that is, we failed to find a solution of this type. Then we can
complement Claim 1 by the following observation about our hypothetical solution P .

Claim 2. q − p ≤ k − 2.

This means that we can assume that k ≥ 2 and have to check whether we can find appropriate P1, P2, and P3, where
V (P2) ⊆ ⋃p+k−2

i=p Li . For this, we go over all possible choices of u. Note that the choice of u determines p, i.e., the index of
the BFS-level containing u. We consider the following two cases for each considered choice of u.
Case 1. t ∈ Lr for some p ≤ r ≤ p + k − 2 (see Fig. 2). Then distG(s, t) = r and (G, s, t, k) is a yes-instance if and only if
G[Lp ∪ · · · ∪ L�] has a (u, t)-path S of length at least (r − p) + k because the (s, u)-subpath of a potential solution should be
70

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Fig. 2. The structure of paths P1, P2, and P3 in Case 1.

Fig. 3. The structure of paths P1, P2, and P3 in Case 2.

a shortest (s, u)-path. Since r − p ≤ k − 2, we have that (r − p) + k ≤ 2k − 2 and we can find S in 4.8842k · nO(1) time by
Proposition 2 if it exists. If we obtain S , then we consider an arbitrary shortest (s, u)-path S ′ in G and conclude that S ′ ◦ S
is a solution. This completes Case 1.
Case 2. t ∈ Lr for some r ≥ p + k − 1 (see Fig. 3). We again consider our hypothetical solution P = P1 ◦ P2 ◦ P3. Let H =
G[Lp+k−1 ∪ · · · ∪ L�]. Denote by X the set of vertices z ∈ V (H) such that t is reachable from z in H . Denote by x the first
vertex of P3 in X . Clearly, such a vertex exists because t ∈ X . Moreover, x ∈ Lp+k−1 and its predecessor y in P3 is in Lp+k−2.
Otherwise, t would be reachable from y ∈ V (H) in H contradicting the choice of x. Let Q 1 and Q 2 be the (v, y)- and
(x, t)-subpaths of P3. Then P3 = Q 1 ◦ yx ◦ Q 2. We show one more claim about the hypothetical solution P .

Claim 3. V (Q 1) ∩ X = ∅.

Proof of Claim 3. The proof is by contradiction. Assume that z ∈ V (Q 1) ∩ X . Then t is reachable from z in H . However, x is
the first vertex of P3 with this property by the definition; a contradiction. �

Notice that because x ∈ X , there is an (x, t)-path Q ′
2 with V (Q ′

2) ⊆ X . By Claim 3, Q 1 and Q ′
2 are disjoint. Since

X ⊆ Lp+k−1 ∪ · · · ∪ L� , we have that (V (P1) ∪ V (P2)) ∩ X = ∅. In particular, Q ′
2 is disjoint with P1 and P2 as well. Let

P ′
3 = Q 1 ◦ yx ◦ Q ′

2. By Claim 1, P ′ = P1 ◦ P2 ◦ P ′
3 is a solution because length(P2) ≥ k. This allows us to conclude that

(G, s, t, k) has a solution (for the considered choice of u) if and only if there is y ∈ L p+k−2 such that

(i) there is x ∈ X such that (y, x) ∈ A(G), and
(ii) the graph G[Lp ∪ · · · ∪ L�] − X has a (u, y)-path of length at least 2k − 2.

Our algorithm proceeds as follows. We construct the set X using the breadth-first search in O(n + m) time. Then for
every y ∈ Lp+k−2 we check (i) whether there is x ∈ X such that (y, x) ∈ A(G), and (ii) whether G[L p ∪ · · · ∪ L�] − X has a
(u, y)-path S of length at least 2k − 2. To verify (ii), we apply Proposition 2 allowing to perform the check in 4.8842k ·nO(1)

time. If we find such a vertex y and path S , then to obtain a solution, we consider an arbitrary shortest (s, u)-path S ′ and
an arbitrary (x, t) path S ′′ in G[X]. Then P ′ = S ′ ◦ S ◦ yx ◦ S ′′ is a required solution to (G, s, t, k). This concludes the analysis
in Case 2 and the construction of the algorithm.

The correctness of our algorithm has been proved simultaneously with its construction. The remaining task is to evaluate
the total running time. Recall that we verify in 6.7452k · nO(1) time whether G has an (s, t)-path of length distG(s, t) + � for
some k ≤ � ≤ 2k − 1 by a deterministic algorithm, and we need 42k · nO(1) time if we use a randomized algorithm. Then we
construct the BFS-levels in linear time. Next, we consider O(n2) choices of v and w and apply the algorithm for 3-Disjoint
Paths (G, (s, w), (w, v), (v, s)) in f (n) time. If we failed to find a solution so far, we proceed with O(n) possible choices
of u and consider either Case 1 or 2 for each choice. In Case 1, we solve the problem in 4.8842k · nO(1) time. In Case 2,
we construct X in O(n + m) time. Then for O(n) choices of y, we verify conditions (i) and (ii) in 4.8842k · nO(1) time.
71

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Summarizing, we obtain that the total running time is 6.7452k ·nO(1) +O(f (n)n2). Because 6.7452 < 45.5, we have that the
deterministic algorithm runs in 45.5k · nO(1) + O(f (n)n2) time. Since 42 < 4.8842 < 23.86, we conclude that the problem
can be solved in 23.86k · nO(1) +O(f (n)n2) time by a bounded-error randomized algorithm. �

In particular, combining Theorem 1 with the results of Cygan et al. [17], we obtain the following corollary.

Corollary 1. Longest Detour can be solved in 45.5k ·nO(1) time by a deterministic algorithm and in 23.86k ·nO(1) time by a bounded-
error randomized algorithm on planar directed graphs.

Using the fact that p-Disjoint Paths can be solved in O(n2) time by the results of Kawarabayashi, Kobayashi, and
Reed [41], we immediately obtain the result for Longest Detour on undirected graphs. However, we can improve the
running time of a randomized algorithm by tuning our algorithm for the undirected case.

Corollary 2. Longest Detour can be solved in 45.5k ·nO(1) time by a deterministic algorithm and in 10.8k ·nO(1) time by a bounded-
error randomized algorithm on undirected graphs.

Proof. The deterministic algorithm is the same as in the directed case. To obtain a better randomized algorithm, we follow
the algorithm from Theorem 1 and use the notation introduced in its proof. Let (G, s, t, k) be an instance of Longest
Detour with G ∈ C . We assume without loss of generality that k ≥ 1 and G is connected. Using Proposition 3, we check in
2.7462k ·nO(1) time by a randomized algorithm whether G has an (s, t)-path of length distG(s, t) +� for some k ≤ � ≤ 2k −1.
If we fail to find a solution this way, we construct the BFS-levels L0, . . . , L� .

Suppose that (G, s, t, k) is a yes-instance with a hypothetical solution P composed by the concatenation of P1, P2, and
P3 as in the proof of Theorem 1. Let also Lp and Lq be the corresponding BFS-levels. Observe that if q − p ≥ k/2, then
length(P2) ≥ k because for every edge {x, y} of G , x and y are either in the same BFS-level or in consecutive levels contrary
to the directed case where we may have an arc (x, y) where x ∈ Li and y ∈ L j for arbitrary j ∈ {0, . . . , i}. Recall that for
every choice of two vertices w, v ∈ V (G), we solve p-Disjoint Paths on the instance (G, (s, w), (w, v), (v, s)) and try to find
a solution to (G, s, t, k) by concatenating the solutions for these instances of p-Disjoint Paths. If we fail to find a solution
this way, we can conclude now that q − p ≤ k/2 − 1 improving Claim 2. Further, we pick u and consider two cases.

In Case 1, where t ∈ Lr for some p ≤ r ≤ p + k/2 − 1, we now find a (u, t)-path S in G[Lp ∪ · · · ∪ L�] of length at least
(r − p) + k ≤ 3k/2 in 4.8843k/2 · nO(1) time. If such a path exists, we obtain a solution.

In Case 2, where t ∈ Lr for some r ≥ p + k/2, we consider H = G[Lh+1 ∪ · · · ∪ L�] for h = p +
k/2� and denote by X
the set of vertices of the connected component of H containing X . Then for every y ∈ Lh we check (i) whether there is
x ∈ X such that {y, x} ∈ E(G), and (ii) whether G[Lp ∪ · · · ∪ L�] − X has a (u, y)-path S of length at least k +
k/2� in
4.8843k/2 · nO(1) time. If such a path exists, we construct a solution containing it in the same way as in the directed case.

The running time analysis is essentially the same as in the proof of Theorem 1. The difference is that now we have that
2.7462 ≤ 4.8843/2 < 10.80. This implies that the algorithm runs in 10.8k · nO(1) time. �
4. Longest path above diameter

In this section, we investigate the complexity of Longest Path above Diameter. It can be noted that this problem is
NP-complete in general even for k = 1.

Proposition 4. Longest Path above Diameter is NP-complete for k = 1 on undirected graphs.

Proof. We show the claim by reducing the Hamiltonian Path, the classic NP-complete [30] problem. Let G be an undirected
graph with n ≥ 2 vertices. We construct the graph G ′ as follows (see Fig. 4).

• Construct a copy of G .
• Add a vertex u and make it adjacent to every vertex of the copy of G .
• Add two vertices s and t , and then (s, u) and (u, t) paths P s and Pt , respectively, of length n − 1.

Notice that diam(G) = length(P s) + length(Pt) = 2n − 2. It is easy to verify that G ′ has a path of length 2n − 1 if and
only if G has a path of length n − 1, that is, G is Hamiltonian. This completes the proof. �

Proposition 4 immediately implies that Longest Path above Diameter is NP-complete for k = 1 on strongly connected
directed graphs. (We reduce the problem on undirected graphs to the directed variant by replacing each edge with the pair
of arcs of opposite orientations.) Moreover, the reduction in Proposition 4 strongly relies on the fact that the constructed
graph G ′ has an articulation point u. Hence, it is natural to investigate the problem further imposing connectivity constraints
on the input graphs. And indeed, it can be easily seen that Longest Path above Diameter is FPT on 2-connected undirected
graphs.
72

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Fig. 4. Construction of G ′ .

Observation 1. Longest Path above Diameter can be solved in time 6.523k · nO(1) on undirected 2-connected graphs.

Proof. Let (G, k) be an instance of Longest Path above Diameter where G is 2-connected. If d = diam(G) ≤ k, we can solve
the problem in time 2.554d+k ·nO(1) by using the algorithm of Proposition 1 to check whether G has a path of length d +k.
Note that 2.554d+k ≤ 2.5542k ≤ 6.523k . Otherwise, if d > k, consider a pair of vertices s and t with distG(s, t) = d. Because G
is 2-connected, by Menger’s theorem (see, e.g., [19]), G has a cycle C containing s and t . Since distG(s, t) = d and d ≥ k + 1,
the length of C is at least d + k + 1. This implies that C contains a path of length d + k. �

However, the arguments from the proof of Observation 1 cannot be translated to directed graphs. In particular, if a
directed graph G is strongly 2-connected, this does not mean that for every two vertices u and v , G has a cycle containing
u and v . We show the following theorem providing a full dichotomy for the complexity of Longest Path above Diameter on
strongly 2-connected graphs.

Theorem 2. On strongly 2-connected directed graphs, Longest Path above Diameter with k ≤ 4 can be solved in polynomial time,
while for k ≥ 5, it is NP-complete.

In the remaining part of this section, we prove the theorem. In Subsection 4.1, we prove the algorithmic part, and in
Subsection 4.2 we give the hardness proof.

4.1. Algorithm for k ≤ 4

We start with the positive part of Theorem 2. Note that it is sufficient to consider graphs with the diameter greater than
a certain constant. This is because in graphs with smaller diameters, the problem can be solved in linear time by making
use of the algorithm from [53]. The crucial part of the proof is encapsulated in the following lemma, which states that a
path of length diam(G) + 4 always exists in a strongly 2-connected graph G of sufficiently large diameter. To construct such
a path, we take the diametral pair (s, t) and use the strong 2-connectivity property of the graph to find two disjoint (s, t)-
paths and two disjoint (t, s)-paths in the graph. We then show that out of the several possible ways to comprise a path out
of the parts of these four paths, at least one always obtains a path of the desired length. The most non-trivial case of this
construction involves constructing two paths of length five, one ending in a vertex u that is at the distance three from s and
the other starting in a vertex v from which we can reach t using three arcs. We then concatenate these two paths using a
specific (u, v)-path in between. Since (s, t) is a diametral pair, the length of any (u, v)-path is at least diameter minus six,
so the length of the concatenation is at least diameter plus four. The other cases are analyzed in a similar fashion.

Lemma 1. Any strongly 2-connected directed graph G with diam(G) ≥ 2317
has a path of length diam(G) + 4.

Proof. Let d = diam(G) and (s, t) be a pair such that diam(G) = distG(s, t). Since G is strongly 2-connected, there exist
two internally disjoint paths P1 and P2 from s to t . Denote the number of internal vertices of P1 and P2 by p1 and p2
respectively. Denote the internal vertices of Pi by vi,1, vi,2, . . . , vi,pi for each i ∈ {1, 2}. Since diam(G) = distG(s, t), we know
that pi ≥ d − 1. Therefore, if the length of Pi is at least d + 4, then Pi is a path of length at least diam(G) + 4 and we are
done. Hence, from now on we assume that pi ≤ d + 2.

We say that a path between two arbitrary vertices in G is an outer path if no internal vertices belong to V (P1) ∪ V (P2).
We now investigate sufficient conditions for G to contain a path of length at least d + 4.

Claim 4. If there exists an outer path in G going from vi, j to v3−i, j′ with j′ ≤ j − 3, then there exists a path of length at least d + 4 in
G.

Proof of Claim 4. Let T be such a path and consider the path sP i vi, j T v3−i, j′ P3−it . This path is an (s, t)-path of length at
least j + 1 + (p3−i + 1 − j′) ≥ d + (j − j′) + 1 ≥ d + 4. �
73

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Claim 5. If there exists an outer (vi, j, s)-path in G with i ∈ {2} and j ≥ 4, then G has a path of length at least diam(G) + 4. The same
holds for an outer (t, vi, j)-path with j ≤ pi − 3.

Proof of Claim 5. Assume that a (vi, j, s)-path with described properties exists. Then concatenate the path vi,1 Pi vi, j , the
(vi, j, s)-path and the path P3−i . As all three paths are internally disjoint, we obtain a (vi,1, t)-path of length at least
(j − 1) + 1 + d = d + j ≥ d + 4 in G as desired.

The case of a (t, vi, j)-path is symmetrical and we need to concatenate the path P3−i with the (t, vi, j)-path and with the
path vi, j P i vi,pi . The combined path is of length at least d + 1 + (pi − j) ≥ d + 4. �

The following claim shows that we can find either a path of length d + 4 or many outer paths connecting P1 and P2 in
G .

Claim 6. If G has no path of length at least d + 4, then in any (t, s)-path and for every i ∈ {1, 2} there are at least 8 outer subpaths
going from an inner vertex of Pi to an inner vertex of P3−i .

Proof of Claim 6. Take an (t, s)-path Q . If Q has no inner vertices in V (P1) ∪ V (P2), then we can concatenate v1,1 P1t with
Q and then with sP2 v2,p2 and obtain a path of length at least p1 + p2 + 1 > d + 4.

Thus, Q should have at least one inner vertex in V (P1) ∪ V (P2). Denote all inner vertices of Q from V (P1) ∪ V (P2) by
q1, q2, . . . , qz in the order they appear on Q . Hence, t Q q1, qz Q s and qk Q qk+1 for every k ∈ {1, . . . , z − 1} are outer paths
in G .

Without loss of generality, we can assume that q1 ∈ V (P1). Let r be the largest number such that qk ∈ V (P1) for
each k ∈ {1, . . . , r}. First note that r ≤ 3, otherwise we can concatenate P2 with t Q qr and obtain a path of length at
least d + r ≥ d + 4. Suppose now that the length of qk P1t is greater than 3(r − 1) for some k ∈ {1, . . . , r}. The vertices
q1, q2, . . . , qk−1, qk+1, . . . , qr split this path into r − 1 parts, and the length of one of these parts is at least four. Hence,
for some a ∈ {q1, q2, . . . , qr} and b ∈ {q1, q2, . . . , qr, t} the length of aP1b is at least four and contains no inner vertex
among q1, q2, . . . , qr, t . Then concatenate P2 with t Q aP1b without the vertex b. The obtained path is of length at least
d + 1 + 3 = d + 4. Thus, we have that for each k ∈ {1, . . . , r} the vertex qk is at distance at most 3(r − 1) ≤ 6 from t on P1.
In particular, qr = v1, j for j ≥ p1 − 5.

If r = t , i.e. there is no vertex from P2 among q1, . . . , qr , then we have an outer (qr, s)-path in G . Since qr = v1, j for
j ≥ p1 − 5 ≥ 4, by Claim 5 G has a path of length at least d + 4. We now have that z > r and qr+1 ∈ V (P2), i.e. Q alternates
at least once between P1 and P2. We say that k is an alternation point in Q if qk ∈ V (Pi) and qk+1 ∈ V (P3−i) for some
i ∈ {1, 2}. As a convenient exception, we also consider k = z as an alternation point in Q . Let k1 < k2 < . . . < kc−1 < kc be
the sequence of all such alternation points in Q . We know that c ≥ 1 and k1 = r and kc = z.

We show that for each j ∈ {1, . . . , c}, for every k ∈ {1, . . . , k j} the distance between qk and t on P1 or P2 is at most 23 j
.

We prove this by induction, where the case j = 1 has already been proved. Take j > 1 and assume that the induction
hypothesis holds for j − 1. Then we have an outer (qk j−1 , qk j−1+1)-path in G and for each k ∈ {1, k j−1 + 1, k j} qk ∈ V (Pi).
We know that qk j−1 = v3−i, j′ and j′ ≥ p3−i − 23 j−1 + 1 by induction. If k j − k j−1 > 23 j−1 + 3, then sP3−iqk j−1 Q qk j is a path
of length at least p3−i + 5 ≥ d + 4. Hence, we have that k j − k j−1 ≤ 23 j−1 + 3. On the other hand, qk j−1+1 = vi, j′′ and by
Claim 4 we have that j′′ ≥ j − 2 ≥ p3−i − 23 j−1 − 1 ≥ pi − 32 j−1 − 4. If k j = k j−1 + 1, then everything is proved since vi, j′′ is
on the distance pi − j′′ + 1 ≤ 23 j−1 + 5 ≤ 23 j

from t on Pi . From now we assume that k j − k j−1 > 1.
Let �, u ∈ {1, . . . , k j−1 + 1, k j} be such that q� is the farthest from t on Pi and qu is the closest to t on Pi . Then q� Piqu

contains qk for each k ∈ {1, . . . , k j−1 + 1, k j}. The vertices qk j−1+1, . . . , qk j split this path into k j − (k j−1 + 1) parts. If the
length of q� Piqu is more than (23 j−1 + 2)(k j −k j−1 − 1), then one of these parts has the length at least 23 j−1 + 3. We denote
the endpoints of this part by qa and qb , i.e. this part is qa Piqb . Let us consider the path sP3−iqk j−1 Q qa Piqb without the
vertex qb . This path is of length at least (p3−i − 23 j−1 + 1) + 1 + (23 j−1 + 3) ≥ p3−i + 5 ≥ d + 4. Thus, we now assume that
the length of q� Piqu is at most (23 j−1 + 2)(k j − k j−1 − 1) ≤ (23 j−1 + 2)2.

Then for each k ∈ {1, . . . , k j−1 +1, k j} the vertex qk is on a distance at most (23 j−1 +2)2 from qk j−1+1 on Pi . Since qk j−1+1

is on a distance at most 23 j−1 + 5 from t , we have that for each such qk the distance between qk and t on Pi is at most

23 j−1 + 5 + (23 j−1 + 2)2 ≤ 22·3 j−1 + 5 · 23 j−1 + 9 ≤ 3 · 22·3 j−1 ≤ 23 j
,

as claimed.
Because for each j ∈ {1, . . . , c}, for every k ∈ {1, . . . , k j} the distance between qk and t on P1 or P2 is at most 23 j

, we
obtain that qz = qkc = vi, j , where i ∈ {1, 2} and j ≥ pi − 23c + 1. Q also yields an outer (qz, s)-path, and by Claim 5, we
have that j ≤ 3 or G has a path of length d + 4. Then pi ≤ 23c + 2. Since pi ≥ d − 1, we obtain that 23c + 3 ≥ d so c ≥ 17. It
follows that for each i ∈ {1, 2} there are at least 8 outer (vi, j, v3−i, j′)-paths in G , and all of them are subpaths of Q . �
74

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
The last claim in the proof shows that we can find two disjoint paths, one near s and one near t in G . We shall then
combine them in a single path of length d + 4 in G using paths from Claim 6.

Claim 7. In G, there is either:

1. A path of length at least d + 4, or
2. A path of length 5 ending in v1,3 or in v2,3 that avoids all vertices of form vi, j for j > 3, and a path of length 5 starting in v1,p1−2

or in v2,p2−2 that avoids all vertices of form vi, j for j < p2 − 2. These two paths do not share any common vertex.

Proof of Claim 7. Since G is strongly 2-connected, there are two internally disjoint (s, t)-paths Q 1 and Q 2. By Lemma 6,
either G contains a path of length d + 4 or for each i ∈ {1, 2} Q i contains at least four vertices in V (P1) ∪ V (P2) \ {s, t}.
Hence, for each k ∈ {1, 2}, we have four outer paths t Q kak , ak Q kbk , dk Q ks, ck Q kdk in G . Note that all these eight paths are
internally disjoint and the eight vertices ak, bk, ck, dk are pairwise distinct.

We first show how to construct a path of length 5 ending in vi,3 for some i ∈ {1, 2}, using the paths dk Q ks and ck Q kdk .
If dk = vi, j for k, i ∈ {1, 2} and j ≥ 2, then take the path vi,1 Pi vi, j Q ksP3−i v3−i,3. This is a path of length at least (j − 1) +
1 + 3 ≥ j + 3 ≥ 5 ending in v3−i,3 avoiding all vertices of form vx,y with y > 3 as required. Hence, it is left to consider the
case when for each k ∈ {1, 2} dk = vi, j where j ≤ 2. Without loss of generality, we assume that for each k ∈ {1, 2} dk = vk,1.

We now require the path c1 Q 1d1 for the construction. Let c1 = vi′, j′ for some i′ ∈ {1, 2} and j′ ∈ {1, . . . , pi′ }. Suppose
first that i′ = 1. If j′ ≥ 4 then take the path v1,2 P1 v1, j′ Q 1 v1,1 Q 1sP2t . This is a path of length at least (j′ − 2) + 2 + d ≥
d + j′ ≥ d + 4 in G . If j′ ≤ 3, then consider the path v1, j′ Q 1 v1,1 Q 1sP2 v2,3. This is a path of length at least five ending in
v2,3 that avoids all vertices vx,y with y > 3.

It is left to consider c1 = v2, j′ . If j′ ≥ 4, then c1 Q 1d1 is an outer (v2, j′ , v1, j)-path with j ≤ j′ − 3 and we are done by
Claim 4. Hence, j′ ∈ {2, 3}. Then consider sP2 v2, j′ Q 1 v1,1 P1 v1,3. This path has the length at least j′ +1 +2 ≥ 5, ends in v1,3,
and avoids all vertices required. The part of the proof for paths ending in vi,3 is complete. Note that all constructed paths
can contain only vertices vi, j with j ≤ 3, the vertex s, and inner vertices of the paths ck Q ks.

The proof for paths starting in vi,pi−2 is symmetrical. The symmetry lies in that when we take the reversal of G , the
roles of s and t exchange, and paths starting in vi,pi−2 become paths ending in vi,3. The role of the paths ck Q ks is taken
by the reversals of the paths t Q kbk . Hence, we can consider the graph Grev , exchange s and t and reenumerate each vertex
vi, j := v ′

i,pi− j+1 for i ∈ {1, 2} and j ∈ {1, . . . , pi}. By applying the previous proof to Grev , we obtain either a path of length
d + 4 in Grev or a path of length at least 5 ending in v ′

i,3. Thus, in G , we obtain either a path of length at least d + 4 or
a path of length at least 5 ending in vi,pi−2 and avoiding all required vertices. Note that the constructed paths in this part
can contain only vertices vi, j with j ≥ pi − 2, the vertex t and inner vertices of the paths t Q kbk . That is, the two paths of
length five from the different parts of the proof do not share any common vertex. �

To conclude the proof of Lemma 1, we combine results of Claim 6 and Claim 7 together. By Claim 7, if G does not contain
a path of length d + 4, there exists a path of length five ending in vi,3 avoiding all vx,y with y ≥ 4 and a path of length five
starting in vi′,pi′−2 avoiding all vx,y with y ≤ pi′ − 3. Denote these paths by R and R ′ respectively. If i = i′ , then we take
the concatenation R ◦ vi,3 Pi vi,pi−2 ◦ R ′ . This is indeed a path without self-intersections as R and R ′ avoid all vertices of Pi

between vi,3 and vi,pi−2 and are disjoint. The obtained path is of length 5 + (pi − 2 − 3) + 5 ≥ pi + 5 ≥ d + 4.
If i′ = 3 − i, then we require an outer (vi,y, vi′,y′)-path T with y ≥ 3 and y′ ≤ pi′ − 2 for the concatenation

R ◦ vi,3 Pi vi,y T vi′,y′ Pi′ vi′,pi′−2 ◦ R ′ . This path can only share vertices vi,3 and vi′,pi′−2 with R and R ′ . Thus, we want T
to avoid vertices vi,1, vi,2, vi′,pi′ , vi′,pi′−1

and all vertices in V (R) ∪ V (R ′) \ {vi,3, vi′,pi′−2}. These sum up to a total of 14
vertices that should be avoided. Since there are two internally disjoint (t, s)-paths in G , by Lemma 6 there are at least 16
outer paths in G going from an inner vertex of Pi to an inner vertex of Pi′ . As each vertex to avoid lies on at most one path
among these 16, at least two paths are suitable candidates for T . Take any of these candidates and denote it by T .

To estimate the length of T , consider the path sP i vi,y T vi′,y′ Pi′t . The length of this concatenation equals y + � + (pi′ −
y′ + 1) = (pi′ + 1) − (y′ − y) + �, where � is the length of T . Since the concatenation is an (s, t)-path we have (pi′ + 1) −
(y′ − y) + � ≥ d, so the length of T is at least (y′ − y) − (pi′ + 1 − d). The length of the path vi,3 Pi vi,y T vi′,y′ Pi′ vi′,pi′−2 is at
least (y − 3) + (y′ − y) − (pi′ + 1 − d) + (pi′ − 2 − y′) = d − 6. It follows that R ◦ vi,3 Pi vi,y T vi′,y′ Pi′ vi′,pi′−2 ◦ R ′ is of length
at least d + 4 as required. �

We note that the proof of Lemma 1 is constructive and can be turned into a polynomial-time algorithm finding a path
of length diam(G) + 4 in a graph with the diameter at least 2317

. For turning the proof into an algorithm, we require a
procedure to find two internally disjoint (s, t)-paths or two internally disjoint (t, s)-paths in G . This can be done in polyno-
mial time using any polynomial-time maximum flow algorithm. For diam(G) < 2317

, we use the color coding algorithm for
Longest Path to find a path of constant length diam(G) + 4. The running time of this algorithm is linear in n. We obtain
that Longest Path above Diameter with k ≤ 4 can be solved in polynomial time on strongly 2-connected digraphs.
75

4.2. NP-hardness

We proceed to the second and negative result of Theorem 2. The general idea of the proof is similar to that of Propo-
sition 4. We aim to take a path-like gadget graph, then take a sufficiently large Hamiltonian Path instance and connect it
to the middle of the gadget. However, while in the general case, it suffices to simply take a path graph (Proposition 4), the
strongly 2-connected case is much more technically involved. First, we need a family of gadget graphs that are strongly 2-
connected and have arbitrarily large diameters, but each graph in the family does not have a path longer than the diameter
plus four. This, in fact, is exactly a counterexample to the positive part of Theorem 2, as the existence of such a family of
graphs proves that there cannot always be a path of length diameter plus four in a sufficiently large 2-connected directed
graph. Additionally, for the reduction we need that graphs in this family behave like paths. By that, we mean that the length
of the longest path that ends in the “middle” of the gadget is roughly half of the diameter. Constructing this graph family
is the main technical challenge of the proof. After constructing the gadget graph family the proof is reasonably simple, as
we take a 2-connected Hamiltonian Path instance, and connect it to the “middle” of a sufficiently large gadget graph. The
connection is done by a simple 4-vertex connector gadget that ensures that the resulting graph is strongly 2-connected but
only allows paths that alternate at most once between the gadget graph and the starting instance. The whole reduction is
visualized in Fig. 6.

We start the proof with a construction of a family of directed graphs G1, G2, . . . , G�, . . . that are strongly 2-connected,
while the longest path in G� has the length diam(G�) + 4 starting from some �. We shall afterward use this graph for a
many-to-one reduction from Hamiltonian Path to Longest Path above Diameter.

Construction of the graph G� . We construct G� for arbitrary � ≥ 1. We require three types of gadgets for the construction
that are shown in Fig. 5. The first two are the source and the sink gadgets, presented in Fig. 5a and Fig. 5c. They contain
vertices s and t respectively. Note that the sink gadget is isomorphic to the reversal of the source gadget, and isomorphism
is clear from the enumeration of the vertices of both gadgets. The third type of gadget, namely the hat gadget, is presented
in Fig. 5b, and consists of ten vertices. To construct the graph G� for � ≥ 1, we take one source gadget, 2� − 1 hat gadgets,
and one sink gadget. Then we identify the vertices s8 and s14 with the vertices h1 and h4 of the first hat gadget respectively.
Further, for each i ∈ {1, . . . , 2� − 2}, we identify the vertices h3 and h10 of the ith hat gadget respectively with the vertices
h4 and h1 of the (i + 1)th hat gadget. Finally, we identify the vertices h3 and h10 of the last, (2� − 1)th gadget, with the
vertices t8 and t14 of the sink gadget. Thus, all gadgets are arranged into a chain and form a weakly connected graph. This
is the graph G� , and later in this section, we prove that it is strongly 2-connected.

Paths P1, P2 and Q 1, Q 2. The four paths we describe are shown in Fig. 5d, where the graph G2 is presented. By construction,
there are two internally disjoint (s, t)-paths in G� . The path P1 starts in s, then goes through vertices s1, s2 up to s8 of the
source gadget. Then the vertices h2 and h3 of the first hat gadget follow, then the vertices h5, h6 up to h10 of the second
hat gadget follow on P1, and so on. The path P1 ends with vertices t8, t7 down to t1 and, finally, the vertex t . The path P2
starts in s, follows s9 through s14, and ends with t14 through t9 in t . The paths Q 1 and Q 2 are two (t, s)-paths in G� . Their
construction is shown in Fig. 5, where the arcs of each of them receive a specific color.

Note that we used 2� + 1 gadgets to construct G� . Each of these gadgets is an induced subgraph of G� . Two gadgets can
share either zero or two vertices, however, they cannot share any arc of G�. Moreover, each arc of G� belongs to exactly one
gadget. From now on, by gadgets we refer to these 2� + 1 induced subgraphs of G� .

Separating and containing gadgets. We say that a gadget separates two distinct vertices u and v in G� if there is no (u, v)-
path and (v, u)-path in G� − X , where X is the arc set of the gadget. We say that a gadget strictly contains vertex v ∈ V (G�)

if v belongs to the vertex set of this gadget and does not belong to the vertex set of any other gadget in G� . Thus, there
exist vertices that are not strictly contained in any gadget. We observe some trivial facts about gadgets.

Observation 2. The following holds

1. For every vertex v ∈ V (G�), if a gadget strictly contains v, then this gadget separates v and every u ∈ V (G�) \ {v}.
2. For every distinct u, v ∈ V (G�), if u and v are not separated by any gadget in G�, then {u, v} is the intersection of the vertex sets of

two gadgets in G�.
3. For every distinct u, v ∈ V (G�), if two gadgets both separate u and v in G� and share two vertices u′ and v ′ , then there is no path

between u and v in G� − {u′, v ′}.

Lemma 2. If a gadget separates u and v in G� and strictly contains neither u nor v, then the arcs of any (u, v)-path in G� induce a
single path inside this gadget.

Proof. First, since the gadget is a separating gadget, it should contain at least one arc of any (u, v)-path in G� . Hence, the
arcs of the (u, v)-path induce one or several paths inside the gadget. The gadget is a hat gadget since the source and the
sink gadget can be separating only for the vertices they strictly contain. Any path induced in the gadget by the arcs of
the (u, v)-path has endpoints in {h1, h3, h4, h10} since both u and v are not strictly contained in the gadget. Then one of
the paths induced in the gadget should be a path between {h1, h4} and {h3, h10}, otherwise the gadget is not separating.
F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
76

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86

h4

h5

h6

h7

h8

h9

h10

h1

h2

h3

b)

a)
s

s9

s10

s11

s12

s13

s14

s1

s2

s3

s4

s5

s6

s7

s8

t

t14

t13

t12

t11

t10

t9

t8

t7

t6

t5

t4

t3

t2

t1

c)

s
P1 P2d)

t

Q 2Q 1

Fig. 5. Three types of gadgets used for the construction of G� , and the graph G2. The orange arcs and the red arcs in G2 are the arcs of Q 1 and Q 2

respectively. P1 and P2 are the (s, t)-paths on the left and the right respectively. Blue arcs are the arcs that belong to neither of P1, P2 and Q 1, Q 2.
Dashed rounded rectangles show the boundaries of the gadgets used in the construction.
77

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Hence, if there is more than one path induced, then there are exactly two paths induced, and the second path is also a path
between {h1, h4} and {h3, h10}. Since the gadget is separating and {h1, h4} with {h3, h10} are boundaries of the separation,
we should have an odd number of paths going between them. Thus, there is only one induced path. �
Lemma 3. G� is strongly 2-connected.

Proof. First note that G� is strongly connected since every vertex of G� is reachable from s and t is reachable from every
vertex of G� and there is a (t, s)-path in G� . We now need to show that G� − v is strongly connected for every vertex
v ∈ V (G�).

Since G� is strongly connected and G�[N−
G�

(s) ∪ N+
G�

(s)] is strongly connected, we have that G� − s is strongly connected.
The same argument works for t , so G� − t is strongly connected as well. We shall now prove that G� − v is strongly
connected for an arbitrary vertex v ∈ V (G�) \ {s, t}. Since there are two disjoint (s, t)-paths in G�, t is reachable from s in
(G�, v). Analogously, s is reachable from t in (G�, v). Hence, to prove that G� − v is strongly connected it is enough to show
for every vertex u ∈ V (G� − v) \ {s, t} that there is an (s, u)-path or a (t, u)-path in G� and there is an (u, s)-path or a
(u, t)-path in G� − v .

Take a vertex u ∈ V (G�) \ {v, s, t}. First, note that u lies on an (s, t)-path in G� . If v does not belong to this path, then
this path remains in G� − v yielding an (s, u)-path and an (u, t)-path in G� as required. We now assume that v belongs to
every (s, t)-path in G� containing u. Then exactly one of (s, u)-path and (u, t)-path exists in G� − v .

Claim 8. If u ∈ V (G�) \ {s, t} lies on Q 1 or Q 2 in G� , then there exists

• an (s, u)-path and a (t, u)-path that are internally disjoint;
• an (u, t)-path and an (u, s)-path that are internally disjoint.

Proof of Claim 8. Let i be such that u belongs to Pi and j be such that u belongs to Q i . Note that the vertices in V (Q j) ∩
V (Pi) appear on Q j in the order reverse to the order on Pi . Then the (t, u)-subpath of Q j only uses vertices of Pi that
appear after u on Pi . Thus, the (s, u)-subpath of Pi does not share any internal vertex with a (t, u)-subpath of Q j . These
two paths form the first pair of the claim.

To proceed with the second pair of paths, take the (u, s)-subpath of Q j and the (u, t)-subpath of Pi . Since the (u, s)-
subpath uses only those vertices of Pi that appear before u on Pi , these paths are also internally disjoint. �

Suppose that u lies on a (t, s)-path in G� . From the claim follows that u is reachable from s or t and s or t is reachable
from u in G� − v and we are done. Hence, we can assume that u lies neither on Q 1 nor Q 2. Then u is a vertex in
N+

G�
(s) ∪ N−

G�
(t) or a vertex in the inner cycle of a hat gadget, i.e. one of the vertices among the vertices h2, h6, h7, h8 of

some hat gadget.
If u is a vertex in N+

G�
(s), then there are two internally disjoint paths from s to u and two internally disjoint paths from

u to s in G� , so both (u, s)-path and (s, u)-path exist in G� − v and we are done. Analogously, if u is a vertex in N−
G�

(t), we
have both (u, t)-path and (t, u)-path in G� − v .

It is left to consider the case when u is a vertex of the inner cycle of a hat gadget. Note that there exist two internally
disjoint paths starting in distinct vertices of V (Q i) and ending in u, for each i ∈ {1, 2} in G� . Symmetrically, we have two
internally disjoint paths starting in u and ending in distinct vertices of V (Q i), for each i ∈ {1, 2} in G� . Since at least one of
Q 1 and Q 2 exists in G� − v , we have a (t, u)-path and an (u, s)-path in G� . The proof is complete. �
Lemma 4. diam(G�) = distG�

(s, t) = 8� + 10.

Proof. Let d be the length of P1 and P2 in G� . First, note that distG�
(s, t) equals d. Indeed, V (G�) = V (P1) ∪ V (P2), so an

(s, t)-path in G� consists only of vertices of P1 and P2. Note that for every choice of x, y ∈ {1, 2} and i, j ∈ {1, . . . , d + 1}
with i + 1 < j, there is no arc in G� going from an ith vertex on P x to a jth vertex on P y . Hence, to reach t from s one
should use at least d arcs in G� . Our goal is to prove that distG�

(u, v) ≤ d for each u, v ∈ V (G�).
Now denote the internal vertices in P1 by a1, a2, . . . , ad−1 in the order corresponding to P1. Thus, distG�

(s, v) ≤ i and
distG�

(v, t) ≤ d − i for each i ∈ {1, . . . , d − 1}. Note that it holds that distG�
(s, v) = i and distG�

(v, t) = d − i since, otherwise,
distG�

(s, t) ≤ distG�
(s, v) + distG�

(v, t) < i + (d − i) = d. Analogously denote the internal vertices in P2 by b1, b2, . . . , bd−1. It
holds that distG�

(s, bi) = i and distG�
(bi, t) = d − i for each i ∈ {1, . . . , d − 1}.

Now consider the distance distG�
(t, s). We know that distG�

(t, s) is at most the length of Q 1 or Q 2. Observe that Q 1
uses four arcs in the sink gadget, three arcs in � hat gadgets, one arc in � − 1 hat gadgets, and four arcs in the source
gadget. Hence, the length of Q 1 is 4 + 3� + (� − 1) + 4 = 4� + 7. As for Q 2, it uses six arcs in each of the sink and the source
gadgets, one arc in � hat gadgets, and three arcs in � − 1 hat gadgets. The length of Q 2 is 12 + � + 3(� − 1) = 4� + 9. Hence,
distG�

(t, s) ≤ 4� + 7 < d.
Now take a vertex v ∈ {a1, b1, a2, b2, . . . , ad−1, bd−1} and consider the distance distG�

(t, v). If v belongs to Q 1 or Q 2,
then distG�

(t, v) < 4� + 9 < d. If v belongs neither to Q 1 nor Q 2, then v ∈ N+ (s) or v ∈ N− (t) or v is a vertex of the inner
G� G�

78

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
cycle of a hat gadget. In the first case, distG�
(t, v) ≤ distG�

(t, s) + 1 ≤ 4� + 8 < d. In the case v ∈ N−
G�

(t), distG�
(t, v) = 2. For

v being a vertex of some inner cycle, note that v is reachable from a vertex of Q 1 or a vertex of Q 2 using a single arc.
Hence, distG�

(t, v) < 4� + 9 + 1 < d.
To handle the distance distG�

(v, s), we note that the graph G� is isomorphic to the graph G�
rev with isomorphism

f : V (G�) → V (G�), such that f (s) = t , f (t) = s, f (ai) = ad−i and f (bi) = bd−i for each i ∈ {1, . . . , d − 1}. Thus, distG�
(v, s) =

distG�
rev (f (v), t) = distG�

(t, f (v)). Since f (v) is ai or bi for some i ∈ {1, . . . , d − 1}, we have that distG�
(v, s) ≤ 4� + 9 < d.

It is left to prove that distG�
(u, v) ≤ d for every choice of u, v ∈ {a1, b1, a2, b2, . . . , ad−1, bd−1}. It is easy to see that for

every 1 ≤ i ≤ j < d distG�
(v, a j) = j − i and distG�

(bi, b j) = j − i, otherwise distG�
(s, t) < d.

Note that for each i ∈ {1, . . . , d − 1} with i giving 1, 2 or 3 modulo 8, we have an arc from ai to b j in G� , where j is such
that | j − i| = 1. Then, for each i ∈ {1, . . . , d −1} with i giving 6, 7 or 0 modulo 8 and i ∈ {1, 2, 3, d −1, d −2, d −3}, we have an
arc from bi to a j in G� , where j is such that | j − i| = 1. It follows that for each i ∈ {1, . . . , d −1}, we have an arc from a j to bt ,
where i ≤ j ≤ i + 5 and |t − j| = 1. Hence, distG�

(ai, b j+1) ≤ distG�
(ai, a j) + 1 + max{distG�

(b j−1, b j+1), distG�
(b j+1, b j+1)} ≤

j − i + 1 + 2 = j − i + 3. Then distG�
(ai, bi+6) ≤ distG�

(ai, b j+1) + distG�
(b j+1, bi+6) ≤ (j − i + 3) + (i − j + 5) = 8. Analogously,

we have that distG�
(bi, ai+6) ≤ 8. We conclude that distG�

(ai, b j) ≤ j − i + 2 ≤ d and distG�
(bi, a j) ≤ j − i + 2 ≤ d for each

i, j ∈ {1, . . . , d − 1} such that j − i ≥ 6.
It remains to consider distances of form distG�

(u, v), where u ∈ {ai, bi} and v ∈ {a j, b j}, such that j − i ≤ 5. Then we have
that both u and v are vertices of the same gadget or two adjacent gadgets. The diameter of any gadget is at most eight, so
clearly the distance between u and v is at most 16, which is less than 8� + 10 for � ≥ 1. �

Lemma 5. Let u, v ∈ V (G�) be a pair of vertices in G� and let T be an (u, v)-path in G� . If T contains an arc of some gadget (either
source, sink, or hat gadget) of G�, then

• this gadget contains u or v;
• this gadget separates u and v in G�;
• T contains exactly two arcs of this gadget. There are at most two such gadgets for T overall.

Proof. We first consider the hat gadgets. Targeting towards a contradiction, suppose that there exists an (u, v)-path T
and a hat gadget that does not satisfy the lemma statement. Denote the vertices of the hat gadget in G� by h1, . . . , h10,
respectively to the definition of a hat gadget. The hat gadget does not separate u and v in G� and u, v /∈ {h1, h2, . . . , h10}.
Finally, T uses more than two arcs of this gadget.

Note that since the gadget does not separate u and v in G� , the arcs of T in the gadget either form a path between
h1 and h4, or a path between h3 and h10, or two disjoint paths, one going from {h1, h4} to {h3, h10}, and one going in the
opposite direction from {h3, h10} to {h1, h4}. Other cases are not possible since {h1, h4} and {h3, h10} both are cuts of G� .

Consider first that this is a path between h1 and h4. First note that the only (h4, h1)-path inside the gadget uses exactly
two arcs, (h4, h5) and (h5, h1), but T uses more than two arcs. If this is a (h1, h4)-path, then T contains a vertex x outside
the gadget such that (x, h1) ∈ A(G�). Symmetrically, T contains a vertex y /∈ {h1, . . . , h10} such that (h4, y) ∈ A(G�), and x
and y are distinct. However, the indegree and outdegree of both h1 and h4 are equal to two, so there is only one option
for x and only one option for y in G� . However, from the construction of G� it is clear that both x and y should be a
predecessor of h1 on either P1 or P2 in G� . Hence, the case of a path between h1 and h4 is not possible.

The case of a path between h3 and h10 is symmetrical. The only (h3, h10)-path consists of only two arcs, and the
(h10, h3)-path is not possible since T cannot contain a (h10, h3)-subpath, as the only outside ingoing neighbor of h10 is the
only outside outgoing neighbor of h3.

The only case left for the intersection of T and the arcs of the gadget is two disjoint paths. One path should start either
in h1 or h4 and end either in h3 or h10, and the other should go in the opposite direction. Suppose that one of the paths
starts in h3. Then it should use the only outgoing arc (h3, h9). However, {h3, h10} separates all paths going from {h1, h4} to
h10, so a disjoint path in the other direction is not possible in this case. Hence, one of the paths should start in h10 . The
only arc outgoing of h10 is (h10, h4), so one of the paths is a (h10, h4)-path and the other is an (h1, h3)-path inside the
gadget. But then T should contain an (h1, h4)-subpath in G� . We already know that this is not possible.

It is left to consider the case when the source gadget or the sink gadget does not contain u and v , but T has at least
three arcs of this gadget. We consider the case of the source gadget as the case of the sink gadget is symmetric. Since T
neither starts nor ends in the source gadget, the arcs of T should induce a path between s8 and s14 inside it. The only
(s14, s8)-path consists of just two arcs, so it should be an (s8, s14)-path inside the gadget. Then T should contain an arc
(x, s8) and an arc (s14, y), where x, y are outside the gadget. The only choice for both x and y is the vertex h5 of the first
hat gadget in G� . This is a contradiction since x and y should be distinct.

For the very last sentence in the lemma statement, suppose that there are three gadgets containing an arc of T but not
containing u and v and not separating u and v . Then one of the three gadgets separates the other two from each other,
and this gadget is necessarily a hat gadget. Then the arcs of T should form at least one path between {h1, h4} and {h3, h10}
inside this separating gadget, but this is not the case. �
79

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
Lemma 6. For � ≥ 17, the maximum path length in G� is distG�
(s, t) + 4 = 8� + 14. Additionally, for a vertex v ∈ G� that is either

h6 or h8 in the middle hat gadget (i.e. the �-th hat gadget out of 2� − 1), the longest path in G� that ends in v has the length at most
4� + 15, and exactly 4� + 15 for h8 .

Proof. Consider two vertices u and v and an (u, v)-path T . We show that the length of T is at most d + 4, where d =
distG�

(s, t) = 8� + 10. For any hat gadget not containing u and v but separating u and v , we know that the arcs of T form
a path between {h1, h4} and {h3, h10} inside this gadget.

We first consider the case when distG�
(s, u) > distG�

(s, v). Then in any separating hat gadget that does not contain u
or v strictly, the arcs of T form a path from {h3, h10} to {h1, h4}. Denote all separating gadgets by H1, H2, . . . , H p in the
order in which T traverses them. Denote by xi the number of arcs of T inside Hi for each i ∈ {1, . . . , p}. Note that each
xi ∈ {1, . . . , 5}, as the longest path from {h3, h10} to {h1, h4} in Hi is an (h3, h1)-path of length five. However, if the path
induced by T in Hi ends in h1, then the path induced by T in Hi+1 starts in h10. A longest path starting in h10 is of length
three if it ends in h1, and is of length one if it ends in h4. For each i ∈ {1, . . . , p}, let ci ∈ {0, 1} be equal to 1 if the path
induced by T in Hi ends in h1, and to 0 otherwise. Additionally, let c0 = 1 if the path induced by T in H1 starts in h3,
otherwise c0 = 0.

For each i ∈ {0, . . . , p − 1}, consider the values of ci and ci+1. If ci = 0, then the path induced by T in Hi+1 starts
in h3, otherwise it starts in h10. If ci+1 = 0, then the path induced by T in Hi+1 ends in h4, otherwise it ends in h1. If
(ci, ci+1) = (0, 0), then the path inside Hi+1 is an (h3, h4)-path and has the length three. If (ci, ci+1) = (0, 1), then this path
goes from h3 to h1 and has the length five. If (ci, ci+1) = (1, 0), then the path is an (h10, h4)-path and has the length one.
Finally, if the pair equals (1, 1), then inside Hi+1 we have an (h10, h1)-path of length three. Thus, the formula for xi+1 is
3 − 2ci + 2ci−1. We obtain that

∑p
i=1 xi = 3p + 2c0 − 2cp ≤ 3p + 2.

Now observe that apart from arcs inside separating gadgets, T can contain arcs inside gadgets containing u and v but
not separating them plus four arcs in two additional gadgets. Since each gadget consists of at most 14 vertices, T can have
at most 13 arcs inside gadgets containing u and v . The vertex u is either strictly contained in a gadget or is non-strictly
contained in two adjacent gadgets. In the second case, one of the two gadgets is necessarily a separating hat gadget. Since
the same holds v , there are at most two gadgets in G� that contain u or v but not separate them. Hence, the length of T
is at most (3p + 2) + 2 · 13 + 4 ≤ 3p + 32 ≤ 3(2� − 1) + 32 ≤ 6� + 29. For � ≥ 17, we have that 6� + 29 < 8� + 14, which is
the desired bound on the length of T . For the second part of the statement, if v is strictly contained the middle hat gadget,
then p is at most � − 1, and the length of T is at most 3� + 32 ≤ 4� + 15.

We move on to the case distG�
(s, u) ≤ distG�

(s, v). If u and v are in the same gadget or are in two adjacent gadgets,
then the length of T is at most 4 · 14 + 4 ≤ 60 < d + 4. Hence, there is at least one hat gadget separating u and v but not
containing u or v . Consider the subpath of T that is formed by arcs of the separating gadgets that do not strictly contain u
or v . Let the starting point of this path be u′ and the ending point be v ′ . Note that in any separating hat gadget, T induces
a path from hi ∈ {h1, h4} to h j ∈ {h3, h10}. Note that the length of such path always equals distG�

(s, h j) − distG�
(s, hi). Hence,

the length of the (u′, v ′)-subpath of T is exactly distG�
(s, v ′) − distG�

(s, u′). It remains to estimate the length of the (u, u′)-
subpath and the (v ′, v)-subpath of T , consider the following expression for the length of the (u, v)-path:

length(T) = length
(
T(u,u′)

) + distG�
(s, v ′) − distG�

(s, u′) + length
(
T(v ′,v)

) =
d + (

length
(
T(u,u′)

) − distG�
(s, u′)

) + (
length

(
T(v ′,v)

) − distG�
(v ′, t)

)
,

where we denote the (u, u′)-subpath of T by T(u,u′) , and the (v ′, v)-subpath of T by T(v ′,v) .
It suffices to show that the length of the (u, u′)-subpath is at most distG�

(s, u′) + 2, then, by symmetry, each of the
last two terms above is at most two. There are two cases, either u belongs to the source gadget, or u belongs only to hat
gadgets. We start with the first case, u′ is then either s8 or s14 in the source gadget. The following claim completes this
case.

Claim 9. In the source gadget, for w ∈ {s8, s14}, the longest path that ends in w has the length at most dist(s, w) + 2.

Proof of Claim 9. Let us call the arcs that increase (resp. decrease) the distance to s forward (resp. backward) arcs. Observe
that if a path that ends in w does not take backward arcs, its length is at most dist(s, w). We now consider the choice of
the first backward arc of the potential path. To recall the vertex numeration in the source gadget, see Fig. 5a.

s2s After s, the path has to proceed to s10 since {s2, s10} is a cut that separates s from {s8, s14}. The longest choice
for such a subpath starts in s1 or s9 and collects all vertices on one side of the cut, e.g. s1s2ss9s10. Then the
path has the only option to proceed to s14, if w = s14 this case is settled as the length of the path is at most
8 = dist(s, s14) + 2. If w = s8, then the path has to take the arc s14s7, and then the arc s7s8; the arc s7s5 cannot be
taken since s7 separates s8 from s5. Again, the length of the path is at most 10 = dist(s, s8) + 2.

s10s Identically to the previous case, the first part of the path ends in s2 and takes at most 4 arcs inside the vertex set
{s, s1, s2, s9, s10}. Then the path has to proceed along P1 until it either takes the arc s4s13, and then the argument
80

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
is exactly the same as in the previous case, or proceeds straight to s8, thus in the case w = s8 yielding a path of
length at most 10.

s2s9 Exactly as in the case s2s , the path has to reach s10, and then the analysis is the same.

s10s1 Symmetrically to the previous case, the analysis repeats the case s10s .

s3s10 After s10, the path has to proceed to s11 as {s3, s10} is a separator, the analysis regarding the subpath after s10

is identical to the case s2s . Observe that the subpath leading to s3 cannot take both vertices s1 and s9 since
s2 together with s10 separates s1 and s9 from s3. Therefore, prior to reaching s10, the path takes at most 4 arcs,
leading again to the total length of at most dist(s, w) + 2.

s11s2 Symmetrically to the previous case, the analysis reduces to the case s10s .

s6s3 Before s6, only the vertices s4 and s5 can be taken since s6s3 is the first backward arc. After s3, the path either
proceeds to s10, or s4 and then s13. In the first case, the path has to go directly from s10 to w via forward arcs,
yielding a length of at most 8 or 10 for w = s14 and w = s8 respectively. In the second case, no other backward
arc can be taken as well, and the resulting path can only be shorter.

s5s4 Since s5s4 is the first backward arc on the path, the path has to start at s5. Afterward, the arc s4s13 has to be taken,
and then only forward arcs to s14, resulting in the path of length 3, or s8, resulting in the length 5.

s7s5 The target endpoint w cannot be s8, as s7 separates s8 from s5. If w = s14, the path has to either continue through
s5s4 and s4s13, or through s5s6 and s6s3. In the first case, the path has to finish immediately by taking the arc
s13s14, and before s7, only the vertex s6 can be taken, resulting in the length of at most 5. In the second case, the
path has to start at s7 as s6 is taken and s14 is the end of the path, and then similarly to the case s6s3 the only
option is to proceed from s3 to s10 and then to s14 along forward arcs, resulting in the length 8, or from s3 directly
to s14 via forward arcs, resulting in the length 6.

s8s6 The endpoint w must be s14. After s6, the path either goes through s6s3, or through s6s7s5s4s13s14. In the latter
case, s8 has to be the starting vertex of the path and the length is 6. In the former, the starting vertex is either s7
or s8, and then the analysis is identical to the case where s6s3 is the first backward arc.

s12s11 The vertex s12 has to be the starting point of the path. Afterward, the arc s11s2 has to be taken, and then only
forward arcs. The length of the path is then exactly dist(s, w).

s13s12 The path has to start at s13, as {s4s13} separates s12 from w . The only possible continuation is s12s11s2s3s4s5s6s7s8,
resulting in the path of length 9 ending at s8.

As the above cases cover all backward arcs in the source gadget, the proof of the claim is concluded. �
In the other case, u does not belong to the source gadget, so the first hat gadget does not separate u and v . Consider

the topmost hat gadget that contains u. The vertex u′ has to be either h3 or h10 in this hat gadget since the next hat gadget
necessarily separates u and v . Thus, distG�

(s, u′) ≥ 10. Now it suffices to show that the length of the (u, u′)-subpath is at
most twelve. From Lemma 5, it follows that this subpath lies completely inside the gadget, except for the two arcs of the
gadget above that form a path from h4 to h1 through a vertex outside of the gadget. Therefore, the subpath visits at most
eleven vertices, the number of vertices in a hat gadget plus one extra vertex, and thus cannot exceed the length of twelve.
To complete the proof, we show that there is indeed a path of length 8� + 14 in G� . The path proceeds as follows: start at
the vertex s9 of the source gadget, then go to s10 and s, then proceed along the path P1 of length d until t is reached, and
finally go to t10 and t9.

For the second part of the statement, consider v ∈ {h6, h8} in the middle hat gadget. Then v ′ is either h4 or h1 in the
same gadget. From the above, the length of the (u, v ′)-subpath of T is at most distG�

(s, v ′) + 2. Going from v ′ to v , T may
have arcs inside the middle hat gadget, and possibly two arcs in the next gadget that form a two-path between h3 and h10.
Thus, the length of T is at most distG�

(s, v ′) + 12 since there are at most 10 available vertices to T after v ′ . If v ′ is h4 in
the gadget, then the length of T is at most 4� + 14 since distG�

(s, v ′) is 4� + 2 in this case. It only remains to consider the
case where v ′ is h1 in the middle hat gadget, distG�

(s, v ′) = 4� + 4. It suffices to show that T cannot take simultaneously all
the vertices in the hat gadget, and the two arcs of the next gadget. Assume that happens, then T has to go from h1 to h3

and then to h10 through the two additional arcs. This leaves only the option to proceed to h4 and then along the remaining
path. Thus, h9 cannot be reached before h6 or h8, if the path is to collect all vertices. Finally, to see that there is a path of
length 4� + 15 ending at h8, consider the following path. Start at s1, go to s2, then s, then proceed along P2 until the vertex
h1 of the middle hat gadget is reached. From there, complete the path with the following sequence:

h1h2h3 wh10h4h5h6h7h8,

where all the vertices are labeled corresponding to the hat gadget, and w is the available vertex of the next gadget. This
completes the lemma. �

Now we are ready to prove the hardness result of Theorem 2.
81

Lemma 7. Longest Path above Diameter on strongly 2-connected directed graphs is NP-complete for k ≥ 5.

Proof. For each k ≥ 5, we present a reduction from Hamiltonian Path on undirected 2-connected graphs, for an intuitive
illustration see Fig. 6. Take a Hamiltonian path instance H where |V (H)| = n′ , we treat H as a directed graph where every
undirected edge is replaced by two directed arcs going in opposite directions. Assume that n′ has form 4� + (k − 5) for
an integer � ≥ k/4 + 17. For each vertex w ∈ V (H), we construct the following instance of Longest Path above Diameter.
Consider a graph C that we call a connector gadget. The graph C has four vertices c1, c2, c3, c4, and four arcs c3c1, c4c2,
c1c4, c2c3. The resulting instance of Longest Path above Diameter is the graph G constructed by taking disjoint instances
of the graphs H , C , G� , and then associating the vertex c2 of C with w in H , c1 of C with an arbitrary other vertex of H ,
c3 of C with the h6 vertex of the middle hat gadget of G� , and c4 with the h8 vertex of the same gadget. This finishes the
construction, and now we show the correctness of the reduction, that is, there is a Hamiltonian path in H if and only if at
least one of the constructed graphs G has a path of length diam(G) + k. In the following claims, we show that G shares
most of the properties proved for G� above.

Claim 10. G is strongly 2-connected.

Proof of Claim 10. Clearly, G is strongly connected. Now, assume we remove a vertex v from G , v either belongs to an
induced copy of H or an induced copy of G� . In the first case, any other vertex of H is still reachable from c1 or c2
(whichever is not removed) and vice versa since H is 2-connected. There is also a path from any vertex of G� to {c1, c2} \{v}
and back since the graph G[V (G�) ∪ {c1, c2} \ {v}] is unchanged. The second case is identical. �
Claim 11. diam(G) = diam(G�).

Proof of Claim 11. Clearly, diam(G) ≥ diam(G�). To show the opposite direction, first, observe that diam(H) ≤ n′
2 = 2� + k−5

2 .
That holds since, for any two vertices u and v in H , distH (u, v) is at most |H |

2 , as there are two disjoint paths going from
u to v , and it cannot be that they both are longer than |H |

2 . For any two vertices u and v inside G� , the distance from u to
v is unchanged from G� since it is impossible to go from u to H − V (C) and then back to v in G� , and the vertices of C
do not change the distances in G� . Finally, for a vertex u ∈ V (G�) and a vertex v ∈ V (H), observe that a path from u to v
necessarily goes through the arc wt , where either w = c3, t = c1, or w = c4, t = c2. The subpath (u, w) is a shortest such
path inside G� , and by Lemma 6 its length is at most 4� + 15. The subpath (t, v) is a shortest path inside H , and its length
is at most diam(H) ≤ 2� + k−5

2 . Thus, distG(u, v) ≤ 6� + k−5
2 + 16 ≤ 8� + 10 = diam(G�) since by construction 2� ≥ k/2 + 34.

The case u ∈ V (H), v ∈ V (G�) is symmetrical. �
Claim 12. The longest path in G has the length at least diam(G) + k if and only if there is a Hamiltonian path in H starting in w.

Proof of Claim 12. By Lemma 6, no path inside G� has the length more than diam(G) + 4. Since |V (H)| = 4� + (k − 5), there
cannot be a path of length more than 4� + (k − 6) < 8� + 10 +k inside H . Thus, if there is a path T longer than diam(G) +k
in G , it must use vertices in both G� and H . By the structure of C any such path either lies completely inside H or G�

while taking only one extra vertex of C , or crosses from G� to H through C only once (or, from H to G� , but this case is
symmetrical). In the first case, if the path starts and ends in H , its length is at most 4� + (k − 5). Now consider the case
where T starts and ends in G� . If the vertex h7 of the middle hat gadget does not lie on T , T can be transformed into a
path T ′ of the same length that lies completely inside G� , by replacing the outer vertex of C (c1 or c2) by h7. Otherwise,
if T contains the vertex h7, it has to start or end in this vertex, as the only two neighbors h6 and h8 of h7 lie also on T
separated by the outer vertex of C . Then by Lemma 6 the length of T is at most 4� + 18 < 8� + 10 + k, as T is a path inside
G� that starts or ends in h6 or h8 of the middle hat gadget, plus three extra arcs.

Therefore, the only option when T can have the length at least diam(G) + k is when it has the following structure: it
starts at a vertex u ∈ V (G�), then continues inside G� until it takes the arc wt in C , and then takes a final subpath (t, v)

inside H . Here either w = c3, t = c1, or w = c4, t = c2, and we drop the completely symmetrical case where the path goes
from H to G� through C . By Lemma 6, the length of the (u, w)-subpath is at most 4� + 15. Now if the length of T is at
least diam(G) + k = 8� + 10 + k, the subpath (t, v) must be a Hamiltonian path in H since |V (H)| = 4� + (k − 5), and the
length of T is exactly 8� + 10 + k.

In the other direction, if there is a Hamiltonian path P in H , consider its starting vertex w , and the instance of Longest
Path above Diameter constructed with this choice of w . By Lemma 6, there is a path of length 4� + 15 inside G� that ends
in c4, which is also the vertex h8 of the middle hat gadget. Continuing this path through the arc c4c2 and then along the
Hamiltonian path (recall that c2 in C is w in H), we obtain a path of length 8� + 10 + k. �

Clearly, the lemma follows from the three claims above. �
F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
82

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86

s

t

c1

c2

c3

c4

Connector gadget C

Hamiltonian Path instance H

Fig. 6. The illustration of the hardness reduction of Lemma 7. While, in fact, the graph G� used in the reduction must have � ≥ 17, here we use the graph
G2 for clarity.
83

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
5. Conclusion

We proved that if C is a class of directed graphs such that p-Disjoint Paths is in P on C for p = 3, then Longest
Detour is FPT on C . Very recently, this result was improved by Jacob, Włodarczyk, and Zehavi [38], who showed that
Longest Detour is FPT on C whenever p-Disjoint Paths is polynomial on the class for p = 2. However p-Disjoint Paths

is NP-complete on directed graphs for every fixed p ≥ 2 [29]. This leaves open the question of Bezáková et al. [7] about
parameterized complexity of Longest Detour on general directed graphs. Even the complexity (P versus NP) of deciding
whether a directed graph contains an (s, t)-path longer than distG(s, t) (the case of k = 1) remains open. Notice that Longest
Detour is not equivalent to p-Disjoint Paths for p = 2 and, therefore, the hardness of p-Disjoint Paths does not imply the
hardness of Longest Detour.

Our result implies, in particular, that Longest Detour is FPT on planar directed graphs. The result for planar was recently
improved by Hatzel, Majewski, Pilipczuk, and Sokolowski [36] who followed the same ideas but gave a simpler and faster
algorithm that relies on planarity. There are other classes of directed graphs on which p-Disjoint Paths is tractable for
fixed p (see, e.g., the book of Bang-Jensen and Gutin [3]). For example, by Chudnovsky, Scott, and Seymour [14], p-Disjoint
Paths can be solved in polynomial time for every fixed p on semi-complete directed graphs. Together with Theorem 1,
this implies that Longest Detour is FPT on semi-complete directed graphs and tournaments. However, from what we
know, these results could be too weak in the following sense. Using the structural results of Thomassen [52], Bang-Jensen,
Manoussakis, and Thomassen in [4] gave a polynomial-time algorithm to decide whether a semi-complete directed graph
has a Hamiltonian (s, t)-path for two given vertices s and t . Thus the real question is whether Longest Detour is in P on
semi-complete directed graphs or tournaments.

The second part of our results is devoted to Longest Path above Diameter. We proved that this problem is NP-complete
for general graphs for k = 1 and showed that it is in FPT when the input graph is undirected and 2-connected. We estab-
lished the complexity dichotomy for Longest Path above Diameter for the case of strongly 2-connected directed graphs by
showing that the problem can be solved in polynomial time for k ≤ 4 and is NP-complete for k ≥ 5. This naturally leaves
an open question for larger values of strong connectivity. The computational complexity of Longest Path above Diameter

on t-strongly connected graphs for t ≥ 3 is open. For a very concrete question, is there a polynomial algorithm for Longest
Path above Diameter with k = 5 on graphs of strong connectivity 3?

CRediT authorship contribution statement

Fedor V. Fomin: Conceptualization, Methodology, Investigation, Writing. Petr A. Golovach: Conceptualization, Methodol-
ogy, Investigation, Writing. William Lochet: Conceptualization, Methodology, Investigation, Writing. Danil Sagunov: Concep-
tualization, Methodology, Investigation, Writing. Saket Saurabh: Conceptualization, Methodology, Investigation, Writing. Kirill
Simonov: Conceptualization, Methodology, Investigation, Writing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Noga Alon, Raphael Yuster, Uri Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856, https://doi .org /10 .1145 /210332 .210337.
[2] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, Anders Yeo, Solving MAX-r-SAT above a tight lower bound, in: Proceedings of the 21st Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA, SIAM, 2010, pp. 511–517.
[3] Jørgen Bang-Jensen, Gregory Z. Gutin, Digraphs – Theory, Algorithms and Applications, second edition, Springer Monographs in Mathematics, Springer,

ISBN 978-1-84800-997-4, 2009.
[4] Jørgen Bang-Jensen, Yannis Manoussakis, Carsten Thomassen, A polynomial algorithm for hamiltonian-connectedness in semicomplete digraphs, J. Al-

gorithms 13 (1) (1992) 114–127, https://doi .org /10 .1016 /0196 -6774(92)90008 -Z.
[5] Eli Berger, Paul Seymour, Sophie Spirkl, Finding an induced path that is not a shortest path, Discrete Math. 344 (7) (2021) 112398.
[6] Ivona Bezáková, Radu Curticapean, Holger Dell, Fedor V. Fomin, Finding detours is fixed-parameter tractable, in: Proceedings of the 44th Interna-

tional Colloquium on Automata, Languages, and Programming, ICALP, in: LIPIcs, vol. 80, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2017,
pp. 54:1–54:14.

[7] Ivona Bezáková, Radu Curticapean, Holger Dell, Fedor V. Fomin, Finding detours is fixed-parameter tractable, SIAM J. Discrete Math. 33 (4) (2019)
2326–2345, https://doi .org /10 .1137 /17M1148566.

[8] Andreas Björklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Narrow sieves for parameterized paths and packings, J. Comput. Syst. Sci. (ISSN 0022-
0000) 87 (2017) 119–139, https://doi .org /10 .1016 /j .jcss .2017.03 .003.

[9] Hans L. Bodlaender, On linear time minor tests with depth-first search, J. Algorithms 14 (1) (1993) 1–23, https://doi .org /10 .1006 /jagm .1993 .1001.
[10] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, Jesper Nederlof, Deterministic single exponential time algorithms for connectivity problems parame-

terized by treewidth, Inf. Comput. 243 (2015) 86–111, https://doi .org /10 .1016 /j .ic .2014 .12 .008.
84

https://doi.org/10.1145/210332.210337
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib8A30C292D306A6575C9E6C759E5D18C3s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib8A30C292D306A6575C9E6C759E5D18C3s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib16D724AA0524993065F30BABE95824CCs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib16D724AA0524993065F30BABE95824CCs1
https://doi.org/10.1016/0196-6774(92)90008-Z
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibB14307F50106812A7B7DC3F2F5374457s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibFB99BA6A5D4893EDA2807FE0FE0B5485s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibFB99BA6A5D4893EDA2807FE0FE0B5485s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibFB99BA6A5D4893EDA2807FE0FE0B5485s1
https://doi.org/10.1137/17M1148566
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1006/jagm.1993.1001
https://doi.org/10.1016/j.ic.2014.12.008

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
[11] Jianer Chen, Songjian Lu, Sing-Hoi Sze, Fenghui Zhang, Improved algorithms for path, matching, and packing problems, in: Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, SIAM, 2007, pp. 298–307.

[12] Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith, Sing-Hoi Sze, Fenghui Zhang, Randomized divide-and-conquer:
improved path, matching, and packing algorithms, SIAM J. Comput. (ISSN 0097-5397) 38 (6) (2009) 2526–2547, https://doi .org /10 .1137 /080716475.

[13] Yung-Chung Chiu, Hsueh-I. Lu, Blazing a trail via matrix multiplications: a faster algorithm for non-shortest induced paths, in: Petra Berenbrink,
Benjamin Monmege (Eds.), 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15–18, 2022, Marseille,
France (Virtual Conference), in: LIPIcs, vol. 219, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 23:1–23:16.

[14] Maria Chudnovsky, Alex Scott, Paul D. Seymour, Excluding pairs of graphs, J. Comb. Theory, Ser. B 106 (2014) 15–29, https://doi .org /10 .1016 /j .jctb .2014 .
01.001.

[15] Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai, Saket Saurabh, Polynomial kernels for lambda-extendible properties
parameterized above the Poljak-Turzik bound, in: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, in: LIPIcs, vol. 24, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013, pp. 43–54.

[16] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M.M. van Rooij, Jakub Onufry Wojtaszczyk, Solving connectivity problems
parameterized by treewidth in single exponential time, in: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, FOCS,
IEEE, 2011, pp. 150–159.

[17] Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, The planar directed k-vertex-disjoint paths problem is fixed-parameter tractable, in:
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, IEEE Computer Society, 2013,
pp. 197–206.

[18] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, Parameterized
Algorithms, Springer, ISBN 978-3-319-21274-6, 2015.

[19] Reinhard Diestel, Graph Theory, 4th edition, Graduate Texts in Mathematics, vol. 173, Springer, ISBN 978-3-642-14278-9, 2012.
[20] Rodney G. Downey, Michael R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, ISBN 978-1-4471-5558-4,

2013.
[21] Fedor V. Fomin, Petteri Kaski, Exact exponential algorithms, Commun. ACM 56 (3) (2013) 80–88, https://doi .org /10 .1145 /2428556 .2428575.
[22] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Efficient computation of representative families with applications in parameterized

and exact algorithms, J. ACM 63 (4) (2016) 29:1–29:60, https://doi .org /10 .1145 /2886094.
[23] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Representative families of product families, ACM Trans. Algorithms 13 (3) (2017)

36:1–36:29, https://doi .org /10 .1145 /3039243.
[24] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Meirav Zehavi, Long directed (s, t)-path: FPT algorithm, Inf. Process. Lett. 140 (2018)

8–12, https://doi .org /10 .1016 /j .ipl .2018 .04 .018.
[25] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Meirav Zehavi, Going far from degeneracy, SIAM J. Discrete Math.

34 (3) (2020) 1587–1601, https://doi .org /10 .1137 /19M1290577.
[26] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Meirav Zehavi, Multiplicative parameterization above a guarantee,

ACM Trans. Comput. Theory 13 (3) (2021) 18:1–18:16, https://doi .org /10 .1145 /3460956.
[27] Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, Kirill Simonov, Longest cycle above Erdős-Gallai bound, in: Shiri Chechik, Gonzalo Navarro, Eva

Rotenberg, Grzegorz Herman (Eds.), 30th Annual European Symposium on Algorithms, ESA 2022, September 5–9, 2022, Berlin/Potsdam, Germany, in:
LIPIcs, vol. 244, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 55:1–55:15.

[28] Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, Kirill Simonov, Algorithmic extensions of Dirac’s theorem, in: Joseph (Seffi) Naor, Niv Buchbinder
(Eds.), Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference, Alexandria, VA, USA, January 9–12,
2022, SIAM, 2022, pp. 406–416.

[29] Steven Fortune, John E. Hopcroft, James Wyllie, The directed subgraph homeomorphism problem, Theor. Comput. Sci. 10 (1980) 111–121, https://
doi .org /10 .1016 /0304 -3975(80)90009 -2.

[30] M.R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, ISBN 0-7167-1044-7, 1979.
[31] Shivam Garg, Geevarghese Philip, Raising the bar for vertex cover: fixed-parameter tractability above a higher guarantee, in: Proceedings of the Twenty-

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, SIAM, 2016, pp. 1152–1166.
[32] Gregory Gutin, Eun Jung Kim, Michael Lampis, Valia Mitsou, Vertex cover problem parameterized above and below tight bounds, Theory Comput. Syst.

48 (2) (2011) 402–410, https://doi .org /10 .1007 /s00224 -010 -9262 -y.
[33] Gregory Gutin, Leo van Iersel, Matthias Mnich, Anders Yeo, Every ternary permutation constraint satisfaction problem parameterized above average

has a kernel with a quadratic number of variables, J. Comput. Syst. Sci. 78 (1) (2012) 151–163, https://doi .org /10 .1016 /j .jcss .2011.01.004.
[34] Gregory Z. Gutin, Viresh Patel, Parameterized traveling salesman problem: beating the average, SIAM J. Discrete Math. 30 (1) (2016) 220–238.
[35] Gregory Z. Gutin, Arash Rafiey, Stefan Szeider, Anders Yeo, The linear arrangement problem parameterized above guaranteed value, Theory Comput.

Syst. 41 (3) (2007) 521–538, https://doi .org /10 .1007 /s00224 -007 -1330 -6.
[36] Meike Hatzel, Konrad Majewski, Michal Pilipczuk, Marek Sokolowski, Simpler and faster algorithms for detours in planar digraphs, in: Kavitha

Telikepalli, Kurt Mehlhorn (Eds.), 2023 Symposium on Simplicity in Algorithms, SOSA 2023, Florence, Italy, January 23–25, 2023, SIAM, 2023,
pp. 156–165.

[37] Falk Hüffner, Sebastian Wernicke, Thomas Zichner, Algorithm engineering for color-coding with applications to signaling pathway detection, Algorith-
mica 52 (2) (2008) 114–132, https://doi .org /10 .1007 /s00453 -007 -9008 -7.

[38] Ashwin Jacob, Michal Wlodarczyk, Meirav Zehavi, Long directed detours: reduction to 2-disjoint paths, CoRR, arXiv:2301.06105 [abs], 2023, https://
doi .org /10 .48550 /arXiv.2301.06105.

[39] Bart M.P. Jansen, László Kozma, Jesper Nederlof, Hamiltonicity below Dirac’s condition, in: Proceedings of the 45th International Workshop on Graph-
Theoretic Concepts in Computer Science, WG, in: Lecture Notes in Computer Science, vol. 11789, Springer, 2019, pp. 27–39.

[40] Ken-ichi Kawarabayashi, Stephan Kreutzer, The directed grid theorem, in: Proceedings of the 47th Annual ACM Symposium on Theory of Computing,
STOC, ACM, 2015, pp. 655–664.

[41] Ken-ichi Kawarabayashi, Yusuke Kobayashi, Bruce A. Reed, The disjoint paths problem in quadratic time, J. Comb. Theory, Ser. B 102 (2) (2012) 424–435,
https://doi .org /10 .1016 /j .jctb .2011.07.004.

[42] Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith, Divide-and-color, in: Proceedings of the 32nd International Workshop on Graph-Theoretic
Concepts in Computer Science, WG, in: Lecture Notes in Computer Science, vol. 4271, Springer, 2006, pp. 58–67.

[43] Tuukka Korhonen, A single-exponential time 2-approximation algorithm for treewidth, in: 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7–10, 2022, IEEE, 2021, pp. 184–192.

[44] Ioannis Koutis, Faster algebraic algorithms for path and packing problems, in: Proceedings of the 35th International Colloquium on Automata, Languages
and Programming, ICALP, in: Lecture Notes in Computer Science, vol. 5125, Springer, 2008, pp. 575–586.

[45] Ioannis Koutis, Ryan Williams, Algebraic fingerprints for faster algorithms, Commun. ACM 59 (1) (2016) 98–105, https://doi .org /10 .1145 /2742544.
[46] Daniel Lokshtanov, N.S. Narayanaswamy, Venkatesh Raman, M.S. Ramanujan, Saket Saurabh, Faster parameterized algorithms using linear programming,

ACM Trans. Algorithms 11 (2) (2014) 15:1–15:31, https://doi .org /10 .1145 /2566616.
85

http://refhub.elsevier.com/S0022-0000(23)00056-9/bib26D2FCDA24290510761128DB8F79890Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib26D2FCDA24290510761128DB8F79890Bs1
https://doi.org/10.1137/080716475
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib2FF818D4669FA8ED4E2E33224A4E397Ds1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib2FF818D4669FA8ED4E2E33224A4E397Ds1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib2FF818D4669FA8ED4E2E33224A4E397Ds1
https://doi.org/10.1016/j.jctb.2014.01.001
https://doi.org/10.1016/j.jctb.2014.01.001
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib80F36A281D318079515A4371A3459368s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib80F36A281D318079515A4371A3459368s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib80F36A281D318079515A4371A3459368s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib83FBC2527E1822A1215D5F5FF81BA17As1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib83FBC2527E1822A1215D5F5FF81BA17As1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib83FBC2527E1822A1215D5F5FF81BA17As1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib75E5346F23CF7660A80794A180F8E57Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib75E5346F23CF7660A80794A180F8E57Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib75E5346F23CF7660A80794A180F8E57Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib3D93D88A4AB91CB1B59B325D0E54400Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib3D93D88A4AB91CB1B59B325D0E54400Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibEFE2D01FC732F8B4BBCA24551C0CF4A9s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib9652337EEAA73BF1D4AA6B27B01B1FC5s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib9652337EEAA73BF1D4AA6B27B01B1FC5s1
https://doi.org/10.1145/2428556.2428575
https://doi.org/10.1145/2886094
https://doi.org/10.1145/3039243
https://doi.org/10.1016/j.ipl.2018.04.018
https://doi.org/10.1137/19M1290577
https://doi.org/10.1145/3460956
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibBAB0C66E0A3EF22AF867C3FB59DDBB94s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibBAB0C66E0A3EF22AF867C3FB59DDBB94s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibBAB0C66E0A3EF22AF867C3FB59DDBB94s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib2AED2364B33AA9A80A952C3A0AE6282Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib2AED2364B33AA9A80A952C3A0AE6282Bs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib2AED2364B33AA9A80A952C3A0AE6282Bs1
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib6B9B907D03FDB7889D2A6E974411DEC4s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib4901B7F0EAC0C46345FAC6D30BD993B0s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib4901B7F0EAC0C46345FAC6D30BD993B0s1
https://doi.org/10.1007/s00224-010-9262-y
https://doi.org/10.1016/j.jcss.2011.01.004
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibB62763C1EA2649EBDAE36065900B3F2Ds1
https://doi.org/10.1007/s00224-007-1330-6
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibDC56B5CE5DC2F73C5C430BD2B7B1E5C7s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibDC56B5CE5DC2F73C5C430BD2B7B1E5C7s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibDC56B5CE5DC2F73C5C430BD2B7B1E5C7s1
https://doi.org/10.1007/s00453-007-9008-7
https://doi.org/10.48550/arXiv.2301.06105
https://doi.org/10.48550/arXiv.2301.06105
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib159144DDA1BA67EF0E605729B77BB9FAs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib159144DDA1BA67EF0E605729B77BB9FAs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibE51557C310C757E277770E175BC9DCB3s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibE51557C310C757E277770E175BC9DCB3s1
https://doi.org/10.1016/j.jctb.2011.07.004
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib6D591AEC22C4878C0DCFE37A3C5F8626s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib6D591AEC22C4878C0DCFE37A3C5F8626s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibDC0B3AE4DD3F59728F6A97C307E43BBBs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bibDC0B3AE4DD3F59728F6A97C307E43BBBs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib9D25A801FCCB321B63A55B47AFD87A14s1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib9D25A801FCCB321B63A55B47AFD87A14s1
https://doi.org/10.1145/2742544
https://doi.org/10.1145/2566616

F.V. Fomin, P.A. Golovach, W. Lochet et al. Journal of Computer and System Sciences 137 (2023) 66–86
[47] Meena Mahajan, Venkatesh Raman, Parameterizing above guaranteed values: MaxSat and MaxCut, J. Algorithms 31 (2) (1999) 335–354, https://doi .
org /10 .1006 /jagm .1998 .0996.

[48] Meena Mahajan, Venkatesh Raman, Somnath Sikdar, Parameterizing above or below guaranteed values, J. Comput. Syst. Sci. 75 (2) (2009) 137–153,
https://doi .org /10 .1016 /j .jcss .2008 .08 .004.

[49] Burkhard Monien, How to find long paths efficiently, in: Analysis and Design of Algorithms for Combinatorial Problems, in: North-Holland Math. Stud.,
vol. 109, North-Holland, Amsterdam, 1985, pp. 239–254.

[50] Neil Robertson, Paul D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Comb. Theory, Ser. B 63 (1) (1995) 65–110, https://doi .org /10 .1006 /
jctb .1995 .1006.

[51] Alexander Schrijver, Finding k disjoint paths in a directed planar graph, SIAM J. Comput. 23 (4) (1994) 780–788, https://doi .org /10 .1137 /
S0097539792224061.

[52] Carsten Thomassen, Hamiltonian-connected tournaments, J. Comb. Theory, Ser. B 28 (2) (1980) 142–163, https://doi .org /10 .1016 /0095 -8956(80)90061 -
1.

[53] Dekel Tsur, Faster deterministic parameterized algorithm for k-path, Theor. Comput. Sci. 790 (2019) 96–104, https://doi .org /10 .1016 /j .tcs .2019 .04 .024.
[54] Ryan Williams, Finding paths of length k in O ∗(2k) time, Inf. Process. Lett. 109 (6) (2009) 315–318, https://doi .org /10 .1016 /j .ipl .2008 .11.004.
[55] Bang Ye Wu, Hung-Lung Wang, The next-to-shortest path problem on directed graphs with positive edge weights, Networks 65 (3) (2015) 205–211,

https://doi .org /10 .1002 /net .21598.
86

https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1016/j.jcss.2008.08.004
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib16551D97A30E64C86C843596469C42ECs1
http://refhub.elsevier.com/S0022-0000(23)00056-9/bib16551D97A30E64C86C843596469C42ECs1
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1137/S0097539792224061
https://doi.org/10.1137/S0097539792224061
https://doi.org/10.1016/0095-8956(80)90061-1
https://doi.org/10.1016/0095-8956(80)90061-1
https://doi.org/10.1016/j.tcs.2019.04.024
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1002/net.21598

	Detours in directed graphs
	1 Introduction
	2 Preliminaries
	3 An FPT algorithm for finding detours
	4 Longest path above diameter
	4.1 Algorithm for k≤4
	4.2 NP-hardness

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

