Can Romeo and Juliet meet? Or rendezvous games with adversaries on graphs ${ }^{*}$

Fedor V. Fomin ${ }^{\text {a }}$, Petr A. Golovach ${ }^{\text {a,* }}$, Dimitrios M. Thilikos ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Informatics, University of Bergen, Norway
${ }^{\text {b }}$ LIRMM, Université Montpellier, CNRS, Montpellier, France

A R T I C L E I N F O

Article history:

Received 20 November 2021
Received in revised form 4 May 2023
Accepted 7 May 2023
Available online 18 May 2023

Keywords:

Rendezvous games
Dynamic separators
Complexity

Abstract

We introduce the rendezvous game with adversaries. In this game, two players, Facilitator and Divider, play against each other on a graph. Facilitator has two agents and Divider has a team of k agents located in some vertices. They take turns in moving their agents to adjacent vertices (or staying put). Facilitator wins if his agents meet in some vertex. Divider aims to prevent the rendezvous of Facilitator's agents. We show that deciding whether Facilitator can win is PSPACE-hard and, when parameterized by k, co-W[2]-hard. Moreover, even deciding whether Facilitator can win within τ steps is co-NP-complete already for $\tau=2$. On the other hand, for chordal and P_{5}-free graphs, we prove that the problem is solvable in polynomial time. Finally, we show that the problem is fixed-parameter tractable parameterized by both the graph's neighborhood diversity and the number of steps τ.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

For never was a story of more woe than this of Juliet and her Romeo.
-William Shakespeare, Romeo and Juliet

1. Introduction

We introduce the Rendezvous Game with Adversaries on graphs. In our game, a team of dividers tries to prevent two passionate lovers, say Romeo and Juliet, from meeting each other. We are interested in the minimum size of the team of dividers sufficient to obstruct their romantic encounter. In the static setting, when dividers do not move, this is just the problem of computing the minimum vertex cut between the pair of vertices occupied by Romeo and Juliet. But in the dynamic variant, when dividers are allowed to change their position, the team's size can be significantly smaller than the size of the minimum cut. In fact, this gives rise to a new interactive form of connectivity that is much more challenging both from the combinatorial and the algorithmic point of view.

[^0]Our rendezvous game rules are very similar to the rules of the classical Cops-And-Robber game of Nowakowski-Winkler and Quillioit [31,32], see also the book of Bonato and Nowakowski [4]. The difference is that in the Cops-and-Robber game, a team of k cops tries to capture a robber in a graph, while in our game, the group of k dividers tries to keep the two lovers separated.

A bit more formal. The game is played on a finite undirected connected graph G by two players: Facilitator and Divider. Facilitator has two agents R and J that are initially placed in designated vertices s and t of G. Divider has a team of $k \geq 1$ agents D_{1}, \ldots, D_{k} that are initially placed in some vertices of $V(G) \backslash\{s, t\}$ selected by Divider. Several Divider's agents can occupy the same vertex. Then the players make their moves by turn, starting with Facilitator. At every move, each player moves some of his agents to adjacent vertices or keeps them in their old positions. No agent can be moved to a vertex that is currently occupied by adversary agents. Both players have complete information about G and the positions of all the agents. Facilitator aims to ensure that R and J meet; that is, they are in the same vertex. The task of Divider is to prevent the rendezvous of R and J by maintaining D_{1}, \ldots, D_{k} in positions that block the possibility to meet. Facilitator wins if R and J meet, and Divider wins if he succeeds in preventing the meeting of R and J forever.

We define the following problem:

Rendezvous

Input: \quad A graph G with two given vertices s and t, and a positive integer k.
Task: \quad Decide whether Facilitator can win on G starting from s and t against Divider with k agents.

Another variant of the game is when the number of moves of the players is at most some parameter τ. Then Facilitator wins if R and J meet within the first τ moves, and Divider wins otherwise. Thus the problem is.

Rendezvous in Time

Input: \quad A graph G with two given vertices s and t, and positive integers k and τ.
Task: \quad Decide whether Facilitator can win on G starting from s and t in at most τ steps against Divider with k agents.

Notice that, in the above problem, τ is part of the input. We also consider the version of the problem where τ is a fixed constant. This generates a family of problems, one for each different value of τ, and we refer to each of them as the τ-Rendezvous in Time problem.
Our results. We start with combinatorial results. If $s=t$ or if s and t are adjacent, then Facilitator wins by a trivial strategy. However, if s and t are distinct nonadjacent vertices, then Divider wins provided that he has sufficiently many agents. For example, the agents can be placed in the vertices of an (s, t)-separator and stay there. Then R and J never meet. We call the minimum number k of the agents of Divider that is sufficient for his winning, the (s, t)-dynamic separation number and denote it by $d_{G}(s, t)$. We put $d_{G}(s, t)=+\infty$ for $s=t$ or when s and t are adjacent. The dynamic separation number can be seen as a dynamic analog of the minimum size $\lambda_{G}(s, t)$ of a vertex (s, t)-separator in G. (The minimum number of vertices whose removal leaves s and t in different connected components.) Then Rendezvous can be restated as the problem of deciding whether $d_{G}(s, t)>k$.

The first natural question is: What is the relation between $d_{G}(s, t)$ and $\lambda_{G}(s, t)$? Clearly, $d_{G}(s, t) \leq \lambda_{G}(s, t)$. We show that $d_{G}(s, t)=1$ if and only if $\lambda_{G}(s, t)=1$. If $d_{G}(s, t) \geq 2$, then we construct examples demonstrating that the difference $\lambda_{G}(s, t)-d_{G}(s, t)$ can be arbitrary even for sparse graphs. Interestingly, there are graph classes where both parameters are equal. In particular, we show that $\lambda_{G}(s, t)=d_{G}(s, t)$ holds for P_{5}-free graphs and chordal graphs. This also yields a polynomial time algorithm computing $d_{G}(s, t)$ on these classes of graphs.

Then we turn to the computational complexity of Rendezvous and Rendezvous in Time on general graphs. Both problems can be solved in $n^{\mathcal{O}(k)}$ time by using the backtracking technique. We show that this running time is asymptotically tight by proving that they are both co-W[2]-hard when parameterized by k (we prove that it is W [2]-hard to decide whether $d_{G}(s, t) \leq k$) and cannot be solved in $f(k) \cdot n^{o(k)}$ time for any function f of k, unless ETH fails. Moreover, τ-Rendezvous in Time is W[2]-hard, for every $\tau \geq 2$. If τ is a constant, then τ-Rendezvous IN Time is in co-NP and our co-W[2]-hardness proof implies that τ-Rendezvous in Time is co-NP-complete for every $\tau \geq 2$. For the general case, the problems are even harder as we prove that Rendezvous and Rendezvous in Time are both PSPACE-hard.

Finally, we initiate the study of the complexity of the problems under structural parameterization of the input graphs. We show that Rendezvous in Time is FPT when parameterized by the neighborhood diversity of the input graph and τ.

Related work. The classical rendezvous game introduced by Alpern [2] is played by two agents that are placed in some unfamiliar area and whose task is to develop strategies that maximize the probability that they meet. We refer to the book of Alpern and Gal [3] for detailed study of the subject. The deterministic rendezvous problem was studied by Ta-Shma and Zwick [34]. See also [9,15] for other variants of rendezvous problems on graphs.

Rendezvous is closely related to the Cops-and-Robber game. The game was defined (for one cop) by Winkler and Nowakowski [31] and Quilliot [32] who also characterized graphs for which one cop can catch the robber. Aigner and

Fromme [1] initiated the study of the problem with several cops. The minimum number of cops that are required to capture the robber is called the cop number of a graph. This problem was studied intensively and we refer to the book of Bonato and Nowakowski [4] for further references. Kinnersley [24] established that the problem is EXPTIME-complete. The Cops-AND-Robber game can be seen as a special case of search games played on graphs, surveys [5,12] provide further references on search and pursuit-evasion games on graphs. A related variant of Cops-And-Robber game is the guarding game studied in $[13,14,30,33]$. Here the set of cops is trying to prevent the robber from entering a specified subgraph in a graph.
Organization of the paper. In Section 2, we give the basic definitions and introduce the notation used throughout the paper. We also show that Rendezvous and Rendezvous in Time can be solved in $n \mathcal{O}(k)$ time. In Section 3, we investigate relations between $d_{G}(s, t)$ and $\lambda_{G}(s, t)$. In Section 4, we give algorithmic lower bounds for Rendezvous and Rendezvous in Time. In Section 5, we show that Rendezvous in Time is fixed-parameter tractable (FPT) when parameterized by τ and the neighborhood diversity of the input graph. We conclude in Section 6 by stating some open problems.

2. Preliminaries

Graphs. All graphs considered in this paper are finite undirected graphs without loops or multiple edges unless it is said explicitly that we consider directed graphs. We follow the standard graph-theoretic notation and terminology (see, e.g., [10]). For each of the graph problems considered in this paper, we let $n=|V(G)|$ and $m=|E(G)|$ denote the number of vertices and edges, respectively, of the input graph G if it does not create confusion. For a graph G and a subset $X \subseteq V(G)$ of vertices, we write $G[X]$ to denote the subgraph of G induced by X. For a set of vertices $S, G-S$ denotes the graph obtained by deleting the vertices of S, that is, $G-S=G[V(G) \backslash S]$; for a vertex v, we write $G-v$ instead of $G-\{v\}$. For a vertex v, we denote by $N_{G}(v)$ the (open) neighborhood of v, i.e., the set of vertices that are adjacent to v in G. We use $N_{G}[v]$ to denote the closed neighborhood, that is $N_{G}(v) \cup\{v\}$. For two nonadjacent vertices s and t, a set of vertices $S \subseteq V(G) \backslash\{s, t\}$ is an (s, t)-separator if s and t are in distinct connected components of $G-S$. We use $\lambda_{G}(s, t)$ to denote the minimum size of an (s, t)-separator of $G ; \lambda_{G}(s, t)=+\infty$ if $s=t$ or s and t are adjacent. A path is a connected graph with at least one and at most two vertices (called end-vertices) of degree at most one whose remaining vertices (called internal) have degrees two. We say that a path with end-vertices u and v is an (u, v)-path. The length of a path P, denoted by $\ell(P)$, is the number of its edges. The distance $\operatorname{dist}_{G}(u, v)$ between two vertices u and v of G is the length of a shortest (u, v)-path. We use $v_{1} \cdots v_{k}$ to denote the path with the vertices v_{1}, \ldots, v_{k} and the edges $v_{i-1} v_{i}$ for $i \in\{2, \ldots, k\}$. A cycle is a connected graph with all the vertices of degree two. The length $\ell(C)$ of a cycle C is the number of edges of C.

Let X and Y be multisets of vertices of a graph G (i.e., X and Y can contain several copies of the same vertex). We say that X and Y of the same size are adjacent if there is a bijective mapping $\alpha: X \rightarrow Y$ such that for $x \in X$, either $x=\alpha(x)$ or x and $\alpha(x)$ are adjacent in G. It is useful to observe the following.

Observation 1. For multisets X and Y of vertices of G, it can be decided in polynomial time whether X and Y are adjacent.
Proof. It is trivial to check whether X and Y have the same size. If this holds, we construct the bipartite graph H with the vertex set $V_{1} \cup V_{2}$, where $\left|V_{1}\right|=\left|V_{2}\right|=|X|=|Y|$, and the nodes of V_{1} correspond to the elements of X and the nodes of V_{2} correspond to the elements of Y. A node of V_{1} is adjacent to a node of V_{2} if and only if the corresponding vertices of G are either the same or adjacent. Then X and Y are adjacent if and only if H has a perfect matching. The existence of a perfect matching in a bipartite graph can be verified in polynomial time (see, e.g., [27]) and the claim follows.

Parameterized Complexity. We obtain a number of results about the parameterized complexity of Rendezvous and Rendezvous in Time. We refer to the recent book of Cygan et al. [8] for the introduction to the area. Here we just remind that an instance of the parameterized version Π_{p} of a decision problem Π is a pair (I, k), where I is an instance of Π and k is an integer parameter associated with I. It is said that Π_{p} is fixed-parameter tractable (FPT) if it can be solved in time $f(k)|I|^{\mathcal{O}(1)}$ for a computable function $f(k)$ of the parameter k. The Parameterized Complexity theory also provides tools that allow showing that a parameterized problem cannot be solved in FPT time (up to some reasonable complexity assumptions). For this, Downey and Fellows (see [11]) introduced a hierarchy of parameterized complexity classes, namely $\mathrm{FPT} \subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2] \subseteq \cdots \subseteq \mathrm{XP}$, and the basic conjecture is that all inclusions in the hierarchy are proper. The usual way to show that it is unlikely that a parameterized problem admits an FPT algorithm is to show that it is W[1] or W[2]-hard using a parameterized reduction from a known hard problem in the corresponding class. The most common tool for establishing fine-grained complexity lower bound for parameterized problems is the Exponential Time Hypothesis (ETH) proposed by Impagliazzo, Paturi, and Zane [21,22]. This is the conjecture stating that there is $\varepsilon>0$ such that 3-Satisfiability cannot be solved in $\mathcal{O}^{*}\left(2^{\varepsilon n}\right)$ time on formulas with n variables.
Rendezvous Games with Adversaries. Suppose that the game is played on a connected graph G, and s and t are initial positions of the agents of Facilitator. Let also k be the number of agents of Divider.

Notice that placement of the agents of Facilitator is defined by a multiset of two vertices, as R and J can occupy the same vertex. We denote by \mathcal{F}_{G} the family of all multisets of two vertices. Similarly, a placement of k agents of Divider is defined by a multiset of k vertices, because several agents can occupy the same vertex. Let \mathcal{D}_{G}^{k} be the family of all multisets
of k vertices. We say that $F \in \mathcal{F}_{G}$ and $D \in \mathcal{D}_{G}^{k}$ are compatible if $F \cap D=\emptyset$. Notice that the number of pairs of compatible $F \in \mathcal{F}_{G}$ and $D \in \mathcal{D}_{G}^{k}$ is $n\binom{n+k-2}{k}+\binom{n}{2}\binom{n+k-3}{k}$. We denote by

$$
\mathcal{P}_{G}^{k}=\left\{(F, D) \mid F \in \mathcal{F}_{G}, D \in \mathcal{D}_{G}^{k} \text { s.t. } F \text { and } D \text { are compatible }\right\}
$$

the set of positions in the game.
Formally, a strategy of Facilitator for Rendezvous is a function $f: \mathcal{P}_{G}^{k} \rightarrow \mathcal{F}_{G}$ that maps $(F, D) \in \mathcal{P}_{G}^{k}$ to $F^{\prime} \in \mathcal{F}_{G}$ such that F and F^{\prime} are adjacent and F^{\prime} is compatible with D. In words, given a position (F, D), Facilitator moves R and J from F to F^{\prime} if this is his turn to move. Similarly, a strategy of Divider is a function $d: \mathcal{P}_{G}^{k} \rightarrow \mathcal{D}_{G}^{k}$ that maps $(F, D) \in \mathcal{P}_{G}^{k}$ to $D^{\prime} \in \mathcal{F}_{G}^{k}$ such that D and D^{\prime} are adjacent and D^{\prime} is compatible with F, that is, Divider moves his agents from D to D^{\prime} if this is his turn to move. To accommodate the initial placement, we extend the definition of d for the pair $(\{s, t\}, \emptyset)$ and let $d\left((\{s, t\}, \emptyset)=D^{\prime}\right.$, where $D^{\prime} \in \mathcal{D}_{G}^{k}$ is compatible with $\{s, t\}$.

The definitions of strategies for Rendezvous in Time are more complicated because the decisions of the players also depend on the number of the current step. A strategy of Facilitator for Rendezvous in Time is a family of functions $f_{i}: \mathcal{P}_{G}^{k} \rightarrow$ \mathcal{F}_{G} for $i \in\{1, \ldots, \tau\}$ such that f_{i} maps $(F, D) \in \mathcal{P}_{G}^{k}$ to $F^{\prime} \in \mathcal{F}_{G}$, where F and F^{\prime} are adjacent and F^{\prime} is compatible with D. Facilitator uses f_{i} for the move in the i-th step of the game. A strategy of Divider is a family of functions $d_{i}: \mathcal{P}_{G}^{k} \rightarrow \mathcal{D}_{G}^{k}$ for $i \in\{0, \ldots, \tau-1\}$ such that for $i \in\{1, \ldots, \tau-1\}$, d_{i} maps $(F, D) \in \mathcal{P}_{G}^{k}$ to $D^{\prime} \in \mathcal{F}_{G}^{k}$, where D and D^{\prime} are adjacent and D^{\prime} is compatible with F, and d_{0} maps $(\{s, t\}, \emptyset)$ to $D^{\prime} \in \mathcal{D}_{G}^{k}$ compatible with $\{s, t\}$ (slightly abusing notation we do not define d_{0} for the elements of \mathcal{P}_{G}^{k}).

In the majority of the proofs in our paper, we rather explain the strategies of the players in an informal way, to avoid defining functions for all elements of \mathcal{P}_{G}^{k}, because the majority of positions never occur in the game. However, the above notation is useful in some cases.

As it is common for various games on graphs (see, e.g., the book of Bonato and Nowakowski [4] about Cops-and-Robber games), our Rendezvous Game with Adversaries can be resolved by backtracking. As the approach is standard, we only briefly sketch the proof of the following theorem.

Theorem 1. Rendezvous and Rendezvous in Time can be solved in $n^{\mathcal{O}(k)}$ time.

Proof. Let G be a connected graph on which the game is played and let $s, t \in V(G)$. Let also k be a positive integer denoting the number of agents of Divider.

We define the game graph \mathcal{G} (also the name arena could be found in the literature) as the directed graph, whose nodes correspond to positions and turns to move. We denote the nodes of \mathcal{G} by $v_{F, D}^{(h)}$ for $(F, D) \in \mathcal{P}_{G}^{k}$, and $h \in\{1,2\}$; if $h=1$, then Facilitator makes a move, and if $h=2$, then this is Divider's turn. For $h \in\{1,2\}$, we set $\mathcal{V}_{h}=\left\{v_{F, D}^{(h)} \mid(F, D) \in \mathcal{P}_{G}^{k}\right\}$. For every two nodes $v_{F, D}^{(1)} \in \mathcal{V}_{1}$ and $v_{F^{\prime}, D^{\prime}}^{(2)} \in \mathcal{V}_{2}$, we construct arcs as follows. We construct the $\operatorname{arc}\left(v_{F, D}^{(1)}, v_{F^{\prime}, D^{\prime}}^{(2)}\right)$ if $D=D^{\prime}$, and F and F^{\prime} are adjacent. Symmetrically, we construct $\left(v_{F^{\prime}, D^{\prime}}^{(2)}, v_{F, D}^{(1)}\right)$ if $F=F^{\prime}$, and D^{\prime} and D are adjacent. We denote by \mathcal{A} the set of arcs of \mathcal{G}.

Observe, that \mathcal{G} can be constructed in $n^{\mathcal{O}(k)}$ time. The number of nodes is $2 \cdot\left(n\binom{n+k-2}{k}+\binom{n}{2}\binom{n+k-3}{k}\right)=n \mathcal{O}(k)$. Given two nodes $v_{F, D}^{(1)}$ and $v_{F^{\prime}, D^{\prime}}^{(2)}$, the arcs between these nodes can be constructed in polynomial time by Observation 1 . Hence, the construction of the arc set can be done in time $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(k)}=n^{\mathcal{O}(k)}$.

Let $\ell \geq 0$ be an integer. We define the set $\mathcal{W}_{\ell} \subseteq \mathcal{V}_{1}$ of winning positions for Facilitator in at most ℓ moves. A node $v_{F, D}^{(1)}$ is in \mathcal{W}_{ℓ} if Facilitator can win on G in at most ℓ moves provided that R and J are placed in F and the agents of Divider are occupying D. We explain how to construct \mathcal{W}_{ℓ} for $\ell=0,1, \ldots$ by dynamic programming.

It is straightforward to verify that $v_{F, D}^{(1)} \in \mathcal{W}_{0}$ if and only if $F=\{x, x\}$ for $x \in V(G)$.
For $\ell \geq 1$,

$$
\begin{equation*}
\mathcal{W}_{\ell}=\mathcal{W}_{\ell-1} \cup \mathcal{U} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{U}=\left\{v_{F, D}^{(1)} \mid \text { there is }\left(v_{F, D}^{(1)}, v_{F^{\prime}, D}^{(2)}\right) \in \mathcal{A} \text { s.t. for every }\left(v_{F^{\prime}, D}^{(2)}, v_{F^{\prime}, D^{\prime}}^{(1)}\right) \in \mathcal{A}, v_{F^{\prime}, D^{\prime}}^{(1)} \in \mathcal{W}_{\ell-1}\right\} \tag{2}
\end{equation*}
$$

Informally, $v_{F, D}^{(1)} \in \mathcal{U}$ if there is a move of Facilitator such that for every response of Divider, the obtained position is in $\mathcal{W}_{\ell-1}$, that is, Facilitator can win in at most $\ell-1$ steps from this position.

The correctness of computing \mathcal{W}_{ℓ} using (1) and (2) is proved by completely standard arguments and we leave this to the reader. Notice that given $\mathcal{W}_{\ell-1}$, (1) and (2) allow to compute \mathcal{W}_{ℓ} in $n^{\mathcal{O}(k)}$ time.

We compute the sets \mathcal{W}_{ℓ} consecutively starting from $\ell=0$ until we obtain $W_{\ell}=W_{\ell-1}$ for some $\ell \geq 1$. Observe that if $W_{\ell}=W_{\ell-1}$, then $W_{\ell^{\prime}}=W_{\ell}$ for every $\ell^{\prime} \geq \ell$. Notice also that we stop after at most $\left|\mathcal{V}_{1}\right|$ iterations, because $\mathcal{W}_{\ell} \subseteq \mathcal{V}_{1}$. This implies that all the sets \mathcal{W}_{ℓ} can be constructed in $n^{\mathcal{O}}(k)$ time. Let $\mathcal{W}_{\ell^{*}}$ be the last constructed set.

To solve Rendezvous for an instance (G, s, t, k), it is sufficient to observe that (G, s, t, k) is a yes-instance if and only if $v_{F, D}^{(1)} \in \mathcal{W}_{\ell^{*}}$ for $F=\{s, t\}$ and every $D \in \mathcal{D}_{G}^{k}$ that is compatible with F, that is, Facilitator can win starting from s and t for every choice the initial placement of the k agents of Divider.

Solving Rendezvous in Time is slightly more complicated because the parameter τ is expected to be encoded in binary. Let (G, s, t, k, τ) be an instance of Rendezvous in Time. If $\tau \geq \ell^{*}$, we observe that (G, s, t, k, τ) is a yes-instance of Rendezvous in Time if and only if (G, s, t, k) is a yes-instance of Rendezvous. If $\tau<\ell^{*}$, then recall that we already constructed the set \mathcal{W}_{τ}. Then (G, s, t, k, τ) is a yes-instance if and only if $v_{F, D}^{(1)} \in \mathcal{W}_{\tau}$ for $F=\{s, t\}$ and every $D \in \mathcal{D}_{G}^{k}$ that is compatible with F.

Summarizing the running time of all the steps, we obtain that Rendezvous and Rendezvous in Time can be solved in $n^{\mathcal{O}(k)}$ time.

We conclude this section by the observation that a strategy of Divider in the Rendezvous Games with Adversaries for τ steps, that is, for Rendezvous in Time, can be represented as a rooted tree of height τ. Suppose that the game is played on a graph G, and s and t are initial positions of the agents of Facilitator. Let also k be the number of agents of Divider. Suppose that Divider has a strategy defined by the family of functions $d_{i}: \mathcal{P}_{G}^{k} \rightarrow \mathcal{D}_{G}^{k}$ for $i \in\{0, \ldots, \tau-1\}$. We define the tree $\mathcal{T}_{G}^{k}(\tau)$ such that every node v of $\mathcal{T}_{G}^{k}(\tau)$ is associated with a position $P_{v} \in \mathcal{P}_{G}^{k}$ inductively starting from the root:

- $P_{r}=\left(\{s, t\}, d_{0}(\{s, t\}, \emptyset)\right)$ is associated with the root r of $\mathcal{T}_{G}^{k}(\tau)$.
- for every node $v \in V\left(\mathcal{T}_{G}^{k}(\tau)\right)$ with $P_{v}=(F, D)$ at distance $i \leq \tau-1$ from the root, we construct a child u of v for every $\left(F^{\prime}, D^{\prime}\right) \in \mathcal{P}_{G}^{k}$ such that (i) F^{\prime} is adjacent to F and compatible with D, and (ii) $D^{\prime}=d_{i}\left(F^{\prime}, D\right)$, and associate u with $P_{u}=\left(F^{\prime}, D^{\prime}\right)$.

In words, the children of every node correspond to all possible moves of Facilitator from the position (D, F) and are the positions obtained by the responses of Divider. Observe that every node has at most $|\mathcal{F}|=\binom{n+1}{2}$ children. Therefore, the total number of nodes of $\mathcal{T}_{G}^{k}(\tau)$ is at most $\binom{n+1}{2}^{\tau+1}$. We use the following observation.

Observation 2. A strategy $\left\{d_{i} \mid 0 \leq i \leq \tau-1\right\}$ is a winning strategy for Divider with k agents in the Rendezvous Game with Adversaries for τ steps on G against Facilitator starting from s and t if and only if F is a set of two distinct vertices for every $P_{v}=(F, D)$ for $v \in V\left(\mathcal{T}_{G}^{k}(\tau)\right)$.

In particular, this allows us to observe the following.
Observation 3. For every fixed constant τ, the problem τ-Rendezvous in Time is in co-NP.
Proof. If (G, s, t, k) is a no-instance of τ-Rendezvous in Time, then Divider has a winning strategy that allows preventing R and J from meeting in at most τ steps. Then the tree $\mathcal{T}_{G}^{k}(\tau)$ can be used as a certificate. Since the tree has $n \mathcal{O}(\tau)$ nodes, we can check whether a given tree encodes a winning strategy in polynomial time, using Observations 2 and 1.

3. Dynamic separation vs. separators

In this section, we investigate relations between $d_{G}(s, t)$ and $\lambda_{G}(s, t)$. Given a connected graph G and two vertices s and t, it is straightforward to see that $d_{G}(s, t) \leq \lambda_{G}(s, t)$. Indeed, if $S \subseteq V(G) \backslash\{s, t\}$ is an (s, t)-separator of size $k=\lambda_{G}(s, t)$, then Divider with k agents can put them in the vertices of S in the beginning of the game. Then he can use the trivial strategy that keeps the agents D_{1}, \ldots, D_{k} in their positions. However, $d_{G}(s, t)$ and $\lambda_{G}(s, t)$ can be far apart. Still, $d_{G}(s, t)=1$ if and only if $\lambda_{G}(s, t)=1$, and this is the first result of the section.

Theorem 2. Let G be a connected graph and let $s, t \in V(G)$. Then $d_{G}(s, t)=1$ if and only if $\lambda_{G}(s, t)=1$.
Proof. As we already observed, $d_{G}(s, t) \leq \lambda_{G}(s, t)$. Hence, if $\lambda_{G}(s, t)=1$, then $d_{G}(s, t)=1$. This means that it is sufficient to show that if $d_{G}(s, t)=1$, then $\lambda_{G}(s, t)=1$. We prove this by contradiction. Assume that $\lambda_{G}(s, t) \geq 2$. We show that Facilitator has a winning strategy when starting from s and t on G against Divider with one agent.

Let C be a cycle in G. For every two distinct vertices u and v of C, C has two internally vertex disjoint (u, v)-paths P_{1} and P_{2} in C. We say that C has a (u,v)-shortcut if there is a (u, v)-path P in $G-(V(C) \backslash\{u, v\})$ that is shorter than P_{1} and P_{2}. That is, $\ell(P)<\ell\left(P_{1}\right)$ and $\ell(P)<\ell\left(P_{2}\right)$. We say that C has a shortcut if there are distinct $u, v \in V(C)$ that have a (u, v)-shortcut.

We claim the following.
Claim 1. If R and J occupy vertices of a cycle C of G that has a shortcut, then Facilitator has a strategy such that in at most $\ell(C)$ steps R and J are moved into vertices of a cycle C^{\prime} with $\ell\left(C^{\prime}\right)<\ell(C)$.

Fig. 1. The position placement after h steps (up to symmetry).

Proof of Claim 1. Suppose that R and J occupy vertices x and y of C, respectively. Assume that a path P is a (u, v)-shortcut for some distinct $u, v \in V(C)$. Denote by P_{1} and P_{2}, respectively, the internally vertex disjoint (u, v)-paths in C. Let C_{1} be the cycle of G composed by P_{1} and P, and let C_{2} be the cycle composed by P_{2} and P. Because P is a shortcut for C, we have that $\ell\left(C_{1}\right)<\ell(C)$ and $\ell\left(C_{2}\right)<\ell(C)$. If $x, y \in V\left(P_{1}\right)$, then $x, y \in V\left(C_{1}\right)$ and the claim holds trivially, since R and J are already on cycle C_{1} with $\ell\left(C_{1}\right)<\ell(C)$. Symmetrically, if $x, y \in V\left(P_{2}\right)$, then the claim holds. Assume that this is not the case. Then x and y are internal vertices of P_{1} and P_{2} belonging to distinct paths. We assume without loss of generality that x is an internal vertex of P_{1} and y is an internal vertex of P_{2}.

Facilitator uses the following strategy. In each step, R is moved along P_{1} toward u, unless the next vertex is occupied by D_{1}. In the last case, R stays in the current position. Similarly, J moves toward v in P_{2} whenever this is possible and stays in the current position if the way is blocked. Notice that, since the unique agent D_{1} of Divider occupies a unique vertex in each step, at least one of the agents R or J moves to an adjacent vertex. Therefore, either R reaches u or J reaches v in at most $\ell(C)$ steps. If R is in u, then R and J are in the vertices of C_{2} and $\ell\left(C_{2}\right)<\ell(C)$. Symmetrically, if J reaches v, then R and J reach C_{1} with $\ell\left(C_{1}\right)<\ell(C)$.

Next, we show that Facilitator can win if R and J are in a cycle without shortcuts and D_{1} is in the same cycle.
Claim 2. If R and J occupy vertices of a cycle C of G without a shortcut, and the unique agent D_{1} of Divider is in a vertex of C as well, then Facilitator has a winning strategy with at most $\ell(C) / 2$ steps.

Proof of Claim 2. Suppose that R and J occupy vertices x and y of C, respectively, and that D_{1} occupies $z \in V(C)$. Denote by P the unique (x, y)-path in $C-z$. Facilitator uses the following strategy. In every step, R and J move towards each other along P except if they appear to occupy adjacent vertices. In the last case, R stays and J moves to the vertex occupied by R. We show that this strategy is a feasible winning strategy.

The proof is by induction on the length of P. The claim is trivial when $\ell(P) \leq 2$. Assume that $\ell(P) \geq 3$ and the claim holds for all positions x^{\prime}, y^{\prime} and z^{\prime} of R, J and D_{1}, respectively, if the length of the $\left(x^{\prime}, y^{\prime}\right)$-path in $C-z^{\prime}$ is at most $\ell(P)-1$.

In the first step, R and J move to the neighbors x^{\prime} and y^{\prime} of x and y, respectively, in P. If D_{1} moves to a vertex $z^{\prime} \in V(C)$, then we apply the inductive assumption and, since the length of the (x^{\prime}, y^{\prime})-subpath P^{\prime} is $\ell(P)-2$ and $z^{\prime} \notin V\left(P^{\prime}\right)$, obtain that the strategy of Facilitator is winning. Assume that by the first move Divider removes D_{1} from C. If D_{1} does not return to a vertex of C in $\ell(P) / 2$ steps, Facilitator wins. Hence for some $h \leq \ell(P) / 2$, at the h-th move, D_{1} steps back on a vertex $z^{\prime} \in V(C)$.

By the assumption, cycle C has no shortcuts. In particular, there is no $\left(z, z^{\prime}\right)$-shortcut. This implies, that the length of one of the two $\left(z, z^{\prime}\right)$-paths in C is at most h. Observe that in h steps, R and J reach vertices $x^{\prime \prime}$ and $y^{\prime \prime}$ that are at distance h in P from x and y, respectively. Therefore (see Fig. 1), the ($x^{\prime \prime}, y^{\prime \prime}$)-subpath $P^{\prime \prime}$ of P does not contain z^{\prime}. Since $\ell\left(P^{\prime \prime}\right)<\ell(P)$, we can apply the inductive assumption. This proves that the Facilitator's strategy is a feasible winning strategy and the claim holds.

Notice that the total number of steps is $\lceil\ell(P) / 2\rceil \leq \ell(C) / 2$. This completes the proof.

Now we are ready to complete the proof of the theorem. If $s=t$ or s and t are adjacent, then Facilitator has a straightforward winning strategy. Assume that s and t are distinct and nonadjacent. Since $\lambda_{G}(s, t) \geq 2$, by Menger's theorem (see, e.g., [10]), there are two internally vertex disjoint (s, t)-paths P_{1} and P_{2}. The union of these two paths forms cycle C. If the agent D_{1} of Divider occupies a vertex of C^{\prime}, then Facilitator has a winning strategy by Claim 2. If D_{1} is outside C^{\prime}, then Facilitator moves R and J along C^{\prime} towards each other. Then either R and J meet or D_{1} steps on C^{\prime} at some moment. In this case, Facilitator switches to the strategy from Claim 2 that guarantees him to win.

We observed that $d_{G}(s, t) \leq \lambda_{G}(s, t)$ and, by Theorem $2, d_{G}(s, t)=1$ if and only if $\lambda_{G}(s, t)=1$. However, if $d_{G}(s, t) \geq 2$, then the difference between $\lambda_{G}(s, t)$ and $d_{G}(s, t)$ may be arbitrary. To see this, consider the following example.

Fig. 2. The construction of G and H for $p=4$.

Let $p \geq 2$.

- Construct a set $U=\left\{u_{1}, \ldots, u_{p}\right\}$ of pairwise adjacent vertices.
- Add a vertex s and join s with each vertex $u_{i} \in U$ by a path $s x_{i} u_{i}$.
- Add a vertex t and join t with each vertex $u_{i} \in U$ by a path $t y_{i} u_{i}$.

Denote the obtained graph by G (see the left part of Fig. 2). Observe that $\lambda_{G}(s, t)=p$. We show that $d_{G}(s, t)=2$ by demonstrating a winning strategy for Divider with two agents D_{1} and D_{2}. Initially, D_{1} and D_{2} are placed in arbitrary vertices of the clique U. Then D_{1} "shadows" R and D_{2} "shadows" J in U in the following sense. If R moves to x_{i} for some $i \in\{1, \ldots, p\}$, Divider responds by moving D_{1} to u_{i}. Symmetrically, if R moves to y_{j} for some $j \in\{1, \ldots, p\}$, then D_{2} is moved to u_{j}. It is easy to verify that if Divider follows this strategy, then neither R nor J can enter U. Therefore, Divider wins. Since p can be arbitrarily, we have that $\lambda_{G}(s, t)-d_{G}(s, t)=p-2$ can be arbitrary large.

The family of graphs G for $p \geq 2$ in the above example is a family of dense graphs because G contains a clique with p vertices. However, exploiting the same idea as for G, we can show that there are sparse graphs with the same property. For this, we considered the following more complicated example.

Let $p \geq 2$.

- Construct a path $P=u_{1} \cdots u_{p}$ on p vertices.
- Add a vertex s and join s with each vertex $u_{i} \in V(P)$ by an $\left(s, u_{i}\right)$-path P_{i} of length $h=\lfloor p / 2\rfloor+1$.
- Add a vertex t and join t with each vertex $u_{i} \in V(P)$ by an $\left(t, u_{i}\right)$-path P_{j}^{\prime} of length $h=\lfloor p / 2\rfloor+1$.

Denote the obtained graph by H (see the right part of Fig. 2). Clearly, $\lambda_{H}(s, t)=p$. We claim that $d_{H}(s, t)=2$. The idea behind the winning strategy for Divider with two agents D_{1} and D_{2} is similar to the one from the first example: D_{1} "shadows" R and D_{2} "shadows" J on P. Let $w=u_{\lfloor p / 2\rfloor}$. Initially, D_{1} and D_{2} are placed in w. Then D_{1} is moved as follows. If R moves to/stays in s, then D_{1} moves to/stays in w. If R is moved into an internal vertex x of P_{i} for some $i \in\{1, \ldots, p\}$, then Divider responds by moving D_{1} toward u_{i} or keeping D_{1} in the current position maintaining the following condition: D_{1} is in a vertex u_{j} at minimum distance from w such that the distance between x and u_{i} in P_{i} is more than the distance between u_{j} and u_{i} in P. The construction of the strategy for D_{2} is symmetric. It is easy to see that the described strategy for Divider is feasible and the strategy allows neither R nor J to enter a vertex of P. Therefore, $d_{H}(s, t)=2$.

Notice that the graph H for each $p \geq 2$ is planar and it can be seen that the treewidth of H is at most 3 (we refer to $[8,10]$ for the formal treewidth definition), that is, graphs H are, indeed, sparse.

Our examples indicate that $\lambda_{G}(s, t)$ may differ from $d_{G}(s, t)$ if G has sufficiently long induced paths and cycles. We observe that $\lambda_{G}(s, t)=d_{G}(s, t)$ if G belongs to graph classes that have no graphs of this type.

A graph G is P_{5}-free if G has no induced subgraph isomorphic to the path with 5 vertices.

Proposition 1. If G is a connected P_{5}-free graph, then for every $s, t \in V(G), d_{G}(s, t)=\lambda_{G}(s, t)$.

Proof. Let G be a P_{5}-free graph and let $s, t \in V(G)$. The statement is trivial if $s=t$ or s and t are adjacent. Assume that s and t are distinct nonadjacent vertices. Since $d_{G}(s, t) \leq \lambda_{G}(s, t)$, it is sufficient to show the opposite inequality. We prove that if Divider with k agents has a winning strategy on G against Facilitator starting from s and t, then $\lambda_{G}(s, t) \leq k$. Let S be the set of vertices containing the agents of Divider at the beginning of the game. Clearly, $k \geq|S|$. Consider an induced (s, t)path P. Since G is P_{5}-free, $\ell(P) \leq 3$. Suppose that $\ell(P)=2$, that is $P=s x t$ for some $x \in V(G)$. Then Divider has to place an agent in x in the beginning of the game. Otherwise, R and J move to x in the first step and Facilitator wins. Suppose that $\ell(P)=3$, that is, $P=$ sxyt for some $x, y \in V(G)$. Observe that Divider has to place an agent in x or y at the beginning of the game. Otherwise, R moves to x, J moves to y, and Facilitator wins in the next step, as x and y are adjacent. We obtain that in both cases, an agent of Divider is placed in an internal vertex of P. Because P is an arbitrary induced (s, t)-path, we have that any induced (s, t)-path has an internal vertex occupied by an agent of Divider. Thus, every induced (s, t)-path P contains a vertex of S. This means that S is an (s, t)-separator. Therefore, $k \geq|S| \geq \lambda_{G}(s, t)$ and the claim follows.

A graph G is chordal if G does not contain induced cycles on at least 4 vertices, that is, if C is a cycle in G of length at least 4, then there is a chord, i.e., an edge of G with end-vertices in two nonconsecutive vertices of C. We need some properties of chordal graphs (we refer to [6,20] for the detailed introduction).

It follows from the results of Gavril [19] that a graph G is chordal if and only if it has a tree decomposition with every bag being a clique. Formally, G is a chordal graph if and only if there is a pair $\mathcal{T}=\left(T,\left\{X_{i}\right\}_{i \in V(T)}\right)$, where T is a tree whose every node i is assigned a vertex subset $X_{i} \subseteq V(G)$, called a bag, such that X_{i} is a clique and the following holds:
(i) $\bigcup_{i \in V(T)} X_{i}=V(G)$,
(ii) for every $u v \in E(G)$, there exists a node i of T such that $u, v \in X_{i}$, and
(iii) for every $u \in V(G)$, the set $T_{u}=\left\{i \in V(T) \mid u \in X_{i}\right\}$, i.e., the set of nodes whose corresponding bags contain u, induces a connected subtree of T.

We use the following well-known property of tree decomposition (see, e.g., $[8,10]$). Assume that G is connected. Let $x, y \in$ $V(T)$ be adjacent nodes of T with $S=X_{x} \cap X_{y}$, and let T_{1} and T_{2} be the connected components of $T-x y$. Then for every $u \in\left(\bigcup_{i \in V\left(T_{1}\right)} X_{i}\right) \backslash S$ and every $v \in\left(\bigcup_{i \in V\left(T_{2}\right)} X_{i}\right) \backslash S, S$ is a (u, v)-separator.

Proposition 2. If G is a connected chordal graph, then for every $s, t \in V(G), d_{G}(s, t)=\lambda_{G}(s, t)$.

Proof. Let G be a chordal graph and let $s, t \in V(G)$. As before, let us notice that the proposition is trivial if $s=t$ or s and t are adjacent, and we assume that s and t are distinct nonadjacent vertices. Recall also that it is sufficient to show that $\lambda_{G}(k) \leq d_{G}(s, t)$. We prove that Facilitator has a winning strategy against Divider with k agents if $k<\lambda_{G}(s, t)$. For this, we show that R can reach t occupied by J.

Since G is a chordal graph, there is a tree decomposition $\mathcal{T}=\left(T,\left\{X_{i}\right\}_{t \in V(T)}\right)$ of G such that every bag X_{i} is a clique. Let $i, j \in V(T)$ be nodes of T such that $s \in X_{i}, t \in X_{j}$ and the (i, j)-path P in T has minimum length. Since s and t are nonadjacent, $i \neq j$. Let $P=i_{1} \cdots i_{r}$, where $i=i_{1}$ and $j=i_{r}$, and let $S_{h}=X_{i_{h-1}} \cap X_{i_{h}}$ for $h \in\{2, \ldots, r\}$. By the choice of P, $s \in X_{i} \backslash X_{i_{h}}$ for $h \in\{2, \ldots, r\}$ and $t \in X_{j} \backslash X_{i_{h}}$ for $h \in\{1, \ldots, r-1\}$. By the properties of tree decompositions, we obtain that S_{2}, \ldots, S_{r} are (s, t)-separators. Since $\lambda_{G}(s, t)>k$, we have that $\left|S_{h}\right|>k$ for every $h \in\{2, \ldots, r\}$.

We describe the strategy of Facilitator, where R is moved from s to t via vertices of S_{2}, \ldots, S_{r}. Since $\left|S_{2}\right|>k$, there is a vertex $v \in S_{2}$ that is not occupied by the agents of Divider. By the first move, Facilitator moves R from s to v. Assume now that R is in a vertex $v \in S_{h}$ for some $h \in\{2, \ldots, r\}$. If $h=r$, then R is moved to t. Otherwise, if $h<r$, then since $\left|S_{h+1}\right|>k$, there is $v^{\prime} \in S_{h+1}$ that is not occupied by the agents of Divider. Then Facilitator either keeps R in v if $v^{\prime}=v$ or moves R from v to v^{\prime} otherwise. Note that v and v^{\prime} that are adjacent in the last case, because $S_{h}, S_{h+1} \subseteq X_{i_{h+1}}$. Then we proceed from v^{\prime}. It follows that R reaches t in r steps. This completes the proof.

The chordality of a graph is the largest length of an induced cycle in it. Clearly, chordal graphs are the graphs of chordality three. It is natural to ask whether for graphs of bigger chordality, the difference between $\lambda_{G}(s, t)$ and $d_{G}(s, t)$ may be arbitrary. In the example we gave after the Proof of Claim 2, we have seen that, for the graph G (depicted in the left part of Fig. 2), it holds that $\lambda_{G}(s, t)-d_{G}(s, t)=p-2$ and is easy to see that any such G has chordality five. Notice that this graph G can be further enhanced so as to obtain chordality four: just add a clique between the vertices in $\left\{x_{1}, \ldots, x_{p}\right\}$ and a clique between the vertices in $\left\{y_{1}, \ldots, y_{p}\right\}$. This indicates a sharp transition of d_{G} away from λ_{G} when graphs are not chordal anymore.

Since $\lambda_{G}(s, t)$ can be computed in polynomial time by the standard maximum flow algorithms (see, e.g., the recent textbook [35]), we obtain the following corollary.

Corollary 1. Rendezvous can be solved in polynomial time on the classes of P_{5}-free and chordal graphs.

4. Hardness of rendezvous game with adversaries

In this section, we discuss algorithmic lower bounds for Rendezvous and Rendezvous in Time.
We proved in Theorem 1 that Rendezvous and Rendezvous in Time can be solved in $n^{\mathcal{O}(k)}$ time. We show that it is unlikely that the dependence on k can be improved. For this, we show that both problems are co-W[2]-hard (i.e., it is W[2]hard to decide whether the input is a no-instance; in fact, we show that it is W[2]-hard to decide whether $\left.d_{G}(s, t) \leq k\right)$ and, therefore, cannot be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ for any computable function $f(k)$, unless FPT $=\mathrm{W}$ [2]; the result for Rendezvous in Time holds also for τ-Rendezvous in Time when $\tau \geq 2$. Our proof also implies that neither Rendezvous nor τ-Rendezvous in Time, for $\tau \geq 2$, cannot be solved in time $f(k) \cdot n^{o(k)}$ unless ETH fails.

Observe that Rendezvous in Time can be solved in polynomial time if $\tau=1$, because of the following straightforward observation.

Observation 4. Facilitator can win in the Rendezvous Game with Adversaries in one step on G starting from s and t against Divider with k agents if and only if one of the following holds: (i) $s=t$, (ii) s and t are adjacent, or (iii) $\left|N_{G}(s) \cap N_{G}(t)\right|>k$.

Fig. 3. The construction of G.

However, if $\tau \geq 2, \tau$-Rendezvous in Time becomes hard.

Theorem 3. Rendezvous and τ-Rendezvous in Time for every constant $\tau \geq 2$ are co-W[2]-hard when parameterized by k. Moreover, these problems cannot be solved in time $f(k) \cdot n^{o(k)}$ unless ETH fails.

Proof. We show the theorem by reducing the Set Cover problem. Given a universe U, a family \mathcal{S} of subsets of U, and a positive integer k, the task of SET Cover is to decide whether there is a subfamily $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ of size at most k that covers U, that is, every element of U is in at least one set of \mathcal{S}^{\prime}. This problem is well-known to be W[2]-complete when parameterized by k (see, e.g., [8]).

Let (U, \mathcal{S}, k) be an instance of Set Cover. Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$. We construct the graph G as follows (see Fig. 3).

- Construct a set of n vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$ corresponding to the universe.
- For every $i \in\{1, \ldots, k\}$, construct a set of m vertices $S^{(i)}=\left\{s_{1}^{(i)}, \ldots, s_{m}^{(i)}\right\}$; each $S^{(i)}$ corresponds to a copy of \mathcal{S}.
- For every $i \in\{1, \ldots, k\}, j \in\{1, \ldots, m\}$ and $h \in\{1, \ldots, n\}$, make $s_{j}^{(i)}$ and u_{h} adjacent if the element u_{h} of the universe is in $S_{j} \in \mathcal{S}$.
- For every $i \in\{1, \ldots, k\}$, construct a vertex w_{i} and make it adjacent to $s_{1}^{(i)}, \ldots, s_{m}^{(i)}$.
- Construct two vertices s and t.
- For every $h \in\{1, \ldots, n\}$, join s and u_{h} by a path $s x_{h} u_{h}$ and join u_{h} and t by a path $u_{h} x_{h}^{\prime} t$.
- For every $i \in\{1, \ldots, k\}$, join s and w_{i} by a path $s y_{i} w_{i}$ and join w_{i} and t by a path $w_{i} y_{i}^{\prime}$ t.
- Construct a vertex z and make it adjacent to s and t.

We show that if (U, \mathcal{S}, k) is a yes-instance of Set Cover, then Divider with $k+1$ agents can win in the Rendezvous Game with Adversaries against Facilitator with the agents placed in s and t. Let $\mathcal{S}^{\prime}=\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\}$ be a set cover; we assume without loss of generality that \mathcal{S}^{\prime} has size exactly k. We describe a winning strategy for Divider with the agents D_{1}, \ldots, D_{k+1}. Initially, Divider puts D_{j} in the vertex $s_{i_{j}}^{(j)}$ for each $j \in\{1, \ldots, k\}$, and D_{k+1} is placed in z. Then the following strategy is used. The agents D_{1}, \ldots, D_{k+1} are keeping their position until either R or J are moved from s or t, respectively. Assume by symmetry that R is moved by Facilitator from s (J can either move or stay in t). If R is moved from s to y_{j} for some $j \in\{1, \ldots, k\}$, then Divider moves D_{j} from $s_{i_{j}}^{(j)}$ to w_{j} and D_{k+1} is moved from z to s. Notice that R is in the vertex y_{j} of degree two and both neighbors of y_{j} are occupied by the agents of Divider. Hence, R cannot move and J cannot reach y_{j}. This implies that Divider wins by keeping the agents in their current positions. Assume that R is moved from s to x_{h} for some $h \in\{1, \ldots, n\}$. Since \mathcal{S}^{\prime} is a set cover, there is $j \in\{1, \ldots, k\}$ such that the element of the universe $u_{h} \in S_{i_{j}}$. Then D_{j} is in the vertex $s_{i_{j}}^{(j)}$ that is adjacent to the vertex u_{h}. Divider responds by moving D_{j} from $s_{i_{j}}^{(j)}$ to u_{h} and D_{k+1} is moved from z to s. Now we have that R is blocked in x_{h} by the agents in s and u_{h}. This means that Divider wins.

Next, we claim that if (U, \mathcal{S}, k) is a no-instance of Set Cover, then Facilitator wins in at most two steps against Divider with $k+1$ agents. Assume that Divider completed the initial placement of the agents. If z is not occupied, then Facilitator moves R and J to z and wins in one step. Assume that z is occupied by D_{k+1}. If there is $i \in\{1, \ldots, k\}$ such that there is no agent of Divider in a vertex of $N_{G}\left[w_{i}\right]$, then Facilitator moves R to y_{i} and J to y_{i}^{\prime} by the first move. Since Divider has no agents in $N_{G}\left[w_{i}\right]$, for any of his possible moves, w_{i} remains unoccupied by his agents. Therefore, Facilitator can move R and J to w_{i} and win in two steps. Suppose from now that for every $i \in\{1, \ldots, k\}, D_{i}$ is in $N_{G}\left[w_{i}\right]$. Because Divider has $k+1$ agents, this means that for every $h \in\{1, \ldots, n\}, x_{h}, u_{h}$ and x_{h}^{\prime} are not occupied by the agents of Divider and for every $i \in\{1, \ldots, k\}$, at most one agent is in $S^{(i)}$. Let X be the set of vertices of $\bigcup_{i=1}^{k} S^{(i)}$ occupied by the agents of Divider in the beginning of the game. Since $|X| \leq k$ and (U, \mathcal{S}, k) is a no-instance of Set Cover, there is $h \in\{1, \ldots, n\}$ such that the vertices $N_{H}\left[u_{h}\right]$ are not occupied by the agents of Divider. Therefore, Facilitator can move R from s to x_{h} and then to u_{h} and, symmetrically, move J from t to x_{h}^{\prime} and then to u_{h}. We obtain that R and J meet in u_{h} in two steps, that is, Facilitator wins in two steps.

These arguments imply that $(U, \mathcal{S}, k$) is a yes-instance of Set Cover if and only if ($G, s, t, k+1$) is a no-instance of Rendezvous. This means that Rendezvous is co-W[2]-hard. For τ-Rendezvous in Time for $\tau \geq 2$, notice that if (U, \mathcal{S}, k) is a no-instance of Set Cover, then Facilitator can win in at most two steps against Divider with $k+1$ agents and if (U, \mathcal{S}, k) is a yes-instance, then Divider has a strategy that prevents Facilitator from winning in any number of steps. It follows that τ-Rendezvous in Time is co-W[2]-hard for any fixed $\tau \geq 2$.

For the second part of the claim of Theorem 3, we use the results of Chen et al. [7], see also [8, Corollary 14.23]. In particular, they proved that Set Cover cannot be solved in time $f(k) \cdot(n+m)^{o(k)}$ unless ETH fails. To show co-W[2]hardness of Rendezvous and τ-Rendezvous in Time, for $\tau \geq 2$, we constructed a polynomial reduction and the obtained parameter for Rendezvous and τ-Rendezvous in Time is $k+1$, i.e., is linear in the input parameter for Set Cover. Thus, any algorithm for Rendezvous or τ-Rendezvous in Time, for $\tau \geq 2$, with running time $f(k) \cdot n^{o(k)}$ would imply an algorithm for SET Cover with running time $f(k) \cdot(n+m)^{o(k)}$.

We proved Theorem 3 by giving a polynomial reduction from Set Cover. Since Set Cover is NP-complete (see [18]), we obtain the following corollary using Observation 3.

Corollary 2. τ-Rendezvous in Time is co-NP-complete for every fixed constant $\tau \geq 2$.
Using the reduction from the proof of Theorem 3, we can conclude that Rendezvous and τ-Rendezvous in Time, for $\tau \geq 2$, are co-NP-hard. However, the general problems are harder.

Theorem 4. Rendezvous and Rendezvous in Time are PSPACE-hard.

Proof. We show that Rendezvous in Time is PSPACE-hard and then explain how to modify our reduction for Rendezvous. We prove that it is PSPACE-hard to decide whether Divider can win in at most τ steps in the Rendezvous Game with Adversaries.

The reduction is from the Quantified Boolean Formula in Conjunctive Normal Form (QBF) problem with alternating quantifiers that is well-known to be PSPACE-complete (see, e.g., [18]). The task of QBF is, given $2 n$ Boolean variables $x_{1}, \ldots, x_{2 n}$ and m clauses C_{1}, \ldots, C_{m}, where every C_{i} is a disjunction of literals over the variables, to decide whether the formula

$$
\varphi=\forall x_{1} \exists x_{2} \ldots \forall x_{2 n-1} \exists x_{2 n}\left[C_{1} \wedge \ldots \wedge C_{m}\right]
$$

evaluates true.
Given a formula $\varphi=\forall x_{1} \exists x_{2} \ldots \forall x_{2 n-1} \exists x_{2 n}\left[C_{1} \wedge \ldots \wedge C_{m}\right]$, we construct the graph G as follows (see Fig. 4).

- Construct m vertices c_{1}, \ldots, c_{m} corresponding to the clauses of φ.
- Construct vertices s, u_{0}, \ldots, u_{n}, and $x_{2 i-1}^{\prime}, \bar{x}_{2 i-1}^{\prime}$ for $i \in\{1, \ldots, n\}$, and for each $i \in\{1, \ldots, n\}$, make $x_{2 i-1}^{\prime}$, $\bar{x}_{2 i-1}^{\prime}$ adjacent to u_{i-1} and u_{i}.
- Make s and u_{0} adjacent and join u_{n} with c_{1}, \ldots, c_{m} by paths $u_{n} w_{j} c_{j}$ for $j \in\{1, \ldots, m\}$.
- Construct t and $2 n+1$ vertices $v_{0}, \ldots, v_{2 n}$ and construct the path $t v_{0} \cdots v_{2 n}$. Then join $v_{2 n}$ with c_{1}, \ldots, c_{m} by paths $v_{2 n} w_{j}^{\prime} c_{j}$ for $j \in\{1, \ldots, m\}$.
- Construct two vertices z and z^{\prime}, and make them adjacent to s and t.
- For every $i \in\{1, \ldots, 2 n\}$, construct vertices $x_{i}, \bar{x}_{i}, x_{i}^{\prime \prime}, \bar{x}_{i}^{\prime \prime}$ and y_{i}, y_{i}^{\prime}, and then make y_{i} adjacent to x_{i}, \bar{x}_{i} and make y_{i}^{\prime} adjacent to s and t.
- For every $i \in\{1, \ldots, 2 n\}$ and every $j \in\{1, \ldots, m\}$, make $x_{i}^{\prime \prime}$ adjacent to c_{j} if the clause C_{j} contains the literal x_{i} and make $\bar{x}_{i}^{\prime \prime}$ adjacent to c_{j} if the clause C_{j} contains the literal \bar{x}_{i}.
- For every $i \in\{1, \ldots, n\}$,
- construct ($x_{2 i-1}, x_{2 i-1}^{\prime \prime}$) and ($\bar{x}_{2 i-1}, \bar{x}_{2 i-1}^{\prime \prime}$)-paths $P_{2 i-1}$ and $\bar{P}_{2 i-1}$, respectively, of length $2(n-i)+1$,

Fig. 4. The construction of G for $\varphi=\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left[\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3} \vee x_{4}\right)\right]$.

- construct ($x_{2 i-1}, v_{2 i-1}$) and ($\bar{x}_{2 i-1}, v_{2 i-1}$)-paths $Q_{2 i-1}$ and $\bar{Q}_{2 i-1}$, respectively, of length $4(n-i)+5$,
- construct a ($y_{2 i-1}, y_{2 i-1}^{\prime}$)-path $R_{2 i-1}$ of length $2 i-1$,
- make $x_{2 i-1}$ adjacent to $x_{2 i-1}^{\prime}$ and make $\bar{x}_{2 i-1}$ adjacent to $\bar{x}_{2 i-1}^{\prime}$.
- For every $i \in\{1, \ldots, n\}$,
- construct ($x_{2 i}, x_{2 i}^{\prime \prime}$) and $\left(\bar{x}_{2 i}, \bar{x}_{2 i}^{\prime \prime}\right)$-paths $P_{2 i}$ and $\bar{P}_{2 i}$, respectively, of length $2(n-i)+1$,
- construct a ($y_{2 i}, y_{2 i}^{\prime}$)-path $R_{2 i}$ of length $2 i-1$.

This completes the construction of G. We define $\tau=2 n+3$ and $k=2 n+2$.
We claim that φ evaluates true if and only if Divider with k agents has a winning strategy that prevents R and J from meeting in at most τ steps.

Assume that $\varphi=$ true. We describe a winning strategy for Divider.
Assume that after the i-th move of Facilitator R and J are occupying some vertices a and b and the agents of Divider are in the vertices of a set X. If $\operatorname{dist}_{G-X}(a, b)>2 \tau-2 i$, then Divider wins by keeping the agents in their current positions because R and J are unable to meet in the remaining $\tau-i$ moves. In this case, we say that Divider has a trivial winning strategy.

Divider has $k=2 n+2$ agents. We place D_{i} in y_{i}^{\prime} for $i \in\{1, \ldots, 2 n\}$. The remaining two agents $D_{2 n+1}$ and $D_{2 n+2}$ are placed in z and z^{\prime}, respectively. For $i \geq 1$, we use X_{i} to denote the set of vertices occupied by the agents of Divider after the i-th step of the game; $X_{0}=\left\{y_{1}^{\prime}, \ldots, y_{2 n}^{\prime}\right\} \cup\left\{z, z^{\prime}\right\}$.

Observe that $\operatorname{dist}_{G-X_{0}}(s, t)=2 \tau$. This means that if either R or J is not moved, then Divider wins by the trivial winning strategy. We assume that this is not the case and R is moved to u_{0} and J is moved to v_{0}. Divider responds by moving $D_{2 n+1}$ and $D_{2 n}$ from z and z^{\prime} to s and t, respectively; these agents remain in s and t until the end of the game and the only role of them is to prevent R and J from entering these vertices. The agents $D_{1}, \ldots, D_{2 n}$ are moved to the neighbors of $y_{1}^{\prime}, \ldots, y_{2 n}^{\prime}$ in the paths $R_{1}, \ldots, R_{2 n}$, respectively.

The general idea of the reduction is that by the further $2 n$ steps, the players define the values of the Boolean variables $x_{1}, \ldots, x_{2 n}$, and the values of the variables $x_{1}, x_{3}, \ldots, x_{2 n-1}$ are chosen by Facilitator and Divider chooses the values of $x_{2}, x_{4}, \ldots, x_{2 n}$. Divider chooses the value of his variables to achieve $\psi=C_{1} \wedge \ldots \wedge C_{m}=$ true. To describe this process, we show inductively for $i=0, \ldots, n$ that after the $2 i+1$-th step of the game, either Divider wins by the trivial strategy or the following configuration is maintained.

- The values of the variables x_{j} for $j \leq 2 i$ are chosen and the values of the variables x_{j} for $j>2 i$ are unassigned. Moreover, the values of $x_{1}, \ldots, x_{2 i}$ are chosen in such a way that φ evaluates true if the values of $x_{1}, \ldots, x_{2 i}$ are constrained by the choice.
- R is in u_{i} and J is in $v_{2 i}$.
- For $j \in\{i+1, \ldots, n\}, D_{2 j-1}$ and $D_{2 j}$ are on the paths $R_{2 j-1}$ and $R_{2 j}$, respectively, at distance $\ell\left(R_{2 j-1}\right)-2 i-1=$ $\ell\left(R_{2 j}\right)-2 i-1=2(j-i)-2$ from $y_{2 j-1}$ and $y_{2 j}$, respectively; in particular, $D_{2 i+1}$ and $D_{2 i+2}$ are in $y_{2 i+1}$ and $y_{2 i+2}$, respectively, if $i<n$.
- For $j \in\{1, \ldots, i\}$,
- if the variable $x_{2 j-1}=$ true, then $D_{2 j-1}$ is on the path $P_{2 j-1}$ at distance $\ell\left(P_{2 j-1}\right)+\ell\left(R_{2 j-1}\right)-2 i=2(n-i)$ from $x_{2 j-1}^{\prime \prime}$,
- if the variable $x_{2 j-1}=$ false, then $D_{2 j-1}$ is on the path $\bar{P}_{2 j-1}$ at distance $\ell\left(\bar{P}_{2 j-1}\right)+\ell\left(R_{2 j-1}\right)-2 i=2(n-i)$ from $\bar{x}_{2 j-1}^{\prime \prime}$,
- if the variable $x_{2 j}=$ true, then $D_{2 j}$ is on the path $P_{2 j}$ at distance $\ell\left(P_{2 j}\right)+\ell\left(R_{2 j}\right)-2 i=2(n-i)$ from $x_{2 j}^{\prime \prime}$,
- if the variable $x_{2 j}=$ false, then $D_{2 j}$ is on the path $\bar{P}_{2 j}$ at distance $\ell\left(\bar{P}_{2 j}\right)+\ell\left(R_{2 j}\right)-2 i=2(n-i)$ from $\bar{x}_{2 j}^{\prime \prime}$.

It is straightforward to verify that the claim holds for $i=0$. Assume inductively that the claim holds for $0 \leq i<2 n$. We show that either Divider wins by the trivial strategy applied from the steps $2 i+2$ or $2 i+3$, or the configuration is maintained for $i^{\prime}=i+1$.

Observe that $\operatorname{dist}_{G-X_{2 i+1}}\left(u_{i}, v_{2 i}\right)=2(\tau-2 i-1)$. Therefore, if either of the agents of Facilitator remains in their old position, then Divider wins by the trivial strategy. Therefore, both R and J have to move. Moreover, they have to move along a shortest $\left(u_{i}, v_{2 i}\right)$-path in $G-X_{2 i+1}$. Hence, Facilitator moves J from $v_{2 i}$ to $v_{2 v+1}$ and R is moved either to $x_{2 i+1}^{\prime}$ or to $\bar{x}_{2 i+1}^{\prime}$. If R is moved to $x_{2 i+1}^{\prime}$, then we assign the variable $x_{2 i+1}=$ true, and $x_{2 i+1}=$ false otherwise. Divider responds by moving $D_{2 i+1}$ from $y_{2 i+1}$ to $x_{2 i+1}$ if R is in $x_{2 i+1}^{\prime}$, and $D_{2 i+1}$ is moved to $\bar{x}_{2 i+1}$ if R is in $\bar{x}_{2 i+1}^{\prime}$. For $D_{2 i+2}$, Divider chooses one of the vertices $x_{2 i+2}$ and $\bar{x}_{2 i+2}$ and moves the agent there. By this move, Divider selects the value of the Boolean variable $x_{2 i+2}$, and $x_{2 i+2}=$ true if $D_{2 i+2}$ in $x_{2 i+2}$, and $x_{2 i+2}=$ false otherwise. Note that Divider knows the values of $x_{1}, \ldots, x_{2 i+1}$ and selects the move for $D_{2 i+1}$ to ensure that the final value of $\psi=$ true. The agents D_{h} for $h \in\{1, \ldots, 2 n\}$ such that $h \neq 2 i+1,2 i+2$ are moved to adjacent vertices in the corresponding paths. For $j \in\{i+2, \ldots, n\}, D_{2 j-1}$ and $D_{2 j}$ are moved along $R_{2 j-1}$ and $R_{2 j}$ toward $y_{2 j-1}$ and $y_{2 j}$, respectively. For $j \in\{1, \ldots, i\}, D_{2 j-1}$ and $D_{2 j}$ are moved along $P_{2 j-1}\left(\bar{P}_{2 j-1}\right)$ and $P_{2 j}\left(\bar{P}_{2 j}\right)$ toward $x_{2 j-1}^{\prime \prime}\left(\bar{x}_{2 j-1}^{\prime \prime}\right)$ and $x_{2 j}^{\prime \prime}\left(\bar{x}_{2 j}^{\prime \prime}\right)$, respectively.

Assume without loss of generality that R occupies $x_{2 i+1}^{\prime}$, because the case when R is in $\bar{x}_{2 i+1}^{\prime}$ is symmetric. We have that $\operatorname{dist}_{G-X_{2 i+2}}\left(x_{2 i+1}^{\prime}, v_{2 i+1}\right)=2(\tau-2 i-2)$. Hence, if R or J are not moved toward each other by the next step, Divider wins by the trivial strategy. Assume that this is not the case. Recall that $D_{2 i+1}$ is in $x_{2 i+1}$. We conclude that R is moved to u_{i+1} and J is moved to $v_{2 i+2}$. Divider responds as follows. For $j \in\{i+2, \ldots, n\}, D_{2 j-1}$ and $D_{2 j}$ are moved along $R_{2 j-1}$ and $R_{2 j}$ toward $y_{2 j-1}$ and $y_{2 j}$, respectively. For $j \in\{1, \ldots, i+1\}, D_{2 j-1}$ and $D_{2 j}$ are moved along $P_{2 j-1}\left(\bar{P}_{2 j-1}\right)$ and $P_{2 j}\left(\bar{P}_{2 j}\right)$ toward $x_{2 j-1}^{\prime \prime}\left(\bar{x}_{2 j-1}^{\prime \prime}\right)$ and $x_{2 j}^{\prime \prime}\left(\bar{x}_{2 j}^{\prime \prime}\right)$, respectively. We obtain that for $i^{\prime}=i+1$, the players are in the required configuration.

By the above claim, we have that after $2 n+1$ steps of the game either Divider wins by the trivial strategy applied from some step or the following configuration is achieved:

- The values of the Boolean variables $x_{1}, \ldots, x_{2 n}$ are chosen and $\psi=$ true for them.
- R is in u_{n} and J is in $v_{2 n}$.
- For $i \in\{1, \ldots, 2 n\}, D_{i}$ is in $x_{i}^{\prime \prime}$ if $x_{i}=$ true and D_{i} is in $\bar{x}_{i}^{\prime \prime}$ otherwise.

Since $\operatorname{dist}_{G-X_{2 n+1}}\left(u_{n}, v_{2 n}\right)=4$, the only possibility for Facilitator to win in two steps is to move R and J toward each other along the path $u_{n} w_{h} c_{h} w_{h}^{\prime} v_{2 n}$ for some $h \in\{1, \ldots, m\}$. Otherwise, Divider wins by the trivial strategy. Assume that R is moved to w_{h} for some $h \in\{1, \ldots, m\}$ in the next step. Recall that $\psi=$ true. Therefore, the clause C_{j} contains a literal x_{i} or \bar{x}_{i} for some $i \in\{1, \ldots, 2 n\}$ with the value true. Assume that C_{h} contains x_{i} as the other case is symmetric. We have that the vertex $x_{i}^{\prime \prime}$ is occupied by D_{i} and $x_{i}^{\prime \prime}$ is adjacent to c_{h} in G. Divider responds to the moving R to w_{h} by moving D_{i} to c_{h}. This prevents R and J from meeting in the next step. Therefore, Divider wins. This concludes the proof of the claim that if φ evaluates true, then Divider with k agents has a winning strategy in the game with τ steps.

Our next aim is to show that if φ evaluates false, then Facilitator can win in τ steps.
It is convenient to define a special strategy for Facilitator that can be applied after a certain step. Assume that after the i-th move of Facilitator R and J are occupying some vertices a and b and G has an (a, b)-path L whose length is at most $2(\tau-i)$ and the internal vertices of L have degree two in G. If there is no agent of Divider occupying a vertex of L, then Facilitator wins in at most $\tau-i$ remaining steps by moving R and J along L toward each other (except if R and J are in adjacent vertices; then R moves to the vertex occupied by J). If Facilitator can win this way, we say that Facilitator has a trivial winning strategy.

As above, for $i \in\{1, \ldots, 2 n\}$, we use X_{i} to denote the set of vertices occupied by the agents of Divider after i-ith step of the game and X_{0} is the set of vertices occupied at the beginning of the game.

Initially, R is in s and J is in t. If there is a vertex $a \in N_{G}(s) \cap N_{G}(t)$ such that $a \notin X_{0}$, then Facilitator wins in one step by moving R and J to a. Hence, we assume that $N_{G}(s) \cap N_{G}(t) \subseteq X_{0}$. Since $\left|N_{G}(s) \cap N_{G}(t)\right|=k, X_{0}=N_{G}(s) \cap N_{G}(t)=$ $\left\{y_{1}^{\prime}, \ldots, y_{2 n}^{\prime}\right\} \cup\left\{z, z^{\prime}\right\}$ and each vertex of X_{0} is occupied by exactly one agent of Divider. Let D_{i} be in y_{i}^{\prime} for $i \in\{1, \ldots, 2 n\}$ and let the remaining two agents $D_{2 n+1}$ and $D_{2 n+2}$ be in z and z^{\prime}, respectively.

The idea behind the strategy of Facilitator is that R and J are moved towards each other along the paths containing the vertices u_{0}, \ldots, u_{n} and $v_{0}, \ldots, v_{2 n}$ with the aim to meet in some vertex c_{h}. The trajectory of R goes through vertices x_{i}^{\prime} and \bar{x}_{i}^{\prime} and the choice between these vertices defines the value of the variable x_{i}. On the way, Facilitator forces Divider to behave in a certain way as, otherwise, Facilitator can win by the trivial strategy using paths Q_{i} or \bar{Q}_{i}.

It is convenient to sort out the agents of Divider whose movements are irrelevant to the strategy of Facilitator. We say that an agent D_{j} is out of game if D_{j} cannot block any shortest path between the vertices occupied by R and J in $G-X_{0}$. Formally, assume that after the i-th step of the game R is in a vertex a and J is in b, and let d be the vertex occupied by D_{j}. We say that D_{j} is out of game after the i-step of the game if for every shortest (a, b)-path L in $G-X_{0}$ and every $e \in V(L)$, it holds that

- $\operatorname{dist}_{L}(a, e) \leq \operatorname{dist}_{G}(d, e)$ if $\operatorname{dist}_{L}(a, e) \leq \operatorname{dist}_{L}(b, e)$,
- $\operatorname{dist}_{L}(b, e) \leq \operatorname{dist}_{G}(d, e)$, otherwise.

Note that if D_{j} is out of game after the i-th step, then D_{j} is out of game for all subsequent steps, because R and J are moving toward each other along some shortest path between the vertices occupied by them. In particular, $D_{2 n+1}$ and $D_{2 n}$ are out of game from the beginning.

By the first step, Facilitator moves R to u_{0} and J is moved from t to v_{0}. Further, R and J move towards each other. The moves of the players define the values of the Boolean variables $x_{1}, \ldots, x_{2 n}$. By his moves, Facilitator consecutively chooses the values of $x_{1}, x_{3}, \ldots, x_{2 n-1}$ and Divider selects the values of $x_{2}, x_{4}, \ldots, x_{2 n}$. Facilitator aims to achieve $\psi=C_{1} \wedge \ldots \wedge C_{m}=$ false. To describe the strategy, we show inductively for $i=0, \ldots, n$ that after the $2 i+1$-th step of the game, either Facilitator wins by the trivial strategy or the following configuration is maintained.

- The values of the variables x_{j} for $j \leq 2 i$ are chosen and the values of the variables x_{j} for $j>2 i$ are unassigned. Moreover, the values of $x_{1}, \ldots, x_{2 i}$ are chosen in such a way that φ evaluates false if the values of $x_{1}, \ldots, x_{2 i}$ are constrained by the choice.
- R is in u_{i} and J is in $v_{2 i}$.
- For $j \in\{i+1, \ldots, n\}$,
- either $D_{2 j-1}$ is out of game or $D_{2 j-1}$ is on the path $R_{2 j-1}$ at distance $\ell\left(R_{2 j-1}\right)-2 i-1=2(j-i)-2$ from $y_{2 j-1}$,
- either $D_{2 j}$ is out of game or $D_{2 j}$ is on the path $R_{2 j}$ at distance $\ell\left(R_{2 j}\right)-2 i-1=2(j-i)-2$ from $y_{2 j}$.
- For $j \in\{1, \ldots, i\}$,
- if the variable $x_{2 j-1}=$ true, then either $D_{2 j-1}$ is out of game or $D_{2 j-1}$ is on the path $P_{2 j-1}$ at distance $\ell\left(P_{2 j-1}\right)+$ $\ell\left(R_{2 j-1}\right)-2 i=2(n-i)$ from $x_{2 j-1}^{\prime \prime}$,
- if the variable $x_{2 j-1}=$ false, then either $D_{2 j-1}$ is out of game or $D_{2 j-1}$ is on the path $\bar{P}_{2 j-1}$ at distance $\ell\left(\bar{P}_{2 j-1}\right)+$ $\ell\left(R_{2 j-1}\right)-2 i=2(n-i)$ from $\bar{x}_{2 j-1}^{\prime \prime}$,
- if the variable $x_{2 j}=$ true, then either $D_{2 j}$ is out of game or $D_{2 j}$ is on the path $P_{2 j}$ at distance $\ell\left(P_{2 j}\right)+\ell\left(R_{2 j}\right)-2 i=$ $2(n-i)$ from $x_{2 j}^{\prime \prime}$,
- if the variable $x_{2 j}=$ false, then either $D_{2 j}$ is out of game or $D_{2 j}$ is on the path $\bar{P}_{2 j}$ at distance $\ell\left(\bar{P}_{2 j}\right)+\ell\left(R_{2 j}\right)-2 i=$ $2(n-i)$ from $\bar{x}_{2 j}^{\prime \prime}$.

The construction of G immediately implies that the claim holds for $i=0$. Assume inductively that the claim holds for $0 \leq i<2 n$. We show that either Facilitator wins by the trivial strategy applied from the steps $2 i+2$ or $2 i+3$, or the configuration is maintained for $i^{\prime}=i+1$.

By the $2 i+2$-th move, Facilitator moves J to $v_{2 i+1}$ and R is moved either to $x_{2 i+1}^{\prime}$ or to $\bar{x}_{2 i+1}^{\prime}$. Note that Facilitator cannot prevent these moves, because of our assumption about the configuration of the positions of the players and the observation that $D_{2 n+1}$ and $D_{2 n}$ are out of game. If R is moved to $x_{2 i+1}^{\prime}$, then we assign the variable $x_{2 i+1}=$ true, and $x_{2 i+1}=$ false otherwise. Assume that R is moved to $x_{2 i+1}^{\prime}$ (the other case is symmetric). If no agent of Divider is moved to $x_{2 i+1}$, then by the next moves R is moved to $x_{2 i+1}$ and J is moved along the path $Q_{2 i+1}$ toward R. Because the vertices of $Q_{2 i+1}$ are not occupied by the agents of Divider, Facilitator wins by the trivial strategy. Since only $D_{2 i+1}$ can move into $x_{2 i+1}$, we assume that $D_{2 i+1}$ is moved to this vertex. Symmetrically, we assume that if R is moved to $\bar{x}_{2 i+1}^{\prime}$, then $D_{2 i+1}$ is moved to $\bar{x}_{2 i+1}$.

Observe that if $D_{2 i+2}$ is out of game, then no agent of Divider can be moved to either $x_{2 i+2}$ or $\bar{x}_{2 i+2}$. Otherwise, $D_{2 i+2}$ is in $y_{2 i+2}$. If the agent is not moved to either $x_{2 i+2}$ or $\bar{x}_{2 i+2}, D_{2 i+2}$ is out of game. In all these cases, the value of the Boolean variable $x_{2 i+2}$ is defined arbitrarily. Otherwise, if $D_{2 i+2}$ is moved to $x_{2 i+2}$, then we set $x_{2 i+2}=$ true, and if $D_{2 i+2}$ is moved to $\bar{x}_{2 i+2}$, then we set $x_{2 i+2}=$ false. Consider the agents D_{h} for $h \in\{1, \ldots, 2 n\}$ such that $h \neq 2 i+1,2 i+2$ are not out of game. If such an agent $D_{2 j-1}\left(D_{2 j}\right.$, respectively) for $j \in\{i+2, \ldots, n\}$ is not moved along $R_{2 j-1}$ toward $y_{2 j-1}$ (along $R_{2 j}$ toward $y_{2 j}$, respectively), $D_{2 j-1}\left(D_{2 j}\right.$, respectively) is out of game. Similarly, if such an agent $D_{2 j-1}$ ($D_{2 j}$, respectively)

Fig. 5. The construction of G^{\prime} for G shown in Fig. 4.
for $j \in\{1, \ldots, i\}$ is not moved along his current path $P_{2 j-1}$ or $\bar{P}_{2 j-1}$ ($P_{2 j}$ or $\bar{P}_{2 j}$, respectively) toward $x_{2 j-1}^{\prime \prime}$ or $\bar{x}_{2 j-1}^{\prime \prime}\left(x_{2 j}^{\prime \prime}\right.$ or $\bar{x}_{2 j}^{\prime \prime}$), respectively, this agent is placed out of game.

Now we consider the step $2 i+3$. By symmetry, we assume without loss of generality that R is in $x_{2 i+1}^{\prime}$ (the case when R is in $\bar{x}_{2 i+1}$ is symmetric). Then Facilitator moves R to u_{i+1} and J to $v_{2 i+2}$. For each agent D_{h} that is not out of game, observe that D_{h} is placed on some path: for $j \in\{i+2, \ldots, n\}, D_{2 j-1}$ and $D_{2 j}$ are in $R_{2 j-1}$ and $R_{2 j}$, respectively, and for $j \in\{1, \ldots, i+1\}, D_{2 j-1}$ and $D_{2 j}$ are in $P_{2 j-1}\left(\bar{P}_{2 j-1}\right)$ and $P_{2 j}\left(\bar{P}_{2 j}\right)$, respectively. If they do not move along these paths toward $y_{2(i+1)}, \ldots, y_{2 n}$ and the vertices $x_{h}^{\prime \prime}$ or $\bar{x}_{h}^{\prime \prime}$ for $h \leq 2 i$, then they are out of game. We obtain that for $i^{\prime}=i+1$, the players are in the required configuration.

By the above claim, we have that after $2 n+1$ steps of the game either Facilitator wins by the trivial strategy applied from some step or the following configuration is achieved:

- The values of the Boolean variables $x_{1}, \ldots, x_{2 n}$ are chosen and $\psi=$ false for them.
- R is in u_{n} and J is in $v_{2 n}$.
- For each $j \in\{1, \ldots, m\}$, the vertices w_{j}, c_{j} and w_{j}^{\prime} are not occupied by the agents of Divider.
- For $i \in\{1, \ldots, 2 n\}$, if $x_{i}^{\prime \prime}$ is occupied by an agent of Divider, then the vertex is occupied by D_{i} and the value of the variable $x_{i}=$ true, and if $\bar{x}_{i}^{\prime \prime}$ is occupied by an agent of Divider, then the vertex is occupied by D_{i} and the value of the variable $x_{i}=$ false.

Since $\psi=$ false, there is $j \in\{1, \ldots, m\}$ such that $C_{j}=$ false. Then for c_{j}, we have that the vertices of $N_{G}\left[c_{j}\right]$ are not occupied by the agents of Divider. This means that Facilitator wins by the next two moves: R is moved to w_{j} and then to c_{j}, and R is moved to w_{j}^{\prime} and then to c_{j}. It follows that Facilitator wins on G in at most τ steps.

This concludes the proof of PSPACE-hardness for Rendezvous in Time.
The proof for Rendezvous is similar but more complicated. Observe that in the winning strategy for Divider for the case $\varphi=$ true, it is crucial that R and J are forced to move toward each other along a shortest path between their positions, because of the limit of the number of steps. In Rendezvous, we have no such a limitation and Facilitator can use other strategies. However, we can modify the construction of the graph to make Facilitator behave exactly in the same way as in the above proof or lose immediately.

We construct the graph G^{\prime} starting from G as follows (see Fig. 5).

- Construct a copy of G.
- For $i \in\{0, \ldots, n\}$, construct a vertex u_{i}^{\prime}, make it adjacent to s and t, and join it with u_{i} by a path L_{i} of length $2 i+1$.
- For $i \in\{1, \ldots, n\}$,
- construct vertices $a_{i}, \bar{a}_{i}, a_{i}^{\prime}, \bar{a}_{i}^{\prime}$ and make them adjacent to s and t,
- join a_{i} with $x_{2 i-1}$ by a path S_{i} and join \bar{a}_{i} with $\bar{x}_{2 i-1}$ by a path \bar{S}_{i} of length $2 i+1$,
- join a_{i}^{\prime} with $x_{2 i-1}^{\prime}$ by a path S_{i}^{\prime} and join \bar{a}_{i}^{\prime} with $\bar{x}_{2 i-1}^{\prime}$ by a path \bar{S}_{i}^{\prime} of length $2 i$.
- For $i \in\{0, \ldots, 2 n\}$, construct a vertex v_{i}^{\prime}, make it adjacent to s and t, and join it with v_{i} by a path L_{i}^{\prime} of length $i+1$.
- For $j \in\{1, \ldots, m\}$, construct a vertex c_{j}^{\prime}, make it adjacent to s and t, and join it with c_{j} by a path F_{j} of length $2 n+3$.

Let $Y=\left\{u_{0}, \ldots, u_{n}\right\} \cup\left(\bigcup_{i=1}^{n}\left\{a_{i}, \bar{a}_{i}, a_{i}^{\prime}, \bar{a}_{i}^{\prime}\right\}\right) \cup\left\{v_{0}^{\prime}, \ldots, v_{2 n}^{\prime}\right\} \cup\left\{c_{1}^{\prime}, \ldots, c_{m}^{\prime}\right\}$. Then we define $k^{\prime}=k+|Y|=9 n+m+4$.
We claim that φ evaluates true if and only if Divider with k^{\prime} agents has a winning strategy in the Rendezvous Game with Adversaries.

Assume that $\varphi=$ true. We describe a winning strategy for Divider. The $k=2 n+2$ agents D_{1}, \ldots, D_{k} are initially placed exactly as in the proof for Rendezvous in Time. The remaining $|Y|$ agents are placed in the vertices of the set Y; we call these agents auxiliary. The agents D_{1}, \ldots, D_{k} are using essentially the same strategy as in the proof for Rendezvous in Time (we call this strategy old). We use the same notation X_{i} to denote the set of vertices occupied by these agents after the i-th step of the game. The auxiliary agents force Facilitator to move R and J in the same way as in the previous proof. For $i \geq 1$, we denote by X_{i}^{\prime} the set of vertices occupied by the agents of Divider after the i-th step of the game; $X_{0}^{\prime}=X_{0} \cup Y$.

We can assume that Facilitator moves either R or J to an adjacent vertex by the first move. Suppose that R is moved to u_{0} and J keeps the old position in t. Then Divider moves $D_{2 n+1}$ from z to s and the agent from v_{0}^{\prime} is moved to v_{0}. Observe that R and J are now in distinct connected components of $G-X_{1}$ and Divider wins by the trivial strategy, that is, by keeping all the agents in their current position. Similarly, if J is moved to v_{0} and R remains in s, then Divider moves $D_{2 n+1}$ to t and the agent from u_{0}^{\prime} is moved to u_{0}. Again, X_{1} separates R and J, that is, Divider wins. Assume that both R and J are moved in the first step of the game. Then Divider responds by moving $D_{1}, \ldots, D_{2 n+2}$ using the old strategy. The auxiliary agents are moved to adjacent vertices along the paths L_{i} for $i \in\{0, \ldots, n\}, S_{i}, \bar{S}_{i}, S_{i}^{\prime}, \bar{S}_{i}^{\prime}$ for $i \in\{1, \ldots, n\}, L_{i}^{\prime}$ for $u \in\{0, \ldots, 2 n\}$ and F_{j} for $j \in\{1, \ldots, m\}$. By the subsequent moves, these agents are moved further along these paths until they reach the end-vertices. If an auxiliary agent is unable to enter a vertex, because it is occupied by an agent of Facilitator, Divider waits until the vertex gets vacated and then moves the agent there.

Assume inductively for $i=0, \ldots, n$ that after the $2 i+1$-th step of the game, R is in u_{i}, J is in $v_{2 i}$ and the agents D_{1}, \ldots, D_{k} are occupying the positions according to the old strategy. Notice if $i=0$, then s and t are occupied by $D_{2 n+1}$ and $D_{2 n+2}$. If $i \geq 1$, then the vertices $x_{2 i-1}^{\prime}, \bar{x}_{2 i-1}^{\prime}$ and the vertex $v_{2 i-1}$ are occupied by auxiliary agents of Divider. Moreover, the vertices that are adjacent to u_{i} in L_{i} and to $v_{2 i}$ in $L_{2 i}^{\prime}$ are also occupied by auxiliary agents. This means that neither R or J can move "backward" or use L_{i} or $L_{2 i}^{\prime}$.

Suppose that $i<n$. Notice that the vertices of S_{i+1}^{\prime} and \bar{S}_{i+1}^{\prime} that are adjacent to $x_{2 i+1}^{\prime}$ and $\bar{x}_{2 i+1}^{\prime}$ are occupied by auxiliary agents. If Facilitator does not move R to an adjacent vertex, i.e., either to $x_{2 i+1}^{\prime}$ or $\bar{x}_{2 i+1}^{\prime}$, then Divider moves the agents to $x_{2 i+1}^{\prime}$ and $\bar{x}_{2 i+1}^{\prime}$ and wins by the trivial strategy. Similarly, the vertex adjacent to $v_{2 i+1}$ in $L_{2 i+1}^{\prime}$ is occupied by an auxiliary agent. Hence, if J is not moved, this agent enters $v_{2 i+1}$ and J gets separated from R.

Assume that R and J are moved to adjacent vertices. Divider responds using the old strategy. Assume that R is moved to $x_{2 i+1}^{\prime}$ as the other case is symmetric. Recall that according to the old strategy, $D_{2 i+1}$ is moved to $x_{2 i+1}$. Notice also that u_{i} and $v_{2 i}$ are occupied by auxiliary agents. Moreover, the neighbors of $x_{2 i+1}, \bar{x}_{2 i+1}, x_{2 i+1}^{\prime}, \bar{x}_{2 i+1}^{\prime}, u_{i+1}, v_{2 i+1}$ and $v_{2 i+2}$ in $S_{i+1}, \bar{S}_{i+1}, S_{i+1}^{\prime}, \bar{S}_{i+1}^{\prime}, L_{i+1}$ and $L_{2 i+1}$, respectively, are occupied by auxiliary agents. If R is not moved, then an agent enters u_{i+2} and R gets separated from J. If J is not moved, then agents enter $x_{2 i+1}, \bar{x}_{2 i+1}$ and $v_{2 i+2}$. Again, R and J are in distinct components of $G-X_{2 i+2}$. Suppose that J is moved to one of the neighbors of $v_{2 i+1}$ in $Q_{2 i+1}$ or $\bar{Q}_{2 i+1}$. Divider responds by moving agents to $v_{2 i+1}, x_{2 i+1}$ and $\bar{x}_{2 i+1}$ and wins. We conclude that both R and J should be moved "forward" to u_{i+1} and $v_{2 i}$. Then Divider responds using the old strategy.

Using these arguments, we obtain after $2 n+1$ steps of the game either Divider already separated R and J and won or the following configuration is achieved:

- R is in u_{n} and J is in $v_{2 n}$ and the vertices of the sets $N_{G^{\prime}}\left(u_{n}\right) \backslash\left\{w_{1}, \ldots, w_{m}\right\}$ and $N_{G^{\prime}}\left(v_{2 n}\right) \backslash\left\{w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right\}$ are occupied by auxiliary agents.
- For every $j \in\{1, \ldots, m\}$, the vertex at distance two from c_{i} in F_{i} is occupied by auxiliary agents.
- For $i \in\{1, \ldots, n\}, D_{i}$ is either in $x_{i}^{\prime \prime}$ or in $\bar{x}_{i}^{\prime \prime}$, and for the corresponding choice of the values of the Boolean variables $x_{1}, \ldots, x_{2 n}, \psi=C_{1} \wedge \ldots \wedge C_{m}=$ true.

If Facilitator moves neither R nor J to adjacent vertices, Divider moves auxiliary agents in two steps to c_{1}, \ldots, c_{m} and separates R and J. Assume that R is moved from u_{n} to w_{j}. Then the auxiliary agent that is in the vertex adjacent to u_{n} in the path L_{n} is moved to u_{n} and one of the agents $D_{1}, \ldots, D_{2 n}$ is moved to c_{j}. Recall that such an agent exists, because $C_{j}=$ true. Then R is separated from J. Similarly, if J is moved to w_{j}^{\prime}, then an auxiliary agent is moved to $v_{2 n}$ and one of the agents $D_{1}, \ldots, D_{2 n}$ is moved to c_{j}. Then Divider wins.

This completes the proof that if φ evaluates true, then Divider with k^{\prime} agents has a winning strategy.
To show that if φ evaluates false, then Facilitator has a winning strategy, we use the same arguments as in the analogous proof for Rendezvous in Time. If there is a vertex of $N_{G}(s) \cap N_{G}(t)$ that is not occupied by the agents of Divider, Facilitator wins in one step by moving R and J to this vertex. Assume that all the vertices of $N_{G}(s) \cap N_{G}(t)$ are occupied by the agents of Divider in the beginning of the game. In particular, we have that every vertex of Y is occupied by one agent.

Now Facilitator uses the same strategy as in the proof for Rendezvous in Time. To see that this is a winning strategy, it is sufficient to observe that the agents of Divider that are placed in the vertices of Y are out of game and we can ignore them in the analysis of the strategy of Facilitator.

We obtain that φ evaluates true if and only if Divider with k^{\prime} agents has a winning strategy in the Rendezvous Game with Adversaries. Therefore, Rendezvous is PSPACE-hard.

5. Rendezvous in Time for graphs of bounded neighborhood diversity

In this section, we show that Rendezvous in Time is FPT when parameterized by τ and the neighborhood diversity of the input graph.

The notion of neighborhood diversity was introduced by Lampis in [25]. It is convenient for us to define this notion in terms of modules. Let G be a graph. A set of vertices $U \subseteq V(G)$ is a module if for every $v \in V(G) \backslash U$, either $N_{G}(v) \cap U=\emptyset$ or $U \subseteq N_{G}(v)$. It is said that is a module U is a clique module if U is a clique and U is an independent module if U is an independent set. We say that a partition $\left\{U_{1}, \ldots, U_{\ell}\right\}$ of $V(G)$ into clique and independent modules is a neighborhood decomposition. The neighborhood diversity of a graph G is the minimum ℓ such that G has a neighborhood decomposition with ℓ modules; we use nd (G) to denote the neighborhood diversity of G. The value of $n d(G)$ and the corresponding partition of $V(G)$ into clique and independent modules can be computed in polynomial (linear) time [25]. Given a neighborhood decomposition $\mathcal{U}=\left\{U_{1}, \ldots, U_{\ell}\right\}$, we define the quotient graph \mathcal{G} as the graph with the vertex set $\{1, \ldots, \ell\}$ such that i is adjacent to j for distinct $i, j \in\{1, \ldots, \ell\}$ if and only if $u \in U_{i}$ is adjacent to $v \in U_{j}$ in G. For a vertex $v \in V(G)$, id $(v)=i$ if $v \in U_{i}$. For a multiset of vertices $X=\left\{x_{1}, \ldots, x_{r}\right\}, \operatorname{id}(X)$ denotes the multiset of indices $\left\{\operatorname{id}\left(x_{1}\right), \ldots, \operatorname{id}\left(x_{r}\right)\right\}$.

Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{\ell}\right\}$ be a neighborhood decomposition of G. Notice that every bijective mapping $\varphi: V(G) \rightarrow V(G)$ such that $\varphi\left(U_{i}\right)=U_{i}$ for $i \in\{1, \ldots, \ell\}$ is an automorphism of G. We say that φ is an automorphism that agrees with \mathcal{U}.

For an automorphism φ, we extend it to multisets of vertices in a natural way. Namely, if $X=\left\{x_{1}, \ldots, x_{r}\right\}$ is a multiset of vertices of $G, \varphi(X)=\left\{\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{r}\right)\right\}$. Similarly, for a pair (X, Y) of multisets without common elements, $\varphi(X, Y)=$ $(\varphi(X), \varphi(Y))$.

Let G be a connected graph and let $\mathcal{U}=\left\{U_{1}, \ldots, U_{\ell}\right\}$ be a neighborhood decomposition of G such that $\ell=\operatorname{nd}(G)$. Suppose that $s, t \in V(G)$ such that s and t belong to distinct modules of \mathcal{U}. We consider our Rendezvous Game with Adversaries on G in τ steps.

Consider a strategy of Divider with k agents, that is, a family of functions $d_{i}: \mathcal{P}_{G}^{k} \rightarrow \mathcal{D}_{G}^{k}$ for $i \in\{0, \ldots, \tau-1\}$, where $d_{i}: \mathcal{P}_{G}^{k} \rightarrow \mathcal{D}_{G}^{k}$ for $i \in\{0, \ldots, \tau-1\}$ such that for $i \in\{1, \ldots, \tau-1\}$. Recall that d_{i} maps $(F, D) \in \mathcal{P}_{G}^{k}$ to $D^{\prime} \in \mathcal{D}_{G}^{k}$, where D and D^{\prime} are adjacent and D^{\prime} is compatible with F, and $d_{0} \operatorname{maps}(\{s, t\}, \emptyset)$ to $D^{\prime} \in \mathcal{D}_{G}^{k}$ compatible with $\{s, t\}$.

Recall that a strategy of Divider can be represented as a rooted tree $\mathcal{T}_{G}^{k}(\tau)$ of height τ. Each node $v \in V\left(\mathcal{T}_{G}^{k}(\tau)\right)$ is associated with a position $P_{v} \in \mathcal{P}_{G}^{k}$, and

- $P_{r}=\left(\{s, t\}, d_{0}(\{s, t\}, \emptyset)\right)$ is associated with the root r of $\mathcal{T}_{G}^{k}(\tau)$,
- for every node $v \in V\left(\mathcal{T}_{G}^{k}(\tau)\right)$ with $P_{v}=(F, D)$ at distance $i \leq \tau-1$ from the root, there is a child u of v for every $\left(F^{\prime}, D^{\prime}\right) \in \mathcal{P}_{G}^{k}$ such that (i) F^{\prime} is adjacent to F and compatible with D, and (ii) $D^{\prime}=d_{i}\left(F^{\prime}, D\right)$, and u is associated with $P_{u}=\left(F^{\prime}, D^{\prime}\right)$.

From now, we consider such a representation.
By Observation $2, \mathcal{T}_{G}^{k}(\tau)$ is a winning strategy for Divider if and only if F is a set of two distinct vertices for every $P_{v}=(F, D)$ for $v \in V\left(\mathcal{T}_{G}^{k}(\tau)\right)$. By our assumption that s and t are in distinct modules, we can refine the claim.

Observation 5. The tree $\mathcal{T}_{G}^{k}(\tau)$ is a winning strategy for Divider if and only if for every $v \in V\left(\mathcal{T}_{G}^{k}(\tau)\right)$ with $P_{v}=(F, D)$ for $v \in$ $V\left(\mathcal{T}_{G}^{k}(\tau)\right), F$ contains at most one vertex of every module U_{i} for $i \in\{1, \ldots, \ell\}$.

Proof. To see the observation, it is sufficient to note that if both agents of Facilitator are moved to the same module or if one of the agents is in a module U_{i} and the other is moved to U_{i}, then Facilitator can move the agents into the same vertex.

Let $P=(F, D)$ and $P^{\prime}=\left(F^{\prime}, D^{\prime}\right)$ be positions in the Rendezvous Game with Adversaries on G. We say that P and P^{\prime} are isomorphic, if there an automorphism φ of G such that $P^{\prime}=\varphi(P)$. We also say that P and P^{\prime} are isomorphic with respect to φ for such an automorphism φ. We use the following straightforward observation about positions in the game.

Observation 6. Let P and P^{\prime} be isomorphic positions in the Rendezvous Game with Adversaries on G. Then Divider can win in at most r steps if the game starts from P if and only if Divider can win in r steps if the game starts from P^{\prime}.

We say that $\mathcal{T}_{G}^{k}(\tau)$ is a uniform strategy if for every node v with $P_{v}=(F, D)$ and each of its two children u_{1} and u_{2} with $P_{u_{1}}=\left(F_{1}, D_{1}\right)$ and $P_{u_{2}}=\left(F_{2}, D_{2}\right)$, the following holds: if $\left(F_{1}, D\right)$ and $\left(F_{2}, D\right)$ are isomorphic with respect to some
automorphism φ of G that agrees with \mathcal{U}, then $P_{u_{1}}$ and $P_{u_{2}}$ are isomorphic with respect to some automorphism ψ of G that agrees with \mathcal{U}. Informally, if possible moves of the agents of Facilitator to F_{1} and F_{2} are the same with respect to moving them to the same modules, then the response of Divider is also the same (up to an automorphism that agrees with $\mathcal{U})$. Observation 6 immediately implies the following.

Observation 7. If Divider has a winning strategy in the Rendezvous Game with Adversaries on G, then Divider has a uniform winning strategy.

From now on, we assume that $\mathcal{T}_{G}^{k}(\tau)$ is uniform.
Let u_{1} and u_{2} be distinct children of a node v of $\mathcal{T}_{G}^{k}(\tau)$. We say that u_{1} and u_{2} are equivalent if $P_{u_{1}}$ and $P_{u_{2}}$ are isomorphic with respect to some automorphism φ of G that agrees with \mathcal{U}. We also say that two subtrees T_{1} and T_{2} rooted in u_{1} and u_{2} are equivalent if u_{1} and u_{2} are equivalent. It is straightforward to see that the introduced relation is indeed an equivalence relation. Observe that, because the strategy is uniform, for $P_{u_{1}}=\left(F_{1}, D_{1}\right)$ and $P_{u_{2}}=\left(F_{2}, D_{2}\right), u_{1}$ and u_{2} are equivalent if and only if $\left|F_{1} \cap U_{i}\right|=\left|F_{2} \cap U_{i}\right|$ for all $i \in\{1, \ldots, \ell\}$.

Since $\mathcal{T}_{G}^{k}(\tau)$ is uniform, to represent the strategy, it is sufficient to keep one representative from each class of equivalent children. Given $\mathcal{T}_{G}^{k}(\tau)$, we construct the reduced strategy $\hat{\mathcal{T}}_{G}^{k}(\tau)$ obtained by the following operation applied top-down starting from the root: for a node v and a class of equivalent subtrees rooted in the children of v, delete all the elements of the class except one. Observe that given a reduced strategy $\hat{\mathcal{T}}_{G}^{k}(\tau)$, we can reconstruct $\mathcal{T}_{G}^{k}(\tau)$. Notice also that by Observations 5 and 6 , the strategy is a winning strategy for Divider if and only if for every $v \in V\left(\hat{\mathcal{T}}_{G}^{k}(\tau)\right)$ with $P_{v}=(F, D)$ for $v \in V\left(\mathcal{T}_{G}^{k}(\tau)\right), F$ contains at most one vertex of every module U_{i} for $i \in\{1, \ldots, \ell\}$.

Now we construct the tree that represents all possible moves of Facilitator in τ steps between the modules without the agents of Divider. We define the rooted tree $\mathcal{T}_{G}^{*}(\tau)$ of height τ with each node v associated with a pair $X_{v}=\{p, q\}$ of not necessarily distinct elements of $\{1, \ldots, \ell\}$ such that

- $X_{r}=\{\operatorname{id}(s), \operatorname{id}(t)\}$ is associated with the root r of $\mathcal{T}_{G}^{*}(\tau)$,
- for every node $v \in V\left(\mathcal{T}_{G}^{*}(\tau)\right)$ with $X_{v}=\{p, q\}$ at distance at most $\tau-1$ from the root, there is a child u of v with $X_{v}=\left\{p^{\prime}, q^{\prime}\right\}$ for every $\left\{p^{\prime}, q^{\prime}\right\}$ adjacent to $\{p, q\}$ in the quotient graph \mathcal{G}.

Observe that $\mathcal{T}_{G}^{*}(\tau)$ has at most $\binom{\ell+1}{2}^{\tau+1}$ nodes.
The tree $\mathcal{T}_{G}^{k}(\tau)$ can be seen as a subtree of $\mathcal{T}_{G}^{*}(\tau)$. Formally, we define an injective mapping $\alpha: V\left(\hat{\mathcal{T}}_{G}^{k}(\tau)\right) \rightarrow V\left(\mathcal{T}_{G}^{*}(\tau)\right)$ inductively top-down:

- for the root r of $\hat{\mathcal{T}}_{G}^{k}(\tau), \alpha(r)$ is the root of $\mathcal{T}_{G}^{*}(\tau)$,
- if $\alpha(v)=u$ for $v \in V\left(\hat{\mathcal{T}}_{G}^{k}(\tau)\right)$, then every child v^{\prime} of v in $\hat{\mathcal{T}}_{G}^{k}(\tau)$ with $P_{v^{\prime}}=(F, D)$ is mapped to the child u^{\prime} of u in $\mathcal{T}_{G}^{*}(\tau)$ with $X_{u^{\prime}}=\operatorname{id}(F)$.

In particular, for every $v \in V\left(\hat{\mathcal{T}}_{G}^{k}(\tau)\right)$ with $P_{v}=(F, D), X_{\alpha(v)}=\operatorname{id}(F)$. We say that the subtree of $\mathcal{T}_{G}^{*}(\tau)$ induced by $\alpha\left(V\left(\hat{\mathcal{T}}_{G}^{k}(\tau)\right)\right)$ is a projection of $\hat{\mathcal{T}}_{G}^{k}(\tau)$ to $\mathcal{T}_{G}^{*}(\tau)$. We use the following property of projections that immediately follows from the definition.

Observation 8. Let u be a non-leaf node of $\mathcal{T}_{G}^{*}(\tau)$ with $X_{u}=\{p, q\}$. Let also $u=\alpha(v)$ for some $v \in V\left(\hat{\mathcal{T}}_{G}^{k}(\tau)\right)$ with $P_{v}=(F, D)$ and let $I_{v}=\left\{i \mid i \in\{1, \ldots, \ell\}\right.$ and $\left.U_{i} \subseteq D\right\}$. Then a child u^{\prime} of u in $\mathcal{T}_{G}^{*}(\tau)$ with $X_{u^{\prime}}=\{p, q\}$ is a child of u in the projection of $\hat{\mathcal{T}}_{G}^{k}(\tau)$ if and only if $\left\{p^{\prime}, q^{\prime}\right\} \in\left\{\{i, j\} \mid i \in N_{\mathcal{G}}[p] \backslash I_{v}\right.$ and $\left.j \in N_{\mathcal{G}}[q] \backslash I_{v}\right\}$.

Note, in particular, that each leaf of the projection of $\hat{\mathcal{T}}_{G}^{k}(\tau)$ is a leaf of $\mathcal{T}_{G}^{*}(\tau)$.
In our algorithm for Rendezvous in Time, we check whether Divider with k agents has a winning strategy on G. For this, we consider $\mathcal{T}_{G}^{*}(\tau)$ and guess the projection \mathcal{T} of a hypothetical reduced winning strategy tree by trying all subtrees of $\mathcal{T}_{G}^{*}(\tau)$ using brute force. For each \mathcal{T}, we verify whether Divider indeed has a strategy corresponding to \mathcal{T} by checking whether Divider can respond to the moves of Facilitator in such a way that Divider is able to ensure that \mathcal{T} has the required structure, according to Observation 8.

Checking whether Divider has a strategy corresponding to \mathcal{T} is based on the results of Lenstra [26] (see also [16,23] for further improvements) about parameterized complexity of Integer Linear Programming. The task of the Integer Linear Programming Feasibility problem is, given a $q \times p$ matrix A over \mathbb{Z} and a vector $b \in \mathbb{Z}^{q}$, to decide whether there is a vector $x \in \mathbb{Z}^{p}$ such that $A x \leq b$; we write $A x \leq b$ to denote that for every $i \in\{1, \ldots, q\}$, the i-th element of the vector $A x$ is at most the i-th element of b. Lenstra [26] proved that Integer Linear Programming Feasibility is FPT when parameterized by p and later this result was improved by Kannan [23]. Further, Frank and Tardos [16] proved that Integer Linear Programming Feasibility can be solved in polynomial space. These results can be summarized in the following statement.

Proposition 3 ([16,23,26]). Integer Linear Programming Feasibility can be solved in $\mathcal{O}\left(p^{2.5 p+o(p)} \cdot L\right)$ time and polynomial in L space, where L is the number of bits in the input.

Theorem 5. Rendezvous in Time can be solved in $2^{\ell \mathcal{O}(\tau)} \cdot n^{\mathcal{O}(1)}$ time on graphs of neighborhood diversity ℓ.
Proof. Let (G, s, t, k, τ) be an instance of Rendezvous in Time. If $s=t$ or s and t are adjacent, then the problem is trivial. Assume that s and t are distinct nonadjacent vertices of G. We compute a neighborhood decomposition $\mathcal{U}=\left\{U_{1}, \ldots, U_{\ell}\right\}$ of G with $\ell=\operatorname{nd}(G)$. Recall that this can be done in polynomial time [25]. Denote by $n_{i}=\left|U_{i}\right|$ for $i \in\{1, \ldots, \ell\}$.

Suppose that s and t are in the same module U_{i}. Since s and t are distinct and not adjacent, U_{i} is an independent module. We have that $N_{G}(s)=N_{G}(t)$ and, therefore, $\lambda_{G}(s, t)=\left|N_{G}(s) \cap N_{G}(t)\right|$. Notice that Facilitator wins in one step if $k<\left|N_{G}(s) \cap N_{G}(t)\right|$ by moving R and J into a vertex of $N_{G}(s) \cap N_{G}(t)$ that is not occupied by an agent of Divider. We conclude that $d_{G}(s, t)=\left|N_{G}(s) \cap N_{G}(t)\right|$ and, therefore, (G, s, t, k, τ) is a yes-instance if and only if $k<\left|N_{G}(s) \cap N_{G}(t)\right|$. From now, we assume that s and t are in distinct modules of \mathcal{U}.

We construct the tree $\mathcal{T}_{G}^{*}(\tau)$ by brute force with the corresponding pairs $X_{v}=\{p, q\}$ for $v \in V\left(\mathcal{T}_{G}^{*}(\tau)\right)$. Since $\mathcal{T}_{G}^{*}(\tau)$ has at most $\binom{\ell+1}{2}^{\tau+1}$ nodes, the construction can be done in $\ell \mathcal{O}(\tau)$ time. Denote by r the root of $\mathcal{T}_{G}^{*}(\tau)$.

We consider all subtrees \mathcal{T} of $\mathcal{T}_{G}^{*}(\tau)$ containing r and rooted in this vertex, whose leaves are leaves of $\mathcal{T}_{G}^{*}(\tau)$. Observe that the total number of such trees is at most $2^{\left|\mathcal{T}_{G}^{*}(\tau)\right|}=2^{\ell \mathcal{O}(\tau)}$. For each \mathcal{T}, we check whether Divider has a winning strategy such that the projection of the corresponding reduced strategy is \mathcal{T}. If we find such a tree \mathcal{T}, we conclude that Divider wins in the game. Otherwise, we conclude that Facilitator wins.

Assume that \mathcal{T} is given. If for some $v \in V(\mathcal{T}), X_{v}=\{p, p\}$ for some $p \in\{1, \ldots, \ell\}$, we discard the choice of \mathcal{T}, because \mathcal{T} cannot be the projection of a winning strategy of Divider by Observation 5 . Suppose that for every $v \in V(\mathcal{T}), X_{v}=\{p, q\}$ with $p \neq q$.

The running time of our algorithm is going to be dominated by checking all the trees \mathcal{T} and solving Integer Linear Programming Feasibility. Therefore, to simplify the arguments, for each node v of \mathcal{T} we guess the set $I_{v} \subseteq\{1, \ldots, \ell\}$ such that the agents of Divider occupy all the vertices of the modules U_{i} with $i \in I_{V}$ in the position of the game corresponding to v. As standard, we do it by brute force by checking all possible assignments of sets to the nodes of \mathcal{T}. Since the number of the assignments is at most $\left(2^{\ell}\right)^{|V(\mathcal{T})|}$, this can be done in $2^{\ell^{\mathcal{O}(\tau)}}$ time.

For each selection of I_{v} for $v \in V(\mathcal{T})$, we check feasibility using Observation 8 . Namely, for each non-leaf vertex $v \in$ $V(\mathcal{T})$, we consider its set $X_{v}=\{p, q\}$ and check whether the children u of v in $\mathcal{T}_{G}^{*}(\tau)$ with $X_{u} \in\left\{\{i, j\} \mid i \in N_{\mathcal{G}}[p] \backslash\right.$ I_{v} and $\left.j \in N_{\mathcal{G}}[q] \backslash I_{v}\right\}$ are exactly the children of v in \mathcal{T}. We discard the assignment if this is not the case and we discard the current choice of \mathcal{T} if we fail to find a feasible assignment of sets I_{v}.

From now on, we assume that the assignment of sets I_{V} for $v \in V(\mathcal{T})$ is given.
Our general idea is to express the question about the existence of a winning strategy of Divider in terms of Integer Linear Programming Feasibility. We start with introducing two families of variables $x_{1}^{v}, \ldots, x_{\ell}^{v}$ and $y_{1}^{v}, \ldots, y_{\ell}^{v}$ for each node v of \mathcal{T}. The intuition behind these variables is the following. For every $i \in\{1, \ldots, \ell\}, x_{i}^{v}$ is the number of vertices of U_{i} occupied by agents of Divider in the position of the game corresponding to the node v. It is more convenient for us to consider x_{i}^{v} as the number of the agents of Divider that occupy distinct vertices of U_{i}; we call these agents blockers. Divider may also have other agents in U_{i} and y_{i}^{v} is the number of these agents and we call these agents dwellers. It is also convenient to assume that blockers are active in the current step of the game and dwellers are inactive and do not prevent R or J from entering the vertices occupied by them. By this convenience, we can allow, say, the situation $x_{i}^{v}=0$ and $y_{i}^{v}>0$, as we do not care where the dwellers are placed in the corresponding module.

We impose the following constraints on these variables for every $v \in V(\mathcal{T})$:

$$
\begin{align*}
& \sum_{i=1}^{\ell}\left(x_{i}^{v}+y_{i}^{v}\right)=k, x_{i}^{v} \geq 0 \text { and } y_{i}^{v} \geq 0 \text { for every } i \in\{1, \ldots, \ell\}, \tag{3}\\
& x_{i}^{v} \leq n_{i} \text { for every } i \in\{1, \ldots, \ell\} \backslash X_{v}, \tag{4}\\
& x_{i}^{v} \leq n_{i}-1 \text { for every } i \in X_{v}, \tag{5}\\
& y_{i}^{v}=0 \text { for } i \in\{1, \ldots, \ell\} \text { if } n_{i}=1 \text { and } i \in X_{v} . \tag{6}
\end{align*}
$$

The necessity of constraints (3) and (4) is straightforward. To see the reason behind (5) and (6), notice that if a vertex of U_{i} is occupied by an agent of Facilitator, then at most n_{i} blockers can be in U_{i} and, moreover, if $n_{i}=1$, then no agent of Divider can be in U_{i}.

Next, we state the constraints coming from the choice of sets I_{v}. For every $v \in V(\mathcal{T})$,

$$
\begin{equation*}
x_{i}^{v}=n_{i} \text { for every } i \in I_{v} \tag{7}
\end{equation*}
$$

The variables x_{i}^{v} and y_{i}^{v} are used to express the positions of the players. However, we also have to express transitions between these positions, that is, the players should be able to make moves from the position corresponding to a node of \mathcal{T} to the positions corresponding to its children. For this, we need additional variables. For every $v \in V(\mathcal{T})$ and every
child u of v in \mathcal{T}, and every ordered pair (i, j) of adjacent vertices of the quotient graph \mathcal{G}, we introduce four variables $a_{i, j}^{v, u}, b_{i, j}^{v, u}, c_{i, j}^{v, u}, d_{i, j}^{v, u}$. The meaning of the variables is following. For the move of Facilitator from the position corresponding to v to the position corresponding to u, Divider responds by moving $a_{i, j}^{v, u}$ blockers from X_{i} to make them blockers in X_{j}, $b_{i, j}^{v, u}$ blockers from X_{i} become dwellers in $X_{j}, c_{i, j}^{v, u}$ dwellers from X_{i} become blockers in X_{j}, and $d_{i, j}^{v, u}$ dwellers from X_{i} become dwellers in X_{j}. Notice that if U_{i} is a clique module, then some dwellers can move to adjacent vertices to become blockers (it has no sense for Divider to make a blocker a dweller). For this, we introduce a variable $z_{i}^{v, u}$ for $i \in\{1, \ldots, \ell\}$. The constraints for these variables are the following.

For every non-leaf $v \in V(\mathcal{T})$ and every child u of v in \mathcal{T},

$$
\begin{align*}
& a_{i, j}^{v, u} \geq 0, b_{i, j}^{v, u} \geq 0, c_{i, j}^{v, u} \geq 0, d_{i, j}^{v, u} \geq 0 \text { for each ordered pair }(i, j) \text { of adjacent vertices of } \mathcal{G}, \tag{8}\\
& z_{i}^{v, u} \geq 0 \text { and } z_{i}^{v, u}=0 \text { for every } i \in\{1, \ldots, \ell\} \text { s.t. } U_{i} \text { is an independent module, } \tag{9}\\
& \sum_{j \in N_{\mathcal{G}}(i)}\left(a_{i, j}^{v, u}+b_{i, j}^{v, u}\right) \leq x_{i}^{v} \text { and } \sum_{j \in N_{\mathcal{G}}(i)}\left(c_{i, j}^{v, u}+d_{i, j}^{v, u}\right)+z_{i}^{v, u} \leq y_{i}^{v} \text { for every } i \in\{1, \ldots, \ell\}, \tag{10}\\
& x_{i}^{u}=x_{i}^{v}-\sum_{j \in N_{\mathcal{G}}(i)}\left(a_{i, j}^{v, u}+b_{i, j}^{v, u}\right)+\sum_{j \in N_{\mathcal{G}}(i)}\left(a_{j, i}^{v, u}+c_{j, i}^{v, u}\right)+z_{i}^{v, u} \text { for every } i \in\{1, \ldots, \ell\}, \tag{11}\\
& y_{i}^{u}=y_{i}^{v}-\sum_{j \in N_{\mathcal{G}}(i)}\left(c_{i, j}^{v, u}+d_{i, j}^{v, u}\right)-z_{i}^{v, u}+\sum_{j \in N_{\mathcal{G}}(i)}\left(b_{j, i}^{v, u}+d_{j, i}^{v, u}\right) \text { for every } i \in\{1, \ldots, \ell\} \tag{12}
\end{align*}
$$

Constraints (8) and (9) are straightforward. Constraint (10) encodes that the number of blockers that leave a module U_{i} is upper bounded by the number of blockers in U_{i} and, symmetrically, the number of dwellers that leave a module U_{i} or become blockers in the block is at most the number of dwellers in U_{i}. Finally, (11) and (12) express that the movements of agents of Divider from the position associated with v lead to the position corresponding to u.

We have $2|V(\mathcal{T})| \ell$ variables x_{i}^{v}, y_{j}^{v}, at most $8|E(\mathcal{T})|\binom{\ell}{2}$ variables $a_{i, j}^{v, u}, b_{i, j}^{v, u}, c_{i, j}^{v, u}, d_{i, j}^{v, u}$, and $|E(\mathcal{T})| \ell$ variables $z_{i}^{u, v}$, that is, $\ell^{\mathcal{O}(\tau)}$ variables. We defined $5|V(\mathcal{T})| \ell$ constraints (3)-(6), at most $|V(\mathcal{T})| \ell$ constraints (7), and $|E(\mathcal{T})|\left(8\binom{\ell}{2}+5 \ell\right)$ constraints (8)-(12). Hence, in total, we have $\ell^{\mathcal{O}(\tau)}$ constraints. Denote the obtained system of integer linear inequalities by (*). Observe that the coefficients in $(*)$ are upper bounded by n. Therefore, the bit-size of $(*)$ is $\ell^{\mathcal{O}(\tau)} \cdot \log n$. We solve $(*)$ in $2^{\ell \mathcal{O}(\tau)} \cdot \log n$ time by Proposition 3.

We claim that $(*)$ is feasible, that is, has an integer solution if and only if Divider has a winning strategy such that the projection of the reduced strategy on $\mathcal{T}_{G}^{*}(\tau)$ is \mathcal{T}.

Suppose that Divider with k agents has a uniform winning strategy $\mathcal{T}_{G}^{k}(\tau)$ such that the projection of the reduced strategy $\hat{\mathcal{T}}$ on $\mathcal{T}_{G}^{*}(\tau)$ is \mathcal{T}. For every two distinct modules U_{i} and U_{j}, ether every vertex of U_{i} is adjacent to every vertex of U_{j} or the vertices of the modules are nonadjacent. This allows us to make some additional assumptions about $\mathcal{T}_{G}^{k}(\tau)$. Namely, we can assume that on each step the agents of Divider are divided into blockers and dwellers and then we can assume that a blocker (dweller, respectively) agent can become a dweller (blocker, respectively) only if the agent is moved to an adjacent vertex. Also, we can assume that a blocker is never moved to an adjacent vertex of the same clique module to become a dweller. Then we define the values of all the variables according to the description given in the construction of $(*)$ following the reduced strategy $\hat{\mathcal{T}}_{G}^{k}(\tau)$. Then the construction of the constraints of $(*)$ immediately implies that these values of the variables provide a solution of $(*)$.

For the opposite direction, given a solution of $(*)$, we construct the strategy $\mathcal{T}_{G}^{k}(\tau)$. Initially, we place the agents of Divider on G according to the values of $x_{1}^{r}, \ldots, x_{\ell}^{r}$ and $y_{1}^{r}, \ldots, y_{\ell}^{r}$ for the root r. For each $i \in\{1, \ldots, \ell\}$, we place x_{i}^{r} agents (blockers) into distinct vertices of U_{i} unoccupied by the agents of Facilitator. Then we put y_{i}^{r} dwellers into U_{i}; as we pointed out above, it is convenient to assume that these agents are inactive and we can place them arbitrarily. Assume inductively that we constructed a node v of the future $\mathcal{T}_{G}^{k}(\tau)$ with $P_{v}=(F, D)$ that corresponds to the node v^{\prime} of \mathcal{T}, that is, id $(F)=X_{v^{\prime}}$ and for each $i \in\{1, \ldots, \ell\}$, Divider has exactly $x_{i}^{v^{\prime}}$ blockers in U_{i} that occupy distinct vertices and also $y_{i}^{v^{\prime}}$ dwellers are in U_{i}. Assume that $F^{\prime} \in \mathcal{F}$ is compatible with D and adjacent to F. Then because of constraints (7), there is a child u^{\prime} of v^{\prime} in \mathcal{T} with $\operatorname{id}\left(F^{\prime}\right)=X_{u^{\prime}}$. Then Divider responds to moving the agents of Facilitator from F to F^{\prime} by moving his agents according to the values $a_{i, j}^{v^{\prime}, u^{\prime}}, b_{i, j}^{v^{\prime}, u^{\prime}}, c_{i, j}^{v^{\prime}, u^{\prime}}, d_{i, j}^{v^{\prime}, u^{\prime}}$ for the ordered pairs (i, j) of adjacent vertices of \mathcal{G} and according to the values of $z_{i}^{v^{\prime}, u^{\prime}}$ for $i \in\{1, \ldots, \ell\}$. For the obtained node u of $\mathcal{T}_{G}^{k}(\tau)$ with $P_{u}=\left(F^{\prime}, D^{\prime}\right)$, we have that the position corresponds to the configuration defined by the variables $x_{1}^{u^{\prime}}, \ldots, x_{\ell}^{u^{\prime}}$ and $y_{1}^{u^{\prime}}, \ldots, y_{\ell}^{u^{\prime}}$. These inductive arguments imply that the constructed strategy is a uniform winning strategy for Divider and the projection of the reduced strategy is \mathcal{T}.

This completes the construction of the algorithm. To evaluate the running time, observe that we consider $2^{\ell \mathcal{O}(\tau)}$ trees \mathcal{T}, and for each \mathcal{T}, we consider $2^{\ell \mathcal{O}(\tau)}$ assignments of sets I_{v} for the nodes. Then for each tree \mathcal{T} given together with the assignments of sets I_{v} for $v \in V(\mathcal{T})$, we construct a solve the system $(*)$ in time $2^{\ell \mathcal{O}(\tau)} \cdot \log n$. Taking into account the preliminary steps where we consider special cases of s and t and construct the neighborhood decomposition \mathcal{U}, the total running time is $2^{\ell \mathcal{O}(\tau)} \cdot n^{\mathcal{O}(1)}$.

6. Conclusion

We initiated the study of the Rendezvous Game with Adversaries on graphs. We proved that in several cases, the dynamic separation number $d_{G}(s, t)$, the minimum number of agents needed for Divider to win against Facilitator, could be equal to the minimum size $\lambda_{G}(s, t)$ of an (s, t)-separator in G. In particular, this equality holds on P_{5}-free graphs and chordal graphs. Very recently, Misra et al. $[28,29]$ proved that the same property holds for the series-parallel graphs. However, in general, the difference $\lambda_{G}(s, t)-d_{G}(s, t)$ could be arbitrarily large. Are there other natural graph classes for which equality holds? Is it possible to characterize hereditary graph classes with this property?

The equality between $d_{G}(s, t)$ and $\lambda_{G}(s, t)$ for a graph class implies that RENDEzvous can be solved in polynomial time on this class. Thus, Rendezvous can be solved in polynomial time on P_{5}-free graphs, chordal graphs, and series-parallel graphs. Also, we demonstrated that Rendezvous and Rendezvous in Time can be solved in $n \mathcal{O}(k)$ time. In particular, this means that the problems can be solved in polynomial time if $d_{G}(s, t)$ is upper bounded by a constant. For example, this holds for grids by the result of Misra et al. [28,29], who proved that for an $(m \times n)$-grid $\Gamma, d_{\Gamma}(s, t)=2$ for distinct nonadjacent s and t if $m, n \geq 2$. Clearly, we can upper bound $d_{G}(s, t)$ by a constant for graphs of bounded degree if s and t are distinct and nonadjacent. Are there other natural graph classes, where $d_{G}(s, t)$ admits a constant upper bound? For which graph classes Rendezvous and Rendezvous in Time can be solved in polynomial time?

We investigated the computational complexity of Rendezvous and Rendezvous in Time. Both problems can be solved in $n^{\mathcal{O}(k)}$ time. However, they are co-W[2]-hard when parameterized by k and cannot be solved in $n^{o(k)}$ time unless FPT $=\mathrm{W}[1]$. In fact, τ-Rendezvous in Time is co-W[2]-hard for every $\tau \geq 2$. We also proved that Rendezvous and Rendezvous in Time are PSPACE-hard. We conjecture that these two problems are EXPTIME-complete.

Finally, we have studied the parameterized complexity of the problem under structural parameterization of the input graphs. We proved that Rendezvous in Time is FPT when parameterized by the neighborhood diversity of the input graph and τ. We leave open the question of whether our result for the parameterization by the neighborhood diversity could be extended for the parameterization by modular width (see, e.g., [17] for the definition and the discussion of this parameterization) and τ. Is Rendezvous in Time FPT when parameterized by the neighborhood diversity only? The same question is open for Rendezvous too. We believe that this problem is interesting even for the more restrictive parameterization by the vertex cover number.

After the appearance of the conference version of this paper, the research on the structural parameterization of RENdezvous was continued by Misra et al. [28,29]. They proved that Rendezvous is co-NP-complete for graphs of constant treewidth. Furthermore, they showed that the problem is co-W[2]-hard when parameterized by the feedback vertex number and k and is unlikely to admit a polynomial kernel when parameterized by the vertex cover number and k. Complementing these hardness results, they proved that Rendezvous is FPT when parameterized by both the vertex cover number and k. We refer to [8] for the definitions of all mentioned here structural parameters and kernels.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] M. Aigner, M. Fromme, A game of cops and robbers, Discrete Appl. Math. (ISSN 0166-218X) 8 (1) (1984) 1-11.
[2] Steve Alpern, The rendezvous search problem, SIAM J. Control Optim. (ISSN 0363-0129) 33 (3) (1995) 673-683, https://doi.org/10.1137/ S0363012993249195.
[3] Steve Alpern, Shmuel Gal, The Theory of Search Games and Rendezvous, International Series in Operations Research \& Management Science, vol. 55, Kluwer Academic Publishers, Boston, MA, ISBN 0-7923-7468-1, 2003.
[4] Anthony Bonato, Richard J. Nowakowski, The Game of Cops and Robbers on Graphs, Student Mathematical Library, vol. 61, American Mathematical Society, Providence, RI, ISBN 978-0-8218-5347-4, 2011.
[5] Anthony Bonato, Boting Yang, Graph searching and related problems, in: Handbook of Combinatorial Optimization, 2013, pp. 1511-1558.
[6] Andreas Le Brandstädt Van Bang, Jeremy P. Spinrad, Graph Classes: a Survey, SIAM Monographs on Discrete Mathematics and Applications., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, ISBN 0-89871-432-X, 1999.
[7] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, Ge Xia, Strong computational lower bounds via parameterized complexity, J. Comput. Syst. Sci. 72 (8) (2006) 1346-1367, https://doi.org/10.1016/j.jcss.2006.04.007.
[8] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, Parameterized Algorithms, Springer, ISBN 978-3-319-21274-6, 2015.
[9] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, Andrzej Pelc, Deterministic rendezvous in graphs, Algorithmica 46 (1) (2006) 69-96, https:// doi.org/10.1007/s00453-006-0074-2.
[10] Reinhard Diestel, Graph Theory, 4th edition, Graduate Texts in Mathematics, vol. 173, Springer, ISBN 978-3-642-14278-9, 2012.
[11] Rodney G. Downey, Michael R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science., Springer, ISBN 978-1-4471-5558-4, 2013.
[12] Fedor V. Fomin, Dimitrios M. Thilikos, An annotated bibliography on guaranteed graph searching, Theor. Comput. Sci. 399 (3) (2008) 236-245, https:// doi.org/10.1016/j.tcs.2008.02.040.
[13] Fedor V. Fomin, Petr A. Golovach, Alexander Hall, Matús Mihalák, Elias Vicari, Peter Widmayer, How to guard a graph?, Algorithmica 61 (4) (2011) 839-856, https://doi.org/10.1007/s00453-009-9382-4.
[14] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Guard games on graphs: keep the intruder out!, Theor. Comput. Sci. 412 (46) (2011) 6484-6497, https://doi.org/10.1016/j.tcs.2011.08.024.
[15] Pierre Fraigniaud, Andrzej Pelc, Delays induce an exponential memory gap for rendezvous in trees, ACM Trans. Algorithms 9 (2) (2013) 17, https:// doi.org/10.1145/2438645.2438649.
[16] András Frank, Éva Tardos, An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica 7 (1) (1987) 49-65, https://doi.org/10.1007/BF02579200.
[17] Jakub Gajarský, Michael Lampis, Sebastian Ordyniak, Parameterized algorithms for modular-width, in: 8th International Symposium on Parameterized and Exact Computation (IPEC), in: Lecture Notes in Computer Science, vol. 8246, Springer, 2013, pp. 163-176.
[18] M.R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, ISBN 0-7167-1044-7, 1979.
[19] Fănică Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory, Ser. B (ISSN 0095-8956) 16 (1974) 47-56, https://doi.org/10.1016/0095-8956(74)90094-х.
[20] Martin Charles Golumbic, Algorithmic Graph Theory and Perfect Graphs, second edition, Annals of Discrete Mathematics, vol. 57, Elsevier Science B.V., Amsterdam, ISBN 0-444-51530-5, 2004, with a foreword by Claude Berge.
[21] Russell Impagliazzo, Ramamohan Paturi, On the complexity of k-sat, J. Comput. Syst. Sci. 62 (2) (2001) 367-375, https://doi.org/10.1006/jcss.2000.1727.
[22] Russell Impagliazzo, Ramamohan Paturi, Francis Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63 (4) (2001) 512-530, https://doi.org/10.1006/jcss.2001.1774.
[23] Ravi Kannan, Minkowski's convex body theorem and integer programming, Math. Oper. Res. (ISSN 0364-765X) 12 (3) (1987) 415-440, https://doi.org/ 10.1287/moor.12.3.415.
[24] William B. Kinnersley, Cops and robbers is exptime-complete, J. Comb. Theory, Ser. B 111 (2015) 201-220, https://doi.org/10.1016/j.jctb.2014.11.002.
[25] Michael Lampis, Algorithmic meta-theorems for restrictions of treewidth, Algorithmica 64 (1) (2012) 19-37, https://doi.org/10.1007/s00453-011-9554x.
[26] Hendrik W. Lenstra, Integer programming with a fixed number of variables, Math. Oper. Res. 8 (4) (1983) 538-548, https://doi.org/10.1287/moor.8.4. 538.
[27] László Lovász, Michael D. Plummer, Matching Theory, AMS Chelsea Publishing, Providence, RI, ISBN 978-0-8218-4759-6, 2009, corrected reprint of the 1986 original, MR0859549.
[28] Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, Gaurav Viramgami, Romeo and Juliet meeting in forest like regions, in: 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, in: LIPIcs, vol. 250, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Chennai, India, 2022, 27.
[29] Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, Gaurav Viramgami, Romeo and Juliet meeting in forest like regions, CoRR, arXiv:2210.02582 [abs], 2022, https://doi.org/10.48550/arXiv.2210.02582.
[30] Hiroshi Nagamochi, Cop-robber guarding game with cycle robber-region, Theor. Comput. Sci. 412 (4-5) (2011) 383-390.
[31] Richard Nowakowski, Peter Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math. (ISSN 0012-365X) 43 (2-3) (1983) 235-239.
[32] Alain Quilliot, A short note about pursuit games played on a graph with a given genus, J. Comb. Theory, Ser. B 38 (1) (1985) 89-92.
[33] Robert Sámal, Tomás Valla, The guarding game is E-complete, Theor. Comput. Sci. 521 (2014) 92-106, https://doi.org/10.1016/j.tcs.2013.11.034.
[34] Amnon Ta-Shma, Uri Zwick, Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences, ACM Trans. Algorithms 10 (3) (2014) 12, https://doi.org/10.1145/2601068.
[35] David Williamson, Network Flow Algorithms, Cambridge University Press, 2019.

[^0]: सै An extended abstract of this paper appeared in the proceedings of WG 2021. The two first authors have been supported by the Research Council of Norway via the project BWCA (grant no. 314528). The last author was supported by the ANR projects DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

 * Corresponding author at: University of Bergen, PB 7803, N-5020, Bergen, Norway.

 E-mail addresses: fedor.fomin@uib.no (F.V. Fomin), petr.golovach@uib.no (P.A. Golovach), sedthilk@thilikos.info (D.M. Thilikos).
 https://doi.org/10.1016/j.ic.2023.105049
 0890-5401/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

