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a b s t r a c t 

The angular spectrum (AS) model is customized to calculate the spatial acoustic pressure field 

generated by a piston source and transmitted through a steel plate immersed in water, for normal 

beam incidence. A MATLAB program is developed for this specific problem combining use of 

Gauss quadrature and a generalized Filon method. The program calculates the pressure wave 

number spectrum generated by the piston source and transforms the wave number spectrum into 

the spatial domain. Convergence analysis show that the MATLAB program is far more efficient 

than the more traditional approach of using the fast Fourier transform algorithm to transform the 

pressure wavenumber spectrum into the spatial domain. The MATLAB program is published here 

and free for others to use. The methods and MATLAB algorithms are obtained by 

• Converting the original 2D AS model to a 1D model using cylindrical coordinates. 

• Combining use of Gauss quadrature and a generalized Filon method for more accurate pres- 

sure calculations compared with use of the fast Fourier transform. 

• Introducing adaptive numerical integration algorithms in MATLAB and error control param- 

eters which are easy to use. 
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Subject Area: Computer Science 

More specific subject area: Mathematical numeric modeling 

Method name: Angular spectrum method 

Name and reference of original method: M. J. Anderson, P. R. Martin, and C. M. Fortunko, Resonant transmission of a three-dimensional acoustic sound 

beam through a solid plate in air: Theory and measurement, J. Acoust. Soc. Am. 98 (5) (1995) 2628–2638, 

https://doi.org/10.1121/1.413229 . 
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Background 

The angular spectrum (AS) approach has been used for decades to simulate and study the interaction of ultrasound and a fluid-

immersed solid plate [1–8] . Anderson et al. [3] developed a model (ASM1) for beam transmission through such plates where a piston

was used as the source. ASM1 is widely used but has some challenges related to high-accuracy pressure calculations [4] . The uniform

grid used in the fast Fourier method typically used in the numerical calculations of ASM1 may give severe aliasing effects. 
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In the current work it is shown how these challenges may be resolved by customizing ASM1 into another model ASM2. A MATLAB

code developed for the specific problem and free for others to use is presented here. The customized ASM2 has been used in [8] for

high accuracy calculations of the transmitted pressure through a water-immersed steel plate at very large distances from the plate

without the use of the MATLAB program presented here. As such, the current work also provides supplementary material to [8] . The

MATLAB program is easy to use, has very few parameters for the user to specify and a detailed description of the program is given here.

The program may be of use for others studying the interaction of ultrasound and solid plates. It is far more computationally efficient

than implementations of ASM1 using the 2D fast Fourier transform algorithm, meaning that a higher accuracy is achieved using

shorter computational time. The program provides accurate estimations of the pressure calculated at both long and short distances 

from the source. The ASM2 method with the current MATLAB implementation is especially well suited for studying near field effects

which is proven to be present even at large distances from the source [8] . 

Method details 

In the following, the customization of ASM1 into ASM2 is first described. Next, the MATLAB program for ASM2 is presented in

detail, and finally some convergence tests are given comparing the use of ASM1 and ASM2. 

Customization of the angular spectrum model 

Anderson et al. [3] presented an AS model (ASM1) for beam transmission through a solid plate immersed in a fluid at normal

beam incidence. The plate is assumed to be elastic, isotropic, homogeneous, and of infinite lateral extent. Using a time convention

𝑒 𝑖 ω 𝑡 where ω = 2π𝑓 is the angular frequency and f is the frequency, the transmitted pressure, p t is given as [3] : 

𝑝 𝑡 ( 𝑥, 𝑦, z , 𝑓 ) = 

𝑒 𝑖 ω 𝑡 

4π2 ∫
∞

−∞ ∫
∞

−∞

𝜌𝑓 ω 
ℎ 𝑓 ,𝑧 

𝐻𝑇 𝑒 − 𝑖ℎ 𝑓,𝑧 ( 𝑧 − 𝑑 ) 𝑒 − 𝑖 
(
ℎ 𝑓,𝑥 𝑥 + ℎ 𝑓,𝑦 𝑦 

)
𝑑 ℎ 𝑓 ,𝑥 𝑑 ℎ 𝑓 ,𝑦 . (1) 

A cartesian coordinate system is used, with the front surface of the source located in the x-y plane at z = 0. 𝜌𝑓 is the fluid density,

and d is the plate thickness. ℎ 𝑓 ,𝑥 , ℎ 𝑓 ,𝑦 , and ℎ 𝑓 ,𝑧 are the x, y, and z components of the wave vector in the fluid, respectively, ℎ 𝑓 = ω∕ 𝑐 𝑓 
is the acoustic wavenumber in the fluid, where 𝑐 𝑓 is the fluid sound velocity, and 

ℎ 𝑓 ,𝑧 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

√ 

ℎ 2 
𝑓 
− ℎ 2 

𝑓 ,𝑥 
− ℎ 2 

𝑓 ,𝑦 
, ℎ 2 

𝑓 ,𝑥 
+ ℎ 2 

𝑓 ,𝑦 
≤ ℎ 2 

𝑓 
, 

− 𝑖 

√ 

ℎ 2 
𝑓 ,𝑥 

+ ℎ 2 
𝑓 ,𝑦 

− ℎ 2 
𝑓 
, ℎ 2 

𝑓 ,𝑥 
+ ℎ 2 

𝑓 ,𝑦 
> ℎ 2 

𝑓 
. 

(2) 

For ℎ 2 
𝑓 ,𝑥 

+ ℎ 2 
𝑓 ,𝑦 

> ℎ 2 
𝑓 
, ℎ 𝑓 ,𝑧 becomes imaginary, representing evanescent (exponentially decaying) waves in the z direction. 𝑇 is the

plane wave transmission coefficient and H is the aperture function which for a baffled piston is given as [3] 

𝐻 = 2 𝑣 0 π𝑎 2 
𝐽 1 

(
𝑎 

√ 

ℎ 2 
𝑓 ,𝑥 

+ ℎ 2 
𝑓 ,𝑦 

)

𝑎 

√ 

ℎ 2 
𝑓 ,𝑥 

+ ℎ 2 
𝑓 ,𝑦 

. (3) 

a is the piston radius, v 0 is the particle velocity of the piston, and J 1 is the first order Bessel function of the first kind. Note that in

[3] the factor “2 ” in Eq. (3) was incorrectly left out. It has been shown in e.g. [7] that this factor must be included. 

Eq. (1) (ASM1) may be regarded as a 2D Fourier transform which is typically solved using the 2D fast Fourier transform (FFT2)

routine. However, due to sharp gradients in the integrand of Eq. (1 ), the uniform sampling grid used in the FFT2 routine may

potentially cause large aliasing effects [4] . In the following it is shown how the 2D integral in Eq. (1) can be transformed into a 1D

integral resulting in a new model (ASM2), which can be solved using an adaptive numerical integration model. 

By coordinate transformation from Cartesian to cylindrical coordinates ( 𝑟, φ , 𝑧 ) , where r = 

√
𝑥 2 + 𝑦 2 is the radial range and φ is

the polar angle (in the x-y plane), Eq. (1) may be written as 

𝑝 𝑡 ( 𝑟, φ , z , 𝑓 ) = 

𝑒 𝑖 ω 𝑡 

4π2 ∫
2π

0 ∫
∞

0 

ρ𝑓 ω 
ℎ 𝑓 ,𝑧 

𝐻𝑇 𝑒 − 𝑖ℎ 𝑓,𝑧 ( 𝑧 − 𝑑 ) 𝑒 − 𝑖 η𝑟 cos φ 𝜂𝑑 η𝑑 φ . (4) 

𝜂 is the component of the acoustic wave vector in the plane of the plate (the r-direction), here referred to as the "horizontal wavenum-

ber", and is expressed with 𝜂2 = ℎ 2 
𝑓 ,𝑥 

+ ℎ 2 
𝑓 ,𝑦 

. By introducing the identity 𝐽 0 ( η𝑟 ) = 

1 
2π ∫ 2π

0 𝑒 − 𝑖 η𝑟 cos φ 𝑑φ [8] , and omitting the time depen-

dent term 𝑒 𝑖 ω 𝑡 , Eq. (4) can be written as 

𝑝 𝑡 ( 𝑟, z , 𝑓 ) = 

1 
2π ∫

∞

0 

ρ𝑓 ω 
ℎ 𝑓 ,𝑧 

𝐻𝑇 𝑒 − 𝑖ℎ 𝑓,𝑧 ( 𝑧 − 𝑑 ) 𝐽 0 ( 𝜂𝑟 ) 𝜂𝑑η. (5) 

For the incident pressure on the plate, p i , in absence of the plate, 

𝑝 𝑖 
(
𝑟, 𝑧 0 , 𝑓 

)
= 

1 
2π ∫

∞

0 

ρ𝑓 ω 
ℎ 𝑓 ,𝑧 

𝐻𝑒 − 𝑖ℎ 𝑓,𝑧 𝑧 0 𝐽 0 ( 𝜂𝑟 ) 𝜂𝑑𝜂. (6) 

z 0 is z-coordinate of the front surface of the plate. J 0 is the zeroth order Bessel function of the first kind. Eqs. (5) and (6) represent

the customized AS model ASM2 used in [8] . 
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Fig. 1. Shows the codelines 1–73 for the script main script (i) ASM_Adapt_FilonGauss.m which calculates the pressure from Eqs. (5) and (6) . Input 

parameters are needed in lines 7–9 and 12–16. 

 

 

 

 

 

 

 

 

MATLAB implementation of model 

The integrands in Eqs. (5) and (6) go to zero for 𝜂 > ℎ 𝑓 + Δ𝜂𝑐𝑢𝑡𝑜𝑓𝑓 , and the integrals can be calculated numerically. The inte-

grands have an irregular oscillator, which is a classical problem in numerical integration [ 9 , 10 ]. To numerically solve the integrals

in Eqs. (5) and (6) , two different numerical integration techniques are used: Gauss and the generalized Filon method, which are

complimentary to each other. The generalized Filon method is given for integrals on the form [10] : 

𝐼 = 

1 
2π ∫

𝜂2 

𝜂1 

𝑓 ( 𝜂) 𝑒 − 𝑖𝑔 ( 𝜂) 𝑑η. (7) 

Following [10] , 𝑓 ( 𝜂) and 𝑔( 𝜂) are approximated by a second order polynomial, and the resulting integral is evaluated analytically.

This method is suited for highly oscillatory integrands, which is not the case for the Gauss method. Visa versa, the Gauss method is

suited for integrands without too much oscillations, which is not the case for the Filon method. The oscillation period is therefore

tracked and the program chooses which of the Filon or Gauss method is to be used. The argument in the exponential in Eqs. (5) and

(6) is nonlinear, but the instant oscillation period at a certain 𝜂0 can be defined by a Δ𝜂0 giving a 2 𝜋 increase of the argument in the

exponential, i.e. 

𝑖ℎ 𝑓 ,𝑧 ( 𝜂0 + Δ𝜂0 ) 𝑧 − 𝑖ℎ 𝑓 ,𝑧 ( 𝜂0 + Δ𝜂0 ) 𝑧 = 2 𝜋 (8) 
3 
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Fig. 2. Shows the codelines 74–141 for the script main script (i) ASM_Adapt_FilonGauss.m which calculates the pressure from Eqs. (5) and (6) . 
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By setting for example Δ𝜂0 = 0 . 2 rad/m, 𝜂0 for which the oscillation period is 0.2 rad/m is obtained, and 𝜂0 is the value for which

the Filon method is used instead of the Gauss method. The adaptive Gauss method is based on the 4 th and 5 th order Gauss quadrature

rules. In the adaptive Filon method, Eq. (7) is calculated using first 3 and then 5 data points, producing a rough and a finer estimate

of Eq. (7) , and thus an error estimate. 

In the MATLAB program, the Gauss method is used from 𝜂 = 0 and up to 𝜂 = 𝜂0 . From 𝜂 = 𝜂0 and up to approximately 𝜂 = ℎ 𝑓 the

Filon method is used. For 𝜂 > ℎ 𝑓 the argument is real giving no oscillation, and the Gauss method is used again. A practical way is

used to determine the 𝜂 for which the program switch from the Filon method and back to the Gauss method again. For 𝜂 close to

ℎ 𝑓 , there is a sharp gradient in the integrand, resulting in a warning from MATALB when trying to fit the polynomial in the Filon

method. This warning is used to trigger the program to switch back to the Gauss method. 

The MATLAB program consists of six files in total: (i): The main script. (ii) and (iii): Class definition files where the functions

needed for the integration problems in Eqs. (5) and (6) are defined separately. (iv) and (v): Class definition files where the integration

procedure using the Gauss and generalized Filon methods are defined, respectively. (vi): The parent class definition file where the

input parameters such as densities and wave velocities are defined and passed on to the class definitions (ii) and (iii). 

(i) ASM_Adapt_FilonGauss.m 

ii) FunctionsFluid.m 

ii) FunctionsPlate.m 

v) Integral_Segment_Filon.m 

v) Integral_Segment_Gauss.m 
i) FunctionsParent.m 

4 
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Fig. 3. Shows the for the codelines for class definition file (vi) FunctionsParent.m. Input parameters are defined in lines 5–13. 

Fig. 4. Comparison of calculations of the freefield axial pressure, 𝑝 ( 0 , 𝑧, 𝑓 ) , at z = 270 mm and f = 457.6 kHz using the traditional ASM1 model, 

Eq. (1) and the analytical KF model [11] . Wavenumber grid spacings ranging from 16 to 0.5 rad/m is used for the datapoints which corresponds to 

the different computational times. (a) Magnitude, (b) phase. 

Fig. 5. Comparison of calculations of the freefield axial pressure, 𝑝 ( 0 , 𝑧, 𝑓 ) , at z = 270 mm and f = 457.6 kHz using the current ASM2 model, 

Eq. (6) and the analytical KF model [11] . The computation time depends on the factor “Err_tresh ” which is set to 100, 10, 1, 0.1, and 0.01 for the 

simulations presented here. (a) Magnitude, (b) phase. 

 

 

 

 

Eqs. (5) and (6) are solved by executing the MATLAB main script (i). To run the program, define the nine input parameters in (i)

(lines 7–9 and 12–16 in Fig. 1 ) and nine input Constant properties in (vi) (lines 5–13 in Fig. 3 ), then run (i). MATLAB version 2021a

has been used in the current work. 

The codelines of the main script is presented in Figs. 1 and 2 . “f_vec ” (line 7) is the frequency vector. “z_vec ” (line 8) and

“r_vec ” (line 9) are vectors defining the z and lateral distances, respectively. “plate_or_freefield ” (line 10) must be set to “plate ”

if the transmitted pressure through a plate is to calculated. Other values calculates the piston pressure freefield without the plate
5 
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Fig. 6. Comparison of calculations of the freefield axial pressure, 𝑝 ( 0 , 𝑧, 𝑓 ) , for z in the range 270–370 mm and f = 457.6 kHz using ASM1, ASM2, 

and the analytical KF model [11] . In ASM1, the wavenumber grid spacing is 0.6 rad/m. In ASM2, “Err_tresh ” is set to 0.1. (a) Magnitude, (b) phase. 

Fig. 7. Comparison of calculations of the freefield pressure distribution at z = 270 mm for r in the range 0–60 mm and f = 457.6 kHz using ASM1 

and ASM2. In ASM1, the wavenumber grid spacing is 0.6 rad/m. In ASM2, “Err_tresh ” is set to 0.1. (a) Magnitude, (b) phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

present. “Err_tresh ” (line 12) gives the maximum allowed difference between the 4th and 5th order Gauss quadrature rules. It is

also the maximum allowed difference between the 3 and 5 point Filon methods. “Err_tresh_peak ” (line 13) specifically sets the

maximum allowed difference between the 4th and 5th order Gauss quadrature rules for 𝜂 close to h f . “eta_step_init ” (line 14) is the

initial 𝜂 step. “IntegrationBoundary_DeltaAbove_h_f ” (line 15) equals to Δ𝜂𝑐𝑢𝑡𝑜𝑓𝑓 and defines the upper boundary for the integration. 

“FilonMethodStarts_OscPeriodCutOff_or_EtaCutoff” (line 16) determines when he Filon method is to be used and equals Δ𝜂0 when 

defined between 0 and 10. “FilonMethodStarts_OscPeriodCutOff_or_EtaCutoff” equals to 𝜂0 when the parameter is set to 0 or higher 

than 10. When set to 0, the Filon method is used over the interval from 0 and close up to h f . 

In the script, the final calculated pressure p ( r,z,f ) in 131 ( Fig. 2 ) is obtained by looping over the vectors specifying r, z , and f ,

respectively. Inside the frequency loop starting at line 26 there are four while loops. In the first, the Gauss method is used ( Fig. 1 ). In

the second, the Filon method is used ( Fig. 2 ). In the third and fourth ( Fig. 2 ) the Gauss method is used again. The input parameters

of the piston source, fluid and the solid plate are defined in FunctionsParent.m shown in Fig. 3 (lines 5–13). 

Accuracy and computational time 

In Fig. 4 the axial freefield pressure at z = 270 mm and f = 457.6 kHz is calculated using the traditional ASM1 method, Eq. (1) ,

with the FFT2 algorithm. The shortest computational time corresponds to a wavenumber grid spacing ( 𝑑ℎ 𝑓 ,𝑥 ) of 16 rad/m, while the

longest corresponds to a grid spacing 0.5 rad/m. The maximum wavenumber in the FFT2 is set to 2136 rad/m for all datapoints (in

Figs. 4 , 6 , and 7 ) which corresponds to a spatial grid spacing of 1.5 mm (i.e. 0.46 h f ). The solid line is the correct value calculated

from the analytical model provided by Kinser et al. [11] . In part (a), the magnitude is shown and in part (b) the phase is shown.

Neither the phase nor the magnitude are fully converged. 

In Fig. 5 the axial freefield pressure at z = 270 mm and f = 457.6 kHz is calculated using the ASM2 method, Eq. (6) , with

the Gauss/Filon MATLAB program. The integration limit in Eq. (6) is set to 2136 rad/m. The computational times corresponds to

“Err_tresh ” settings of 100, 10, 1, 0.1, and 0.01. For simplicity, “Err_tresh_peak ” is set equal to “Err_tresh ”. The solid line is the correct

value calculated from the analytical KF model [11] . In part (a), the magnitude is shown and in part (b) the phase is shown. For this

example, the accuracy is far better and the computational time is far shorter compared with using the ASM1 method shown in Fig. 4 .

In Fig. 6 , the axial freefield pressure for z in the range 270–370 mm and f = 457.6 kHz is calculated using ASM1, ASM2, and

the analytical KF model. In ASM1, the wavenumber grid spacing is 0.6 rad/m and the computational time is approximately 50 s.

In ASM2, “Err_tresh ” is set to 0.1, and the computational time for the datapoints is approximately 1.5 s. For the magnitude in part

(a), the maximum deviation between the KF model and ASM1 is approximately 0.1 dB, and 0.000001 dB between the KF model and

ASM2. No difference is visually observed in the phase in part (b). In part (c), Δ on the ordinate axis refers to the deviation from the
𝐾𝐹 
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analytical KF model. As can be observed in part (c), there is no visually observable deviation to the ASM2, and a maximum deviation

to ASM1 of approximately 0.015 rad/m. 

In Fig. 7 , the freefield pressure distribution at z = 270 mm for r in the range 0–60 mm and f = 457.6 kHz is calculated using

ASM1 and ASM2. In ASM1, the wavenumber grid spacing is 0.6 rad/m and the computational time is approximately 20 s. In ASM2,

“Err_tresh ” is set to 0.1. As no analytical model exists for the pressure distribution for a piston generated nearfield, ASM2 is only

compared to ASM1. For ASM2 in Fig. 7 , it is assumed that the error is about the same as observed in Figs. 5 and 6 . In Fig. 7 , the

maximum deviation between ASM1 and ASM2 is about 2 dB for the magnitude (a) and about 0.4 rad/m for the phase (b). 
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