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Abstract

A wind turbine wake is the flow structure formed behind a wind turbine rotor due to the
extraction of kinetic energy from the flow. The resulting flow structure is characterized
by reduced wind speed and increased turbulence intensity. Due to the turbulent mixing,
the wake flow eventually recovers to the free-flow characteristics. Nevertheless, a wake
may reach downstream turbines and affect their inflow. Wakes from several turbines in
a wind farm will combine and form a wind farm wake, which may span longer distances
than a single turbine wake. The arrangement of wind turbines within a wind farm,
including the choice of turbines’ size and type, plays a crucial role in how wind farm
wakes potentially affect the wind resources availability. Estimating wake effects thus
becomes an essential part of wind energy research.

Knowledge of wake behavior is important in several applications, to name a few: esti-
mation of the yearly energy production of a wind farm, short-term forecasts for the wind
turbine control, development of the control strategies for wake deflection, or evaluation of
the wake effect of the nearby farms on a potential construction site. The precision needed
and methods used also vary accordingly. For example, industrial applications prefer fast
and simple-to-run methods for power production estimation and wind turbine control,
provided the accuracy remains adequate for decision-making. Many simplified methods
can be derived from complex equation-solving approaches and assumptions. However,
any new method should be validated prior to application. The validation is hindered
if little observational data are available or the experiment cannot be reproduced on a
smaller scale in a wind tunnel. Thus, building a research framework to select models
and approaches relevant to the task is equally important as performing the study itself.

This thesis approaches wake research from both the modeling and observational per-
spectives. The modeling part considers analytical wake models and numerical simula-
tions, particularly large-eddy simulations (LES). Throughout the thesis papers, a model-
ing chain is demonstrated. The preparatory stage involves selecting the analytical wake
model and verifying the grid refinement in the PALM LES code. Knowing how the grid
refinement improves the model’s flow resolution, a transient event over the North Sea is
simulated over the Alpha Ventus wind farm using mesoscale and microscale simulations.
The dynamic wake field obtained as the simulation output is then analyzed with the pre-
viously selected analytical models to evaluate how well they adapt to rapidly changing
conditions. It was found that the super-Gaussian model estimates the wake shape well
and does not require corrections. Therefore, it should be worth focusing on this model
and implementing it wider in wake research.

Another part of the thesis focuses on observational data. This part tackles an impor-
tant aspect of studying turbine wakes from wind fields measured with a scanning lidar.
While scanning lidars are versatile instruments capable of measuring a two-dimensional
wind field, scan resolution hinders using them for wake analysis. Thus, wake identifica-
tion and characterization methods should consider the case of insufficient resolution or
noise in the data. The thesis suggests a dynamic thresholding method for wake identifi-
cation. The thresholding approach for wake identification selects a value that explicitly
separates a wake from the free flow and allows studying either of them. Although the
thresholding approach is not new in wake research, the existing applications use a fixed
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threshold value. The fixed threshold value shows good results for wind fields from a
wind tunnel or numerical simulation. However, it may not work as well with lidar data
which may have noise or low spatial resolution. The presented novel method dynamically
selects the threshold, allowing it to adapt to the coarse and noisier lidar data. A subse-
quent procedure to detect the wake centerline, regardless of whether the wind direction
is known, is also suggested, making the method less dependent on the data quality and
supporting time series availability.

The drawback of scanning lidars is that they do not measure the actual wind speed
but only the line-of-sight velocity along the lidar beam. The scanned wind field is the
closest to the original when the lidar’s line of sight is aligned with the wind direction.
A special procedure, so called lidar retrieval, is required to reconstruct the original wind
field. This procedure also allows mapping of the wind speed components and local wind
direction. One of the available methods for the wake field retrieval was validated on a
larger lidar data set and additional time series. The method used was further tested
for the sensitivity to the initial guess and weights used during the optimization process.
During the new validation, it was found that wakes in the regarded lidar scans were wider
and stronger than in the validation of the original algorithm. The more prominent wakes
disrupted the retrieval algorithm so that it returned unnaturally increased wind speed
along the wakes. This effect could be mitigated by masking wakes with the previously
described dynamic thresholding method. Thus, it is shown how different approaches
may be combined to improve the processing of observational data. The validation left
several options for further improvement of the method; the next stage should involve
comparison with the numerical simulation data.

The papers constituting the thesis describe the setting up of the multi-scale modeling
framework and lidar scan processing for the wake analysis. Although they may use
seemingly independent methods, it is shown how the synthesis of the methods benefits
the understanding and analysis of the wake field. While the additional processing codes
produced during the work on this thesis have room for improvement, they have proved
their capability of performing designated tasks for wake identification, lidar retrieval,
and analytical model fitting. The multi-scale modeling framework established during
the studies can then be used for simulating new cases and performing flow analysis in a
similar way.



Sammendrag

Bak en vindturbin rotor som trekker kinetisk energi ut fra luftstrgmmen, blir strgmnings-
forholdene endret. Dette omradet kalles vindturbinens vake. Vaken er karakterisert av
redusert vindhastighet og gkt turbulensintensitet. Pa grunn av den turbulente blandin-
gen med strgmningen utenfor vaken, vil vaken etter hvert gjenvinne egenskapene i den frie
vindstrgmmen. Likevel kan vaken fra en turbin na en nedstrgms turbin og pavirke dennes
innstromningsforhold. Den samlede virkning av flere vaker fra turbiner i en vindpark
vil summeres og danne en vindpark vake. Denne vaken vil kunne ha stgrre utstrekning
enn vaken fra en enkel turbin. Plasseringen av turbiner i en vindpark, inklusive valg av
turbinstgrrelse og type, spiller en vesentlig rolle for tilgjengeligheten av vindressursene.
Estimering av vake-effekter er derfor en vesentlig del av vindeenergiforskningen.

Kunnskap om tubin-vaker er viktig i mange sammenhenger, for 4 nevne noen fa:
beregning av arlig energi produksjon, korttids prognoser for vindturbinkontroll, utvikling
av kontrollstrategier for & avboye vaker, eller evaluering av vake-effekten av neerliggende
vindparker pa en potensiell ny vindparks byggeplass. Den ngdvendige presisjonen og
metodene som benyttes varierer ogsa. For eksempel vil en i industrielle applikasjoner
foretrekke raske og enkle metoder for kraftproduksjonsestimering og vindturbinkon-
troll, forutsatt at ngyaktigheten forblir tilstrekkelig for beslutninger. Mange forenklede
metoder kan utledes fra komplekse ligningslgsninger og antakelser. Hver ny metode bgr
imidlertid valideres for den tas i bruk. Valideringen vanskeliggjores dersom lite obser-
vasjonsdata er tilgjengelig eller eksperimentet ikke kan reproduseres i mindre skala i en
vindtunnel. Derfor er det viktig & bygge et forskningsrammeverk for & velge modeller og
metode er like viktig som & utfere vakestudiene i seg selv.

Denne avhandlingen tilnezermer seg vake-forskning bade fra et modellerings- og et
observasjonsperspektiv. Modelleringsdelen betrakter analytiske vake-modeller og nu-
meriske strgmnings-simuleringer, spesielt large-eddy simulation, LES (stor virvelsimuler-
ing). Forskningsartiklene tar for seg ulike aspekter i en modelleringskjede og analyse av
resultater. De forberedende trinnene innebaerer & velge egnede analytiske vake-modeller
og verifisere den romlige opplgsning i LES lgseren implementert i PALM simuleringsko-
den. Nar det er kjent hvordan romlig opplgsning forbedrer modellens opplgsning av
vindstrgmningen, simuleres en transient hendelse over Nordsjgen over Alpha Ventus
vindparken ved bruk av simuleringskoder i mesoskala og mikroskala. Det komplekse
vind /vake-feltet som oppnés som simuleringsresultatet blir deretter analysert med de
valgte analytiske vake-modellene for & evaluere hvor godt de tilpasser seg raskt skiftende
vindforhold. Det ble funnet at den supergaussiske modellen estimerer vakens formen
godt og ikke krever korreksjoner. Derfor er det verdt & fokusere pa denne modellen og
implementere den bredere i vake-forskningen.

En annen del av avhandlingen fokuserer pa observasjonsdata. Denne delen tar for seg
et viktig aspekt ved & studere vake fra vindfelt méalt med en skanning lidar. Mens skan-
ning lidarer er allsidige instrumenter som er i stand til & male todimensjonalt vindfeltet,
begresnser skanneopplgsning bruken i analyse av vaker. Derfor bgr en vurdere metoder
for vake-identifikasjon og -karakterisering nar en har utilstrekkelig opplgsning eller stgy
i dataene. Avhandlingen foreslar en dynamiskterskel metode for vake-identifikasjon.
Terskel-metoder for vake-identifikasjon velger en verdi som eksplisitt skiller en vake fra
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den frie strommen og muliggjer & studere hver av dem separat. Selv om terskel-metoder
ikke er nye i vake-forskningen, bruker de eksisterende applikasjoner en fast terskelverdi.
Den faste terskelverdien gir gode resultater pa vindfelt fra en vindtunnel eller numerisk
simulering. Men den fungerer ikke s& godt pa vindfelt fra lidar-skanning som kan ha stoy
eller lav romlig opplgsning. Den nye metoden som presenteres velger dynamisk terskelver-
dien, slik at den kan tilpasse seg de grove og mer stgyfylte lidardataene. Videre er det
foreslatt en prosedyre for & detektere vakens senterlinje, uavhengig av om vindretningen
er kjent, noe som gjgr metoden mindre avhengig av datakvaliteten og tilgjengelighet av
ekstra tidsserier.

Ulempen med skanning lidarer er at de ikke maler den faktiske vindhastigheten, men
bare siktlinjehastigheten langs lidarstralen. Det maélte lidar-vindfeltet blir mest likt det
virkelige vindfeltet nar lidarens siktlinje er pa linje med vindretningen. Likevel krever
lidar-skanninger behandling med s& kalte lidar retrieval (lidar-innhenting) prosedyre for
a rekonstruere det originale vindfeltet. Denne prosedyren trenges for & kartlegge detal-
jene i hver av komponentene til vindhastigheten og for & finne lokal vindretning. En av
de lidar-innhenting metodene ble validert pa et stgrre lidar-datasett og ekstra tidsserier i
denne avhandlingen. Metoden ble testet for fglsomhet for den initielle gjetningen og vek-
tene som ble brukt under optimaliseringsprosessen. I den nye valideringen ble det funnet
at de betraktede lidar-skanningene hadde bredere og sterkere vaker enn det i den originale
valideringen av den samme metoden. De sterkere vakene forstyrret algoritmen slik at
den returnerte unaturlig gkt vindhastighet langs vaker. Denne effekten kan dempes ved a
maskere vaker med den foreslatte dynamiske terskel-metoden. Det ble dermed vist hvor-
dan ulike tilnaerminger kan kombineres for & forbedre behandlingen av observasjonsdata.
Valideringsprosessen identifiserte noen muligheter for ytterligere forbedring av metoden;
neste trinn bgr innebaere sammenligning med de numeriske simuleringsdataene.

Artiklene som utgjor avhandlingen beskriver oppsettet av et rammeverk for fler-
skalamodellering og lidar-skannings prosessering for vake-analyser. Selv om artiklene
bruker tilsynelatende uavhengige metoder, vises det hvordan kombinasjonen av meto-
dene bedrer forstaelsen og analysen av vake-feltet. Mens de ekstra prosesseringskodene
utviklet i denne avhandlingen har rom for forbedring, er det demonstrert hvordan de kan
brukes til vake-identifikasjon, bruk av lidar data og analytisk modelltilpasning. Rammev-
erket for flerskalamodellering etablert under studiene kan deretter brukes til & simulere
nye tilfeller og utfgre vakeanalyser pa tilsvarende maéte.
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This thesis consists of an introductory part and six scientific papers. Chapter 1 intro-
duces key challenges in wind energy research, the role of wind observations, numerical
simulations, and their mutual influence. Chapter 2 gives a detailed overview of the wake
modeling and processing methods, focusing on those used in the papers. The specific
data sets and models’ parameters are listed in Chapter 3, along with the repositories
of Python codes produced for the papers. A summary of each paper’s findings is given
in Chapter 4, with the conclusions and outlook presented in Chapter 5. The following
papers are included in this thesis in Chapter 6:

1.

Krutova, M., Bakhoday-Paskyabi, M., Nielsen, F. G., and Reuder, J.: Evalu-
ation of Gaussian wake models under different atmospheric stability conditions:
Comparison with large eddy simulation results. Journal of Physics: Conference
Series, 1669(1), 012016 (2020), doi:10.1088/1742-6596,/1669,/1/012016

. Krutova, M., Bakhoday-Paskyabi, M., Reuder, J., and Nielsen, F. G.: Self-nested

large-eddy simulations in PALM model system v21.10 for offshore wind prediction
under different atmospheric stability conditions. Geoscientific Model Development,
16(12), 3553-3564 (2023), doi:10.5194/GMD-16-3553-2023

Bakhoday-Paskyabi, M., Krutova, M., Bui, H., and Ning, X.: Multiscale sim-
ulation of offshore wind variability during frontal passage: Brief implication on
turbines’ wakes and load. Journal of Physics: Conference Series, 2362, 012003
(2022), doi:10.1088/1742-6596,/2362/1/012003

Krutova, M. and Bakhoday-Paskyabi, M.: Gaussian wake model fitting in a
transient event over Alpha Ventus wind farm. Wind Energy Science Discussions
[preprint], (2023), doi:10.5194 /wes-2023-79

Krutova, M., Bakhoday-Paskyabi, M., Reuder, J., and Nielsen, F. G.: Develop-
ment of an automatic thresholding method for wake meandering studies and its
application to the data set from scanning wind lidar. Wind Energy Science, 7(2),
849-873 (2022), doi:10.5194 /wes-7-849-2022

Krutova, M., Bakhoday-Paskyabi, M., and Reuder, J.: Validation of the 2D-VAR
lidar retrieval algorithm for non-homogeneous wind fields using FINO1 and SCADA
data. Authorea, [preprint] (2023), doi:10.22541/au.168809547.78501650/v1

In addition, the author of this thesis provided numerical simulations for the following
paper. This standalone paper is not included in the thesis.

7.

Bakhoday-Paskyabi, M., Krutova, M., Nielsen, F. G., Reuder, J., and Guer-
naoui, O.: On stochastic reduced-order and LES-based models of offshore wind
turbine wakes. Journal of Physics: Conference Series, 1669(1), 012018 (2020),
doi:10.1088/1742-6596,/1669/1 /012018
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1 Introduction

1.1 Overview

Wind energy is an intermittent renewable energy source that is gradually increasing
its share in electricity production (Fig. 1.1). The number and size of wind farms are
growing worldwide, with offshore wind energy steadily increasing the installed capacity.
According to Global Wind Energy Council (2023), the capacity of new offshore wind in-
stallations in 2021—2022 accounts for 34% of the total offshore wind capacity since 2006.
The International Energy Agency (IEA) predicts growth of offshore capacity by 240%
within 2021—2026, reaching the share of 1.5% in electricity produced from renewable
sources (including hydropower) (International Energy Agency, 2021).

< 14000 40%

S 3
[ ¥l
12 000 g 35% B
[}
10 000 & 30%
s
5000 < 25% =
20%
6 000
15% —
4000 10%
2 000 H ﬂ H 5%
0 0%
1990 1996 2002 2008 2014 2020 2026 1990 1996 2002 2008 2014 2020 2026

D Hydropower @Onshore wind ®Offshore wind DSolar PV @EBioenergy BCSP BGeothermal ©Ocean

IEA. All rights reserved.

Figure 1.1: Renewable electricity generation by technology, 1990-2026 (left) and share by tech-
nology, 1990-2026 (right). Reproduced from the International Energy Agency (2021) report.

General wind energy concepts, e.g., wind power production or flow physics, apply to
both onshore and offshore wind farms. Nevertheless, the offshore conditions bring new
specifics into the research, to name a few:

* The sea surface roughness is generally lower than over the land. Therefore, the wind
flow offshore is less affected by the surface friction. However, the sea surface rough-
ness changes dynamically with the wave conditions (Johnson et al., 1998), causing
dependencies between wind speed, turbulence, and surface roughness, which are
not as pronounced onshore.

* The wind speed profile is affected by whether the wind blows from the land or sea
(Kettle, 2014). Wind profiles over the sea may strongly diverge from logarithmic
and cause differences in wind flows at the top and bottom of a turbine rotor.

* Offshore wind farms alter the flow enough to affect nearby farms. The sea surface
allows a unique usage of satellite data for visualizing the wind farm flow, confirming
the effect (Christiansen and Hasager, 2006; Hasager et al., 2015).
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* Meteorological measurements are more scarce offshore than onshore due to the
complications of installing measurement masts and deploying instruments ( Hasager
et al., 2008).

Although new concepts for wind energy extraction emerge regularly ( Cherubini et al.,
2015; Jamieson, 2018), horizontal-axis wind turbines (HAWT) remain the primary choice
for large-scale wind farms and electricity production. HAWT extracts kinetic energy from
the wind flow that passes through the rotor. The power production is capped at the rated
power specific to each turbine design. The rated power corresponds to the rated wind
speed above which the power production is kept constant. Below the rated wind speed,
the power production depends on the cube of the inflow wind speed Up as

1
P= ipC’pAU& (1.1)

where p is the air density. Cp is the power coefficient showing what fraction of the
wind power can be extracted. The power coefficient depends on the wind turbine design
but cannot exceed the Betz limit of 0.59. A = m(D/2)? is the area of a rotor with
the diameter D. With the modern HAWTs reaching Cp = 0.4 — 0.5 during operation
(Dai et al., 2016) and the power coefficient giving only a linear increase (P ~ Cp), the
improvement in this direction focuses on better control strategies rather than turbine
design. The contribution of the other two terms is the factor to consider before planning
a wind farm. Consequently, HAWTs tend to grow in size (P ~ D?), and areas with high
mean wind speed are being developed for wind farm construction (P ~ Ug)

It should be noted that the inflow wind speed Uy is not necessarily the free-flow wind
speed Us. The inflow may be affected by nearby turbines or local fluctuations caused
by a transient flow. The cubic relationship for the power output in Eq. (1.1) amplifies
any fluctuation or estimation error in the wind speed below rated. Above the rated wind
speed, the power output is kept stable through wind turbine control; hence, the changes
in the inflow wind speed affect energy output less. Still, the loads and turbulence effects
caused by the wind flow should be considered.

The most important influence on the inflow in a wind farm is caused by the wind
turbines themselves. The extraction of kinetic energy from the flow results in an area
downstream of the turbine characterized by decreased wind speed and increased turbu-
lence intensity — namely, the wake effect.

The wind turbine wake is a three-dimensional, horizontally elongated, and highly
dynamic structure in the flow field. The shape of an instantaneous wake is typically
irregular and constantly changes depending on the flow characteristics, which, in turn,
are strongly influenced by atmospheric stability (Larsen et al., 2008; Esparia et al., 2011;
Abkar and Porté-Agel, 2015; Foti et al., 2016). Eventually, the wake flow recovers to the
free flow through mixing caused by turbulent eddies. However, if the wake flow reaches
another wind turbine downstream before full recovery, the inflow speed to this turbine
decreases compared to the free-flow speed. Consequently, a new wake is formed with the
wind speed decreasing again; the wake recovery is delayed. The more wind turbines are
placed along the wind direction, the more persistent are the wake effects.

Due to the low surface friction, offshore conditions usually favor slow wake recovery.
Wakes from individual turbines merge and amplify downstream wakes, forming the wind
farm wake. As shown by Christiansen and Hasager (2005, 2006), wind farm wakes could
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reach a length of at least 10—20km, which exceeded ten rotor diameters of the regarded
turbines. Ahsbahs et al. (2020) observed wind farm wakes of a similar length. Platis
et al. (2018) estimated up to 40% wake deficit and five times higher turbulence levels at
5—10km downstream of the wind farm. The same paper showed that a wake deficit of
1m/s (10—20% of the free-flow wind speed) and a slight increase in the turbulence levels
could still be seen at 45km further downstream. With the new wind farms built near
existing ones and producing cluster wakes (Canadillas et al., 2022), the long-distance
wake effects should be quantified and considered during the planning and operation
(Akhtar et al., 2021; Finserds et al., 2024).

The wake problem could be solved by placing wind turbines far apart to avoid wake
effects completely. However, the wind farm size is limited by the area available for
construction and associated costs, e.g., the price of power cable per meter. Usually,
wind turbines are placed within 6—8 rotor diameters from each other, where wake effects
are weakened but still noticeable. Hence, the wake effects must be adequately quantified
to estimate structural loads and power output deficit. In addition, control strategies can
be utilized to change the rotor angle and deflect the wake in the desired direction — thus,
the wake effect on the downstream turbine is decreased (Adaramola and A. Krogstad,
2011; Fleming et al., 2014). Modern wind farms often adopt a staggered layout for the
same purpose of mitigating wake effects: each row is shifted from the previous one so
that the turbines are not aligned in the dominant wind direction ( Chamorro et al., 2011;
Stevens et al., 2016). Alternatively, the algorithms to optimize an irregular wind farm
layout are gaining popularity (Tao et al., 2020). The optimization of power production
through turbine control and wind farm layout means that the downstream turbines in
such farms are often exposed to a non-uniform inflow instead of being directly hit by
a wake. The non-uniform flow, in turn, causes asymmetric rotor loads, which affect
the turbine’s lifetime. Therefore, optimizing power production must go in hand with
quantifying wake effects and dynamic loads. With more historical datasets available on
wind farm operation and atmospheric conditions, offshore wind research gains more data
for analysis, development of new methods and improvement of the old ones.

The interest in measuring offshore wind started to rise as the first offshore farms
were deployed in the 1990s (Hasager et al., 2008). Considering this and the difficulties
of installing meteorological equipment offshore, the meteorological measurements over
the sea appear to be much scarcer than over the land. Hence, numerical modeling plays
a prominent role in offshore wind energy research. However, the computational time
required by high-fidelity models renders numerical simulation inapplicable for industrial
applications such as short-term forecasting or wind farm layout optimization. Although
the latter is not performed in real-time, utilizing a fast model allows the comparison
of numerous layout variations within a short period. Thus, the simplifications of wind
flow physics are introduced to obtain fast but reliable models for predicting the wake
effect on loads and power production. Most of these approaches are based on analytical
or engineering models that rely solely on mathematical expressions and root-finding
procedures. Regardless of the simplification level, the models should still be validated
on the observational data or other verified high-fidelity models. Neither models nor
observations may be sufficient as a standalone. Regarding them together helps to increase
the estimation accuracy and improve processing methods (Fig. 1.2).

On a fundamental level, each new method must be first verified and validated with
the observational data. The validation becomes complicated if insufficient observations
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Figure 1.2: Mutual influence of the observational data, modeling approaches, data processing
and analysis.

are available, especially when a complex transient case is regarded. For example, the
low-level jet (LLJ) — a low-altitude maxima of the wind speed. While onshore LLJs
are primarily nocturnal, offshore LLJs behave differently and form at lower heights of
200—300m (Nunalee and Basu, 2014; Wagner et al., 2019; Mpller et al., 2020). Consid-
ering the similar order of the modern turbines’ size, the behavior of LLJ raises concerns
for new offshore wind farms. Other challenging events that hinder short-term forecasts
are characterized by rapid changes in wind speed and direction and can be caused by
open cellular convection (OCC) or frontal passages. OCC events belong to transient flow
cases not characteristic of onshore sites (Atkinson and Zhang, 1996).

The scarcity of offshore measurements, particularly those related to LLJ and OCC
events, makes offshore wind research rely on numerical modeling and model coupling to
study complex atmospheric conditions. In this case, a numerical model is first verified
and validated so that the model’s drawbacks in simulating turbulent flows are known and
quantified. Then, a numerical simulation of a more complex flow, e.g., LLJ or OCC, can
be accepted with a certain degree of reliability and used for analysis or as a foundation
to develop simplified models. Generally, a modeling framework is a chain of validating a
model with observational data to use the established model as a high-fidelity reference
for analytical models or complex flows (Fig. 1.3) (Bakhoday-Paskyabi et al., 2022).

Similarly, lidar retrieval methods — algorithms to reconstruct the original wind field
from lidar measurements — should also be validated prior to the application. Verification
using only observations is limited because instruments measuring actual wind character-
istics, e.g., cup and sonic anemometers, provide only point measurements and cannot be
deployed in quantities enough to cover a large area. On the contrary, a numerical wind
flow obtained with a high-fidelity model is commonly used to perform cross-comparison
with lidar data (Chatterjee et al., 2018; Rahlves et al., 2022).
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Figure 1.3: Example of a multi-scale modeling chain that starts with atmospheric processes
simulated at the mesoscale level. The simulation is then down-scaled to micro-levels, allowing
more precise simulation of the turbulence and calculation of rotor loads.

Sometimes, a processing method involves a concept relevant both for observed and
simulated fields, e.g., wake detection — identification of a turbine wake in a wind field
for further characterization. Hence, wake-processing methods should be applicable in
either case. When developed with universality in mind, the processing method can be
first tested on numerical fields, which are generally less noisy than actual measurements.

1.2 Objectives and research questions

The thesis approaches the wake flow problem from several perspectives, each paper
focusing on a different aspect of wake measuring and modeling (Fig. 1.4). The addressed
research questions can be summarized as follows:

1. What are the most relevant measurement techniques and methods to
investigate the wake flow? Are all parameters — wake width and length,
velocity deficit, turbulence intensity, and wake meandering — equally
important, or does their relevance change depending on the study goals?

Due to the wake complexity, wake research utilizes a wide range of measurement
tools and modeling methods. Hence, it is important to know which existing meth-
ods are the most efficient when studying wakes. The general purpose methods
should also be considered, as some may be improved or tuned to the specific tasks
related to wake analysis. Regarding short-term forecasts, the developed routines
must be fast to perform and rely on real-time data. Industrial applications would
prefer techniques that can be seamlessly implemented into established approaches.

Most of the papers in the thesis tackle this question to a certain extent. Paper I
gives a short overview of the Gaussian wake models. Paper II explores an existing
numerical modeling code for the flows at wind speeds characteristic of wind energy
research. Paper V describes and verifies a new algorithm for wake identification
and characterization. The algorithm is subsequently implemented as a sub-routine
in the observational data processing performed in Paper VI.
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2. What are the drawbacks of the existing approaches for wake modeling
and analysis? Can those drawbacks be mitigated to become negligible,
or should they be accounted for?

This question is addressed in Paper II and explored in Papers V and VI. The latter
two papers suggest solutions for challenges encountered in lidar data processing.

3. What can we learn about a wake from the limited data available?

While numerical simulations can generate a three-dimensional wake field, both
as averaged and instantaneous snapshots, real-world observations have more con-
straints and limitations. Still, observational data are essential for model validation
and verification. Getting as much information about the wake as possible expands
the list of quantities available for comparison between models and measurements.

This question primarily concerns observational data. However, Paper V shows how
a wake-processing method developed for the measured wind flow is also applicable
to the simulated data.

4. How do the established approaches for stationary and non-stationary
wake situations perform in complex flow cases, e.g., transient flow? Is
it possible to predict and quantify the turbine response in these events,
for example, by introducing completely new routines or building up a
special routine upon the existing model?

Rapid changes in the inflow conditions due to a gust, transient, or extreme events
raise the question of whether a model interprets the flow correctly. The transient
flow situation, particularly the OCC event, is explored in Paper III by establishing
a multi-scale modeling chain to simulate wind turbine response in this kind of
event. Paper IV explores the resulting wake field to analyze how simple wake
models react to rapidly changing flow characteristics.
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Figure 1.4: Connection between main topics of the thesis papers and data used.
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2.1 Wind turbine wakes and observations

2.1.1 Wake structure

0.00 0.15 0.30 0.45 0.60 0.75
Normalized wake deficit, AU/U.,

Figure 2.1: Cross-sectional profiles of the velocity deficit at various distances in a simulated
flow upstream and downstream of the wind turbine.

A wind turbine extracts kinetic energy from the wind flow. Consequently, a struc-
ture with decreased wind speed forms behind the turbine rotor — a wind turbine wake
(Fig. 2.1). Upstream of the turbine, a small induction region also shows a decrease in
the wind speed, although not as substantial as in the wake at the same distance from
the rotor (Medici et al., 2011; Simley et al., 2016). Several dynamic streak-like struc-
tures form because of the pressure difference caused by blade rotation: tip vortices at
the blade’s tip (fvanell et al., 2010) and a hub vortex forming from the nacelle and
blade’s root vortices (Zhang et al., 2012, 2013). The tip vortices persist for several rotor
distances before full dissipation (Sherry et al., 2013) and obstruct mixing with the free
flow, thus slowing down the wake recovery (Lignarolo et al., 2014). Their dissipation
accelerates in a highly turbulent flow (Khan et al., 2017). On the contrary, the hub
vortex is rather unstable; its strongest effect on the flow speed occurs in the near-rotor
region. Still, the fluctuations caused by the hub vortex partially contribute to the wake
speed at further downstream distances (Ashton et al., 2016). The chance for hub vortex
instability increases in the low turbulent flow.

Wakes are the most prominent structures in a wind farm flow field. Hence, their
effect on turbines poses one of the main challenges for predicting structural loads and
wind power output. The wake velocity deficit AU describes the difference between the
magnitudes of the free-flow wind speed Uy, and wind speed U behind the rotor:

AU = Uy, — U. (2.1)

The normalized velocity deficit AU characterizes the strength of a wake. AU = 1
corresponds to the absence of the flow movement, and AU = 0 means the full recovery
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to the free-flow wind speed:

A=Y=l _y U (2.2)
Uso Ux

For wake studies, a local Cartesian coordinate system is typically centered at the
rotor center or wind tower foundation. The z-axis may be fixed or rotate dynamically
with the horizontal wind direction. The y-axis is perpendicular to the z-axis and lies in a
horizontal plane. Depending on the characteristics, a wake can be split into the near and
far wake (Crespo et al., 1999; Vermeer et al., 2003). The near wake is characterized by
strong tip vortices and a possibility of a double peak in the velocity deficit distribution.
The normalized velocity deficit AU is the strongest in the near wake and may reach
0.6 —0.8 (Fig. 2.1). The criteria for separating near and far wakes vary depending on the
study’s purposes. For example, Vermeer et al. (2003) defined the near wake for z/D < 1,
where the influence from hub vortices is still strong. On the contrary, Crespo et al. (1999)
excluded the near-rotor region at x/D < 2 for the same reasons and regarded the near
wake at 2 < 2/D < 5, which is now a more typical range to define the near wake. A short
transitional region may also be defined, where the velocity deficit approaches self-similar
Gaussian distributions of the far wake. The far wake is then defined at /D > 6 — 8 and

spans until the full recovery to the free flow.

(a) Wake aligned with the wind direction

wake boundary———

- = =wake centerline and wind direction - =

(b) Deflected wake

~ <

Figure 2.2: A schematic of (a) a wake aligned with the wind direction and (b) a wake deflected
by the turbines with the rotor’s yaw angle of 10°.

The longer the wake, the more noticeable its deflection from the rotor axis and
distortion of the circular shape in the cross-section. Weak deflection and divergence from
a regular circular shape always occur due to the effect of the Coriolis force, regardless of
the wind turbine orientation (Abkar and Porté-Agel, 2016; van der Laan and Sprensen,
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2017). The deflection can be also affected by altering the rotor’s position. Changing the
rotor’s yaw angle (Fig. 2.2b) causes strong horizontal deflection and helps to decrease the
wake effect on downstream turbines and increase the power production (Adaramola and
A. Krogstad, 2011; Fleming et al., 2014). Changing the tilt angle increases the vertical
deflection of a wake and leads to the wake’s mirroring from the sea surface; the mirroring
creates a small section downstream where the velocity deficit is slightly lower compared
to a non-deflected wake (Johlas et al., 2022).

The instantaneous wake center oscillates around the averaged wake’s centerline — a
so-called wake meandering (Larsen et al., 2007; Espania et al., 2011; Foti et al., 2018).
Together with the wake deflection, the wake meandering subjects downwind turbines
to non-uniform loads, complicating the estimation of fatigue and lifetime. The oscil-
lation amplitude increases with the downstream distance, especially in the horizontal
plane (Foti et al., 2018). The oscillations are weaker but still prominent in the verti-
cal plane (Esparia et al., 2011). Although the physics behind the wake meandering is
not fully understood, the dominant hypothesis attributes meandering to vortex shedding
and large-scale turbulence influence (Larsen et al., 2007, 2008; Mao and Sprensen, 2018).
Other factors like wind turbine vibrations may also contribute to the meandering. While
the wake meandering is not important for the long-term estimations of wind energy pro-
duction, it is a crucial factor to consider when studying dynamic loads, as those are
evidently correlated with the behavior of an instantaneous wake (Moens et al., 2019).

2.1.2 Wakes and atmospheric stability

Assuming Cartesian coordinates, the wind speed U can be split into directional compo-
nents u, v, and w:
U? = u? + 0 +w? (2.3)

Each directional wind speed component in a turbulent flow, e.g., u, can be split into
the mean term denoted with an overline, %, and the fluctuating term denoted with prime
symbol, u/. Then for each component:

v=Tu+u, v=0+0, w=w+w. (2.4)
The same is valid for the total wind speed U
U=U+U. (2.5)

The sum of squared mean speed components corresponds to the flow’s mean kinetic
energy per unit mass E:

l=2 1, 5 5 5
E:§U :i(u +7T +w). (2.6)

Similarly, the fluctuating components represent the turbulent kinetic energy e (TKE):
Lown, n, . »
e==(u"+v w') . 2.7
5 (u? + 0" +w') (2.7)

The turbulence intensity I of the flow describes the strength of turbulent fluctua-
tions in comparison to the mean wind. For example, the turbulence intensity of the
u-component of the wind speed is given by

I, =22, (2.8)
u



10 Scientific background

where o, is the standard deviation of wu.

The temperature 7" may be insufficient for use in meteorological studies due to the
effects of atmospheric pressure and humidity. Hence, the potential temperature 6 is
introduced to account for the pressure p

k
0=T <@> : (2.9)
p

where pg is the standard pressure of 100 kPa or the surface pressure. The exponent k is
typically taken as k = 2/7, assuming the ideal diatomic gas. Additionally, the virtual
potential temperature 6, shows the potential temperature 6 of dry air with the same
density as moist air. Although the difference between 6 and 6, may reach only a few
degrees, it must be considered to resolve correctly the turbulence intensity and movement
due to buoyancy.

The turbulence intensity is linked with the atmospheric stability conditions, which
are affected by the wind shear OU/Jz and the potential temperature gradient 96/0z
(Stull, 1988; Churchfield et al., 2012). To classify atmospheric stabilities, the Obukhov
length L is introduced to describe the relation between wind shear and buoyancy:

ui 0,

T
Kkgw'6!

L= (2.10)

where k = 0.4 is the von Karman constant, g = 9.81m/s — the acceleration due to the
Earth’s gravity; u, — the friction velocity. w’6/ — the surface heat flux.
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Figure 2.3: Schematic profiles of mean velocity components and potential temperature for (a)
convective, (b) neutral, and (c) stable boundary layers in a numerical simulation. The vertical
axis is normalized by the respective domain height.

Atmospheric stability of the boundary layer is defined depending on whether the
Obukhov length L is positive or negative:
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* Unstable or convective boundary layer (CBL), L < 0 (Fig. 2.3a): the adiabatic
lapse rate of a rising air parcel decreases slower than that of the surrounding air.
Hence, the air parcel remains warmer and less dense than its surroundings and
continues to rise because of the buoyancy. The mean wind shear is low. The
variance of velocity components is relatively high and causes strong turbulence
fluctuations (Deardorff, 1972; Schmidt and Schumann, 1989).

* Neutral boundary layer (NBL), |L| — oo (Fig. 2.3b): weak to zero potential tem-
perature gradient, the air parcel mainly moves horizontally because of the wind;
the vertical profile of the mean wind speed is close to logarithmic (Stull, 1988).

* Stable boundary layer (SBL), L > 0 (Fig. 2.3¢c): the air motion is suppressed, the
rising air parcel is colder and denser than its surroundings and tends to return
to its level of origin. Stable atmosphere is characterized by high wind shear and
low turbulence. The mean wind speed vertical profile diverges from logarithmic
and may be distorted with one or more local maxima due to low-level jets (Kettle,
2014).

Table 2.1: Detailed classification of the atmospheric stabilities based on the Obukhov length.
Reproduced from Pena et al. (2010)

Stability class Obukhov length

Very unstable | —100 < L < —50
Unstable Unstable | —200 < L < —100
Near neutral/unstable | —500 < L < —200

Neutral ‘ |L| > 500

Near neutral/stable | 200 < L < 500
Stable Stable 50 < L < 200
Very stable 10 < L <50

Several intermediate stratifications may be introduced to separate very stable/unsta-
ble conditions from near neutral (Table 2.1) ( Wijk et al., 1990; Peria et al., 2010; Rodrigo
et al., 2015). A true neutral atmosphere is a rare case; close to neutral conditions are
usually observed on a cloudy day or during the transition from stable to unstable con-
ditions and vice versa. Diurnal variations in stability are especially pronounced onshore
due to the surface heating and cooling. Unstable conditions onshore can be expected
during the clear sky day when the surface is heated faster than the air. Stable conditions
are often observed at night when the land surface is cooler than the air.

Offshore, diurnal variations in stability are not as prominent compared to seasonal
variations (Sathe et al., 2011; Barthelmie et al., 2015). If any diurnal pattern emerges, it
differs from onshore sites and shows a slight increase of stable conditions occurrence in
the evening (Motta et al., 2005). The hourly and monthly distributions of stabilities are
noticeably affected by the offshore site proximity to the land: winds from the coast or
the open sea bring patterns characteristic to their respective origins (Motta et al., 2005).
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Turbulence intensity offshore strongly depends on the wind speed since it affects
the surface roughness through the wave formation ( Tiurk and Emeis, 2010). However,
turbulence levels are generally lower than over the land due to a lower surface roughness.
Combined, these factors lead to an increased occurrence of very stable conditions for
wind speeds of 8 — 15m/s — common rated wind speed for wind turbines; the total SBL
occurrences gradually decrease for winds above 15 m/s (Motta et al., 2005; Sathe et al.,
2013; Cheynet et al., 2018; Nybg et al., 2020).

The increased chance of SBL occurrence over the sea is important for wind research
because SBL is usually thin and reaches the order of 300 m or even lower in the extremely
stable atmosphere (Smedman et al., 1995). Since modern offshore wind turbines tend
to grow in size, the upper part of a wind turbine rotor may reach the boundary of SBL
and become subjected to a more complex flow even outside extremely stable conditions
(Wagner et al., 2019).

Wakes also recover differently under different stability conditions. The longer and
stronger the wake is, the higher its possibility to affect downstream turbine inflow and
loads. The influence of atmospheric stability on power production was studied for several
European offshore wind farms (Barthelmie and Jensen, 2010; Hansen et al., 2011; Alblas
et al., 2014; Barthelmie et al., 2015) and USA onshore wind farm data (Wharton and
Lundquist, 2012). The results agree upon that a higher velocity deficit and slower wake
recovery are observed during stable conditions leading to decreased power production.
Neutral and convective conditions show less wake losses due to higher turbulence intensity
and better mixing. If compared between very stable and very unstable conditions, the
difference in power production of the wake-affected turbines may reach 10 — 20% of
the free-flow power output. However, when sampled for the same mean wind speed,
the normalized power production in stable, neutral and unstable cases may show less
difference (Barthelmie et al., 2015).

Numerical simulation of stability effects in a large wind farm supports the observa-
tions. It confirms a faster wake recovery in the CBL ( Churchfield et al., 2012), although
the wake growth and meandering also became stronger in this case (Abkar and Porté-
Agel, 2015). The effect of stability on the wake decay is also confirmed in wind tunnel
experiments (Zhang et al., 2013; Hancock and Pascheke, 2014). Therefore, slower wake
recovery in the SBL becomes important to consider in offshore wind farms. Single tur-
bine wakes merge and form a wind farm wake, which may span several kilometers and
affect nearby farms. A notable observation of wake effects registered at several tens of
kilometers from a large offshore wind farm was described by Platis et al. (2018).

2.1.3 Measurement instruments and techniques
Field measurements

Measurements of wind speed in a wake provide data for the model validation and case
studies. Since the turbine wake is a three-dimensional structure, not all measurement
instruments can provide enough information about the wake flow. The most widespread
meteorological instruments — cup and sonic anemometers — measure the wind speed and
direction at the point where they are mounted. Usually, the anemometers are used to take
measurements of the free flow or at certain points downstream of the turbine. The time
resolution of a cup anemometer is generally enough to calculate the turbulence intensity
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with Eq (2.8) using a standard deviation of 1 Hz time series and 10-minute wind speed
average. While a single cup anemometer registers only the magnitude of wind speed,
a sonic anemometer can measure all three directional wind speed components. The
time resolution of sonic anemometers reaches up to 100 Hz, allowing to perform high-
frequency measurements and get more precise estimation of the standard deviation of
velocity components and the turbulence intensity.

While it is theoretically possible to mount several anemometers and get a scope of a
two- or three-dimensional wind field through interpolation, the number of instruments
required and unavoidable flow distortions from meteorological masts render this method
infeasible. For the remote wind measurements, a scanning Doppler wind lidar becomes
the primary choice.

A scanning Doppler lidar emits a laser beam and analyzes light energy back-scattered
by small particles moving with the air ( Werner, 2005; Bingdl et al., 2010; Trugillo et al.,
2011). The velocities along the lidar’s beam, or line-of-sight velocities, are determined
based on the Doppler shift in the back-scattered signal frequency.

Scanning lidars are versatile and may operate in several modes. Wind profiling takes
advantage of Doppler Beam Swinging (DBS) and Velocity Azimuth Display (VAD) scan
patterns (Lundquist et al., 2008; Drew et al., 2013; Mirocha et al., 2015; Newman et al.,
2016). Two-dimensional wind fields are obtained as continuous radial scans with varying
elevation or azimuth angles. The scanning mode depends on which angle of the lidar
beam is fixed.

* Range Height Indicator (RHI) — the elevation angle is varied, and the azimuth
angle remains constant; the measurements are taken in a vertical plane.

* Plan-Position Indicator (PPI) — the elevation angle is constant, and the azimuth
angle is varied; the measurements are taken in a horizontal or inclined plane.

The RHI scanning mode is suitable for studying the boundary layer (Debnath et al.,
2017; Spath et al., 2022; Duscha et al., 2023) and vertical wake profiles ( Barthelmie et al.,
2018). The PPI mode allows capturing wakes at different horizontal levels, preferably at
the hub height, for further characterization (lungo and Porté-Agel, 2013; Kumer et al.,
2015; Wang and Barthelmie, 2015; Bodini et al., 2017; Krishnamurthy et al., 2017).
However, scanning lidars measure only a radial velocity V;. — a line-of-sight projection
of the actual wind vector. The measured velocity corresponds to the original velocity’s
components as

Vi =usinfcos ¢ + vcosfcos p + wsin g, (2.11)

where 6 is the azimuth angle, and ¢ is the elevation angle of the lidar beam.

Often, the radial velocity does not coincide with the actual velocity and may diverge
from it greatly. In wind energy research, a lidar is usually mounted at a fixed location
and scans a specific sector with the possibility to change elevation or azimuth angles
(Bingdl et al., 2010; Trujillo et al., 2011). Therefore, the wakes perpendicular to the
line-of-sight will be seen as weak disturbances in the free flow because their radial ve-
locities approach zero. The problem can be overcome by aligning the lidar with the
dominant wind direction so that the radial velocity would approach the actual velocity
in most scans. Overall, the radial velocity must be processed with a retrieval algorithm
to reconstruct the original wind speed and direction. Although various retrieval algo-
rithms were developed as soon as scanning lidars were put into use, the most common
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algorithms assume a homogeneous wind field. When applied to non-homogeneous fields,
e.g., wakes in a wind farm, such retrieval algorithm may produce erroneous results. Sev-
eral algorithms varying in complexity and application were developed for the retrieval of
non-homogeneous fields (Gao et al., 2006; Nighuis et al., 2014; Cherukuru et al., 2017;
Fielding and Janiskovd, 2020; Janiskovd and Fielding, 2020).

Wake processing

(a) Simulated flow
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Figure 2.4: (a) A simulated wake from a single turbine and wake identification performed with
(b) an analytical and (c) thresholding method.

The information about a wake (Fig. 2.4a) can be obtained by performing wake iden-
tification and characterization (Quon et al., 2020). Wake identification is a procedure
to determine which points in the two- or three-dimensional flow data belong to a wake.
After the wake points are identified, it is possible to characterize the wake: define its
boundaries, width, strength, and centerline. The wake characterization has numerous
applications and, depending on the goal, does not always have to be carried out thor-
oughly. For example, the wake centerline poses the most interest in yaw deflection
studies. When it comes to the rotor loads, knowing the velocity deficit distribution and
turbulence intensity becomes the priority.

Wake identification methods can be generally split into analytical and thresholding
methods. Analytical methods set a condition to estimate the wake center and boundaries.
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Typically, a Gaussian function is used for fitting the velocity deficit data (Fig. 2.4b)
(Kumer et al., 2015; Krishnamurthy et al., 2017), although a more complex expression,
e.g., minimum power production within the area, is also viable (Vollmer et al., 2016).
The drawback of the analytical methods is that they require knowing the wind speed
on a spatial grid. Sufficient data resolution is preferable so that fitting a function can
produce meaningful results.

Thresholding methods set a condition to split data into the free-flow and wake points
(Fig. 2.4c). The condition may be as simple as assigning a wake point if the normalized
velocity deficit exceeds a certain value, e.g., 5% (Espana et al., 2011; Bastine et al., 2015).
Borrowing from more complex techniques used in image processing ( Bakhoday-Paskyabi
et al., 2016) allows setting a dynamic criterion for thresholding. The algorithm may
then adapt to the data resolution and quality. Thresholding methods do not necessarily
require exact wind speed values and, therefore, can be also applied to images or photos.
However, the thresholded data identifies only the wake shape; additional processing is
required to characterize the wake centerline.

2.2 Modeling of the atmospheric flow and wakes

Wake modeling splits into the problems of modeling wind flow and a wind turbine rotor
or wind farm. Modern codes utilize a wide range of models and approaches, allowing
to select the one that satisfies the requirements for accuracy, speed and computational
resources (Fig. 2.5). Simple analytical wake models (Sect. 2.2.2) focus on the velocity
deficit and are relatively easy to implement with the possibility of adjustment to the
particular study’s goals. Analytical models also serve as underlying models in fast codes,
e.g., WAsP and PyWake, to estimate annual energy production of a wind farm. Complex
numerical models (Sect. 2.2.3) resolve the wind flow in detail and require a built-in rotor
model to generate wake and analyze its effect on other wind turbines. Depending on the
simulation purposes and code capabilities, the implementation of a wind turbine rotor
varies from an actuator model to a fully resolved surface mesh (Sect. 2.2.5).

Newly developed models or methods often utilize data from wind tunnel experiments
or measurement campaigns for validation. Although a field measurement dataset may
capture various atmospheric conditions at the site, it may not cover different turbines
or terrain type. Additionally, the increasing number of offshore wind farms means that
nearby farms and measurement instruments may be affected by other farms wakes. While
this situation also poses a research interest in its own, it is not suitable for the model val-
idation focused on an unaffected wind farm performance. Several experimental datasets
containing controlled and processed data are made available for model validation. As
of 2017, Breton et al. (2017) lists 36 datasets ranging in terms of access, terrain, scale
and number of the turbines observed. Alternatively, a model may be validated with
a high-fidelity simulation from a numerical code whose drawbacks and advantages are
already documented in detail.

2.2.1 Governing equations of the turbulent flow

Turbulent flows are described by the equation system accounting for the evolution of wind
speed components, temperature, moisture, and scalar quantities within space (z,y, 2)
and time t. The wind speeds typical for wind energy research are low. Therefore, the
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Figure 2.5: Quverview of the analytical and numerical models suitable for the wake research and
examples of the codes where they are used.
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compressibility effects can be disregarded unless a fully-resolved wind rotor and blade’s
tip speed are specifically considered (Yan and Archer, 2018). Hence, the governing
equations for turbulent flow can be written in the Boussinesq-approximated form, which
considers air density p only in the connection with the buoyancy term. The air density
is then affected solely by the temperature change with height.

1. Conservation of mass or continuity equation

Ouj

el (2.12)

Here and in the subsequent equations, indices 4, j, and k may take values of 1, 2,
or 3 corresponding to one of the three-dimensional axes: x1 = x, xo = ¥y, 3 = 2.
u; are directional wind speed components with u; = u, uo = v, and uz = w.

2. Conservation of momentum equation

Ou;  Ouu; 1 0p* Oy — b 0%,
Bt oz, = _;(971‘1 — &ijkfijur + i3 faug; — !]T(Si?) + V%? (2.13)

where p* is the perturbation pressure. f is the Coriolis parameter vector accounting
for the Earth’s rotation (0, 2w cos ¢, 2w sin ¢); the vector’s directional components
depend on the angular velocity of the Earth w = 0.729 x 10~*rad/s and latitude
@. ug; are the geostrophic wind components. ¢ is the Kronecker delta. v is the
kinematic viscosity.

3. Conservation of heat equation

00 a0 0%0

where vy is the thermal diffusivity, and @ is the source term for the heat.
4. Conservation of moisture equation

0 0 0? S,

Sy Ty 21 P (2.15)

ot al‘j 8x7. P
where the total humidity ¢y contains vapor ¢ and non-vapor ¢, components, so
that g7 = ¢ + qr. The diffusivity v, is the diffusivity of the water vapor, and Sy,
is the source term for processes not already included in the equation.

5. Conservation of a scalar quantity, e.g., concentration C

ocC ocC' 0*C

where v¢ is the molecular diffusivity, and S¢ is the source term for processes not
described by the aforementioned equations, e.g., chemical reactions.

The equation system Eq. (2.12)-(2.16) does not have an analytical solution. There-
fore, it is either solved numerically or used as a constraint for analytical models.
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Figure 2.6: Ezxample of a simulated wake and its interpretation by different analytical models
for the same free-flow wind speed, thrust coefficient, and turbulence intensity.

2.2.2 Analytical wake models

Analytical wake models, also called engineering models, calculate the velocity deficit with
simple mathematical expressions (Fig. 2.6). Since those calculations can be performed
fast, the analytical models or their modifications are widely used for estimation of the
wind energy production (Nygaard et al., 2022) or layout optimization (Tao et al., 2020).
For simplicity, the models assume axisymmetrical self-similar velocity distribution in the
wake unaffected by the wind shear. The incoming flow characteristics are accounted for
by including dependencies on the thrust coeflicient C7 and turbulence intensity I,. The
analytical models are primarily far-wake models and focus on accurately estimating the
velocity deficit at a downstream distance of x > 6D relevant for wind farm applications.
Recently, there have been additions of full-wake models exploring double Gaussian and
super-Gaussian distributions to improve the velocity deficit prediction in the near wake.

For uniformity purposes, all models listed in this section are formulated to describe
the normalized velocity deficit AU (z,r) (Eq. (2.2)), where z is the downstream distance
along the rotor axis, and r = /4% + (2 — 23)? is the radial distance from the rotor
center located at the hub height z,. The radial distance collapses to a y-coordinate in
the cross-sectional profile or a (z — z,)-coordinate in the vertical profile.

Top-hat models

Top-hat models do not aim to reproduce the velocity distribution in the wake and instead
focus on estimating the energy content. The wake velocity and deficit are then considered
constant within a circle of the wake diameter in each cross-section.

The Jensen model (Fig. 2.6¢) assumes that a fully turbulent wake expands linearly
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from the rotor diameter D to the wake diameter Dy, (x). The normalized velocity deficit
is derived from the conservation principles as

2
AU—(I—\/l—CT)-(Df(I)) : (2.17)

where D,, is the wake diameter in a cross-section at the downstream distance z:
Dy(x) = D + 2kz. (2.18)

Although Jensen (1983) ties the derivation to the conservation of momentum, it was
later shown that the resulting expression is derived from the conservation of mass alone
(Bastankhah and Porté-Agel, 2014).

The Jensen model does not include the turbulence intensity, only the thrust coef-
ficient. However, the wake expansion coefficient k should be varied depending on the
site conditions (Barthelmie and Jensen, 2010) or modified to account for the turbulence
intensity (Peria et al., 2016). The Park model, a modification of the Jensen model, is
the underlying wake model in the WAsP code for wind resource assessment and provides
a good estimation of the energy production in a wind farm (Barthelmie et al., 2006;
Gogmen et al., 2016).

Another top-hat model, the Frandsen model (Fig. 2.6d), utilizes mass and momentum
conservation principles (Frandsen et al., 2006). Unlike the Jensen model, which takes the
initial wake diameter D,,(0) = D, the Frandsen model assumes an initial wake expansion
from D to Dy

Dy(0) = Dy = \/BD, (2.19)

where the coefficient 5 is
1 1-—
g trVI-Cr (2.20)
2y/1 —Cr

The wake diameter D,, at the downstream distance x is then calculated as
1/k
Dy(x) = D (B*? + ax/D) " (2.21)

The induction factor « is either determined experimentally or obtained from the
Jensen model. Considering the wake diameters, the area of the initial wake is Ay and
the area of the wake at the downstream distance = is A,. Then the velocity deficit
depends on the wake area change as

— 11 [ A
AU == — =4/1—-2—C7p. 2.22
U 57 AwCT ( )

Since the Frandsen model takes the initial wake size larger than the rotor, it predicts
a wider wake compared to the Jensen model. However, being re-fitted to the data,
both models agree better on the wake expansion (Andersen et al., 2014). Currently,
the slightly modified Frandsen model is used by the IEC standard 61400-1 edition 3
to assess turbulence intensity levels (Nielsen et al., 2009; International Electrotechnical
Commission, 2005).
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Single Gaussian models

Although it was noticed early, that the velocity deficit in a far wake resembles a Gaussian
distribution (Hégstrom et al., 1988), it was not much incorporated into wake models.
Ainslie (1988) implemented a Gaussian distribution into a numerical model. The primary
analytical model with a non-uniform distribution, the Larsen model ( Larsen, 1988, 2009),
however, used a polynomial expression for the velocity deficit. Numerous analytical
Gaussian wake models emerged only recently when more experimental and numerical
data could be obtained for validation and improved prediction of wind farm performance.
A Gaussian wake model can be shortened to a general form of

AU(z,r) = F(z,Cr, 1) - G(r,0(z)), (2.23)
where

* F(z,Cr,1I,) is the amplitude function defining the stream-wise changes of the
maximum velocity deficit.

* G(r,0(z)) is the Gaussian function. A single Gaussian distribution is defined as

2

G(r,o(x)) = exp (M) . (2.24)

* o(x) is the standard deviation from which the wake half-width is derived as
r12(x) = o(x)vV2In2 (Bastankhah and Porté-Agel, 2014). The wake half-width
assumes the velocity deficit is half of the maximum velocity deficit of the respective
cross-section.

Bastankhah and Porté-Agel (2014) proposed a basic Gaussian wake model (Fig. 2.6e).
Its underlying equations were derived from mass and momentum conservation principles
assuming Gaussian distribution of the velocity deficit. For brevity, this model is further
referred to as the BPA model.

- Or ( i)
AU = (1 —4/1— 802> exp | —5 (2.25)

The BPA model retains the linear expansion of a wake similar to the Jensen model
but applies it to the standard deviation ¢ instead of the wake diameter. The standard
deviation depends on the downstream distance x as

.3
o(z)=k Do +e. (2.26)

Unlike the wake expansion coefficient k = dry,/dz used in the Jensen model (Eq. (2.18)),
the coefficient k* = 00 /dz defines the wake growth rate through the standard deviation
o(x) of the velocity deficit. In the subsequent modifications, k* was split into two
coeflicients to provide a dependency on the turbulence intensity (Niayifar and Porté-
Agel, 2016; Abkar et al., 2018)

k" = ki + ko1,

(2.27)
Jey = 0.003678, kg = 0.3837.
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The parameter ¢ is derived by equating the total mass flow deficit fooo AUdA cal-
culated at * = 0 with the BPA and Frandsen models. As a result, ¢ = 0.25y/3 with
B defined as in the Frandsen model (Eq. (2.20)). Performing the comparison with nu-
merical simulations, Bastankhah and Porté-Agel (2014) suggested using ¢ = 0.24/8 for a
better agreement.

Gao et al. (2016) replaced the top-hat distribution in the Jensen model with the
Gaussian distribution (Fig. 2.6f). The new Jensen-Gaussian model sets the standard
deviation o so that 99% of the Gaussian distribution lies within the wake radius r,, =
D,,/2 as calculated with the Jensen model in Eq. (2.18), i.e., 0 = r/2.58. Optimizing
the model to have the same mass flow as in the Jensen model, leads to the following
velocity deficit:

_ 516 —s r2 )

where U*(L kyw) is the normalized wake deficit corrected from the Jensen model
Eq. (2.17).

Ishihara and Qian (2018) were the first to propose a single Gaussian model describing
the velocity deficit in the near and far wake — the full-wake model. The model expands
ideas of the old Ishihara model proposed in 2004 (Ishihara et al., 2004) and takes the
BPA original model (Eq. (2.25)) as the starting point. The Ishihara model describes a
two-dimensional wake with the maximum velocity deficit located at a certain distance
downstream of the rotor, unlike the BPA model, where the maximum deficit occurs
directly behind the rotor.

AT = (a+b-x/D+MCW>2-exp <—2%) (2.29)

The model parameters a, b, and ¢ are calculated as functions of Cp, I,, and a set
of coefficients obtained from the data fitting to a numerical simulation by Ishihara and
Qian (2018).

a= 0930527102 b=0.420%5102, ¢ = 0.15C; "% 107 (2.30)

a >

Double Gaussian models

The distribution of the near-wake velocity deficit in the near wake usually has two
distinctive peaks, which are lost in single Gaussian models. Double Gaussian models
(Keane et al., 2016; Schreiber et al., 2019) are an attempt on developing a full-wake
model that accurately captures the velocity deficit distribution in the near and far wake
at once.

A double Gaussian function Ga(r,o(z)) describes an axisymmetric velocity distribu-
tion with two peaks

(r £19)?

Galro(a)) = 5 (e + ) W = L2 00

: (2.31)

where rq is the radial position of the Gaussian minimum. The function reduces to a single
Gaussian function G(r,o(z)) in the axisymmetrical model Eq. (2.24) when 79 = 0. The
model proposed by Keane et al. (2016) followed the steps of Bastankhah and Porté-
Agel (2014) to solve the momentum flux equation for a double Gaussian distribution



22 Scientific background

and provided further improvement in Keane (2021). Schreiber et al. (2019) proposed a
correction to the original Keane et al. (2016) model to achieve better agreement in the
near-wake area (Fig. 2.6g).

Super-Gaussian model

A different approach alters the Gaussian distribution by varying the power coefficient
n = 2 in G(r,o,n) = exp (—r"/202). The super-Gaussian model (Blondel and Cathe-
lain, 2020) calculates this coeflicient dynamically, depending on the downstream distance
(Fig. 2.6h). Being in active development, the model proposes several ways and correc-
tions for n, all complying with the mass and momentum conservation principles. The
model shows a promising agreement with numerical simulations by approaching a top-
hat distribution in the near wake (n =4 —4.5) and a single Gaussian distribution in the
far wake (n — 2.5).

2.2.3 Numerical models

Direct numerical simulation (DNS) is the only way to appropriately resolve all turbu-
lence scales in the wind flow. However, DNS requirements for computational resources
increase gradually with the amount of grid points used, rendering the approach imprac-
tical. Hence, various simplifications and assumptions are applied to the equation system
Eq. (2.12)—(2.16) to reduce the requirements for computational resources while retain-
ing accuracy. A numerical simulation gradually speeds up if not every turbulence scale is
resolved directly. Reynolds-Averaged Navier-Stokes (RANS) equations attempt to solve
numerically all kinds of turbulent scales and run in a quasi-steady state (9u;/0t = 0).
Although RANS models fall back in resolving large-scale turbulence, they perform well
for the boundary layer of a solid body, e.g., blades (Sgrensen et al., 2002). A different
approach is required for turbulent flow studies.

Large-eddy simulation models

Large-eddy simulation (LES) models resolve turbulence scales larger than the grid spac-
ing and approximate the rest. LES allows using fewer grid points than DNS and, there-
fore, requires less computational resources. The requirements gradually decrease further
if the surface layer of a solid body is not resolved (Yang and Griffin, 2020). When
compared to RANS models, LES resolves turbulence anisotropy and large-scale mixing
better, but requires more computational time. Despite the advancement in computa-
tional power, LES is still primarily used in research rather than industrial applications.

In LES, each prognostic variable, e.g., w, is split into resolved (filtered) & and unre-
solved (subgrid) u” scales so that u = @ + u”. Then, a filtering function is introduced to
separate resolved and unresolved quantities.

Wz, t) = / w(€, )Gz — € A)dE, (2.32)

where G(z —&, A) is the filter kernel that should satisfy [ G(x)dx = 1 for u; = const. A
is the filter width, which may be defined in several ways to consider varying grid spacing;:

A {(AxAyAZ)1/3 representative grid spacing (2.33)

Apax = max(Ag, Ay, A;) — maximum grid spacing
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Various filter kernels were developed. The box filter is an implicit filter defined
through a top-hat function; this filter is usually the one applied in finite-difference or

finite-volume codes: ) N
1 ifle—gl <A

Ole—g.0)= |5 HlEe—dsg (2.34)
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Applying the filtering function to the conservation of momentum equation Eq. (2.13)
modifies it into 5 5 5 o 5
U _ Ou; 1 0p U; Tij
il , == — 2.35
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where 7;; is the subgrid-scale stress (SGS) defined via the SGS eddy diftusivity K, as

du; 0y =
oz, + aTcJ) Sij (2.36)

7ij = (Wit — Titlj) = — Ko <

The rate of strain tensor S’ij is introduced for brevity and is defined as

.1 (00 aaj>
Sij =3 < o o) (2.37)

Filtering turbulent flow equations leads to the new unknown terms that prevent
solving the system analytically. To close the equation system, turbulence closures are
implemented. Various LES codes provide a selection of closure models to use. Most
closures originate from Smagorinsky closure, which was originally suggested with the LES
concept (Smagorinsky, 1963). Lilly (1962) suggested to define K, through a constant
Cg and the rate of strain tensor S;; as:

Km(m, t) = (CsA)Q\/ QSZ'J' S’ij, (238)

Although C's was supposed to be a universal constant, its value may be varied depending
on the simulation conditions and estimation methods. Thus, Lilly (1966) demonstrates
how different approaches yield values in a range of C's ~ 0.17 —0.23. Canuto and Cheng
(1997) argues that the coefficient should be lowered to Cig ~ 0.11 in the new SGS model
and leans to a conclusion that Cg should be calculated dynamically to improve accuracy.
Martinez-Tossas et al. (2015) confirm that LES using C'g = 0.16, which is recommended
for homogeneous isotropic turbulence, captures the wake transition worse than LES with
a smaller value of Cg = 0.08.

Numerical Weather Prediction (NWP) — mesoscale models

Mesoscale models simulate large-scale atmospheric processes in the domains spanning
hundreds or thousands of kilometers. Their drawback is a specific pressure-based coor-
dinate system that limits terrain modeling (Lundquist et al., 2008). This limitation is
less crucial for the offshore simulations. Moreover, the wind energy research gains from
the mesoscale models’ capability to use reanalysis data as an input. Reanalysis datasets
are obtained by assimilating available meteorological observations to reconstruct atmo-
spheric processes over large periods and areas. E.g., the publicly available part of the
ERAS5 dataset (Hersbach et al., 2020) covers the whole Earth and contains hourly atmo-
spheric and wave data from 1979 onwards with a constant spatial resolution of 31km.
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Passing temperature, wind speed and direction data to a mesoscale model allows ob-
taining complex wind fields to study atmospheric processes at large distances above and
around the wind farm. The ability of NWP models to simulate large domains allows
capturing wind farm wakes thus making the mesoscale models helpful in studying wake
interactions between wind farms (Jiménez et al., 2015). The common choice of mesoscale
model in offshore wind farm research is the Weather Research and Forecasting model
(WRF) (Michalakes et al., 2005). WRF uses the 3D Smagorinsky or 1.5-order TKE
closure. A typical spatial resolution for mesoscale models is of an order of 1 km or more,
which is not suitable for modeling individual wakes. Hence, a wind farm is approximated
as a whole structure. WRF may approximate a wind farm as a momentum sink ( Fitch
et al., 2012), apply explicit wake parameterization ( Volker et al., 2015) or, as a recent
development, estimate wake effects with the Jensen model (Ma et al., 2022). If a rotor
model is to be used, then WRF is coupled with an internal LES code and a generalized
actuator disk model (Mirocha et al., 2015).

Model coupling

Another way to reduce computational time and improve accuracy is by coupling models of
different complexity. Coupling LES with RANS to perform a Detached eddy simulation
(DES) combines the advantages of both models. A RANS model resolves the near-surface
boundary layer of a solid body, e.g., a rotor blade. LES is then run for the rest of the
computational domain to resolve the separated turbulent flow (Spalart, 2009).

Coupling LES with WRF (WRF-LES) within the WRF framework or an external
LES model allows the simulation of complex large-scale atmospheric conditions with
WRF. The resulting dynamic field is then passed to LES to refine the solution in the
area of interest. Consequently, LES resolves the complex flow in a wind farm more
precisely than the WREF approximations would allow.

2.2.4 LES code: PALM Model System

The PALM Model System is the Fortran LES code developed at the University of Hanover
(Maronga et al., 2015, 2020). Besides the base code, PALM utilizes a modular structure
that allows switching on and off specific processes or adding new equations via user code.
PALM solves an equation system for up to six prognostic quantities: directional wind
speed components u;, potential temperature €, water vapor mixing ratio ¢y, and passive
scalar s. Since ¢, and s quantities were not relevant for the wake LESs performed in
this thesis, the humidity and passive scalar modules were switched off, their respective
equations were not solved during simulations. Since the air density changes little at
near-surface levels, the prognostic equations solved in PALM assumed that the density
of dry air p remained constant regardless of the height.

After the simplifications and filtering, the system of Boussinesq-approximated equa-
tions Eq. (2.12)—(2.16) reduces to the following three equations for mass, momentum,
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and heat conservation:
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The filtered momentum equation Eq. (2.35) is rearranged in PALM to introduce the
modified perturbation pressure 7*:

- - 2 N 1
=5+ 3Pe= 4+ 3P ullul (2.40)

and include SGS turbulence kinetic energy (SGS-TKE) e:

e = gl (2.41)
The Coriolis parameter f is defined by the input parameters: angular velocity w and
latitude . The default value of the latter is set to ¢ = 55° — slightly to the north of
the FINO1 platform in the North Sea. The angular velocity can be set to any value if
needed and assumes Earth rotation of w = 0.729 x 10~*rad/s by default. If the Coriolis
effect is switched off (w = 0), the horizontal forcing may be added by setting the pressure
gradient components dp/dz and dp/dy to compensate for the friction losses because of
the surface roughness. 0y cf is the temperature of the reference state that can be either
an initial state 0g(x,0), horizontal average 0y, or a fixed value.
When solved for a true neutral case, the temperature gradient is explicitly set to zero,
00/0z = 0, and no heat flux is present. The system Eq. (2.39) reduces to two equations:
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Since the heat conservation equation for 90 /Ot is not solved in the true neutral mode,
less computational time is spent compared to the same simulation with the temperature
gradient present.

PALM utilizes a 1.5-order TKE closure developed by Deardorff (1980) and modified
later by Moeng and Wyngaard (1988) and Saiki et al. (2000). This closure assumes that
SGS eddies transport energy proportional to the local gradients of the mean quantities.

— 2 Ou; Ou;
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w0 = — K, o6 (2.44)
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The respective closures for humidity and scalar quantity are omitted since they are not
relevant for this thesis. Kj, is the SGS diffusivity of heat which depends on the SGS
diffusivity of momentum K, as

21
K, = (1 + ZKm) . (2.45)

K, is defined similarly to the Smagorinsky SGS closure in Eq. (2.38):
K = Cs - lW/e, (2.46)

where Cs = 0.1 and [ in both equations is the SGS mixing length, which is defined
depending on the temperature gradient and grid spacing

—1/2
min | A,0.76y/¢ (i%v) for 2 <o
= fvo 0z 9z (2.47)
0y
A for 5 = 0

Here, 0y ¢ is either a reference value 6y 1t or the local value of 0.
The Deardorff closure scheme is completed with the prognostic equation for TKE

Oe O (N Oui g —m O |, < p”)
— = —ui— — (U - —— [ — )| - 2.4
p u; o, (uz u]) oz, + ev,0u39v oz, ui e+ 5 g, (2.48)
where ¢ is the SGS dissipation rate calculated as
l 63/2
€= (0.19 + 0.74Z> T (2.49)

PALM provides several options for the boundary conditions depending on the vari-
able and boundary (Table 2.2). The choice of the top-bottom boundary condition may
be restricted by other parameters of the simulation. For example, a CBL is defined in
PALM with a constant heat flux. Hence, the bottom boundary should use the Neumann
condition for CBL simulations. Otherwise, the prescribed heat flux may not remain con-
stant as the contributions from the resolved scales will be accounted for in the solution.
Applying the heat flux is not recommended for defining an SBL in LES, as the model
may simulate near-neutral conditions instead of stable (Basu et al., 2008). Therefore, an
SBL simulation should use surface cooling. In this case, the bottom boundary condition
for the potential temperature 6 should be set to the Dirichlet condition to consider the
surface temperature change Af due to the cooling. For the top boundary, the potential
temperature has a special option of constraining via the constant initial temperature
gradient: the equations are solved numerically up to #—n so that the top point value
is Op—ni1 = Op=n + db/dz - Azp—n. The top boundary condition for temperature does
not have stability-specific restrictions.

The simultaneous use of Neumann conditions for pressure at top-bottom boundaries
is allowed. However, it becomes mutually exclusive in the case of non-cyclic lateral
boundary conditions due to the mandatory use of certain solvers. For non-cyclic bound-
aries, the Neumann condition is preferable at the bottom boundary; consequently, the
top boundary has to use the Dirichlet condition.
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Table 2.2: Boundary conditions for different quantities in PALM with k being the index of a
cell starting from the surface and N — the total number of cells in the vertical direction

Quantity Dirichlet Neumann Default

Bottom boundary

(du/dz)g=0 =0 Dirichlet
(dv/dz)k=o =0 Dirichlet
Pressure, p Pho =0 (dp/dz)k=0 =0 Neumann
Temperature, 0 | O—¢ = 05 + AG(t) (df/dz)k—o =0 Dirichlet

Velocity, u, v Ug—o =0

V=0 =0

Top boundary

(du/dz)g=n =0 Dirichlet

(dv/dz)p=n =0 Dirichlet
Pressure, p Pr=N+1 =0 (dp/d2)g=n =0 Dirichlet

(df/dz)=n = 0 | Initial gradient

Velocity, u, v Uk=N41 = Ug k=nt1

Vk=N+1 = Vg,k=n+1

Temperature, 6 | 0p—n+1 = const

The flow type dictates the choice of velocity boundary conditions. An atmospheric
boundary layer would have the Dirichlet no-slip condition v = v = 0 at the bottom
boundary and constrain the flow to the geostrophic wind at the top boundary u =
ug, v = vg. Closed-channel flow requires a no-slip condition for both top and bottom
boundaries.

Lateral boundary conditions are prescribed based on the type of a flow and simulation
goals. A cyclic boundary is a common choice for a homogeneous flow simulation. Non-
homogeneous flows should run with a non-cyclic boundary. Otherwise, the affected flow,
e.g., the flow disturbed by wakes, would constantly return to the domain as an inflow and
alter the prescribed free flow. Non-cyclic conditions are defined by assigning a radiation
condition to the inflow plane

ou\ (0w A,
utr_—(at)(an) <2 (2.50)

where uy, is the transport velocity, and n denotes the normal to the flow, e.g., n =21 =z
for the inflow coming from the left boundary. The opposing boundary is then assigned
with the Dirichlet condition, making it the outflow boundary; the other two lateral
boundaries use cyclic conditions.

While a turbulent flow in a cyclic domain develops quickly in terms of computational
time, the flow in a non-cyclic domain may stay laminar and produce a weakly turbulent
wake that does not represent the behavior of real wakes ( Witha et al., 2014). The laminar
inflow may develop turbulence in a non-cyclic domain, provided that the domain is long
enough in the flow direction. However, the required length would make wind turbine
and farm simulations unfeasible. Hence, a turbulent inflow is usually generated for non-
cyclic domains with the precursor-main run approach. A simulation in a precursor cyclic
domain is run until a fully turbulent flow develops and reaches a steady state. The
resulting flow is passed as an inflow to the main simulation with a larger domain and




28 Scientific background

non-cyclic boundaries (Witha et al., 2014). Alternatively, a turbulent inflow may be
provided using a synthetic turbulence generator ( Gronemeier et al., 2015) or a dynamic
driver obtained from mesoscale models (Lin et al., 2021). The dynamic driver input
allows the simulation of complex atmospheric conditions, including transient events, via
WRF-LES coupling ( Vollmer et al., 2017; Wagner et al., 2019).

As shown in Eq. (2.32)—(2.34), the turbulent scales resolved by LES strongly depend
on the grid spacing. The global refinement of the simulation domain often results in a
gradually increased simulation time. Hence, a local refinement is performed via the
nesting interface. In this case, the inner domains’ lateral boundaries are considered
nested. The flow quantities passing through the nested boundaries are interpolated
to the new grid, and prognostic equations are solved for the refined nested domain.
PALM implements one- and two-way nesting modes. For the one-way nesting mode, the
solution for the current time step ends here and moves to the next one. In the case of
two-way nesting, the solution from the nested domain is interpolated back to the coarse
domain, thus allowing to correct its solution. However, the interpolation procedures also
introduce a new source of uncertainties which may alter the final solution. A study of
CBL simulation under low wind speed reported a secondary circulation developing in the
case of a two-way nested domain (Hellsten et al., 2021). Overall, the two-way nesting
mode should be used cautiously despite the advantages it provides over the one-way
nesting.

2.2.5 Wind turbine models

Modeling a wind turbine rotor as a moving solid body gradually increases computational
time, especially in wind farm simulations. Unless the wind turbine is the focus of a
detailed simulation, the rotor can be approximated with one of the available models.
Usually, neither a wind tower nor a nacelle are modeled, and their effect is included via
an approximation. Attempts to model the nacelle and improve LES predictions were
nevertheless performed showing the improvement of TKE and near wake predictions
(Martinez et al., 2016; Yang and Sotiropoulos, 2018).

Blade Element Momentum method (BEM)

The Blade Element Momentum (BEM) method is a long-established approach in rotor
design (Burton et al., 2011). Originally suggested by Glauert (1935), it undergone ex-
tensive development to improve accuracy for applications in rotorcraft and wind turbine
design. BEM allows a simple estimation of the rotor loads by splitting each blade into
smaller elements that are assumed to be independent. The approach also assumes that
the pressure loss behind the rotor is caused by the wind flow acting upon the blade ele-
ments. From these assumptions, the induced velocities and resulting forces acting upon
each element are calculated. The total force acting on the rotor is the sum of the forces
acting upon each element.

Implementing this approach requires knowledge of the blade geometry and, partic-
ularly, airfoils used along the blade. The BEM method assumes a static axisymmetric
flow and thus does not account for dynamic effects observed in experiments, such as the
response lag of the airfoil (Snel and Schepers, 1995). Various corrections are introduced
to compensate for the limitations. The set of corrections may vary from code to code
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where BEM is implemented. For example, the AeroDyn library (Moriarty and Hansen,
2005) used in the NREL FAST code for aero-elastic analysis applies the Glauert correc-
tion for induction factors higher than 0.4 to avoid instability (Shen et al., 2005a) and
the skewed wake correction to account for the effect from non-axisymmetrical wake ( Pitt
and Peters, 1981).

Actuator models
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Figure 2.7: Actuator disk sectioning for ADM-R and forces acting upon an airfoil. Reproduced
from Dérenkimper et al. (2015) by CC BY-NC-ND 4.0.

The actuator disk model (ADM) also takes originates from long-established princi-
ples of the momentum theory. Theorized by Rankine (1865) as a link between thrust
and momentum, the theory was later expanded by Froude (1889) to consider the flow
difference in front and behind the rotor disk. In the modern approach, the forces acting
upon a rotor are averaged over the rotor disk and explicitly added to the momentum
equation. Considering the simplifications, ADM is accurate enough and is cost-effective
to use in turbulent-flow simulations instead of a fully-resolved rotor ( Réthoré et al., 2014;
Troldborg et al., 2015). However, the uniform distribution of forces across the disk does
not generate tip vortices and requires a tip-loss correction to improve accuracy (Shen
et al., 2005b).

The actuator line model (ALM) imagines forces acting upon the lines that replace
rotor’s blades (Shen et al., 2005b). Consequently, the tip vortices and near-wake region
are resolved in more detail than with ADM ( Troldborg et al., 2015). Notably, the choice
of an actuator model does not strongly affect the time cost of one step: ADM performs
calculations for more actuator points than ALM, but ALM needs to rotate actuator
lines at each step (Martinez-Tossas et al., 2012). However, the total computational time
heavily depends on the time step length. For ALM, the time step length is restricted
by the tip-speed ratio and should be chosen so that the blade tip passes through no less
than a single finite volume cell at each step. Therefore, ALM requires smaller time steps
than ADM or more time steps in total for the same period simulated. Nevertheless,
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ALM can potentially hold a good agreement to the experimental data even when run on
the coarse grid (Martinez et al., 2016).

Further expansion of the actuator line approach is replacing the blade with an actu-
ator surface model (ASM) defined by chord lines at several radial locations (Shen et al.,
2007). ASM allows for improved prediction of flow behavior near blade tips and resolves
tip vortices shed along the blade but requires additional airfoil data, such as pressure
and friction distribution over the surface.

Due to associated computational costs and complexity, ASM has yet to be widely
implemented in numerical simulation codes. Hence, most codes use either ADM or
ALM and their modifications. A compromise between ADM and ALM is the actuator
disk model with rotation (ADM-R) (Fig. 2.7). ADM-R considers a non-uniform force
distribution and disk rotation, effectively mitigating the drawbacks of both ADM and
ALM: unresolved tip vortices and longer computational time, respectively (Porté-Agel
et al., 2011; Dorenkdmper et al., 2015). Instead of distributing the forces uniformly,
ADMS-R splits the rotor disk into annular areas and calculates forces per unit rotor area
for each. The lift and drag forces are then calculated using BEM theory (Sect. 2.2.5),
with each blade element assuming a two-dimensional airfoil of the corresponding blade
section.

A comparison between ADM, ADM-R, and ALM shows that regular ADM leads to
an underprediction of the velocity deficit. Accounting for the rotation effects in ADM-R
or using ALM returns better agreement with wind tunnel experiments and wind farm
measurements (Porté-Agel et al., 2011; Wu and Porté-Agel, 2011).

Reference wind turbines

Several reference wind turbines exist for numerical simulations as well as validation and
verification of new rotor models (Table 2.3).

Table 2.3: Parameters of the reference wind turbines

Size, m Wind speed, m/s
Name Source
Rotor diameter Hub height | Cut-in Rated Cut-out

DTU 10MW 178.3 119 4 11.4 25 Bak et al. (2013)

LEANWIND 8MW 164 110 4 12.5 25 | Desmond et al. (2016)
NREL 5MW 126 90 3 11.4 25 Jonkman et al. (2009)
NREL 15MW 240 150 3 10.6 25 Gaertner et al. (2020)

The NREL 5MW wind turbine is implemented into most numerical simulation codes
(HAWC2, SOWFA, LESGO, PALM); the NREL 15MW turbine is also being added
to allow simulation of large modern wind turbines. The DTU 10MW reference wind
turbine is included in codes developed by DTU Wind Energy (HAWC2, Ellipsys3D).
Several codes, e.g., PALM, allow changing parameter files to include a particular turbine
provided that its blade geometry and generator characteristics are known.
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Table 3.1: Overview of the observational data and models used in the papers. The exact Gaussian
models are listed in Sect. 3.2

Paper | Observational data Models
I - PALM v6.0
Il FINO1 (sonic anemometer) PALM v21.10
Il | FINO1 (cup anemometer, vane) WRF, PALM v21.10
v |- Gaussian models, WRF, PALM v21.10
V | FINO1 (lidar, cup anemometer, vane) Gaussian models, PALM v6.0
VI | FINO1 (lidar, cup anemometer, vane), SCADA —

3.1 Observational data
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Figure 8.1: A scheme showing (a) the FINO1 location, (b) nearby wind farms, and (c) scan
sectors of the lidars installed at FINOI1 during the OBLEX-F1 campaign.

The papers in this thesis primarily use lidar data and anemometer time series obtained
during the Offshore Boundary-Layer Experiment at FINO1 (OBLEX-F1) campaign in
2015—2016 (The Offshore Boundary-Layer Observatory (OBLO), 2015). The FINO1
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platform is located in the southern North Sea at 54° 00’ 53.5”N, 6° 35’ 15.5"E, 45km
north of the German island of Borkum. The nearby Alpha Ventus wind farm consists of
12 wind turbines arranged in a 4 x 3 rectangular pattern. The turbines are abbreviated
as AV plus index of the turbine. Six turbines in two top rows (AV1—AV6) are of the
type Repower 5M with a hub height of 92m and a rotor diameter of 126 m; six turbines
in two bottom rows (AV7—AV12) are of the type AREVA M5000 with a hub height of
91.5m and a rotor diameter of 116 m. The AV4 turbine is the closest to the FINO1
platform and is located at 400 m to the east.

The FINO1 mast has cup anemometers installed at 33, 40, 50, 60, 70, 80, 90, and
100 m above sea level and vanes installed at 33, 40, 50, 60, 70, 80, and 90 m above sea
level (Fischer, 2006; Beeken, 2008). Wind speed and direction times series are averaged
to 10-minute periods. The gaps encountered in the regarded periods are filled with linear
interpolation.

A scanning Doppler wind lidar (Leosphere WindCube 100S) was installed at the
FINO1 platform at 23.5m above sea level and was oriented towards the Alpha Ventus
wind farm. Operating in the PPI mode, the lidar took scans in the inclined plane so
that wind turbines AV7, AV10, and AV11 were captured in a scan. The elevation angle
of the scanning plane varied with time. On August 31, 2016, the lidar performed scans
under the constant elevation angle of 0.5° and scanned a sector between 100° and 180°
azimuth angles. The elevation pattern was changed after August 31, 20:00 UTC+0 to
the following: during the first 20 minutes of each hour, the lidar scanned at a constant
elevation angle of 4.6° so that AV7 is scanned near the hub height; for the remaining
40 minutes, the lidar performed alternating scans at three elevation angles of 0.5°, 4.6°,
and 9.0°. The scanned sector was also decreased to the range of 131.5° and 180° azimuth
angles. This pattern remained unchanged during September 2016.

Several papers used additional datasets. The LES in Paper II was set up to generate
mean wind speed and turbulence profiles similar to 1 Hz sonic anemometer time series
processed by Nybg et al. (2019, 2020). Lidar retrieval results described in Paper VI
required verification with the observational data. Besides FINO1 series, data from the
Supervisory Control and Data Acquisition (SCADA) system were also utilized, partic-
ularly, wind speed and direction time series from the AV7 turbine. SCADA series were
recorded with a higher frequency than 10-minuted averaged FINO1 series and contained
longer gaps of up to one day. Therefore, no gap filling was performed for the SCADA se-
ries; the cross-comparison considered only those entries that had FINO1, SCADA data,
and a successful lidar retrieval.

The comparison between wind direction measured at FINO1 and the estimated AV7
wake direction (Paper V) or AV7 SCADA data (Paper VI) revealed a consistent offset
of approximately 10°. The offset is seemingly unaffected by the wind direction and
is too large to be attributed solely to the measurement uncertainty. The comparison
of wind direction recorded by SCADA system for other turbines revealed different but
also consistent offset values. Therefore, it is plausible that the offset is partially caused
by flow rotation and partially by technical reasons, e.g., an orientation error of the
measurement instruments. With the data available, it is impossible to separate the
effects of atmospheric stability, Coriolis force, wind turbine control and instrumental
errors. Therefore, the observed offset was only reported in the respective papers but has
yet to be analyzed thoroughly.
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3.2 Gaussian wake models

Although Gaussian models can be reduced to the same formulation in Eq. (2.23), each
model introduces its own corrections to the Gaussian function and amplitude affecting
the final shape of the distribution. The models are also at different stages of development
and complexity. Thus, implementing them in the thesis papers required a preliminary
analysis of their interpretation of the wake. Paper I compared the BPA, Jensen-Gaussian,
Ishihara, and double Gaussian models. Subsequent Paper VI selected the BPA and
Jensen-Gaussian models as the most suitable for the coefficient re-fitting and added the
super-Gaussian model that was not yet described at the time Paper I was written.

3.3 PALM Model System configuration

The LESs for this thesis were performed using PALM Model system v6.0 (Maronga et al.,
2020) and later — v21.10. The model upgrade was primarily dictated by technical reasons
in order to retain compatibility with the Fram SIGMA2 computational cluster. The
version difference did not affect the underlying equations relevant to the wake simulations
and contained mostly quality-of-life improvements. For example, PALM v6.0 had no
built-in function to include surface cooling for SBL simulations, so it had to be provided
via user code. The function was fully implemented so that the surface cooling could be
defined via regular input parameters in PALM v21.10.

LES of the Alpha Ventus wind farm or a stand-alone wind turbine used the
NREL 5MW reference wind turbine (Table 2.3, Jonkman et al. (2009)); its parame-
ters were set to a rotor diameter of 126 m and a hub height of 90 m.

All simulations were performed assuming offshore conditions, i.e., low roughness
length with the order of zg ~ 1073m. The dynamic surface roughness due to the
wave formation was not considered, as the corresponding module for PALM is still in
development.

The PALM LESs for Papers I—III were run as a precursor-main run scheme in which
a turbulent flow was first simulated in a precursor domain until a steady state. Although
LESs for Paper III did not contain wind turbines, the precursor-main run approach was
also used to ensure the same stability conditions and initial flow for nested and non-
nested domain configurations.

3.4 Code repositories

During the research conducted for the thesis, several codes were produced to implement
the regarded data processing methods. The codes and respective repositories are listed in
this section. Additional documentation for each code is available within the repository.

The scripts require Python 3.8 with Jupyter notebook support. Standard libraries
should be installed for running: os, numpy, matplotlib, scipy, pandas, datetime. In
addition, netcdf4 should be installed to read PALM output or lidar data. Crameri
(2023) scientific color maps are preferable, although the scripts may run without them
and switch to the standard Matplotlib colors. Additional libraries are listed in the
respective code section.
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PALM high-frequency data processing

The repository contains PALM high-frequency output for Paper II and routines to re-
produce the plots from it. The code is strongly optimized for the specific output and
simulations, so it is not recommended to run it as a standalone program.

Repository: Krutova, M. (2023). PALM v21.10 self-nested LES for three stability
conditions (1.1.1). Zenodo. https://doi.org/10.5281/zenodo. 7886678

Analytical wake model fitting

The repository contains functions to run several analytical wake models provided that
the thrust coefficient Cp and ambient turbulence intensity I, are known. The main code
fits the selected models to wind field before and during the OCC event described in
Paper IIT and Paper IV. The code allows selection of the fitting modes not mentioned
in Paper IV, such as perform fitting only for one wake and ignore merging; alter wake
length and width for which the fitting is performed or select models not mentioned in
Paper IV. The results visualization is optimized for three models regarded at once.

Repository: Krutova, M. (2023). Gaussian wake model fitting to a transient
event simulated with WRF-LES (1.0.1). Zenodo. https://doi.org/10.5281/zenodo.
8139536

Wake identification and characterization via automatic thresholding method

The repository contains codes from Paper V to perform wake identification via thresh-
olding and wake characterization from the thresholded shapes. Supplementary codes
allow comparing the result to wake characterization via fitting a Gaussian function. The
provided data provided contain LES and lidar wind fields as examples.

Additional Python libraries: sklearn (for finding the wake centerline via linear
regression), scikit-image (for pre-processing), holoviews, panel, param (interactive
dashboard for the manual threshold selection, not required to run the main script).

Repository: Krutova, M. (2022). Adaptive Thresholding Segmentation (ATS) for
wake identification and characterization (0.5.1). Zenodo. https://doi.org/10.5281/
zenodo.6997975 (Access by request due to the usage of unpublished lidar data)

2D-VAR method for elevated scans

The repository contains code implementing 2D-VAR method as described in Cherukuru
et al. (2017); Cherukuru (2017) and corrections introduced in Paper VI. The SCADA
data are excluded because of the non-disclosure agreement.

The main lidar retrieval script re-uses several functions from the wake identification
repository to mask wakes in a lidar scan. The inpaint function used for gap filling in
the lidar scans is provided with the repository since it does not exist as a Python library.

Repository: Krutova, M. (2023). 2D-VAR lidar retrieval method for low-elevation
scans (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.10226071 (Access by re-
quest due to the usage of unpublished lidar data)
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Paper I: Evaluation of Gaussian wake models under different atmospheric
stability conditions: Comparison with large eddy simulation results

Krutova, M., Bakhoday-Paskyabi, M., Nielsen, F. G., and Reuder, J., Journal of
Physics: Conference Series, 1669(1), 012016 (2020)

Objectives

1. Provide an overview of the Gaussian wake models available at the time the study
was conducted.

2. Explore the accuracy of the models in the near and far wake against a single turbine
wake simulated with the LES code PALM.

Summary

Currently, there exist numerous Gaussian wake models, and new ones are continu-
ously being proposed. Some models approximate the far wake better than the near wake,
while others aim to resolve the full wake. This paper compares how existing Gaussian
models perform on wakes from a high-fidelity simulation.

Main findings

Single Gaussian models estimate the far wake (z/D > 6) better than the near wake.
This observation is in line with the primary application of the analytical models — esti-
mate the wake effect on the downstream turbine. The double Gaussian models are still
in early development and are not consistent enough.

The number of tunable coefficients in models varies. Although the coefficients of
some models, e.g., Ishihara and Qian (2018), are found by fitting, they are sensitive to
attempts to re-fit their values.
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Paper II: Self-nested large-eddy simulations in PALM model system v21.10
for offshore wind prediction under different atmospheric stability conditions

Krutova, M., Bakhoday-Paskyabi, M., Reuder, J., and Nielsen, F. G., Geoscientific
Model Development, 16(12), 3553-3564 (2023)

Objectives

1. Perform LES with the PALM model system under different stability conditions
and nesting modes at the wind speed typical for wind power production.

2. Explore the effect of the nesting modes on the simulated flow depending on the
stability conditions.

3. Evaluate simulations based on the turbulence characteristics: spectral density, co-
herence, co-coherence and phase.

Summary

LES approximates turbulent scales smaller than the grid spacing and resolves the
rest. Wind turbine wakes are more turbulent than free flow and contain small turbulent
scales. Hence, one would be interested in keeping the grid spacing low to improve LES
accuracy. Low grid spacing is often undesirable with respect to computational resources,
as it leads to increased simulation time. The solution is to refine the grid locally with a
nested domain. A new type of domain boundary and interpolation to the refined grid and
back inevitably leads to new approximations in the flow. The effects of the nesting on zero
to low wind speeds are documented. The secondary circulation was observed occurring
in the two-way nested domain for buoyancy-driven flows, the circulation becomes evident
when the flow is averaged for a period of several hours. The paper examines how the
PALM nesting modes affect the flow at a wind speed of 12.5m/s - the order of wind
speeds usually encountered in wind energy research. The LESs are performed for true
neutral, stable, and unstable conditions and compared to the 1 Hz sonic anemometer
time series of the wind speed components.

Main findings

Simulating a strong wind flow in non-neutral conditions with PALM produced a
slowdown in the nested domain with a consequent acceleration after exiting the nested
domain. The slowdown effect appears nearly immediately after the time required for
the flow to pass the outermost domain once. This drawback makes the two-way nesting
mode inapplicable for non-neutral conditions, even though it would allow accounting for
the effect of a better-resolved wake downstream. Notably, the effect also appears in any
PALM simulation that is not set to true neutral explicitly, i.e., as long as the temperature
term is considered in the equation.

Despite nesting effects, the LESs fairly reproduce turbulence characteristics as seen
in the observational data. Although decreasing the grid spacing to 1.25m still does
not resolve all turbulence scales, the width of the resolved inertial subrange increases
visibly with the grid refinement. Compared to the one-way nesting mode, the spectra of
wind speed components lay closer to each other in two-way nesting due to the solution
exchange between child and parent nested domains.
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Paper III: Multiscale simulation of offshore wind variability during frontal
passage: Brief implication on turbines’ wakes and load

Bakhoday-Paskyabi, M., Krutova, M., Bui, H., and Ning, X., Journal of Physics: Con-
ference Series, 2362, 012003 (2022)

Objectives

1. Set up a multi-scale modeling framework by combining WRF capability of simulat-
ing complex atmospheric processes and PALM resolution of turbulent micro-scales
to investigate structural response with NREL FAST.

2. Perform a WRF-PALM simulation of a transient event near FINO1 platform and
Alpha Ventus wind farm — the OCC event occurred in the Southern North Sea on
November 22—24, 2015.

3. Analyze changes in the wake behavior and turbines’ load response for the Alpha
Ventus wind farm.

Summary

A series of cascading nested domains is set up for the simulation. The outermost
domain in WRF simulation covers the area above Northern Europe with a grid spacing
of 9km. In the same simulation, the domain is locally refined with several intermediate
nested domains to 1km grid spacing. The LES proceeds with the grid refinement until
the innermost domain with a spacing of 10 m containing area around the Alpha Ventus
wind farm. The WRF simulation is initialized with ERA5 reanalysis data and runs for
the period of November 22—24, 2015. Its results are passed to the LES as a dynamic
input. Considering the results from Paper II, the one-way nesting mode was used for
the grid refinement in PALM to avoid alteration of the wind field caused by the two-way
nesting mode. Wind fields 20 minutes before and after the beginning of the OCC event
at Alpha Ventus are selected for aero-elastic analysis with NREL FAST.

Main findings

The WRF simulation shows the OCC structures forming at 100 m level, meaning
that changes in the wind flow affect wind turbines in the Southern North Sea. While the
WRF simulation captures the variability of the flow during the OCC event, the follow-
up PALM LES details the wakes. The performed WRF-PALM simulation reveals strong
alteration of the wake behavior from wide meandering wakes prior to the OCC event to
narrow straight wakes in the OCC cell. The aero-elastic analysis of the LES output shows
increased oscillations in the rotor speed during the OCC event. The induced oscillations
make the control system act accordingly and adjust the pitch angle.

The paper successfully demonstrates a multi-scale modeling chain which links large-
scale atmospheric processes and a dynamic load response of the turbines.
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Paper IV: Gaussian wake model fitting in a transient event over Alpha Ventus
wind farm

Krutova, M. and Bakhoday-Paskyabi, M., Wind Energy Science Discussions [preprint],
(2023)

Objectives

1. Evaluate the behavior of selected Gaussian models for wakes in a transient event
— the OCC event occurred in the Southern North Sea on November 22—24, 2015.

2. Apply models to calculate the deficit of merging wakes and evaluate their accuracy.

Summary

Gaussian wake models are applied to 10-minute averaged periods before and after
the OCC event simulated with WRF-PALM described in Paper II1. Models’ coefficients
are also re-fitted to evaluate whether each model could have described the wakes better.
The coeflicient re-fitting is performed to minimize the RMSE for all wake cross-sections
regarded in one period. The models for this study are selected by their response to
coefficients re-fitting as observed in Paper I. Thus, the Jensen-Gaussian and BPA models
are chosen; the recently emerged super-Gaussian model is also added.

Main findings

The 10-minute period corresponding to the peak of the transient event is the most
challenging for all models. The complication is primarily the ambiguity of the free-flow
wind speed: a part of an averaged wake forms under increased flow speed while the far
wake is still unaffected.

Single Gaussian models confirm an existing problem of overestimating the velocity
deficit in the near wake, especially if the deficit distribution has a double peak shape.
However, the Jensen-Gaussian model being defined with only one tunable coefficient is
not flexible enough and requires re-assessment of the coefficient depending on the atmo-
spheric conditions. The Gaussian model in Niayifar and Porté-Agel (2015) definition
responds to the changing flow better, although it may fail for the very near wake of
x/D < 2.5. The super-Gaussian model shows good agreement with the velocity deficit
distribution without an additional adjustment and interprets merged wakes particularly
well. This result calls for further study of the model on wake-wake interactions in the
observational data.
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Paper V: Development of an automatic thresholding method for wake mean-
dering studies and its application to the data set from scanning wind lidar

Krutova, M., Bakhoday-Paskyabi, M., Reuder, J., and Nielsen, F. G., Wind Energy
Science, 7(2), 849-873 (2022)

Objectives
1. Develop a novel method for wake identification via automatic thresholding.

2. Develop routines to characterize wake after the thresholding is performed: find the
wake centerline.

3. Verify the developed methods with LES and lidar data.

Summary

This paper proposes a novel method to perform automatic thresholding based on
image processing techniques. The method is first demonstrated on the LES wake to
prove the concept and is then applied to a lidar dataset of the Alpha Ventus wind
field with the lidar installed at the FINO1 platform. The method’s accuracy is verified
by visually comparing identified wakes and comparing the detected centerline to the
Gaussian method results.

Main findings

The automatic thresholding method proved to perform well on wide and prominent
wakes, which appear in a lidar scan when the line-of-sight is close to the wind direction. It
is more challenging to separate wakes from the background flow when the wind direction
is perpendicular to the line-of-sight — a case where the regular Gaussian method may
also fail.

The comparison revealed an offset of 5—10° between FINO1 wind direction and esti-
mated wake direction. While the yaw deflection and Coriolis effect can partially explain
it, the offset is seemingly independent of the wind speed and direction. The offset is at-
tributed to a combined effect of the Coriolis force and a possible lidar orientation error.
This issue requires further investigation.
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Paper VI: Validation of the 2D-VAR lidar retrieval algorithm for non-
homogeneous wind fields using FINO1 and SCADA data

Krutova, M., Bakhoday-Paskyabi, M., and Reuder, J., Authorea, [preprint] (2023)

Objectives

1. Independently implement a proposed method for the 2D-VAR lidar retrieval and
validate it on a larger dataset with an addition of the SCADA data.

2. Explore the method’s sensitivity to the initial guess and weights used in the opti-
mization.

Summary

Scanning lidars do not measure the wind speed explicitly but only its line-of-sight
projection. Therefore, lidar data have to be processed in order to retrieve the original
wind speed values. The existing methods are either developed for homogeneous flows
or require a complex processing procedure. The wake field is non-homogeneous and
requires fast processing for short-term forecasting. To fill the gap, a 2D-VAR lidar
retrieval method was proposed by Cherukuru et al. (2017). However, the method was
only validated on a one-day dataset for horizontal scans near the bottom tip wakes. The
setup made it impossible to compare results to the turbine’s hub-height data and study
the algorithm performance for different flow conditions. In this paper, the algorithm is
independently implemented and applied for a larger dataset that covers more wind speed
and direction pairs and allows comparison to SCADA data.

Main findings

When verified on the same one-day dataset, the independently reproduced algorithm
shows a small discrepancy with the original study. The discrepancy may be attributed to
the lack of details describing the preparatory steps which lead to different processing and
optimization routines chosen. When run for a larger dataset, the scanning was performed
under a different elevation angle, capturing wakes across the hub-height plane. Because
of larger differences between the free-flow and wake velocities, the algorithm produced
an unnatural wind speed increase along the wakes. The effect was mitigated by wake
masking via the automatic thresholding described in Paper V. A comparison of the
retrieved wind speed to the time series from FINO1 mast and SCADA data showed that
the wind speed upstream of the turbine tends to the SCADA data. It is possible that
the retrieval result tunes to the initial guess of the wind speed and direction — this issue
requires further investigation. Among the weights used during the optimization, only
the weight assigned to the residuals affects the final result most.



5 Conclusions and Outlook

This thesis approached several aspects of studying wind turbine wakes: observation pro-
cessing, analytical and numerical modeling. The multi-scale modeling framework was
established and demonstrated throughout Papers II-IV. Paper II explored the nesting
modes in the chosen LES model and highlighted the problems arising from the two-way
nesting mode. Although this mode should theoretically improve LES accuracy in the
nested area for all simulation domains, it leads to a strong flow slowdown for non-neutral
LES at wind speeds typical for wind energy research (~ 10m/s). Weak secondary circu-
lation was reported before but for a near-zero wind speed and shear. PALM’s behavior
for higher wind speeds means that the two-way nesting mode is currently unsuitable for
wind turbine simulations; the one-way nesting mode is preferable. Therefore, one-way
nested domains were chosen for the LES part of the multi-scale simulation performed in
Paper III. Several simulations were performed in the preparation of Paper I1I; one of them
was used for the analytical models fitting to wakes in Paper IV. The analytical models
and coefficient fitting were previously explored in Paper I. The updated framework was
carried over to Paper IV with an addition of another wake model, the super-Gaussian
model, and a code update to account for the wake merging. Paper IV showed promising
results for the super-Gaussian model, which performed comparably before and after the
beginning of the OCC event.

In parallel, a novel method for wake identification and characterization was suggested
in Paper V. Since image processing techniques such as dynamic thresholding are new
to the wake research, the article presented an extensive study on the novel method’s
capabilities. The dynamic thresholding method requires further development to improve
its performance for lidar data. Nevertheless, it was possible to demonstrate a usage
case as a sub-routine in the lidar retrieval algorithm studied in Paper VI. The regarded
retrieval algorithm was proposed by (Cherukuru et al., 2017). The new paper aimed to
validate it on a larger dataset and additional observational data. During the validation,
it was found that the algorithm’s performance declines in the presence of prominent
wind turbine wakes in the scan. The side effect was successfully mitigated by using the
thresholding method from Paper V to identify and mask wakes.

Overall, the research carried out for this thesis settled a base for further study of
wake meandering and transient events.

5.1 Further work

There is always room for improvement of existing and newly developed methods: op-
timizing the algorithm, increasing performance in complex cases, and mitigating errors
and uncertainties.

The slowdown of the flow in the two-way nesting mode is not unique to PALM and
was reported for other LES approaches. When LES were run for Paper II with various
combinations of input parameters, the cause of the slowdown effect was narrowed down
to a few functions responsible for the data exchange between nested domains. Although
the slowdown effect may be not removed completely, it is worth studying whether it can
be mitigated significantly to allow usage of the two-way nesting modes for wind turbine
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simulations.

Paper IV observed a good performance of the super-Gaussian model on describing
merged wakes and reacting to the transient flow. This finding calls for further validation
of the model in other transient events to obtain more data for analysis. The transient
event can be also studied with other simplified models. For example, the curled wake
model was developed with wind farm control strategies in mind (Martinez-Tossas et al.,
2019, 2021), which makes it relevant for an application in a transient event. Considering
that this model was tested in steady conditions, it is still an open question how it would
behave in a transient flow.

During the development of the wake identification method in Paper II and its ap-
plication for the wake masking in Paper VI, it was found that the wake identification
under-performs for the crosswind scans and often cannot separate the full wake from the
free flow. Considering that the wakes are still visible in the crosswind scans, the dynamic
thresholding algorithm requires fine-tuning for such cases. As of now, the algorithm per-
forms best for simulated wakes or lidar scans taken when wind direction approaches the
lidar’s line of sight — both cases also allow using fitting methods to identify a wake. Thus,
the thresholding method does not have a big advantage except that it identifies wake
points directly, which simplifies wake masking. The algorithm tuning may go as far as
replacing the criteria for finding the threshold while leaving the general framework the



5.1 Further work 43

same. During the algorithm development, a possibility to separate near and far wake
was found but left aside due to the amount of results already presented in Paper V. The
follow-up paper, if focused not just on the algorithm update, should also demonstrate
new usage cases for wake identification via thresholding.

The validation of the lidar retrieval algorithm left a question of how much is the
final result affected by the initial guess and weights chosen for the optimization function.
Considering that the true velocity is unknown when working with lidar data, the retrieval
algorithm for non-homogeneous fields should be additionally validated on the LES wind
field with a virtual lidar. If the result is too sensitive to the initial guess, new ways of
defining it can be suggested, e.g., by constructing an approximated field based on mast
and SCADA data for the wind speed.
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Evaluation of Gaussian wake models under different
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Maria Krutova, Mostafa Bakhoday Paskyabi, Finn Gunnar Nielsen,
Joachim Reuder
Geophysical Institute, University of Bergen and Bergen Offshore Wind Centre, Bergen, Norway

E-mail: Maria.Krutova@uib.no

Abstract. The calculation of the velocity deficit in the wake of individual wind turbines is a
fundamental part of the wind farm analysis. A good approximation of the wake deficit behind
a single wind turbine will improve the power estimation for downwind turbines. Large-eddy
simulation (LES) is a research tool widely used in studying the velocity deficit and turbulence
intensity in the wake. However, the computational cost of the LES prevents its application
in wind farm performance analysis and control. Existing analytical wake models provide a
fast estimation of the velocity deficit and the wake expansion rate downstream from the rotor.
The Gaussian wake models use a Gaussian distribution to improve the prediction of the wake
velocity deficit. With the number of analytical models available, an extensive evaluation of
their performance under different flow parameters is needed. In this work, we simulate a wake
of a single wind turbine using the LES code PALM (Parallelized LES Model) combined with an
actuator disc model with rotation. We compare the computed flow field with the predictions
made by Gaussian models and fit their parameters to obtain the best possible fit for the wake
field data as computed by LES.

1. Introduction

Inside a wind farm, the wind turbines are subjected to the influence of upstream turbines. The
wake, an area with reduced mean velocity and increased turbulence intensity, is formed behind
a working wind turbine due to the extraction of kinetic energy from the flow. Far downstream,
the wake velocity eventually recovers to the free-flow velocity. However, the distances between
wind turbines in a wind farm are usually shorter than needed for the full recovery. Therefore the
wind turbines subjected to a wake operate under reduced wind speed. Since the available wind
power is proportional to the cube of wind speed U3, it is crucial to predict the wake velocity
deficit accurately.

Wake models range from simple analytical expressions to complex Computational Fluid
Dynamic (CFD) codes. One of the latter, the large-eddy simulation (LES), is widely used in
atmospheric boundary layer studies. LES resolves large turbulence scales directly and simulates
subgrid scales and therefore is capable of handling turbulent flows such as wind turbine wakes.
The LES can reproduce wake field characteristics in detail but requires grid resolution fine enough
to resolve all turbulence scales of interest. The high-fidelity LES demands a significant amount
of time and computational resources. Analytical wake models are less demanding but simplify
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOL.
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the wake shape and wake velocity distribution. The simplest analytical models (Jensen [1],
Frandsen [2]) assume a top-hat distribution of the wake deficit at each cross-section. A recent
development in the analytical wake models, Gaussian models, suggests improving the wake-
deficit distribution estimation by replacing the top-hat distribution with a Gaussian distribution.

In this study, we use the LES code PALM [3] to generate wind turbine wake fields at
Us = 10m/s and 15m/s. We then assign this data as an input field to four Gaussian models:
Bastankhah & Porté-Agel [4], Jensen-Gaussian [5], Ishihara [6], and Double Gaussian 7] models.
In Section 2, we briefly describe the models, their governing equations, special features, and
select the parameters to fit the simulated wake field data. Section 3 introduces the LES code
PALM and the configuration used to simulate a wind turbine wake under neutral and stable
atmospheric conditions. We evaluate the parameters of Gaussian models by fitting them to
various data slices of the LES wake flow fields. Applying fitted parameters, we compare the
models’ capability to predict the full LES wake and discuss the results in Section 4. We give a
summary of the findings in Section 5.

2. Methodology

To calculate the wake field with an analytical wake model, we use the Cartesian coordinate
system (z,y, z) centered at the foundation of a wind turbine so that the z-axis is aligned with
the wind direction and z-axis is positive upwards.

The analytical wake models describe the wake velocity U,, or the normalized wake velocity
deficit AU = 1—"U,,/Us based on the following characteristics: downstream distance x from the
turbine, wind turbine diameter D, and hub height zj. Besides the wind turbine characteristics,
the wake models also use the thrust coefficient Cr and the ambient turbulence intensity I,
estimated upwind of the rotor plane. Each model has one or more parameters to define the
wake shape and/or expansion rate. The axisymmetric models regarded in this study implicitly
assume that the wake does not interfere with the lower boundary, represented by the land or
sea surface. The effect of vertical shear in the incident wind field is not considered.

2.1. Top-hat analytical models

While the top-hat analytical models are not the focus of this research, their concepts are
borrowed and extended by the Gaussian wake models. Hence we provide a short description of
the Jensen and Frandsen models.

2.1.1. The Jensen model [1] assumes linear expansion of a fully turbulent wake and equal
velocity deficit in the cross-section of the wake (top-hat distribution). The expansion coefficient
k defines the increase of the wake diameter D,, with the downstream distance x as follows

Dy (z) = D + 2kx. (1)

The velocity deficit is calculated as

AU:(%M)(JZ)Z. 2)

While several methods to define k are suggested, we use the one that allows linking wake
expansion with ambient turbulence intensity: k ~ 0.41, [8].

2.1.2. The Frandsen model [2] also assumes an equal velocity deficit in the cross-section of
the wake but uses a different approach to calculate the wake diameter.

Dy(z) =D (B +a-z/D)"? (3)
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where the induction factor « is determined experimentally or corrected from the wake growth
rate k in the Jensen model. The coefficient [ is related to the thrust coefficient Cr by

1 1+VI=Op
i i e @

The wake deficit also depends on C'r and is calculated as follows

2.2. Gaussian wake models
The general form of a Gaussian wake model is given by

AU = A-F(z,Cr,1,) - G (r,0(x)) (6)

where

o AU =1 - U,/Us is the normalized wake velocity deficit;
e A is an optional scaling constant;

e F(x,Cr,I,)is an amplitude function which defines the maximum normalized velocity deficit
at the wake centerline;

e G(r,0(x)) denotes a Gaussian function;
o 72 =92 4 (2 — z,)? is a radial coordinate;

e o = o(z) is the standard deviation of a Gaussian function, defining the wake width.

2.2.1. The Bastankhah & Porté-Agel model , further referred to as BPA, exists in several
formulations. In this study, we use the axisymmetric version of the model that includes ambient
turbulence intensity [4].

The BPA model retains the linear expansion of the wake similar to the Jensen model (Eq. (1))
but introduces a different coefficient — the growth rate of the wake k* — so that the standard
deviation o(z) of the Gaussian distribution is

o

* L
Eka—O—E, (7)

where the growth rate of the wake k* is a linear function of turbulence intensity [4]:
k* =0.003678 4 0.38371,, (8)

and ¢ can be expressed as € = 0.2y/ [9], where 3 is defined in Eq. (4).
The normalized wake velocity is then given by the BPA model as

— Is; "2
AU = (1— 1_8(0/TD)2> X exp (_ﬁ)' (9)

In our study, we preserve the linear function as k* = k7 + k31, where the parameters k7 and
k3 are to be identified by fitting AU to the simulation data.
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2.2.2. The Jensen-Gaussian model [5] is a modification of the Jensen model.
The wake radius is calculated similarly to the Jensen model (Eq. 1) with the expansion
coefficient k£ corrected for turbulence intensity:

Ty =71+ kwuke(kv CT7 I,,,)LB, (10)

where 71 = r44/(1 — a)/(1 — 2a) is the original rotor radius corrected for the axial induction [5].
Furthermore, the top-hat distribution of the wake deficit is replaced by the Gaussian
distribution to satisfy the following conditions:

(i) 99% of the Gaussian distribution lies within the wake radius r, (Eq. 10), i.e., the
corresponding quantile for the Gaussian distribution is 2999 = 2.58 from which the standard
deviation should be o = r;/2.58.

(if) The wind velocity outside the wake radius r, is set equal to the free stream velocity Us.

(i) The model has the same mass flow as the Jensen model.

Applying the above assumptions will lead to the following expression for the normalized wake
velocity deficit:

2
AU = |1— \5/—; U (2, kwake (, CT,LZ))} X exp (-%) 0 =7./2.58 (11)

The exact definitions of functions kyake(k, C7, I,) and U (z, kwake) are omitted for brevity
and can be found in the original study [5].

As seen from Eq. (10) and (11), the wake expansion coefficient % is included in the Jensen-
Gaussian model through the function k.. The initial value of k is defined as in the Jensen
model: k = 0.41, (Section 2.1.1 and [8]).

2.2.83. The Ishihara model [6] proposes a general expression for the normalized velocity deficit
of the full-wake:

AU = (a+b-2/D+p)~? x exp (—%). (12)
The standard deviation o is defined as in the BPA model Eq. (7). The coefficients £* and &
are calculated from thrust coefficient Cp and ambient turbulence intensity I, as given in [6]:
k= 01103100, e = 0.23C: P 1), (13)
The coefficients a and b are in turn dependent on k* and € as
a=4C;"%, b=4C; k" (14)

The dimensionless coefficient p in Eq. (12) is expressed through another coefficient ¢ as

[

P= T a/DE ¢ 0.15C; %107, (15)

The coefficient p performs a near-wake correction for the amplitude function F(z,Cp,I,)
(Eq. 6). The role of the correction coefficient is detailed further in Section 2.3.

According to Eq. (13) and (15), k*, € and ¢ of the Ishihara model are represented as functions
of Cr, I,, and three tunable parameters for each function:

k= ki ORIk e = £)C212, ¢ = ¢, C2 TS, (16)

Overall, there are nine parameters to be identified: ki, ko, k3, €1, €2, €3, c1, ¢2 and c3.
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2.2.4. The Keane Double Gaussian model [7] extends the BPA model’s approach to account
for the two peaks often present in the wake measurements near the wind rotor:

AU = A-F(o(z),Cr) - G(r,0(x)). (17)

The double Gaussian function G(r,o(x)) describes the axisymmetric wake as

C(r£ 79)?

20%(a) (18)

Gr,o(x)) = % (W4 4 e-), Wy =

where rg is the radial position of the extremum of a Gaussian function. For r¢g = 0, the function
collapses to a single Gaussian function. For ry > 0, a double peak appears in a wake profile.
The estimation rg = 0.75D/2, or 75% of the rotor radius, is suggested by the original study as
a good approximation.

The standard deviation o characterizes the width of each of the two Gaussian profiles as

o(z) = k*z'/3 +e. (19)

The Double Gaussian model does not include turbulence intensity I, in the formulation, i.e.,
the amplitude function is expressed only by the standard deviation and the thrust coefficient as

M — /M2 - LNCrD?
Fo(a),Cr) = bl (20)

2N ’
where erf is the error function and
T=r9/0, (21)
M = 20%exp (—%TQ) +V2rroolerf (7/v/2) — 1], (22)
N =o2exp(—72) + %ﬁro(r[erf (r)—1]. (23)

It should be noted that the original form of the Double Gaussian model probably has a typo
in the expressions for M and N (page 3 in [7]). The expressions provided here are corrected
according to the model output under default parameters compared to the original work.

In this study, we choose variables k*, £, and A as fitting parameters. Unlike the previous
models, the Double Gaussian model does not have universal parameters. We select two sets of
the original study parameters that correspond to free-flow speeds of 10 —12m/s and 16 — 18 m/s
(Table 1 in [7], note that ¢ has to be additionally multiplied by the rotor diameter D).
The selected parameters are used as initial guesses for the Uy, = 10m/s and Uy, = 15m/s
simulations, respectively.

2.3. QOverview of the Gaussian wake models
The characteristics of the Gaussian wake models are summarized in Table 1. The recommended
parameters provided in the original formulation of each wake model are used as initial guesses for
the fitting function and are further referred to as default parameters. All tunable parameters are
constrained to a specific range to keep the values physically sensible and to avoid curve fitting
failure.

The sample flow fields are calculated with each Gaussian model for the thrust coefficient
Cr = 0.763 and turbulence intensity I, = 6.6%. The normalized velocity deficit distribution at
the hub height z; = 102m is shown in Fig. 1.
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Table 1. Gaussian wake models.

Model # of parameters Recommended values 1, included
BPA (1,) 2 kT =0.003678, k5 = 0.3837 Yes
Ishihara 9 Yes, see Eq. (13), (15) Yes
Jensen Gaussian 1 k=0.41, Yes
Double Gaussian 3 N/A No

y/D

b

y/D

0.0 0.1 0.2 0.3

Figure 1. The normalized wake velocity deficit in a horizontal section at the hub height,
calculated using Gaussian models with default parameters for Cp = 0.763, I, = 6.6%. (a) BPA,
(b) Jensen-Gaussian, (c) Ishihara, (d) Double Gaussian

The BPA model (Fig. la) predicts a slowly expanding wake for the selected conditions.
However, the BPA model cannot resolve a wake for z / D < 2 and high thrust coefficient because

of the negative value under the square root ,/1 — 8o/ D)2 Nevertheless, the unresolved region

is not a critical flaw of the model, since the main interest is predicting wake influence on the
downwind turbines.

The Jensen-Gaussian model (Fig. 1b) predicts a short near-wake. Without a comparison to
a reference wake field, it is difficult to determine whether the initial guess of k = 0.41, is correct
or should be approximated better. Yet, it is possible to say that the Jensen-Gaussian model
is rather sensitive to its only tunable parameter k. Decreasing k brings the wake growth rate
closer to linear and delays wake recovery. Judging from the wake shape, it may be expected
that the Jensen-Gaussian and the BPA models can give similar predictions as the parameters
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k, and k7 and kj are adjusted accordingly.

The Ishihara model (Fig. 1c) places a region of the high velocity deficit at /D ~ 1. At
the same time, the near-wake is narrower than predicted by other models. The far-wake grows
slightly faster than in the BPA and Jensen-Gaussian models for the same conditions.

As follows from Eq. (12) the Gaussian function of the Ishihara model does not affect the
velocity deficit at the centerline » = 0. Therefore, we can review the influence of the correction
coefficient p on the centerline velocity deficit. An example amplitude function at the centerline
is plotted in Fig. 2. Since p is inverse proportional to the normalized downstream distance z/D,
the correction effect decreases with an increase of the downstream distance. As shown in Fig. 2,
the coefficient p has a strong influence at the downstream distance /D < 2. For /D — oo, the
value of p becomes negligible; the amplitude function with and without the correction coincide.

If no correction coefficient is present for the near-wake, i.e., p = 0 (¢ = 0) regardless of
the downstream distance, the velocity deficit may exceed 1 near the center of the rotor. The
velocity deficit AU > 1 corresponds to U, /Us < 0, or the wake velocity U, < 0, i.e., reverse
flow. Therefore, the coefficients p and ¢ must be positive to avoid non-physical values of the
velocity deficit in the near-wake.

2.0

Figure 2. The effect of the near-wake correction on the amplitude function of the Ishihara
model, calculated for NBL Uy, = 10m/s, Cp = 0.763, I, = 6.6%.

amplitude function with a correction, - - - - amplitude function without a correction,
~~~~~~ correction coefficient p.

The Double Gaussian model (Fig. 1d) stands out by predicting significantly larger wake width
compared to other models. The parameter £* of the Double Gaussian model affects the width
of each of the Gaussian distributions. Decreasing k* reduces the overall width of the wake but
delays merging of the two profiles. Other parameters of the Double Gaussian model provide
little effect on the predicted wake width.

3. PALM LES

3.1. Model description

PALM is an open-source Fortran LES code developed at the University of Hanover and capable
of simulating turbulent atmospheric processes. The wind turbine simulation is performed using
a supplementary module written by the research group from the University of Oldenburg. The
module implements an actuator disk model with rotation (ADM-R) to simulate a wind turbine
rotor [10]. The model is based on the concept suggested by Wu and Porté-Agel [11]. The
original actuator disk model without a rotation (ADM) assumes a uniform distribution of the
thrust force across the disc and does not consider the effect of turbine-induced rotation. ADM-R
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includes rotation into the model to improve the predictions. In ADM-R, the actuator disc is
first split into annular areas. The lift and drag forces in each area are calculated using the blade
element momentum theory. Each blade element assumes a 2D airfoil of the corresponding blade
section. As shown in [11], ADM-R improves the agreement with wind tunnel measurements
compared to ADM, especially in the near-wake. Additionally, ADM-R performs comparably to
a more complex actuator line model (ALM) [12]. The effect of the nacelle and the wind tower
effect can be taken into account through the drag coefficients.

Comparisons with FINO1 lidar measurements [13][14] confirmed that ADM-R captures the
features of a near-wake rather well and has a reasonable agreement on the width and velocity
deficit value in the far-wake. For the full description of the current wind turbine model
implementation, we refer to Section 3.7 of the PALM overview [3].

3.2. LES configuration

LES are carried out in PALM for a single NREL 5 MW wind turbine [15] with a diameter of
D = 126 m and horizontal wind speed of Uy, = 10m/s (near rated) and 15m/s (above rated) at
the hub height z;, = 102m. Two stability conditions are simulated for each wind speed: neutral
boundary layer (NBL) and stable boundary layer (SBL). Offshore conditions are assumed by
a roughness length of zp = 0.0005m for all cases. The domain size and the grid resolution
A are chosen in accordance with the existing PALM simulations of wind turbines for different
atmospheric stabilities [16].

Each simulation consists of two stages: the precursor run to let the turbulence develop, and
the main run using the precursor run as an input for the larger domain with one wind turbine
(Table 2). The grid cell is stretched vertically to reduce the number of cells in the z-direction.
The stretching factor of 1.04 is applied after reaching the height h. above the surface. The
maximum possible height of a grid cell is capped with a value twice of the original resolution A.
The height of the boundary layer in each stability case remains lower than h..

The geostrophic wind velocity is one of the initialization parameters for LES. Since the
simulations are performed at the latitude 54°N, a correction is introduced for the geostrophic
wind components U, and V, to compensate for the Coriolis effect and obtain the required
horizontal free-flow wind speed Uy at the hub height. The corrections depend on the stability
conditions and are listed in Table 3. The lateral velocity of the free-flow at the hub height
stays within V5, < 0.05m/s and may cause a small deflection of the wake. An additional NBL
simulation for Uy, = 10m/s is performed on a A = 4m grid to reduce deflection. Furthermore,
the LES of NBL Uy = 10m/s implies the simulation on a finer grid (A = 4m), while the LES
of NBL Uy, = 15m/s is still performed on a coarser grid (A = 6m).

Table 2. Domain size.

Case A, m Precursor run, points Main run, points h,
Stable 4 384 x 384 x 160 1792 x 384 x 160 500 m
Neutral 4 576 x 576 x 160 2304 x 576 x 160 500 m
Neutral 6 384 x 384 x 192 1536 x 384 x 192 800 m
All precursor runs start with the surface temperature of Ts = 277K and the vertical

temperature gradient 1 K/m. For the simulation of the stable conditions, the surface is cooled
down at a constant rate. The cooling rate is chosen in a way to avoid low-level jets in the upper
part of the rotor disk, as they are not a focus of this study. The cooling rate is listed in Table 3
along with other parameters specific to each run.
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Table 3. Initialization parameters for LES.

Case Us,m/s Uy m/s V, m/s surface cooling rate, K/h
Neutral (A =4m) 10 10.544  -2.614 -

Neutral (A =6m) 10 10.539  -2.590 -

Neutral (A =6m) 15 16.412 -4.130 -

Stable 10 10.584  -3.530 0.15

Stable 15 16.034  -5.769 0.25

Each precursor run takes approximately 5 days (NBL) or 30 hours (SBL) of simulation time
to reach the steady-state representation of the flow field. The main run uses the temperature
gradient and the velocity profile from the precursor run as starting values.

3.8. Comparison of analytical models with LES

In this study, we fit the analytical wake models using the least-squares to the 10-minute average
of normalized wake deficit AU, which is calculated from PALM LES data. We consider the
following data slices:

(i) cross-section profiles: the analytical models are fitted to profiles at /D = 1,2, ...,10 in the
zy-plane at hub height;

(i) wertical profiles: the analytical models are fitted to profiles at z/D = 1,2,...,10 in the
zz-plane passing through the rotor center;

(iii) centerline: the analytical models are fitted to the velocity deficit at the centerline, starting
from z/D = 0,1 and 4 for comparison;

(iv) zy-plane at hub height: fitting to two-dimensional data is expected to provide higher
accuracy and is used to evaluate the profile fits.

A sub-domain of length 20D and square cross-section 1.5 x 1.5D centered at the wind rotor
center is cut from the LES data for fitting with the Gaussian wake models. A coarse detection
of wake shape is performed for the LES data to exclude occasional velocity fluctuations in the
free-flow from the fitting process. We consider that a point belongs to the wake if the velocity
at the point is lower than free-flow velocity by at least 2.5%, i.e., AU < 0.025.

4. Results

Based on the LES for NBL conditions at Uy, = 10m/s and I, = 6.6% (Fig. 3a) we define three
regions inside a wake: the near-wake (z/D < 4) where the wake deficit distribution is most
complex, the middle wake (4 < /D < 7), and the far-wake (z/D > 7) where the wake speed is
recovering to the free-flow speed.

As seen from Fig. 3, the double peak in the near-wake velocity deficit is prominent for
U = 10m/s. In the case of higher free-flow velocity, Us, = 15m/s, the velocity deficit
distribution is closer to a single Gaussian throughout the wake. The wake deficit is slightly
higher for SBL conditions than for NBL conditions at the same downstream distances. Overall,
the stability conditions affect the wake shape less than the free-flow velocity magnitude. A small
wake deflection may be observed, due to the free-flow not perfectly aligned with the x-axis after
the Coriolis force correction is applied.

The thrust coefficient and the turbulence intensity calculated in each case are provided in
Table 4. The thrust coefficient for NBL conditions at Uy, = 10m/s varies with grid cell size
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Figure 3. Normalized wake velocity deficit distribution AU in the horizontal plane at hub
height, LES 10-minute average. Solid lines mark the velocity deficit at selected distances x/D.
The scale of the velocity deficit is the same for both plots. (a) NBL Uy = 10m/s, (b) NBL
Usx = 15m/s, (¢) SBL Uy = 10m/s, (d) SBL Uy = 15m/s.

due to the different number of grid points in the rotor area. The turbulence intensity is almost

unaffected by the grid cell size.

Table 4. Flow parameters at z, = 102m from the LES data.

Case Us, m/s Cr 1,

Neutral (A =4m) 10 0.763  6.6%
Neutral (A = 6m) 10 0.713  6.5%
Neutral (A =6m) 15 0.205 5.8%
Stable 10 0.725 7.4%
Stable 15 0.217 4.3%

The models are compared based on how well they predict the wake in the hub height plane
after the fitting. The results are provided in Tables 5—8 based on the lowest RMSE for a wake
calculated in the hub height plane with the fitted parameters. The best fit out of profiles and
centerline fits is marked in bold. In case of equal RMSEs with respect to round up to the fourth
digit, the fit to a cross-section profile is given a priority. Fits to the horizontal plane at the hub
height (column "HH plane” in tables) are performed only as a reference and are not considered
in a comparison between best fits. As can be seen, identifying model parameters on a limited

data set may show the results comparable to the fitting to two-dimensional data.
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The BPA model returns an incorrect fit to the hub height plane for Uy, = 10m/s, as the
model cannot resolve the wake at /D < 2 for a high thrust coefficient. This fit is not included

in Tables 5—6.

Table 5. Best fits for NBL and Uy, = 10m/s. RMSE is calculated for the wake in the horizontal
plane at hub height using the fitted parameters.

Fitted to: cross-section profile vertical profile centerline HH plane Default
Model x/D  RMSE /D RMSE /D RMSE RMSE RMSE
BPA 9 0.0316 9 0.0311 4 0.0325 N/A 0.0428
Jensen-Gaussian 10 0.0784 10 0.0786 4 0.0785  0.0784 0.0864
Ishihara 2 0.1194 2 0.1192 4 0.0731 0.0662 0.0951
Double Gaussian 7 0.0814 6 0.0667 O 0.0622 0.0603 0.0757

Table 6. Best fits for SBL and Us, = 10m/s. RMSE is calculated for the wake in the horizontal
plane at hub height using the fitted parameters.

Fitted to: cross-section profile vertical profile centerline HH plane Default
Model x/D  RMSE /D RMSE /D RMSE RMSE RMSE
BPA 6 0.0382 5 0.0384 4 0.0390 N/A 0.0489
Jensen-Gaussian 2 0.0844 8 0.0844 4 0.0845  0.0844 0.0940
Ishihara 2 0.1155 2 0.1106 O 0.099  0.0728 0.0904
Double Gaussian 7 0.0909 6 0.0646 0 0.0644 0.0627 0.0742

Table 7. Best fits for NBL and Uy, = 15m/s. RMSE is calculated for the wake in the horizontal
plane at hub height using the fitted parameters.

Fitted to: cross-section profile vertical profile centerline HH plane Default
Model x/D  RMSE /D RMSE z/D RMSE RMSE RMSE
BPA 4 0.0181 4 0.0181 4 0.0181 0.0181 0.0274
Jensen-Gaussian 10 0.0241 10 0.0241 1 0.0244  0.0241 0.0369
Ishihara 2 0.0154 10 0.0154 0 0.0171  0.0140 0.0160
Double Gaussian 2 0.0322 3 0.0538 0 0.0474  0.0320 0.0856

4.1. Fitting to velocity deficit profiles

The velocity deficit distribution in the horizontal plane at hub height provides the essential
information on the wake shape. The cross-section profiles in the horizontal plane are usually
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Table 8. Best fits for SBL and Uy, = 15m/s. RMSE is calculated for the wake in the horizontal
plane at hub height using the fitted parameters.

Fitted to: cross-section profile vertical profile centerline HH plane Default
Model x/D  RMSE /D RMSE z/D RMSE RMSE RMSE
BPA 5 0.0240 6 0.0240 1 0.0240  0.0240 0.0309
Jensen-Gaussian 10 0.0242 10 0.0245 1 0.0238 0.0236 0.0394
Ishihara 9 0.0212 4 0.0216 1 0.0184 0.0168 0.0194
Double Gaussian 3 0.0401 1 0.0658 0 0.0608  0.0402 0.0888

close to symmetric and can be fitted with a Gaussian wake model. The velocity profiles in the
vertical plane are affected by surface friction. We account for the wind shear by subtracting the
averaged free-flow profile U (2) from the vertical wake profile. We then fit the resulting profile
with a Gaussian wake model.

The models split into two groups. The BPA and Jensen-Gaussian models fit the far-wake
rather well and are further referred to as far-wake models. For each of these models, the
coeflicients obtained from fitting to any profile in the far-wake (/D > 7) have a good agreement
from case to case and show little differences in the RMSE. For the BPA model, the best fit may
also be found in the middle wake (4 < x/D < 7). The RMSE returned by the BPA model is
always lower by half compared to the RMSE of the Jensen-Gaussian model for the same far-wake
profile-fit combination.

The other two models (Ishihara and Double Gaussian), further referred to as full-wake
models, perform worse during the profile fitting. Both models aim to describe the near-wake’s
particular features: the high velocity deficit at the centerline (Ishihara) or the double peak in
the velocity deficit cross-section profiles (Double Gaussian). Fitted to a single profile, they lack
the information on the wake structure and return high RMSE.

Fitting the Ishihara model to a single velocity deficit profile sets the coefficient ¢ and,
consequently, the near-wake correction p to zero (Eq. 15). This result suggests that the model
regards the whole wake as a far-wake when it receives the information on the velocity deficit of
a single cross-section profile. The Ishihara model fitted to a near-wake profile overestimates the
wake velocity in the far-wake. When fitted to a far-wake profile, the Ishihara model predicts
negative velocity values (i.e. reverse flow) with an RMSE up to 0.5 in the near-wake.

The Double Gaussian model fitted to a near-wake profile captures the double peak well. The
double peaks are also present in the far-wake, and the predicted velocity deficit is noticeably
high for downstream distances x/D > 7. Fitting the Double Gaussian model to a far-wake
profile improves the full-wake’s prediction as reflected by best fits in Tables 5—8. In this
case, the double peak is still predicted for the near-wake, although the wake velocity deficit
is underestimated compared to LES. The RMSE for the near-wake cross-sections is comparable
to the corresponding RMSEs of single Gaussian models (BPA and Jensen-Gaussian).

Full-wake models perform better in the case of strong wind, when the wake shape is smoother,
and show an improvement of RMSEs compared to default parameters.

4.2. Centerline fitting

Fitting to the rotor centerline is essentially the fitting of an amplitude function of a Gaussian
wake model. The centerline wake velocity deficit predicted by the LES has a convex shape
(concave for the wake velocity), which lies in the 0 < z/D < 4 range (Fig. 4a). The convexity
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is especially emphasized for Us, = 10m/s. This shape provides a challenge for far-wake models
(BPA, Jensen-Gaussian) that assume monotonic recovery of the wake velocity. Besides /D > 0
fit (entire centerline), we perform two supplementary fits to the partial centerline. A fit to the
centerline segment /D > 1 imitates missing data in the very near-wake area (centerline with
data loss). A different fit to the segment x/D > 4 allows comparing the performance of the
far-wake models (monotonic segment fit).

0.0 - T r r T T - . T

0 2 4 6 8 10 12 14 16 18 20
D

(b) x/

(a)

Figure 4. Normalized wake velocity deficit at the rotor centerline for NBL conditions with
Uss = 10m/s. (a) Default parameters, (b) Best overall fits to 10-minute average according
to Table 5. O — LES data, - - - - BPA, — - — Jensen-Gaussian, ------ Ishihara, ------ (red)
Ishihara for /D > 0, — - - — Double Gaussian

As seen from Tables 5—8, far-wake models tend to have the best fit for a part of the centerline
segment, starting from x/D > 4. The parameters fitted to the monotonic centerline segment
and the RMSE are close to the ones obtained from best fits to profiles.

Full-wake models (Ishihara, Double Gaussian) capture the centerline velocity profile’s features
more precisely. In general, fitting full-wake models to the entire centerline or the centerline with
data loss returns noticeably different parameters, but rather close RMSEs for single profiles and
horizontal wake. Fitting full-wake models to the monotonic segment usually increases RMSE
for near-wake profiles.

The Ishihara model may show low RMSE when fitted to the monotonic section. In this case,
the fitted model predicts an extremely high velocity deficit in the near-wake (Fig. 4) and sets
the near-wake coefficient p to zero. At the same time, the full centerline fit returns comparable
RMSE for the Ishihara model, but completely different parameters. Therefore, the RMSE
criterion alone is not enough to identify the best fit for the Ishihara model.

The Double Gaussian model improves its accuracy when fitted to the centerline at Uy, =
10m/s and shows RMSE close to the control fit to the horizontal plane at hub height.
Nevertheless, the Double Gaussian significantly overestimates the wake width and velocity
deficit.

The comparison of cross-section profiles of velocity deficit in the far-wake at x/D = 8 is
presented in Fig. 5 for NBL conditions with Us, = 10m/s. The predictions calculated with
default parameters underestimate the wake velocity deficit (Fig. 5a). The default BPA model
has the closest match in terms of wake shape and deficit value. After the fitting (Fig. 5b), the
BPA model follows the LES data most precisely but overestimates the centerline velocity deficit
more than the Jensen-Gaussian and Ishihara models.

The parameters of each Gaussian model are identified for a 10-minute average velocity field.
We provide best fits to a 1-hour average velocity field for NBL conditions with Uy, = 10m/s for
comparison (Fig. 5¢). For a 1-hour average velocity field, the maximum wake deficit at /D = 8
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Figure 5. Cross-section profiles of the
normalized wake velocity deficit at 2/D = 8
for NBL conditions with Uy, = 10m/s. (a)
Default parameters, (b) Best overall fits to
10-minute average according to Table 5, (c)
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slightly decreases; all models except for the Double Gaussian show good agreement between LES
data and each other.

In the case of SBL conditions with Uy, = 15m/s (Fig. 6), the Double Gaussian model
shows the highest discrepancy between the LES wake before and after fitting. Other models,
particularly the Ishihara model, have a better agreement.
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Figure 6. Cross-section profiles of the normalized wake velocity deficit at z/D = 8 for SBL
conditions with Us, = 15m/s. (a) Default parameters, (b) Best overall fits according to Table 8.
O — LES data, - - - - BPA, — - — Jensen-Gaussian, - -- - - - Ishihara, — - - — Double Gaussian

The Double Gaussian model is the only one among the regarded models which fully
parametrizes the standard deviation. Therefore, it does not depend on the flow characteristics
directly. It may be one of the reasons the model often overestimates the wake width compared
to the one predicted by the LES and the other Gaussian wake models. A recent paper on the
Double Gaussian model pointed out the momentum conservation issues of the original model
and suggested a modification to resolve them [17].
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5. Conclusion

Our main objective was a model-based study. We attempted to fit analytical models to the
simulated data and observed their behavior. The comparison with observations is beyond the
scope of this paper and will be performed in another independent research study.

In this study, we classified Gaussian wake models into two groups. We showed that the
far-wake models (BPA, Jensen-Gaussian) did not accurately describe the near-wake, but they
performed well in the far-wake. Both far-wake models showed a good agreement with the LES
far-wake.

The full-wake models (Ishihara, Double Gaussian) attempt to describe the whole wake. When
fitted to a single profile, they often do not predict the structure of the wake correctly. In some
cases, fitting a full-wake model to the wind turbine centerline improved the predictions and
gave RMSE comparable to the map fit to the horizontal plane at the hub height. Best fits for
the BPA and Ishihara models usually followed the shape of the LES wake rather closely; the
Jensen-Gaussian model predicted narrower width than the other models, but still got the wake
shape right. Nevertheless, there was always a discrepancy between the peak deficit in a profile
predicted by the LES and Gaussian models. The Double Gaussian model showed the worst
agreement with the LES data compared to other models.

Considering that the far-wake approximation possesses more interest in wind farm
applications, the use of far-wake models at the cost of the unresolved or poorly resolved near-
wake can be justified.
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Abstract. Large-eddy simulation (LES) resolves large-scale
turbulence directly and parametrizes small-scale turbulence.
Resolving micro-scale turbulence, e.g., in wind turbine
wakes, requires both a sufficiently small grid spacing and
a domain large enough to develop turbulent flow. Refining
a grid locally via a nesting interface effectively decreases
the required computational time compared to the global grid
refinement. However, interpolating the flow between nested
grid boundaries introduces another source of uncertainty.
Previous studies reviewed nesting effects for a buoyancy-
driven flow and observed a secondary circulation in the two-
way nested area. Using a nesting interface with a shear-
driven flow in LES, therefore, requires additional verifica-
tion. We use PALM model system 21.10 to simulate a bound-
ary layer in a cascading self-nested domain under neutral,
convective, and stable conditions and verify the results based
on the wind speed measurements taken at the FINOI plat-
form in the North Sea.

We show that the feedback between parent and child
domains in a two-way nested simulation of a non-neutral
boundary layer alters the circulation in the nested area, de-
spite spectral characteristics following the reference mea-
surements. Unlike the pure buoyancy-driven flow, a non-
neutral shear-driven flow slows down in a two-way nested
area and accelerates after exiting the child domain. We also
briefly review the nesting effect on the velocity profiles and
turbulence anisotropy.

1 Introduction

Large-eddy simulation (LES) allows performing a detailed
process study for areas and situations where we lack appro-
priate field measurements. For this reason, LES is widely
used for high-fidelity simulations of wind flows in wind en-
ergy applications. When considering the turbulent flow, the
grid resolution should be sufficiently high to resolve the rel-
evant turbulence scales (Wurps et al., 2020). Increased grid
resolution comes at the cost of gradually increased computa-
tional time. The overall computational time can be reduced
by refining a grid locally through the nesting interface. While
improving the grid resolution, a nesting interface introduces
new uncertainties in the simulation. Such nesting effects are
documented for buoyancy-driven flows, with the strongest
influence observed for the two-way nesting mode (Moeng
et al., 2007; Hellsten et al., 2021). A buoyancy-driven flow
develops a secondary circulation and decreased velocity in-
side the nested area — the effect becomes prominent for the
data averaged over several hours. However, buoyancy-driven
flows are characterized by near-zero wind speed, while the
wind energy research primarily deals with wind speeds of 5—
25ms~L. Therefore, shear-driven LES with the nesting inter-
face requires additional verification.

We use the Fortran-based LES code PALM 21.10
(Maronga et al., 2020) to simulate wind flow with a speed
of 12.5ms~! at the reference height of 119 m for three sta-
bility conditions: true neutral (NBL), convective (CBL), and
stable (SBL) boundary layers. The initial velocity and tur-
bulence intensity profiles are defined to match 1h averages
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of the sonic anemometer time series as processed by Nybg
et al. (2019). The domain is simulated for a non-nested grid
and nested grids with one-way or two-way nesting modes.
The resulting turbulence statistics are then compared with the
measurements to evaluate the model’s performance.

2 Data

The reference measurements contain wind speed directional
components u, v, and w recorded with sonic anemometers
during the Offshore Boundary-Layer Experiment at FINO1
(OBLEX-F1) campaign in 2015-2016 in the North Sea. The
meteorological mast is installed on the FINOI platform lo-
cated in the North Sea at 54°00'53.5” N, 6°35'15.5” E, 45 km
to the north of the German island of Borkum.

The sonic anemometers were installed at the meteorolog-
ical mast at 40, 60, and 80 m. The measurements were pro-
cessed by Nybg et al. (2019) and organized into 1 h time se-
ries of 1 Hz frequency. Each processed series corresponds to
different pairs of a stability condition and mean wind speed
at the reference height of 119 m. This height was chosen as
an outlook into future wind turbine development and corre-
sponds to a hub height of the DTU reference 10 MW tur-
bine (Bak et al., 2013). The reference height unifies different
stability conditions under the assumption of a similar flow
speed. Due to the computational time restrictions, we simu-
late only those conditions where the horizontal wind speed
reaches approximately U1j9 = 12.5ms™! at the reference
height (Table 1).

The wind speed U119 at the reference height was esti-
mated from the measurement data. Since the measurements
are originally available only for three levels, the mean wind
speed profile was approximated by Nybg et al. (2020) by fit-
ting the logarithmic law

ln(%—W)
()]

where the wind speed ur; measured at FINOI is taken for
the highest available level zr; = 80 m, and the stability cor-
rection function v is defined as in Stull (1988):

(€]

0 ~NBL,
Y= —21n'+TX —ln#-i-Zarctanx—% -CBL, (2
47¢ _SBL,

where x = (1 — 15¢)!/4. The stability parameter ¢ is derived
from the height above the surface z and Obukhov length L as

{=-—. 3
The roughness length zg in Eq. (1) is, therefore, a fitting

parameter to be found. The estimation is based on the as-
sumption that the boundary layer extends beyond 119 m so
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that the logarithmic law can be applied to the mean wind
profile. During the simulation, we attempt to match the mean
wind profile, including the estimated wind speed at 119 m
and turbulence intensity calculated for levels 40, 60, and
80m.

3 Methodology
3.1 PALM LES model

We perform a free-flow large-eddy simulation (LES) using
the Fortran code PALM developed at Leibniz Universitét
Hannover (Maronga et al., 2020). PALM utilizes a staggered
Arakawa C grid: the velocity components are defined at the
grid cell edges and are shifted by a half-grid spacing; the
scalar variables are defined at the center of a grid cell. The
subgrid-scale fluxes are resolved via the Deardorff 1.5-order
closure model.

By default, PALM solves prognostic equations for the ve-
locity components «, v, and w and potential temperature 6.
If the stability condition is set to true neutral, the tempera-
ture is considered constant, and the corresponding equation
is not solved. Buoyancy terms are also not considered in a
true neutral simulation

A nested simulation in PALM consists of at least one
child domain inside a parent domain. Each child domain
can simultaneously be a parent domain for another child do-
main, thus forming a cascading self-nested structure. The
top-level parent domain is further referred to as the root do-
main to make a distinction from inner parent domains. Over-
all, PALM supports simulation of one root domain and up to
63 child domains.

The nesting algorithm is constructed in a way to opti-
mize computational time for multiple child domains (Hell-
sten et al., 2021). The nested domains communicate via
interpolation which is performed just before the pressure-
correction step, so that the time-consuming pressure solver
is run only once per the time step. The solution at the nested
boundaries of a parent domain — velocity components and
scalar quantities, e.g., temperature and humidity — is linearly
interpolated to all nested boundaries, except the bottom sur-
face, as boundary conditions. The bottom surface is always
located at a zero level as in the root domain and utilizes
Dirichlet or Neumann boundary conditions as prescribed in
the corresponding child domain input files.

After the interpolation, the prognostic equations are solved
for a child domain. In the case of cascading nesting, the pro-
cedure is repeated until the solution is found for all nested
domains at the current step. In a one-way nesting case, the
simulation proceeds to the pressure-correction step, so the
solution in parent domains remains unaffected by the solu-
tion in child domains. In a two-way nesting case, PALM uses
an anterpolation scheme — a term suggested by Sullivan et
al. (1988) and first described by Clark and Farley (1984).

https://doi.org/10.5194/gmd-16-3553-2023
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Table 1. Aggregated statistics of 1 h sonic anemometer time series.

Stability Uypg, Tlgo, L, 4 ¥ 1hperiod start,

ms~ % m UTC
NBL 12.41 6.6 2753 0.043 0 18 April 2016 04:30
CBL 12.58 6.1 —451 —0.263 0.528 22 February 2016 19:00
SBL 12.14 32 158 0.753  —3.540 2 June 2016 16:30

The technical details behind the implementation in PALM
are explained in Hellsten et al. (2021). Each child domain
anterpolates its solution via first-order integration to the re-
spective parent domain before the pressure-correction step.
Therefore, the two-way nested solution remains similar in the
nested area, while the one-way nested solution may eventu-
ally diverge for parent and child domains.

3.2 Precursor and main LES run parameters

One of the ways PALM can simulate a turbulent flow is a pre-
cursor scheme, which does not require complex dynamic in-
put data and effectively reduces the domain size required for
turbulence development (Witha et al., 2014). First, a small
precursor domain is simulated with cyclic boundaries un-
til the flow reaches a steady state. The resulting mean wind
speed and temperature profiles are then copied over the larger
main domain to set up an initial non-cyclic flow with a de-
veloped turbulence. Provided that the main run is simulated
with the same forcing as the precursor, the mean profiles in
the main run remain stationary.

The size of the precursor domain is usually smaller than
for the main run, and the y-shift procedure is performed at
left/right cyclic boundaries to avoid non-physical regularity
of the flow (Munters et al., 2016). The y-shift procedure is
also applied in the main run for an additional disruption of
regularity. Using the precursor scheme also ensures that an
idealized input flow remains the same within a stability case
regarded.

The grid characteristics of the root and innermost child
domain in the PALM simulation were selected to closely
match the SOWFA simulation in Nybg et al. (2020). The ra-
tio between the parent and child domains’ grid spacing, thus,
would reach 8 (from 10 to 1.25 m for NBL and CBL cases)
or 4 (from 5 to 1.25m for SBL case). As shown by Hell-
sten et al. (2021), the discrepancy with a fine-grid simulation
in PALM increases if the grid spacing ratio is 4 or higher.
Therefore, we add intermediate child domains and reduce
the grid spacing by a factor of 2 until the desired refinement
is reached. Hence, NBL and CBL simulations contain three
child domains, while the SBL simulation has two (Tables 2
and 3, Fig. 1).

We perform one-way and two-way nested simulations. To
evaluate the nesting effect, we also simulate domains without
nested grids using the same precursor flow. Due to high com-
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Table 2. Grid parameters for NBL and CBL nested domains
(Fig. 1a).

Bottom-left

corner
Domain Ny Ny N, Aym x,m ym
Precursor 256 256 160 10 - -
Precursor 512 512 256 5 - -
Root 1024 512 160 10 - -
Child #1 384 192 128 5 4480 2080

Child #2 640 256 192 2.5 4640 2240
Child #3 1024 256 256 1.25 4800 2400

Table 3. Grid parameters for SBL nested domains (Fig. 1b).

Bottom-left

corner
Domain Nx Ny N; Ay,m x,m y,m
Precursor 512 288 160 5 - -
Root 1920 384 160 5 -

Child #1 640 256 192 2.5 3840 640
Child#2 1024 256 256 1.25 4000 800

putational time and memory requirements, we only simulate
non-nested domains for the grid spacing of A, =10 and 5 m.

The precursor profiles undergo development during a sim-
ulation and thus may deviate from the initial profiles. The
precursor’s input parameters are then selected so that the re-
sulting steady-state profiles of mean wind speed and turbu-
lence intensity follow the values estimated from the measure-
ments, particularly the wind speed at the reference height.
The Coriolis force is switched off; hence the required wind
speed and turbulence intensity profiles in the precursor run
are enforced by a combination of the parameters: the initial
mean wind Uy, the pressure gradient forcing dp/dx, and the
roughness length zg. The NBL case is run as the true neu-
tral flow with no heat flux. The CBL case is defined via the
positive heat flux w’6’ in addition to the parameters men-
tioned above. The SBL case uses surface cooling over time
dT;/dt instead of the heat flux (Wurps et al., 2020). NBL and
SBL cases start with zero temperature gradient; the CBL case
has an initial temperature gradient of 1 K (100 m)~!. The sur-
face temperature 75 is varied to match the conditions ob-
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Table 4. Input parameters of the precursor runs.

U, dp/dx, 20, T, w'0’,  dTg/dr, Runtime,
ms~! Pam™ m K Kms™! Ks~! s
NBL (coarse) ~ 13.8 —2x10"% 1.2x 1073 300 0 — 144000
NBL (fine) 140 —-2x107% 1.6x1073 300 0 - 172 800
CBL 115 —-1x107% 5% 1074 281 0.015 - 525600
SBL 130 —=5x107*  8x10~* 300 - =02 259200
@ averages (cross-sectional flows, profiles) are calculated for
41 10 min periods.
€
> 5 Jprecursor 3.3 Turbulence characteristics
0 We evaluate the model performance based on turbulence
0 2 Y e C 8 10 characteristics: power spectrum, coherence, co-coherence,
®) and phase. The coherence represents a correlation between
2] time series a(¢) and b(¢) at two points separated by a certain
£ distance § and is calculated as follows
> 2 Sab
Cohyp = ——oe @
precursor i ab 5
. : = S==] /SuaShb
0 2 4 X 6 8 10 where S,, and Sy, are the spectral densities of a(¢) and b(z),

Figure 1. Nested domains schematic. (a) NBL and CBL domains
and (b) SBL domains.

Table 5. Steady state of the precursor runs — turbulent inflow for the
main run.

Uy, TIRO, Ty, L, Capping inversion,
ms~! % K m K(100m)~!
NBL (coarse) 123 75 300  10° 0
NBL (fine) 126 77 300  10° 0
CBL 12.1 62 295 —333 7.4
SBL 128 46 291 529 9

served during the reference meteorological measurements at
FINOLI. The precursor domain characteristics and input pa-
rameters are listed in Tables 2—4.

During the precursor simulation, the initial profiles are al-
tered due to the influence of pressure forcing and heat fluxes.
The resulting precursor profiles are provided in Table 5; the
same profiles are used to initialize the main run.

‘We run main simulations for 3 h with a dynamic time step
selected by the model. The simulation is then continued for
another hour with the fixed time step of At =0.05 s to obtain
a high-frequency output. Then, we probe time series of each
wind speed component at the center of the innermost child
domain and the corresponding points of the parent domain
(Fig. 1). The high-frequency time series are further used to
compare turbulence statistics with the measurements. Spatial
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while S,y is the cross-spectrum of the same series.
The co-coherence represents the real part of the coherence

Sab
v/ SaaSbi

The phase ¢,; shows the level of synchronicity between
time series a(t) and b(t)

Cogup = Re Cohyp, = Re 5)

¢ap = arctan———— (6)

Since the measurement time series are available only for
three levels, 40, 60, and 80 m, the spectra are calculated and
compared at 4 = 80 m for the total horizontal U = ~/u? + v?2
and vertical w wind speed. The co-coherence is calculated
for two vertical separations of § =20m (between levels 60
and 80m) and § =40 m (between levels 40 and 80 m). The
sampling frequency for the LES time series matches the
output frequency SLES =1/0.05s =20Hz, and the segment
length is chosen as 60 s. The sampling frequency for the mea-
surement time series is lower, fM3'=1/0.1s=10Hz, al-

S
though the segment length is left the same.

3.4 Flow characteristics for load analysis

We also review flow characteristics relevant to the turbine
performance analysis: power law coefficient and turbulence
anisotropy.

The power law is commonly applied to assess wind re-
sources at the hub height from near-surface wind speed mea-
surements.

U@ =00(+5)", 9
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where U g is the wind speed at z = 10m and « is the power
law exponent. The power law exponent is sensitive to at-
mospheric conditions and is usually approximated with a
constant; e.g., « = 1/7 is applicable to neutral onshore sites
but not other stabilities (Touma, 1977). Often, the approx-
imations do not reflect seasonal and diurnal variations in
mean wind profiles (Bratton and Womeldorf, 2011; Jung and
Schindler, 2021). Hence, simulating a long time series with
the LES gives a possibility to study wind profiles in detail.

The anisotropic turbulence naturally develops in a sim-
ulation with an anisotropic grid resolution (Haering et al.,
2019) but may also occur in isotropic grids, such as those
used in this study. The anisotropic turbulence affects wind
turbine loads, particularly fatigue loads. Therefore, it is im-
portant to evaluate its strength in the simulation (Dimitrov
et al., 2017). We estimate turbulence anisotropy by compar-
ing spectra of velocity components for the normalized fre-
quency f, = fz/U,, where z = 80m and U, is the horizon-
tal velocity at this level. We compute ratios Sy,/S,, and
Sww/Suu for all regarded cases at f, ~ 1. The closer both
ratios are to the theoretical value of 4/3 = 1.333, the more
isotropic the simulated turbulence is (Weiler and Burling,
1967; Smedman et al., 2003).

4 Results
4.1 Nesting effects

All LESs are run at 1024 cores for each case with a time step
of At =0.05s; the required simulation times for each sce-
nario are summarized in Table 6. Since the domains vary in
size and number of grid points, we compare not the total CPU
time but the CPU time per second of the simulated time. The
non-nested coarse domain (A = 10 m) is not computation-
ally demanding, regardless of the stability case. However, the
required CPU time gradually increases if the grid spacing is
reduced globally for the whole domain. As could be seen for
the NBL case, the CPU time per second of the simulated time
increases from 5.1s for Ay =10m to 31.7s for Ay =5m,
respectively. Refining the grid locally by adding child do-
mains increases the CPU time compared to the coarse refer-
ence non-nested grid (A, = 10m). Still, the nested simula-
tion finishes faster than the globally refined non-nested sim-
ulation (A, =5 m), while allowing better a local grid refine-
mentupto A, =1.25m.

Both NBL and CBL simulations have the same domain
structure and grid spacing (Table 2). However, CBL simu-
lations require more CPU time compared to the respective
NBL (true neutral) simulations due to solving the tempera-
ture equation. SBL simulations use CPU time comparable to
NBL simulations due to having one child domain less and a
smaller root domain size — and thus a lower overall number
of the grid points (Table 3).
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Table 6. CPU time in seconds used per second of simulated time.
All simulations run at 1024 cores with a time step of At =0.05s.

Stability Ay, m Non-nested One-way Two-way
NBL 10 5.1 18.4 20.9
NBL 5 31.7 - -
CBL 10 79 28.8 30.8
SBL 5 4.5 25.1 28.7

Two-way nested simulations require additional ~2-3 s of
the CPU time per simulated time step to anterpolate the child
domain solution back to the parent domain. This results in
about 10 % increase in the CPU time compared to one-way
nesting.

It should be noted that, unless obtaining high-frequency
time series is the main goal of a simulation, the time step
can be gradually increased for non-nested runs in order to
speed up the computation. The computational time will, nev-
ertheless, increase in a similar proportion with the global grid
refinement. The time step in nested runs is still limited by
the lowest grid spacing in child domains. For example, the
dynamic step in the regarded configuration does not exceed
0.075 s to satisfy Courant—Friedrichs—Lewy condition.

Depending on the simulation conditions, LES produces
different results in the nested area. If the true neutral case is
defined in PALM explicitly via setting a corresponding flag,
the one-way and the two-way nested simulations behave sim-
ilarly with respect to grid spacing and feedback between do-
mains (Fig. 2). Switching on the true neutral flag means that
the temperature equation and buoyancy terms are not con-
sidered in the calculations. As long as those terms are intro-
duced for non-neutral simulations, the two-way nested simu-
lation results in a decreased flow speed in child domains.

Since the child domains anterpolate their solution back to
the parent domain, the area of reduced flow speed spreads
to the root domain. While the effect is less prominent for
the instantaneous fields, it becomes apparent in the 10 min
averaged flow (Fig. 3). The induction of downward vertical
wind in two-way nested simulations was already described
by Hellsten et al. (2021) for the 5h averaged buoyancy-
driven flow in PALM. Hellsten et al. (2021) argued that the
effect of the secondary circulation described by Moeng et al.
(2007) was caused solely by the insufficient domain size and
explained it with the different grid spacing and subsequent
divergence of the vertical heat flux in the parent and child do-
mains. The researchers hypothesized that the secondary cir-
culation was an inevitable side effect of the two-way nesting
solution due to the better resolution of the turbulence mixing
in child domains. In the case of the shear-driven flow, we ob-
serve that the slowing effect is more prominent and develops
faster. The effect emerges in the beginning of the simulation
within 20 min — an approximate time required for the pre-
cursor flow to pass the main run domain. In addition, some

Geosci. Model Dev., 16, 3553-3564, 2023



3558 M. Krutova et al.: Self-nested simulations in PALM for wind energy application
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Figure 2. NBL, flow at the reference height of 119m for differ-
ent wind speed components: (a) one-way nesting and (b) two-way
nesting.
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Figure 3. SBL, flow at the reference height of 119 m for different
wind speed components: (a) one-way nesting and (b) two-way nest-
ing.

of the quantities of a shear-driven flow, mainly the vertical
velocity w, are not uniformly distributed inside the child do-
mains (Fig. 4).

4.2 Subgrid scales

LES resolves scales larger than the grid spacing directly
but approximates smaller scales. In a well-resolved flow, the
unresolved (subgrid) scales should not exceed the resolved
ones. This relation holds for all simulations performed, im-
plying that the grid spacing of A =10m is already small
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Figure 4. The 10 min average profiles, SBL two-way nested case.
(a) Sampling points; (b) the mean flow is slowed down in the nested
area; (c) the vertical flow near the entrance of the nested area re-
mains weak but becomes stronger as the flow passes through the
nested area.

enough for the given flow (Fig. 5). The grid refinement does
not strongly affect momentum fluxes, except for the CBL
case (Fig. 5b), where turbulent eddies are generally larger
than in the NBL and SBL cases. The effect from the nest-
ing mode is also the most pronounced in CBL simulations
(Fig. 5b). The resolved wu and wv fluxes remain stationary
in the one-way nesting mode but decrease over time in the
two-way nesting mode and eventually merge.

The subgrid-scale fluxes consistently remain near zero for
all levels except near-surface cells, where the turbulence
intensity is expected to be high due to the surface influ-
ence (Fig. 6). Consequently, the near-surface subgrid-scale
fluxes are comparable to resolved-scale fluxes. However, the
subgrid-scale fluxes at lower levels tend to zero faster as the
grid spacing is refined. Unlike the one-way nesting mode,
the resolved fluxes in the two-way nesting mode show a
non-monotonic behavior near the surface in the intermediate
child domains. The effect is observed in all two-way simu-
lations, including true neutral conditions. Therefore, it can-
not be solely caused by the flow difference in the nested and
non-nested areas, despite the flux profiles being time and spa-
tial averages. The occurring non-monotonic behavior can be
rather attributed to the way PALM performs anterpolation
from a child to the parent domain.

4.3 Turbulence characteristics
Since the flow is driven by the pressure gradient instead of

the Coriolis force, the flow is aligned with the x axis, and
the wind direction remains nearly constant. The fluctuations
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Figure 5. Comparison of resolved and subgrid-scale momentum fluxes for different stability simulations and nesting modes.

(a) NBL

One-way nesting One-way

(b) CBL

(c) SBL

nesting One-way nesting

-

—

—

oo et

nesting nesting nesting
£ i 1 4
N
-0.2 0.0 -0.2 0.0 -0.2 0.0 -0.1 0.0
wu, m?s~2 wv, m2s—2 wu, m3s—2 wv, m3s—2 wv, m?s=2
Scales Domain
— resolved Non-nested == Nested, child #1 - Nested, child #3

== subgrid

—— Nested, root

== Nested, child #2

Figure 6. Comparison of near-surface resolved and subgrid-scale momentum fluxes for different stability simulations and nesting modes.

of the lateral component v are stronger for the measurement
time series. Therefore, we compare turbulence statistics of
the horizontal wind speed u from the LES results to the total
horizontal flow in the measurements U = +/u2 + v2 and omit
the lateral component v for the LES data.
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In one-way nested simulations, the parent domain does
not receive feedback from the child domain. Consequently,
the spectral characteristics of non-nested domains with the
grid spacing of Ay = 10m (NBL and CBL) and 5m (SBL)
match the characteristics of the corresponding domain in a
one-way nesting simulation (Figs. 7 and 8). The individual
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Figure 7. Spectra for the horizontal velocity u at the height z = 80 m. (a) NBL case, (b) CBL case, and (c) SBL case.
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Figure 8. Spectra for the vertical velocity w at the height z = 80 m. (a) NBL case, (b) CBL case, and (c¢) SBL case.

spectra of the nested domains lie apart from each other but
show improvement as the grid spacing is reduced. The in-
ertial subrange resolved by LES widens as the grid becomes
more refined; however, it is not fully resolved despite the grid
spacing being reduced to Ay =1.25m.

The two-way nesting mode ensures feedback between the
nested domains. Therefore, the root and child domain spec-
tra lie closer to each other and to the one-way spectra of
the most refined child domain (A, =1.25m). Despite the
exchange between domains in the two-way nested case, the
spectral characteristics do not coincide perfectly. The inertial
subrange being shorter for A, = 10m than for the refined
domains implies that the grid resolution is the limiting fac-
tor, and the solution for the root domain cannot be improved
further even in the two-way nesting case.

Despite the NBL case being simulated as a true neutral
condition, it showed good agreement with the measurements
on par with the CBL case. The result suggests that it is possi-
ble to omit a weak heat flux in neutral cases to save compu-
tational time and avoid secondary circulation in the two-way
nesting mode.

The SBL simulations largely overestimate the energy con-
tained in low-frequency eddies. The inertial subrange of the
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corresponding measurement time series also starts at higher
frequencies, unlike in the NBL and CBL cases. The LES does
not fully resolve high frequencies despite gradually reduced
grid spacing. Hence the overall agreement for the SBL case
is worse than for NBL and CBL. When comparing available
measurement profiles for the specific period of SBL time se-
ries, we did not observe anomalies or irregularities, such as
reported by Kettle (2014), which could be studied as a possi-
ble cause of a discrepancy. The existing studies on SBL sim-
ulations with PALM (Beare et al., 2006; Wurps et al., 2020)
do not compare simulated spectra against measurements but
evaluate other aspects, such as fluxes and grid resolution in-
fluence. Hence, simulating SBL in PALM may require addi-
tional studies focusing on turbulence characteristics.

In order to match the SBL spectra shape, we performed a
short SBL simulation with lower forcing, which led to a de-
creased turbulence intensity but stronger mean profile shear.
The results are provided in Appendix.

The coherence, co-coherence, and phase are plotted
against the reduced frequency:

)
fr:Ls 3

u
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Figure 9. Coherence for the horizontal velocity u and different
stability cases. (a) Root domain (Ax =10m for NBL and CBL,
Ay =5m for SBL), vertical separation § =20m. (b) Innermost
child domain (Ay = 1.25m, all cases), vertical separation § =20 m.
(¢) Root domain (Ay =10m for NBL and CBL, Ay =5m for
SBL), vertical separation § =40m. (d) Innermost child domain
(Ax =1.25m, all cases), vertical separation § =40 m.

where f is the original frequency, § is the vertical separation
distance, and u is the mean wind speed of the two regarded
levels, 60 and 80 m for § = 20 m or 40 and 80 m for § = 40 m.

The coherence and co-coherence calculated for NBL and
CBL coarse domains (Ay = 10 m) and § = 20 m show strong
deviation from the measurements for the one-way and non-
nested simulations at f; > 1 (Figs. 9a and 10a). The tendency
to the coherence/co-coherence value of 0.5 suggests that the
time series at points separated by § = 20 m remain partially
correlated in the coarse grid, which is not the case for the cor-
responding measurements. While the most refined child do-
main (Ay =1.25m) shows a good match between the LES
and measurement series (Figs. 9b and 10b), the agreement
already improves for A, =5m, and the correlation falls to
zero for f; > 0.5. The SBL case shows better agreement for
the root domain because of the lower initial grid spacing
Ay =5m. Nevertheless, the coherence is noticeably overes-
timated for low f; compared to the measurements (Fig. 9a,
b). The time series are generally uncorrelated for the vertical
separation of § =40 m both for the LESs and measurements
(Figs. 9c, d and 10c, d). However, the NBL case does not
capture the high coherence value at f; =0 observed in the
measurements.

The phase plots are in line with the coherence. The time se-
ries are in phase for f; < 0.1, where the coherence is above
zero. The effect is strong for the low vertical separation of
8 =20m (Fig. 11a, b) and is in good agreement with the
measurements. The phase becomes more chaotic as the ver-
tical separation distance increases to § =40 m (Fig. 11c, d),
while the time series become less correlated (Figs. 9¢c, d and
10c, d).
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Figure 10. Co-coherence for the horizontal velocity u and differ-
ent stability cases. (a) Root domain (Ay = 10 m for NBL and CBL,
Ax =5m for SBL), vertical separation § =20m. (b) Innermost
child domain (A = 1.25 m, all cases), vertical separation § =20 m.
(¢) Root domain (Ax =10m for NBL and CBL, Ay =5m for
SBL), vertical separation 6 =40m. (d) Innermost child domain
(Ax =1.25m, all cases), vertical separation § =40 m.
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Figure 11. Phase plot for the horizontal velocity u and differ-
ent stability cases and domains. (a) Root domain (Ay =10m for
NBL and CBL, Ay =5m for SBL), vertical separation § =20 m.
(b) Innermost child domain (Ayx = 1.25 m, all cases), vertical sepa-
ration § =20 m. (¢) Root domain (Ay =10m for NBL and CBL,
Ax =5m for SBL), vertical separation § =40 m. (d) Innermost
child domain (A = 1.25 m, all cases), vertical separation § =40 m.

4.4 Other flow characteristics
4.4.1 Power law

In general, the power law coefficient follows the known
trend, also observed in the measurement profile fits (Table 7):
high value in the stable layer and low value in the convective
layer (Touma, 1977). The discrepancy between exact values
of « in measurement and simulated fits is primarily caused
by the different way of obtaining Ujg. For sonic data, Uy is
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Table 7. Estimated power law coefficient.

Power law coefficient o

Nesting Ay,m NBL CBL SBL
non-nested 10 0.111  0.093 -
non-nested 5  0.099 - 0.154
one-way 10 0.112  0.093 -
one-way 5 0103 0.067 0.156
one-way 25 0092 0077 0.145
one-way 1.25 0.087 0.073 0.145
two-way 10 0.109 0.089 -
two-way 5 0.095 0.083 0.158
two-way 2.5 0.088 0.080 0.164
two-way 1.25 0.085 0.077 0.172
Measurements 0.061 0.023 0.237

calculated from the previously estimated profile Eq. (1). The
LES returns the full mean profile on the pre-defined grid, so
Ujp can be interpolated to the level of z = 10m. U derived
from LES data consistently deviates from measurements Uyg
by 10 %-20 %, thus affecting the estimation of the power law
exponent.

The estimated power law coefficient o shows little varia-
tion for the NBL and CBL domains of the same refinement
but implies high sensitivity of the SBL profiles. Consider-
ing higher shear in the SBL profiles, the grid refinement may
affect the estimation of Ujo more strongly than lower shear
NBL and CBL profiles.

4.4.2 Turbulence anisotropy

The anisotropy estimation captures only general trends seen
in the measurements with the nesting modes being radically
different between each other (Fig. 12). Since the inertial sub-
range resolved in a one-way nested root domain is slightly
shorter than of a two-way root domain (Figs. 7-8), f,, =~ 1
may fall outside of the resolved subrange and provide a
less precise estimation. The two-way nested cases approach
closer to the anisotropy seen in the measurement, although
the anisotropy strength may not match the value seen in the
measurement data. The divergence is particularly strong for
the SBL simulation, primarily caused by the differences in
power density spectra discussed in Sect. 4.3.

5 Conclusions

We performed nested LES of three stability cases for the
horizontal mean wind speed of 12-13ms™! at the reference
height of 119 m. The simulations were verified by comparing
turbulence characteristics to the corresponding measurement
time series. The comparison showed that the grid spacing of
Ay = 10m was insufficient for NBL and CBL simulations;
the spectral and coherence characteristics had improved their
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Figure 12. Comparison of anisotropy across the regarded stability
and nesting cases. The color map is centered at the value 4/3 =
1.333.

non-nested 10 m

one-way 125m

measurements

agreement with the measurements after the spacing was re-
duced to Ay =5m via nesting or a refined non-nested do-
main simulation. The inertial subrange was not fully resolved
despite further refinement and remained narrower than for
the measurement time series even at A, = 1.25m.

We confirmed that the nesting mode does not affect the
true neutral simulation, unlike when the temperature equa-
tion is solved along with other prognostic equations for CBL
and SBL conditions. In the case of CBL or SBL, the flow
inside the child domain differed for the one-way and two-
way nesting. The two-way nested simulation produced a sec-
ondary circulation resulting in a decreased velocity and in-
creased turbulence intensity in the child domains. Due to a
strong horizontal shear, the irregularities in lateral and ver-
tical velocity profiles were spread non-uniformly; e.g., the
downward flow was stronger at the exit of the nested domain.
The horizontal flow accelerated after leaving the nested area
so that the mass conservation law was not violated eventu-
ally. Unlike the existing research on buoyancy-driven flows,
the two-way nesting effects in a shear-driven flow emerged
in the first hour of the LES and did not dissipate as the simu-
lation proceeded for 3 more hours.

In theory, the two-way nesting is a good option to refine
the grid in the area of interest of a non-homogeneous flow,
e.g., wind turbine wakes, as the feedback between parent and
child domain allows accounting for the irregularities after the
flow exits the nested area. However, the fast development of a
secondary circulation in the shear-driven flow limits the two-
way nesting application strictly to the true neutral condition.
The one-way nested simulation did not add anomalies to the
flow; each child domain only refined the grid spacing and
resolved small turbulence scales. We, therefore, recommend
using the one-way nesting mode for the wind turbine wake
simulation. In the case when the two-way nesting mode is
preferable, only a true neutral setup does not produce sec-
ondary circulation.

https://doi.org/10.5194/gmd-16-3553-2023



M. Krutova et al.: Self-nested simulations in PALM for wind energy application

Appendix A: SBL simulation with reduced forcing

We performed a test simulation of an SBL precursor
for the same wind speed but weaker pressure gradient
(—0.0001 Pam~! instead of —0.0005Pam~") and slightly
stronger surface cooling (—0.3 K s~! instead of —0.2 K s™1).
As a result of the decreased forcing, the developed pro-
files deviated from the reference measurements and showed
stronger shear but lower turbulence intensity (Fig. Al). Due
to the computational time constraints we simulate only a non-
nested main run for a comparison of spectral characteristics.
We observe a better agreement with the measurements spec-
tra (Fig. A2), especially in the w component, whose spectrum
does not follow a —5/3 theoretical slope. Therefore, we are
able to match only one of two — either SBL profiles or SBL
spectra — and observe a strong discrepancy in another.

(a) Horizontal wind speed

(b) Turbulence intensity
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Figure A1l. Precursor run profiles with original and reduced pres-
sure forcing. (a) Horizontal flow mean profile and (b) turbulence
intensity profile.
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Figure A2. Main run spectra with original and reduced pressure
forcing. (a) Horizontal velocity spectrum and (b) vertical velocity
spectrum.
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Abstract. Enhancing the performance of offshore wind park power production requires, to
a large extent, a better understanding of the interactions of wind farms and individual wind
turbines with the atmospheric boundary layer over a wide range of spatiotemporal scales. In this
study, we use a multiscale atmospheric model chain coupled offline with the aeroelastic Fatigue,
Aerodynamics, Structures, and Turbulence (FAST) code. The multiscale model contains two
different components in which the nested mesoscale Weather and Research Forecast (WRF)
model is coupled offline with the Parallelized Large-eddy Simulation Model (PALM). Such a
multiscale framework enables to study in detail the turbine behaviour under various atmospheric
forcing conditions, particularly during transient atmospheric events.

1. Introduction

Offshore wind is one of the key renewable energy resources today and for the years to come.
Therefore, a better understanding of wind and its spatiotemporal variability further offshore
plays a significant role in future technical and technological developments in offshore wind
industries. In some applications, the wind in the boundary layer is described using simple
representations, such as power-law or logarithmic profiles. However, these simplified wind
profiles cannot always properly capture the vertical distributions of observed wind, particularly,
during transient atmospheric events such as Low-Level Jets (LLJs)—during stably stratified
conditions, and Open Cellular Convection (OCC)-during convectively unstable conditions. In
such conditions, the wind characteristics, such as wind shear, wind veer, and turbulence intensity,
depart significantly from those assumed under standard conditions [1, 2, 3]. Furthermore, these
transient events modify the performance of wind power generation and structural loading by
impacting the turbine wake meandering, evolution, and recovery rates. Therefore, increased
knowledge of site-specific characteristics of events like OCCs, their formation mechanisms,
and their strengths and impacts are critical to improving farm power generation, turbine
performance, and offshore wind turbine load assessments [4].

Areas covered by a large number of wind park clusters experience a large variability of
wind speed and farm/turbine power fluctuations during the passage of OCCs. These transient
frontal episodes are common atmospheric processes in the North Sea [2]. OCCs are associated
with cold air advection over the warmer ocean surface and are visible from the satellite images
as honeycomb-like patterns of shallow convective clouds (with 1km-3km thickness) [6, 2]. The
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vertical velocity is positive in the updraft regions at the cloudy edges of cells and is negative in the
downdraft regions at the cloud-free cell centres. Spatial scales of the cell in the Southern North
Sea vary between Tkm and 80km with a temporal scale of minutes to hours. The spatiotemporal
behaviour of the OCCs at their multiple scales can be efficiently captured by the use of an
appropriate atmospheric multiscale modelling system.

Over the last couple of years, numerical research of flow field modelling in the offshore
wind energy applications has developed by coupling between the mesoscale Numerical Weather
Prediction (NWP) models and microscale high fidelity Large Eddy Simulation (LES) models [1].
NWPs are primarily Reynolds-Averaged Navier—Stokes (RANS) models, in which the turbulence
is parameterized based on averaged properties of the flow fields. However, LES models (for
example the Parallelized Large-eddy Simulation Model, or PALM) resolve turbulent eddies larger
than a spatial lengthscale (large eddies) and parameterize the eddies smaller than the spatial
filter lengthscale (subgrid scales) [8, 9]. While LES models have been primarily used in idealised
simulations, they can represent realistic flow evolution if the effects of time-varying mesoscale
flows along their outermost boundaries are implemented properly through an (one-way) offline
nesting approach [10]. PALM system is able to use the mesoscale data from the regional weather
prediction model such as Consortium for Small-scale Modeling (COSMO) and the Weather
Research and Forecast (WRF) [11] models. The PALM model also contains the implementation
of a wind turbine actuator disk parameterization with rotation that enables the multiscale
framework to predict more precisely the turbulent flow within the wind park under realistic
atmospheric forcing conditions. However, these types of simulations are subjected to several
uncertainties associated with the boundary forcing information, the land-use characteristics, the
choice of roughness length, etc. [1].

In this work, we develop a multi-scale model chain consisting of the WRF and the PALM
models: the WRF model downscales large-scale features and provides the lateral forcing for the
PALM model to perform LES simulation using a grid nesting approach. This modelling system
provides the LES model with a more realistic time-dependent inflow condition that enables it
to capture the variability of a broad range of differently stratified flows. The primary objectives
of this study are then:

e to tentatively assess the added value of simulations with the suggested multiscale framework.

e to preliminary study and improve the understanding of the effects of thermally-driven flows
on wake evolution and the turbine load behaviour during an OCC event at the area of
Alpha Ventus offshore wind park.

While the LES model can provide a non-Gaussian representation of inflow winds, to be
used for the load study, we simplify our analysis by assuming that the inflow turbulence field
is completely Gaussian by applying a so-called constrained turbulence generator that uses the
LES high-frequency time series at a number of separated points.

In this paper, we first introduce the site and its environmental conditions. The methodology
is then given in Section 3, and the multiscale model results and structural loading are presented
in Section 4. Finally, some conclusions are given in the last section.

2. Observational data and case study

The 100-m tall FINO1 meteorological mast (with coordinates of 54°0'53.5"N, 6°35'15.5"E) is
located in the Southern North Sea in a water depth of 30m, see Fig. 1. The mast is equipped with
various sensors to measure different atmospheric quantities such as wind velocity at 33, 40, 50,
60, 70, 80, 90, and 100 m. High-frequency measurements were collected by sonic anemometers
at 40, 60 and 80 m with a sampling frequency of 10 Hz, with an orientation of 308° in order to
remove the mast shadow zone during the data analysis step. During the NORCOWE OBLEX-
F1 campaign between May 2015 and October 2016 at FINO1, two additional sonic anemometers
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Figure 1. (a) The WREF’s nested domains used in this paper with the horizontal resolutions of
9 km (DO01), 3 km (D02), and 1 km (D03); and (b) the WRF’s 1-km domain (D03) along with
the PALM’s two nested domains with horizontal resolutions of 375 m (D04) and 10 m (D05).
The FINO1 platform is indicated by the red markers in both panels.

with a sampling frequency of 25Hz and an orientation angle of 135° were installed at 15m and
20m above the mean sea level. Waves were measured by a Datawell MKIII buoy deployed in
close vicinity of the FINO1 mast.

The Alpha Ventus wind park operating in the vicinity of the FINO1 meteorological mast
covers an area of 4km? and contains 12 wind turbines (M5000-116) with a hub height of 90 m
and rotor top height of 148 m.

Figure 2-a shows a 10-min averaged time series of wind and wave characteristics at FINO1
and the vicinity for a 12-day period in November 2015, when there exhibits a range of variability
and fluctuations in wind speed corresponding to several OCC events. The wind speed varies from
2 m/s to nearly 25 m/s with the wave height closely correlated with the wind (i.e. suggesting an
almost fully developed sea). During the first period of OCC (between 02 UTC November 22 and
00 UTC November 23), the wave has the heights varying around 3 m and is primarily aligned
with the wind (Fig. 2b). The OCC events are characterized by a warmer ocean surface than
the overlying air (Fig. 2c¢). The second strong OCC event occurs between 06 UTC November
23 and 00 UTC November 24 when the wind and wave are even more aligned. Table 1 contains
the characteristics of the averaged wind and wave during these two OCC events that occurred
during the study period.

3. Methodology

3.1. WRF multiscale simulation setup

The Advanced Research WRF (ARW) version 4.3 is used for the mesoscale simulations of the
OCC events and wind farm wakes for areas covering the offshore FINO1 meteorological mast.
Figure 1-a represents the three-nested-domain setup of WRF. The outermost parent domain,
D01, has a horizontal grid resolution of 9 km; the intermediate and innermost domains, D02
and D03, use 3-km and 1-km horizontal spacing, respectively. We use 60 vertical 7-level with
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Figure 2. Time series during a 12-day period in November 2015 of (a) 33-wind speed measured
by the 33-m height cup anemometer on the FINO1 met-mast (Usg, black line) and significant
wave height measured by a moored buoy in the vicinity of FINO1 ( Hy, red line); (b) wind
direction at 33 m height measured by FINO1’s wind vane (black dots) and wave direction (red
dots); and (c) Sea Surface Temperature (SST) (black line) and air temperature at 40 m (red
line). The red shaded area between November 22-24 highlights the WRF simulation period.

the highest vertical grid resolution near the surface for all three domains with 21 levels below
500 m (covering appropriately the measurement heights and the rotor plane area of turbines).
We initialized WRF with ERA5 reanalysis data and conducted a 2-day WRF simulation
between November 22 and 24, 2015 (in which convective cells were generated and propagated
over the FINO1 and Alpha Ventus wind park regions) using the contiguous US (CONUS) physics
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Table 1. Summary of the averaged wind and wave data sets during two OCC events between
November 22 and 24 2015. Here, T}, denotes the wave peak period, measured by the buoy nearby
the FINO1 location.

Variables Uss [m/s] Wind direction [°] H, [m] T, [s] Wave direction [°]

0CcC1 14.3 251.0 3.2 8.4 337.0
0cC2 8.8 212.2 1.5 6.1 259.0

suite configuration. The physics suite contains the microphysics parameterisation developed by
Thompson et al. (2008) [12], the Rapid Radiative Transfer Model and Dudhia schemes [13]
for longwave and shortwave radiation calculations, the Tiedtke cumulus parameterisation, the
eta similarity scheme for the surface layer parameterisation, and the unified Noah land surface
model. We considered a spin-up time of 12 h and we did not apply the data assimilation
technique in this study. We used the MYNN planetary boundary layer scheme to enable the
use of the wind farm parameterization using the Fitch scheme [5]. Furthermore, we use the
Met Office’s Operational Sea-surface Temperature and Sea Ice Analysis (OSTIA) dataset due
to the importance of the SST to study the OCC transient event. The daily OSTIA data are
interpolated in time in order to match with hourly ERA5 input data.

3.2. PALM microscale simulation setup

We used the PALM model (version 21.10) to study the flow field variability in the area of
the Alpha Ventus wind park and to provide (Gaussian) turbulent inflow boundary information
for the wind turbine load study. PALM is an open-source LES code that models both the
atmosphere and the ocean and is based on solving the non-hydrostatic incompressible Boussinesq
approximation, along with the mass and energy conservation equations [8, 9]. Effects of turbines
in the PALM are based on an Actuator Disk Model with Rotation (ADM-R). We used the ADM-
R parameters to account for the NREL 5 MW reference turbine and to model the turbine/farm-
affected flow fields in the area of Alpha Ventus wind park.

The PALM simulation domains are shown in Fig. 1-b. The parent domain covers the study
site with a size of approximately 141 km (east-west)x 141 km (south-north). The grid sizes of
this domain are Az = Ay = 275 m and Az = 40 m. The twelve wind turbines of the Alpha
Ventus locates within the child domain with the grid sizes of Az = Ay = 11 m and Az = 5m.

3.3. Meso-to-microscale modeling system

With the offline nesting strategy, non-cyclic boundary conditions are applied to achieve a
more realistic meteorological representations inside the PALM domain. Instead, the WRF
outputs are used to create lateral and top boundary conditions for PALM, which include
[10]: thermodynamics and velocity fields; vertical grid structure; soil information; and some
geographical information. The boundary conditions for the PALM’s outer domain are updated
every 10 minutes, which is the WRF’s output frequency. Since the WRF outputs do not contain
turbulence, a synthetic turbulence generator is then used to generate the turbulence in time and
space.

8.4. Structural analysis code

We conducted aeroelastic simulations based on the open-source software FASTv8 (developed by
NREL) to model wind turbine responses during the frontal passage [7]. FAST contains embedded
subroutines for the aerodynamic code that works based on the blade element momentum theory
and the hydrodynamic module. Using a constraint turbulence generator (here TurbSim) and LES
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time series (with a sampling frequency of 25 Hz) at vertical points located at FINO1 distributed
over different heights from the near-surface (7.5 m) to below 250 m (so-called constraint points
or pattern), we created the (Gaussian) inflow (3D turbulent wind fields) for the FAST program
that computes then the time-series of blade momentums and forces. The FAST simulations
are made on a 5-MW tripod-foundation wind turbine. The hydrodynamic loads (by HydroDyn
FAST) on the supporting structure are modelled for the irregular waves (we use JONSWAP
empirical spectrum to reconstruct the irregular waves based on wave bulk parameters measured
during the study period).
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Figure 3. (a) The terra/MODIS satellite cloud image at 00 UTC November 22, 2015, from
https://wvs.earthdata.nasa.gov; and the WRF vertical velocities at 100-m height at (b) 06 UTC
November 22; (c¢) 10 UTC November 22; and (d) 17 UTC November 23 respectively.

The stochastic wind was generated by TurbSim on a 16 x 16 grid with ~ 13-m width. The
model uses time series of PALM at the constraint points and coherence parameters from model
datasets as inputs. The PALM 25-Hz wind is aligned with the mean wind at each point in space
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and the Davenport coherence in the TurbSim simulator, v, is applied as follows:

Y(f) = exp (ﬂ%), (1)

with the parameters estimated from the coherence in the PALM high-frequency wind data. Here,
f denotes frequency, § is the separation distance between the locations of two given time series,
4 is the mean wind speed, and C represents a decay coefficient (C' can be computed separately
for each velocity component). The surface roughness, power-law exponent for the wind profile,
and wave parameters are found from the wind and wave measurements (see Table 1). In this
paper, we used three load quantities calculated by FAST: the rotor speed F;, the blade pitch,
and blade 1 out-of-plane deflection.

4. Results

In this work, we study the OCC event that occurred on November 22, 2015, and Fig. 3-a shows
the observed hexagonal cloud patterns of this event from the satellite image over the North Sea.
This transient event was the result of a cold air outbreak when the cold and dry air behind
an extratropical cyclone was advected from the north-northwest over a relatively warmer ocean
surface (see Fig. 2-c). Figure 3-a provides a qualitative impression of the sizes, distributions,
and locations of the convective cells over the North Sea and particularly over the study site. The
OCC structures are revealed in the snapshots of vertical velocity at 100-m height from the WRF
simulation at 1-km resolution (Fig. 3b-d). The wind parks operating in the Southern North
Sea may experience substantial and harsh wind speed and wind direction differences during the
passage of this front. In such convective conditions, both turbulence vertical/lateral mixing as
well as the increase of unstable stratification, lead to narrow updraft edges (positive vertical
velocity) and downdraft regions (negative vertical velocity at cell centres). Qualitative and
visual comparisons between WRF model results and the satellite image suggest some general
similarities in spatial distributions of cells over the North Sea. This event remains strong until
approximately 20 UTC November 22, 2015 (Fig. 3-d).

Figures 4a-b show the WRF simulations of horizontal wind speed and vertical velocity
extracted at the closest grid point to the FINO1 location (see Section 2 and Fig. 1). Short-
timescale fluctuations are produced by WREF for both horizontal and vertical wind components
under the OCC, and the patterns of convective circulation are observed clearly through the
diverging downdrafts and the converging updrafts. The WRF simulation performed well when we
compare the 100-m wind speed with the observation (Fig. 4c). Figure 4c also shows significant
fluctuations during the passage of convective cells, where the WRF successfully captures the
locations of cells and some of the variations.

For the LES simulation, we coupled WRF with the PALM model through a one-way,
offline nesting approach. We first run the mesoscale simulation (i.e. WRF with domains
D01-D03) for the entire study period and created the boundary file from the 1-km (DO03)
resolution results to force the flow fields inside the PALM parent domain (D04), which were then
nested onto the innermost domain (D05) through PALM-PALM nesting scheme. We conducted
two microscale experiments to simulate high-frequency time series of wind speed at different
heights at the location of FINO1 met-mast: (1) before the first frontal passage (starting from
00UTC, November 22) for 20min); and (2) the onset of the first OCC event (starting from
02 UTC, November 22 for 20min). Within D05, we included 12 5-MW NREL wind turbines
at geographical locations of Alpha Ventus turbines. Besides the general mean outputs, we
included the 25-Hz high-frequency sampling outputs at points covering the rotor area of one
turbine in the first row of Alpha Ventus farm to study the non-Gaussian turbulence later on,
as well as vertically distributed points at the geographical location of FINO1 to be used in the
Gaussian wind generator TurbSim. While the more thorough validation of WRF-PALM results
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wind speed at 50-m height (red line) and measurements from FINO1’s cup anemometer (black
line). Shaded yellow areas in (b) and (c) show the periods of OCCs.

will be done in our next study, we illustrate the capability of our coupled WRF-PALM system
to simulate the wind variability and the turbine wake before and during the OCC passage in
Fig. 5. Before the frontal passage, the background flow is almost north-northeasterly which
then rotates gradually to north-northwesterly as the front enters the farm region. It is observed
that the yaw control of turbines may contribute to the wake meandering by turbines (we do
not investigate how well the modelled yawing results match the observed SCADA data in this
study).

To construct turbulence velocity fields as inflows of aeroelastic simulations, the necessary
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Figure 5. Hub-height wind speed comparison of PALM model results at child domain at the
times: (a) before frontal passage; (b) close to the OCC event but still before its passage; (c)
when OCC is entering the Alpha Ventus region; and (d) during the OCC event.

parameters of the simulator will be fitted to the measured time series at the given constraint
spatial pattern. Figure 6 displays the power spectra of times series at two different heights
(7.5 m in the left panels and 147.5 m in the right panels) to examine how large scale turbulent
structures, as well as the inertial subrange, are extended before (hence. PREOCC) and during
the OCC event. The enhanced variability in the wind energy is pronounced across almost all
frequencies during open cells, particularly close to the sea surface.

Two sets of wind fields are generated for the PREOCC and OCC conditions. The 20min wind
fields are fitted to the PALM time series at FINO1. Figure 7 shows the generated constraint wind
fields by TurbSim simulator (hereafter TIMESER) for two cases. In the Davenport model of the
TurbSim, we assumed equal decay parameters for horizontal and vertical separation distances.
Note that the PALM generated wind fields may not be appropriately stationary and this will
be explored and discussed in our future study.
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location at heights of 7.5m (a,c,e) and 147.5m (b,d,f) above the mean sea level. P,,, P, and
P,w denote the power spectra of horizontal and vertical wind components, respectively.

We calculate the aerodynamic loads by the use of wind inflows according to TIMESER for
PREOCC and OCC conditions. A time step of 0.05 s and a total length of 600s are used in the
FAST simulations. We drop the first 200s of simulations as the spin-up time of the model. Figure
8 shows the various response spectra of the following quantities: ”OopDefl1” that represents
the instantaneous out-of-plane tip deflections of blade 1 relative to the undeflected pitch axis;



EERA DeepWind Offshore Wind R&D Conference IOP Publishing
Journal of Physics: Conference Series 2362(2022) 012003  doi:10.1088/1742-6596/2362/1/012003

”BldPitch1” that indicates the pitch angle of the first blade; and the "RotSpeed” that represents
the rotor speed. In Fig. 8-a, the effect of OCC can be observed through its oscillatory behaviour
on the out-of-plane blade tip deflection, the rotor speed, and the blade pitch angle (pitch angle
during PREOCC is 0 degree and is not shown here). During the transient event, the variation
of the wind inflows relative to the rotor induces oscillations in the rotor speed. The control
system adjusts then the fluctuating power through the control of blade pitch angle (as shown in
Fig. 8b, red line). PSDs in Fig. 8c show very different variations at low frequencies and PSDs
in Fig. 8d show very similar behaviour with comparable energy levels at very low frequencies
(and elevated energy levels at higher frequencies). The maximum OopDefll (of approximately
6m) occurs when wind speed drops and the pitch angle of the blade becomes 0°.
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Figure 7. Three-dimensional turbulent wind boxes simulated by TurbSim constrained by 30
vertical points at FINO1 during: (a,b,c) OCC event; and (d,e,f) PREOCC event.

5. Conclusions

In this study, we presented a multi-scale modelling framework to simulate tentatively the
propagation of the wind turbine wake as well as structural loads under a thermally-driven
transient event (i.e. OCC). We utilized four model components in our model chain including:
the WRF mesoscale model with three nested domains; the PALM microscale model with two
nested domains combined with the actuator disk model with rotation; the TurbSim model
generating the constraint turbulent wind fields; and finally the NREL FASTv8 structural code
for investigating very briefly the structural responses of a 5-MW NREL wind turbine.

We implemented the offline nesting approach from the WRF to the PALM and conducted
two experiments of WRF-PALM before the OCC (but very close to the onset of the OCC,
PREOCC) and during the OCC event respectively. It was shown that the open convective cells
modulate strongly the wake spatiotemporal evolution and load behaviour. Results preliminary
showed the wake and load variations in the Alpha Ventus wind farm under OCC conditions and
underlined the importance of using a multiscale framework to better understand the flow field
and its variability, particularly during transient events in the offshore wind park regions.

We further explore the structural responses for the OCC event against another PREOCC
event, in which the flow fields and environmental conditions are approximately similar to the
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Figure 8. (a,c) Time series of turbine response from FASTv8 model; and (b,d) Power Density
Spectra (PSDs) of out-of-plane tip deflections of blade 1 and rotor speeds before (PRECOCC)
and during OCC event.

environmental conditions of the OCC.

We need, however, to conduct more comprehensive verification and validation procedures
to assure the accuracy and performance of the presented coupled system. Furthermore, the
selected PREOCC episode may have been affected by the OCC impacts. This necessitates
further elaboration on the event selection.
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Abstract.

Engineering wake models are defined by mathematical expressions and a set of coefficients. Because of their simplicity, the
models may be rigid in transient events such as open cellular convection (OCC), characterized by a strong wind speed and
direction change within tens of minutes. We use the results of a multiscale wind-wake modeling during an OCC event at the
Alpha Ventus wind farm in the Southern North Sea to study how Gaussian models capture wake deficit variabilities. We find
that the Jensen-Gaussian model would benefit from a constant coefficient tuning. On the contrary, the Bastankhah and Porté-
Agel model and the super-Gaussian model are consistent without tuning but perform best with different deficit distribution

shapes.

1 Introduction

Engineering wake models predict wake deficit with simple analytical expressions and known values of the free-flow char-
acteristics and thrust coefficient. Models’ simplicity ensures fast calculation but smooths instantaneous wake features. The
wind speed, turbulence intensity and thrust coefficient provide the model with limited capability to adapt to the flow. Since
strong changes in the flow may affect the accuracy of the prediction, the model’s reaction to transient events has to be stud-
ied (Bakhoday-Paskyabi et al., 2022a, b).

Transient events change the flow characteristics within several minutes, which makes numerical simulations unfeasible for
real-time control. Although engineering models do not resolve the instantaneous wake structure, they can operate on a steady
averaged flow before and after the event.

Open cellular convection (OCC) is a transient event associated with a cold-air outbreak above the warm ocean surface. We
regard an OCC event in the Southern North Sea on November 22, 2015, near FINOI platform (Fig. 1, Sect. 2). We select
three Gaussian models (Sect. 3) and evaluate their performance before and after the OCC event based on the accuracy of
predicting the 10-minute average normalized wake deficit in the downstream cross-sections (Sect. 4). We also evaluate whether

the prediction can be improved if the model’s coefficients are corrected by choosing the best fit for the wake deficit.
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Figure 2. 10-minute averaged inflow characteristics at the hub height 2D upstream of AV1 and AV4 (a-c) and the thrust coefficient (d).
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2 Data

The convective cell passed the FINO1 platform and Alpha Ventus wind farm on November 22, 2015 1:40—2:00 AM UTC+0
(Fig. 1). Due to the lack of lidar data for this day, we utilize a high-fidelity numerical simulation to reproduce the flow
field (Bakhoday-Paskyabi et al., 2022b). The Weather Research and Forecasting (WRF) model output acts as a dynamic
driver input for the large-eddy simulation (LES) PALM model system (Maronga et al., 2020). The LES consists of two
nested domains, with the inner domain 4480 x 5120 x 320m refining the grid around Alpha Ventus to the grid cell size of
A =10x10x 5m.

The passing open cell affects the flow characteristics changing the wake shapes. We define three phases. The pre-OCC phase
covers time stamps 1:10—1:40 and is characterized by low wind speed but high thrust (Fig. 1ab); the wakes are wide and merge
for turbines of the same column. A short transition phase takes about 10-minutes and is most prominent at 1:50 time stamp
(Fig. 1c). The post-OCC phase starts at 2:00 time stamp and is characterized by low thrust, but high wind speed (Fig. 1d); the
wakes become narrow and do not merge anymore. The turbulence intensity fluctuates withing 7 — 11% for both phases, the
wind direction changes by 10—15° between phases.

The Alpha Ventus wind farm consists of 12 wind turbines of two types arranged in a rectangular pattern, with the turbine
AV1 located in the northwest corner. All turbines are approximated as the NREL SMW reference turbine (Jonkman et al.,
2009) and actuator disc model with rotation (Witha et al., 2014); the turbines are set to the same hub height z;, of 90 m and

rotor diameter D of 126 m.

3 Methodology
3.1 Model fitting

Model fitting is performed by taking WRF-LES results as a true value. We choose the turbine AV1 as a reference for the
regarded wake models since AV1 is the least affected by the nearby wakes due to the northwest wind. To extract the cross-
sectional velocity U in zy-plane, we define a local coordinate system with a center at the AV 1 position so that the z-axis always
follows a 10-minute average wind direction. The downstream cross-sections are regarded in a range of x /D = 2..10 with a step
of 0.5 — totaling 17 cross-sections. The local coordinates for each cross-section are represented by a radial distance r varying in
the range of /D = —2..2 from the rotor axis. The 10-minute average inflow characteristics — wind speed Uy, wind direction,
and turbulence intensity I, — are estimated by probing the free flow at 2D upstream of AV1. The PALM LES output contains

the thrust force T for each turbine; hence, the thrust coefficient C'r is derived as

T

Or=——"—=
0.5-pAU,

¢))

where p = 1.17kg/m? is the constant air density as returned by the WRF-LES, A = 7(D/2)? is the rotor area.
The wake from AV4 appears in AV1 cross-sections starting from /D = 6.5. The inflow probes for AV4 generally return

similar values, except for the time stamp 1:40 (Fig. 2) — the wind speed and turbulence intensity near AV4 are strongly affected
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Table 1. Gaussian wake models and their original coefficients.

Model Coefficients

BPA kT = 0.003678, k5 = 0.3837
Jensen Gaussian k£ = 0.05

Super-Gaussian a5 = 0.17, bs = 0.005, ¢s = 0.2

by the direct hit from AV1 wake. Overall, this similarity allows using AV1 inflow characteristics and thrust coefficient to
estimate wakes for both turbines. An ensemble wake is calculated by summing up the normalized wake deficit from the AV1
wake at the regarded cross-section and the deficit at the respective cross-section of the AV4 wake.

We also tune coefficients of each model to find the best fit to WRF-LES results. Overall, we regard the following cases:

— default model — a wake model uses coefficients suggested by its authors and relies only on C and I, to calculate wake

deficit.

— corrected fit — model’s coefficients are fitted for the first 10-minute period of the pre-OCC and post-OCC phases —
periods ending at 1:10 and 2:00, respectively — and remain fixed for the further periods of the phase.

— best fit — model’s coefficients are re-fitted to each new 10-minute period. The fit uses already known simulation data for

the passing period, so while not being practical, it shows whether the model could have described the wake better.

The best fit is optimized for all cross-sections in a 10-minute period to avoid tuning models to a specific part of the wake. To
evaluate the models’ performance, we also compare root mean square errors (RMSE) for the normalized wake deficit of each

cross-section separately.
3.2 Gaussian wake models

We apply engineering wake models to calculate normalized wake deficit AU = 1 —U/U. Since we are interested in how well
wake models approximate the wake shape and flow characteristics, we select wake models that suggest a Gaussian distribution
of the deficit. The three Gaussian models regarded in this study are chosen based on their flexibility and possibility to re-fit the
parameters (Krutova et al., 2020). When choosing which values to fit, we prefer the coefficients fitted by the original authors
(Table 1).

3.2.1 BPA Gaussian model

One of the first Gaussian models was developed by Bastankhah and Porté-Agel, further referred to as the BPA model (Bas-
tankhah and Porté-Agel, 2014). We utilize Niayifar and Porté-Agel (2016) version of the model, which parameterizes the
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growth rate of the wake k* as a linear function of the turbulence intensity I,,:
K=k kL, @

where ki and k3 are the coefficients to fit. Then the standard deviation o of the Gaussian function depends on the diameter D

and downstream distance x as

oc=k*r+eD, 3)
11+vV1-
=025, g:,;CT (4)
2 J1-Cr
The normalized wake deficit is then given as
— Cr r2
AU=(1-/1-——5 -—— 5
( 8(o D)2> xexp( 202> ®)

3.2.2 Jensen-Gaussian model

Gao et al. (2016) replaced a top-hat distribution in the Jensen wake model (Jensen, 1983) with a Gaussian.

_ 516 — r
AT — {1_ \/727.[] (-T,kw):| X exp (_ﬁ> (6)
o =1,/2.58 N

where 7, (Cr, k) is the wake radius, U (z,ky) and ky, (k,Cr,1,) are new functions omitted here for the sake of brevity. The
full definition can be found in the original study (Gao et al., 2016).
The only coefficient to fit, the wake decay coefficient k, is defined similarly to the Jensen model and is then corrected with

the function k., (k,Cr,I,). We choose the starting value k£ = 0.05 as suggested by the model’s authors for offshore wind farms.
3.2.3 Super-Gaussian model

A regular Gaussian model uses the order of n = 2. Increasing this value leads to the tendency for a flat peak of the distribution.
Blondel and Cathelain (2020) proposed a super-Gaussian model with varying n. Although another version of this model
exists (Cathelain et al., 2020), it mainly improves the wake deficit prediction for /D < 5, which we already found satisfactory
for our purposes. Hence, we prefer the first version with less parameterized coefficients.

The super-Gaussian model expands the BPA model and alters the order n depending on the downstream distance =

_ e
AU =C(z)exp | — (®)

202

where C(x) is defined via n(z) as

C
—92/n-1_ [oa/n-2 _ nor
Cla) ¢ 161 (2/n)o*/n ©
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Figure 3. RMSE of the Gaussian models calculated for each cross-section. The label *T” stands for the total RMSE normalized by the number

of cross-sections to allow comparison. The results for the peak transition time 1:50 are excluded since the RMSE is not representative there.

and collapses to the multiplier in Eq. (5) for n = 2.

The standard deviation ¢ in this model is defined as

U:(asIa‘l’bs)‘i’Cs\/B (10)

Here, (3 follows Eq. (4) of the BPA model with ¢; = 0.2. a and b, are defined differently despite being used similarly to k3
and k7 in Eq. (2). We fit these three coefficients (Table 1).

The super-Gaussian model proposes two method of finding n(z): root-solving and analytical. The analytical method adds
three more coefficients; therefore, we choose the root-solving method and find n(z) from the equation

nCT

C(I)z — 22/nC(I) + W =

an

4 Results

The general behavior of all models follows similar trends (Fig. 3). The agreement to WRF-LES is good for the stabilized flow

in the pre-OCC phase but declines as the convective cell approaches the wind farm. During the peak transition phase at 1:50,
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Figure 4. Gaussian wake models applied to the normalized wake deficit at the various downstream distances. For /D > 6.5, two wakes are

present in a cross-section.

the free-flow wind speed becomes ambiguous. The near wake may already be affected by the convective cell — probing the
flow upstream would return the correct free-flow wind speed for the near wake. At the same time, the effects of the accelerated
flow had not yet reached the far wake (Fig. 1c¢) — the upstream flow characteristics are not relevant. Probing the free flow at a
distance parallel to the wake is not accurate enough due to wake effects from the nearby turbines. Model fitting for the period
ending on 1:50 returns unrealistic coefficients, e.g., a negative wake decay coefficient k for the Jensen-Gaussian model.

The post-OCC phase is less challenging for the models because the wakes no longer merge due to the changed wind di-
rection and narrower wake deficit distribution. However, despite the averaging, the deflection effect becomes more prominent
in the far wake. We did not account the deflection, hence, the radial positions of the wake deficit maximums do not perfectly
match maximums extracted in cross-sections for the time stamp 2:30. The discrepancy between maximums positions leads to
increased RMSEs, although the agreement in earlier periods was acceptable.

Depending on Cr and I, the BPA model may not resolve the near wake (/D < 3) due to a negative value occurring under
the square root in Eq. (5). While this is not crucial for the AV1 wake, the model may miss the influence from the AV4 wake for
several cross-sections leading to an increased RMSE for 2/ D > 6.5 (Fig. 3a, 4a). This complicates searching for a best fit — the
coefficients fitted for the BPA model do not deviate much from the original values, and the best fits do not gradually improve
RMSEs compared to the default model. Overall, the BPA model tends to overestimate the maximum deficit in the near wake,

especially if the wake deficit distribution has a double peak shape.



130

135

140

145

150

155

160

https://doi.org/10.5194/wes-2023-79 WIND

—

Preprint. Discussion started: 31 July 2023 ENERGY
Author(s) 2023. CC BY 4.0 License. e we \

© Authors) SCIENCE

european academy of wind energy
-

The Jensen-Gaussian model benefits from correcting the wake decay coefficient k£ similarly as the Jensen model requires
adjustments for better prediction (Pefia et al., 2016). The chosen value of k& = 0.05 underestimates the pre-OCC wake deficit
implying that the initial choice requires re-evaluation based on the observed wake deficit (Fig. 4c). The corrected fit may follow
the wake deficit better but tends to a narrow distribution underestimating the wake width and overestimating the maximum wake
deficit. Despite dependencies on the thrust coefficient and turbulence intensity, having only one adjustable coefficient limits
the flexibility of the Jensen-Gaussian model. In addition, the only coefficient is sensitive to short-term fitting: £ varied between
—0.01 and 0.03 for the regarded periods, although showing a tendency for £ = 0.01 in both phases.

Both Jensen-Gaussian and BPA models are subjected to increased RMSE for z/D > 6.5 in the pre-OCC phase when the
wake from AV4 enters the AV1 downstream cross-section. The models either overestimate the deficit in the AV4 wake or
underestimate it in the AV1 wake. A notable exception is the super-Gaussian model, which follows the complex shape of the
merging pre-OCC wakes well (Fig. 4e).

The tendency for a flat distribution in the super-Gaussian model smooths the double peak in the near wake and resolves a
single peak in the far wake equally well. Consequently, the RMSE of individual cross-sections is rather uniform for the super-
Gaussian model (Fig. 3e). Unlike other models, the super-Gaussian model does not benefit from re-fitting the coefficients in
the pre-OCC phase — new fits either only slightly deviates from the default model or noticeably overestimates the near wake
deficit. On the other hand, a flat peak hinders the super-Gaussian performance in the post-OCC phase (Fig. 4f) — sharp but
low distribution peaks are captured by the super-Gaussian model worse than by other models (i.e., BPA and corrected Jensen-
Gaussian). It should be noted that the calibrated super-Gaussian model (Cathelain et al., 2020) slightly increases the maximum

wake deficit predicted in the post-OCC near wake, but underestimates it compared to other models.

5 Conclusions

We performed a WRF-LES of a transient event and studied how the Gaussian models describe the 10-minute average wake
deficit before and after the event. The transient period remained challenging for all models due to the ambiguity in the free-flow
wind speed.

Having only one coefficient, the Jensen-Gaussian model is simple to fit. Moreover, correcting the coefficient based on the
flow characteristics and wind farm site conditions is preferable before working with the model. However, adjusting to short
averaging periods may not produce a stable coefficient value. While the Jensen-Gaussian consistently showed an improved
RMSE with the best fit, this approach is not feasible since all flow characteristics should be known in advance. We do not
recommend using this model for short periods during transient events.

The default definitions of BPA and super-Gaussian models kept a good agreement with the changing flow and did not benefit
from the coefficient tuning. While the BPA model could occasionally return better RMSE with the re-fitted coefficients, the
default values performed more consistently. Due to how these models interpret the distribution peak, they work better with
different wake shapes. The BPA model approximates well a single sharp peak and may result in an increased RMSE when

two wakes are present in a cross-section. The super-Gaussian model smooths the distribution peak, which appears to be a
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good approximation of a double peak or merging wakes. Still, the model underperformed in the post-OCC phase with low and
uniform wake deficit.

The super-Gaussian model’s capability to capture wake merging accurately is promising for applications where the wake
deficit distribution is important. Considering that the model also reacts well to changing conditions, this calls for further model

validation in complex wake-wake interaction cases.

Code and data availability. The simulation data and the Python code to reproduce the figures are available at https://doi.org/10.5281/zenodo.
8135542 (Krutova, 2023).
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Abstract. Wake meandering studies require knowledge of the instantaneous wake evolution. Scanning lidar data
are used to identify the wind flow behind offshore wind turbines but do not immediately reveal the wake edges
and centerline. The precise wake identification helps to build models predicting wake behavior. The conventional
Gaussian fit methods are reliable in the near-wake area but lose precision with distance from the rotor and require
good data resolution for an accurate fit. The thresholding methods, i.e., selection of a threshold that splits the
data into background flow and wake, usually imply a fixed value or manual estimation, which hinders the wake
identification on a large data set. We propose an automatic thresholding method for the wake shape and centerline
detection, which is less dependent on the data resolution and quality and can also be applied to the image data.

We show that the method performs reasonably well on large-eddy simulation data and apply it to the data set
containing lidar measurements of the two wakes. Along with the wake identification, we use image processing
statistics, such as entropy analysis, to filter and classify lidar scans.

The automatic thresholding method and the subsequent centerline search algorithm are developed to reduce
dependency on the supplementary data such as free-flow wind speed and direction. We focus on the technical
aspect of the method and show that the wake shape and centerline found from the thresholded data are in a good
agreement with the manually detected centerline and the Gaussian fit method. We also briefly discuss a potential

application of the method to separate the near and far wakes and to estimate the wake direction.

1 Introduction

A wake is a complex dynamic structure forming behind a
wind turbine due to the kinetic energy extraction from the
incoming wind flow. The wake region is characterized by de-
creased wind speed and increased turbulence intensity. The
relative velocity deficit, or wake deficit, is strongest right af-
ter the wind turbine. Strongly affected by wind turbine rotor,
the region extends up to 4-5 rotor diameters depending on
the terrain characteristics and stability conditions (Stevens
and Meneveau, 2017; Porté-Agel et al., 2020). The wake
transitions to the far wake, where the recovery to the free
flow is considerably slowed down; at the same time, the wake

width increases up to 3 rotor diameters according to observa-
tions (Aitken et al., 2014). The turbine spacing in operational
wind farms usually reaches 7-10 D (e.g., London Array), al-
though the optimal spacing is estimated to be even higher
in order to reduce the wake effect on downstream turbines
(Meyers and Meneveau, 2012; Stevens, 2016). Since the gen-
erated wind power is proportional to the cube of the wind
speed U3, the power production gradually decreases if the
incoming wind speed drops below the rated wind speed. The
increased turbulence intensity negatively affects the turbine
fatigue loads (Lee et al., 2012). Studying the wake behavior
is hence crucial to estimating both the actual power produc-
tion and the overall lifetime of a wind farm.

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.




850 M. Krutova et al.: Automatic thresholding method for the wake identification and characterization

Not only does the wake expand, but it is also subjected to
wake meandering — oscillations along the rotor axis caused
by the movement of large eddies (Larsen et al., 2007, 2008).
While the near wake remains primarily stable and follows the
wind direction, the far wake oscillates randomly in the hor-
izontal plane with an amplitude exceeding 0.5 D (Howard
et al., 2015; Foti et al., 2016). The far wake also oscillates
in the vertical plane, although the velocity fluctuations there
are weaker (Espaia et al., 2011). As a result, a downstream
turbine is exposed to intermittent flow and, consequently, un-
equal fatigue loads (Muller et al., 2015; Moens et al., 2019).
Additionally, the wake in the Northern Hemisphere slightly
turns clockwise due to the Coriolis effect (Abkar and Porté-
Agel, 2016; van der Laan and Sgrensen, 2017), adding more
complexity to the wake evolution over time. Knowing only
the velocity deficit at a certain downstream distance is in-
sufficient, since the wake meandering strength is character-
ized by the standard deviation of the wake center. Therefore,
the wake meandering analysis requires the knowledge of the
wake centerline to quantify the instantaneous wake effect on
the downwind structures. An appropriate detection method
should be able to perform wake identification by separating
the wake from the free flow and wake characterization by es-
timating the wake centerline and its statistical characteristics
(Quon et al., 2020). Method application and capabilities are
highly dependent on the input data available.

Measurement campaigns that use scanning lidars provide
the most relevant data on the wind flow in a particular wind
farm (Bingol et al., 2010; Trujillo et al., 2011; Herges et al.,
2017). Due to the technical restrictions and cost of lidar in-
stallation, it is complicated to obtain a three-dimensional
scan of the flow around the whole wind farm, although the
flow can be reconstructed for a single turbine (Beck and
Kiihn, 2019). Still, the measurement campaigns span sev-
eral months and require data preprocessing to sort out invalid
measurements. A controlled experiment can be performed on
a wind tunnel for model validation or reproduction of spe-
cific flow conditions (Snel et al., 2007; Chamorro and Porté-
Agel, 2010). The particle image velocimetry (PIV) provides
good spatial and temporal resolution of the measured wind
field but deals with the scaled models and has to account for
their limitations. A different approach is running a large-eddy
simulation (LES) of a wind turbine or a wind farm. While
LES provides a wide range of possibilities to simulate at-
mospheric conditions and wind farm configuration, its rep-
resentation of a wake strongly depends on the implemented
turbulence closure (Moriarty et al., 2014; Mehta et al., 2014;
Martinez-Tossas et al., 2018) and wind turbine model (Porté-
Agel et al., 2011; Martinez-Tossas et al., 2015). A relatively
new development is quantitative study of wind farm wakes
from satellite data (Ahsbahs et al., 2020). The satellites gen-
erally have a lower spatial resolution than scanning lidars
and measure wind speed on the horizontal near-surface plane
but still provide general information on the flow around wind
farms.
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Several wake identification methods exist, varying in com-
plexity and input data requirements (Quon et al., 2020).
Among the variety of methods, we focus on thresholding
and Gaussian fitting because they are applicable to a 2D li-
dar scan in a horizontal or inclined plane. The most common
wake identification method is to fit a one- or two-dimensional
Gaussian distribution to the velocity deficit across the wake
at various downstream positions and get estimations of the
wake center and width from the fitted function (Fleming
etal., 2014; Vollmer et al., 2016; Krishnamurthy et al., 2017).
This method can be applied to both the averaged and instan-
taneous wake, although the irregular wake shape of the lat-
ter complicates the detection. For better accuracy, the fitting
requires wind speed data in a fine spatial resolution. A suf-
ficient spatial resolution is achieved by large-eddy simula-
tion or particle image velocimetry. The Gaussian fit method
can also be applied to the scanning wind lidar data, provided
the wake region is resolved well enough. Overall, the fitting
method efficiency depends on the data quality and spatial res-
olution. The method also requires the free-flow wind speed
to calculate the wake deficit.

Alternatively, a threshold value can be defined. In the sim-
plest case, the threshold splits the range of available values
into two: all values below the threshold fall into one group,
while the remaining values form the second group. When ap-
plied to the wind field for the wake identification, the thresh-
old would split the data into the wake and free-flow points.
Thresholding methods depend less on the data resolution and
mainly rely on the wind speed values. The simplest thresh-
olding method sets a threshold based on the wind speed ratio
in the wake and the free flow. As shown by Espafia et al.
(2011), the method is effective for a regular flows, e.g., in
a wind turbine: a threshold of 95 % of the free-flow wind
speed identified the continuous part of the wake up to the
downstream distance of 68 D. The resulting shape required
smoothing and filtering to reduce the noise. Bastine et al.
(2015) used a stricter threshold of 40 % of the maximum
wake deficit on the LES data to extract the wake core and
perform proper orthogonal decomposition on the processed
wind field.

The thresholding method is not widely used due to its re-
striction: it applies an empirical coefficient that does not ac-
count for the data quality and wind speed fluctuations in the
flow field, which may be a common issue for a lidar scan.
We propose an automated threshold estimation, previously
developed for whitecap detection — the adaptive threshold-
ing segmentation (ATS) method (Bakhoday-Paskyabi et al.,
2016). We adapt the method for wake identification and de-
velop new routines to estimate the wake centerline without a
priori knowledge of the wind direction.

This study focuses on the technical aspect of the ATS
method and discusses its advantages and limitations. The
method is applied to a scanning lidar data set containing
wakes from two wind turbines and various wake-wake in-
teractions. The measurements and LES setup are described

https://doi.org/10.5194/wes-7-849-2022



M. Krutova et al.: Automatic thresholding method for the wake identification and characterization 851

850 m = 7D
—_—

AV1 *AV2 *AVB

(b) W operational

B under construction
[ planned
% FINO1
‘alpha
ventus

[

Figure 1. A schematic shows the (a) location of FINOI platform,
map made with Natural Earth; (b) wind farms and platforms near
FINOI, status in 2015-2016; and (c) alpha ventus wind farm layout,
with maximum lidar scan area and scanning height at the position
of each wind turbine.

in Sect. 2. Lidar data required additional preprocessing, de-
scribed in Sect. 3. In the same section, we preview diagnos-
tic techniques by using image entropy to evaluate and clas-
sify the data. The application of the image processing method
to the wake identification and characterization is detailed in
Sect. 4. We demonstrate our algorithm on the idealized LES
data as a proof of concept in Sect. 5. We then apply the
same algorithm to the lidar data and compare the result with
the manual wake detection, deficit-based thresholding, and
Gaussian fit method in Sect. 6. The findings are summarized
in Sect. 7. In the Appendix, we briefly discuss the differences
between wake identification from the lidar scan data and the
respective grayscale image.

2 Data description

2.1 Lidar and reference data

We use measurements of wind speed and wind direction
recorded during the Offshore Boundary-Layer Experiment at
FINOI1 (OBLEX-F1) campaign. The FINOI platform is lo-
cated in the North Sea at 54°00'53.5” N, 6°35’15.5” E, 45 km
to the north of the German island of Borkum. The alpha ven-
tus wind farm is located in the vicinity of FINO1 and con-
sists of 12 wind turbines arranged in a rectangular pattern
(Fig. 1). The wind turbines AV1-AV6 are of the type Re-
power 5M with a hub height of 92m and a rotor diameter
of 126 m; AV7-AV 12 are of the type AREVA M5000 with a
hub height of 91.5 m and a rotor diameter D of 116 m. The
row and column distances between the turbines vary within
800-850 m, approximately 7 rotor diameters, 7 D. The dis-
tance between FINO1 and the closest wind turbine, AV4, is
405 m.

https://doi.org/10.5194/wes-7-849-2022

The FINO1 meteorological mast has a cup anemometer
installed at 90 m above sea level and a vane installed at
100 ma.s.l. (above sea level). The wind speed and direction
measured with those instruments are used to characterize the
free flow. We will further refer to them as the reference wind
speed and direction, respectively.

The scanning Doppler wind lidar Leosphere Wind-
Cube 100S installed at FINOL is oriented towards the alpha
ventus wind farm. The closest scanned wind turbine, AV7, is
located at 919 m or 7.92 D from FINO1 (Fig. 1c). The lidar
is installed at 23.5 m above sea level and operates in a plan
position indicator (PPI) scanning mode. In this mode, the az-
imuth of the lidar beam changes between 131.5 and 179.5° at
an elevation angle of 4.62°. The lidar scans the southwestern
sector of the alpha ventus wind farm and captures wake pat-
terns from two wind turbines, AV7 and AV 10. The third wind
turbine, AV11, stays outside of the lidar range in most scans,
but a part of its wake is visible for the specific wind direc-
tions. The wind turbine AV7 is scanned near the hub height
at approximately 97 m. The farther wind turbines AV10 and
AV11 are scanned above the top of the blade tip at 158 and
188 m, respectively.

The lidar measurements partially cover 24 Septem-
ber 2016 and capture a variety of wake—wake interactions.
The consecutive lidar scans are separated by approximately
45 s — the time required for the lidar to finish one scan. The
data set contains 600 lidar scans, which are split into 24 sub-
sets of 25 scans. Each subset contains the first 20-22 min of
each hour. For simplicity of presentation and reference, we
number the lidar scans from 1 to 600.

The ATS algorithm accepts the input data as a grayscale
image. The wind speed data of each lidar scan are normal-
ized by scaling to the range of [0, 1] to imitate the grayscale
intensity as

= Umax_U

= M
Umax — Unin

where U is the wind speed measured at a point, and Upin and
Umax are minimum and maximum wind speeds registered in
a particular lidar scan. For the lowest wind speed U = Upjin
(potential wake points), I/ =1 denotes the points with the
highest intensity. Similarly, for the highest wind speed U =
Umax (free-flow points), / =0 indicates the points with the
lowest intensity.

The wake identification is performed on the data stored in
a polar coordinate matrix (Fig. 2a). For a better presentation,
the resulting data are plotted in the Cartesian coordinates as
a scanned sector (Fig. 2b).

2.2 Large-eddy simulation

We also perform a large-eddy simulation to demonstrate and
verify the performance of the ATS method and compare it
against the Gaussian wake identification and characteriza-
tion method described further in Sect. 4.3. We use the PALM
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Figure 2. An example lidar scan 497 taken on 24 September 2016
19:18:20 UTCH-0 at reference wind speed 7.4 m s~1 and reference
wind direction 151.14°. The original data are presented in (a) the
polar coordinates R, ¢ as stored in the matrix and (b) the Cartesian
coordinates X, Y.

LES code with a built-in actuator disc with rotation (ADR)
wind turbine model (Maronga et al., 2020). The results pro-
duced with the model were shown to capture the reduction
of the wake deficit with the downstream distance at the rate
similar to the accounted for wind turbines (Vollmer et al.,
2015, 2017; Doubrawa et al., 2020). The wake recovery as-
pect is particularly important to test the ATS method perfor-
mance in the far wake. The currently used polynomial kernel
also allows us to fit the Gaussian function to compare it with
the ATS method.

The domain contains 2304 x 576 x 192 points and has hori-
zontal grid spacing of 4 m. The vertical spacing below 600 m
is also 4m. Above 600 m, the vertical spacing is stretched
with a factor of 1.08, capped at maximum 8m grid cell
height. The roughness length of zg = 0.0005 m corresponds
to the calm sea surface. The Coriolis forcing is enabled for
the latitude of 54°, and the wind speed components are set to
u=10.5ms ! and v = —2.6 m~! so that the flow rotation is
compensated for, and the flow is aligned with the x axis, re-
sulting in horizontal speed of 10 m s~ at the hub height. The
surface temperature is 277 K and increases by 1 K per 100 m.
Neither heat flux nor surface heating are activated. During
the simulation the turbulence intensity reaches 6.6 %.

The reference NREL 5 MW wind turbine has a hub height
of 102m and a diameter of D; = 126 m and is placed in the
center of the domain so that the wake length can reach up to
20 Dy.

The LES is used solely to generate idealized wake data.
No direct comparison to the lidar data is performed.
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Figure 3. Comparison of the mean radial wind speed and the refer-
ence wind direction in the data set.

3 Lidar data pre-processing and classification

3.1 Data quality

Working with the current data set, we encountered two types
of noise affecting the quality of the wake identification
through thresholding: small wind speed fluctuations not di-
rectly caused by the wake and high wind speed values ap-
pearing due to a measurement error.

The measurement errors are primarily caused by the differ-
ence between wind direction and lidar orientation. The lidar
measures radial velocity, which can be represented through
three directional wind speed components u, v, and w, and
the information on the line of sight of the lidar beam, given
by the azimuth ¢ and elevation angle 0:

U =usingcosé + vcos¢cosd + wsinb. 2)

When the wind blows along the lidar’s line of sight, the
measured radial velocity is essentially the horizontal wind
speed. If the wind direction differs from the line of sight, the
radial velocity deviates from the actual wind speed magni-
tude. In the case of crosswind — the wind direction is close to
perpendicular to the line of sight — the radial velocity tends to
zero and does not represent the actual wind speed. The mea-
surements taken during the crosswind event are more prone
to errors compared to other wind directions.

When plotted against the reference wind direction, the ref-
erence wind speed and mean radial wind speed of a lidar
scan show strong discrepancy for a range of wind direc-
tions (Fig. 3). With the lidar scanning in the range of 131.5—
179.5°, the crosswind effects can be expected for the wind di-
rections of 221.5-269.5°. As shown in Fig. 3, the crosswind
effects already appear for the wind direction above 210°. The
scans taken near the crosswind direction show a large number
of non-physical wind speed values reaching 100-1000ms~!.
We further refer to these scans as “corrupted”.

Occasionally, we also observe weaker spikes in the radial
wind speed, most of which are localized at the position of a
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Figure 4. Consecutive lidar scans from the bimodal subset. No out-
liers are present in scans 442 (a) and 444 (c), while scan 443 (b)
has wind speed spikes near the wind turbine position and in the far
range; panel (d) shows the intensity distribution for the same scans.

wind turbine AV 10, implying a measurement error due to the
lidar beam reflection from rotating blades. The reference and
mean radial wind speeds remain in good agreement for the
wind directions below 210° despite containing spikes in the
wind speed data. Nevertheless, the outliers cause an intensity
skew when the wind speed data are normalized to the range
of [0, 1] (Fig. 4). The intensity distribution peak moves to
the right, with the left side containing occasional low bumps
caused by the spikes (Fig. 4d).

In the example, the middle scan (Fig. 4b) has a wind speed
spike of 15ms~!, while the reference wind speed reaches
5.8ms~!. The radial wind speed magnitude measured in the
spike region stays below 7ms~!. The lidar scan after nor-
malization shows less contrast compared to the adjacent lidar
scans.

To preserve the uniformity between consequent lidar scans
of the same subset, we perform despiking — detection and re-
moval of the spikes. The spikes are detected based on the
wind speed value and the difference with the adjacent points.
We delete all values higher than 30ms~! and check the re-
maining data for the local maximums. An empirically chosen
wind speed difference of 7ms~! proved to be enough to des-
ignate a local maximum as a spike. When a spike consists of
a single or double point, the values there are deleted, and the

https://doi.org/10.5194/wes-7-849-2022

resulting gap is filled by interpolation to retain the continu-
ous wind field. Three or more adjacent points designated as
spike are considered a noise cluster; in such cases, gap filling
after removal is not performed.

Since the lidar is oriented towards the closest wind tur-
bine, a string of missing values — a wind turbine “shadow”
— is always present in the lidar scans regardless of the wind
direction. The shadow rarely crosses wind turbine wakes and
does not noticeably affect the performance of the wake de-
tection methods. Hence we do not perform a gap filling to
remove the shadow in addition to the despiking.

3.2 Information entropy and data classification

We introduce entropy criteria as an alternative to using ref-
erence wind speed and direction for quality control. The en-
tropy application ranges from finding a threshold (Pun, 1981)
to object classification in an image (e.g., satellite map seg-
mentation by Long and Singh, 2013). Here, we calculate it
primarily for diagnostic purposes and data classification into
subsets.

The information entropy is a measure of noise in the data.
It can be calculated for the whole data set as well as across the
rows or columns of a rectangular matrix containing 2D data.
We apply Shannon entropy S (Shannon, 1948) as follows:

S=-)"P(x)log,P(xi), 3)

i=1

where P(x;) is the probability density function (PDF) of the
variable x; (here intensity) to occur in the data. If the entropy
tends to zero, it indicates uniform data. A high entropy value
implies disturbances in the lidar scan due to wakes or noise.

To analyze lidar scan features, we calculate entropy for
the partial data instead of the whole scan. We select wind
speed values in either the radial or azimuthal direction and
calculate a PDF of this sample to pass it to the entropy func-
tion. An example is presented in Fig. 5. The top and the left
parts of the example scan in polar coordinates do not con-
tain wakes; hence the entropy calculated for the respective
rows and columns is lower than for the wake regions. The en-
tropy calculated in the radial direction (Fig. 5a) is higher for
columns crossing both wakes instead of one due to a higher
disturbance rate. An additional entropy increase near the az-
imuth of 130-140° can be explained by high noise at the lidar
scan border. The entropy calculated in the azimuthal direc-
tion (Fig. 5¢c) shows a peak for the AV7 wake. The AV10
far wake produces a less prominent peak, indicating a wake
spread along a longer distance and not aligned with the az-
imuthal direction.

We calculate the entropy in radial and azimuthal direc-
tions for all lidar scans before preprocessing. Combined into
two plots, the entropies present an overview of the data set
(Fig. 6). The respective wind turbine positions are marked on
the right axis. The lower color bar limit is adjusted for better
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Figure 5. The entropy calculated in the (a) radial and (c) az-
imuthal directions of (b) the lidar scan 61. Reference wind speed
is 7.19ms ™! and reference wind direction is 203.68°.

presentation of the features contained in non-corrupted scans.
For the scans with low noise, the entropy values fall into the
range of 4-5 in both the azimuthal and radial directions. The
entropy calculated in the azimuthal direction highlights sev-
eral lidar scans with a substantial entropy decrease (Fig. 6a)
— the value drops below 2 and tends to zero. The same scans
are also characterized by the measurements corrupted due to
the crosswind effect. The spiked data in non-corrupted scans
lead to a local entropy decrease, seen as occasional blue dots
mostly at the location of AV10. Series of such points can be
seen for scans 176-200 and 401-410.

Non-corrupted subsets show similar entropy distribution
in the azimuthal direction (Fig. 6a). A wake from the wind
turbine AV7 can be seen as an increase in entropy near the
turbine’s location. A weaker increase in entropy can also be
seen for AV 10, for example, in scans 51-175.

The entropy calculated in the radial direction is distributed
uniformly for the corrupted subsets (Fig. 6b) but otherwise
does not have as strong of a difference to non-corrupted data
as the entropy in the azimuthal direction (Fig. 6a). Some
non-corrupted scans (51-300 and 376-425) show a gradient-
like pattern caused by the absence of wakes in the 170—
180° sector (low entropy) and wakes and border noise in the
130-140° sector (high entropy). The pattern is weaker for
scans 176-250, where the border noise is absent and wakes
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are aligned along the line connecting wind turbines, thus dis-
turbing a smaller area of a lidar scan. The scans 426-600
combined demonstrate a horizontal stripe pattern, caused by
the wind blowing towards the lidar. Wakes forming across the
scanned azimuths cause the entropy increase in the radial di-
rection matching the positions of AV7 and AV 10, as marked
on the graphs.

The low entropy criterion agrees well with the crosswind
criterion on which scans are likely to contain a high amount
of corrupted data. In general, the scans with a high corrup-
tion rate can be identified based on the percentage of the data
points exceeding a specific wind speed limit. Since the refer-
ence wind speed does not exceed 10 m g1 , we consider the
wind speeds above 30 ms~! to be a likely measurement error.
The corrupted scans consistently have at least 1 % of points
exceeding this limit. The percentage drops to 0 %-0.05 % for
the rest scans and corresponds to the occasional spikes.

The number of corrupted scans is 125, i.e., about one-
fifth of the total number of scans. Classification of the re-
maining valid scans requires either a priori knowledge of the
reference wind direction (which may be unavailable if we
work with image data) or visual evaluation of the wake fea-
tures (which may be complicated for a large data set). En-
tropy criteria can simplify the classification by presenting a
condensed overview of the data set. Using the entropy and in-
tensity histograms, we classify the subsets into the following
groups.

1. Parallel-wake subset, Fig. 8a. The wakes do not inter-
act with each other. Some noise may occur at the li-
dar scan’s border due to the wind direction approaching
the value where the crosswind effects start. Since the
wakes propagate towards this border and add to the dis-
turbance, the entropy calculated in the radial direction
shows a consistent increase near the azimuth of 131°.
The entropy calculated in the azimuthal direction shows
a strong increase near the location of AV7 due to the
wake and a weaker disturbance caused by AV10. The
intensity histogram of an averaged subset tends to be
more symmetrical than in other subsets and has a peak
close to the intensity of 0.5. The intensity histogram of
a single scan has a peak deviating from the center de-
pending on the amount of noise. Parallel wakes are the
most common case for this data set.

2. Aligned-wake subset, Fig. 8b. The wind blows along the
line connecting wind turbines AV7 and AV 10 so that the
former is subjected to a wake. The entropy patterns are
generally similar to the parallel-wake subset, except that
a footprint of the AV 10 wake is no longer visible for the
entropy calculated in the azimuthal direction. The wind
direction is closer to the scanned azimuth range, and
measurements have less noise compared to the paral-
lel subset. Hence the scans show slightly lower entropy.
Compared to the parallel-wake subset, the histogram
peak is shifted to the left. The histogram peak may split
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Figure 6. Entropy of the raw lidar data with all 600 lidar scans combined: (a) azimuthal entropy and (b) radial entropy.

Lidar scan index

(a 50 150 250 350 450 550

)
o 230 Subset type
E parallel
@ 200 |- o e .3 transitional
° Y - = aligned
H B | m bimodal
-
2 150 Lows"" 7| mm corrupted
-
® 7, = .
Es : T.mA
5 o= | %
§ . . E s
-
g6 ° 1 ~
2 .
s4 12
O o . ® ® . O O
O @Y ®P P P 5% @S p®

Time

Figure 7. Classification of the subsets and overview of the refer-
ence wind direction (a) and wind speed (b).

into two small peaks located close to each other when
the wakes are not perfectly aligned.

3. Transitional subset. The wind direction changes, so
both parallel and aligned wakes can be observed in
the subset. This behavior is observed for a single sub-
set containing scans 401—425. The transition to slightly
lower entropy can be seen for the entropy calculated in
the radial direction at azimuths 130-150° (Fig. 6b).

4. Bimodal subset, Fig. 8c. The wind blows along the li-
dar beam. Two long wakes are formed behind the wind
turbines and merge in the lidar near range. Since the
near range is scanned at a high resolution (Fig. 2), the
far wake is represented by a larger percentage of points
compared to the other subsets. Consequently, the inten-
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sity histogram approaches a bimodal distribution, which
is especially prominent for the averaged subset. The
larger peak represents the free flow, while the smaller
peak corresponds to the far wakes of AV7 and AV10.
The two peaks may merge resulting in one flat peak.
The scans have little noise; the increase in entropy, es-
pecially in the radial direction, highlights the presence
of the wakes.

5. Corrupted subset, Fig. 8d. The lidar scan is charac-
terized by the number of non-physical measurements
(wind speed higher than 30ms~!) exceeding 1% of
the lidar scan points. While the valid measurements still
take the largest share of a single scan, they are now con-
sidered “low” wind speeds in a comparison to the max-
imum value. Due to the normalization (Eq. 1) that con-
verts low values into light pixels, the histogram tends to
the far right side, forming a sharp peak in intensity val-
ues between 0.9 and 1.0. The entropy in the azimuthal
direction is lower than in other subsets and approaches
zero, while the entropy in the radial direction tends to
be more uniform than in non-corrupted scans and does
not react to the presence of a wake.

The overview of the subsets and reference values is pre-
sented in Fig. 7 and Table 1, containing wind speed, wind
direction, and entropy averaged over each subset. A sample
histogram averaged for a typical subset from each group is
shown in Fig. 8 together with a single-scan histogram from
the same subset.
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wind speed data are normalized to imitate the grayscale intensity. Despiking and removal of non-physical wind speeds are not performed to

preserve the characteristics before preprocessing.

Table 1. Overview of the lidar data subsets.

Data type Subset Scans  WSPD, WDIR, Entropy % of
ms~! ° data
Parallel wakes 3 51-75 6.99 205.3 5.11
4 76-100 7.71 202.7 5.29
5 101-125 7.48 196.0 5.38
6 126-150 6.05 1914 5.35 133
7 151-175 6.58 184.0 5.01 ’
11 251-275 7.10 187.8 5.12
12 276-300 7.41 200.2 5.37
16 376-400 5.45 200.9 5.02
Transitional 17 401-425 4.38 184.5 4.76 42
Aligned wakes 8 176-200 6.32 176.2 4.69
9 201-225 8.30 172.2 5.28 12.5
10 226-250 9.19 171.3 5.30
Bimodal 17 426-450 4.11 1515 5.44
18  451-475 5.71 147.3 5.31
19 476-500 7.22 150.9 5.72
20 501-525 7.83 154.2 5.67 29.2
21 526-550 7.52 159.4 5.64
22 551-575 8.46 160.1 5.72
23 576-600 8.16 157.7 5.70
Corrupted 1 1-25 5.80 243.3 1.54
2 26-50 6.85 212.1 2.31
13 301-325 7.27 2134 1.53 20.8
14 326-350 7.06 2222 2.64
15 351-375 6.41 222.0 2.52
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the CDF and the estimated thresholds.

4 Methodology

Wake detection includes two stages (Quon et al., 2020): wake
identification (a separation of the wake from the free flow)
and wake characterization (further analysis of the identified
wake). We focus on the wake identification methods, partic-
ularly an identification method using thresholding, and also
provide an algorithm for the wake characterization through
centerline detection from the thresholded data.

4.1 Wake identification using automatic threshold
detection

The thresholding methods split an image into background (in
our case — free flow) and foreground (wake). Despite lidar
data having a considerable number of disturbances in the free
flow, the wind speed distribution in a lidar scan tends to have
one peak, either sharp or flattened (Fig. 8). The wake points
take a small share of the lidar scan stored in polar coordinate
matrix, while the remaining points belong to the free flow
— i.e., the most prominent peak contains free-flow points.
The exception is the bimodal subset, where the far wakes are
characterized by high number of points (Fig. 2). As a result,
the histogram of a scan from the bimodal subset may have
two peaks depending on the intensity of the far wakes. To
make our wake identification method universal, we build it
upon threshold detection from a single histogram peak. The
specifics of the wake identification in the bimodal case are
further described in Sect. 6.4 and in the Appendix.

A single peak limits the applicability of the common
thresholding methods that search for the local minimum of
a bimodal histogram (Otsu, 1979). The lidar scan structure
has similarities with ocean surface images: a background
with small disturbances and bright whitecaps. Bakhoday-

https://doi.org/10.5194/wes-7-849-2022

Paskyabi et al. (2016) described three methods of an auto-
mated threshold detection for the whitecaps. We choose an
adaptive thresholding segmentation (ATS) method identified
to be fast and reliable by the original study. The basic princi-
ples of the ATS method are introduced here on a test example
of an instantaneous LES wake.

Figure 9a and b show the wind speed field of an instanta-
neous LES wake and the same data normalized to the range
of [0, 1]. A threshold 7 is an intensity value in the range [0, 1]
that separates free flow and wake points. After the threshold
is applied to the normalized wind field, a binary matrix WP is
constructed from the grayscale intensity matrix I as follows:

0: I(,j) < T — free-flow point,

WP, j) = { 1: I(,j)> T — wake point. @)

The intensity threshold can be converted back to the radial
velocity threshold Uy, by reverting the normalization expres-
sion Eq. (1) as

Uth = Umax(1 = T) + Unnin T - S

The normalized wind speed data are represented as an in-
tensity histogram (Fig. 9c). Let H(x) for k € [0, 1] be the
cumulative distribution function (CDF) of the intensity data.
Then H’'(k) and H” (k) are its first and second derivatives,
respectively. With respect to the definition of intensity /
in Eq. (1), the wake points are located in the histogram’s
tail, while the free-flow points form a peak on the left side.
The transition region where the peak tends to the tail is a
good choice to search for a suitable threshold. We detect the
threshold at the point where the CDF slope is close to con-
stant; i.e., the curvature C(k) approaches zero.

7" 7 2 —3/2
Ctky = H" ()1 + H' (k] ©)
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The curvature graph tail (Fig. 9d) may fluctuate and com-
plicate the detection of the zero curvature. Instead, we look at
the first and second derivatives H'(k) and H” (k) separately.
The threshold value 7> is selected as an inflection point at the
right side of the second derivative graph (Fig. 9¢). A similar
point in the first derivative graph 77 is used as a control value.
We select the threshold as an average value between first and
second derivative inflection points to smooth the threshold
detection outcome. If the points initially lay close to each
other, the averaged threshold 7" = (T + 72)/2 would not de-
viate too far from 75. If the difference between T; and T»
is high, the smoothing prevents the threshold from being too
strict and leaving weak wakes undetected.

In the case of the lidar data, the derivative plots have strong
oscillations. Therefore, we fit a polynomial function on the
range between intensity /i, corresponding to the most promi-
nent local extremum and maximum intensity /max = 1. We
fit a function F(k) =a; +ay /k5, since the corresponding fit
returned low root-mean-square error (RMSE) while not al-
tering the inflection point location significantly.

After the threshold is found, we apply it to the data as de-
scribed in Eq. (4) and obtain a binary matrix WP that repre-
sents thresholded data. Each matrix point corresponds to an
image pixel. Because of the wake irregularity, especially in
the lidar scan, the method usually detects several clusters of
high-intensity points. Any cluster may be a part of a wake
as well as falsely detected noise. We do not yet distinguish
between wake and noise and refer to all detected clusters as
“wake shapes”. Due to the code implementation, the detected
points belong to the same shape as long as the constituting
points are adjacent in the matrix WP. The shapes touching
only by the corners are considered to be separate shapes.

4.2 Wake characterization from the data thresholded by
the ATS method

For the wake characterization, we detect the centerline of a
wake shape. The centerline search method starts with extract-
ing a contour of a wake shape; the further algorithm is based
upon the geometrical properties. It should be noted that the
centerline search algorithm does not strictly depend on the
ATS method and can be used as a stand-alone algorithm that
requires thresholded data as an input.

To start the centerline search method, we require a proce-
dure to determine which shapes were correctly identified as a
wake. The ATS method searches for the high-intensity points
corresponding to the highest wake deficit. Containing the
highest wind speed decrease, the near-wake region perfectly
satisfies this condition. Therefore, it can be expected that the
near wake will be one of the largest continuous shapes among
those detected and will contain a wind turbine within or near
it. The borderline contour of such a shape is extracted for fur-
ther analysis. The wake centerline is then defined as a center-
line of the extracted contour.
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Assuming the outline of the shape as wake boundaries, we
estimate the wake centerline using the following algorithm.

1. The algorithm starts by drawing a circle of radius 1 D
around the wind turbine and marks points where the cir-
cle crosses the borders of the wake shape. If the circle
appears to lie within the wake shape completely, the ini-
tial radius is increased until intersections are found.

2. The midpoint of the arc inside the wake contour indi-
cates the wake direction and is stored as the centerline
midpoint.

3. The circle diameter is increased by a pre-defined step,
e.g., 0.1 D, and the steps 1-2 are repeated until the end
of the wake shape is reached.

This short algorithm works as it is for an ideal case of a
smooth wake contour and known wind direction matching
the wake direction. However, the circular lines may cross the
irregular wake contour several times. Considering the near
wake to be wide and continuous, we expect the centerline
point to lie within the wake shape. We also assume that the
wake does not turn gradually further downstream. Therefore,
the segment between the last known and unknown midpoint
should turn by a relatively small angle compared to the pre-
vious segment. The wind or wake direction is advantageous
to distinguish wake shapes from noise, as it allows us to nar-
row the search by disregarding shapes detected in the upwind
direction as false detection.

Procedure 1 Automatic threshold detection

Input: U(r, ¢) {raw lidar data}
despike U(r, ¢)
Input: k < [0,1] step 0.01
I (Unnax — U)/(Unas ~ Uin)
H « f(1.k) {get the intensity histogram}
Hy« 0H/ok
smooth /{1 with moving average n =4
Hy + &°H/0k*
smooth Hy with moving average n =4
normalize H{ and Ho
Py + fit F(k) = ay +aa/k° on [k(max H,),1]
Py + fit F'(k) = a1 + az/k° on [k(min Ha), 1]
T1 « Py inflection
Ty « Ps inflection
Output: T+ (Ty +T3)/2
{threshold data as W P(r, )}
if I(r,¢) <T then
WP(r,¢) + 0 {free-flow point}
else
WP(r,¢) « 1 {wake point}

end if
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Figure 11. The relation between radial wind speed U, actual wind
speed U’, azimuth angle ¢, and meteorological and mathematical
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The currently used centerline search algorithm 2 provided
further includes these and several other rules for selection of
a wake point when an ambiguity is present. Figure 10 shows
an example of resolved ambiguity based on the wind direc-
tion. If the wind direction was not available, an estimated
wake direction could be used instead with the same outcome.

Generally, this centerline search method does not require
a priori knowledge of the wind direction. However, it may be
difficult to resolve the ambiguity on the first step, if the wind
direction is unknown. For example, the aligned-wake sub-
set (Fig. 8b) and, to a certain extent, also the bimodal subset
(Fig. 8c) introduce ambiguity in the wake direction for the
downstream wind turbine AV7. A circle drawn around AV7
may cross the detected wake in at least four points. The algo-
rithm will in turn identify downstream and upstream points
as potential centerline points. To continue the search, the al-
gorithm has to select only one direction. In the absence of
the reference wind direction, the ambiguity can be resolved
by approximating the wake direction first.
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The procedure to approximate the wake direction runs
similarly to the centerline search, with a few alterations.
First, the step is increased, but the algorithm is run for a
shorter length until 4 D downstream, so only the most well-
resolved part is processed. All midpoints laying inside the
wake contour are accepted, since there is no way to make a
distinction between them as of yet. A linear function y(x) =
ax is then fit to the identified midpoints. If the coefficient of
determination is negative (R% < 0), the fit is too inaccurate,
and the procedure is repeated for another wind turbine.

The intercept value a of the best fit is the arctangent of
the mathematical wind direction (Fig. 11). The approximated
meteorological wind direction is then

3 3
PMET = En — dMATH = En — arctana. 7)

The approximated wake direction may strongly deviate
from the actual wake direction, so it is only used to resolve
ambiguity. The actual wind direction is estimated from the
full centerline. We convert the coordinates of the centerline
points for the AV7 and AV10 wakes to the Cartesian system
and subtract the respective wind turbine positions to get a set
of the relative centerline coordinates. We assume a centered
data set and add a point (0, 0) corresponding to the relative
wind turbine position. The wake from the wind turbine AV11
is prominent only for the bimodal subset and is too short and
easily confused with the noise in the other subsets. We do
not consider this wake in our analysis due to the little infor-
mation it can provide compared to the other two wakes. The
composed data set is fitted with the linear regression, and the
fitted line indicates the estimated wake direction.

4.3 Wake identification and characterization using the
Gaussian method

The wake deficit distribution is similar to the Gaussian dis-
tribution in the far wake (Ainslie, 1988) and often shows a
double Gaussian peak in the near wake (Magnusson, 1999).
The similarity to the Gaussian distribution makes a base for
a widely used method to detect wake boundaries and cen-
terline (Vollmer et al., 2016; Krishnamurthy et al., 2017).
The method requires the data in a two-dimensional horizon-
tal plane, which makes it versatile and practical to use for
wake identification and characterization.

Due to the lidar elevation angle, AV10 is scanned near the
top tip and does not show a double wake. The scan resolution
near AV7 is not always sufficient to resolve a pronounced
double wake. Therefore, we fit the wake deficit distribution
with a single Gaussian function:

2
F(y)erxp<,<y " )), ®)

202

where the amplitude A, mean value u, and standard devia-
tion o are the parameters to fit; the variable y is a coordi-
nate on a line perpendicular to the wind direction. The fitting

Wind Energ. Sci., 7, 849-873, 2022




860 M. Krutova et al.: Automatic thresholding method for the wake identification and characterization

Procedure 2 Wake centerline detection

N(r,¢) + label W P(r,¢) {enumerate detected shapes}
Input: (&, yw) or (1w, Pw) {Wind turbine coordinates}

it WP(ry,¢.)=1then

n 4 WP(r,.¢,) {select a wake shape containing the wind turbine}

else

find n € N and R {select the largest detected shape near the wind turbine location}

end if
L + boundary contour of the wake shape
for d =1to 15D step 0.1D do
C' « contour of a circle with radius » centered at (., y.,)
p' + intersect I, and '
calculate midpoints on the arc between (p*,p' ')
N, < number of midpoints inside the wake shape »
if N, == 0 then

(¢, y.) +NaN {the circle does not cross the wake contour)

else if N, == 1 then

(zl,yl) + midpoint py, ps {centerline point is the only midpoint inside a wake )

else

{ambiguous centerline point, limit the search}

« ¢ deviation from the know wind or wake direction for each valid midpoint

(a7,90) ¢ min(ale¥)
end if
end for

Output: X, Y.

starts from 1 D to avoid uncertainties caused by a weak dou-
ble wake observed for AV7. We attempt fitting for the wake
deficit profiles up to 15 D downstream distance, covering the
length of most wakes in the lidar data set.

For a wake deficit distribution, the fitted Gaussian func-
tion F(y) reaches its maximum at y = u; i.e., the estimated
mean p gives the wake center position. The wake boundaries
are defined through the mean value u and the standard devi-
ation o as u £2In20 so that the velocity deficit at the wake
boundaries is 5 % of the velocity deficit at the wake center
(Aitken et al., 2014).

The Gaussian function is fitted to the wake deficit of
AU(y)=1—-U/Uyp; thus knowledge of the free-flow wind
speed Uy is also required. Since the background flow is rather
non-uniform in the lidar scans, we probe the velocity at each
cross section at 1.6 D from the rotor axis (Krishnamurthy
et al., 2017). The LES data use the wind speed at the hub
height as the free-flow wind speed.

We run the Gaussian method in an automatic mode. The
method should be applied to the data extracted along the
straight line perpendicular to a pre-defined search direction.
The algorithm thus requires knowledge of the wind direction
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before the fitting. The algorithm is also dependent on the ac-
curacy of the wind direction measurements and the similar-
ity between reference wind and actual wake direction. Dur-
ing our analysis, we observed an offset of about 5° between
the directions, which caused fitting errors for otherwise clear
wake. To reduce the influence of a possible discrepancy be-
tween wind and wake direction, we recalculate the search
direction every five points by fitting the linear function to the
previously found center points.

The wake deficit profiles extracted for fitting have a width
of 2.5 D, except for the bimodal subset. There, the profile
width is decreased to 1.75 D after reaching the downstream
distance of 6 D. The correction is active only for the scans
after 500 where the AV10 far wake and the AV7 wake come
close enough but do not yet merge completely and allow sep-
aration. If the Gaussian function is fit to a wider profile there,
the fitting would mistake higher deficit in the AV7 near wake
for the center of the AV10 wake. Reducing the extracted
wake profile width improves the centerline detection in the
AV 10 far wake and delays the first occurrence of this error,
although it does not always prevent it.
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4.4 Deficit-based wake identification

In addition to the Gaussian fit, we apply a threshold based on
the wake deficit criterion. The method assumes that a point
belongs to the wake if the wind speed there is less than or
equal to 95 % of the free-flow wind speed (Espafia et al.,
2011), here the reference wind speed.

The lidar measures radial velocity U (Eq. 2). If the wind
direction differs from the scanned azimuths, the reference
wind speed measured by a cup anemometer noticeably de-
viates from the free-flow radial velocity. Normally, a lidar
retrieval procedure should be performed to reconstruct the
actual wind field. Since we are only interested in the wind
speed values, but not the local flow direction, we apply a
simple expression to re-project the radial velocity and take
the magnitude of the calculated wind speed.

Uly=—2, ©)

where Uy is the measured radial velocity at the beam
range r and azimuth ¢, Ur,,da is the estimated magnitude of
the real velocity, and « is the angle between the radial and
actual wind speed vectors (Fig. 11). Equation (9) assumes
that the flow moves in the reference wind direction at each
scanned point regardless of the wake influence and other flow
disturbances.

The angle « is calculated as the difference between ref-
erence wind direction ®ygT, given according to the meteo-
rological convention, and the azimuth ¢ (Fig. 11). That is,
Eq. (9) changes to

;U Urg
" cosa cos(OmEr — @)

10)

Since the normalization (Eq. 1) is not performed, the
deficit-based method does not necessarily require despiking
— all high-value outliers would be assigned to the background
flow by the threshold condition. However, the method re-
quires additional information on the free flow, such as the
wind speed and direction, to perform the simple retrieval.

The threshold is applied to the wind speed field recalcu-
lated with Eq. (10) instead of the original radial velocity field
used for the ATS method. Therefore direct comparison of the
thresholds is complicated. Instead, we compare the thresh-
olded images and evaluate the detection accuracy against the
manual wake identification.

4.5 Manual wake identification and characterization

We perform a manual segmentation to select an optimal
threshold for each lidar scan and use it as a “true” identifi-
cation. The manual threshold is defined in a way to represent
the minimum threshold required to identify a wake shape
suitable for the automatic centerline detection as described
in Sect. 4.2. The comparison against manual wake identifica-
tion then would show whether the ATS method is capable of
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automatizing the threshold selection and improving its flexi-
bility compared to the deficit-based thresholding.

Since the available scans represent different wake—wake
interactions, the criteria for a reasonable threshold vary over
the subsets. In order to reduce human error, we use the fol-
lowing qualitative criteria:

1. The shape of the wake should be distinguishable enough
not to be misinterpreted as noise.

2. The noise should be reduced near wind turbines AV7
and AV10 but is allowed near AV11 since its wake has
low importance in this study.

3. The identified wakes from AV7 and AV10 should not
merge to ease the centerline detection.

We also perform a manual centerline detection. A cen-
terline is drawn over the lidar scan as a line or series of
points. For further comparison with other wake characteri-
zation methods, it is converted to the Cartesian coordinates
using a plot digitizer. Unlike the manual threshold detection,
the manual wake characterization is more prone to errors,
especially in the far-wake region, where the wake becomes
less distinguishable from the free flow. Due to ambiguity and
complexity of the manual centerline detection, we select only
a few lidar scans to demonstrate the methods’ performance in
the parallel, aligned, and bimodal subsets.

For brevity, the wake identification and characterization
methods are further referred to as listed in Table 2.

5 Proof of concept: wake identification and
characterization from the LES data

In this section, we demonstrate the performance of the ATS
method in application to the LES data and compare the result
to the Gaussian method.

An instantaneous LES wake reveals complex spatial fea-
tures to be detected, although its intensity histogram remains
rather smooth (Fig. 9b). The ATS method detects a continu-
ous structure in the near wake and the beginning of the far
wake, while the wake at x/D > 10 is represented as series
of small disconnected structures (Fig. 12b and c). The ATS
method does not capture the wake expansion, but only a trail
of the low-wind-speed areas.

Since the ATS method extracts the outer contour of a
shape, small holes inside the detected wake are automati-
cally filled and do not affect the intersection-based centerline
search (Fig. 13a). The current algorithm processes only the
first continuous wake shape. Extending the centerline down-
stream requires a procedure to identify which of the small
detected shapes actually belong to the far wake and the con-
nection order. The former problem is more relevant for a lidar
scan, which has less uniform background flow compared to
the LES data.

Wind Energ. Sci., 7, 849-873, 2022




862 M. Krutova et al.: Automatic thresholding method for the wake identification and characterization

Table 2. Summary of the wake detection methods.

Name Main characteristics

Manual Input data: radial velocity field.

Identification: threshold value based on the visual evaluation.
Characterization: digitized centerline drawn over the lidar scan.

Automation: no.
Flexibility: yes.

Deficit-based

Input data: retrieved velocity field, Eq. (9), reference wind speed.

Identification: threshold value based on the wake deficit compared to the free flow.

Characterization: not performed.
Automation: yes.
Flexibility: no.

Gaussian

Input data: radial velocity field, wind direction, and wind turbine locations.

Identification: Gaussian function fitted to the wake profile.
Characterization: performed simultaneously with the wake identification.

Automation: yes.
Flexibility: partial.

ATS Input data: radial velocity field, wind direction (optional), and wind turbine locations.
Identification: threshold value from the intensity histogram.
Characterization: midpoints of the concentric arcs crossing the wake contour.

Automation: yes.
Flexibility: partial.
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Figure 12. Wake and centerline identification for a sample instan-
taneous LES wake: (a) normalized flow field, same as Fig. 9b;
(b) thresholded flow field; and (¢) wake shapes color-coded to show
connectivity.

Figure 13c compares the wake centerline and edges de-
tected by the Gaussian and ATS methods. Both methods per-
form well in the range of 1 <x/D < 10 and show good
agreement on the same distance (Fig. 13c). Downstream
(x/D > 10), the wake becomes weaker as it recovers to the
free flow. If the wake deficit function becomes too flat to fit
accurately, the fitting result may place the wake center in-
correctly or overestimate the standard deviation and, con-
sequently, the wake width. The ATS method detects only
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Figure 13. Sample wake identification and characterization using
idealized LES data. (a) Thresholded data overlaid with the contour
of the wake shape; (b) thresholded data overlaid with the wake
boundaries and centerline detected by the Gaussian method; and
(¢) ATS and Gaussian wake detection results, overlaid.

disconnected structures in the far wake. Nevertheless, those
structures primarily lie within the wake edges detected by
the Gaussian method. The Gaussian centerline also passes
through the centers of the ATS-detected structures. A good
agreement between methods can be explained by the fact that
the ATS method searches for regions of high intensity, i.e.,
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low wind speed. At the same time, the Gaussian method ap-
proximates a wake center at the point of high wake deficit,
which also corresponds to low wind speed.

Opverall, the Gaussian and ATS centerline search methods
show complementary flaws. The Gaussian method may esti-
mate the wake center correctly on a weak wake profile but re-
turns a large standard deviation, leading to an overestimation
of the wake width. The Gaussian method does not always
interpret strong wake meandering correctly and mistakes a
wake turn for a wide wake. Conversely, the ATS method is
capable of discerning a complex wake shape but has prob-
lems with the centerline detection if the wake shape is too
irregular due to wake merging or mixing with noise.

6 Results

For the lidar data, we perform an extensive comparison to the
manual wake identification and characterization and evaluate
the accuracy of the ATS method. We further compare the per-
formance of the ATS and Gaussian methods and discuss the
application of the ATS method in the centerline detection.
We show both ensemble statistics and demonstrate the meth-
ods’ performance on sample scans showing each of the most
represented non-corrupted subsets: parallel, aligned, and bi-
modal.

6.1 Comparison of the ATS wake identification against
the manual identification and deficit-based
thresholding

We construct a confusion matrix to assess the performance
of the methods for a single lidar scan. The 2 x 2 confusion
matrix describes the comparison of the automatic threshold-
ing methods (deficit-based or ATS; see Table 2) against the
manual method and contains the following outcomes.

— True positive (TP) — the point is detected as a wake point
by both manual and automatic identification.

— True negative (TN) — the point is detected as a free-flow
point by both manual and automatic identification.

— False positive (FP) — the point is detected as a wake
point by the automatic method but is a free-flow point
in the manual identification.

— False negative (FN) — the point is detected as a free-flow
point by the automatic method but is a wake point in the
manual identification.

If the automatic identification is accurate with respect to
the manual identification, TP and TN values tend to 100 %,
while FP and FN are close to zero.

The bimodal subset can be considered the most conve-
nient for the manual threshold segmentation. It utilizes the
strict criterion for the manual threshold that the wake shapes
should not merge (Fig. 14d). In the example, the ATS method
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Figure 14. Scan 599 (bimodal subset), wake identification. (a) The
original data in the Cartesian coordinates, (b, ¢) confusion matri-
ces for the ATS and deficit-based methods, (d) manual threshold
selected in a way to separate the two wakes, and (e, f) thresholds
estimated by the ATS and deficit-based methods.

sets the threshold higher compared to the manual identifica-
tion (Fig. 14e). Hence the far-wake area is slightly reduced.
The deficit-based method (Fig. 14f) produces a similar result.

The aligned-wake subset utilizes the same manual thresh-
old criteria for the wake splitting as the bimodal subset
(Fig. 15), although the condition may be harder to fulfill.
For some lidar scans, the far wake from the turbine AV10
and the near wake from AV7 cannot be separated, unless the
threshold is increased so that the far wake is not identified
(Fig. 15d). In this case, detecting a general shape of the wake
takes priority. The manual threshold is then more subjective
than that of the bimodal subset. The deficit-based method un-
derestimates the threshold more significantly than in the bi-
modal case and produces larger percentage of false positives
than the ATS method (Fig. 15f).

The parallel-wake subset is the most challenging, for
both the manual identification and the automatic methods
(Fig. 16). The wind direction in the subset is approaching
210°, where the crosswind effects start (Fig. 3) and noise
appears at the border of a lidar scan. Unlike the corrupted
scans with a high number of non-physical wind speed values,
the region around the wind turbines AV7 and AV 10 contains
valid measurements and still allows us to perform wake iden-
tification with relative success. However, the wake identifica-
tion accuracy declines due to the border noise, and only one
wake can be extracted well enough to perform the analysis
on the wake centerline and shape evolution. If the thresh-
old is increased to distinguish wakes and noise, the wake
from AV10 remains nearly undetected as can be seen from
Fig. 16d. The ATS method returns a lower threshold that im-
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(c) Confusion matrix:

(b) Confusion matrix:
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Figure 15. Scan 221 (aligned-wake subset), wake identification.
(a) The original data in the Cartesian coordinates, (b, ¢) confusion
matrices for the ATS and deficit-based methods, (d) manual thresh-
old selected in a way to separate the two wakes, and (e, f) thresholds
estimated by the ATS and deficit-based methods.

proves the distinguishing of the shape of the AV10 wake but
falsely detects noise as a part of the AV7 wake (Fig. 16e).
The deficit-based method estimates the threshold rather ac-
curately but may detect additional false positives near wind
turbines (Fig. 16f).

We summarize the comparison of true negative and true
positive detections in the box plots (Fig. 17) for the different
subsets.

Due to the amount of noise, the parallel-wake subset is
challenging for both methods. Nevertheless, the ATS method
approaches manual identification rather effectively, while the
deficit-based method leaves a decent amount of noise which
may alter the identified wake shape (Fig. 16f).

Both methods score nearly 100 % for the true positive de-
tections in the aligned subset (Fig. 17b). The result is caused
by the criterion for the manual threshold: separate two dif-
ferent wakes. The criterion is too strict for both automatic
methods to achieve; therefore, they always underestimate the
threshold. Still, the ATS method gets closer to the manual
threshold, which is reflected in lower variation in true nega-
tive detections compared to the deficit-based threshold.

The deficit-based and ATS wake identifications behave
rather similarly for the bimodal subset (Fig. 17c) with re-
spect to the manual wake identification. The variations in the
bimodal subset are primarily caused by the wakes forming
in the lidar near range, which is scanned at higher resolution
than the rest of a scan. That is, any small threshold change
affects more points at the wake edges than it would for the
parallel or aligned subsets and results in stronger fluctuations
in TP-FN values.
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Figure 16. Scan 60 (parallel-wake subset), wake identification.
(a) The original data in the Cartesian coordinates, (b, ¢) confusion
matrices for the ATS and deficit-based methods, (d) manual thresh-
old selected in a way to reduce noise but keep a general shape of the
wakes, and (e, f) thresholds estimated by the ATS and deficit-based
methods.
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Figure 17. Ensemble statistics of true negative and true positive
detections within the subsets.

To reduce the influence of ambiguity of the manual de-
tection, we construct a confusion matrix for each subset of
25 consecutive lidar scans instead of single scans. The cor-
rupted scans are excluded from the comparison, since high
noise prevented the manual detection for most of the scans.
Table 3 summarizes the detection outcomes for each subset.
The ATS and deficit-based method perform comparably in
terms of true positives in the aligned and bimodal subsets.
However, the number of false positives for the deficit-based
method indicates a high probability of identifying noise as a
wake. Additionally, the percentage of false positives strongly
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Table 3. Comparison of the thresholding methods’ performance against the manual wake identification.

Manual-deficit, %

Manual-ATS, %

Data type Subset Scans TP FN FP TN TP FN FP TN
Parallel wakes 3 51-75 55 45 5 95 80 20 2 98
4 76-100 69 31 4 96 97 3 4 96

5 101-125 76 24 9 91 91 9 4 96

6 126-150 85 15 9 91 95 5 4 96

7 151-175 96 4 23 77 98 2 3 97

11 251-275 95 5 22 78 99 1 4 96

12 276-300 71 29 7 93 93 7 2 98

16 376-400 80 20 6 94 96 4 3 97

Transitional 17 401-425 93 7 19 81 87 13 0 100
Aligned wakes 8 176-200 99 1 28 72 98 2 1 99
9 201-225 100 0o 13 87 100 0 10 90

10 226-250 100 0o 23 77 98 2 3 97

Bimodal 17 426-450 88 12 2 98 82 18 0 100
18 451-475 83 17 1 99 89 11 0 100

19 476-500 97 3 5 95 96 4 4 96

20 501-525 97 3 7 93 85 15 2 98

21 526-550 99 1 15 85 90 10 5 95

22 551-575 100 0 20 80 90 10 8 92

23 576-600 8 15 2 98 94 6 4 96

fluctuates within the same type of the subset, making the
fixed threshold method unreliable.

While the number of true positives for the ATS method
may drop to 80% for a complex subset, the number of
true negatives consistently stays near 95 % — the background
flow is mostly detected correctly regardless of the subset
type, which is an improvement compared to the deficit-based
method. Compared to manual detection, the ATS method
does not always separate wake and noise correctly, particu-
larly for the parallel-wake subset (Fig. 15) and thus requires
additional filtering. For the aligned and bimodal subsets, the
ATS method is capable of detecting the general wake shape
rather similarly to the manual detection.

It should be noted that the deficit-based wake identifica-
tion requires a free-flow wind speed to define the threshold
and an additional preprocessing of a lidar scan — a correc-
tion based on the wind direction or a more complex lidar
retrieval method. The ATS method runs solely on the lidar
data and does not require information besides what is already
contained in a lidar scan.

6.2 Comparison of the wake characterization using
Gaussian and ATS methods

We perform the wake characterization by searching for the
wake centerline from the thresholded image produced with
the ATS method as described in Sect. 4.2 or by applying
the Gaussian method as described in Sect. 4.3. First, we pro-
vide a comparison of selected scans against the manual wake
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characterization from the lidar scan image as described in
Sect. 4.5. The found centerlines are compared by fitting the
regression lines to the relative coordinates, so that each local
coordinate system is centered at a selected wind turbine.

The parallel-wake subset (Fig. 18) contains a short but pro-
nounced wake from the wind turbine AV7 and a long weaker
wake from the wind turbine AV10. Since the AV10 wake is
frequently detected as a series of small disconnected struc-
tures, the current ATS method detects the centerline only for
the first continuous shape, which rarely extends beyond the
near-wake region. The manual and Gaussian wake charac-
terization can be carried further into the far-wake region but
become rather uncertain as the far wake recovers to the free
flow or mixes with the border noise. Considering the prob-
lems that the border noise poses for the wake identification
in less clean scans (Fig. 16), the characterization outcome
can be improved by excluding the near-border sector of 1-2°
width from the identification process.

The aligned-wake subset (Fig. 19) shows a distinctive fea-
ture: the wakes are aligned along the line connecting two
wind turbines, resulting into the merge of the AV 10 far wake
and the AV7 near wake. Additionally, the connecting line is
parallel to the Y axis in Cartesian coordinates, so the center-
line tends to X = const when the wakes are perfectly aligned.
Hence, the coefficient of determination R? either approaches
zero or becomes negative and does not indicate the quality of
the regression fit.

Wind Energ. Sci., 7, 849-873, 2022
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Figure 18. Scan 59 (parallel-wake subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c¢) AV10.
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Figure 19. Scan 221 (aligned-wake subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c) AV10.

The bimodal subset (Fig. 20) has the longest wakes in the
data set. The wake identification in the far wake (i.e., lidar
near range) is hindered by wake merging and the narrow-
ness of the scanned area. For example, the ATS method may
underestimate the threshold and detect merging wakes as a
single shape. The ATS-based threshold can be adjusted to
guarantee the wake splitting. The adjustment is performed
automatically by increasing the threshold with an increment
of 0.05 until the stopping criterion — the wind turbines belong
(or are located near) to different wake shapes — is reached.

The merging wakes also affect the accuracy of the Gaus-
sian method: high wake deficit in the neighboring wake may
lead to an incorrect detection of a wake center after the fit-
ting. The characterization inaccuracy in the lidar near range

Wind Energ. Sci., 7, 849-873, 2022

is compensated for by a higher overall number of data points
available for fitting, compared to the other subsets.

Figure 21 shows an example of wake identification per-
formed on a lidar scan from the aligned-wake subset. The
subset is characterized by the wake merging near AV7. The
formed structure proves to be challenging for a Gaussian
method, as the centerline point and far-wake width for AV10
are estimated incorrectly.

The ATS method detects wakes as a single shape. Unlike
the bimodal subset, the merging wakes in the aligned-wake
subset do not necessarily worsen the performance of the cen-
terline detection method. The centerline is first detected for
the AV10 wake, from which the wake direction can be esti-
mated. Since the wakes are merged, the centerline detection
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Figure 21. Scan 222 (aligned-wake subset) sample wake identifi-
cation and characterization showing (a) comparison of the ATS and
Gaussian methods, (b) wakes identified by the ATS method after
the threshold is applied, and wind and wake direction.

for AV10 continues in the AV7 wake. The centerline search
for AV7 starts at the corresponding turbine location and is
performed in the direction of the AV10 wake, thus excluding
the merge region from the search. Thus the centerline of the
AV7 wake gets detected twice if no stopping criterion (e.g.,
the AV10 centerline passes the AV7 location) is activated.
Both detected centerlines agree in the AV7 wake region and
follow the Gaussian centerline rather well. Near-border wake
centers of the AV7 wake deviate from the presumed center-
line because border noise is erroneously attributed as a part
of the wake.

When it comes to the comparison of wake characterization
over the whole data set, the effect of weak wakes or merging
on the Gaussian method performance complicates a direct
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Table 4. Rules for scoring Gaussian and ATS centerline search
method performance.

Score  Gaussian method ATS centerline search
0 The method failed to find the wake at all, or less than
10 % of the visible wake was identified.

0.5 The centerline loosely The wake shape is
matches the wake readable from the
centerline, but the wake thresholded image, but
width is overestimated or  the centerline is
undefined. incomplete or erroneous.

1 The method had correctly identified at least 75% of

the visible wake and its centerline.

comparison. Due to the errors, the Gaussian centerline cannot
be taken as a “true” value and requires verification on its own.

Instead, we perform a visual comparison of the Gaussian
and ATS centerline search methods to score their success
rate. The performance of both methods rather differs along
the wake; therefore we evaluate the detection result on two
segments: / <4 D and [ > 4 D from the wind turbine. The
[ <4 D segment usually covers the most well-resolved part
of the wake in non-corrupted scans; we attribute it as the near
wake. The rest of the wake would be then referred to as the
far wake and characterized by lower wake deficit. Next, we
score the success rate based on whether the method was able
to identify both wake shape and centerline, failed on one of
the tasks, or did not distinguish the wake at all (Table 4).

As mentioned for the LES wake identification and charac-
terization (Sect. 5), the ATS and Gaussian methods are prone
to errors in different aspects. A partial success for the Gaus-
sian method would usually mean a centerline estimated with
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Figure 22. Overview of the Gaussian and ATS method performance
on the wake detection and characterization.

a large standard deviation, while a partial success for the ATS
method would be the detection of the wake shape but not the
full centerline.

A summary for the data set excluding corrupted scans is
presented in Fig. 22 by showing the counts for each outcome
and their distribution between the subsets.

The near wakes are well resolved and show a high num-
ber of outcomes where both methods succeed. The partial
detections are spread differently. The non-perfect outcomes
for the AV7 near wake are spread rather equally (Fig. 22a).
The increased error rate of the ATS method in the AV7 near
wake is caused by either strong border noise (parallel subset)
or strong upstream wake influence (aligned subset) — both
distort the detected wake shape.

Due to the studied wind directions, the AV10 near wake
is not subjected to the upstream turbine influence. The wake
is very clear and poses problems mainly for the ATS method
in the parallel subset, when it cannot be identified as a con-
tinuous shape. Hence, the ATS method under-performs and
stops at the wake identification, while the Gaussian method
can succeed in both aspects (Fig. 22c).

The comparison of AV7 far wake accuracy (Fig. 22b) is
relevant only for the bimodal subset, where the correspond-
ing wake reaches the required length. Detection outcomes for
the AV7 far wake follow a pattern that resembles the other
cases: very low counts of partial or full success when one of
the methods fails and higher counts for partial and full suc-
cess of both methods.

The exception from this pattern is the AV10 far wake
(Fig. 22d). Both methods achieve partial success most often.
The decreased success rate is primarily caused by the wake
merging in bimodal and aligned subsets. When it comes to
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the parallel-wake subset, both methods are likely to fail. The
weak AV 10 far wake limits efficiency of both methods: the
threshold is not enough to separate the wake from the free
flow, and the fitting cannot be carried on to the nearly flat
wake deficit function.

The low count of (0, 1) pairs throughout the comparison
indicates that none of the methods outperform the others in
any part of the wake. If one method fails, the other usually
fails too or achieves only a partial success.

6.3 Wind and wake direction

The regression line fitted to the ATS-detected centerline also
indicates the wake direction. A strong mismatch between ref-
erence wind direction and wake direction can be seen for
most lidar scans from the data set (Fig. 23b).

Comparing the directions for the whole data set, we ob-
serve a clear trend for the wake direction deviating clockwise
from the reference wind direction until the crosswind effects
start at 210° (Fig. 23).

The valid points for the reference wind directions less than
210° group into two distinct clusters (Fig. 23). The leftmost
cluster corresponds to the bimodal subset and lies within the
range of wind directions of 140-170°. Another cluster con-
tains the results for the aligned, transitional, and parallel-
wake subsets and covers the range of wind directions of 170-
210°. Fitting a linear regression to each group returns a sim-
ilar slope but a different intercept value. Although the fitted
line slope is not equal to one, the regression fit on the selected
range shows a nearly constant offset between wind and wake
direction, with the bimodal subset having noticeably lower
difference than other subsets.

The vertical veer and clockwise rotation of the wake in the
Northern Hemisphere due to the Coriolis force are known ef-
fects causing wake rotation and were confirmed by observa-
tions and LES studies of wind farms (Magnusson and Smed-
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man, 1994; Abkar and Porté-Agel, 2016; van der Laan and
Sgrensen, 2017). The wind turbine AV7, closest to the li-
dar, is scanned nearly at the hub height, while the farther
wind turbines, AV10 and AV11, are scanned near the top-
tip height (Fig. 1). Due to the elevation and vertical veer,
the wind and wake direction discrepancy is the strongest for
AV10 and AV11. Nevertheless, we also observe a deflection
for the near wake of AV7, although the noticeable effects of
the Coriolis force are usually recorded for the downwind dis-
tance of 6 D or higher. The additional discrepancy can be
explained by the yaw misalignment (Bromm et al., 2018),
reference measurement uncertainty (Gaumond et al., 2014),
and lidar installation’s imperfection. The wake direction vari-
ation for the bimodal subset (reference wind direction 140—
160°) was possibly reduced because of the longer wakes and,
consequently, more precise estimation of the wake direction.
We do not have additional data to distinguish these factors
and leave it for a future study.

The outliers showing strong differences between wind and
wake direction highlight the lidar scans where the wake iden-
tification and characterization were hindered by noise or
strong irregularity of the wake. The wind—wake direction plot
can be used for diagnostic purposes to select the lidar scans
that require additional processing prior to the wake identifi-
cation.

6.4 Wake identification in the bimodal subset using the
ATS method

Bimodal subsets often have a distinctive double peak in the
intensity histogram (Fig. 24a). The highest histogram peak
corresponds to the free flow. The second peak forms due to a
long far wake from AV 10 and subsequent merging of the two
wakes.

The double peak from the histogram translates into two lo-
cal minimums in the second derivative graph (Fig. 24b). The
occasions of two local maximums in the first derivative were
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rarer in the regarded data set. Applying the ATS method to
both second derivative minimums provides a unique oppor-
tunity to estimate two thresholds 7> and 73 in addition to
the threshold 7 from the first derivative. The final thresh-
old values either separate the full wake from the free flow
((T1 + T2)/2) or extract only the most intense part of the
wake ((T7 + 73)/2) (Fig. 24c). The splitting point falls ap-
proximately at the downstream distance of 4-5 D, marking a
transition from the near to far wake.

We ran the ATS method without subset-specific param-
eters, meaning that it always estimated only one threshold
for the wake identification. During the threshold estimation
(Sect. 4.1), the current algorithm selects the global maximum
or minimum of the first and second derivatives, respectively.
The free-flow histogram peak usually results in the global
maximum of the first derivative in our data set and does not
affect the performance of the ATS method. However, the lo-
cal minimum values of the second derivative appear to be
more sensitive to the intensity distribution. Relying on the
global minimum may lead to selecting a stricter threshold 73
(Fig. 24b). A strict threshold does not detect most of the far
wake, as shown in Fig. 24c.

A less strict threshold 7> could be chosen based on the
proximity to 77 as a control value. However, it would re-
quire an automatic check of whether another local minimum
can produce a valid threshold. The implementation posed a
challenge if the current algorithm ran without subset-specific
parameters and produced erroneous threshold estimation for
other scans. We refrained from using a more complex ap-
proach in the bimodal subset for now. The current ATS
method, therefore, overestimated the threshold and did not
identify the full wake in about 8 % of the bimodal cases.

7 Conclusions

We developed a set of methods to analyze lidar scans for
wake identification and characterization. During the study,
we focused on the procedures that would automatically pro-
cess a large data set and primarily rely on the information
contained in the lidar data or site characteristics such as li-
dar and wind turbine positions. To structure the analysis of
the results, we split our data set into several subsets, group-
ing the scans with similar characteristics. While the classi-
fication could be performed based on the wind direction or
visual inspection, we introduced entropy as a criterion to
reflect the flow characteristics. When calculated in the az-
imuthal or radial direction, Shannon entropy is sensitive to
the disturbances caused by wakes and allows scan classifi-
cation if the wind direction is unknown. The entropy values
also highlighted the lidar scans that were unsuitable for the
analysis due to the high number of non-physical measure-
ments caused by the crosswind effects. The classification by
entropy criteria introduced in the study was not yet used to
apply scan-specific corrections during the thresholding.
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An existing automatic thresholding method, the deficit-
based method as referred to in the study, thresholds the wind
speed data at 95 % of the free-flow wind speed and was ini-
tially suggested for more regular wind tunnel wakes. The
reliance on the actual wind speed hinders the deficit-based
method performance on the lidar data — a retrieval proce-
dure should be applied to the measured radial velocity to
reconstruct the wind field. Additionally, the fixed ratio of
95 % does not regard the quality of a lidar scan. To overcome
these disadvantages, we proposed an automatic thresholding
method for wake identification, the ATS method, based on
the method for whitecap detection on the ocean surface. The
method did not require knowledge of the actual wind speed
and could be applied to the radial velocity data. The prepara-
tory step applied normalization through scaling data to the
range of [0, 1], thus requiring the removal of outliers during
the lidar scan preprocessing.

The comparison to the manual thresholding showed that
the ATS method generally performed better than the deficit-
based method and on the par with manual wake identifi-
cation, which opened a possibility to use it when manual
thresholding is infeasible.

We also described an automatic method for the wake
centerline search from the thresholded data. The centerline
search could run without wind direction provided by making
a rough approximation of the wake direction. However, the
current algorithm processes only the first continuous shape,
limiting the application to the wind fields with little noise and
obstructing the wake identification.

We compared the centerline found from the thresholded
data to the Gaussian fit method. Although the Gaussian
method performance on the lidar scans was not as good as
on the LES data, the wake characterization in the near-wake
region showed an agreement between the methods with re-
spect to the manual centerline detection. At the same time,
the accuracy of both Gaussian and ATS-based methods de-
creased in the far-wake region, especially for noisy data or in
the case of wake—wake interaction. In the latter case, the ATS
method often identified two wakes as a single shape, affect-
ing the centerline search algorithm. The algorithm performs
better when the wake directly hits the downstream wind tur-
bine — the merged wakes can be considered one wake and
have a common centerline. When the wakes are forming side
by side and get close to each other, the threshold may need
additional adjustment until the identified wake shape is split.

The results showed that automatic thresholding from the
intensity histogram was viable for the wake identification
not only for the LES but also lidar data. We see a potential
to improve the wake characterization algorithm to detect the
centerline of the whole wake and plan to present it in future
studies.
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Figure A1. Comparison of the intensity distribution in the origi-
nal (raw) data and image plotted using Python Matplotlib with dif-
ferent grayscale color maps.

Appendix A: Image data processing

An image has several properties which may affect the al-
gorithm performance compared to the use of the raw wind
speed data.

1. Image resolution in dots per inch (dpi). The resolution
of 72 dpi transforms an original data point into an image
pixel as one-to-one approximately. Higher resolution in-
creases the number of pixels per data point. Lower res-
olution merges several data points into one pixel.

2. Color map. The ATS method relies on the image
grayscale intensity as an input. A non-grayscale im-
age can be desaturated, but the color map of the orig-
inal image then should be sequential rather than per-
ceptually uniform or diverging. For the latter, the con-
version to the grayscale gradually reduces the contrast
between high and low values, making the wake identifi-
cation impossible. Additionally, several grayscale color
maps exist. Depending on the color map, the intensity
histogram of an image may shift to the left or right com-
pared to the raw data. We observed this effect when the
“Greys” color map of the Python Matplotlib (Caswell
et al., 2021) library was used. This color map empha-
sizes light tones; as a result, the intensity histogram peak
slightly shifts to the right, although the general shape of
the peak is preserved (Fig. Al). The color maps “bi-
nary” or “gray” from the same library return the result
that follows the original data.

3. Image intensity. As processed by Python, the values are
rounded up to second digits, and some are assigned to
different bins compared to the original data. The his-
togram and CDF have stronger oscillations than the raw
data (Fig. A1) and require smoothing before the appli-
cation of the ATS method.

Running an automated threshold detection on the image
raises another question: how much does the image resolution
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Figure A2. (a, b) Normalized wind speed data with far wakes high-
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the lidar scan 551.

affect the identification accuracy compared to the raw data.
We apply the ATS algorithm to raw and image data under
different resolutions: 72, 150, and 300 dpi. We observe little
influence from the image resolution, except for a few LES
cases, where the low resolution of 72 dpi affected the thresh-
old detection. In those cases, the detected threshold is lower
than in fine-resolution cases, and, therefore, a larger shape
is identified as a wake. The image resolution of 150 dpi and
above agrees well with the wake identification from the raw
data. The general shape of an image intensity histogram does
not depend on the image resolution. The image resolution of
150 dpi or higher is recommended for use, although 72 dpi
also produces good detection results.

In the case of lidar measurements, the wake identification
from the image data can be performed in two ways: by plot-
ting the original data in either polar or Cartesian coordinates.
The wake identification from the polar coordinate image does
not bear a notable difference from the raw data, apart from
the aforementioned specifics of the image resolution and in-
tensity. However, if the lidar data are plotted in the Cartesian
coordinates as a scanned sector, the lidar close and far ranges
get distorted, affecting the percentage of the area covered by
the wakes and, consequently, the histogram shape.

The effect is most pronounced when the wind blows to-
wards the lidar. As described in the subset overview in
Sect. 3.2, this wind direction and wake behavior result in
the bimodal intensity histogram. The leftmost high peak con-
tains points from the free flow, while the second low peak
accumulates points from the far wake. The second peak gets

https://doi.org/10.5194/wes-7-849-2022

smoothed when the input data are changed from the normal-
ized wind speed to the grayscale image plotted in Cartesian
coordinates. As can be seen from the comparison (Fig. A2),
the lower peak corresponds to the data in the lidar’s close
range. After the conversion to the Cartesian coordinates, the
close range area shrinks significantly, while the free-flow
area on the far lidar range enlarges. The transition between
coordinate systems changes the balance between wake and
free-flow pixels and virtually increases the share of the latter.

Code and data availability. The Python code for wake
identification using the ATS method, centerline detection
and a sample lidar data set are available upon request at
https://doi.org/10.5281/zenodo.5888236 (Krutova, 2022b).

Video supplement. The videos https://doi.org/10.5446/54055
(Krutova, 2021) and https://doi.org/10.5446/56710 (Krutova,
2022a) demonstrates wake identification results for all lidar scans
in the data set. No post-processing is performed after running the
ATS algorithm.
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Validation of the 2D-VAR lidar retrieval algorithm for
non-homogeneous wind fields using FINO1 and SCADA data
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Offshore Wind Center (BOW), Abstract
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Bergen 5007, Vestlandet, Norway A scanning lidar measures a projection of the actual wind speed to the line-of-sight. Re-
construction of the original field is possible via various retrieval algorithms, especially if
Correspondence
*Maria Krutova, Geophysical Institute several lidars are deployed in the area. However, this may not be the case due to financial

and Bergen Offshore Wind Center,
University of Bergen, Allégaten 77,

constraints. Additionally, conventional algorithms like Volume Velocity Processing (VVP)
Bergen 5007, Vestlandet, Norway Email: do not perform well for non-homogeneous flow fields, e.g., smooth wind turbine wakes in a
Maria.Krutova@uib.no retrieved field. A 2D-VAR algorithm using VVP as an intermediate step was suggested al-
lowing the retrieval for consecutive scans at a low elevation angle. We validate this algorithm
for scans containing prominent wakes under elevation angles within 5° using FINO1 mast
and supervisory control and data acquisition (SCADA) data.

‘We show that prominent wakes scanned at the hub height introduce substantial distur-
bances in the VVP retrieval output and affect the retrieved field. The unwanted disturbance
may be overcome by masking the wakes. In point measurements, the wind speed magnitude
is retrieved with an acceptable accuracy, but the wind direction appears to be sensitive to
the weights and initial guess chosen. According to our sensitivity analysis, the weight as-
signed to the radial velocity residuals affects the outcome most, while other weights act as

corrections.

KEYWORDS:

lidar retrieval; wind turbine wake; wind farm

1 | INTRODUCTION

Wind lidar systems, with their capability to measure the wind field remotely, have become a common measurement technology in atmospheric
boundary layer research 23, In particular, the wind energy meteorology has utilized this measurement technology extensively during the last
decade®. The potential of lidar application is already shown for wake dynamic studying?, turbulence ®” and power curve measurements®? or data
assimilation for a WRF model1°. Processing the data in real-time opens a possibility of using lidars in short-term forecasting, e.g., for pitch 1! or
yaw 12 control. 2D velocity fields obtained with a scanning lidar are particularly interesting for wake identification and characterization 1314 or
validation of large-eddy simulations (LES) 5.

Unlike sonic or cup anemometers, scanning lidars do not measure the wind speed directly but only its projection to the line-of-sight - the radial
velocity. Hence, characterizing wakes with a scanning lidar without additional processing is effective only if the wakes are aligned with the lidar's
line-of-sight. Retrieving the original wind speed and direction may be complicated when only one lidar is deployed at the site. Certain widely used
algorithms require a specific scanning procedure not compatible with a 2D plane scanning. E.g., Velocity Azimuth Display (VAD) operates on conical
360° scans 6. Its derivative, Doppler Beam Swinging (DBS), fetches the radial velocity from beams shoot in four directions at 30° angle from

vertical. Another algorithm, Volume Velocity Processing (VVP), may be used with a scanning lidar for retrieval 17 but assumes a homogeneous flow
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Figure 1 Map indicating the location of the FINO1 platform in the North Sea (a), the surrounding wind farms during the measurement period in
September 2016 (b), and the layout of the Alpha Ventus research wind farm with the scanning angles for the PPl scans in this study (c). The retrieval
is performed within the retrieval domain; here - pictured in a size used for SEP16 scans.

and does not adequately resolve heterogeneous structures, such as wakes. Complex algorithms, e.g., 4D-VAR and its derivatives, perform better on
heterogeneous flows but may be time-consuming to allow real-time processing 18. 4D-VAR method are mostly developed for weather prediction
models 1920, their capability to estimate thermodynamic quantities may be excessive for a smaller scale wind energy research. An alternative, the
2D-VAR algorithm, was suggested to preserve advantages of the 4D-VAR method and overcome complications caused by heterogeneous wake
fields 2. The algorithm performs a retrieval from a set of consecutive lidar scans taken at a low elevation angle provided that the time interval
between two scans is small enough (At ~ 60 s) to assume weak changes in the flow.

The 2D-VAR algorithm was validated on a one-day dataset from August 31, 2016. Due to the limited period, the validation covered only a
narrow range of wind speeds (2—6.5 m/s) and directions (150—265°). Additionally, the regarded lidar scans were taken at a nearly horizontal plane
and captured the flow at the bottom tip of the wind turbines. Consequently, the results could be validated only with FINO1 data. We perform a
new validation on the extensive dataset spanning the whole month of September 2016. The scans from that period allow studying the algorithm’s
performance for a higher elevation angle. The lidar, therefore, scans one turbine at the hub height allowing a comparison to the supervisory control
and data acquisition (SCADA) data for this turbine, which was not possible in the original study.

2 | DATA

2.1 | Description of the datasets

The meteorological and lidar data were obtained during the Offshore Boundary-Layer Experiment at FINO1 (OBLEX-F1) campaign in 2015—2016.
The FINO1 platform is located in the North Sea at 54° 00’ 53.5”"N, 6° 35’ 15.5”’E, 45 km north of the German island of Borkum. The Alpha Ventus
wind farm is located east of the FINO1 platform and consists of 12 wind turbines arranged in a rectangular pattern (Fig. 1). The wind turbines
AV1—AV6 are of the type Repower 5M with a hub height of 92 m and a rotor diameter of 126 m; AV7—AV12 are of the type AREVA M5000 with
a hub height of 91.5m and a rotor diameter D of 116 m. The construction of the Borkum Riffgrund Il wind farm south of the Alpha Ventus wind
farm was completed in 2018 and did not affect the flow during the measurement period.

The scanning Doppler wind lidar (Leosphere WindCube 100S) was installed at the FINO1 platform at 23.5 m above sea level and was oriented
towards the Alpha Ventus wind farm. The lidar operates in PPl mode. The 2D-VAR algorithm was validated on the data from a single day of August
31, 2016. On that day, the lidar performed scans under the elevation angle of 0.5°. The elevation angle remained constant for 20 hours, which
resulted in nearly 1500 scans. The lidar scanned a sector between 100° and 180° azimuth angles, so that four wind turbines (AV7, AV8, AV10,
AV11) and their bottom tip wakes were present in the scanned sector. We consider this one-day dataset for a comparison to the original results 2422
and refer to it as AUG16.

During September 2016, the lidar performed azimuth scans between 131.5° and 180° in the following elevation pattern: during the first 20
minutes of each hour, the lidar scanned at a constant elevation angle of 4.6° so that AV7 is scanned near the hub height; for the remaining 40
minutes, the lidar performed alternating scans at three elevation angles of 0.5°,4.6°, and 9.0°. The interval between two scans is approximately 51 s.



MARIA KRUTOVA et al ‘ 3

The 2D-VAR retrieval algorithm requires scans taken at the same elevation angle with a sufficiently high temporal resolution that allows assuming
weak changes in flow. Hence, we perform a lidar retrieval only for the scans taken during the first 20 minutes of each hour when the elevation
angle is fixed at 4.6°. Those selected scans cover about 34% duration of September 2016. Due to an inclined scanning plane and smaller sector
scanned, only the wakes from wind turbines AV7 and AV10 are always captured well in the September 2016 scans. The wakes from other wind
turbines appear only for the specific wind directions. We use this one-month dataset to perform an extensive validation of the 2D-VAR algorithm
and refer to it as SEP16.

Depending on weather conditions, the lidar's beam range varies and may reach up to 3 km. The far range experiences data losses frequently and
thus poses little interest for the retrieval. When processing lidar data, we limit the beam range to 2.25 km for the sake of the dataset uniformity
and exclusion of the area with a large percentage of missing data points.

The 10-minute averaged time series from the FINO1 mast are used as an initial guess for the retrieval algorithm and as the reference data for
validation. The wind speed is measured with cup anemometers installed at 33, 40, 50, 60, 70, 80, 90, and 100 m above sea level; the mast shadow
affects wind speed measurements for the wind direction of 290—330°. The wind direction is measured with vanes installed at 33, 40, 50, 60, 70,

80, and 90 m above sea level; the mast shadow affects measurements for the wind direction of 110—150° (Fig. 2a).

(a) FINO1 wind, 90 m (b) SCADA wind, AVO7
N N

Wind speed
E oo3smis [ 357.0ms B 7o105ms [ 105140ms O >140ms

Possible measurement disrupton

Mast shadow FINO1 affected by wakes AV7 affected by wakes

Figure 2 Wind roses for 10-minute averages of FINO1 (90—100 m measurements) and SCADA of the AV7 turbine. The wind roses consider only
the periods for which both FINO1 and SCADA data are available

Since the FINO1 mast is located at a distance from the Alpha Ventus wind farm and local measurements do not represent the actual wind flow
near the wind turbines, we utilize SCADA data to verify the retrieved flow near the AV7 turbine. The SCADA data consist of 1 Hz wind speed and
direction time series.

FINO1 and SCADA data may differ when AV7 is affected by the wake while the FINO1 mast remains in the free flow or vice versa. The wind
roses for FINO1 and SCADA data show a discrepancy in the wind speed distribution for southerly directions (160—200°): the wind turbine AV7 is
affected by the wake from AV10. Another strong difference is the easterly direction: AV7 is hit directly by the wake from AV8. Being shifted slightly
to the North, the FINO1 mast is less affected by the wake from AV4. Hence, the AV7 inflow wind speeds are generally lower than registered at
FINO1 (Fig. 2b). The adjacent sector of 140—160° represents cases when the FINO1 mast is affected by the far wake from AV7, reducing the wind
speed. The discrepancy between FINO1 and SCADA data there is noticeable but less prominent than for southerly and easterly winds.

The FINO1 mast data are used to define an initial guess for the retrieval algorithm. Since the FINO1 time series is nearly continuous and has
little missing data in the regarded period (Table 1), we fill the gaps with a linear interpolation to obtain reference wind speed and direction values for
all lidar scans. Due to larger gaps in the SCADA data and its lower importance for the 2D-VAR algorithm, we do not perform a similar interpolation
for the SCADA time series. Hence, the cross-comparison for FINO1, SCADA and retrieval results (e.g., wind roses) does not consider time stamps
where SCADA data are missing.

The lidar and SCADA data are recorded roughly in 1-minute intervals as opposed to 10-minute averages from FINO1. During the retrieval phase,
we consider 10-minute averages from the FINO1 mast for all lidar scans in 5-minute intervals before and after the respective time stamp in the
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Table 1 Data availability for the SEP16 dataset. Only scans separated by At < 60 s are considered.

Dataset Subset Missing data, %
FINO1 mast wind speed 0.03
wind direction 0.08
SCADA wind speed 1.07
wind direction 4.05
Lidar whole scan 1.68
retrieval domain 0.66

mast data, to comply with the higher time resolution of the lidar data. When comparing the results, we average the retrieval and SCADA series
over the corresponding 10-minute periods.

2.2 | Pre-processing of the lidar scans

(a) Original scan (b) Cleaned scan

6
2

£

52

£ —1000 g
> _ [
1250 W3

8

-1500 3

500 1000 1500 500 1000 1500
X, m X, m

Figure 3 Pre-processing of the lidar scan taken at 2016-09-05 00:08:33. a) Original scan, b) Spike removal and gap filling

The performance of the retrieval algorithm strongly depends on the lidar scan quality. The scans may contain spikes near the wind turbine
position because of the lidar beam hitting the rotating blades. We identify spikes by fitting a normal, log-normal, or Weibull distributions to the
radial velocity distribution within a scan. The points falling outside the best fit's confidence interval of 99.9% are regarded as spikes and removed
from the scan. The gaps, both the ones in the original data set and the ones added by the spike removal, are filled with the Gaussian kernel inpainting
algorithm 23 (Fig. 3b).

Occasionally, the lidar may not complete the scan correctly, resulting in missing data that cannot be restored accurately by the gap filling. A high
percentage of missing data renders the scan unsuitable for the retrieval. Therefore, we only perform the lidar retrieval if more than 50% of the
scanned sector is available within the retrieval domain defined as a rectangle (Fig. 1c). The discarded scans constitute less than 1% of the SEP16
dataset and occur only on certain days (Table 1). The threshold of 50% data losses is enough to ensure that the flow is resolved at least near AV7.
The data around AV10 may still be missing in scans with medium data losses (20—50%). Occurrences of medium data losses are scattered across
the dataset with a large cluster localized on September 19—21, characterized by low wind speed of 0—5 m/s and wind direction of 0—120° (Fig. 4).

The 2D-VAR retrieval algorithm requires an estimation of various derivatives. Due to a small azimuth step of 1° & 0.174 rad and the discrete
nature of a scanned flow field, the derivative 9V;./96 may return values of a higher order than the derivatives taken along the Cartesian grid or
the time derivative. The derivative spikes are most likely to occur at the boundary between wakes and free-flow. These effects are mitigated by
applying a Gaussian filter to the V;. field before taking a derivative.

After the cleaning, the lidar data coordinates are converted from a polar (r, ) to a Cartesian grid (x, y). The coordinate center is located at
FINO1, with the z-axis being positive in the East direction and the y-axis being positive in the North direction. The retrieval is performed for a
rectangular domain, interpolated to an equidistant Cartesian grid. The selected retrieval domain contains enough space around AV7 to resolve
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(a) FINO1 data overview

N
o

Data loss < 20% x Data loss > 50%
o 20% < Data loss < 50%

2R N
o u o

Wind speed at 100 m, m/s
w

o

0 50 100 150 200 250 300 350
Wind direction at 90 m, °

(b) Missing lidar data overview

500

100

10

Number of scans

12345678 9101112131415161718192021222324252627282930
Day

Figure 4 Overview of the missing scan data in SEP16. a) Occurrences of missing data with respect to FINO1 wind speed and direction measure-
ments, b) number of lidar scans with a certain percentage of missing data by day.

the near wake and provide the inflow wind speed. Following the original study?2!, we perform the retrieval for AUG16 in a rectangular domain
1500 x 1200 m? with a bottom left corner located at & = 100 m, y = —1700 m and a Cartesian grid spacing of Az = Ay = 30 m. We extend the
retrieval domain for SEP16 to capture an additional area around AV10 in case of northerly winds. SEP16, therefore, uses the retrieval domain of
1600 x 1400 m? with a bottom left corner located at = 100 m, y = —1700 m. The Cartesian grid spacing is increased to Az = Ay = 35m.

3 | METHODOLOGY

The 2D-VAR algorithm 2! consists of two steps. In the first step, the background flow is estimated with a simplified VVP retrieval algorithm. The
directional wind speed components from the retrieved background flow (u;,vy,) are then used in the second step, among with other input data,
to optimize the cost function.

3.1 | VVP retrieval to estimate the background flow
The lidar measures the radial velocity V.., i.e., the projection of the 3D wind vector on the measurement line-of-sight of the lidar:
Vy = usin 6 cos ¢ + v cos 0 cos ¢ + wsin ¢ (1)

where u, v, and w are the directional components of U; 6 is the azimuth angle, and ¢ is the elevation angle of the lidar beam. The lidar scans AV7
near the hub height at an elevation angle of ¢ = 4.6° = 0.08 rad, which is small enough to approximate cos ¢ as 1 and sin ¢ as ¢. Considering that
the vertical component w is generally small, the last term of Eq. (1) can be neglected: w sin ¢ = w¢p = 0. Then, Eq. (1) is reduced to

Vi = usin@ + v cos 6 (2)
The difference between the retrieved field (u, v) and the measured radial velocity V. can be then presented as a function F'(u, v):
F(u,v) = usin@ + vcosf — V. (3)

Eq. (3) would have several solutions for F(u,v) = 0 if solved for a single point. Instead, we optimize F(u,v) for a fetch area around the
target point and find the solution via a least squares method assuming that (u, v) components remain the same within this area. The fetch area
size is selected so that the variation in radial velocity is not confused with random fluctuations caused by turbulence 2. We pass an initial guess
as directional components (ug,vo) calculated from FINO1 reference wind speed U and direction ®. Since the wind direction is defined in a
meteorological sense, it has to be converted to the mathematical direction as 1.5 — ® to obtain wind speed components via projection to z- and
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(a) Original scan (b) Masked area (c) VVP, full retrieval (d) VVP, masked retrieval
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Figure 5 VVP retrieval results for an example scan from AUG16 dataset. (a) A lidar scan taken at 20160831 2:15:46 UTC+0 at the elevation angle
of » = 0.5°. FINO1 wind speed 5.8 m/s, wind direction 147°. (b) Wake mask. (c) The VVP algorithm without wake masking produces structures of
increased wind speed in the far range. (d) The VVP retrieved field with wake masking is more homogeneous.

(a) Original scan (b) Masked area (c) VVP, full retrieval (d) VVP, masked retrieval
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Figure 6 VVP retrieval results for an example scan from SEP16 dataset. (a) A scan taken at 20160904 21:15:22 UTC+0 at the elevation angle
of ¢ = 4.6°. FINO1 wind speed 5.3m/s, wind direction 309°. (b) Wake mask. (c) The VVP retrieved field without wake masking is strongly
heterogeneous but does not represent the actual wakes. (d) Wake masking smooths the retrieved field, particularly the high-speed structures along

wakes.

y-axes.

ug = Usin(1.5r — ®),v9 = U cos(1.5m — ) (4)

In the original study, the VVP algorithm was applied to horizontal scans at ¢ = 0.5°, capturing the flow at the bottom tip of the wind turbines
(Fig. 5a). Since the VVP algorithm assumes homogeneous wind flow but is solved locally, the retrieved field tends to overestimate the wind speed
along the wakes to compensate for the wake deficit. Although the wakes captured at this level are weak and narrow, the VVP algorithm occasionally
produces high-speed structures in the far range (Fig. 5c). When scanned at a higher elevation angle (¢ = 4.6°), the wakes occupy a larger part of the
lidar scan and show a stronger wake deficit than the bottom tip wakes (Fig. 6a). Consequently, the VVP retrieval produces high-speed structures
along the AV7 wake (Fig. 6c). This disturbance has to be mitigated so that it is not carried over to the next step of the 2D-VAR algorithm.

We identify and mask the wakes using an automatic thresholding algorithm that splits the radial velocity field into wake and free-flow points 14.
The identified wake points are not considered in the fetch area during the VVP retrieval (Fig. 5b, 6b). Since the equation F'(u,v) = 0 is solved for
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an area, running an optimization function around a masked point still fetches enough non-masked points for the solution. The masked points are
then replaced with the optimization result, and the retrieved field becomes more homogeneous than the non-masked solution (Fig. 5d, 6d).

We apply masking only in the case of prominent wakes, i.e., when the reference wind speed is above the cut-in wind speed of 3.5 m/s and the
lidar beam is aligned with the reference wind direction. If the angle between the lidar beam and wind direction are close to perpendicular, a so called
crosswind, the radial component of the wind speed tends to zero. Despite the actual magnitude of wind speed, the crosswind wakes become less
distinguishable from the free flow in a lidar scan; the radial velocity appears to be more homogeneous and poses less problem for the VVP retrieval.

Originally, the radius of the fetch area was chosen as r» = 200 m 2! to retrieve the (u, v) field reliably when using the VVP algorithm. We increase
this value to » = 300 m to ensure that the masked area is always filled in the case of wide or merging wakes.

3.2 | Cost function optimization for the detailed retrieval

The second step of the 2D-VAR algorithm optimizes a cost function J. The cost function introduces several constraints to the background flow to
allow a single solution:

e A - the deviation between calculated and observed radial velocities defined from Eq. (5)

A = (usinf +vcos ) — V;. (5)

e B - the deviation from the constant wind defined via an unknown value P

14}
B= 50 — vsinf) — W,
(u cos vsin @) b2
We alter the definition of the term by adding a weight W to allow an additional control of the derivative OV;./96. When Wy, # 1, the
discrepancies with the actual derivative are then accumulated in the term P.

Ve

+P (6)

e (' - the radial velocity advection equation. This term assumes that the radial velocity is stationary between two consecutive scans.
vy oV, oV,

C= 7
ot +u o +v oy 7)
e D - the deviation from the background flow (uy, vy,), which is estimated in the previous step using the VVP algorithm.
Doy =u—up, Dy =v— vy (8)
The weighted constraints are optimized for the whole retrieval domain defined on the Cartesian grid (z, y).
1 5 b - 5 .
J(u,v, P) = 20 /(WQAZ + Wy B? + W.0?% + WyD?2 + Wy D3?)d2 9)

where W,, W, W, and W, are the weights that could be either constant or dynamic22. We utilize the suggested dynamic definition of the
weights and provide a brief comparison to the constant weights when analyzing the results.

By the proposed definition, W, is the only constant weight over the whole retrieval domain. The original study ?? suggests the value of W, = 1.
Other weights are defined to adapt to local features of the flow. The weights, W}, and W, are complementary so that W, + W, = 1. They indicate
whether the variability of radial velocities was accounted for.

Walz,y)=1— w(m,y) (10
Ty,
where V,Y'VF = w;, cos 6 + vy, sin 0 is the radial velocity calculated from the retrieved field using Eq. (2). o%,r is the variance of the measured radial
velocity in the same fetch area around the point (z,y) as in the VVP retrieval, i.e., a circular area with the radius of » = 300 m. The weight W}, is
then W, =1 — W,.

The weight W, ensures that the advection equation is solved only for the points where the assumption of a stationary radial velocity would be

valid. l.e., the advection distance Ar between two consecutive scans is

Ar =Vp x At (11)

where At is the time interval between the measurements at the same point in two consecutive scans, V- is the tangential velocity

Vi = % = uyp, sin 6 4 uyp, cos 6 (12)

The original study aligns z-axis and respective u-component with the North direction. To comply with the meteorological notation where z-axis is
aligned with the East, we had to switch « and v-components where it was relevant
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Then, taking A as 1—2 times the grid spacing, the weight W_. is defined as a binary matrix

0; forAR> A
We = (13)
1; forAR< A

We observed an improvement of the retrieved flow structure in SEP16 if more weight is given to W, which we discuss further in the sensitivity
analysis of the 2D-VAR algorithm. We also set W2 = 1 and apply a Gaussian filter with the standard deviation of o = 4 to the gap-filled radial
velocity V;. prior of calculation of the derivative 9V;. /80 in Eq. (6). Time and spatial derivatives in the advection component Eq. (7) are calculated
for the original field with the gaps filled to avoid over-smoothing of the input data. Hence, we define our weight set as follows

Wo =5, W, =1— Wy, Wya =1, W, asin Eq. (13), W, as in Eq. (10) (14)

Since the cost function is optimized for the whole area at once and attempts to retrieve the original non-homogeneous flow, the wake masking
is not applied here. An initial guess utilizes a constant field (ug, vo) as defined in Eq. (4) from the FINO1 mast data. The initial deviation from the
constant flow is set to zeroes matrix Pg = 0.

3.3 | Validation

We consider two aspects when evaluating the retrieval accuracy: whether the virtual lidar field modeled from the retrieved flow correspond to the
FINO1 lidar measurement and whether the local retrieved wind characteristics agree with FINO1 and SCADA time series.

The modelled radial velocity V;°¢ is calculated from the retrieved field (u”¢,v"¢t) using Eq. (2). The divergence from the observed radial
velocity V,°%* is evaluated based on the mean and standard deviation of the residuals AV;..

AV, = yobs —ymod — yobs _ (yret cog 0 4 47 sin 0) (15)

The retrieved wind speed and direction are compared against FINO1 and SCADA data. We use different approaches depending on the lidar’s
elevation angle. For the nearly horizontal scans in the AUG16 dataset taken at the elevation angle of 0.5°, only the comparison to FINO1 measure-
ments near the height of 33 m would be relevant. The wind speed components (uggﬁ u;gi) are extracted from the top left corner of the retrieval
domain - the probe point closest to the FINO1 mast, excluding the border points, or z, = 130m, y, = —330 m.

The SEP16 dataset with scans taken at the elevation angle of 4.6° provides a different option for the comparison - the time series at AV7 hub
height. The inflow wind speed and direction for the AV7 turbine are probed dynamically so that the probe point is always located at 1D upstream
of AV7. The wind speed components are calculated as mean values in a circular area with a radius of 1D around the probe point.

For the comparison, the retrieval and SCADA time series are averaged to the same 10-minute periods as the FINO1 time series. The root mean

square errors (RMSE) of wind speed AU and direction A¢ estimation are then calculated as follows:

(U1 — Ua)?, Ui = 1’”?1,2) +v(2172) (16)

1 . 2
Ap— | = [a <W27+vlz>]
N Uy - Uz

where the indices (1, 2) mark values from respective time series U; and Us and N is the number of valid values.

1
AU =

=]
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4 | RESULTS
4.1 | Comparison to the original study, August 31, 2016 (AUG16)

Since we are implementing the 2D-VAR retrieval algorithm anew, we verify how our implementation performs compared to the original
study 2122, The 2D-VAR retrieved time series follows the FINO1 time series regardless of the wake masking. In contrast, the VVP series deviate
stronger from FINO1 for certain wind directions when the retrieval is run without wake masking (Fig. 7).

The new implementation achieves good agreement for scans taken after 15:00. Those scans are characterized by crosswind directions and
wind speeds close to cut-in wind speed. l.e., the flow is nearly homogeneous. Consequently, the new implementation and VVP retrieval show little
divergence from the reference data and from each other.

We observe similar errors in the wind speed estimation between our and original implementation, but a larger error in the wind direction (Table 2).
The wind direction error is also larger for the VVP retrieval. Considering that the VVP algorithm returns a rather stable solution, the difference in
wind direction errors may be caused by different pre-processing and solving procedures that were not detailed in the original study.
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Table 2 Results reproduction for AUG16 dataset.

Study Algorithm Wind speed error Wind speed correlation Wind direction error Wind direction correla-
coefficient tion coefficient
Originalt 2D-VAR 0.383m/s 0.96 -1.4° 0.98
VVP 0.29m/s 0.98 4.3° 0.99
Reproduced 2D-VAR 0.334m/s 0.96 6.06° 0.96
VVP 0.375m/s 0.96 7.61° 0.96

tCherukuru, N. W.,, Calhoun, R., Krishnamurthy, R., Benny, S., Reuder, J. and Fliigge, M.: 2D VAD single Doppler lidar vector retrieval and its

application in offshore wind energy, Energy Procedia, 137, 497-504, 2017.
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Figure 7 Comparison of the retrieval results and FINO1 data for the AUG16 dataset.

4.2 | Comparison to the new dataset, September 2016 (SEP16)

SEP16 dataset provides an additional possibility for the validation provided that SCADA data are available. FINO1 vs. SCADA comparison is then
taken as a reference - the retrieved series should not perform worse than it.

The retrieval time series shows good agreement with FINO1 and SCADA data, especially for the wind speed estimation (Fig. 10ab). Several
outliers in wind direction cannot be explained only by being close to 0° or 360°. When highlighted by the wind speed value, the irregular outliers
correspond to wind speeds below 1 m/s. The uncertainty of the instantaneous measurements can then explain the discrepancy during low wind.
The directional components both in measured and retrieved time series are prone to uncertainty error. Consequently, the wind direction may be
estimated incorrectly for low wind even if the wind speed magnitude is similar. Hence, we consider the retrieval results unreliable for FINO1 or
SCADA wind speeds below 1 m/s and do not include them in the comparison and error calculation.

The scatter of retrieved wind direction is smaller for the 2D-VAR vs. FINO1 comparison than for 2D-VAR vs. SCADA (Fig. 10ab). In addition,
the scatter in 2D-VAR vs. SCADA plot resembles FINO1 vs. SCADA comparison (Fig. 10c) despite the values being probed closer to AV7, SCADA
measurement location, than FINO1. A better agreement with FINO1 implies that the cost function optimization may be tuned to the initial guess
(up, vo) calculated from FINO1 data. We perform a sensitivity analysis to determine, which factors affect the 2D-VAR algorithm.

4.2.1 | Sensitivity to the input data

The 2D-VAR algorithm consists of two optimization steps. Both steps require an initial guess of the horizontal wind field (ug, vo). In the first step,
the VVP retrieval is run locally point by point. The VVP solution via least-squares minimization is rather stable and does not noticeably depend
on an initial guess. The solution can be affected slightly by altering the grid spacing or retrieval domain size. Stronger alteration can be achieved if

some points are deliberately excluded from the minimization, i.e., by applying the wake masking (Fig. 11).



10 MARIA KRUTOVA et al

VVP, full VVP, masked 2D-VAR, full 2D-VAR, masked
g T "

@
= T g
-500 ‘ k - ¥ 3
& T | W) 69
Py X . e 4 &
-1000 i 52
" H
] i N bR K
\ e L] a2
-1500 h o
A A P A =] 3
500 1000 500 1000 500 1000 =
) X m
ORIGINAL SCAN V, from VWP v, from VWP
K3
-3¢
z
-4
8
3
g
52
3
62
500 1000 500 1000 500 1000
X, m 3 X, m 8 X, m
-5001 4 3 ™ 12
| £
v \ :
WS b A A s
~1000 - ) 0z
! % 5
2
2
~1500 " -1e
A A A A A A A
500 1000 500 1000 500 1000 500 1000
X m xm X m X m
15
10
5 J
R T e
-1 0 1 0 1 0 1 0 1
N2 AV v, v,

Figure 8 Example of the retrieval performed for the scan from AUG16 taken at 20160831 02:15:46 UTC+0. FINO1 wind speed 5.6 m/s, wind
direction 155°.

The VVP field is then used in the cost function optimization in the term D (Eq. (8)) and the weight W, if the dynamic definition Eq. (10) is
applied. Hence, strong non-physical disturbances in the VVP solution are carried over to the next optimization step. Figure 11 shows an example
of the retrieval performed for a lidar scan with long prominent wakes present. If the VVP retrieved field is obtained without the wake masking, the
2D-VAR solution gets a non-uniform wind speed increase along the wind turbines. Consequently, radial velocity residuals have a higher standard
deviation and bias compared to the solution where the wakes were masked for the VVP algorithm. The residuals of the non-masked solution tend
to have lower bias and standard deviation.

For the first step of the 2D-VAR algorithm, the accuracy of wake masking becomes more important for the VVP solution than the initial guess.
If the wakes cannot be identified reliably, e.g., in the crosswind conditions, it is preferable to proceed without masking. Wake masking is the most
efficient when the lidar captures wide and long strong wakes, i.e., when the lidar beam and wind direction are aligned (Fig. 11). Due to the FINO1
relative position to AV7 and with the respect to the lidar orientation, such alignment occurs only in the north-western and south-eastern sectors.
Although not many events are registered for those sectors, the agreement to the SCADA wind rose (Fig. 9b) is better when the wake masking
is applied (Fig. 9¢) as opposed to non-masked wakes (Fig. 9d). The improvement leads to a slight reduction of RMSE when the wake masking is
applied compared to non-masked retrieval (Fig. 12).

The second step of the 2D-VAR algorithm relies on optimizing the cost function calculated over the whole area. Despite the 2D-VAR algorithm
using the FINO1 data as an initial guess, the retrieved data’s wind speed and direction distribution (Fig. 9¢) are closer to the SCADA wind rose
rather than FINO1. If the algorithm is run with the SCADA data as an initial guess, the agreement between the SCADA data and retrieved inflow
gradually increases (Table 3, Fig. 12). On the contrary, the solution diverges from FINO1 mast data at the hub height showing wind direction errors
similar to the comparison between FINO1 and SCADA.

Nevertheless, the wind field estimated with FINO1 has a smaller gap between wind direction errors for FINO1 or SCADA data comparison. A
good agreement implies that the retrieved wind field near AV7 tends to the actual wind field, provided that the initial guess is still close to it.
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Table 3 Validation of the retrieval time series for the SEP16 dataset. Bold font marks the smallest error of wind speed and direction.

Series Wind speed error (RMSE) Wind direction error (RMSE)
VVP 2D-VAR VVP 2D-VAR

FINO1 mast data as initial guess

Retrieval vs. FINO1 (60 m) 0.89m/s (0.976) 0.80m/s(0.981) 12.16°(0.975) 10.08°(0.980)
Retrieval vs. FINO1 (hub height)  1.04m/s (0.967) 0.67m/s(0.988) 14.51°(0.981) 11.68°(0.976)
Retrieval vs. SCADA 1.22m/s(0.954) 1.08m/s(0.976)  7.46°(0.988) 7.46°(0.988)

SCADA AV7 data as initial guess

Retrieval vs. FINO1 (60 m) 0.88m/s(0.975) 1.13m/s(0.976) 12.71°(0.975) 12.23°(0.975)
Retrieval vs. FINO1 (hub height)  1.08m/s (0.966) 1.08 m/s(0.976) 15.16°(0.976) 13.74°(0.977)
Retrieval vs. SCADA 1.31m/s (0.949) 0.74m/s(0.980)  8.44°(0.976) 5.85°(0.983)

Reference comparison

FINO1 vs. SCADA 1.43m/s (0.961) 12.69°(0.979)
(a) FINO1 wind, 90 m (b) SCADA wind, AV07
N N
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Figure 9 Wind roses for SEP16 for the inflow probe 1D upstream of AV7, 2D-VAR input sensitivity. Only scans valid for retrieval and are considered.
a) FINO1 data, b) SCADA data, c) 2D-VAR retrieval, FINO1 data as initial guess, wakes are masked at VVP step, d) 2D-VAR retrieval, FINO1 data
as initial guess, wakes are not masked at VVP step, €) 2D-VAR retrieval, SCADA data as initial guess, wakes are masked at VVP step

4.2.2 | Sensitivity to the weights
We alter the weights W,, Wy, W, and W, to analyze their effect on the final solution. We do not regard the weight W), separately since it is
linked to W.

The weight W, adjusts the cost function term A, which reduces the discrepancy between the lidar data and radial velocity calculated from the
retrieved field as defined in Eq. (5). Empirically, this weight should remain at W, = 1. However, we observed a non-physical wind speed increase
at the wake boundaries in the retrieved flow when using this value for SEP16 scans. Increasing the weight puts more emphasis on reducing the
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Figure 10 Wind speed and direction comparison for the 2D-VAR retrieval data at AV7 inflow. a) 2D-VAR vs. FINO1, b) 2D-VAR vs. SCADA, c)
SCADA vs. FINO1

discrepancy in radial velocity residuals but leads to a bias in the residuals. The residuals for W, = 1 are more symmetrical than with the increased
weight and have a higher standard deviation (Fig. 13). While a further increase of W, gradually decreases the residuals, it strongly affects wind roses
for the AV7 inflow (Fig. 14ef), and they diverge from the reference FINO1 and SCADA wind roses (Fig. 14ab). Considering RMSE and correlation
coefficient trends for W, < 10 and W, > 10, we suggest that using W, = 1 is preferable to reduce the bias in radial velocity residuals, although
the retrieved flow may occasionally produce small irregular structures. W, = 5 is a good choice to remove those structures at the cost of increasing
the bias in wake and free-flow residuals. We do not recommend using higher values of W,. As shown in Fig. 13, the high weight of W, = 20
may force the algorithm to stay at the initial guess field, because other components would not contribute comparably to the cost function. Small
weights W, < 1 should not be considered, as they lead to increased residuals.

We introduced an additional weight W), to the term B of the cost function Eq. (6). This weight may be left at W}, = 1, provided the radial
velocity field was filtered before estimating a derivative 9V;. /90. If the original radial velocity field is used, leaving the weight at W;,5 = 1 results
in erroneous retrieval due to the high value of derivative (Fig. 16). Decreasing the weight to Wjs = 0.1 performs nearly equally for filtered and
original radial velocities but slightly increases noisiness in the retrieved field. The residuals distribution in the case of reduced weight generally
remains similar to the base case: Wy, = 1 and filtered radial velocity.

Being complementary, the weights W}, and W, behave in a similar way. We alter the weight W, and calculate the other weightas W}, = 1 —W,,.
Effectively, the dynamic weight W, defined in Eq. (10) acts similarly to the wake masking while also providing local weighting for the background
flow. If Eq. (10) cannot be implemented, the wake mask can be re-used in the cost function optimization. However, the wakes cannot be identified
reliably in the crosswind with the current masking algorithm. W; may be set to a constant value as an alternative. Constant weight W, = 0.5
provides an equal weighting to the wake and free-flow points and slightly decreases the bias Eq. (10). Setting W, = 1 may shift the bias within the
wakes but does not remove it completely.

The weight W, is defined dynamically as a binary matrix. Since W.. strongly depends on the flow speed and grid resolution, the matrix may be
filled with ones in the case of the low radial velocity, e.g., weak actual flow or crosswind. Setting W, to a constant value of one for all cases does
not strongly alter the final solution. Moreover, W, would have to be increased by several orders for the residuals to become noticeably affected.
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5 | CONCLUSIONS

We independently reproduced the 2D-VAR algorithm for lidar retrieval for the August 31, 2016 dataset. While we got a similar error in the wind
speed estimation, our implementation returned higher offset in the wind direction compared to the original study. We attribute the mismatch to

different pre-processing procedures and optimization algorithms used and the overall sensitivity of the wind direction to the retrieval.
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Figure 13 2D-VAR retrieved field and radial velocity residuals depending on the choice of weight W,. Scan taken at 20160912 2:07:43 UTC+0.
FINO1 wind speed 7.2 m/s, wind direction 138°.

We performed an extended validation with the September 2016 dataset and SCADA data for the same period. Due to a higher lidar elevation
angle, the scans were capturing wakes near the hub height. We observed an increased heterogeneity in the first step of the 2D-VAR algorithm - an
estimation of the background flow with the VVP algorithm. The effect primarily appears in the case of large and strong wakes, which are observed
when the wind direction is aligned with the lidar beam. The unwanted heterogeneity was mitigated by masking the wakes with an automatic
thresholding algorithm to exclude them from the VVP solution.

Besides the background flow from the VVP algorithm, the cost function optimization in the second step of 2D-VAR algorithm is found to be
sensitive to weights and the initial wind field. Defining the initial wind field based on FINO1 or SCADA data tunes the resulting field to the initial
values. Nevertheless, the retrieval algorithm tends to the actual flow in both cases - the agreement between wind direction retrieved near AV7 and
SCADA series is always better than to FINO1 data. FINO1 data can still be used as an initial guess, when SCADA data are not available. However,
if both datasets are accessible, using SCADA data becomes preferable to reconstruct the wind field near the corresponding wind turbine.

Of the weights regarded, the weight W/, is directly connected to the radial velocity residuals and, therefore, affects the residuals and the flow
structure most. Other main weights - W, W, and W, - have weaker effect on the retrieval result, although they may cause local changes in
the retrieved flow. A supplementary weight W;4 was introduced primarily for an additional control over the 8V;. /86 derivative. Smooth derivative
along azimuth 6 is more important than W, in the case of a small azimuth step.

The retrieved flow behaves differently when the wakes are parallel or perpendicular. It is possible that the accuracy of 2D-VAR retrieval may be
increased by adjusting the cost function depending on the wind direction relative to the scanned azimuths. Since a comparison to the 'true’ flow is
complicated for the lidar data, we plan to explore the 2D-VAR algorithm performance on LES generated wakes and virtual lidar in order to improve
the retrieval result.
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