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Abstract 

Norway is the world largest producer of Atlantic salmon (Salmo salar). In 2013 the 

Norwegian aquaculture industry produced 1.2 million metric tons salmon with the use 

of 1.5 million metric tons of commercial feeds. The feeds are delivered to the farms 

in big bags or in bulk and are conveyed pneumatically to the sea cages. Such harsh 

treatments expose pellets to stress that may give product loss due to abrasion and 

fragmentation. Feed loss in pneumatic feeding systems is estimated to be in the range 

of 0.3% to 1.5%. This equals a yearly additional expense of around 40 to 200 million 

NOK for the Norwegian salmon industry.  

To minimize product loss the feed has to be of a consistent and high physical quality. 

Extrusion processing is a technology that enables production of such feed quality. 

Physical pellet quality is normally improved by the addition of starch and other 

binders, but recent research has shown that the protein ingredients in the feed mix 

also impact the physical quality of extruded feed products. During the last decade 

several new plant derived protein ingredients has been introduced and partly replaced 

fishmeal. This has introduced new challenges in fish feed extrusion and stressed the 

importance to improve the knowledge related to the technical properties of the 

individual ingredients. 

The main objectives of this work have been to quantify fishmeal physicochemical 

properties with significant effects on the extrusion cooking process and physical 

pellet quality, and to study the plasticization effect of water solubles in fishmeal. 

Various multivariate analytical techniques have been applied in the studies, such as 

principal component analysis, partial least squares -and multiple linear regression. In 

Paper I and II, the impact of variation in fishmeal physicochemical properties were 

assessed based on standardized extrusion, drying and coating conditions. In Paper III 

the effect of water-soluble protein level and moisture content on the extrusion 

process, extrudate phase transitions and physical quality of feed were studied. In 

Paper IV the influence of fishmeal water solubles and added moisture on glass 

transition and flow-starting temperature were quantified. 
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The studies in Paper I and II document the complexity of fishmeal as a protein 

ingredient with significant impact on the extrusion process, starch gelatinization and 

physical pellet quality. Large differences in technical quality within and between the 

studied fishmeal types (i.e. herring and sand eel) were observed. The research 

quantifies a positive effect of increased levels of water-soluble protein on pellet 

durability and hardness. This can be explained by two different mechanisms: a cross-

linking effect of large polypeptides and a plasticizing effect of smaller peptides and 

amino acids. Differences in peptide size distribution between the two studied groups 

were identified with the highest level of large polypeptides for herring meal. At an 

equal level of water-soluble protein, extruded feed containing fishmeal from sand eel 

had significantly lower physical quality than feed containing herring meal. This can 

be attributed to differences in thermal and rheological properties between the two 

studied groups, and improper cooking in the extruder barrel for sand eel based feed 

mixes. Incomplete cooking or transformation may result in increased levels of 

particles in the extrudates and poor physical feed quality. The studies also document 

that fishmeal specifications normally used on the world commodity market 

inadequately describe the technical properties of fishmeal. 

In Paper III the effects of water-soluble protein level in fishmeal on extrusion 

behaviour, phase transitions and physical feed quality were studied. The plasticizing 

effect of water-soluble protein was comparable to that of moisture. However, in 

contrast to moisture, addition of water-soluble protein had a positive effect on 

specific mechanical energy and physical pellet quality. No loss of water-soluble 

protein during the extrusion process could be observed, confirming that the amino 

acids and peptides do not form any new covalent bonds in the extrusion process. A 

non-volatile plasticizer like water-soluble protein will not be removed in the drying 

process. It will therefore influence the viscoelastic properties of the final product and 

have a positive effect on physical pellet quality by establishment of an intermolecular 

binding network through hydrogen-, ionic bond, and hydrophobic interactions. It can 

be concluded from the study that water-soluble protein can be used as a processing 
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aid for the fish feed industry, serving multiple purposes as nutrient, plasticizer and 

binder in extruded fish feed. 

In Paper IV significant effects of fishmeal water solubles and moisture level on the 

glass transition and flow-starting temperatures have been documented. The effect of 

solubles level on the glass transition temperature could be modelled based on the 

Gordon-Taylor equation. The documented plasticizing effect of water solubles was 

lower than the effect of moister addition per unit mass, but higher on a molar basis. 

The plasticization effect can be attributed to the content of low molecular nitrogen-

compounds. The studied fishmeal model system showed a large composition region 

of water solubles and moisture with a higher difference between the flow-starting and 

glass transition temperature than for other reported protein components (i.e. casein, 

gluten and soya protein isolate). This indicates a reduced temperature effect on 

viscosity reduction in the rubbery phase for fishmeal in this region. Combined with 

significantly lower glass transition temperatures, such differences in physicochemical 

properties may contribute to explain the unique functional properties of fishmeal 

compared to plant based proteins and casein. This will have positive impact on 

physical pellet quality and open up the possibility to obtain a satisfactory 

thermomechanical transformation in the extrusion process at reduced moisture level. 
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1. Introduction 

The global production of fish to human consumption was about 128 million metric 

tons in 2010 with aquaculture production accounting for approximate 47% of the total 

supply (60 million metric tons; FAO 2012).  The capture fisheries remain stable and 

to meet the demand of fish to an increasing global population future needs have to 

come from aquaculture (FAO 2012). Aquaculture has increased at an annual rate of 

8.8% from 1980 to 2010 and is expected to increase at the same rate over the next 

decade (Tacon et al. 2011; FAO 2012). Approximately 46% of the global aquaculture 

production is based on intensive feeding by use of farmed made or commercially 

manufactured feeds. On a global basis the commercial fish feed production is 

estimated to increase from 35 to 71 million metric tons from 2010 to 2020 (Tacon et 

al. 2011), which will create a growing demand for supply of nutrients (i.e. protein, 

lipids, minerals and vitamins) and binders. 

The total aquaculture production of Atlantic salmon has increased by 5.5% the last 

decade and is expected to reach 2.8 million metric tons in 2020 (Tacon et al. 2011). 

Salmon is farmed in floating net cages (on-growth phase) based on commercial feeds. 

The feeds are delivered from the producers to the farms in big bags or bulk and most 

commonly conveyed pneumatically to the sea cages (Aarseth 2004; Aarseth et al. 

2006); systems demanding consistent and high physical pellet quality to minimize 

product loss due to abrasion and fragmentation. Extrusion processing is a technology 

that enables the manufacture of such quality and is therefore the dominating 

technology used in commercial salmon feed production. Compared to other thermal 

processes, extrusion is also energy efficient, has lower processing costs and can 

handle a variety of feed ingredients (Riaz & Rokey 2012). Products with different 

degree of expansion (sinking or floating feed), different shape and sizes and with 

nutritional values tailor made for the fish species and age can be produced.  

Norway is the main global producer of Atlantic salmon (Tacon et al. 2011) with a 

production of 1.2 million metric tons in 2013 (Statistics Norway 2015). The feed 

consumption was 1.5 million metric tons with an average feed price of 9.19 NOK/kg 
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(Akvafakta 2015; Directorate of Fisheries 2014). The economic feed conversion ratio 

was 1.25. The feed cost accounts for more than half of the production costs per kilo 

of fish produced (Directorate of Fisheries 2014). Changes in feed cost, conversion 

ratio and waste will therefore have a major impact on the total production costs.  

Each percentage of waste feed or non-utilized feed is equivalent to a loss of around 

130 million NOK for the Norwegian salmon industry. Approximately 5% of the feed 

is lost through the environment during feeding and 12.5% is nondigested feed ejected 

in faeces (Findlay & Watling 1994; Brooks & Mahnken 2003; Institute of Marine 

Research 2012). Possible causes, as studied and discussed by Oehme (2013), include 

1) suboptimal feeding practice, 2) nutritionally imbalanced diets and 3) suboptimal 

physical pellet qualities that reduce feed intake and feed utilization by fish. A few 

studies have examined the impact of physical pellet quality on the biological response 

of the fish (as reviewed by Sørensen 2012); however, data is inconsistent and there is 

a need for further investigations (Oehme 2013). Harsh treatments, such as transport 

and pneumatic conveying expose feeds to stress that may increase abrasion and 

fragmentation. Loss in pneumatic feeding systems is affected by physical feed 

quality, transportation distance, conveying velocity and bend radius and is estimated 

to be in the range of 0.3% to 1.5% (Brooks & Mahnken 2003; Aarset 2004; Aarseth 

et al. 2006; Aas et al. 2011). Feed ingredients respond differently to extrusion 

processing (Sørensen et al. 2009; Glencross et al. 2010; Draganovic et al. 2011; 

Kraugerud et al. 2011) and changes in feed mix properties may lead to feed pellets 

with a low physical quality not suitable for transport and pneumatic conveying. This 

enforces reprocessing of feeds that will increase energy consumption and production 

costs at a feed factory. Figures on amount of reprocessed feed are not publically 

available. Based on my knowledge, a rough estimate will be in the range 0.5% to 

2.0% of total production. Non-utilized, wasted and reprocessed feeds have all 

negative economic and environmental impacts and should be minimized. This thesis 

focus on the underlying causes to the observed variability in physical fish feed quality 

and how to handle feed ingredients and the extrusion process to improve the product 

quality. This knowledge can be used to develop optimal pellets for biological 
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response, reduce reprocessing costs and minimize loss during transport and 

pneumatic feeding. 

The use of fishmeal in feeds to the global aquaculture production is expected to 

decrease in the long-term. The reasons are 1) high prices due to increasing market 

demand, 2) expected static or decreased supply, 3) public demand for improved 

sustainability and 4) use of more cost efficient fishmeal replacers such as other 

marine ingredients, plant and microbiological ingredients, marine and terrestrial 

animal by-products and insect meals (Tacon & Metian 2008; Sørensen et al. 2011; 

Tacon et al. 2011). In Norway the inclusion levels of fishmeal in Atlantic salmon 

feed have been reduced from approximately 65% in 1990 to 18% in 2013 (Ytrestøyl 

et al. 2014). In Norway, fishmeal has mainly been replaced by less expensive plant 

derived alternatives (Sørensen et al. 2011; Ytrestøyl et al. 2014). The changes in diet 

feed composition have stressed the importance to improve the knowledge on 

technical properties of the individual feed ingredients and the possible interactions 

between them, to better understand and control the extrusion process and physical 

product quality. Effects on physical feed quality from the replacement of fishmeal 

with plant-derived alternatives have been reported in several studies (Sørensen et al. 

2009; Glencross et al. 2010; Draganovic et al. 2011; Kraugerud et al. 2011). 

However, little is published about the variability in physicochemical properties within 

different types of ingredients and the influence of this variability on the extrusion 

process and physical feed quality. Nofima Feed Technology Centre in Bergen, former 

part of Norwegian Herring Oil and Meal Industry Research Institute (SSF; until 2003) 

and Norwegian Institute of Fisheries and Aquaculture Research (Fiskeriforskning; 

2002-2008) has considerable experience in the research area of feed technology and 

feed raw materials and has worked with extruded fish feed products since 1990. 

Several studies have documented that fishmeal is one of the most variable ingredients 

used in aqua feed production (Nofima, unpublished results). However, the industry 

has acknowledged the unique technical properties of fishmeal compared to plant-

derived proteins, and has suggested establishing a new knowledge platform based on 
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fishmeal extrusion properties with the aim to improve the processability of plant 

proteins (Draganovic et al. 2011). 

1.1 Objectives of the thesis 

The main objective for the research activity was to explore fishmeal physicochemical 

properties influencing the fish feed extrusion process, phase transitions and physical 

pellet quality.  

Sub goals:   

1) To characterize intra- and inter variability in fishmeal physicochemical 

properties. 

2) To identify fishmeal physicochemical properties with significant effect on the 

extrusion cooking process and pellet binding properties. 

3) To study the effect of water-soluble protein level and moisture content on the 

extrusion process, extrudate phase transitions and physical quality of feed. 

4) To quantify the plasticization effect of water solubles in fishmeal. 

5) To assess the impact of variability in fishmeal psychochemical properties on 

industrial feed processing. 
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2. Background 

The extrusion process used for salmon feed manufacturing is a complex and 

multivariate process with several adjustment possibilities. In industrial manufacturing 

operations, the final feed product has to meet several target product characteristics 

that depend on the physicochemical and rheological properties of the feed 

ingredients, processing conditions and extruder type and configuration. A commercial 

salmon feed has to meet the following requirements (Oliveira 1990; Sørensen 2012; 

Draganovic 2013):  

 Be balanced for optimal feed intake and feed utilization. This is mainly controlled 

by the diet feed mix composition but may also be affected by physical feed quality 

(Hilton et al. 1981).  

 Be of high physical quality to minimize product loss during transport and 

pneumatic feeding, but not of a durability that prevents complete digestion by the 

fish.  

 Have a water stability that minimizes degradation. Water stability of a feed is 

most important for aquatic slow eaters (e.g. Sea Urchin) but may also impact the 

degradation pattern in the gastrointestinal tract of the fish (Hilton et al. 1981; 

Baeverfjord et al. 2006).  

 Have a size customized for the different life stages of the farmed fish. This is 

mainly defined by the extruder die size but is also controlled by the degree of 

pellet expansion.  

 Have sufficient expansion to adsorb desired amount of oil but still be dense 

enough to sink at a speed that enables the fish to catch the feed. Feed that floats or 

sinks too fast may escape the net cages and increase feed loss. There is a negative 

effect of increased expansion on physical quality (Sørensen 2012; Paper III) 

indicating the challenge to meet both these requirements during production.  

 Have optimal microstructure to minimize oil leakage during transport, storage and 

pneumatic feeding. Pellet pore structure is difficult to control and for high energy 

salmon feed (up to 40% fat content; Sørensen 2012) oil leakage may be a problem. 
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To meet the above requirements, the aqua feed manufactures must manage the 

variability in extrusion- and binding properties between and within feed ingredients 

and also learn how to handle and control this variability during feed processing. This 

is a demanding task and commercial fish feed production is known to be very 

dependent on skilled operators. The work in this thesis is a step towards a knowledge 

based control of the extrusion process and physical feed quality. 
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3. Fishmeal and feed technology 

3.1 Fishmeal and oil process 

The production of fishmeal and fish oil was developed in northern Europe and North 

America in the beginning of the 19th century and has grown to be a global industry 

supplying ingredients to aquaculture and terrestrial animal feeds (Schmidtsdorff 

1995; Hall 2011). World fishmeal production was 4.7 million metric tons with Peru, 

China, Thailand, Chile, USA, Japan, Denmark, Ecuador, Mexico, Iceland, Vietnam 

and Norway as the main producing countries in descending 2013 order (IFFO, 2014). 

Current Norwegian production is around 100 000 metric tons (IFFO, 2014). Fishmeal 

(Fig. 1) is produced by use of heat coagulation combined with mechanical fat 

separation and thermal dewatering steps (Schmidtsdorff 1995). The process, Fig. 2, is 

fairly standardized worldwide, although some differences can be observed in the 

technology used (Oterhals & Vogt 2013). 

 

Figure 1. Typical appearance of a fishmeal (Frank Gregersen, Nofima). 

3.1.1 Fish raw material 

Fish used for fishmeal and oil can be divided into three categories  1) fish caught for 

the purpose of fishmeal production (industrial fish), 2) by-catches and 3) fish offcuts 
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and offal from filleting, gutting and other fish processing operations (FAO 1986). The 

latter is estimated to be 22% to 24% of the total worldwide fishmeal production (Hall 

2011). The major sources of industrial fish in Norway, Denmark and Iceland are blue 

whiting, sand eel, herring, capelin, Norway pout, sprat, horse mackerel and mackerel 

(in descending 2014 order, tons delivered in Norway; Norges Sildesalgslag 2015). 

The sources in Peru and Chile are anchovy, jack mackerel and pilchard (sardine), 

USA; Alaska pollock and menhaden, Japan; pilchard, South Africa; anchovy and 

pilchard and various species in Thailand and China (Hall 2011). 

 

Figure 2. Simplified flow diagram of the fishmeal and fish oil process (after Oterhals 

& Vogt 2013). 

During transport at sea and storage there will be a risk of partial spoilage of the fish 

raw material. Spoilage is dependent on both storage time and temperature and can be 

autolytic and microbiological. The autolytic process degrades the tissue to water 

soluble peptides and amino acids and is dependent on the level of endogenous 
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proteolytic enzyme activity in the fish. The activity will vary with the content of feed 

(zooplankton) in the fish stomach and gut (seasonal variations). Bacteria contribute to 

the proteolytic activity and also convert amino acids to biogenic amines (e.g. 

putrescine, cadaverine and histamine). Bacterial breakdown of trimethylamine N-

oxide (TMAO) produces ammonia and trimethylamine (TMA) respectively, which 

increase the total volatile nitrogen (TVN) content (Aksnes 1988; Aksnes & Brekken 

1988; Aksnes & Mundheim 1997; Opstvedt et al. 2000; Bragadottir et al. 2002). The 

TVN content can therefore be used as a guide to raw material freshness. To produce 

fishmeal with the highest yield and quality the fresh raw material should not exceed a 

TVN value of 50 mg N 100 g-1 during production (Schmidtsdorff 1995). The most 

common methods for preservation of the fish on-board the fishing vessel are 

refrigerated or chilled water systems and ice-slurry/fish mixing systems (FAO 1986; 

Schmidtsdorff 1995). In some cases, the cooling medium is added acetic acid. Other 

factors affecting quality and yield will be type of raw material (fish species) and 

seasonal variations in fat content and level of roe and milt (McBride et al. 1959; 

Suzuki 1981; Schmidtsdorff 1995; Bragadottir et al. 2002; 2004) 

3.1.2 Unit operations in fishmeal processing 

A general flow diagram of the fishmeal and oil process is given in Fig. 2. The main 

unit operations are explained based on FAO 1986; Schmidtsdorff 1995; Hall 2011 

and Oterhals & Vogt 2013. 

Heat treatment 
Heat treatment is performed in a continuous screw cooker at 90 to 95 °C for 

approximate 20 minutes. The treatment coagulates proteins, disrupt fat deposits and 

release oil and water. This is a key process as it conditions the raw material for the 

downstream separation processes.  

Mechanical pressing 
After heat treatment the raw material passes a strainer to remove any free oil and 

water before it enters the screw press. The purpose of the screw press is to squeeze 

out oil and water from the coagulated material (presscake). Oil yield depends on fish 
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species and seasonal variations in fat content. Water solubles, containing most of the 

water soluble nitrogen compounds (protein, peptides, amino acids, putrefaction 

products etc.), vitamins and minerals, and suspended fine particles will also follow 

the liquid fraction. The amounts depend on the endogenous proteolytic enzyme 

activity and freshness of the fish. High enzyme activity and/or spoilage give 

increased level of solubles and a high content of suspended solids in the soluble phase 

(Høstmark 1987).  

Oil separation 
The liquid fraction containing water solubles and suspended particles are mixed with 

the oil/water fraction from the strainer, heated to 90 to 95 °C, and run over a decanter 

centrifuge to remove the suspended particles (decanter solids). The separation of oil 

and water solubles (stickwater) is thereafter performed in a disc centrifuge. The oil is 

polished with water over a second disc centrifuge, pumped to a day tank to settle 

residual impurities and finally pumped to a storage tank (Oterhals & Vogt 2013).  

Solubles concentration 
The stickwater, usually with water content of 90 to 94%, is concentrated in the 

evaporators to water content of approximately 70 to 80%. The concentration potential 

depends on the viscosity of the concentrate, which will vary with the amount of 

suspended solids in the concentrate, peptide size distribution, fish species and season 

(McBride et al. 1959; Høstmark 1987).  

Mixing, drying and milling 
To produce a “normal” or “whole” meal the presscake and decanter solids, which are 

mainly composed of myofibrillar protein with a variable degree of fragmentation 

(Suzuki 1981), are mixed with stickwater concentrate and dried to a final water 

content of 6 to 10%. The normal range of WSP in “whole” meal is 20 to 30% of the 

total protein content, although levels above 35% can be observed in some cases 

(Oterhals et al. 2001). The temperature in the drying material should be kept low and 

not exceed 70 °C if high quality fishmeal is the target. Higher temperature may 

damage the nutritional value of the meal (Aksnes & Mundheim 1997). Different 

types of dryers are used, both directly and indirectly heated. The types most 
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commonly used in Norway are indirect steam dryers and hot air rotary dryers. The 

indirect steam dryers are mostly used as pre-dryers because of the higher heat load on 

the product due to the high surface temperatures within the dryers (Flesland et al. 

2000). Other dryers used are vacuum dryers and flash type dryers. Downstream the 

drier, the fishmeal is ground typically with the use of a hammer mill before storage.  

The resulting physical properties of the fishmeal powder are dependent on species 

and type and combination of dryers and are important for the handling, storage and 

production of feed (Flesland et al. 2000; Paper I and II). In Paper I and II fishmeal 

from herring (Clupea harengus, FMH) and sand eel (Ammodytes tobianus and 

Ammodytes marinus, FMSE) were produced by applying different drying technology 

(Table 1) and flow-figure and bulk density were measured. These properties could be 

interpreted as an indirect measure of friction forces between the fishmeal particles. 

Flow-figure and loose bulk density show a significant negative correlation and for 

FMH reported in Paper I, the main impact on these properties was related to the type 

and combination of dryers (Fig. 3; Samuelsen, Nofima, unpublished results). 

Fishmeal with lowest friction forces (low value of flow-figure and high value of loose 

bulk density) were produced on a Hetland indirect hot air dryer and the fishmeal with 

highest friction forces was produced on a Jäckering Ultra-rotor mill dryer (flash 

dryer). In between were combinations of steam pre-dryer and final air/vacuum dryers 

with the increasing friction forces in the order Hetland indirect hot air dryer < Dyno-

Jet indirect hot air dryer < indirect vacuum dryer. The findings are consistent with 

Flesland et al. (2000) and Høstmark et al. (2001). Differences in the relationship 

between flow-figure and bulk density were found for FMSE compared to FMH 

(Paper II). Comparing fishmeal from different species, these properties will therefore 

give an inaccurate measure of particle friction forces. 
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Table 1. The independent fishmeal batches used in Paper I and II 

 

Batch#  

 

Species 

Preservation 

method1 

 

Factory 

Drying 

technology 

Screen aperture 

(mm)2 

 

Paper 

1 Herring Ice C SD+V 8 I 

2 Herring Ice C SD+V 2 I 

3 Herring Ice B SD+DJ 5 I 

4  Herring Ice B SD+DJ 2 I 

5 Herring Ice B FD -3 I 

6 Herring Ice B SD+DJ 5 I 

7 Herring Ice A H 5 I, II 

8 Herring Ice A H 5 I, II 

9 Herring Ice A H 5 I, II 

10 Herring Ice A SD+H 5 I, II 

11 Herring Ice A SD+H 5 I, II 

12 Herring Ice A SD+H 5 I, II 

13 Herring Ice B DJ 5 I 

14 Herring Ice B DJ 5 I 

15 Herring Ice B DJ 5 I 

16 Sand eel  Unknown A SD+H 6 II 

17 Sand eel  Unknown A SD+H 6 II 

18 Sand eel  RSW A SD+H 6 II 

19 Sand eel  RSF A SD+H 6 II 

20 Sand eel  Ice A SD+H 6 II 

DJ, Dyno-Jet indirect air dryer (Stord International A/S, Bergen, Norway); FD, flash dryer (Ultra-rotor mill 

dryer, Altenburger Maschinen Jäckering GmbH, Hamm, Germany); H, Hetland indirect air dryer (Kværner 

Hetland A/S, Bryne, Norway); RSF, refrigeration by fresh water; RSW, refrigeration by seawater; SD+, 

indirect steam dryer used as pre-dryer; V, indirect vacuum dryer (Stord International A/S, Bergen, Norway). 
1 Acetic acid not used.  
2  Ground in hammer mill (Jesma-Matador AS, Vejle, Denmark). 
3 Ground directly during the drying operation. 
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Figure 3. Relationship between flow-figure and loose bulk density for herring meal 

dried at different types or combination of dryers (Samuelsen, Nofima, unpublished 

results). Abbreviation, see Table 1.  

3.1.3 Fishmeal quality 

As outlined above fishmeal chemical composition, physical properties and nutritional 

value are all influenced by raw material type and freshness, seasonal variations and 

applied process conditions and dryer type. The two main fishmeal qualities used in 

Norwegian aquaculture feed production are NorSeaMink and the high quality Norse-

LT 94 (Table 2), or other fishmeal on the world commodity market with similar 

specifications (Schmidtsdorff 1995). The specifications are based on a limited set of 

chemical and biological analysis (Table 2) and give to a less degree relevant 

information about the technical properties of the fishmeal (Paper I and II).  
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Table 2. Specification for NorSeaMink and Norse-LT 94 (Norsildmel 2015) 

 NorSeaMink Norse-LT 94 

Crude protein (%) Min. -, Typical 71  Min. 68, Typical 71 

Water-soluble protein (% of  crude protein) - Max. 32, min. 18 

Moisture (%) Max.10, min. 5 Max.10, min. 6 

Fat (Soxhlet) (%) Max. 13 Max. 13 

Ash, without salt (%) Max. 14 Max. 14 

Salt (sodium chloride) (%) Max. 4 Max. 4 

Total volatile nitrogen (%) Max. 0.20 Max. 0.18 

Cadaverine (g kg-1) Max. 1.8 Max. 1.0 

Histamine (g kg-1) Max. 0.7 Max. 0.5 

3.2 Fish feed extrusion process 

The use of extruders for food processing was developed between 1930 and 1940 with 

expanding number of applications in 1960s and 1970s. Extruders was introduced to 

fish feed processing in the early 1980s because of their high capacity, high mixing 

and kneading capabilities and their possibilities of manufacturing high quality feeds 

with target density specifications and high lipid levels (Hilton et al. 1981; Oliveira 

1990; Huber 2000). The fish feed extrusion process (Fig. 4) is used globally and is 

fairly standardized. The process involves use of moisture and high temperature 

achieved by water/steam injection and mechanical energy dissipation to obtain 

acceptable physical product quality and density specifications. 

 

Figure 4. Simplified flow diagram of the fish feed extrusion process. 
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3.2.1 Feed ingredients 

Extruded salmon feed consists of protein, starch and lipids as the major ingredients. 

In Norwegian aquaculture, proteins comes from fishmeal and various vegetable 

sources as soybean, sunflower, pea, beans, wheat and corn and in near future also 

lupins, canola and distiller dried grains with solubles (Glencross et al. 2007; Sørensen 

et al. 2011). The major source for starch is whole wheat, but other sources such as 

pea, potato, manioc (tapioca) and corn can be used (Rokey 1994; Sørensen et al. 

2011). The lipids are mainly based on a blend of fish and rapeseed oil. Small amounts 

of soybean- and palm oil may also be added (Sørensen et al. 2011). The feed consists 

also of micro ingredients such as vitamins, minerals and amino acids. Ensilage or 

other fish protein concentrates may also be added. A typical ingredient composition 

of a Norwegian aquaculture feed is given in Table 3. 

Table 3. Percent of ingredients used in a Norwegian aquaculture feed based on 

information from there feed companies in 2013 (Ytrestøyl et al. 2014) 
Ingredient source Percent used 

Fishmeal 18.0 

Krill meal 0.3 

Plant protein  36.7 

Starch  11.2 

Marine oil 10.9 

Plant oil 19.2 

Micro ingredients 3.7 

 

3.2.2 Unit operations in fish feed extrusion processing 

A general flow diagram of the fish feed extrusion process is given in Fig. 4. The main 

unit operations are explained based on Harper (1989); Frame (1994); Guy (1994); 

Rokey (1994); Huber (2000); Strahm (2000) and Riaz & Rokey (2012). 

Dosing and grinding 
Major ingredients (protein and starch) are dosed to a grinder. In the grinder, usually a 

hammer mill, the particle size is reduced to <1 mm with use of a screen aperture at 
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1.5 to 1.0 mm. Grinding is advantageous. Uniform and small particles prevents 

segregation during mixing with micro ingredients, and small particles are easier to 

hydrate and will heat up more quickly than coarser particles in the preconditioner. It 

is also possible to add lipids (oil) in the mixing step but in a limited amount. Lipids 

will prevent water uptake to the powdery raw material and act as lubricants in the 

system. This will affect feed melt homogeneity and lower the viscous dissipation in 

the extruder, with poor physical feed quality as the result. As a rule of thumb it is 

possible to add up to 12% of total fat in the feed mix with limited effect on feed 

quality (Rokey 1994). 

Preconditioning 
Due to the low residence time in the extruder (<1 min) the feed mix is conditioned 

prior to extrusion in a preconditioner by use of steam and water, and with a typical 

residence time of 1.5 to 4 min. In the preconditioner the feed particles are hydrated 

and heated to a typical moisture content of 18 to 30% and a temperature of 77 to 95 

°C (Rokey 1994; Strahm 2000; Riaz & Rokey 2012). Both hydration and temperature 

increase are time dependent and determined by particle size, water diffusivity and 

heat capacity. A preconditioner also have high mixing capabilities and fish ensilage 

or fish protein concentrates can be added in this stage. Ensilage and concentrates have 

high water content (typical range 60-70%) and addition restricts the use of moisture 

for controlling the extrusion process, pellet expansion and oil adsorption capacity 

(Samuelsen, Nofima unpublished results). There are different types of 

preconditioners on the marked. In Paper I, II and III an atmospheric double 

differential preconditioner (DDC; Fig 5; Wenger Manufacturing Inc., Sabetha, KS, 

USA) was used. The DDC is a double shafted counter rotating conditioner where the 

shafts have different dimensions and are run at different speeds to maintain dynamic 

mixing and long retention time.  

Extrusion 
Extrusion is the key process in feed manufacturing, and the physical product quality 

as well as pellet expansion and oil adsorption capacity are defined in this unit.  In the 

extruder barrel the feed mix is cooked by mechanical energy dissipated into heat 
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(internal energy) and the addition of water and/or steam. During this treatment the 

mix is transformed into a plasticized and flowable material (melt) that can be shaped 

through a die and cut into pellets.  

Fig. 5 illustrates an extruder set up for fish feed processing. The dry feed mix is 

transported with use of a screw feeder from a bin to the preconditioner. The 

conditioned feed mix is then fed to the extruder. The most commonly used extruders 

for fish feed processing are single screw or co-rotating, fully intermeshing twin-screw 

extruders. A single screw extruder is easier to operate, cost about half that of a twin-

screw extruder and has lower maintenance costs, whereas a twin-screw extruder is 

more flexible in use (handles viscous, sticky, oily and wet materials), has higher 

mixing capacity and better heat transfer and is self-cleaning. In Paper I, II and III a 

TX-52 co-rotating, fully intermeshing twin-screw extruder (Wenger Manufacturing 

Inc., Sabetha, KS, USA) was used. A typical twin-screw design for fish feed 

processing consists of conveying sections, kneading sections (kneading elements 

and/or reverse screws; Della Valle et al. 1993) and a final cooking section (cone final 

screws). The screws in the conveying sections are partly filled with resulting 

insignificant dissipation of mechanical work on the feed mix. The screw filling takes 

place in the kneading sections because of reduced conveying capacity and backflow. 

As the resistance increases the feed is compacted and transformed at a rate depending 

on the mechanical energy input. Interchangeable dies restrict the extruder discharge, 

and shape and texturize the final product. A cutting device cut the product to the 

desired length by controlling the knife speed. The temperature upstream the extruder 

die during fish feed production is typically in the range of 120 to 145 °C (Sørensen et 

al. 2009; Sørensen et al. 2010; Paper III). The extrusion process is mainly operated 

by adjusting the water and steam level, feed rate and screw speed. The adjustments 

influence residence time, filling rate, specific mechanical energy (SME), temperature 

and pressure upstream the extruder die and control the physical product quality, pellet 

expansion and oil adsorption capacity (Meuser et al. 1984; Della Valle et al. 1989; 

Paper III). Other on-line systems have been introduced as pellet density control 

systems based on vented head (Munz 2004), back-pressure (Hauck & Wenger 2004) 
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and pressure chamber regulation (Oddsen et al. 2000; Hauck & Wenger 2004) at 

extruder outlet, and SME regulation based on mid-barrel restriction (Rokey & 

Plattner 2009). These have improved the adjustment possibilities. 

 

Figure 5. A cross-sectional view of an extrusion cooking system. (A) Raw material 

bin, (B) Atmospheric double differential preconditioner and (C) Extruder barrel (with 

permission from Wenger).  

Drying 
The wet extrudate has to be dried to prevent mould and bacteria growth and to fix the 

final porous structure and physical quality. The extrudate has water content of 

approximately 18 to 30% (Rokey 1994; Sørensen 2012) and is dried to around 8% 

(Sørensen 2012). The most commonly used dryers in fish feed processing is conveyor 

dryers (single pass, multi pass, two stage or multi stage) where the air flows 

transversely through the product bed in separate zones with the lowest air temperature 
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in the outlet zone. Other used dryers are carousel dryers where hot air enters through 

the bottom against the product flow. In Paper I and II a dual layer carousel dryer 

(Model 200.2; Paul Klöckner GmbH, Nistertal, Germany) was used. Product depth, 

air flow, temperature, humidity and residence time can be adjusted to suit the product 

characteristics. The drying step represents around 65% of the total energy 

consumption in the feed extrusion process. Due to higher moisture level during 

processing of plant based diets these requires more drying (about 30%) compared to 

fish meal based diets (Draganovic 2013; Draganovic et al. 2013). 

Vacuum coating 
Prior to vacuum coating, the feed is pre-cooled and sifted to prevent evaporation and 

dust accumulation in the coater. Most of the oil (lipids) is added in the vacuum 

coater. In this unit the air is withdrawn from the dry pellets before adding oil into the 

coater. After a predetermined mixing time the air is slowly released back in order to 

let the oil be drawn into the porous pellet structure (Strauch 2005). 

Cooling and packaging 
After vacuum coating the finished feed (Fig. 6) is cooled and sifted to prevent 

evaporation and dust during packaging. 

 

Figure 6. Extruded fish feed pellet after vacuum coating of oil (Frank Gregersen, 

Nofima). 
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3.2.3 Analytical methods used to assess physical feed quality  

Requirements for physical salmon feed quality are given in chapter 2 and can be 

assessed by different measuring techniques: 

Product loss:  
Product loss is due to attrition of the feed pellets, which generates particles and dust 

(Aarseth et al. 2006). Attrition of feed pellets comprises two phenomena, 

fragmentation and abrasion. Fragmentation involves the fracture of pellets into 

smaller particles and fines at the fracture area and abrasion involves the fracture on 

the edges of particles (Aarseth et al. 2006). Hardness is determined by using 

equipment that measures the force needed to fragment the pellet (fragmentation). 

Durability is measured by instruments that measures mechanical resistance (abrasion) 

or pneumatic resistance (fragmentation and abrasion) (Thomas & van der Poel 1996). 

In a hardness tester the peak breaking force is measured. Different equipment is used, 

such as texture analysers with different probes (knife or flat ended) for individual 

pellets (standing or laying) and the Kramer shear press for multiple pellets (Thomas 

& van der Poel 1996; Sørensen et al. 2012). Pneumatic resistance is measured in a 

pneumatic durability tester were pellets is conveyed by high velocity air for a 

predetermined time in a closed circuit or around a perforated chamber.  After the test 

cycle, the weight-percentage of pellets collected on a screen (about 0.8 times the 

pellet diameter; Sørensen 2012) is measured, and durability expressed as the 

percentage retained. In a newly developed device, the DORIS tester (AKVAsmart, 

Bryne, Norway), pellets are transported in a screw conveyor to a rotating fan. Impact 

with the fan and the walls downstream the fan generates cracks and fines which are 

measured using different screen sizes (Aas et al. 2011). Hardness and pneumatic 

durability tests are well suited to evaluate differences in physical quality of extruded 

fish feed (Sørensen et al. 2010). 

Water stability 
Water stability can be measured as described in the study of Baeverfjord et al. (2006). 

Feed samples are placed in steel-mesh buckets inside glass beakers filled with water. 
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The beakers are shaken in a thermostatted water bath for a predetermined time and 

the remaining amount of dry matter (DM) is measured. 

Expansion parameters 
Expansion parameters are important to control sinking properties and oil adsorption 

capacity. Bulk density is usually measured by loose pouring of pellets from a funnel 

into a measuring cylinder. Pellet size (length and diameter) can be measured with use 

of an electronic calliper.  

Oil adsorption capacity and leakage 
Oil adsorption capacity can be investigated in a lab-scale vacuum coater using the 

same principle as for a full scale coater. If maximum oil adsorption capacity is the 

target, oil has to be in excess amount in the coater. Oil leakage can be measured in a 

plastic box with blotting paper incubated at predetermined temperature and time.  

Sinking velocity 
Sinking velocity can be measured in a transparent pipe filled with saline water with a 

given temperature. A stopwatch can be used to measure the time it takes for a pellet 

to sink a predetermined distance.  

The different methods used for measuring physical feed quality, expansion, oil 

adsorption capacity and oil leakage are reviewed and discussed in detail in Sørensen 

(2012). It can be concluded that reported measurements of feed quality parameters in 

published studies are inconsistent in type of equipment used, methodology and the 

implementation of the methods, and also with conflicting results (Sørensen 2012; 

Oehme 2013). The feed producers also use different methods and different target 

values in their product quality control, indicating a need to standardize the different 

methods used to evaluate fish feed  
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4. Physicochemical properties of ingredients 

4.1 Starches 

Starch acts as a binder and gives network structure, strength, elasticity and expansion 

to the finished feed product (Colonna et al. 1989). Starch is composed of linked 

glucose molecules in the form of amylose and amylopectin. Amylose is a linear and 

amylopectin a highly branched molecule (Southgate 1991; Appelqvist & Debet 1997; 

Liu 2005). Different starch sources have different ratios of the two types of 

molecules, which affect the rheological behaviour of the starch and the properties of 

the end product (Colonna et al. 1989; Liu 2005; Xie et al. 2009).  

Gelatinization 
Native starch granules exist in an amorphous and partially crystalline state. 

Gelatinization of starch is a phenomenon associated with the disruption of the 

granular starch structure, hydration and swelling, solubilisation of starch molecules 

and formation of new molecular aggregate structures by hydrogen bonding during 

cooling (Appelqvist & Debet 1997; Liu 2005). The gelatinization process results in a 

rapid increase in viscosity (Appelqvist & Debet 1997; Liu 2005; Tan et al. 2008). 

When starch is heated in excess amounts of water (above 60%, wet basis) 

gelatinization takes place at a temperature range of about 60 to 75 °C depending on 

type of starch. At water content lower than 60% (wet basis) gelatinization or melting 

takes place at increasing temperatures with decreasing moisture, reaching a 

temperature at about 100 to 175 °C at the moisture content used in extrusion 

processing (Wang et al. 1992).  

Dextrinization 
During extrusion, dextrinization of starch molecules can occur, which may have a 

negative impact on physical feed quality. Dextrinization is a process that reduces 

starch molecules to smaller fragments (dextrins). Enzymatic dextrinization depends 

on the α-amylase concentration in the wheat. Native α-amylase is inactivated at 

temperatures >60 °C (Southgate 1991) and would not survive in the extrusion process 
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as shown in the study of Chouvel et al. (1983) and Vasanthan et al. (2001). 

Thermomechanical treatment may also lead to macromolecular degradation of starch 

(Vergnes et al. 1987; van den Einde et al. 2004). The degradation pattern depends on 

both the maximal shear stress in the system and the achieved feed melt temperature 

(van den Einde et al. 2004).  

Retrogradation 
Gelatinized starch can undergo structure transformation as reassociation and 

recrystallization upon storage, which change the texture and physical properties of the 

product (retrogradation). The transformation pattern is not clearly understood and is 

dependent on several factors. These can be starch source, amylose/amylopectin ratio, 

molecular chain length and distribution, pH, presences of other biopolymers, 

processing temperature, cooling regime and storage conditions (Appelqvist & Debet 

1997; Liu 2005). It is therefore of great importance in technical extrusion studies to 

standardize drying conditions, storage conditions and storage time before performing 

physical measurements on the feed pellets.  

Complex formation 
Amylose-lipid complexes can also be formed during extrusion, which also affects 

expansion and bulk density (Bhatnagar & Hanna 1994). Amount of starch that can 

complex with lipids depends on the processing conditions and type of starch and lipid 

with monoglycerides and free fatty acids being more active than triglycerides 

(Bhatnagar & Hanna 1994).  

4.2 Proteins 

Proteins will also contribute to network structure and pellet strength. The protein 

biopolymers are formed essentially from 20 primary amino acids resulting in many 

possibilities of sequential arrangements with a wide range of interactions and possible 

chemical reactions (Hernandez-Izquierdo & Krochta 2008). Consequently, extrusion 

of proteins is recognized as more complex compared to extrusion of starches. In the 

extrusion process the protein biopolymers undergo both physical and chemical 
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changes as denaturation, association, associate disruption, bond formation (both 

covalent and non-covalent) and final transition to a rigid and expanded porous 

structure upon drying and cooling. These changes are all dependent on processing 

conditions, moisture content, pH, ionic strength, heating -and shear rate (Rhee et al. 

1981; Simonsky & Stanley 1982; Stanley 1989; Dahl & Vilotta 1991; Mitchell & 

Arêas 1992; Roos 1992; Sheinerman et al. 2000; Schreiber 2002).  

Denaturation 
Denaturation of protein is a transition where the arrangement of the polypeptide 

chains within the molecule is changed from a native, folded structure to a more 

disordered and unfolded arrangement. The protein fraction in food and feed materials 

is composed of a large number of proteins and will exhibit several denaturation 

temperatures, typically in the range of 60 to 130 °C. As for starches, these 

temperatures are reduced with addition of water (Roos 1992).  

Association and disruption of associates 
After denaturation new protein-protein complexes are developed by electrostatic and 

hydrophobic forces (associates; Sheinerman et al. 2000; Schreiber 2002). The 

associates disrupt by heat and shear in the extruder and form a biopolymer melt 

(Mitchell & Arêas 1992). Fishmeal, because of the heat treatment during processing, 

is composed of denatured and associated proteins.  

Interaction, bond formation and texturization 
Both covalent bonds and non-covalent intermolecular interactions can be formed 

during extrusion. The different states of the proteins, including the prevalence of 

disulphide and covalent bonds, can be determined semiquantitatively by use of a 

combination of a buffer, urea and disulphide cleaving agents (Hager 1984). Based on 

a study on soya protein concentrate, Hager (1984) concluded that extrusion at 

temperatures <150 °C formed structured protein consisting primarily of covalent 

intermolecular disulphide bridging accompanied by intermolecular interactions 

(hydrogen-, ionic bond, and hydrophobic interactions). This is also confirmed in the 

study of Stanley (1989) and Mitchell & Arêas (1992) and assumed valid for fish feed 

extrusion (120 to 145 °C). The achieved cross-linked binding network is then locked 
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upon drying and cooling of the extrudate (Rhee et al. 1981; Stanley 1989; Mitchell & 

Arêas 1992).    

Maillard reactions 
Maillard reactions can occur between the carbonyl groups of the reducing sugars and 

amine groups of the amino acids during extrusion. Maillard compounds are 

intermolecular cross-linked products that may be texture promoting (Stanley 1989) 

but with a negative nutritional effect due to loss of e.g. lysine (Björck et al. 1984; 

Cheftel 1986; Opstvedt et al. 2003). In Paper I, II and III, baking quality whole wheat 

flour was used (falling number >200; Hagberg 1961) to secure low amount of 

reducing sugars and to minimize possible Maillard reactions.  

4.3 Binders 

To meet target physical feed quality, manufactures may incorporate binders in their 

diets. There are several different binders on the marked (Thomas et al. 1998; 

Sørensen et al. 2011) e.g. starches from different plant sources, modified starches, 

lignin sulfonate, synthetic binders and gluten based binders. Except for gluten and to 

some extent starch, they all have low to zero nutritional value.  

In the work on developing a protein based marine binder with high nutritional value 

(Samuelsen & Oterhals 2000) a competitor analysis was performed (Samuelsen, 

Nofima, unpublished results) with different binders incorporated in a control feed. 

The feed was composed of 450 g kg-1 DM protein, 120 g kg-1 DM carbohydrate, 320 g 

kg-1 DM lipids and 111 g kg-1 DM ash. The ingredients used were blue whiting fish 

meal (Norse-LT 94; Norsildmel AS, Bergen, Norway), baking quality whole wheat 

flour (Norgesmøllene AS, Vaksdal, Norway) and fish oil (NorSalmOil; Norsildmel 

AS). The binders (Table 4) where incorporated in the feed at the levels given in Table 

4.  
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Table 4: Type of binders and levels used in the competitor analysis 

Type of binder 
Level 1 1  

g kg-1 

Level 21  

g kg-1 

Tapioca 202 502 

Modified potato starch 202 502 

Modified corn starch 202 502 

Spray dried water-soluble protein 503  

Corn gluten 503  

Wheat gluten 503  

Lignin sulfonate 52,4 102,4 

Synthetic (polyvinylpyrrolidone) 102,4 202,4 
1 g kg-1 of binder based on finished feed (300 g kg-1 lipid and 70 g kg-1 moisture on wet basis).  
2 Whole wheat flour reduced and replaced with chosen level of the starch based, lignin sulfonate or 

synthetic binder. 
3 Fishmeal reduced and replaced with equivalent amount of protein based binder. The binders are 

digestible and only one level was used. 
4 Lignin sulfonate and synthetic binder are non-digestible and the recommended levels given from the 

suppliers are used. 

 
The marine binder was based on a spray-dried WSP fraction from herring. Each of 

the 14 feed mixes where processed with standardized extrusion, drying and coating 

conditions by use of the same processing equipment and extruder screw profile as 

used in Paper I. The calibrated feed rate was 150 kg h-1 with a standardized moisture 

level at 192 g kg-1 (wet basis) in the DDC and 260 g kg-1 (wet basis) in the extruder. 

The wet extrudates were dried at 80 °C to approximate 70 g kg-1 (wet basis) and 

coated with NorSalmOil to approximate 300 g kg-1 (wet basis) prior to measurements 

of durability and hardness as defined in chapter 7.3.2. 

Fig. 7 shows the results from the competitor analysis. In the hardness vs. durability 

plot (Fig. 7) the potential of a WSP based binder is shown with an effect near that of 

modified corn starch and the synthetic binder (polyvinylpyrrolidone), but slightly 

lower than modified potato starch, tapioca (50 g kg-1) and lignin sulfonate. Of the 

three protein based binders (WSP, corn and wheat gluten) WSP gave the best result 

relative to the control diet. There is a linear relationship between the two physical 
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quality tests (r2 = 0.690, P < 0.001) with only 20 g kg-1 tapioca and 10 g kg-1 lignin 

sulfonate deviating from the straight line. 

 

Figure 7: Hardness vs. durability for the control feed (Control) and 13 feeds with 

different types and levels of binders. Markers represent level (g kg-1) and type of 

binder. The circle marker encloses binders comparable with spray-dried water-soluble 

protein (WSP). Lignin, lignin sulfonate; Mod corn, modified corn starch; Mod potato, 

modified potato starch; Synthetic, polyvinylpyrrolidone. 

An important outcome for the scientific work presented in this thesis is to establish 

plausible explanations for the underlying mechanisms behind the binding effect of 

WSP. 
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5. Phase transitions and plasticizers 

5.1 Phase transitions  

The glass transition of an amorphous solid is a temperature range where the solid 

transits from a brittle glassy to a soft rubbery state. The transition is a function of 

temperature, time, molecular weight, composition, water activity and moisture 

content. During the transition a smooth change in heat capacity and coefficient of 

expansion is observed (Abiad et al. 2009). The glass transition temperature (Tg) is 

most often defined as the inflection or midpoint of the transition range, but sometimes 

the onset temperature where the change start is used (Abiad et al. 2009). The rubbery 

polymer reaches a state where it can be considered as a highly viscous melt when 

heated above Tg. The melt or flow-starting temperature (Tf) can be defined as the 

temperature where a melt starts to flow through a capillary die at a constant pressure 

(Fujio et al. 1991).  

5.2 Plasticizers 

The extrusion process involves plasticization of the biopolymers into a flowable melt 

and establishment of new intermolecular bindings in the biopolymer matrix. To 

reduce the plasticization temperature, which will increase flowability and cooking 

efficiency a plasticizer is added. A plasticizer is a low molecular weight compound 

incorporated into an amorphous solid with the aim to depress both Tg and Tf by 1) 

increasing the free volume and freedom for motion of polymer molecules, 2) 

disruption of polymer-polymer interactions forces and 3) lubricating to facilitate 

movements of the macromolecules (Abiad et al. 2009; Cuq et al. 1998; Fujio et al. 

1991; Igura et al. 1997; di Gioia & Guilbert 1999). In the extrusion process the added 

plasticizers interpose themselves between the biopolymers at elevated temperatures 

transforming the mix from a rubbery state (>Tg) to a free flowing melt (≥Tf) upstream 

the extruder die. The wet soft and rubbery extrudate leaving the extruder is then dried 

and cooled down below Tg to a hard crushable product. The most important 



 42 

plasticizer in food and feed systems is water (Roos 1995), which is widely used and 

studied in the extrusion process (Meuser et al. 1984; Bhattacharya & Hanna 1987; 

Alvarez-Martinez et al. 1988; Della Valle et al. 1989; Wang et al. 1992; Akdogan 

1996; Blanche & Sun 2004). Other common plasticizers that can be of hydrophilic, 

hydrophobic or amphiphilic nature include polyols (Pouplin et al. 1999), sugars 

(Carvalho & Mitchell 2001), organic acids (Pommet et al. 2005), fatty acids (Pommet 

et al. 2003; di Gioia & Guilbert 1999), amines (Irissin-Mangata et al. 2001) and 

mono-diglyceride esters (di Gioia & Guilbert 1999). They have been studied in 

relation to bio-plastic formulations, but none of these are to our knowledge used in 

the feed industry, due to lack of nutritional value or formulation constraints. Amino 

acids in combination with glycerol are found to plasticize starch-based biodegradable 

plastics (Stein & Greene 1997; Stein et al. 1999). The plasticizing effect of fishmeal 

water solubles was documented in Paper III and IV, with a significant reduction of 

both Tg and Tf in feed extrudates and fishmeal. 

5.3 Models for prediction of the glass transition 
temperature  

A feed mix consists of a mixture of polymers with different sequential arrangements, 

a wide range of interactions and molecular sizes and may exhibit one or several glass 

transition temperatures or a broad glass transition range. Several models and 

equations have been proposed to predict Tg in such systems (Abiad et al. 2009). 

The glass transition of a binary amorphous polymer mixture can be described by the 

Gordon-Taylor equation (Gordon & Taylor 1952): 

 

where Tg is the glass transition temperature of the mixture, xi is the weight fraction 

and Tgi is the glass transition temperature of the component i (1 = diluent or 

plasticizer and 2 = amorphous polymer), and K is a function of the coefficient of 

expansion of the components as they change from the glassy to the rubbery state 



 43 

(Bengoechea et al. 2007; Abiad et al. 2009). The equation is based on the assumption 

of ideal volume additivity and that the change in volume is linear. The plasticization 

effect of solubles addition to fishmeal can be predicted by use of this equation (Paper 

IV). 

Couchman & Karasz (1978) proposed an equation to predict the transition 

temperature of amorphous polymer mixtures by the assumption that the transition is a 

thermodynamic effect: 

 

where Tg is the glass transition temperature of the mixture, xi is the molar fraction (or 

weight fraction), and Tgi is the glass transition temperature of the component i and 

∆Cpi is the change in heat capacity (molar or weight) for component i at Tg (Rouilli et 

al. 2001; Abiad et al. 2009). The K value in Eq. 1 is equal to  , which gives Eq. 2 

= Eq. 1 (Couchman & Karasz 1978). Exact ∆Cp values are difficult to obtain 

experimentally (Roos 1995). 

5.4 Measurement techniques 

Several techniques have been developed to measure Tg in amorphous polymers 

(Abiad et al. 2009) with differential scanning calorimetry as the most widely applied 

method. The principle for this method is that when a sample undergoes a phase 

change the sample requires more heat to increase its temperature at the same rate as a 

reference sample. This is due to the absorption of heat as it undergoes the 

endothermic phase transition from glass to rubber (Abiad et al. 2009; Kaletunç 2009). 

The heat capacity change (∆Cp; Eq. 2) can be measured and Tg is defined as the 

midpoint/inflection point of this change (Rouilli et al. 2001; Bengoechea et al. 2007; 

Kaletunç 2009). 

Most foods, feeds, dough and melted materials are both solids and liquids. They are 

called viscoelastic because they simultaneously exhibit some of the elastic properties 
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of an ideal solid and some of the flow properties of and ideal liquid (Schramm 2000; 

Bourne 2002). Dynamic mechanical analysis is a thermal analysis technique that 

measures the viscoelastic behaviour of materials as they are deformed under periodic 

stress during heating (Woo et al. 1994). The principle is that an oscillation sinusoidal 

strain deformation is applied and the resulting sinusoidal stress response is measured. 

The phase difference is combined with the amplitude of the stress and strain waves to 

determine material parameters as storage (E’, elastic) and loss (E’’, viscous) modulus 

(Schramm 2000). Due to the increase in molecular mobility during the glass to rubber 

transition a sharp fall in E’ and a maximum in E’’ is observed. Tg can then be defined 

as the temperature where the maximum in or E’’ is observed (Bengoechea et al. 

2007).  

An alternative method is closed-chamber capillary rheometry, which enables the 

measure of both Tg and Tf at elevated moisture levels and high pressure and 

temperatures (Fujio et al. 1991; Igura et al. 1997). The method reflects the softening 

of the material and resistance to flow through a die encountered in the extrusion 

process. The Phase Transition Analyzer (Wenger Manufacturing Inc., Sabetha, KS, 

USA; Strahm et al. 2000) is a closed-chamber capillary rheometer developed for this 

purpose (see chapter 7.3.3). As pressure has minor effect on Tg (Bianchi 1965; 1971) 

the technique gives Tg values consistent with the information obtained from 

differential scanning calorimetry and dynamic mechanical thermal analysis 

(Bengoechea et al. 2007). The Phase Transition Analyzer (PTA) was used to measure 

Tg and Tf in extrudates in Paper III and fishmeal in Paper IV.  
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6. Feed melt rheology  

6.1 Melt viscosity  

Viscosity  is the main measure of resistance to flow and can be expressed as: 

                                   (3) 

Where is the shear stress and is the shear rate. If the viscosity is constant and 

independent of the shear rate it is defined as a Newtonian liquid. Melted biopolymers 

are non-Newtonian and show a pseudoplastic behaviour. It means that the viscosity 

decreases with an increasing shear rate (shear tinning). When a pseudoplastic melt is 

at rest it maintains a minimum energy state and will have a high resistance against 

flow (high viscosity). With increasing shear the molecules will orientate in parallel to 

the driving force allowing the molecules to slip past each other more easily i.e. 

viscosity is reduced (Schramm 2000). A pseudoplastic melt can be fitted to the power 

law model as shown in the following equation (Vergnes et al. 1987; Bourne 2002): 

                                                                                                           (4) 

Where K is the consistency index and n is the flow behaviour index (dimensionless). 

For shear thinning fluids, 0<n<1, the closer to zero the more shear thinning is the 

fluid. If n = 1, constant viscosity is obtained (Newtonian liquid). Viscosity can be 

measured in molten materials by use of capillary rheometry (Vergnes et al. 1987; 

Schramm 2000; Paper IV). Calculations can be performed with or without corrections 

(true or apparent viscosity; apparent = calculations on a non-Newtonian fluid as it 

was a Newtonian liquid).  

The viscosity of a polymer in the glassy state is above 1012 Pa s and is dramatically 

reduced during the transition from glass to rubber and further into a high viscous melt 

(Roos 1995). As an example, the apparent viscosity at Tf for fishmeal was estimated 

in the range of 3-8 x 105 Pa s (Paper IV). The temperature dependence of viscosity at 
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Tg to Tg+100 °C can be described by the Williams-Landel-Ferry (WLF) equation 

(Williams et al. 1955): 

 

where (T) and (Tg) are viscosity at temperature T, and the selected reference 

temperature Tg, respectively. The parameters C1 and C2 are not universal for food 

systems and they are highly dependent on type of biopolymer and conditions such as 

moisture content and water activity (Roos 1995; Matveev et al. 1999; Yildiz & 

Kokini 2001; Abiad et al. 2009). For fishmeal the parameters, C1 and C2, were 

dependent on both moisture content and water solubles level (Paper IV). 

6.2 Melt homogeneity 

A low level of plasticizers and/or moisture and/or low SME in the extruder barrel 

may give improper cooking or transformation of the feed mix with particles still 

intact in the feed melt upstream the extruder die (Fig. 8). If the amount of the solid 

particles suspended in the fluid-like melt is high this will give improper flow and no 

final structure is possible (Arêas 1992). Lack of homogeneity is the major reason for 

the difficulty in understanding the rheology of biopolymer melts (Mitchell & Arêas 

1992). Studies on heterogeneity in extrudates have been reported for starch rich 

systems. Farhat et al. (2003) extruded blends of amylopectin and sucrose at relatively 

low SME and temperature. They documented that these conditions resulted in non-

homogenous melt within the extruder barrel that resulted in heterogeneous pellets. 

This is consistent with Chuang & Yeh (2004) who found that low degree of starch 

gelatinization resulted in the presence of particulates in the extrudate. In Paper I and 

II a negative effect on physical feed quality was observed with increased level of the 

non-soluble protein in fishmeal. This could be explained by a reduced level of 

efficient plasticizers (i.e., lack of fishmeal water solubles). One of the main reasons 

for the large variation in physical feed quality documented in Paper I and II can be 

the degree of unmelted solid particles in the extrudates, which depends both on the 
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water soluble/non-soluble protein ratio, the thermal properties of the non-soluble 

protein fraction and the amount of effective plasticizing compounds in the water 

soluble phase. 

 

 

Figure 8: Improper cooked feed melt with particles to the left (heterogeneous). 

Homogeneous feed melt where all particles are transformed to the right (after 

Mitchell & Arêas 1992). 

6.3 Specific mechanical energy 

The SME (Wh kg-1 or kJ kg-1) is a measure of the work input from the extruder motor 

to the material per unit mass and could be defined as (Akdogan 1996):  

 

The energy is mainly converted into heat in the material through viscous dissipation 

and is the most important contribution to the energy input in the extruder barrel 

(Godavarti & Karwe 1997; Della Valle et al. 1989). 

SME is a measure of the sum of the total mechanical energy dissipated over the total 

length of the screw (Akdogan 1996) and increases with increasing torque and/or 

screw speed and decreasing flow rate (Eq. 6). Motor torque can be increased by 

changing transport elements to elements that increases mixing and backflow (i.e. 
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reverse screw, kneading elements and cut flight screws) or by use of a mid-barrel 

restriction or back-pressure regulation (Della Valle et al. 1993; Hauck & Wenger 

2004; Rokey & Plattner 2009). If screw design, screw speed and mass flow rate are 

standardized, an increase in motor torque and consequently an increase SME, reflects 

an increase in the viscosity of the feed mass (Bhattacharya & Hanna 1987; Akdogan 

1996). Moisture and temperature are the two most important factors affecting 

viscosity, with decreasing values at increased moisture and temperature (Meuser et 

al. 1984; Bhattacharya & Hanna 1987; Della Valle et al. 1989; Akdogan 1996; Paper 

III). In Paper III it was shown that while increased moisture had a negative effect on 

SME, an increase in WSP gave the opposite effect, caused by the much higher 

viscosity of WSP compared to moisture and differences in biopolymer interactions. 

Biopolymers show pseudoplastic behaviour, and a lower n (Eq. 4) means higher 

viscosity reduction with increased shear. As the viscosity drops, the motor torque 

needed to rotate a segment of the screw will decrease, and the heat generated from 

this part of the screw will therefore be reduced. Opposite, biopolymers with high n 

are less shear thinning and will likely generate more heat through viscous dissipation. 

The studied fishmeal model system in Paper IV showed a large composition region of 

WSP and moisture with a higher difference between Tf and TgMid than for other 

reported protein components (i.e. casein, gluten and soya protein isolate; Bengoechea 

et al. 2007). This indicates a reduced temperature effect on viscosity reduction in the 

rubbery phase for fishmeal in this region and will consequently also generate more 

heat in the extruder barrel. For starches or mixes containing starch based ingredients 

the melt viscosity increases with higher degree of starch gelatinization (pasting) with 

resulting positive contribution to SME (Appelqvist & Debet 1997; Liu 2005; Tan et 

al. 2008). The study reported in Paper I indicate that increased level of small and 

fibrous particles in the feed mix increased SME, probably due to increased particle to 

particle contact and friction. 
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6.4 Extrudate expansion 

Expansion is an important parameter in fish feed extrusion. For high energy fish feed 

most of the oil has to be added to the texturized product after drying. This means that 

the product has to be expanded and porous enough to adsorb the correct amount of 

oil, but at the same time dense enough to sink (Fig. 9). The extrudate will expand 

both in a radial and longitudinal direction (Alvarez-Martinez et al. 1988). Since pellet 

length is controlled and defined by the knife cutting speed, radial expansion is the 

most important parameter in fish feed extrusion. Bulk density is negatively correlated 

to both radial and longitudinal expansion and to oil adsorption capacity (Alvarez-

Martinez et al. 1988; Draganovic et al. 2011; Paper III).  

 

 

   

Figure 9. Expanded porous fish feed pellet after drying (lower right) and further 

coating (upper left) (Jon-Are Berg-Jacobsen, Nofima). 

The mechanism of expansion can be explained by the following: Upstream the 

extruder die, because of elevated temperature and pressure, moisture is in its liquid 

state in the feed melt. When leaving the extruder die the melt enters atmospheric 

conditions and steam flashes off. This process creates bubbles by nucleation of steam 

in the feed melt. Because of high steam pressure, the bubbles will rupture through the 
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cell walls and an open porous structure in the extrudate is formed. During the flash of 

steam there will be a sudden decrease in extrudate moisture and temperature, which 

will dramatically change the viscoelastic properties (Fan et al. 1994). As steam 

pressure is the main driving force for feed melt expansion, expansion can be 

increased with higher steam flashing rate, i.e. increase in temperature upstream the 

extruder die (Tdie, Paper III). Expansion will also be controlled by viscoelastic 

properties, by the viscosity of the extrudate at die exit and by die configuration (Fan 

et al. 1994; Faller et al. 1995; Arhaliass et al. 2003).  

Fan et al. (1994) proposed a model for extrudate expansion based on a combination 

of the power law model (Eq. 4) and the WLF equation (Eq. 5) and showed that cell 

wall movements and bubble growth can start to occur at 30 °C above Tg with typical 

shear rates of 10-2 to 5.0 s-1 and critical viscosity levels of 107 to 108 Pa s. Opposite, 

for fixation of structure the extrudate during cooling must reach a viscosity higher 

than the proposed critical viscosity range. Strahm et al. (2000) have used PTA data to 

explain extrudate expansion, fixation or collapse of structure in starch based 

extrudates. They found a linear relationship between expansion and the temperature 

difference between Tdie and Tf, with the exception of some samples where the 

structure collapsed. The linear relationship could be explained by a larger driving 

force for expansion with higher temperature difference and cooling to a temperature 

below Tf at the extruder die exit for fixation of structure. Structure collapse was 

explained by a moisture level and temperature in the expanded extrudate near or 

above Tf.  Blanche & Sun (2004) observed a negatively linear relationship between 

bulk density and the temperature difference between Tdie and moisturized native 

starch melting temperature (measured by use of differential scanning calorimetry). 

However, the results were also affected by mechanical shearing. The apparent 

viscosity at Tf for fishmeal (3-8 x 105 Pa s at shear rates of 0.1 to 0.6 s-1; Paper IV) is 

below the critical viscosity level for bubble growth and a negative relationship 

between bulk density and the temperature difference between Tdie and Tf was also 

found for fish feed extrudates (Paper III). However, more information is needed to 

verify if such simplified expansion models can be used or not.    
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7. Experimental and analytical approaches 

7.1 Production of experimental fishmeal batches 

The fish meal batches used in Paper I were produced from fresh (TVN = 16 to 23 mg 

N 100 g-1) Norwegian spring spawning herring (Clupea harengus) at three different 

fishmeal factories in Norway (A, B and C) in accordance with the specifications for 

high quality fish meal (Schmidtsdorff 1995). The factories were selected to cover the 

types of drying technology applied at Norwegian fishmeal factories including a large 

scale test facility based on flash-drying technology (Table 1, Høstmark et al. 2001). 

The content of WSP was adjusted by varying the ratio of press cake to stickwater 

concentrate prior to drying. In addition, at factory A, and used in Paper II, five 

independent fish meal batches were produced from fresh (TVN = 17 to 39 mg N 100 

g-1) sand eel (Ammodytes tobianus and Ammodytes marinus). The variation in WSP 

content for the five sand eel meals was caused by the natural variation of endogenous 

protease activity in the raw material due to different content of feed (zooplankton) in 

the stomach and gut. The batches were ground (Table 1) prior to analyses and feed 

mix preparation.  

The fish meal batches used in Paper III and IV was based on blue whiting 

(Micromesistius poutassou) raw material caught by one fishing vessel and preserved 

on board by a combination of acetic acid addition (2 g kg-1) and chilling by 

circulation of fresh/seawater mixture. Hot air dried press cake, hot air dried normal 

fishmeal and stickwater concentrate were obtained from a Norwegian fishmeal 

factory (D). The fish was of high and consistent quality (TVN = 33 to 34 mg N 100 g-

1) during the production period. For the experimental work in Paper III a third 

fishmeal with high WSP content was produced by mixing of stickwater concentrate in 

the normal fishmeal and thereafter dried in a Forberg FT-200 pilot scale air dryer 

(Forberg AS, Larvik, Norway). The three fishmeal batches were ground in a hammer 

mill (Jesma-Matador AS, Vejle, Denmark) to a particle size <1.00 mm prior to the 

preparation of the feed mixes. For the study in Paper IV, five experimental fishmeal 

samples were prepared in laboratory scale by addition of the stickwater concentrate to 
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the press cake meal in a kitchen blender, followed by drying in a hot air Retsch TG1 

fluid bed dryer (Retsch GmbH, Haan, Germany) at 70 ± 3 °C. The fishmeal samples 

were thereafter ground on a Retsch ZM-1 Centrifugal Mill (Retsch GmbH, Haan, 

Germany) with ring sieve aperture 0.5 mm. Prior to measurements, the water content 

in the five experimental fishmeal samples was adjusted to fit a 2-factor central 

composite design as reported in Paper IV. 

7.2 Production of experimental feeds 

All production steps were performed at Nofima Feed Technology Centre in Bergen. 

The feed mixes were prepared and homogenized (30 min) using a horizontal mixer 

(Wolfking, William Jensen Maskinfabrik, Slagelse, Denmark). All powdery 

ingredients, oil (Paper I and II) and water (Paper III) were added in the mixing step. 

To secure even partitioning and adsorption into the feed matrix oil or water was 

sprayed homogeneously into the feed mixes at least 24 hours before processing. The 

feed mixes used in Paper I and II where processed according to pre-defined and 

standardized extrusion, drying and coating conditions developed with the purpose of 

ingredient screening. In Paper III a setup adapted for the production of high energy 

salmon feed was used. All feed mixes used in Paper I, II and III were calibrated to 

150 kg h-1 prior to preconditioning in a DDC (Wenger Manufacturing Inc., Sabetha, 

KS, USA) followed by extrusion on a TX-52 co-rotating, fully intermeshing, pilot 

scale twin-screw extruder (Wenger; Fig. 10) as described in the respective papers. 

Two different extruder screw profiles were used and defined as the low shear profile 

(Fig. 11a, Table 5; Paper I and II) and the high shear profile (Fig. 11b, Table 5; Paper 

II and III). The differences of the profiles can be seen in head 6 and 7 where transport 

elements are replaced by reverse kneading elements and cut flight on the final cone 

screw (Fig 11, Table 5).  
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Figure 10. Rolf Egil Myrmel operating the Wenger extrusion system at Nofima Feed 

Technology Centre in Bergen. 

Extruder torque was recorded during processing and SME (Paper I to III), specific 

thermal energy, throughput and moisture content behind the extruder die (Paper III) 

were calculated according to Riaz (2000) and by use of Wenger Extruder Analysis 

Software (Wenger).  

 

In Paper I and II the wet extrudates leaving the extruder were dried in a pilot scale hot 

air dual layer carousel dryer (Model 200.2; Paul Klöckner GmbH, Nistertal, 

Germany) and coated with fish oil in a rotating coating reel (Model SU 145L; 

Susemihl GmbH, Neu-Ansprach, Germany). In Paper III the wet extrudates were 

dried in a laboratory scale fluid bed dryer (Model Retsch TG1; Retsch GmbH, Haan, 

Germany) prior to analysis.   
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a) 

b) 

Figure 11: Used screw configurations a) low shear profile and b) high shear profile. 
 

Table 5: Description of elements 
Low shear profile High shear profile 

Length1 

(mm) 

Description of elements2 

(inlet to outlet) 

Length1 

(mm) 

Description of elements2 

(inlet to outlet) 

156 Full pitch, single flight /full pitch, 

double flight  

156 Full pitch, single flight /full pitch, double 

flight 

52 ¾ pitch, double flight 52 ¾ pitch, double flight 

52 Kneading, forward conveying 52 Kneading, forward conveying 

78 Full pitch, double flight 78 Full pitch, double flight 

26 Kneading, forward conveying 26 Kneading, forward conveying 

130 Full pitch, double flight 130 Full pitch, double flight 

52 Kneading, forward conveying 52 Kneading, forward conveying 

78 Full pitch, double flight 78 Full pitch, double flight 

286 ¾ pitch, double flight 156 ¾ pitch, double flight 

73 ¾ pitch, double flight, cone screw 26 Kneading, backward conveying 

 - 78 ½ pitch, doubled flight 

 - 26 Kneading, backward conveying 

 - 73 ¾ pitch, double flight, cut flight, cone screw 
1 Total screw length is 983 mm. 
2 Screw diameter is 52 mm. Full pitch equals to 1 x diameter. 
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7.3 Applied analytical methods 

7.3.1 Physical and chemical analyses 

The following analytical methods have been applied to assess the physical properties 

and chemical composition of the materials studied in the respective papers. 

Analytical method Reference Paper 

Flow-figure Høstmark 1985, Paper I Paper I, II 

Bulk density ISO 5311, Paper I Paper I, II 

Oil adsorption capacity Li & Lee 1996 Paper I, II 

Water-holding capacity Artz et al. 1990 Paper I, II 

Particles size distribution AOAC method 965.22, Paper I Paper I, II 

pH Paper I Paper I, II 

Dry matter ISO 6496 Paper I, II, III, IV 

Water soluble dry matter Paper IV Paper IV 

Crude protein 

(Kjeldahl/Dumas) 

ISO 5983-2 / AOAC method 

990.03 

Paper I, II, III, IV 

Water-soluble protein Paper I and IV, ISO 5983-2 Paper I, II, III, IV 

Peptide size distribution Wang-Andersen & Haugsgjerd 

2011, Paper I and IV 

Paper I, II, IV 

Degree of protein hydrolysis Adler-Nissen 1979 Paper I, II 

Total amino acid composition Cohen & Michaud 1993 Paper IV 

Cysteine and cystine Cohen & Michaud 1993, Paper 

IV 

Paper IV 

Tryptophan Miller 1967 Paper IV 

Free amino acids Bidlingmeyer et al. 1967 Paper IV 

Lipid AOCS method Ba 3-38  Paper I, II, III, IV 

Lipid in stickwater concentrate  NS 9402 Paper IV 

Total ash ISO 5984 Paper I, II, III, IV 

Salt (NaCl) AOAC method 937.09 Paper I, II, III, IV 

Total volatile nitrogen AOAC method 920.03 Paper I, II, III, IV 

Ammonia Conway & Byrne 1933 Paper IV 

Trimethylamine  Conway & Byrne 1933 Paper IV 

Trimethylamine N-oxide Conway & Byrne 1933 Paper IV 
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Biogenic amines (cadaverine, 

histamine, putrescine) 

Mietz & Karmas 1978 Paper IV 

Total starch and starch 

gelatinization 

Chiang & Johnson (1977), 

Paper III 

Paper I, II, III 

7.3.2  Analyses of pellet properties 

The following analytical methods have been applied to assess the extruded pellet 

properties. 

Durability, hardness and cutting strength 
Durability was measured on coated pellets in a Holmen pellet tester (Fig. 12; Holmen 

Feed Technology, Berkshire, UK) as described in Paper I. The test simulates 

pneumatic transport by conveying a pellet sample around in a closed circuit by a high 

velocity air stream for a predefined time. After the test cycle, the amount of pellets 

remaining is measured, and durability expressed as the weight-percentage of pellets 

retained.  The method was used on pellets reported in Paper I and II. 

 

Figure 12: Holmen pellet tester. 
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A hardness tester measures the mechanical resistance of the pellet. In Paper I and II, 

hardness was measured on coated pellets by use of a Pharma Test PTB 311 (Fig 13; 

Apparatebau AG, Hainburg, Germany). The measurement was performed on single 

laying pellets with the force applied on the diametrically side. In Paper III, hardness 

was measured on single standing pellets by use of a texture analyser (TA-HDi; Stable 

Micro Systems Ltd., Surrey, UK) equipped with a cylindrical flat-ended probe (Fig. 

14) as described in Paper III. The measurement was performed on uncoated pellets. 

The texture analyser is a newer and more advanced instrument than the Pharma Test 

PTB 311 with several applications and possibility to use different probes, and it was 

therefore the preferred instrument for the study reported in Paper III. For both 

methods, pellets with curved ends were abraded carefully with sandpaper (P120) to a 

flat-ended cylindrical shape before measurements and the peak force before breakage 

was used as the value for hardness (expressed in Newton).  

 

Figure 13: Pharma Test PTB 311. Measuring chamber with pellet to the right. 
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Figure 14: Texture analyser (TA-HDi) equipped with a cylindrical flat-ended probe. 

Extended craft knife to the right. 

In Paper III, a method called cutting strength was introduced. The measurements 

were performed on single uncoated lying pellets by use of an extended craft knife 

(Fig. 14) mounted on the texture analyser and as described in Paper III. The knife 

penetrated the pellet cross-sectionally and the maximum cutting strength in Newton 

was recorded. 

In Paper I and II the correlation between durability and hardness is discussed. Based 

on the conclusion from Paper I and II durability was not performed in the study 

reported in Paper III. In this paper cutting strength was introduced and discussed and 

compared to hardness.  
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Diameter, length, bulk density and oil adsorption capacity 
Diameter, length, bulk density and oil adsorption capacity were performed on 

uncoated pellet reported in Paper III.  

Diameter and length were measured with an electronic calliper. Diameter was 

expressed as sectional expansion index (SEI) defined in Eq. 1 in Paper III.  

Bulk density was measured by loose pouring the uncoated pellets from a funnel into a 

1000 ml measuring cylinder and the weight was recorded.  

Oil adsorption capacity was measured using a lab-scale vacuum coater custom made 

by Nofima (Fig. 15) and the method described in Paper III.  

The relationship between the different measurements is discussed in Paper III. 

 

Figure 15: Lab-scale vacuum coater. 
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7.3.3 Determination of transition temperatures and viscosity in 
rubbery phase 

The Tg and Tf (Paper III and IV) were measured by use of a Phase Transition 

Analyzer (PTA; Wenger Manufacturing Inc., Sabetha, KS, USA; Fig. 16). In the PTA 

compaction and flow relative to an initial sample height at constant pressure and at 

increasing temperature was measured by use of a displacement transducer.  

 

Figure 16: The phase transition analyser with sample bar to the lower right.  

The sample bar (Fig. 16) was slid into the PTA and a 1.7 g sample was transferred to 

a cylindrical chamber which was sealed in the bottom by the sample bar. A piston 

connected to a pressure transducer was mounted at the top of the sample. The sample 

was compressed at 120 bars for fifteen seconds. The pressure was thereafter reduced 

to 100 bars and held constant through the test. The sample was heated at 8 °C min-1 

(range, 3.6 to 180 ºC) and softening and compaction were measured by a 

displacement transducer. After complete compaction of the sample, the pressure was 

released and the blank die replaced with a die opening of 1.75 mm. The sample was 

compressed to 100 bars and heating continued at 8 °C min-1 until a mass flow was 

registered through the die opening by the displacement transducer (Fig. 17 and 18).  
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With use of the Gordon-Taylor equation (Eq. 1) the dependency of moisture content 

and water soluble level on TgMid can be modelled with values comparable to the 

measured TgMid values based on PTA (Paper IV).  

 

Figure 17: Typical displacement curve as a function of temperature at constant 

pressure. a) Glass transition temperature (Tg or TgMid) defined as the inflection point of 

the steepest displacement slope of the glass transition temperature range. b) Complete 

compaction or endpoint of the glass transition range (TgEnd). c) Flow starting 

temperature (Tf) defined as the temperature level at which the mass starts to flow 

through the die opening. Discontinuity in the graph at TgEnd is caused by the 

replacement of the blank die with a die opening of 1.75 mm. 
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Figure 18: Sample compaction and flow during measurement. Blank die (left) 

replaced with a die opening of 1.75 mm (right) (with permission from Wenger).  

The observed initial displacement speed at Tf for the samples reported in Paper IV 

was shown to be linear in the first 10 to 15 seconds and the PTA instrument could 

therefore be used as a constant pressure capillary viscometer. This enable us to 

calculate the apparent wall shear stress ( ), wall shear rate ( ) and viscosity 

( ) at Tf based on equation 1, 2 and 3 reported in Paper IV.  

With the use of the WLF equation (Eq. 5) and the measured values for TgMid, Tf  and 

viscosity at Tf, the dependency of moisture content and solubles level on the 

parameters C1 and C2 in equation 5 and the effect of temperature increase on viscosity 

reduction can be studied (Paper IV). 

Apparent viscosity can also be calculated in extruder dies based on die pressure and 

mass flow rate and by use of equation 1, 2 and 3 reported in Paper IV (Della Valle et 

al. 1994). In Paper III the pressure in the last barrel head of the extruder was 

measured during extrusion but we were uncertain of the correctness of the 

measurements. A feed melt plugging of the space between the extruder barrel surface 

and the pressure sensor was observed and we therefore chose not to include pressure 

readings and such calculations in Paper III. 
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7.4 Multivariate methods 

The extrusion process is a multivariate system where the physicochemical properties 

of the ingredients, process variables and screw configurations all have an effect on 

physical product quality. For fish feed the product quality also has to be characterised 

by several methods to confirm that the feed meets target requirements (see chapter 2 

and 3.2.3). In this thesis several variables and responses has been studied and various 

multivariate methods been applied, such as principal component analysis (PCA) and 

partial least squares regression (PLSR) in Paper I to III and multiple linear regression 

(MLR) in Paper III and IV. In Paper I and II the investigations was designed to cover 

the variability in fishmeal physicochemical properties possible to obtain in 

commercial fishmeal processing. In Paper III and IV the experimental variables were 

investigated by use of factorial and central composite design.   

7.4.1 Principal component analysis 

Principal component analysis (PCA) is a statistical technique where the original 

values in a data matrix are projected to latent variables called principal components 

(PCs). The PCA technique decompose the data matrix (X) to a sets of column (ti) and 

row ( ) vectors, which gives a presentation of the dominant structure of the original 

objects and variables in X. The first PC (PC1) seeks the direction of the highest 

variance in X or the direction that minimizes the residuals (E1) and can be written.  

 

Where t is the column or score vector and pT the row or loading vector. The loading 

vector defines the direction of PC1 relative to the original coordinate system and the 

score vector is the projection of the objects down to PC1. The second PC (PC2) is 

calculated from E1 by minimizing E2: 
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The same calculations can be repeated until the number of PCs equals the numbers of 

objects or variables (what comes first). The PCs are set orthogonal to each other (i.e. 

do not co-vary) and in a decreasing order of explained variance.  

Most of the variance in the data matrix is explained by the first two PCs. It is 

therefore most common to plot the score vector of PC1 against the score vector of the 

PC2 (score plot) and the loading vector of PC1 against the loading vector of the PC2 

(loading plot). The score plot gives a map of the relationships between the original 

objects and the loading plot the relationships between the original variables. The plots 

are excellent tools for studying correlation between variables, similarities or grouping 

of objects and the inter-relationships between objects and variables. 

Detailed description of the principles behind and the use of PCA are given in Wold et 

al. (1987); Martens & Martens (2001) and Esbensen (2006). 

7.4.2 Factorial and central composite design 

In a factorial design the influences of all experimental variables, factors and 

interaction effects on the responses are studied. The simplest form of such a design is 

a 2k factorial design where the factors or numbers of variables, k, are studied at two 

levels coded as -1 and 1. The variables can either be continuous (quantitative) or 

categorical (qualitative). As an example, a 22 factorial design requires a total of four 

experiments (corner points in Fig. 19) and can be described by the following 

mathematical model. 

Where y is the estimated response, x1 and x2 the predictor variables, β0 the intercept, 

β1, β2 and β12 the regression coefficients of each factor and the interaction term 

between them and ε the residual (error). If the factors are quantitative, a zero level 

(centre point in Fig. 19) can also be added to the design. At least three to five 

replications of centre points should be added. A 2k design assumes linearity in the 

factor effects. Adding centre points, it is possible to check for curvature and the 

repetition allows obtaining an independent estimate of error. If there is curvature in 
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the response function a second-order response surface model (quadratic model) 

should be considered. One of the most important designs for fitting a second-order 

response surface model is the central composite design (CCD). In this design axial 

points (star points) are added to the corner points and centre point. Fig. 19 illustrates 

a two factor rotatable central composite design where all the corner and star points 

are located on a circle around the centre.  

 

Figure 19: A graphical presentation of a two factor central composite design.  

The design allows us to estimate the intercept, linear terms, the interaction between 

variables and quadratic terms according to the following equation: 

The design gives us full rotatability, meaning that each experimental point contributes 

equally to the total information with the same precision in all directions from the 

centre. A two factor central composite design is used in Paper IV with three 

replications of centre points. In general, a rotatable CCD based on a full factorial 

design gives 2k factorial points, 2k star points and n centre points. The star points are 

situated in a distance from the centre according to: 
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In Paper III, a three factor CCD was used with 8 factorial points, 6 star points and 

with three replications of centre points (total of 17 experiments). With α equal to 1.68 

the corner (or cube) points and star points are all located on a sphere around the 

centre points and described by the following mathematical model. 

Detailed description of factorial and central composite design are given in Lundstedt 

et al. (1998) and Myers & Montgomery (2002). 

7.4.3 Multivariate regression techniques 

The first- and second-order response surface models described in Eq. 9, 10 and 12 is 

called multiple linear regression (MLR) models with two (Eq. 9, 10) or three (Eq. 12) 

independent variables (predictor variables). The models describe a plane in a two- or 

three-dimensional space. Regardless of the shape of the generated response surface 

(e.g. curvature) they are all MLR models because they are linear functions of the 

regression coefficients (β -values). Estimation of the β -values in MLR models is 

performed by use of the least squares methods. This method estimates the β -values so 

that the squares of the errors, , is minimized. In matrix notations a MLR model 

can be written as:  

y = Xb + E                                                                                                                (13) 

Where y is the vector of the response variables, X the matrix of the independent 

variables, b the vector of the regression coefficients and E the residual matrix. The 

least squares estimator of the β -values can be found by the following equation: 

b = (XTX)-1XTy                                                                                                         (14) 

The estimation of the β -values assumes that all the predictor variables are 

independent and rigorously controlled at a preselected level. The number of variables 
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must be less than the number of objects and all random variation is contained in the 

measured responses (i.e. the value of the predictor variables is assumed exact). The 

residuals must also be uncorrelated. In the case of non-designed experiments, 

covariance between the predictor variables or objects may give situations where XTX 

is not full rank and b will be poorly estimated. The solution to the above mention 

restrictions of MLR is to decompose into orthogonal latent variables (Kvalheim 

1990). A latent variable technique called principal component regression (PCR) 

decomposes the X-matrix to a lower number of PCs. Because of the orthogonality, 

the PCs are uncorrelated and the score matrix can be used as variables in MLR. The 

partial least squares regression (PLSR) technique is a similar but a more powerful 

technique than PCR. In PLSR the latent variables are extracted by an algorithm that 

links the X-matrix and the y-vector and seeks to explain as much of the common 

variance between them. In Paper I and II the number of predictor variables was 

greater than the number of objects and the studies were not based on factorial 

experimental designs. PLSR was therefore the preferred regression technique. PLSR 

was also used for extrudate samples reported in Paper III because the studied 

variables were not rigorously controlled by the preselected levels in the factorial 

design. All other findings reported in Paper III and IV was based on CCD and MLR.  

Variable selection is used to identify the best subset of predictor variables to be 

included in the model. By removing insignificant or unreliable variables these will 

improve prediction and often reduce the complexity of the model. In the MLR models 

reported in Paper III and IV the best subset of predictor variables included in the 

models were identified by use of backward elimination. First a model was built 

including all the predictor variables. By use of F-statistic, variables that contribute 

least to the predictions were then removed from the model one at a time. The 

stepwise removal of variables was guided by a threshold significance level set to P > 

0.05. The quality of the fitted models was evaluated using ANOVA, F-statistics, and 

coefficient of multiple determinations (r2).  

The PLSR models reported in Paper I, II and III were evaluated by leave-one-out 

cross-validation or full cross validation. In full cross validation the dataset is 
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partitioned into subsets that are set equal to the numbers of objects (N). A single 

subset, which in this case equals to one object, is selected as validation and the model 

is then calibrated without this object. From the applied model the predicted response, 

ŷi is calculated for the left out object. The procedure is repeated until all objects have 

been used as validation and the final model is evaluated from the residuals (yi - ŷi) of 

all objects combined. The uncertainty of the regression coefficients was estimated 

from the cross-validation and used for backward elimination of insignificant (P > 

0.05) variables. Higher P-value was accepted if the removed variable significantly 

decreased the model quality. Prediction ability and the optimal number of partial least 

squares components of the regression models were validated from the root mean 

square error of prediction (RMSEP(Y)) defined by:  

N

1i

2ˆ1
ii yy

N

Root mean square error of calibration (RMSEC(Y)) was calculated by the same 

formula (Eq. 15) but on the calibration residuals. Influence plots (residuals vs. 

leverage) and normal probability plots of studentized y-residuals were used for outlier 

detection. 

Prior to PCA and multivariate regression it is common to mean-centering and 

weighting the original variables. Mean-centering is performed by subtracting the 

mean from each entry of the variable. Weighting is important when the variables are 

represented in different units and some have large variance compared to others. An 

example is loose bulk density (standard deviation (SD) = 71) and pH (SD = 0.17) 

reported in Paper I. Without weighting, loose bulk density will dominate and pH will 

be poorly explained. An often used weighting method is standardization where each 

entry is divided by the standard deviation of the variable. With this treatment each 

variable will have the same SD equal to one. 

Detailed description of the different regression techniques are given in Geladi & 

Kowalski (1986); Kvalheim 1990; Martens & Martens (2001); Wold et al. (2001); 
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Myers & Montgomery (2002) and Esbensen (2006). A tutorial of variable selection in 

regression is found in Andersen & Bro (2010). 
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8. Summary and discussion of the main results 

8.1 Impact of herring meal properties on physical feed 
quality (Paper I) 

The objective of this study was to identify physical and chemical properties of 

herring meal (FMH) with significant impact on SME, starch gelatinization, pellet 

durability and pellet hardness. The aim was to span the range in fishmeal 

physicochemical properties possible to obtain in commercial fishmeal processing of 

herring raw material. Several analyses were performed on the produced FMH 

batches. In addition to standard chemical analyses such as dry matter, protein, fat, ash 

and salt, the batches were also analysed for pH, oil adsorption and water-holding 

capacity, degree of protein hydrolysis and WSP. The peptide size distribution in WSP 

fraction was also quantified. The non-soluble protein content was defined as the 

difference between crude protein and the WSP. Physical measurements such as 

particle size distribution, dust fraction, bulk density and flow-figure were also 

performed.  

Fifteen feed mixes were prepared, each containing one of the FMH batches as the 

only protein source. A standardized level of whole wheat flour was also added. The 

feed mixes also contained standardized level of fish oil, vitamin- and mineral 

mixtures and astaxanthin.  

The effects of variation in 18 physicochemical properties were assessed based on 

standardized extrusion, drying and coating conditions and resulted in a large span in 

the measured extruder and pellet response variables. SME varied from 9.0 to 21.0 Wh 

kg-1 and degree of starch gelatinization from 420 to 850 g kg-1 of total starch content. 

The correlated responses durability and hardness (P < 0.01) varied from 0 to 100% 

and 4.9 to 133.4 N, respectively. They were both uncorrelated to degree of starch 

gelatinization indicating that the applied glucoamylase methodology was not 

adequate for quantification of the binding properties of the starch molecules.  
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The correlation between the FMH variables and responses were studied by use of 

PCA, and PLSR models with high explained variance were established for SME, 

starch gelatinization and pellet hardness (r2 = 0.907 to 0.970). Several 

physicochemical fishmeal properties with significant (P < 0.05) impact on the 

response variables were identified and used to discuss the underlying physical and 

chemical mechanisms.   

Reduced fishmeal particle size combined with a higher value of flow-figure affected 

SME positively. Higher value of flow-figure indicates an increase in the content of 

fibrous and/or fine particles in the fish meal samples. Increased level of small and 

fibrous particles in the feed mixture will increase the particle to particle contact area 

within the extruder barrel and thereby the shear stress and SME. Reduced water-

holding capacity gave positive effect for both SME and starch gelatinization. Water-

holding capacity is the ability of the fishmeal to adsorb and retain water. Fishmeal 

particles will compete with starch particles regarding moisture uptake in the extrusion 

process. A fishmeal with low water-holding capacity will adsorb less moisture, and 

more water will thereby be available for the starch particles. This will result in 

improved gelatinization. Increased degree of protein hydrolysis gave positive effect 

for both SME and starch gelatinization. Degree of protein hydrolysis reflects the 

degree of protein breakdown. Small peptides and amino acids may have an additive 

plasticizing effect together with water and increased level in the feed mass may result 

in higher starch gelatinization. Combined, the water-holding capacity and degree of 

protein hydrolysis will improve the starch gelatinization (starch pasting) and thereby 

also increase the melt viscosity, with resulting positive contribution to SME.  

A positive effect of WSP on durability and hardness was observed in this study and 

may be explained by two different mechanisms 1) crosslinking of large water soluble 

polypeptides and 2) a plasticizing effect of smaller peptides and amino acids: 1) 

Stickwater from fresh herring has high gelatine content and the measured high 

molecular weight water soluble fractions in this study corresponded to fish gelatine. 

Gelatine readily swells and dissolves in the presence of water and heat. Upon cooling, 

gelatine cross-links and enhances texture formation. 2) Small water soluble peptides 
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and amino acids present in fishmeal contain both hydrophobic and hydrophilic 

residues and may interact with both the polar and nonpolar protein components. They 

may therefore, like water, be effective plasticizers. In contradiction, increased level of 

the non-soluble protein phase gave reduced durability and hardness. Increased level 

of non-soluble proteins is a result of reduced level of WSP and the observed negative 

effect may be attributed to the lack of efficient plasticizers (i.e., lack of small water 

soluble peptides and amino acids) in the feed mix. A high non-soluble protein level 

gives high amount of solid particles suspended in the fluid-like melt with a negative 

impact on durability and hardness.  

In addition it was observed that an increase in salt level combined with reduced pH 

value improved pellet durability and hardness. Proteins are charged molecules. In the 

low water content environment within the extruder barrel, electrostatic interactions 

will be important and influenced by soluble salts and pH.   

8.2 Influence of replacing herring meal with fishmeal from 
sand eel (Paper II) 

The purpose of this study was to investigate the impact of two types of fish raw 

material, i.e. herring and sand eel, on fishmeal physicochemical properties, SME, 

starch gelatinization and physical feed quality. Five independent fishmeal batches 

from sand eel (FMSE) were produced at one of the three factories reported in Paper I, 

and studied together with the six FMH batches produced at the same factory. The 

same analyses as for the FMH (confer chapter 8.1) were performed for the FMSE. 

The feed mix composition and the standardized extrusion, drying and coating 

conditions were similar for the FMSE as for the reported FMH. For one of the feed 

mixes based on a FMSE, an additional experiment was performed on a high shear 

screw profile, but with other conditions similar to the standardized experiments. 

The input variables were studied by use of PCA to identify the impact of fish species 

on fishmeal physicochemical properties. A clear difference in properties was 

documented with the FMSE and FMH groups separated by principal component 1. 
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The FMSE batches contained more hydrolysed WSP, more salt and fines (dust 

fraction), and were denser than the FMH batches. The FMH had higher level of large 

water soluble polypeptides, higher content of non-soluble protein and higher pH than 

the FMSE.  

A larger variation in both SME and starch gelatinization was observed for FMH (9.2 

to 19.3 Wh kg-1 and 560 to 840 g kg-1, respectively) compared to FMSE (11.8 to 15.1 

Wh kg-1 and 910 to 970 g kg-1, respectively), with SME positively correlated to starch 

gelatinization for both the FMH (P < 0.001) and FMSE (P < 0.053) samples. With 

the inclusion of type of raw material in the PLSR analysis a model could be 

established for starch gelatinization (r2 = 0.637). Improved degree of starch 

gelatinization was associated with increased degree of protein hydrolysis (P = 0.011) 

and by replacement of FMH with FMSE (category variables) in the feed mix (P = 

0.012). The positive effect of degree of protein hydrolysis can be attributed to the 

possible plasticizing effect of small peptides and amino acids. The category variables 

contain information related to starch gelatinization not uncovered by the applied 

analytical approach.  

The correlated responses durability and hardness (P < 0.001) varied from 0 to 100% 

and 4.9 to 94.1 N, respectively. A PLSR model with high explained variance were 

established for hardness (r2 = 0.929). Improved hardness was associated with 

decreased level of non-soluble protein (P < 0.001) and by replacement of FMSE with 

FMH (P < 0.001). Hardness was also found to be negatively correlated with the level 

of non-soluble protein for feeds containing FMH (P = 0.007) and FMSE (P < 0.001) 

respectively, with similar slopes but different intercepts. This means that at an equal 

level of WSP, extruded feed containing FMSE have significant lower physical quality 

than feed containing FMH. This can be attributed to differences in thermal and 

rheological properties between the two studied groups and improper cooking in the 

extruder barrel for FMSE based feed mixes. Improper cooking or transformation may 

result in increased level of particles in the extrudates and poor physical feed quality. 

Proper transformation of such feed mixes will demand that more mechanical energy 

(shear) is needed to reach the critical melt transition temperatures at a given moisture 
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level. An increase in durability (0 to 96%) and hardness (28.4 to 92.2 N) observed 

when replacing a low shear screw profile with a high shear screw profile for one of 

the FMSE supports this theory. For both raw materials, reduced level of non-soluble 

protein increased hardness. This can be attributed to the positive binding effects of 

increased level of WSP, which is in agreement with the findings in Paper I. 

8.3 Impact of water-soluble protein on extrusion behaviour 
(Paper III) 

The aim of this research was to document the effect of WSP as a plasticizer in the 

fish feed extrusion process and to assess effects of WSP level and steam and water 

addition on physical pellet quality. Five experimental feed mixes with increasing 

WSP level were prepared. The level of WSP was predetermined by the chosen range 

in the applied 3-factor central composite design (63.3 to 225 g kg-1 DM). The feed 

mixes were standardized to an equal level of dry matter and starch. The feed mixes 

were extruded according to the steam and water levels determined by the 

experimental design (0 to 111.5 g kg-1 DM), giving a total of 15 experimental settings 

with 3 replications of the center point (17 trials in total). 

MLR models with r2 in the range of 0.862 to 0.976 (P < 0.001) were established for 

the responses SME, hardness, cutting strength, SEI, length, bulk density and oil 

adsorption capacity. The Tg and Tf in the extrudates were measured by use of the 

PTA. Based on the analysed WSP and moisture level in the extrudates, PLSR models 

for Tg and Tf were established with r2 at 0.981 and 0.930, respectively.  

The measured SME values varied between 59.1 and 135 kJ kg-1. The addition of WSP 

had a positive effect on SME while moisture had negative effect. This could be 

explained by a much higher viscosity of WSP compared to water, and by differences 

in biopolymer interactions depending on type of plasticizer. Increased levels of water 

and steam caused a decline in SME, with steam explaining more than 75% of the 

variance in SME.  This indicates that moisture and temperature were the two most 

important factors that reduce melt viscosity and SME. 
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No loss of WSP during the extrusion process could be observed and the measured Tg 

and Tf in the extrudates varied between <3.6 and 14.9 °C and 33.1 and 83.0 °C, 

respectively. The two predictor variables, i.e. the analysed WSP and moisture level in 

the extrudates (g kg-1 wet), had negative regression coefficients in both the Tg and Tf 

models giving the lowest transition temperatures with a combination of a high WSP 

and a high moisture level. For the Tf model the two predictor variables showed equal 

effect on Tf per mass unit, which  documents the potential of WSP as plasticizer in 

fish feed production. 

Hardness and cutting strength (55.1 to 173.5 N and 17.4 to 28.1 N, respectively) gave 

similar information regarding physical pellet quality. There were an increase in 

hardness and cutting strength at increased WSP levels with the highest effect at low 

water and steam levels. Due to a possible softening effect caused by an excess 

amount of plasticizer reduced hardness and cutting strength were observed at the 

highest WSP level. Reduced hardness and cutting strength were observed with 

increasing levels of water and steam, due to the observed decrease in SME. The 

results show the potential for the use of WSP as a binder. The WSP reduces Tf but 

still have a positive effect on SME and viscous dissipation. This will improve the 

cooking efficiency, melt homogeneity and final product properties compared to the 

addition of moisture. WSP will also influence the viscoelastic properties of the final 

product and have a positive effect on physical pellet quality by establishment of 

intermolecular binding network through hydrogen- and ionic bond and hydrophobic 

interactions. 

Bulk density (323 to 506 g L-1) was negatively correlated to SEI (P < 0.001), length 

(P < 0.001) and oil adsorption capacity (P < 0.001) and the MLR model for bulk 

density showed a negative effect of increasing WSP, steam and water. Three 

mechanisms can explain the observed effects: 1) An increase in steam level increases 

the driving force for diametrical expansion (SEI) due to adiabatic flash, 2) an increase 

in steam and/or water level increases the throughput and, at constant knife speed, 

giving a longer pellet and lower bulk density and 3) an increase in WSP and moisture 
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level (steam and/or water) lowers the resistance for expansion due to a decrease in Tf 

and melt viscosity. 

The stickwater concentrate used to vary the WSP level also contains most of the 

water soluble nitrogen compounds (protein, peptides, amino acids, putrefaction 

products etc.), vitamins and minerals in the fish raw material. It is not possible to 

differentiate between the plasticizing effects of the different groups of constituents. 

Solubles compounds with possible plasticization effect are discussed in relation to 

literature data in Paper IV. 

8.4 Plasticization effect of solubles in fishmeal (Paper IV) 

This study was designed to assess the combined effects of solubles and moisture level 

on TgMid and Tf in a fishmeal model system, and to quantify soluble constituents with 

possible plasticization effect. 

Five experimental fishmeal samples with increasing level of water solubles (water 

soluble dry matter, WSDM) were prepared. The WSDM levels (94.8 to 379.8 g kg-1 

DM) were chosen to span the range of WSP content observed in commercial fishmeal 

processing. The fishmeal samples were moistened to the levels determined by a 2-

factor central composite design (85.2 to 222.6 g kg-1 wet), giving a total of 9 

experimental settings with 3 replications of the center point (11 trials). From the PTA 

displacement versus temperature curve, TgMid, TgEnd and Tf were quantified and MLR 

models with r2 > 0.951 were established for the responses TgMid, TgEnd, TgEnd -TgMid, Tf, 

Tf -TgMid and Tf -TgEnd.  

The measured TgMid values varied between 6.2 and 25.7 °C and the established 

response surface model shows a significant negative squared effect of WSDM and a 

negative linear effect of moisture. Based on the main effects, each percent increase in 

moisture content had 3.1 times higher effect on TgMid compared to the corresponding 

increase in WSDM. However, on a molar basis the effect of solubles addition will be 

higher compared to moisture. The TgMid levels observed for fishmeal was significantly 

lower than values reported for other food proteins based on PTA analysis, i.e. in the 
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70-80 °C range for casein, soya and gluten at 10% moisture content (Bengoechea et 

al. 2007) compared to a predicted range of 17-25 °C in fishmeal. The effect of 

WSDM on TgMid could be modelled based on the Gordon-Taylor equation. 

The TgEnd model showed negative main, and positive squared and interaction effects 

with a clearly reduced effect of WSDM at high moisture levels compared to low. The 

observed half transition range (TgEnd - TgMid) varied between 10.7 to 47.6 °C, which is 

consistent with the maximum transition range of 100 °C reported for food polymers 

(Yildiz & Kokini 2001). The glass transition range is reflecting the homogeneity of 

the biopolymer and a broad temperature range is characteristic for a multicomponent 

system with a large span in molecular weight. The observed broader effect of 

moisture compared to WSDM content on the glass transition range may be attributed 

to the lower molecular weight and more polar nature of water compared to the soluble 

constituents in the WSDM which is fully compatible with the press cake fishmeal. 

The model for Tf showed a negative effect of solubles level and moisture content and 

a squared positive effect of both variables giving a decreasing effect on Tf at high 

levels of the two variables. The measured levels varied from 42.3 to 171.3 °C. Based 

on the main effects, each percent increase in moisture content had 1.2 times higher 

effect on Tf compared to WSDM, in good agreement with the similar effect reported 

for extrudates in Paper III.  

The region between Tg and Tf can be defined as the rubbery phase. This region, 

dependent on both WSDM and moisture level, spanned a range of 36.1 to 148.6 °C 

for the fish meal samples. This differentiates fishmeal from other protein ingredients 

characterized in the literature, where a constant difference between Tf and TgMid that is 

independent of moisture content were found (e.g. ~37 °C for gluten, ~39 °C of casein 

and ~75 °C for soya; Bengoechea et al. 2007 ).  

During heating of the fishmeal samples in the PTA, the apparent viscosity was 

reduced from approximately 1012 at TgMid to 105 Pa s at Tf, a viscosity below the 

critical level for extrudate bubble growth (107 to 108 Pa s). The temperature 

dependence of viscosity above Tg can be described by the WLF equation. The large 
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Tf – TgMid span shows that the WLF parameters (C1 and C2) are not universal for 

fishmeal and that they depend on both moisture- and WSDM content. For the studied 

fishmeal model system there is a large composition region of WSP and moisture with 

a higher difference between Tf and TgMid compared to casein, gluten and soya protein 

isolate. This indicates a reduced temperature effect on viscosity reduction in the 

rubbery phase for fishmeal in this region. The constant difference between Tf and 

TgMid for casein, gluten and soya protein isolate also indicates that the WLF 

parameters do not change with moisture content in these protein ingredients. 

The groups quantified by chemical analysis in the fish solubles include: 1) the α-

amino acids normally found in proteins; 2) non-protein α-, β- and γ-amino acids and 

taurine; 3) peptides; 4) putrefaction compounds including biogenic amines and 

volatile nitrogen (i.e. ammonia and trimethylamine); 5) ash and sodium chloride. 

Based on literature data (Stein & Green 1997; Stein et al. 1999; Farahnaky et al. 

2009; Moreau et al. 2009) the most effective plasticizers in the water solubles will be 

the low molecular N-compounds (amino acids, peptides, putrefaction products etc.). 
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9. Conclusions 

The experimental work included in this thesis has improved the understanding of how 

the variability in fishmeal physicochemical properties affect the extrusion cooking 

process and physical quality of fish feed. The work has also documented the 

plasticizing effect of water solubles in fishmeal applied in the fish feed extrusion 

process and elucidated the underlying mechanisms for the process and resulting 

effects on pellet quality. The main conclusions are summarized in the following 

(water solubles used as common designation for WSP and WSDM). 

 Fishmeal is a complex protein ingredient with significant effect on the extrusion 

process, starch gelatinization and physical pellet quality, and with large 

differences in physicochemical properties within and between the studied 

fishmeal types (i.e. herring and sand eel).  

 Fishmeal is purchased on the world commodity market based on a limited set of 

chemical and biological specifications. These specifications inadequately describe 

the technical properties of a fishmeal. 

 Improved starch gelatinization (starch pasting) increases the melt viscosity in the 

extruder barrel, with resulting positive contribution to SME. However, the applied 

glucoamylase methodology for measuring starch gelatinization is not adequate for 

quantification of the pellet binding properties of the starch molecules. 

 A fine-grained fishmeal with a fibrous structure may improve SME and cooking 

efficiency within the extruder barrel due to increased particle to particle contact 

(shear). Fishmeal structure is dependent on both drying conditions and fish 

species. 

 Water solubles in fishmeal improve the physical feed quality. The effect can be 

explained by the following underlying mechanisms: 1) water solubles contain 

large water soluble polypeptides corresponding to gelatine. The content depends 

on species, and FMH contain more gelatine than FMSE. Gelatine cross-links and 

enhances texture formation. 2) Peptides, amino acids and other N-containing 

compounds in the water solubles contribute to intermolecular binding networks 
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through hydrogen-, ionic bond and hydrophobic interactions. 3) Water solubles 

improve cooking efficiency due to the plasticizing effect of low molecular N-

compounds. 

 Increased level of non-soluble protein gives reduced physical feed quality. This 

can be a result of incomplete cooking or transformation due to lack of efficient 

plasticizers (i.e. lack of low molecular N-compounds) in the feed mix.  

 More mechanical energy (shear) is needed to transform FMSE compared to FMH 

based feed mixes under similar extrusion conditions.   

 The documented plasticizing effect of water solubles is comparable to moisture 

addition. The uses of such plasticizers open up the possibility to obtain a 

satisfactory transformation at reduced moisture level with a potential for 

significant reduction of the energy consumption during drying of the extrudate.  

 In contrast to moisture, addition of water solubles has a positive effect on SME 

and physical pellet quality. Non-volatile plasticizers like water solubles, will not 

be removed in the drying process and therefore also influence the viscoelastic 

properties of the final product.  

 The effect of water solubles on TgMid could be modelled based on the Gordon-

Taylor equation. The TgMid levels observed for fishmeal are significantly lower 

than values reported for other food proteins based on PTA analysis. 

 A reduced temperature effect on viscosity reduction in the rubbery phase for 

fishmeal compared to plant based proteins and casein was oberved. Combined 

with significantly lower TgMid, such differences in physicochemical properties 

may contribute to explain the unique functional properties of fishmeal. 

 The apparent viscosity at Tf for fishmeal (105 Pa s) is below the critical viscosity 

level for extrudate bubble growth (107 to 108 Pa s) and a negative relationship 

between bulk density and the temperature difference between Tdie and Tf was 

found for fish feed extrudates. Measurements performed on a PTA can therefore 

be a valuable tool for prediction of pellet expansion and oil adsorption capacity.  

 Water solubles can be used as processing aids for the fish feed industry, serving 

multiple purposes as nutrient, plasticizer and binder in extruded fish feed. 
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10. Future outlooks 

During the last decades there have been large changes in feed composition for salmon 

with fishmeal reduced from approximately 65% in 1990 to 18% in 2013 and replaced 

by plant based proteins. The new protein ingredients are not a uniform group and 

large variability in extrusion and binding properties can be expected. To better 

understand and control the extrusion process and physical pellet quality there is a 

need to improve the knowledge on technical properties of these ingredients and to 

study possible interactions between them.  

Reported measurements of physical feed properties are inconsistent in type of 

equipment used, methodology and in the implementation of methods. In addition, 

there are also conflicting results on how these properties affect nutrient digestibility 

and the biological response of the fish. There is a need to standardize the different 

methods used to evaluate physical fish feed quality and to further investigate how 

these properties interact with feed intake and feed utilization. 

This PhD project has confirmed that fishmeal has unique technical properties 

compared to casein and plant derived proteins. The work has documented the need 

for new analytical approaches to better characterize and understand the extrusion 

behaviour and binding properties of feed ingredients. Further research should focus 

on: 

 Establish a methodology for measuring starch gelatinization that quantifies the 

binding properties of the starch molecules. 

 The different feed ingredients will have different water-binding capacity and will 

compete regarding moisture uptake in the extrusion process. This will impact the 

thermomechanical transformation of the different ingredients. There is a lack of 

data in the literature comparing water-binding capacity of different feed 

ingredients.   
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 Particle structure may impact SME. Proper methods for quantification of powder 

friction and adhesion forces in powdery ingredients should be developed and 

studied in relation to SME and viscous dissipation in the extruder barrel. 

 Lack of homogeneity is one of the major reasons for the difficulty in 

understanding the rheology of biopolymer melts and may explain the large 

variation in physical feed quality documented in this thesis. Proper measuring 

techniques to study feed melt homogeneity should be developed.  

 The PTA is a useful tool for determining of the Tg and Tf, however, further studies 

are needed to validate the use of the technique related to pellet expansion and 

collapse over the die.  

 Based on literature data the dominating plasticising effect in fishmeal can be 

attributed to the content of low molecular N-compounds. Further studies are 

needed to characterize the plasticization effect of low molecular organic and 

inorganic constituents and rheological properties of different feed ingredients.  

 Pellet binding forces consist of a combination of covalent disulphide bridging and 

hydrogen-, ionic bonds and hydrophobic interactions. Techniques for describing 

the biopolymer binding structure and quantification of intra- and intermolecular 

forces in the feed pellet should be explored. 
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